WorldWideScience

Sample records for brain regions disrupts

  1. Disrupted functional brain networks in autistic toddlers

    NARCIS (Netherlands)

    Boersma, M.; Kemner, C.; Reus, M.A. de; Collin, G; Snijders, T.M.; Hofman, D.; Buitelaar, J.K.; Stam, C.J.; Heuvel, M.P. van den

    2013-01-01

    Communication and integration of information between brain regions plays a key role in healthy brain function. Conversely, disruption in brain communication may lead to cognitive and behavioral problems. Autism is a neurodevelopmental disorder that is characterized by impaired social interactions

  2. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  3. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    Science.gov (United States)

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  4. Identification of Reversible Disruption of the Human Blood-Brain Barrier Following Acute Ischemia.

    Science.gov (United States)

    Simpkins, Alexis N; Dias, Christian; Leigh, Richard

    2016-09-01

    Animal models of acute cerebral ischemia have demonstrated that diffuse blood-brain barrier (BBB) disruption can be reversible after early reperfusion. However, irreversible, focal BBB disruption in humans is associated with hemorrhagic transformation in patients receiving intravenous thrombolytic therapy. The goal of this study was to use a magnetic resonance imaging biomarker of BBB permeability to differentiate these 2 forms of BBB disruption. Acute stroke patients imaged with magnetic resonance imaging before, 2 hours after, and 24 hours after treatment with intravenous tissue-type plasminogen activator were included. The average BBB permeability of the acute ischemic region before and 2 hours after treatment was calculated using a T2* perfusion-weighted source images. Change in average permeability was compared with percent reperfusion using linear regression. Focal regions of maximal BBB permeability from the pretreatment magnetic resonance imaging were compared with the occurrence of parenchymal hematoma (PH) formation on the 24-hour magnetic resonance imaging scan using logistic regression. Signals indicating reversible BBB permeability were detected in 18/36 patients. Change in average BBB permeability correlated inversely with percent reperfusion (P=0.006), indicating that early reperfusion is associated with decreased BBB permeability, whereas sustained ischemia is associated with increased BBB disruption. Focal regions of maximal BBB permeability were significantly associated with subsequent formation of PH (P=0.013). This study demonstrates that diffuse, mild BBB disruption in the acutely ischemic human brain is reversible with reperfusion. This study also confirms prior findings that focal severe BBB disruption confers an increased risk of hemorrhagic transformation in patients treated with intravenous tissue-type plasminogen activator. © 2016 American Heart Association, Inc.

  5. Fetal brain disruption sequence versus fetal brain arrest: A distinct autosomal recessive developmental brain malformation phenotype.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; El-Khayat, Hamed A; Eid, Ola M; Saba, Soliman; Farag, Mona K; Saleem, Sahar N; Gaber, Khaled R

    2015-05-01

    The term fetal brain disruption sequence (FBDS) was coined to describe a number of sporadic conditions caused by numerous external disruptive events presenting with variable imaging findings. However, rare familial occurrences have been reported. We describe five patients (two sib pairs and one sporadic) with congenital severe microcephaly, seizures, and profound intellectual disability. Brain magnetic resonance imaging (MRI) revealed unique and uniform picture of underdeveloped cerebral hemispheres with increased extraxial CSF, abnormal gyral pattern (polymicrogyria-like lesions in two sibs and lissencephaly in the others), loss of white matter, dysplastic ventricles, hypogenesis of corpus callosum, and hypoplasia of the brainstem, but hypoplastic cerebellum in one. Fetal magnetic resonance imaging (FMRI) of two patients showed the same developmental brain malformations in utero. These imaging findings are in accordance with arrested brain development rather than disruption. Molecular analysis excluded mutations in potentially related genes such as NDE1, MKL2, OCLN, and JAM3. These unique clinical and imaging findings were described before among familial reports with FBDS. However, our patients represent a recognizable phenotype of developmental brain malformations, that is, apparently distinguishable from either familial microhydranencephaly or microlissencephaly that were collectively termed FBDS. Thus, the use of the umbrella term FBDS is no longer helpful. Accordingly, we propose the term fetal brain arrest to distinguish them from other familial patients diagnosed as FBDS. The presence of five affected patients from three unrelated consanguineous families suggests an autosomal-recessive mode of inheritance. The spectrum of fetal brain disruption sequence is reviewed. © 2015 Wiley Periodicals, Inc.

  6. Sleep disruption and the sequelae associated with traumatic brain injury.

    Science.gov (United States)

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. Published by Elsevier Ltd.

  7. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

    Science.gov (United States)

    Banks, William A; Gray, Alicia M; Erickson, Michelle A; Salameh, Therese S; Damodarasamy, Mamatha; Sheibani, Nader; Meabon, James S; Wing, Emily E; Morofuji, Yoichi; Cook, David G; Reed, May J

    2015-11-25

    Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using (14)C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to (14)C-sucrose and radioactive albumin. In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with (14)C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and (14)C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is

  8. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome.

    Science.gov (United States)

    Bouchat, Joanna; Couturier, Bruno; Marneffe, Catherine; Gankam-Kengne, Fabrice; Balau, Benoît; De Swert, Kathleen; Brion, Jean-Pierre; Poncelet, Luc; Gilloteaux, Jacques; Nicaise, Charles

    2018-03-01

    The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS. © 2017 Wiley Periodicals, Inc.

  9. Thyroid-disrupting chemicals and brain development: an update

    Directory of Open Access Journals (Sweden)

    Bilal B Mughal

    2018-04-01

    Full Text Available This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.

  10. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    Science.gov (United States)

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  11. Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound.

    Science.gov (United States)

    Kobus, Thiele; Vykhodtseva, Natalia; Pilatou, Magdalini; Zhang, Yongzhi; McDannold, Nathan

    2016-02-01

    The purpose of this study was to investigate the effects on the brain of multiple sessions of blood-brain barrier (BBB) disruption using focused ultrasound (FUS) in combination with micro-bubbles over a range of acoustic exposure levels. Six weekly sessions of FUS, using acoustical pressures between 0.66 and 0.80 MPa, were performed under magnetic resonance guidance. The success and degree of BBB disruption was estimated by signal enhancement of post-contrast T1-weighted imaging of the treated area. Histopathological analysis was performed after the last treatment. The consequences of repeated BBB disruption varied from no indications of vascular damage to signs of micro-hemorrhages, macrophage infiltration, micro-scar formations and cystic cavities. The signal enhancement on the contrast-enhanced T1-weighted imaging had limited value for predicting small-vessel damage. T2-weighted imaging corresponded well with the effects on histopathology and could be used to study treatment effects over time. This study demonstrates that repeated BBB disruption by FUS can be performed with no or limited damage to the brain tissue. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Blood-brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation

    DEFF Research Database (Denmark)

    Schellenberg, Angela E; Buist, Richard; Del Bigio, Marc R

    2012-01-01

    infiltrate into the brain parenchyma following the administration of pertussis toxin (PTx). METHODS: This study uses contrast-enhanced magnetic resonance imaging (MRI) to quantify the extent of blood-brain barrier (BBB) disruption in this model pre- and post-PTx administration compared to wild type mice....... Contrast-enhanced MR images were obtained before and 1, 3, and 5 days after PTx injection in each animal. After the final imaging session fluorescent dextran tracers were administered intravenously to each mouse and brains were examined histologically for cellular infiltrates, BBB leakage and tight...... junction protein. RESULTS: BBB breakdown, defined as a disruption of both the endothelium and glia limitans, was found only in CCL2 transgenic mice following PTx administration seen on MR images as focal areas of contrast enhancement and histologically as dextrans leaking from blood vessels. No evidence...

  13. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  14. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    Science.gov (United States)

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  15. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption.

    Science.gov (United States)

    Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Mardor, Yael; Miklavcic, Damijan

    2016-03-01

    Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

  16. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  17. Effects of deferoxamine on blood-brain barrier disruption after subarachnoid hemorrhage.

    Directory of Open Access Journals (Sweden)

    Yanjiang Li

    Full Text Available Blood brain barrier (BBB disruption is a key mechanism of subarachnoid hemorrhage (SAH-induced brain injury. This study examined the mechanism of iron-induced BBB disruption after SAH and investigated the potential therapeutic effect of iron chelation on SAH. Male adult Sprague-Dawley rats had an endovascular perforation of left internal carotid artery bifurcation or sham operation. The rats were treated with deferoxamine (DFX or vehicle (100mg/kg for a maximum of 7 days. Brain edema, BBB leakage, behavioral and cognitive impairment were examined. In SAH rat, the peak time of brain edema and BBB impairment in the cortex was at day 3 after SAH. SAH resulted in a significant increase in ferritin expression in the cortex. The ferritin positive cells were colocalized with endothelial cells, pericytes, astrocytes, microglia and neurons. Compared with vehicle, DFX caused less ferritin upregulation, brain water content, BBB impairment, behavioral and cognitive deficits in SAH rats. The results suggest iron overload could be a therapeutic target for SAH induced BBB damage.

  18. Disrupted resting brain graph measures in individuals at high risk for alcoholism.

    Science.gov (United States)

    Holla, Bharath; Panda, Rajanikant; Venkatasubramanian, Ganesan; Biswal, Bharat; Bharath, Rose Dawn; Benegal, Vivek

    2017-07-30

    Familial susceptibility to alcoholism is likely to be linked to the externalizing diathesis seen in high-risk offspring from high-density alcohol use disorder (AUD) families. The present study aimed at comparing resting brain functional connectivity and their association with externalizing symptoms and alcoholism familial density in 40 substance-naive high-risk (HR) male offspring from high-density AUD families and 30 matched healthy low-risk (LR) males without a family history of substance dependence using graph theory-based network analysis. The HR subjects from high-density AUD families compared with LR, showed significantly reduced clustering, small-worldness, and local network efficiency. The frontoparietal, cingulo-opercular, sensorimotor and cerebellar networks exhibited significantly reduced functional segregation. These disruptions exhibited independent incremental value in predicting the externalizing symptoms over and above the demographic variables. The reduction of functional segregation in HR subjects was significant across both the younger and older age groups and was proportional to the family loading of AUDs. Detection and estimation of these developmentally relevant disruptions in small-world architecture at critical brain regions sub-serving cognitive, affective, and sensorimotor processes are vital for understanding the familial risk for early onset alcoholism as well as for understanding the pathophysiological mechanism of externalizing behaviors. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity

    Science.gov (United States)

    Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd

    2013-01-01

    Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929

  20. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Shi, Hai-Bin [The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Jiang, Long-Feng [The First Affiliated Hospital of Nanjing Medical University, Department of Infectious Diseases, Nanjing (China); Li, Lan [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Rong [University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, MD (United States); Beijing Institute of Technology, Advanced Innovation Center for Intelligent Robots and Systems, Beijing (China)

    2018-01-15

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  1. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Shi, Hai-Bin; Jiang, Long-Feng; Li, Lan; Chen, Rong

    2018-01-01

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  2. Regionally specific white matter disruptions of fornix and cingulum in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Muhammad Farid Abdul-Rahman

    Full Text Available Limbic circuitry disruptions have been implicated in the psychopathology and cognitive deficits of schizophrenia, which may involve white matter disruptions of the major tracts of the limbic system, including the fornix and the cingulum. Our study aimed to investigate regionally specific abnormalities of the fornix and cingulum in schizophrenia using diffusion tensor imaging (DTI. We determined the fractional anisotropy (FA, radial diffusivity (RD, and axial diffusivity (AD profiles along the fornix and cingulum tracts using a fibertracking technique and a brain mapping algorithm, the large deformation diffeomorphic metric mapping (LDDMM, in the DTI scans of 33 patients with schizophrenia and 31 age-, gender-, and handedness-matched healthy controls. We found that patients with schizophrenia showed reduction in FA and increase in RD in bilateral fornix, and increase in RD in left anterior cingulum when compared to healthy controls. In addition, tract-based analysis revealed specific loci of these white matter differences in schizophrenia, that is, FA reductions and AD and RD increases occur in the region of the left fornix further from the hippocampus, FA reductions and RD increases occur in the rostral portion of the left anterior cingulum, and RD and AD increases occur in the anterior segment of the left middle cingulum. In patients with schizophrenia, decreased FA in the specific loci of the left fornix and increased AD in the right cingulum adjoining the hippocampus correlated with greater severity of psychotic symptoms. These findings support precise disruptions of limbic-cortical integrity in schizophrenia and disruption of these structural networks may contribute towards the neural basis underlying the syndrome of schizophrenia and clinical symptomatology.

  3. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.

    Science.gov (United States)

    Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2017-01-01

    Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    Science.gov (United States)

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  5. The prospective application of a hypoxic radiosensitizer, doranidazole to rat intracranial glioblastoma with blood brain barrier disruption

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Asanuma, Taketoshi; Kino, Junichi; Yamamori, Tohru; Meike, Shunsuke; Nagane, Masaki; Kubota, Nobuo; Kuwabara, Mikinori; Inanami, Osamu

    2013-01-01

    Glioblastoma is one of the intractable cancers and is highly resistant to ionizing radiation. This radioresistance is partly due to the presence of a hypoxic region which is widely found in advanced malignant gliomas. In the present study, we evaluated the effectiveness of the hypoxic cell sensitizer doranidazole (PR-350) using the C6 rat glioblastoma model, focusing on the status of blood brain barrier (BBB). Reproductive cell death in the rat C6 glioma cell line was determined by means of clonogenic assay. An intracranial C6 glioma model was established for the in vivo experiments. To investigate the status of the BBB in C6 glioma bearing brain, we performed the Evans blue extravasation test. Autoradiography with [ 14 C]-doranidazole was performed to examine the distribution of doranidazole in the glioma tumor. T2-weighted MRI was employed to examine the effects of X-irradiation and/or doranidazole on tumor growth. Doranidazole significantly enhanced radiation-induced reproductive cell death in vitro under hypoxia, but not under normoxia. The BBB in C6-bearing brain was completely disrupted and [ 14 C]-doranidazole specifically penetrated the tumor regions. Combined treatment with X-irradiation and doranidazole significantly inhibited the growth of C6 gliomas. Our results revealed that BBB disruption in glioma enables BBB-impermeable radiosensitizers to penetrate and distribute in the target region. This study is the first to propose that in malignant glioma the administration of hydrophilic hypoxic radiosensitizers could be a potent strategy for improving the clinical outcome of radiotherapy without side effects

  6. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  7. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud

    2017-06-01

    See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier

  8. Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder?

    Directory of Open Access Journals (Sweden)

    Jay P. Patel

    2015-01-01

    Full Text Available The blood-brain barrier (BBB regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer’s disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD, here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.

  9. The application of MRI for depiction of subtle blood brain barrier disruption in stroke.

    Science.gov (United States)

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-12-26

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in

  10. Disrupted Gamma Synchrony after Mild Traumatic Brain Injury and Its Correlation with White Matter Abnormality

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-10-01

    Full Text Available Mild traumatic brain injury (mTBI has been firmly associated with disrupted white matter integrity due to induced white matter damage and degeneration. However, comparatively less is known about the changes of the intrinsic functional connectivity mediated via neural synchronization in the brain after mTBI. Moreover, despite the presumed link between structural and functional connectivity, no existing studies in mTBI have demonstrated clear association between the structural abnormality of white matter axons and the disruption of neural synchronization. To investigate these questions, we recorded resting state EEG and diffusion tensor imaging (DTI from a cohort of military service members. A newly developed synchronization measure, the weighted phase lag index was applied on the EEG data for estimating neural synchronization. Fractional anisotropy was computed from the DTI data for estimating white matter integrity. Fifteen service members with a history of mTBI within the past 3 years were compared to 22 demographically similar controls who reported no history of head injury. We observed that synchronization at low-gamma frequency band (25–40 Hz across scalp regions was significantly decreased in mTBI cases compared with controls. The synchronization in theta (4–7 Hz, alpha (8–13 Hz, and beta (15–23 Hz frequency bands were not significantly different between the two groups. In addition, we found that across mTBI cases, the disrupted synchronization at low-gamma frequency was significantly correlated with the white matter integrity of the inferior cerebellar peduncle, which was also significantly reduced in the mTBI group. These findings demonstrate an initial correlation between the impairment of white matter integrity and alterations in EEG synchronization in the brain after mTBI. The results also suggest that disruption of intrinsic neural synchronization at low-gamma frequency may be a characteristic functional pathology

  11. Molecular targets in radiation-induced blood-brain barrier disruption

    International Nuclear Information System (INIS)

    Nordal, Robert A.; Wong, C. Shun

    2005-01-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection

  12. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    OpenAIRE

    David Israeli, David Tanne, Dianne Daniels, David Last, Ran Shneor, David Guez, Efrat Landau, Yiftach Roth, Aharon Ocherashvilli, Mati Bakon, Chen Hoffman, Amit Weinberg, Talila Volk, Yael Mardor

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI...

  13. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    OpenAIRE

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI...

  14. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

    Science.gov (United States)

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.

  15. Prognostic significance of blood-brain barrier disruption in patients with severe nonpenetrating traumatic brain injury requiring decompressive craniectomy.

    Science.gov (United States)

    Ho, Kwok M; Honeybul, Stephen; Yip, Cheng B; Silbert, Benjamin I

    2014-09-01

    The authors assessed the risk factors and outcomes associated with blood-brain barrier (BBB) disruption in patients with severe, nonpenetrating, traumatic brain injury (TBI) requiring decompressive craniectomy. At 2 major neurotrauma centers in Western Australia, a retrospective cohort study was conducted among 97 adult neurotrauma patients who required an external ventricular drain (EVD) and decompressive craniectomy during 2004-2012. Glasgow Outcome Scale scores were used to assess neurological outcomes. Logistic regression was used to identify factors associated with BBB disruption, defined by a ratio of total CSF protein concentrations to total plasma protein concentration > 0.007 in the earliest CSF specimen collected after TBI. Of the 252 patients who required decompressive craniectomy, 97 (39%) required an EVD to control intracranial pressure, and biochemical evidence of BBB disruption was observed in 43 (44%). Presence of disruption was associated with more severe TBI (median predicted risk for unfavorable outcome 75% vs 63%, respectively; p = 0.001) and with worse outcomes at 6, 12, and 18 months than was absence of BBB disruption (72% vs 37% unfavorable outcomes, respectively; p = 0.015). The only risk factor significantly associated with increased risk for BBB disruption was presence of nonevacuated intracerebral hematoma (> 1 cm diameter) (OR 3.03, 95% CI 1.23-7.50; p = 0.016). Although BBB disruption was associated with more severe TBI and worse long-term outcomes, when combined with the prognostic information contained in the Corticosteroid Randomization after Significant Head Injury (CRASH) prognostic model, it did not seem to add significant prognostic value (area under the receiver operating characteristic curve 0.855 vs 0.864, respectively; p = 0.453). Biochemical evidence of BBB disruption after severe nonpenetrating TBI was common, especially among patients with large intracerebral hematomas. Disruption of the BBB was associated with more severe

  16. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    Science.gov (United States)

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  17. Early Blood-Brain Barrier Disruption after Mechanical Thrombectomy in Acute Ischemic Stroke.

    Science.gov (United States)

    Shi, Zhong-Song; Duckwiler, Gary R; Jahan, Reza; Tateshima, Satoshi; Szeder, Viktor; Saver, Jeffrey L; Kim, Doojin; Sharma, Latisha K; Vespa, Paul M; Salamon, Noriko; Villablanca, J Pablo; Viñuela, Fernando; Feng, Lei; Loh, Yince; Liebeskind, David S

    2018-05-01

    The impact of blood-brain barrier (BBB) disruption can be detected by intraparenchymal hyperdense lesion on the computed tomography (CT) scan after endovascular stroke therapy. The purpose of this study was to determine whether early BBB disruption predicts intracranial hemorrhage and poor outcome in patients with acute ischemic stroke treated with mechanical thrombectomy. We analyzed patients with anterior circulation stroke treated with mechanical thrombectomy and identified BBB disruption on the noncontrast CT images immediately after endovascular treatment. Follow-up CT or magnetic resonance imaging scan was performed at 24 hours to assess intracranial hemorrhage. We dichotomized patients into those with moderate BBB disruption versus those with minor BBB disruption and no BBB disruption. We evaluated the association of moderate BBB disruption after mechanical thrombectomy with intracranial hemorrhage and clinical outcomes. Moderate BBB disruption after mechanical thrombectomy was found in 56 of 210 patients (26.7%). Moderate BBB disruption was independently associated with higher rates of hemorrhagic transformation (OR 25.33; 95% CI 9.93-64.65; P disruption with intracranial hemorrhage remained in patients with successful reperfusion after mechanical thrombectomy. The location of BBB disruption was not associated with intracranial hemorrhage and poor outcome. Moderate BBB disruption is common after mechanical thrombectomy in a quarter of patients with acute ischemic stroke and increases the risk of intracranial hemorrhage and poor outcome. Copyright © 2018 by the American Society of Neuroimaging.

  18. Differential susceptibility of brain regions to tributyltin chloride toxicity.

    Science.gov (United States)

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-12-01

    Tributyltin (TBT), a well-known endocrine disruptor, is an omnipresent environmental pollutant and is explicitly used in many industrial applications. Previously we have shown its neurotoxic potential on cerebral cortex of male Wistar rats. As the effect of TBT on other brain regions is not known, we planned this study to evaluate its effect on four brain regions (cerebellum, hippocampus, hypothalamus, and striatum). Four-week-old male Wistar rats were gavaged with a single dose of TBT-chloride (TBTC) (10, 20, and 30 mg/kg) and sacrificed on days 3 and 7, respectively. Effect of TBTC on blood-brain barrier (BBB) permeability and tin (Sn) accumulation were measured. Oxidative stress indexes such as reactive oxygen species (ROS), reduced and oxidized glutathione (GSH/GSSG) ratio, lipid peroxidation, and protein carbonylation were analyzed as they play an imperative role in various neuropathological conditions. Since metal catalyzed reactions are a major source of oxidant generation, levels of essential metals like iron (Fe), zinc (Zn), and calcium (Ca) were estimated. We found that TBTC disrupted BBB and increased Sn accumulation, both of which appear significantly correlated. Altered metal homeostasis and ROS generation accompanied by elevated lipid peroxidation and protein carbonylation indicated oxidative damage which appeared more pronounced in the striatum than in cerebellum, hippocampus, and hypothalamus. This could be associated to the depleted GSH levels in striatum. These results suggest that striatum is more susceptible to TBTC induced oxidative damage as compared with other brain regions under study. © 2014 Wiley Periodicals, Inc.

  19. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    Science.gov (United States)

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  20. Plasmalemmal Vesicle Associated Protein-1 (PV-1 is a marker of blood-brain barrier disruption in rodent models

    Directory of Open Access Journals (Sweden)

    Ali Zarina S

    2008-02-01

    Full Text Available Abstract Background Plasmalemmal vesicle associated protein-1 (PV-1 is selectively expressed in human brain microvascular endothelial cells derived from clinical specimens of primary and secondary malignant brain tumors, cerebral ischemia, and other central nervous system (CNS diseases associated with blood-brain barrier breakdown. In this study, we characterize the murine CNS expression pattern of PV-1 to determine whether localized PV-1 induction is conserved across species and disease state. Results We demonstrate that PV-1 is selectively upregulated in mouse blood vessels recruited by brain tumor xenografts at the RNA and protein levels, but is not detected in non-neoplastic brain. Additionally, PV-1 is induced in a mouse model of acute ischemia. Expression is confined to the cerebovasculature within the region of infarct and is temporally regulated. Conclusion Our results confirm that PV-1 is preferentially induced in the endothelium of mouse brain tumors and acute ischemic brain tissue and corresponds to blood-brain barrier disruption in a fashion analogous to human patients. Characterization of PV-1 expression in mouse brain is the first step towards development of rodent models for testing anti-edema and anti-angiogenesis therapeutic strategies based on this molecule.

  1. Mapping the brain pathways of traumatic memory: inactivation of protein kinase M zeta in different brain regions disrupts traumatic memory processes and attenuates traumatic stress responses in rats.

    Science.gov (United States)

    Cohen, Hagit; Kozlovsky, Nitsan; Matar, Michael A; Kaplan, Zeev; Zohar, Joseph

    2010-04-01

    Protein kinase M zeta (PKMzeta), a constitutively active isoform of protein kinase C, has been implicated in protein synthesis-dependent maintenance of long-term potentiation and memory storage in the brain. Recent studies reported that local application of ZIP, a membrane-permeant PKMzeta inhibitor, into the insular cortex (IC) of behaving rats abolished long-term memory of taste associations. This study assessed the long-term effects of local applications of ZIP microinjected immediately (1 h) or 10 days after predator scent stress exposure, in a controlled prospectively designed animal model for PTSD. Four brain structures known to be involved in memory processes and in anxiety were investigated: lateral ventricle (LV), dorsal hippocampus (DH), basolateral amygdala and IC. The outcome measures included behavior in an elevated plus maze and acoustic startle response 7 days after microinjection, and freezing behavior upon exposure to trauma-related cue 8 days after microinjection. Previously acquired/encoded memories associated with the IC were also assessed. Inactivation of PKMzeta in the LV or DH within 1h of exposure effectively reduced PTSD-like behavioral disruption and trauma cue response 8 days later. Inactivation of PKMzeta 10 days after exposure had equivalent effects only when administered in the IC. The effect was demonstrated to be specific for trauma memories, whereas previously acquired data were unaffected by the procedure. Predator scent related memories are located in different brain areas at different times beginning with an initial hippocampus-dependent consolidation process, and are eventually stored in the IC. These bring the IC to the forefront as a potential region of significance in processes related to traumatic stress-induced disorders. 2010 Elsevier B.V. and ECNP. All rights reserved.

  2. Disrupted nodal and hub organization account for brain network abnormalities in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Yuko Koshimori

    2016-11-01

    Full Text Available The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease. This study aimed to investigate functional changes in sensorimotor and cognitive networks in parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the healthy control and patient groups. We found nodal and hub changes in patients compared with healthy controls, including the right pre-supplementary motor area, left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex, and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e. right pre-supplementary motor area and right mid-insula displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral dorsolateral prefrontal cortex possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of Parkinson’s disease.

  3. Heterogeneity of brain blood flow and permeability during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Heistad, D.D.

    1985-01-01

    The purpose of this study was to examine regional autoregulation of blood flow in the brain during acute hypertension. In anesthetized cats severe hypertension increased blood flow more in cerebrum (159%) and cerebellum (106%) than brain stem (58%). In contrast to the heterogeneous autoregulatory response, hypocapnia produced uniform vasoconstriction in the brain. The authors also compared vasodilatation during severe hypertension with vasodilatation during hypercapnia. During hypercapnia, blood flow increased as much in brain stem, as in cerebrum and cerebellum. Thus, regional differences in autoregulation appear to be specific for autoregulatory stimulus and are not secondary to nonspecific differences in vasoconstrictor or vasodilator capacity. To determine whether the blood-brain barrier is more susceptible to hypertensive disruption in regions with less effective autoregulation, permeability of the barrier was quantitated with 125 I-albumin. Severe hypertension produced disruption of the barrier in cerebrum but not in brain stem. Thus, there are parallel differences in effectiveness of autoregulation and susceptibility to disruption of the blood-brain barrier in different regions of the brain

  4. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Aflatoxin B1-contaminated diet disrupts the blood-brain barrier and affects fish behavior: Involvement of neurotransmitters in brain synaptosomes.

    Science.gov (United States)

    Baldissera, Matheus D; Souza, Carine F; Zeppenfeld, Carla Cristina; Descovi, Sharine N; Moreira, Karen Luise S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; da Silva, Aleksandro S; Baldisserotto, Bernardo

    2018-04-04

    It is known that the cytotoxic effects of aflatoxin B 1 (AFB 1 ) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB 1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB 1 -contaminated diet (1177 ppb kg feed -1 ) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB 1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB 1 , while activity of the sodium-potassium pump (Na + , K + -ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB 1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na + , K + -ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB 1 intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study.

    Science.gov (United States)

    Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang

    2016-03-01

    Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.

    Science.gov (United States)

    Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z

    2018-03-15

    Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.

  8. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity

    International Nuclear Information System (INIS)

    McDannold, N; Vykhodtseva, N; Hynynen, K

    2006-01-01

    Acoustic emission was monitored during focused ultrasound exposures in conjunction with an ultrasound contrast agent (Optison (registered) ) in order to determine if cavitation activity is associated with the induction of blood-brain barrier disruption (BBBD). Thirty-four locations were sonicated (frequency: 260 kHz) at targets 10 mm deep in rabbit brain (N = 9). The sonications were applied at peak pressure amplitudes ranging from 0.11 to 0.57 MPa (burst length: 10 ms; repetition frequency of 1 Hz; duration: 20 s). Acoustic emission was recorded with a focused passive cavitation detector. This emission was recorded at each location during sonications with and without Optison (registered) . Detectable wideband acoustic emission was observed only at 0.40 and 0.57 MPa. BBBD was observed in contrast MRI after sonication at 0.29-0.57 MPa. The appearance of small regions of extravasated erythrocytes appeared to be associated with this wideband emission signal. The results thus suggest that BBBD resulting from focused ultrasound pulses in the presence of Optison (registered) can occur without indicators for inertial cavitation in vivo, wideband emission and extravasation. If inertial cavitation is not responsible for the BBBD, other ultrasound/microbubble interactions are likely the source. A significant increase in the emission signal due to Optison (registered) at the second and third harmonics of the ultrasound driving frequency was found to correlate with BBBD and might be useful as an online method to indicate when the disruption occurs

  9. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    Science.gov (United States)

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This

  10. Scintigraphic detection of regional disruption of adrenergic neurons in the heart

    International Nuclear Information System (INIS)

    Sisson, J.C.; Lynch, J.J.; Johnson, J.; Jaques, S. Jr.; Wu, D.; Bolgos, G.; Lucchesi, B.R.; Wieland, D.M.

    1988-01-01

    Experiments were designed to detect regional disruptions of adrenergic neurons in the hearts of living dogs. The neuron disruption was achieved by the application of phenol to the epicardium of the left ventricle. Evidence for denervation was the reduction in endogenous norepinephrine (NE) concentrations in the myocardium beneath the region of phenol treatment and toward the apex. Radiolabeled meta-iodobenzylguanidine (MIBG) acts as an analog of NE and as such is concentrated in adrenergic nerve terminals. Following phenol application, MIBG labeled with 125 I was found, 20 hours after injection, to be distributed within myocardium in patterns comparable to those of NE. However, left stellectomy did not alter the distributions of NE or 125 I-MIBG in the myocardium and apparently did not disrupt adrenergic innervation. MIBG labeled with 123 I enabled scintigraphic images of heart neurons in the living dog 3 and 20 hours after injection; these images portrayed the regions of adrenergic neuron disruption caused by phenol treatment. Concentrations of thallium-201 depicted on scintigraphic image and of triphenyltetrazolium observed on in vitro staining demonstrated no myocardial injury. Thus, scintigraphy with 123 I-MIBG will display regional adrenergic denervations in the heart

  11. Lycium barbarum Extracts Protect the Brain from Blood-Brain Barrier Disruption and Cerebral Edema in Experimental Stroke

    Science.gov (United States)

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2012-01-01

    Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957

  12. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    Science.gov (United States)

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  14. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  15. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain

    Science.gov (United States)

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  16. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain###

    Science.gov (United States)

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  17. Recovery of neurological function despite immediate sleep disruption following diffuse brain injury in the mouse: clinical relevance to medically untreated concussion.

    Science.gov (United States)

    Rowe, Rachel K; Harrison, Jordan L; O'Hara, Bruce F; Lifshitz, Jonathan

    2014-04-01

    We investigated the relationship between immediate disruption of posttraumatic sleep and functional outcome in the diffuse brain-injured mouse. Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 65; 1.4 atm; 6-10 min righting reflex time) or sham injury (n = 44). Cohorts received either intentional sleep disruption (minimally stressful gentle handling) or no sleep disruption for 6 h following injury. Following disruption, serum corticosterone levels (enzyme-linked immunosorbent assay) and posttraumatic sleep (noninvasive piezoelectric sleep cages) were measured. For 1-7 days postinjury, sensorimotor outcome was assessed by Rotarod and a modified Neurological Severity Score (NSS). Cognitive function was measured using Novel Object Recognition (NOR) and Morris water maze (MWM) in the first week postinjury. Neurotrauma research laboratory. Disrupting posttraumatic sleep for 6 h did not affect serum corticosterone levels or functional outcome. In the hour following the first dark onset, sleep-disrupted mice exhibited a significant increase in sleep; however, this increase was not sustained and there was no rebound of lost sleep. Regardless of sleep disruption, mice showed a time-dependent improvement in Rotarod performance, with brain-injured mice having significantly shorter latencies on day 7 compared to sham. Further, brain-injured mice, regardless of sleep disruption, had significantly higher NSS scores postinjury compared with sham. Cognitive behavioral testing showed no group differences among any treatment group measured by MWM and NOR. Short-duration disruption of posttraumatic sleep did not affect functional outcome, measured by motor and cognitive performance. These data raise uncertainty about posttraumatic sleep as a mechanism of recovery from diffuse brain injury.

  18. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vida Naderi

    2015-02-01

    Full Text Available Objective(s:Estrogen (E2 has neuroprotective effects on blood-brain-barrier (BBB after traumatic brain injury (TBI. In order to investigate the roles of estrogen receptors (ERs in these effects, ER-α antagonist (MPP and, ER-β antagonist (PHTPP, or non-selective estrogen receptors antagonist (ICI 182780 were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg or oil were administered 30 min after TBI. 1 dose (150 µg/Kg of each of MPP, PHTPP, and (4 mg/kg ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content and brain edema (brain water content evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P

  19. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    Science.gov (United States)

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  20. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  1. Disrupted functional connectome in antisocial personality disorder.

    Science.gov (United States)

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2017-08-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.

  2. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    Science.gov (United States)

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy

  3. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis.

    Science.gov (United States)

    Fan, Lin-Feng; He, Ping-You; Peng, Yu-Cong; Du, Qing-Hua; Ma, Yi-Jun; Jin, Jian-Xiang; Xu, Hang-Zhe; Li, Jian-Ru; Wang, Zhi-Jiang; Cao, Sheng-Long; Li, Tao; Yan, Feng; Gu, Chi; Wang, Lin; Chen, Gao

    2017-11-01

    Aberrant modulation of mitochondrial dynamic network, which shifts the balance of fusion and fission towards fission, is involved in brain damage of various neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease. A recent research has shown that the inhibition of mitochondrial fission alleviates early brain injury after experimental subarachnoid hemorrhage, however, the underlying molecular mechanisms have remained to be elucidated. This study was undertaken to characterize the effects of the inhibition of dynamin-related protein-1 (Drp1, a dominator of mitochondrial fission) on blood-brain barrier (BBB) disruption and neuronal apoptosis following SAH and the potential mechanisms. The endovascular perforation model of SAH was performed in adult male Sprague Dawley rats. The results indicated Mdivi-1(a selective Drp1 inhibitor) reversed the morphologic changes of mitochondria and Drp1 translocation, reduced ROS levels, ameliorated the BBB disruption and brain edema remarkably, decreased the expression of MMP-9 and prevented degradation of tight junction proteins-occludin, claudin-5 and ZO-1. Mdivi-1 administration also inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB), leading to decreased expressions of TNF-ɑ, IL-6 and IL-1ß. Moreover, Mdivi-1 treatment attenuated neuronal cell death and improved neurological outcome. To investigate the underlying mechanisms further, we determined that Mdivi-1 reduced p-PERK, p-eIF2α, CHOP, cleaved caspase-3 and Bax expression as well as increased Bcl-2 expression. Rotenone (a selective inhibitor of mitochondrial complexes I) abolished both the anti-BBB disruption and anti-apoptosis effects of Mdivi-1. In conclusion, these data implied that excessive mitochondrial fission might inhibit mitochondrial complex I to become a cause of oxidative stress in SAH, and the inhibition of Drp1 by Mdivi-1 attenuated early brain injury after SAH probably via the suppression

  4. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    Science.gov (United States)

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Disrupted functional connectome in antisocial personality disorder

    Science.gov (United States)

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen

    2017-01-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949

  6. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.

    Science.gov (United States)

    McDannold, Nathan; Arvanitis, Costas D; Vykhodtseva, Natalia; Livingstone, Margaret S

    2012-07-15

    The blood-brain barrier (BBB) prevents entry of most drugs into the brain and is a major hurdle to the use of drugs for brain tumors and other central nervous system disorders. Work in small animals has shown that ultrasound combined with an intravenously circulating microbubble agent can temporarily permeabilize the BBB. Here, we evaluated whether this targeted drug delivery method can be applied safely, reliably, and in a controlled manner on rhesus macaques using a focused ultrasound system. We identified a clear safety window during which BBB disruption could be produced without evident tissue damage, and the acoustic pressure amplitude where the probability for BBB disruption was 50% and was found to be half of the value that would produce tissue damage. Acoustic emission measurements seem promising for predicting BBB disruption and damage. In addition, we conducted repeated BBB disruption to central visual field targets over several weeks in animals trained to conduct complex visual acuity tasks. All animals recovered from each session without behavioral deficits, visual deficits, or loss in visual acuity. Together, our findings show that BBB disruption can be reliably and repeatedly produced without evident histologic or functional damage in a clinically relevant animal model using a clinical device. These results therefore support clinical testing of this noninvasive-targeted drug delivery method.

  7. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  8. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice.

    Science.gov (United States)

    Okada, Takeshi; Kawakita, Fumihiro; Nishikawa, Hirofumi; Nakano, Fumi; Liu, Lei; Suzuki, Hidenori

    2018-05-31

    There are no direct evidences showing the linkage between Toll-like receptor 4 (TLR4) and blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). The purpose of this study was to examine if selective blockage of TLR4 prevents BBB disruption after SAH in mice and if the TLR4 signaling involves mitogen-activated protein kinases (MAPKs). One hundred and fifty-one C57BL/6 male mice underwent sham or endovascular perforation SAH operation, randomly followed by an intracerebroventricular infusion of vehicle or two dosages (117 or 585 ng) of a selective TLR4 antagonist IAXO-102 at 30 min post-operation. The effects were evaluated by survival rates, neurological scores, and brain water content at 24-72 h and immunoglobulin G immunostaining and Western blotting at 24 h post-SAH. IAXO-102 significantly prevented post-SAH neurological impairments, brain edema, and BBB disruption, resulting in improved survival rates. IAXO-102 also significantly suppressed post-SAH activation of a major isoform of MAPK p46 c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-9 as well as periostin induction and preserved tight junction protein zona occludens-1. Another selective TLR4 antagonist TAK-242, which has a different binding site from IAXO-102, also showed similar effects to IAXO-102. This study first provided the evidence that TLR4 signaling is involved in post-SAH acute BBB disruption and that the signaling is mediated at least partly by JNK activation. TLR4-targeted therapy may be promising to reduce post-SAH morbidities and mortalities.

  9. Blood-Brain Barrier Disruption After Cardiopulmonary Bypass: Diagnosis and Correlation to Cognition.

    Science.gov (United States)

    Abrahamov, Dan; Levran, Oren; Naparstek, Sharon; Refaeli, Yael; Kaptson, Shani; Abu Salah, Mahmud; Ishai, Yaron; Sahar, Gideon

    2017-07-01

    Cardiopulmonary bypass (CPB) elicits a systemic inflammatory response that may impair blood-brain barrier (BBB) integrity. BBB disruption can currently be detected by dynamic contrast enhancement magnetic resonance imaging (MRI), reflected by an increase in the permeability constant (K trans ). We aimed to determine (1) whether CPB induces BBB disruption, (2) duration until BBB disruption resolution, and (3) the obtainable correlation between BBB injury (location and intensity) and neurocognitive dysfunction. Seven patients undergoing CPB with coronary artery bypass grafting (CABG) were assigned to serial cerebral designated MRI evaluations, preoperatively and on postoperative day (POD) 1 and 5. Examinations were analyzed for BBB disruption and microemboli using dynamic contrast enhancement MRI and diffusion-weighted imaging methods, respectively. Neuropsychologic tests were performed 1 day preoperatively and on POD 5. A significant local K trans increase (0.03 min -1 vs 0.07 min -1 , p = 0.033) compatible with BBB disruption was evident in 5 patients (71%) on POD 1. Resolution was observed by POD 5 (mean, 0.012 min -1 ). The location of the disruption was most prominent in the frontal lobes (400% vs 150% K trans levels upsurge, p = 0.05). MRI evidence of microembolization was demonstrated in only 1 patient (14%). The postoperative global cognitive score was reduced in all patients (98.2 ± 12 vs 95.1 ± 11, p = 0.032), predominantly in executive and attention (frontal lobe-related) functions (91.8 ± 13 vs 86.9 ± 12, p = 0.042). The intensity of the dynamic contrast enhancement MRI BBB impairment correlated with the magnitude of cognition reduction (r = 0.69, p = 0.04). BBB disruption was evident in most patients, primarily in the frontal lobes. The location and intensity of the BBB disruption, rather than the microembolic load, correlated with postoperative neurocognitive dysfunction. Copyright © 2017 The Society of Thoracic Surgeons. Published by

  10. Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy

    OpenAIRE

    Solana Sánchez, Ana Beatriz; Hernández Tamames, J.A.; Molina, E.; Martínez, K.; Pineda Pardo, José Ángel; Bruña Fernandez, Ricardo; Toledano, Rafael; San Antonio-Arce, Victoria; Garcia Morales, Irene; Gil Nagel, Antonio; Alfayate, E.; Álvarez Linera, Juan; Pozo Guerrero, Francisco del

    2012-01-01

    Fixation-off sensitivity (FOS) denotes the forms of epilepsy elicited by elimination of fixation. FOS-IGE patients are rare cases [1]. In a previous work [2] we showed that two FOS-IGE patients had different altered EEG rhythms when closing eyes; only beta band was altered in patient 1 while theta, alpha and beta were altered in patient 2. In the present work, we explain the relationship between the altered brain rhythms in these patients and the disruption in functional brain net...

  11. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood-brain barrier disruption: a safety study.

    Science.gov (United States)

    Aryal, Muna; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-04-28

    delivered before sonication. In histology, the severe neurotoxicity observed in some previous studies with doxorubicin by other investigators was not observed here. However, four of the five rats who received FUS-BBBD and Lipo-DOX had regions (dimensions: 0.5-2mm) at the focal targets with evidence of minor prior damage, either a small scar (n=4) or a small cyst (n=1). The focal targets were unaffected in rats who received FUS-BBBD alone. The result indicates that while delivery of Lipo-DOX to the rat brain might result in minor damage, the severe neurotoxicity seen in earlier works does not appear to occur with delivery via FUS-BBB disruption. The damage may be related to capillary damage produced by inertial cavitation, which might have resulted in excessive doxorubicin concentrations in some areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection.

    Science.gov (United States)

    Li, Fang; Wang, Yueyun; Yu, Lan; Cao, Shengbo; Wang, Ke; Yuan, Jiaolong; Wang, Chong; Wang, Kunlun; Cui, Min; Fu, Zhen F

    2015-05-01

    Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate

  13. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  14. Disrupting the brain to validate hypotheses on the neurobiology of language

    Directory of Open Access Journals (Sweden)

    Liuba ePapeo

    2013-04-01

    Full Text Available Comprehension of words is an important part of the language faculty, involving the joint activity of frontal and temporo-parietal brain regions. Transcranial Magnetic Stimulation (TMS enables the controlled perturbation of brain activity, and thus offers a unique tool to test specific predictions about the causal relationship between brain regions and language understanding. This potential has been exploited to better define the role of regions that are classically accepted as part of the language-semantic network. For instance, TMS has contributed to establish the semantic relevance of the left anterior temporal lobe, or to solve the ambiguity between the semantic versus phonological function assigned to the left inferior frontal gyrus. We consider, more closely, the results from studies where the same technique, similar paradigms (lexical-semantic tasks and materials (words have been used to assess the relevance of regions outside the classically-defined language-semantic network – i.e., precentral motor regions – for the semantic analysis of words. This research shows that different aspects of the left precentral gyrus (primary motor and premotor sites are sensitive to the action-non action distinction of words’ meanings. However, the behavioral changes due to TMS over these sites are incongruent with what is expected after perturbation of a task-relevant brain region. Thus, the relationship between motor activity and language-semantic behavior remains far from clear. A better understanding of this issue could be guaranteed by investigating functional interactions between motor sites and semantically-relevant regions.

  15. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    Science.gov (United States)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  16. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    Science.gov (United States)

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

  17. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  18. Thyroid hormone disrupting chemicals and their influence on the developing rat brain

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad

    differentiation and proliferation, normal status of these hormones during early development is crucial, and in humans even moderate and transient reductions in maternal T4 levels during pregnancy, can adversely affect the child’s neurological development. In order to maintain correct levels of THs, the body...... is dependent on sufficient iodine intake but several substances in the environment may also affect thyroid status. These are called thyroid disrupting chemicals (TDCs), and they are xenobiotics that can change the levels of circulating THs. The TDCs are made up of a wide range of chemical structures...... and include industrial chemicals, pesticides and ingredients used in personal care products. A way of getting more insight into the causal relationship between exposure to endocrine disrupters, their effects on TH levels and subsequent adverse effects on brain development, is by investigating it in animal...

  19. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    Science.gov (United States)

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. How functional connectivity between emotion regulation structures can be disrupted: preliminary evidence from adolescents with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Newsome, Mary R; Scheibel, Randall S; Mayer, Andrew R; Chu, Zili D; Wilde, Elisabeth A; Hanten, Gerri; Steinberg, Joel L; Lin, Xiaodi; Li, Xiaoqi; Merkley, Tricia L; Hunter, Jill V; Vasquez, Ana C; Cook, Lori; Lu, Hanzhang; Vinton, Kami; Levin, Harvey S

    2013-09-01

    Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD)control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent(BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development.

  1. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    International Nuclear Information System (INIS)

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan

    2007-01-01

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 μg Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO 4 solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications

  2. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  3. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  4. Disruption of the blood-brain barrier as the primary effect of CNS irradiation.

    Science.gov (United States)

    Rubin, P; Gash, D M; Hansen, J T; Nelson, D F; Williams, J P

    1994-04-01

    The blood-brain barrier (BBB) is believed to be unique in organ microcirculation due to the 'tight junctions' which exist between endothelial cells and, some argue, the additional functional components represented by the perivascular boundary of neuroglial cells; these selectively exclude proteins and drugs from the brain parenchyma. This study was designed to examine the effects of irradiation on the BBB and determine the impact of the altered pathophysiology on the production of central nervous system (CNS) late effects such as demyelination, gliosis and necrosis. Rats, irradiated at 60 Gy, were serially sacrificed at 2, 6, 12 and 24 weeks. Magnetic resonance image analysis (MRI) was obtained prior to sacrifice with selected animals from each group. The remaining animals underwent horse-radish peroxidase (HRP) perfusion at the time of sacrifice. The serial studies showed a detectable disruption of the BBB at 2 weeks post-irradiation and this was manifested as discrete leakage; late injury seen at 24 weeks indicated diffuse vasculature leakage, severe loss of the capillary network, cortical atrophy and white matter necrosis. Reversal or repair of radiation injury was seen between 6 and 12 weeks, indicating a bimodal peak in events. Blood-brain barrier disruption is an early, readily recognizable pathophysiological event occurring after radiation injury, is detectable in vivo/in vitro by MRI and HRP studies, and appears to precede white matter necrosis. Dose response studies over a wide range of doses, utilizing both external and interstitial irradiation, are in progress along with correlative histopathologic and ultrastructural studies.

  5. Normalized regional brain atrophy measurements in multiple sclerosis

    International Nuclear Information System (INIS)

    Zivadinov, Robert; Locatelli, Laura; Stival, Barbara; Bratina, Alessio; Nasuelli, Davide; Zorzon, Marino; Grop, Attilio; Brnabic-Razmilic, Ozana

    2003-01-01

    There is still a controversy regarding the best regional brain atrophy measurements in multiple sclerosis (MS) studies. The aim of this study was to establish whether, in a cross-sectional study, the normalized measurements of regional brain atrophy correlate better with the MRI-defined regional brain lesions than the absolute measurements of regional brain atrophy. We assessed 45 patients with clinically definite relapsing-remitting (RR) MS (median disease duration 12 years), and measured T1-lesion load (LL) and T2-LL of frontal lobes and pons, using a reproducible semi-automated technique. The regional brain parenchymal volume (RBPV) of frontal lobes and pons was obtained by use of a computerized interactive program, which incorporates semi-automated and automated segmentation processes. A normalized measurement, the regional brain parenchymal fraction (RBPF), was calculated as the ratio of RBPV to the total volume of the parenchyma and the cerebrospinal fluid (CSF) in the frontal lobes and in the region of the pons. The total regional brain volume fraction (TRBVF) was obtained after we had corrected for the total volume of the parenchyma and the CSF in the frontal lobes and in the region of the pons for the total intracranial volume. The mean coefficient of variation (CV) for RBPF of the pons was 1% for intra-observer reproducibility and 1.4% for inter-observer reproducibility. Generally, the normalized measurements of regional brain atrophy correlated with regional brain volumes and disability better than did the absolute measurements. RBPF and TRBVF correlated with T2-LL of the pons (r=-0.37, P=0.011, and r= -0.40, P=0.0005 respectively) and with T1-LL of the pons (r=-0.27, P=0.046, and r=-0.31, P=0.04, respectively), whereas RBPV did not (r=-0.18, P = NS). T1-LL of the frontal lobes was related to RBPF (r=-0.32, P=0.033) and TRBVF (r=-0.29, P=0.05), but not to RBPV (R=-0.27, P= NS). There was only a trend of correlation between T2-LL of the frontal lobes and

  6. Brain amyloid β protein and memory disruption in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Weiming Xia

    2010-09-01

    Full Text Available Weiming XiaCenter for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USAAbstract: The development of amyloid-containing neuritic plaques is an invariable characteristic of Alzheimer’s diseases (AD. The conversion from monomeric amyloid β protein (Aβ to oligomeric Aβ and finally neuritic plaques is highly dynamic. The specific Aß species that is correlated with disease severity remains to be discovered. Oligomeric Aβ has been detected in cultured cells, rodent and human brains, as well as human cerebrospinal fluid. Synthetic, cell, and brain derived Aβ oligomers have been found to inhibit hippocampal long-term potentiation (LTP and this effect can be suppressed by the blockage of Aβ oligomer formation. A large body of evidence suggests that Aβ oligomers inhibit N-methyl-D-aspartate receptor dependent LTP; additional receptors have also been found to elicit downstream pathways upon binding to Aβ oligomers. Amyloid antibodies and small molecular compounds that reduce brain Aβ levels and block Aβ oligomer formation are capable of reversing synaptic dysfunction and these approaches hold a promising therapeutic potential to rescue memory disruption.Keywords: Alzheimer, amyloid, oligomer, long-term potentiation, NMDA

  7. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing.

    Science.gov (United States)

    Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T

    2018-03-01

    Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.

  8. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy.

    Science.gov (United States)

    Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang

    2014-09-01

    Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Age-and Brain Region-Specific Differences in Mitochondrial ...

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellum (CER), striatum (STR), hippocampus (HIP)] of four diverse age groups [1 Month (young), 4 Month (adult), 12 Month (middle-aged), 24 Month (old age)] to understand age-related differences in selected brain regions and their contribution to age-related chemical sensitivity. Mitochondrial bioenergetics parameters and enzyme activity were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State 111 respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12 and 24 Month age groups. Activities of mitochondrial pyruvate dehydrogenase complex (PDHC) and electron transport chain (ETC) complexes I, II, and IV enzymes were also age- and brain-region specific. In general changes associated with age were more pronounced, with

  10. Disruptions in cortico-subcortical covariance networks associated with anxiety in new-onset childhood epilepsy

    Directory of Open Access Journals (Sweden)

    Camille Garcia-Ramos

    2016-01-01

    Full Text Available Anxiety disorders represent a prevalent psychiatric comorbidity in both adults and children with epilepsy for which the etiology remains controversial. Neurobiological contributions have been suggested, but only limited evidence suggests abnormal brain volumes particularly in children with epilepsy and anxiety. Since the brain develops in an organized fashion, covariance analyses between different brain regions can be investigated as a network and analyzed using graph theory methods. We examined 46 healthy children (HC and youth with recent onset idiopathic epilepsies with (n = 24 and without (n = 62 anxiety disorders. Graph theory (GT analyses based on the covariance between the volumes of 85 cortical/subcortical regions were investigated. Both groups with epilepsy demonstrated less inter-modular relationships in the synchronization of cortical/subcortical volumes compared to controls, with the epilepsy and anxiety group presenting the strongest modular organization. Frontal and occipital regions in non-anxious epilepsy, and areas throughout the brain in children with epilepsy and anxiety, showed the highest centrality compared to controls. Furthermore, most of the nodes correlating to amygdala volumes were subcortical structures, with the exception of the left insula and the right frontal pole, which presented high betweenness centrality (BC; therefore, their influence in the network is not necessarily local but potentially influencing other more distant regions. In conclusion, children with recent onset epilepsy and anxiety demonstrate large scale disruptions in cortical and subcortical brain regions. Network science may not only provide insight into the possible neurobiological correlates of important comorbidities of epilepsy, but also the ways that cortical and subcortical disruption occurs.

  11. White matter tract network disruption explains reduced conscientiousness in multiple sclerosis.

    Science.gov (United States)

    Fuchs, Tom A; Dwyer, Michael G; Kuceyeski, Amy; Choudhery, Sanjeevani; Carolus, Keith; Li, Xian; Mallory, Matthew; Weinstock-Guttman, Bianca; Jakimovski, Dejan; Ramasamy, Deepa; Zivadinov, Robert; Benedict, Ralph H B

    2018-05-08

    Quantifying white matter (WM) tract disruption in people with multiple sclerosis (PwMS) provides a novel means for investigating the relationship between defective network connectivity and clinical markers. PwMS exhibit perturbations in personality, where decreased Conscientiousness is particularly prominent. This trait deficit influences disease trajectory and functional outcomes such as work capacity. We aimed to identify patterns of WM tract disruption related to decreased Conscientiousness in PwMS. Personality assessment and brain MRI were obtained in 133 PwMS and 49 age- and sex-matched healthy controls (HC). Lesion maps were applied to determine the severity of WM tract disruption between pairs of gray matter regions. Next, the Network-Based-Statistics tool was applied to identify structural networks whose disruption negatively correlates with Conscientiousness. Finally, to determine whether these networks explain unique variance above conventional MRI measures and cognition, regression models were applied controlling for age, sex, brain volume, T2-lesion volume, and cognition. Relative to HCs, PwMS exhibited lower Conscientiousness and slowed cognitive processing speed (p = .025, p = .006). Lower Conscientiousness in PwMS was significantly associated with WM tract disruption between frontal, frontal-parietal, and frontal-cingulate pathways in the left (p = .02) and right (p = .01) hemisphere. The mean disruption of these pathways explained unique additive variance in Conscientiousness, after accounting for conventional MRI markers of pathology and cognition (ΔR 2  = .049, p = .029). Damage to WM tracts between frontal, frontal-parietal, and frontal-cingulate cortical regions is significantly correlated with reduced Conscientiousness in PwMS. Tract disruption within these networks explains decreased Conscientiousness observed in PwMS as compared with HCs. © 2018 Wiley Periodicals, Inc.

  12. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  13. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury.

    Science.gov (United States)

    Blyth, Brian J; Farhavar, Arash; Gee, Christopher; Hawthorn, Brendan; He, Hua; Nayak, Akshata; Stöcklein, Veit; Bazarian, Jeffrey J

    2009-09-01

    The blood-brain barrier (BBB), which prevents the entry into the central nervous system (CNS) of most water-soluble molecules over 500 Da, is often disrupted after trauma. Post-traumatic BBB disruption may have important implications for prognosis and therapy. Assessment of BBB status is not routine in clinical practice because available techniques are invasive. The gold-standard measure, the cerebrospinal fluide (CSF)-serum albumin quotient (Q(A)), requires the measurement of albumin in CSF and serum collected contemporaneously. Accurate, less invasive techniques are necessary. The objective of this study was to evaluate the relationship between Q(A) and serum concentrations of monomeric transthyretin (TTR) or S100B. Nine subjects with severe traumatic brain injury (TBI; Glasgow Coma Scale [GCS] score < or =8) and 11 subjects with non-traumatic headache who had CSF collected by ventriculostomy or lumbar puncture (LP) were enrolled. Serum and CSF were collected at the time of LP for headache subjects and at 12, 24, and 48 h after ventriculostomy for TBI subjects. The Q(A) was calculated for all time points at which paired CSF and serum samples were available. Serum S100B and TTR levels were also measured. Pearson's correlation coefficient and area under the receiver operating characteristic (ROC) curve were used to determine the relationship between the serum proteins and QA. Seven TBI subjects had abnormal Q(A)'s indicating BBB dysfunction. The remaining TBI and control subjects had normal BBB function. No significant relationship between TTR and QA was found. A statistically significant linear correlation between serum S100B and Q(A) was present (r = 0.432, p = 0.02). ROC analysis demonstrated a significant relationship between Q(A) and serum S100B concentrations at 12 h after TBI (AUC = 0.800; SE 0.147, 95% CI 0.511-1.089). Using an S100B concentration cutoff of 0.027 ng=ml, specificity for abnormal Q(A) was 90% or higher at each time point. We conclude that

  14. Fused cerebral organoids model interactions between brain regions.

    Science.gov (United States)

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  15. Reperfusion facilitates reversible disruption of the human blood-brain barrier following acute ischaemic stroke

    International Nuclear Information System (INIS)

    Liu, Chang; Zhang, Sheng; Yan, Shenqiang; Zhang, Ruiting; Shi, Feina; Lou, Min; Ding, Xinfa; Parsons, Mark

    2018-01-01

    We aimed to detect early changes of the blood-brain barrier permeability (BBBP) in acute ischaemic stroke (AIS), with or without reperfusion, and find out whether BBBP can predict clinical outcomes. Consecutive AIS patients imaged with computed tomographic perfusion (CTP) before and 24 h after treatment were included. The relative permeability-surface area product (rPS) was calculated within the hypoperfused region (rPS hypo-i ), non-hypoperfused region of ischaemic hemisphere (rPS nonhypo-i ) and their contralateral mirror regions (rPS hypo-c and rPS nonhypo-c ). The changes of rPS were analysed using analysis of variance (ANOVA) with repeated measures. Logistic regression was used to identify independent predictors of unfavourable outcome. Fifty-six patients were included in the analysis, median age was 76 (IQR 62-81) years and 28 (50%) were female. From baseline to 24 h after treatment, rPS hypo-i , rPS nonhypo-i and rPS hypo-c all decreased significantly. The decreases in rPS hypo-i and rPS hypo-c were larger in the reperfusion group than non-reperfusion group. The rPS hypo-i at follow-up was a predictor for unfavourable outcome (OR 1.131; 95% CI 1.018-1.256; P = 0.022). Early disruption of BBB in AIS is reversible, particularly when greater reperfusion is achieved. Elevated BBBP at 24 h after treatment, not the pretreatment BBBP, predicts unfavourable outcome. (orig.)

  16. Reperfusion facilitates reversible disruption of the human blood-brain barrier following acute ischaemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Zhang, Sheng; Yan, Shenqiang; Zhang, Ruiting; Shi, Feina; Lou, Min [The Second Affiliated Hospital of Zhejiang University, School of Medicine, Department of Neurology, Hangzhou (China); Ding, Xinfa [The Second Affiliated Hospital of Zhejiang University, School of Medicine, Department of Radiology, Hangzhou (China); Parsons, Mark [John Hunter Hospital, University of Newcastle, Department of Neurology, Newcastle (Australia)

    2018-02-15

    We aimed to detect early changes of the blood-brain barrier permeability (BBBP) in acute ischaemic stroke (AIS), with or without reperfusion, and find out whether BBBP can predict clinical outcomes. Consecutive AIS patients imaged with computed tomographic perfusion (CTP) before and 24 h after treatment were included. The relative permeability-surface area product (rPS) was calculated within the hypoperfused region (rPS{sub hypo-i}), non-hypoperfused region of ischaemic hemisphere (rPS{sub nonhypo-i}) and their contralateral mirror regions (rPS{sub hypo-c} and rPS{sub nonhypo-c}). The changes of rPS were analysed using analysis of variance (ANOVA) with repeated measures. Logistic regression was used to identify independent predictors of unfavourable outcome. Fifty-six patients were included in the analysis, median age was 76 (IQR 62-81) years and 28 (50%) were female. From baseline to 24 h after treatment, rPS{sub hypo-i}, rPS{sub nonhypo-i} and rPS{sub hypo-c} all decreased significantly. The decreases in rPS{sub hypo-i} and rPS{sub hypo-c} were larger in the reperfusion group than non-reperfusion group. The rPS{sub hypo-i} at follow-up was a predictor for unfavourable outcome (OR 1.131; 95% CI 1.018-1.256; P = 0.022). Early disruption of BBB in AIS is reversible, particularly when greater reperfusion is achieved. Elevated BBBP at 24 h after treatment, not the pretreatment BBBP, predicts unfavourable outcome. (orig.)

  17. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain

    NARCIS (Netherlands)

    van der Meer, Thomas P; Artacho-Cordón, Francisco; Swaab, Dick F; Struik, Dicky; Makris, Konstantinos C; Wolffenbuttel, Bruce H R; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V

    2017-01-01

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain

  18. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  19. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Lauren A Vanderlinden

    Full Text Available To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA. Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL with a genomic region that regulates alcohol consumption (bQTL. To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories and from gene expression data from 6 brain regions (nucleus accumbens (NA; prefrontal cortex (PFC; ventral tegmental area (VTA; striatum (ST; hippocampus (HP; cerebellum (CB available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  20. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    Science.gov (United States)

    Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan

    2014-01-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. PMID:24462453

  1. Consequences of repeated blood-brain barrier disruption in football players.

    Directory of Open Access Journals (Sweden)

    Nicola Marchi

    Full Text Available The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT scans. Players from three college football teams were enrolled (total of 67 volunteers. None of the players experienced a concussion. Blood samples were collected before and after games (n = 57; the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games. A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10. Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes.

  2. Consequences of Repeated Blood-Brain Barrier Disruption in Football Players

    Science.gov (United States)

    Puvenna, Vikram; Janigro, Mattia; Ghosh, Chaitali; Zhong, Jianhui; Zhu, Tong; Blackman, Eric; Stewart, Desiree; Ellis, Jasmina; Butler, Robert; Janigro, Damir

    2013-01-01

    The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD) and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT) scans. Players from three college football teams were enrolled (total of 67 volunteers). None of the players experienced a concussion. Blood samples were collected before and after games (n = 57); the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games). A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10). Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes. PMID:23483891

  3. Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region

    International Nuclear Information System (INIS)

    Ohtani, S.; Kokubun, S.; Russell, C.T.

    1992-01-01

    The substorm onset region and the radial development of the tail current disruption are examined from a new viewpoint. The reconfiguration of the magnetotail field at substorm onset can be understood in terms of a sudden decrease (disruption) in tail current intensity. The north-south component (B Z ) is very sensitive to whether the spacecraft position is earthward or tailward of the disruption region, while the change in Sun-Earth component (B X ) is most sensitive to the change in tail current intensity near the spacecraft. If the current disruption starts in a localized range of radial distance and expands radially, a distinctive phase relationship between the changes in B X and B Z is expected to be observed. This phase relationship depends on whether the current disruption starts on the earthward side or the tailward side of the spacecraft. Thus it is possible to infer the direction of the radial expansion of the current disruption from magnetic field data of a single spacecraft. This method is applied to ISEE observations of a tail reconfiguration event that occurred on March 6, 1979. The phase relationship indicates that eh disruption region expanded tailward from the earthward side of the spacecraft during the event. This model prediction is consistent with the time lag of magnetic signatures observed by the two ISEE spacecraft. The expansion velocity is estimated at 2 R E /min (∼200 km/s) for this event. Furthermore, it is found that the observed magnetic signatures can be reproduced to a good approximation by a simple geometrical model of the current disruption. The method is used statistically for 13 events selected from the ISEE magnetometer data. It is found that the current disruption usually starts in the near-Earth magnetotail (|X| E ) and often within 15 R E of the Earth

  4. Human capital in European peripheral regions: brain - drain and brain - gain

    NARCIS (Netherlands)

    Coenen, Franciscus H.J.M.

    2004-01-01

    Project goal - The overall goal of the project is to build a legitimate transnational network to transfer ideas and experiences and implement measures to reduce brain drain and foster brain gain while reinforcing the economical and spatial development of peripheral regions in NWE. This means a

  5. Brain region-dependent differential expression of alpha-synuclein.

    Science.gov (United States)

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  6. BBB disruption with unfocused ultrasound alone-A paradigm shift

    Science.gov (United States)

    Kyle, Al

    2012-10-01

    One paradigm for ultrasound-enabled blood brain barrier disruption uses image guided focused ultrasound and preformed microbubble agents to enable drug delivery to the brain. We propose an alternative approach: unguided, unfocused ultrasound with no adjunctive agent. Compared with the focused approach, the proposed method affects a larger region of the brain, and is aimed at treatment of regional neurological disease including glioblastoma multiforme (GBM). Avoidance of image guidance and focusing reduces cost for equipment and staff training. Avoidance of adjunctive agents also lowers cost and is enabled by a longer exposure time. Since 2004, our group has worked with two animal models, three investigators in four laboratories to safely deliver five compounds, increasing the concentration of large molecule markers in brain tissue two fold or more. Safety and effectiveness data for four studies have been presented at the Ultrasound Industry Association meetings in 2007 and 2010. This paper describes new safety and effectiveness results for a fifth study. We present evidence of delivery of large molecules - including Avastin-to the brains of a large animal model correlated with acoustic pressure, and summarize the advantages and disadvantages of this novel approach.

  7. Disrupted Working Memory Circuitry in Adolescent Psychosis

    Directory of Open Access Journals (Sweden)

    Ariel Eckfeld

    2017-08-01

    Full Text Available Individuals with schizophrenia (SZ consistently show deficits in spatial working memory (WM and associated atypical patterns of neural activity within key WM regions, including the dorsolateral prefrontal cortex (dlPFC and parietal cortices. However, little research has focused on adolescent psychosis (AP and potential age-associated disruptions of WM circuitry that may occur in youth with this severe form of illness. Here we utilized each subject’s individual spatial WM capacity to investigate task-based neural dysfunction in 17 patients with AP (16.58 ± 2.60 years old as compared to 17 typically developing, demographically comparable adolescents (18.07 ± 3.26 years old. AP patients showed lower behavioral performance at higher WM loads and lower overall WM capacity compared to healthy controls. Whole-brain activation analyses revealed greater bilateral precentral and right postcentral activity in controls relative to AP patients, when controlling for individual WM capacity. Seed-based psychophysiological interaction (PPI analyses revealed significantly greater co-activation between the left dlPFC and left frontal pole in controls relative to AP patients. Significant group-by-age interactions were observed in both whole-brain and PPI analyses, with AP patients showing atypically greater neural activity and stronger coupling between WM task activated brain regions as a function of increasing age. Additionally, AP patients demonstrated positive relationships between right dlPFC neural activity and task performance, but unlike healthy controls, failed to show associations between neural activity and out-of-scanner neurocognitive performance. Collectively, these findings are consistent with atypical WM-related functioning and disrupted developmental processes in youth with AP.

  8. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    Science.gov (United States)

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the

  9. Developmental origins of brain disorders: roles for dopamine

    Directory of Open Access Journals (Sweden)

    Kelli M Money

    2013-12-01

    Full Text Available Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.

  10. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  11. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates

    International Nuclear Information System (INIS)

    Slotkin, Theodore A.

    2004-01-01

    Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide, chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation, synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected mechanisms and targets for developmental neurotoxicants

  12. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of

  13. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    Full Text Available During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA, polychlorinated biphenyls (PCBs, phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2 and

  14. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  15. Disruption of the blood–brain barrier in pigs naturally infected with Taenia solium, untreated and after anthelmintic treatment

    Science.gov (United States)

    Guerra-Giraldez, Cristina; Marzal, Miguel; Cangalaya, Carla; Balboa, Diana; Orrego, Miguel Ángel; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; García, Hector H.; González, Armando E.; Mahanty, Siddhartha; Nash, Theodore E.

    2014-01-01

    Neurocysticercosis is a widely prevalent disease in the tropics that causes seizures and a variety of neurological symptoms in most of the world. Experimental models are limited and do not allow assessment of the degree of inflammation around brain cysts. The vital dye Evans Blue (EB) was injected into 11 pigs naturally infected with Taenia solium cysts to visually identify the extent of disruption of the blood brain barrier. A total of 369 cysts were recovered from the 11 brains and classified according to the staining of their capsules as blue or unstained. The proportion of cysts with blue capsules was significantly higher in brains from pigs that had received anthelmintic treatment 48 and 120 h before the EB infusion, indicating a greater compromise of the blood brain barrier due to treatment. The model could be useful for understanding the pathology of treatment-induced inflammation in neurocysticercosis. PMID:23684909

  16. What are the disruptive symptoms of behavioral disorders after traumatic brain injury? A systematic review leading to recommendations for good practices.

    Science.gov (United States)

    Stéfan, Angélique; Mathé, Jean-François

    2016-02-01

    Behavioral disorders are major sequelae of severe traumatic brain injury. Before considering care management of these disorders, and in the absence of a precise definition for TBI-related behavioral disorder, it is essential to refine, according to the data from the literature, incidence, prevalence, predictive factors of commonly admitted disruptive symptoms. Systematic review of the literature targeting epidemiological data related to behavioral disorders after traumatic brain injury in order to elaborate good practice recommendations according to the methodology established by the French High Authority for Health. Two hundred and ninety-nine articles were identified. The responsibility of traumatic brain injury (TBI) in the onset of behavioral disorders is unequivocal. Globally, behavioral disorders are twice more frequent after TBI than orthopedic trauma without TBI (Masson et al., 1996). These disorders are classified into disruptive primary behaviors by excess (agitation 11-70%, aggression 25-39%, irritability 29-71%, alcohol abuse 7-26% drug abuse 2-20%), disruptive primary behaviors by default (apathy 20-71%), affective disorders - anxiety - psychosis (depression 12-76%, anxiety 0.8-24,5%, posttraumatic stress 11-18%, obsessive-compulsive disorders 1.2-30%, psychosis 0.7%), suicide attempts and suicide 1%. The improvement of care management for behavioral disorders goes through a first step of defining a common terminology. Four categories of posttraumatic behavioral clinical symptoms are defined: disruptive primary behaviors by excess, by default, affective disorders-psychosis-anxiety, suicide attempts and suicide. All these symptoms yield a higher prevalence than in the general population. They impact all of life's domains and are sustainable over time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model

    International Nuclear Information System (INIS)

    O'Reilly, Meaghan A; Huang Yuexi; Hynynen, Kullervo

    2010-01-01

    Microbubble-mediated disruption of the blood-brain barrier (BBB) for targeted drug delivery using focused ultrasound shows great potential as a therapy for a wide range of brain disorders. This technique is currently at the pre-clinical stage and important work is being conducted in animal models. Measurements of standing waves in ex vivo rat skulls were conducted using an optical hydrophone and a geometry dependence was identified. Standing waves could not be eliminated through the use of swept frequencies, which have been suggested to eliminate standing waves. Definitive standing wave patterns were detected in over 25% of animals used in a single study. Standing waves were successfully eliminated using a wideband composite sharply focused transducer and a reduced duty cycle. The modified pulse parameters were used in vivo to disrupt the BBB in a rat indicating that, unlike some other bioeffects, BBB disruption is not dependent on standing wave conditions. Due to the high variability of standing waves and the inability to correctly estimate in situ pressures given standing wave conditions, attempts to minimize standing waves should be made in all future work in this field to ensure that results are clinically translatable.

  18. Automated recognition of brain region mentions in neuroscience literature

    Directory of Open Access Journals (Sweden)

    Leon French

    2009-09-01

    Full Text Available The ability to computationally extract mentions of neuroanatomical regions from the literature would assist linking to other entities within and outside of an article. Examples include extracting reports of connectivity or region-specific gene expression. To facilitate text mining of neuroscience literature we have created a corpus of manually annotated brain region mentions. The corpus contains 1,377 abstracts with 18,242 brain region annotations. Interannotator agreement was evaluated for a subset of the documents, and was 90.7% and 96.7% for strict and lenient matching respectively. We observed a large vocabulary of over 6,000 unique brain region terms and 17,000 words. For automatic extraction of brain region mentions we evaluated simple dictionary methods and complex natural language processing techniques. The dictionary methods based on neuroanatomical lexicons recalled 36% of the mentions with 57% precision. The best performance was achieved using a conditional random field (CRF with a rich feature set. Features were based on morphological, lexical, syntactic and contextual information. The CRF recalled 76% of mentions at 81% precision, by counting partial matches recall and precision increase to 86% and 92% respectively. We suspect a large amount of error is due to coordinating conjunctions, previously unseen words and brain regions of less commonly studied organisms. We found context windows, lemmatization and abbreviation expansion to be the most informative techniques. The corpus is freely available at http://www.chibi.ubc.ca/WhiteText/.

  19. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  1. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain

    DEFF Research Database (Denmark)

    van der Meer, Thomas P; Artacho-Cordón, Francisco; Swaab, Dick F

    2017-01-01

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain...... and BMI triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A...

  2. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  3. Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T

    1995-01-01

    rats were subjected to a localized freeze lesion of the neocortex of the right temporal cortex. This lesion results in a disrupted blood-brain interface, leading to extravasation of plasma proteins. From 16 h, reactive astrocytosis, defined as an increase in the number and size of cells expressing GFAP...

  4. Brain regions involved in observing and trying to interpret dog behaviour.

    Science.gov (United States)

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  5. Quantitative expression profile of distinct functional regions in the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Takeya Kasukawa

    Full Text Available The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B* project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/ for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems.

  6. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  7. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    Background: Data on central region morphometry of a child brain is important not only in terms of providing us with information about central region anatomy of the brain but also in terms of the help of this information for the plans to be applied in neurosurgery. Objective: In the present study, central region morphometry of a ...

  8. Large germinoma in basal ganglia treated by intraarterial chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi; Kobayashi, Makio.

    1988-10-01

    A rare case of large germinoma in the basal ganglia is reported which was effectively treated by intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption using 20 % mannitol and radiation therapy. A 19-year-old man displayed slowly progressive right hemiparesis, motor aphasia and predementia on admission. Plain CT demonstrated a tumor which had a slightly high density with intratumoral calcification and a small cyst, and slight to moderate enhancement was observed following intravenous injection of contrast medium, but there was no unilateral ventricular enlargement. Cerebral angiography revealed hypervascular tumor staining with early draining veins. After biopsy, and as a result of intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy, the tumor decreased rapidly to about 20 % of its original mass. After discharge, tumor progression was observed. However, the enlarged tumor mass almost disappeared (except for calcification) on CT with clinical improvement in response to intracarotid chemotherapy with ACNU following 20 % mannitol.

  9. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  10. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  11. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Diffusion Tensor Imaging Tractography Reveals Disrupted White Matter Structural Connectivity Network in Healthy Adults with Insomnia Symptoms

    Directory of Open Access Journals (Sweden)

    Feng-Mei Lu

    2017-11-01

    Full Text Available Neuroimaging studies have revealed that insomnia is characterized by aberrant neuronal connectivity in specific brain regions, but the topological disruptions in the white matter (WM structural connectivity networks remain largely unknown in insomnia. The current study uses diffusion tensor imaging (DTI tractography to construct the WM structural networks and graph theory analysis to detect alterations of the brain structural networks. The study participants comprised 30 healthy subjects with insomnia symptoms (IS and 62 healthy subjects without IS. Both the two groups showed small-world properties regarding their WM structural connectivity networks. By contrast, increased local efficiency and decreased global efficiency were identified in the IS group, indicating an insomnia-related shift in topology away from regular networks. In addition, the IS group exhibited disrupted nodal topological characteristics in regions involving the fronto-limbic and the default-mode systems. To our knowledge, this is the first study to explore the topological organization of WM structural network connectivity in insomnia. More importantly, the dysfunctions of large-scale brain systems including the fronto-limbic pathways, salience network and default-mode network in insomnia were identified, which provides new insights into the insomnia connectome. Topology-based brain network analysis thus could be a potential biomarker for IS.

  13. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  14. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  15. Enhanced tumor cell killing following BNCT with hyperosmotic mannitol-induced blood-brain barrier disruption and intracarotid injection of boronophenylalanine

    International Nuclear Information System (INIS)

    Hsieh, C.H.; Hwang, J.J.; Chen, F.D.; Liu, R.S.; Liu, H.M.; Hsueh, Y.W.; Kai, J.J.

    2006-01-01

    The delivery of boronophenylalanine (BPA) by means of intracarotid injection combined with opening the blood-brain barrier (BBB) have been shown significantly enhanced the tumor boron concentration and the survival time of glioma-bearing rats. However, no direct evidence demonstrates whether this treatment protocol can enhance the cell killing of tumor cells or infiltrating tumor cells and the magnitude of enhanced cell killing. The purpose of the present study was to determine if the tumor cell killing of boron neutron capture therapy could be enhanced by hyperosmotic mannitol-induced BBB disruption using BPA-Fr as the capture agent. F98 glioma-bearing rats were injected intravenously or intracarotidly with BPA at doses of 500 mg/kg body weight (b.w.) and with or without mannitol-induced hyperosmotic BBB disruption. The rats were irradiated with an epithermal neutron beam at the reactor of National Tsing-Hua University (THOR). After neutron beam irradiation, the rats were euthanized and the ipsilateral brains containing intracerebral F98 glioma were removed to perform in vivo/in vitro soft agar clonogenic assay. The results demonstrate BNCT with optimizing the delivery of BPA by means of intracarotid injection combined with opening the BBB by infusing a hyperosmotic solution of mannitol significantly enhanced the cell killing of tumor cells and infiltrating tumor cells, the tumor boron concentration and the boron ratio of tumor to normal brain tissues. (author)

  16. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.

    Directory of Open Access Journals (Sweden)

    Frank G Hillary

    Full Text Available There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI. A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1 physical disruption results in increased functional connectivity, or hyperconnectivity, and 2 hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.

  17. Multiple determinants of whole and regional brain volume among terrestrial carnivorans.

    Directory of Open Access Journals (Sweden)

    Eli M Swanson

    Full Text Available Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.

  18. Regional brain distribution of toluene in rats and in a human autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Ameno, Kiyoshi; Kiriu, Takahiro; Fuke, Chiaki; Ameno, Setsuko; Shinohara, Toyohiko; Ijiri, Iwao (Kagawa Medical School (Japan). Dept. of Forensic Medicine)

    1992-02-01

    Toluene concentrations in 9 brain regions of acutely exposed rats and that in 11 brain regions of a human case who inhaled toluene prior to death are described. After exposure to toluene by inhalation (2000 or 10 000 ppm) for 0.5 h or by oral dosing (400 mg/kg.), rats were killed by decapitation 0.5 and 4 h after onset of inhalation and 2 and 10 h after oral ingestion. After each experimental condition the highest range of brain region/blood toluene concentration ratio (BBCR) was in the brain stem regions (2.85-3.22) such as the pons and medulla oblongata, the middle range (1.77-2.12) in the midbrain, thalamus, caudate-putamen, hypothalamus and cerebellum, and the lowest range (1.22-1.64) in the hippocampus and cerebral cortex. These distribution patterns were quite constant. Toluene concentration in various brain regions were unevenly distributed and directly related blood levels. In a human case who had inhaled toluene vapor, the distribution among brain regions was relatively similar to that in rats, the highest concentration ratios being in the corpus callosum (BBCR:2.66) and the lowest in the hippocampus (BBCR:1.47). (orig.).

  19. AUTOMATED CLASSIFICATION AND SEGREGATION OF BRAIN MRI IMAGES INTO IMAGES CAPTURED WITH RESPECT TO VENTRICULAR REGION AND EYE-BALL REGION

    Directory of Open Access Journals (Sweden)

    C. Arunkumar

    2014-05-01

    Full Text Available Magnetic Resonance Imaging (MRI images of the brain are used for detection of various brain diseases including tumor. In such cases, classification of MRI images captured with respect to ventricular and eye ball regions helps in automated location and classification of such diseases. The methods employed in the paper can segregate the given MRI images of brain into images of brain captured with respect to ventricular region and images of brain captured with respect to eye ball region. First, the given MRI image of brain is segmented using Particle Swarm Optimization (PSO algorithm, which is an optimized algorithm for MRI image segmentation. The algorithm proposed in the paper is then applied on the segmented image. The algorithm detects whether the image consist of a ventricular region or an eye ball region and classifies it accordingly.

  20. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS. Recent studies have established the significance of atypical protein kinase C (aPKC and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.

  2. Brief exposure to obesogenic diet disrupts brain dopamine networks.

    Directory of Open Access Journals (Sweden)

    Robert L Barry

    Full Text Available We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT activity, which fine-tunes dopamine (DA signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week obesogenic high-fat (HF diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH.We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R availability using [18F]fallypride positron emission tomography (PET.We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex implicated in hedonic feeding. D2R availability was reduced in HF-fed animals.These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling

  3. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    Science.gov (United States)

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  4. Family members' needs and experiences of driving disruption over time following an acquired brain injury: an evolving issue.

    Science.gov (United States)

    Liang, Phyllis; Gustafsson, Louise; Liddle, Jacki; Fleming, Jennifer

    2017-07-01

    Family members often assume the role of driver for individuals who are not driving post-acquired brain injury (ABI). Given that return to driving can be unpredictable and uncertain, the impact of driving disruption on family members may vary at different stages post-injury. This study aims to understand the needs and experiences of family members over time during driving disruption following an ABI. A qualitative prospective longitudinal research design was used with semi-structured interviews at recruitment to study, 3 and 6 months later. Fourteen family members completed 41 interviews. The longitudinal data revealed four phases of driving disruption: (1) Wait and see, (2) Holding onto a quick fix, (3) No way out, and (4) Resolution and adjustment. The phases described a process of building tension and a need for support and resolution over time. Holding onto a quick fix is a pivotal phase whereby supports, such as engagement in realistic goal setting, are essential to facilitate family members' resolution of driving disruption issues. Family members who see no way out might not actively seek help and these points to a need for long-term and regular follow-ups. Future research can explore ways to support family members at these key times. Implications for rehabilitation Health professionals need to facilitate the process of fostering hope in family members to set realistic expectations of return to driving and the duration of driving disruption. It is necessary to follow-up with family members even years after ABI as the issue of driving disruption could escalate to be a crisis and family members might not actively seek help. Health professionals can consider both practical support for facilitating transport and emotional support when addressing the issue of driving disruption with family members.

  5. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    2013-10-10

    Oct 10, 2013 ... Background: Data on central region morphometry of a child brain is important not only in terms of ... brain volume reaches the peak at the age of 14.5 in men ..... child and adolescent brain and effects of genetic variation.

  6. Endocrine Disruption of Vasopressin Systems and Related Behaviors

    Directory of Open Access Journals (Sweden)

    Heather B. Patisaul

    2017-06-01

    Full Text Available Endocrine disrupting chemicals (EDCs are chemicals that interfere with the organizational or activational effects of hormones. Although the vast majority of the EDC literature focuses on steroid hormone signaling related impacts, growing evidence from a myriad of species reveals that the nonapeptide hormones vasopressin (AVP and oxytocin (OT may also be EDC targets. EDCs shown to alter pathways and behaviors coordinated by AVP and/or OT include the plastics component bisphenol A (BPA, the soy phytoestrogen genistein (GEN, and various flame retardants. Many effects are sex specific and likely involve action at nuclear estrogen receptors. Effects include the elimination or reversal of well-characterized sexually dimorphic aspects of the AVP system, including innervation of the lateral septum and other brain regions critical for social and other non-reproductive behaviors. Disruption of magnocellular AVP function has also been reported in rats, suggesting possible effects on hemodynamics and cardiovascular function.

  7. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    Science.gov (United States)

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  8. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  9. Pharmacokinetic analysis of 111 in-labeled liposomal Doxorubicin in murine glioblastoma after blood-brain barrier disruption by focused ultrasound.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available The goal of this study was to evaluate the pharmacokinetics of targeted and untargeted (111In-doxorubicin liposomes after these have been intravenously administrated to tumor-bearing mice in the presence of blood-brain barrier disruption (BBB-D induced by focused ultrasound (FUS. An intracranial brain tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM 8401 cells was developed in this study. (111In-labeled human atherosclerotic plaque-specific peptide-1 (AP-1-conjugated liposomes containing doxorubicin (Lipo-Dox; AP-1 Lipo-Dox were used as a microSPECT probe for radioactivity measurements in the GBM-bearing mice. Compared to the control tumors treated with an injection of (111In-AP-1 Lipo-Dox or (111In-Lipo-Dox, the animals receiving the drugs followed by FUS exhibited enhanced accumulation of the drug in the brain tumors (p<0.05. Combining sonication with drugs significantly increased the tumor-to-normal brain doxorubicin ratio of the target tumors compared to the control tumors. The tumor-to-normal brain ratio was highest after the injection of (111In-AP-1 Lipo-Dox with sonication. The (111In-liposomes micro-SPECT/CT should be able to provide important information about the optimum therapeutic window for the chemotherapy of brain tumors using sonication.

  10. Disrupted functional connectivity in adolescent obesity

    Directory of Open Access Journals (Sweden)

    Laura Moreno-Lopez

    2016-01-01

    Conclusions: These findings suggest that adolescent obesity is linked to disrupted functional connectivity in brain networks relevant to maintaining balance between reward, emotional memories and cognitive control. Our findings may contribute to reconceptualization of obesity as a multi-layered brain disorder leading to compromised motivation and control, and provide a biological account to target prevention strategies for adolescent obesity.

  11. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  12. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Segmentation of brain parenchymal regions into gray matter and white matter with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tokunaga, Chiaki; Yoshiura, Takashi; Yamashita, Yasuo; Magome, Taiki; Honda, Hiroshi; Arimura, Hidetaka; Toyofuku, Fukai; Ohki, Masafumi

    2010-01-01

    It is very difficult and time consuming for neuroradiologists to estimate the degree of cerebral atrophy based on the volume of cortical regions etc. Our purpose of this study was to develop an automated segmentation of the brain parenchyma into gray and white matter regions with Alzheimer's disease (AD) in three-dimensional (3D) T1-weighted MR images. Our proposed method consisted of extraction of a brain parenchymal region based on a brain model matching and segmentation of the brain parenchyma into gray and white matter regions based on a fuzzy c-means (FCM) algorithm. We applied our proposed method to MR images of the whole brains obtained from 9 cases, including 4 clinically AD cases and 5 control cases. The mean volume percentage of a cortical region (41.7%) to a brain parenchymal region in AD patients was smaller than that (45.2%) in the control subjects (p=0.000462). (author)

  14. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy.

    Science.gov (United States)

    Sullan, Molly J; Asken, Breton M; Jaffee, Michael S; DeKosky, Steven T; Bauer, Russell M

    2018-01-01

    Traumatic brain injury (TBI) is an increasingly important issue among veterans, athletes and the general public. Difficulties with sleep onset and maintenance are among the most commonly reported symptoms following injury, and sleep debt is associated with increased accumulation of beta amyloid (Aβ) and phosphorylated tau (p-tau) in the interstitial space. Recent research into the glymphatic system, a lymphatic-like metabolic clearance mechanism in the central nervous system (CNS) which relies on cerebrospinal fluid (CSF), interstitial fluid (ISF), and astrocytic processes, shows that clearance is potentiated during sleep. This system is damaged in the acute phase following mTBI, in part due to re-localization of aquaporin-4 channels away from astrocytic end feet, resulting in reduced potential for waste removal. Long-term consequences of chronic dysfunction within this system in the context of repetitive brain trauma and insomnia have not been established, but potentially provide one link in the explanatory chain connecting repetitive TBI with later neurodegeneration. Current research has shown p-tau deposition in perivascular spaces and along interstitial pathways in chronic traumatic encephalopathy (CTE), pathways related to glymphatic flow; these are the main channels by which metabolic waste is cleared. This review addresses possible links between mTBI-related damage to glymphatic functioning and physiological changes found in CTE, and proposes a model for the mediating role of sleep disruption in increasing the risk for developing CTE-related pathology and subsequent clinical symptoms following repetitive brain trauma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Enhanced Therapeutic Potential of Nano-Curcumin Against Subarachnoid Hemorrhage-Induced Blood-Brain Barrier Disruption Through Inhibition of Inflammatory Response and Oxidative Stress.

    Science.gov (United States)

    Zhang, Zong-Yong; Jiang, Ming; Fang, Jie; Yang, Ming-Feng; Zhang, Shuai; Yin, Yan-Xin; Li, Da-Wei; Mao, Lei-Lei; Fu, Xiao-Yan; Hou, Ya-Jun; Fu, Xiao-Ting; Fan, Cun-Dong; Sun, Bao-Liang

    2017-01-01

    Curcumin and nano-curcumin both exhibit neuroprotective effects in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). However, the mechanism that whether curcumin and its nanoparticles affect the blood-brain barrier (BBB) following SAH remains unclear. This study investigated the effect of curcumin and the poly(lactide-co-glycolide) (PLGA)-encapsulated curcumin nanoparticles (Cur-NPs) on BBB disruption and evaluated the possible mechanism underlying BBB dysfunction in EBI using the endovascular perforation rat SAH model. The results indicated that Cur-NPs showed enhanced therapeutic effects than that of curcumin in improving neurological function, reducing brain water content, and Evans blue dye extravasation after SAH. Mechanically, Cur-NPs attenuated BBB dysfunction after SAH by preventing the disruption of tight junction protein (ZO-1, occludin, and claudin-5). Cur-NPs also up-regulated glutamate transporter-1 and attenuated glutamate concentration of cerebrospinal fluid following SAH. Moreover, inhibition of inflammatory response and microglia activation both contributed to Cur-NPs' protective effects. Additionally, Cur-NPs markedly suppressed SAH-mediated oxidative stress and eventually reversed SAH-induced cell apoptosis in rats. Our findings revealed that the strategy of using Cur-NPs could be a promising way in improving neurological function in EBI after experimental rat SAH.

  16. Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.

    Science.gov (United States)

    Kiparizoska, Sara; Ikuta, Toshikazu

    2017-09-01

    Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  17. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  18. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.

    1984-01-01

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  19. Disrupted Structural Brain Network in AD and aMCI: A Finding of Long Fiber Degeneration.

    Science.gov (United States)

    Fang, Rong; Yan, Xiao-Xiao; Wu, Zhi-Yuan; Sun, Yu; Yin, Qi-Hua; Wang, Ying; Tang, Hui-Dong; Sun, Jun-Feng; Miao, Fei; Chen, Sheng-Di

    2015-01-01

    Although recent evidence has emerged that Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients show both regional brain abnormalities and topological degeneration in brain networks, our understanding of the effects of white matter fiber aberrations on brain network topology in AD and aMCI is still rudimentary. In this study, we investigated the regional volumetric aberrations and the global topological abnormalities in AD and aMCI patients. The results showed a widely distributed atrophy in both gray and white matters in the AD and aMCI groups. In particular, AD patients had weaker connectivity with long fiber length than aMCI and normal control (NC) groups, as assessed by fractional anisotropy (FA). Furthermore, the brain networks of all three groups exhibited prominent economical small-world properties. Interestingly, the topological characteristics estimated from binary brain networks showed no significant group effect, indicating a tendency of preserving an optimal topological architecture in AD and aMCI during degeneration. However, significantly longer characteristic path length was observed in the FA weighted brain networks of AD and aMCI patients, suggesting dysfunctional global integration. Moreover, the abnormality of the characteristic path length was negatively correlated with the clinical ratings of cognitive impairment. Thus, the results therefore suggested that the topological alterations in weighted brain networks of AD are induced by the loss of connectivity with long fiber lengths. Our findings provide new insights into the alterations of the brain network in AD and may indicate the predictive value of the network metrics as biomarkers of disease development.

  20. Data mining a functional neuroimaging database for functional segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  1. Data mining a functional neuroimaging database for functional|segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  2. Iodination as a probe for small regions of disrupted secondary structure in double-stranded DNA

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Nes, Ingolf F.; Wells, Robert D.

    1976-01-01

    Conditions were established where the thallium-catalyzed iodination of random coil DNA proceeded 100–200 times faster than for native DNA. This reaction was explored as a probe for localized regions of disrupted base pairs in duplex DNA. A heteroduplex was constructed between DNA fragments produced...

  3. Brain region specific mitophagy capacity could contribute to selective neuronal vulnerability in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Zabel Claus

    2011-09-01

    Full Text Available Abstract Parkinson's disease (PD is histologically well defined by its characteristic degeneration of dopaminergic neurons in the substantia nigra pars compacta. Remarkably, divergent PD-related mutations can generate comparable brain region specific pathologies. This indicates that some intrinsic region-specificity respecting differential neuron vulnerability exists, which codetermines the disease progression. To gain insight into the pathomechanism of PD, we investigated protein expression and protein oxidation patterns of three different brain regions in a PD mouse model, the PINK1 knockout mice (PINK1-KO, in comparison to wild type control mice. The dysfunction of PINK1 presumably affects mitochondrial turnover by disturbing mitochondrial autophagic pathways. The three brain regions investigated are the midbrain, which is the location of substantia nigra; striatum, the major efferent region of substantia nigra; and cerebral cortex, which is more distal to PD pathology. In all three regions, mitochondrial proteins responsible for energy metabolism and membrane potential were significantly altered in the PINK1-KO mice, but with very different region specific accents in terms of up/down-regulations. This suggests that disturbed mitophagy presumably induced by PINK1 knockout has heterogeneous impacts on different brain regions. Specifically, the midbrain tissue seems to be most severely hit by defective mitochondrial turnover, whereas cortex and striatum could compensate for mitophagy nonfunction by feedback stimulation of other catabolic programs. In addition, cerebral cortex tissues showed the mildest level of protein oxidation in both PINK1-KO and wild type mice, indicating either a better oxidative protection or less reactive oxygen species (ROS pressure in this brain region. Ultra-structural histological examination in normal mouse brain revealed higher incidences of mitophagy vacuoles in cerebral cortex than in striatum and substantia

  4. A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption

    Directory of Open Access Journals (Sweden)

    Johnson Holly L

    2012-03-01

    Full Text Available Abstract Background The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS model results in severe central nervous system (CNS vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS. Methods PIFS was induced by intravenous injection of VP2121-130 peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer. Results C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2121-130 peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of

  5. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    Science.gov (United States)

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  6. Influence of ketamine on regional brain glucose use

    International Nuclear Information System (INIS)

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-01-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with [6- 14 C]glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus

  7. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    International Nuclear Information System (INIS)

    Hoffmann, Chen; Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad; Yaniv, Gal; Bergman, Dafi; Biegon, Anat

    2014-01-01

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  8. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Chen [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Sheba Medical Center, Diagnostic Imaging, 52621, Tel Hashomer (Israel); Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad [Tel Aviv University, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Yaniv, Gal; Bergman, Dafi [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2014-07-15

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  9. Oral Supplementation with Bovine Colostrum Prevents Septic Shock and Brain Barrier Disruption During Bloodstream Infection in Preterm Newborn Pigs

    DEFF Research Database (Denmark)

    Brunse, Anders; Worsøe, Päivi; Pors, Susanne Elisabeth

    2018-01-01

    Preterm infants have increased risk of neonatal sepsis, potentially inducing brain injury, and they may benefit from early initiation of enteral milk feeding. Using preterm pigs as models, we hypothesized that early provision of bovine colostrum to parentally nourished newborns protects against...... = 15) or oral provision of bovine colostrum with supplementary parenteral nutrition (SE + COL, n = 14), and compared with uninfected, TPN-nourished controls (CON + TPN, n = 11). SE-infected animals showed multiple signs of sepsis, including lethargy, hypotension, respiratory acidosis, internal organ...... hemorrhages, cellular responses (leukopenia, thrombocytopenia), brain barrier disruption and neuroinflammation. At 24 h, colostrum supplementation reduced the SE abundance in blood and cerebrospinal fluid (CSF, both p colostrum feeding normalized arterial blood pressure (38.5 ± 1.20 vs 30...

  10. Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains.

    Science.gov (United States)

    Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun

    2016-02-23

    We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.

  11. Neuropeptide processing in regional brain slices: Effect of conformation and sequence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.W.; Bijl, W.A.; van Nispen, J.W.; Brendel, K.; Davis, T.P. (Univ. of Arizona, Tucson (USA))

    1990-05-01

    The central enzymatic stability of des-enkephalin-gamma-endorphin and its synthetic analogs (cycloN alpha 6, C delta 11)beta-endorphin-(6-17) and (Pro7, Lys(Ac)9)-beta-endorphin(6-17) was studied in vitro using a newly developed, regionally dissected rat brain slice, time course incubation procedure. Tissue slice viability was estimated as the ability of the brain slice to take up or release gamma-(3H)aminobutyric acid after high K+ stimulation. Results demonstrated stability of uptake/release up to 5 hr of incubation, suggesting tissue viability over this period. The estimated half-life of peptides based on the results obtained in our incubation protocol suggest that the peptides studied are metabolized at different rates in the individual brain regions tested. A good correlation exists between the high enzyme activity of neutral endopeptidase and the rapid degradation of des-enkephalin-gamma-endorphin and (cycloN alpha 6, C delata 11)beta-endorphin-(6-17) in caudate putamen. Proline substitution combined with lysine acetylation appears to improve resistance to enzymatic metabolism in caudate putamen and hypothalamus. However, cyclization of des-enkephalin-gamma-endorphin forming an amide bond between the alpha-NH2 of the N-terminal threonine and the gamma-COOH of glutamic acid did not improve peptide stability in any brain region tested. The present study has shown that the brain slice technique is a valid and unique approach to study neuropeptide metabolism in small, discrete regions of rat brain where peptides, peptidases and receptors are colocalized and that specific structural modifications can improve peptide stability.

  12. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.

    Science.gov (United States)

    Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions ( Panthera leo ), leopards ( Panthera pardus ), cougars ( Puma concolor ), and cheetahs ( Acinonyx jubatus ). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls ( n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC

  13. Big Cat Coalitions: A comparative analysis of regional brain volumes in Felidae

    Directory of Open Access Journals (Sweden)

    Sharleen T Sakai

    2016-10-01

    Full Text Available Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of 4 focal species: lions (Panthera leo, leopards (Panthera pardus, cougars (Puma concolor, and cheetahs (Acinonyx jubatus. These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography (CT. Skulls (n=75 were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares (PGLS regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in 4 focal species revealed that lions and leopards, while not significantly different from one another, have relatively

  14. Brain noise is task dependent and region specific.

    Science.gov (United States)

    Misić, Bratislav; Mills, Travis; Taylor, Margot J; McIntosh, Anthony R

    2010-11-01

    The emerging organization of anatomical and functional connections during human brain development is thought to facilitate global integration of information. Recent empirical and computational studies have shown that this enhanced capacity for information processing enables a diversified dynamic repertoire that manifests in neural activity as irregularity and noise. However, transient functional networks unfold over multiple time, scales and the embedding of a particular region depends not only on development, but also on the manner in which sensory and cognitive systems are engaged. Here we show that noise is a facet of neural activity that is also sensitive to the task context and is highly region specific. Children (6-16 yr) and adults (20-41 yr) performed a one-back face recognition task with inverted and upright faces. Neuromagnetic activity was estimated at several hundred sources in the brain by applying a beamforming technique to the magnetoencephalogram (MEG). During development, neural activity became more variable across the whole brain, with most robust increases in medial parietal regions, such as the precuneus and posterior cingulate cortex. For young children and adults, activity evoked by upright faces was more variable and noisy compared with inverted faces, and this effect was reliable only in the right fusiform gyrus. These results are consistent with the notion that upright faces engender a variety of integrative neural computations, such as the relations among facial features and their holistic constitution. This study shows that transient changes in functional integration modulated by task demand are evident in the variability of regional neural activity.

  15. Bisphenol A disrupts glucose transport and neurophysiological role of IR/IRS/AKT/GSK3β axis in the brain of male mice.

    Science.gov (United States)

    Li, Jing; Wang, Yixin; Fang, Fangfang; Chen, Donglong; Gao, Yue; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-04-01

    Bisphenol A (BPA), one of the most prevalent chemicals for daily use, was recently reported to disturb the homeostasis of energy metabolism and insulin signaling pathways, which might contribute to the increasing prevalence rate of mild cognitive impairment (MCI). However, the underlying mechanisms are remained poorly understood. Here we studied the effects of low dose BPA on glucose transport and the IR/IRS/AKT/GSK3β axis in adult male mice to delineate the association between insulin signaling disruption and neurotoxicity mediated by BPA. Mice were treated with subcutaneous injection of 100μg/kg/d BPA or vehicle for 30 days, then the insulin signaling and glucose transporters in the hippocampus and prefrontal cortex were detected by western blot. Our results showed that mice treated with BPA displayed significant decrease of insulin sensitivity, and in glucose transporter 1, 3 (GLUT1, 3) protein levels in mouse brain. Meanwhile, hyperactivation of IR/IRS/AKT/GSK3β axis was detected in the brain of BPA treated mice. Noteworthily, significant increases of phosphorylated tau and β-APP were observed in BPA treated mice. These results strongly suggest that BPA exposure significantly disrupts brain insulin signaling and might be considered as a potential risk factor for neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.

    Science.gov (United States)

    Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen

    2013-09-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

  18. Mapping the Alzheimer's brain with connectomics

    Directory of Open Access Journals (Sweden)

    Teng eXie

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia. As an incurable, progressive and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques (e.g., structural MRI, diffusion MRI, functional MRI and EEG/MEG and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring.

  19. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    Science.gov (United States)

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Regional differences in brain glucose metabolism determined by imaging mass spectrometry

    OpenAIRE

    André Kleinridders; Heather A. Ferris; Michelle L. Reyzer; Michaela Rath; Marion Soto; M. Lisa Manier; Jeffrey Spraggins; Zhihong Yang; Robert C. Stanton; Richard M. Caprioli; C. Ronald Kahn

    2018-01-01

    Objective: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). Metho...

  1. Hierarchical clustering into groups of human brain regions according to elemental composition

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1998-01-01

    Thirteen brain regions were dissected from both hemispheres of fifteen 'normal' ageing subjects (8 females, 7 males) of mean age 79±7 years. Elemental compositions were determined by simultaneous application of particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses using a 2 MeV, 4 nA proton beam scanned over 4 mm 2 of the sample surface. Elemental concentrations were found to be dependent upon the brain region and hemisphere studied. Hierarchical cluster analysis was applied to group the brain regions according to the sample concentrations of eight elements. The resulting dendrogram is presented and its clusters related to the sample compositions of grey and white matter. (author)

  2. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  3. Metabolic drift in the aging brain.

    Science.gov (United States)

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.

  4. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    Science.gov (United States)

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus

    International Nuclear Information System (INIS)

    Dickerson, Sarah M.; Cunningham, Stephanie L.; Gore, Andrea C.

    2011-01-01

    Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor α (ERα) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ERα, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA B receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGFα. Collectively, these results suggest that the disrupted sexual differentiation

  6. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  7. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known...... to be densely packed with serotonin transporters (5-hydroxytryptaminic [5-HTT] system). METHODS: A template set for the raphe nuclei, based on their high content of 5-HTT as visualized in parametric (11)C-labeled 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile PET images, was created for 10...... healthy subjects. The templates were subsequently included in the region sets used in a previously published automatic MRI-based approach to create an observer- and activity-independent probabilistic VOI map. The probabilistic map approach was tested in a different group of 10 subjects and compared...

  8. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia

    Directory of Open Access Journals (Sweden)

    Ted Menghsiung Hsu

    2014-05-01

    Full Text Available Both obesity and Alzheimer’s disease are major health burdens in Western societies. While commonly viewed as having separate etiologies, this review highlights data suggesting that intake of Western diets, diets high in saturated fatty acids and simple carbohydrates, may pose a common environmental risk factor contributing to the development of both of these adverse pathologies. We discuss the effects of Western Diet intake on learning and memory processes that are dependent on the hippocampus, as well as the importance of this brain region in both obesity development and the onset of Alzheimer’s and other dementias. A putative mechanism is discussed that mechanistically links Western diet consumption, blood brain barrier degradation, and subsequent hippocampal damage and dementia pathology.

  9. Widespread disruption of functional brain organization in early-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sofie M Adriaanse

    Full Text Available Early-onset Alzheimer's disease (AD patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old, 28 late-onset (≥65 years old AD patients and 15 "young" (<65 years old and 31 "old" (≥65 years old age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls, which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive

  10. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  11. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  12. Moral values are associated with individual differences in regional brain volume.

    Science.gov (United States)

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  13. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  14. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD).

    Science.gov (United States)

    Shaltiel-Karyo, Ronit; Frenkel-Pinter, Moran; Rockenstein, Edward; Patrick, Christina; Levy-Sakin, Michal; Schiller, Abigail; Egoz-Matia, Nirit; Masliah, Eliezer; Segal, Daniel; Gazit, Ehud

    2013-06-14

    The development of disease-modifying therapy for Parkinson disease has been a main drug development challenge, including the need to deliver the therapeutic agents to the brain. Here, we examined the ability of mannitol to interfere with the aggregation process of α-synuclein in vitro and in vivo in addition to its blood-brain barrier-disrupting properties. Using in vitro studies, we demonstrated the effect of mannitol on α-synuclein aggregation. Although low concentration of mannitol inhibited the formation of fibrils, high concentration significantly decreased the formation of tetramers and high molecular weight oligomers and shifted the secondary structure of α-synuclein from α-helical to a different structure, suggesting alternative potential pathways for aggregation. When administered to a Parkinson Drosophila model, mannitol dramatically corrected its behavioral defects and reduced the amount of α-synuclein aggregates in the brains of treated flies. In the mThy1-human α-synuclein transgenic mouse model, a decrease in α-synuclein accumulation was detected in several brain regions following treatment, suggesting that mannitol promotes α-synuclein clearance in the cell bodies. It appears that mannitol has a general neuroprotective effect in the transgenic treated mice, which includes the dopaminergic system. We therefore suggest mannitol as a basis for a dual mechanism therapeutic agent for the treatment of Parkinson disease.

  15. Biographical disruption, adjustment and reconstruction of everyday occupations and work participation after mild traumatic brain injury. A focus group study.

    Science.gov (United States)

    Sveen, Unni; Søberg, Helene Lundgaard; Østensjø, Sigrid

    2016-11-01

    To explore traumatic brain injury (TBI) as a biographical disruption and to study the reconstruction of everyday occupations and work participation among individuals with mild TBI. Seven focus groups were conducted with 12 women and 8 men (22-60 years) who had sustained mild TBI and participated in a return-to-work program. Interviews were analyzed using qualitative content analysis. Four interrelated themes emerged: disruption of occupational capacity and balance; changes in self-perceptions; experience of time; and occupational adjustment and reconstruction. The meaning of the impairments lies in their impact on the individual's everyday occupations. The abandonment of meaningful daily occupations and the feeling of not recognizing oneself were experienced as threats to the sense of self. Successful integration of the past, present and future was paramount to continuing life activities. The unpredictability of the future seemed to permeate the entire process of adjustment and reconstruction of daily life. Our findings show that the concept of time is important in understanding and supporting the reconstruction of daily life after TBI. The fundamental work of rehabilitation is to ameliorate the disruptions caused by the injury, restoring a sense of personal narrative and supporting the ability to move forward with life. Implications for Rehabilitation Individuals with a protracted recovery after a mild traumatic brain injury must reconstruct a new way of being and acting in the world to achieve biographical continuity. The perceived anxiety regarding changes in self and occupational identity, as well as loss of control over the future, can be attenuated through informational sessions during the hospital stay and at follow-up visits. The significant personal costs of returning to full-time employment too early indicate the need for early and ongoing vocational support in achieving a successful return to work.

  16. Attentional Performance is Correlated with the Local Regional Efficiency of Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Junhai eXu

    2015-07-01

    Full Text Available Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC. Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN. In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/ VAN at rest.

  17. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  18. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    Science.gov (United States)

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  19. Structural brain network analysis in families multiply affected with bipolar I disorder.

    Science.gov (United States)

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression.

    Science.gov (United States)

    Liu, Chun-Hong; Ma, Xin; Wu, Xia; Zhang, Yu; Zhou, Fu-Chun; Li, Feng; Tie, Chang-Le; Dong, Jie; Wang, Yong-Jun; Yang, Zhi; Wang, Chuan-Yue

    2013-03-05

    Bipolar disorder patients experiencing a depressive episode (BD-dep) without an observed history of mania are often misdiagnosed and are consequently treated as having unipolar depression (UD), leading to inadequate treatment and poor outcomes. An essential solution to this problem is to identify objective biological markers that distinguish BD-dep and UD patients at an early stage. However, studies directly comparing the brain dysfunctions associated with BD-dep and UD are rare. More importantly, the specificity of the differences in brain activity between these mental disorders has not been examined. With whole-brain regional homogeneity analysis and region-of-interest (ROI) based receiver operating characteristic (ROC) analysis, we aimed to compare the resting-state brain activity of BD-dep and UD patients. Furthermore, we examined the specific differences and whether these differences were attributed to the brain abnormality caused by BD-dep, UD, or both. Twenty-one bipolar and 21 unipolar depressed patients, as well as 26 healthy subjects matched for gender, age, and educational levels, participated in the study. We compared the differences in the regional homogeneity (ReHo) of the BD-dep and UD groups and further identified their pathophysiological abnormality. In the brain regions showing a difference between the BD-dep and UD groups, we further conducted receptive operation characteristic (ROC) analyses to confirm the effectiveness of the identified difference in classifying the patients. We observed ReHo differences between the BD-dep and UD groups in the right ventrolateral middle frontal gyrus, right dorsal anterior insular, right ventral anterior insular, right cerebellum posterior gyrus, right posterior cingulate cortex, right parahippocampal gyrus, and left cerebellum anterior gyrus. Further ROI comparisons and ROC analysis on these ROIs showed that the right parahippocampal gyrus reflected abnormality specific to the BD-dep group, while the right

  1. Disruption in proprioception from long-term thalamic deep brain stimulation: A pilot study

    Directory of Open Access Journals (Sweden)

    Jennifer A Semrau

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is an excellent treatment for tremor and is generally thought to be reversible by turning off stimulation. For tremor, DBS is implanted in the ventrointermedius (Vim nucleus of the thalamus, a region that relays proprioceptive information for movement sensation (kinaesthesia. Gait disturbances have been observed with bilateral Vim DBS, but the long-term effects on proprioceptive processing are unknown. We aimed to determine whether Vim DBS surgical implantation or stimulation leads to proprioceptive deficits in the upper limb. We assessed two groups of tremor subjects on measures of proprioception (kinaesthesia, position sense and motor function using a robotic exoskeleton. In the first group (Surgery, we tested patients before and after implantation of Vim DBS, but before DBS was turned on to determine if proprioceptive deficits were inherent to tremor or caused by DBS implantation. In the second group (Stim, we tested subjects with chronically implanted Vim DBS ON and OFF stimulation. Compared to controls, there were no proprioceptive deficits before or after DBS implantation in the Surgery group. Surprisingly, those that received chronic long-term stimulation (LT-stim, 3-10 years displayed significant proprioceptive deficits ON and OFF stimulation not present in subjects with chronic short-term stimulation (ST-stim, 0.5-2 years. LT-stim had significantly larger variability and reduced workspace area during the position sense assessment. During the kinesthetic assessment, LT-stim made significantly larger directional errors and consistently underestimated the speed of the robot, despite generating normal movement speeds during motor assessment. Chronic long-term Vim DBS may potentially disrupt proprioceptive processing, possibly inducing irreversible plasticity in the Vim nucleus and/or its network connections. Our findings in the upper limb may help explain some of the gait disturbances seen by others following Vim

  2. Abnormal rich club organization and functional brain dynamics in schizophrenia.

    Science.gov (United States)

    van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S

    2013-08-01

    disruption of brain connectivity among central hub regions of the brain, potentially leading to reduced communication capacity and altered functional brain dynamics.

  3. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    Science.gov (United States)

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Regional brain gray and white matter changes in perinatally HIV-infected adolescents☆

    Science.gov (United States)

    Sarma, Manoj K.; Nagarajan, Rajakumar; Keller, Margaret A.; Kumar, Rajesh; Nielsen-Saines, Karin; Michalik, David E.; Deville, Jaime; Church, Joseph A.; Thomas, M. Albert

    2013-01-01

    Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM) and white matter (WM) volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years) compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted images with voxel based morphometry (VBM) analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC), bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain. PMID:24380059

  5. Regional brain gray and white matter changes in perinatally HIV-infected adolescents

    Directory of Open Access Journals (Sweden)

    Manoj K. Sarma

    2014-01-01

    Full Text Available Despite the success of antiretroviral therapy (ART, perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM and white matter (WM volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years using magnetic resonance imaging (MRI-based high-resolution T1-weighted images with voxel based morphometry (VBM analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC, bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain.

  6. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  7. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    Science.gov (United States)

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  8. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 ± 3, post 6 ± 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 ± 2, post 3 ± 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  9. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  10. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    International Nuclear Information System (INIS)

    Hisaoka, S.; Harada, M.; Nishitani, H.; Mori, K.

    2001-01-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  11. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S; Harada, M; Nishitani, H [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  12. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  13. Positron-emission tomography of brain regions activated by recognition of familiar music.

    Science.gov (United States)

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S

    2006-05-01

    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  14. Disrupted white matter structure underlies cognitive deficit in hypertensive patients

    International Nuclear Information System (INIS)

    Li, Xin; Ma, Chao; Zhang, Junying; Chen, Yaojing; Zhang, Zhanjun; Sun, Xuan; Chen, Kewei

    2016-01-01

    Hypertension is considered a risk factor of cognitive impairments and could result in white matter changes. Current studies on hypertension-related white matter (WM) changes focus only on regional changes, and the information about global changes in WM structure network is limited. We assessed the cognitive function in 39 hypertensive patients and 37 healthy controls with a battery of neuropsychological tests. The WM structural networks were constructed by utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. The direct and indirect correlations among cognitive impairments, brain WM network disruptions and hypertension were analyzed with structural equation modelling (SEM). Hypertensive patients showed deficits in executive function, memory and attention compared with controls. An aberrant connectivity of WM networks was found in the hypertensive patients (P Eglob = 0.005, P Lp = 0.005), especially in the frontal and parietal regions. Importantly, SEM analysis showed that the decline of executive function resulted from aberrant WM networks in hypertensive patients (p = 0.3788, CFI = 0.99). These results suggest that the cognitive decline in hypertensive patients was due to frontal and parietal WM disconnections. Our findings highlight the importance of brain protection in hypertension patients. (orig.)

  15. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  16. Selectively altering belief formation in the human brain

    Science.gov (United States)

    Sharot, Tali; Kanai, Ryota; Marston, David; Korn, Christoph W.; Rees, Geraint; Dolan, Raymond J.

    2012-01-01

    Humans form beliefs asymmetrically; we tend to discount bad news but embrace good news. This reduced impact of unfavorable information on belief updating may have important societal implications, including the generation of financial market bubbles, ill preparedness in the face of natural disasters, and overly aggressive medical decisions. Here, we selectively improved people’s tendency to incorporate bad news into their beliefs by disrupting the function of the left (but not right) inferior frontal gyrus using transcranial magnetic stimulation, thereby eliminating the engrained “good news/bad news effect.” Our results provide an instance of how selective disruption of regional human brain function paradoxically enhances the ability to incorporate unfavorable information into beliefs of vulnerability. PMID:23011798

  17. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    International Nuclear Information System (INIS)

    Mendes, Ana Carina; Ribeiro, Andre Santos; Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon; Ferreira, Hugo Alexandre

    2015-01-01

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm 3 ), DTI (dir=30, b=0,800s/mm2, 2x2x2mm 3 ), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  18. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  19. On the blood-brain barrier to peptides: [3H]gonadotropin-releasing hormone accumulation by eighteen regions of the rat brain and by anterior pituitary

    International Nuclear Information System (INIS)

    Ermisch, A.; Ruehle, H.J.; Klauschenz, E.; Kretzschmar, R.

    1984-01-01

    After intracarotid injection of [ 3 H]gonadotropin-releasing hormone ([ 3 H]GnRH) the mean accumulation of radioactivity per unit wet weight of 18 brain samples investigated and the anterior pituitary was 0.38 +- 0.11% g -1 of the injected tracer dose. This indicates a low but measurable brain uptake of the peptide. The brain uptake of [ 3 H]GnRH in blood-brain barrier (BBB)-protected regions is 5% of that of separately investigated [ 3 H]OH. In BBB-free regions the accumulation of radioactivity was more than 25-fold higher than in BBB-protected regions. The accumulation of [ 3 H]GnRH among regions with BBB varies less than among regions with leaky endothelia. The data presented for [ 3 H]GnRH are similar to those for other peptides so far investigated. (author)

  20. Functional brain networks in schizophrenia: a review

    Directory of Open Access Journals (Sweden)

    Vince D Calhoun

    2009-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their

  1. Effects of intracarotid ioxaglate on the normal blood-brain barrier

    International Nuclear Information System (INIS)

    Wilcox, J.; Sage, M.R.

    1985-01-01

    Using two different models, the effect on the blood-brain barrier of intracarotid injections of sodium/meglumine ioxaglate at similar iodine concentrations (280 mgI/ml) was investigated. In both models the degree of blood-brain barrier damage was assessed visually using Evans' Blue stain. Quantitative assessment of blood-brain barrier disruption was made by contrast enhancement as measured by CT of the dog brain, and by 99m Tc-pertechnetate uptake by the brain in the rabbit model. No Evans' Blue staining was observed in any study using the canine/CT model. Slight staining was observed in two studies with ioxaglate using the rabbit/pertechnetate model. Statistical analysis of results from the canine/CT model did not detect any damage to the blood-brain barrier with either ioxaglate or saline control studies (P>0.1). However, in the rabbit/pertechnetate model a slight increase in disruption of the blood-brain barrier was observed with ioxaglate compared with control studies, but this was only significant at the 0.1 level. The results suggest that the rabbit/pertechnetate model is a more sensitive measure of blood-brain barrier disruption than the canine/CT model. This study also demonstrates that blood-brain barrier disruption following intracarotid injection of ioxaglate is minimal. (orig.)

  2. Pathways linking regional hyperintensities in the brain and slower gait.

    Science.gov (United States)

    Bolandzadeh, Niousha; Liu-Ambrose, Teresa; Aizenstein, Howard; Harris, Tamara; Launer, Lenore; Yaffe, Kristine; Kritchevsky, Stephen B; Newman, Anne; Rosano, Caterina

    2014-10-01

    Cerebral white matter hyperintensities (WMHs) are involved in the evolution of impaired mobility and executive functions. Executive functions and mobility are also associated. Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, by disrupting circuits responsible for executive functions. Understanding the mechanisms underlying impaired mobility in late life will increase our capacity to develop effective interventions. To identify regional WMHs most related to slower gait and to examine whether these regional WMHs directly impact mobility, or indirectly by executive functions. Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) were assessed. An L1-L2 regularized regression (i.e., Elastic Net model) identified the WMH variables most related to slower gait. Multivariable linear regression models quantified the association between these WMH variables and gait speed. Formal tests of mediation were also conducted. Community-based sample. Two hundred fifty-three adults (mean age: 83years, 58% women, 41% black). Gait speed. In older adults with an average gait speed of 0.91m/sec, total WMH volume, WMHs located in the right anterior thalamic radiation (ATRR) and frontal corpuscallosum (CCF) were most associated with slower gait. There was a >10% slower gait for each standard deviation of WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: -0.11 [p=0.046], -0.15 [p=0.007] and -0.14 [p=0.010], respectively). These associations were substantially and significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF than for ATRR or total WMH (standardized beta in m/sec [p value]: -0.07 [p=0.190], -0.12 [p=0.024] and -0.10 [p=0.049], respectively). Adjustment for 3MS did not change these

  3. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  4. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

    Directory of Open Access Journals (Sweden)

    Lilach Soreq

    2017-01-01

    Full Text Available Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases.

  5. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    Science.gov (United States)

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO Mouse Brain.

    Directory of Open Access Journals (Sweden)

    Ernst-Bernhard Kayser

    Full Text Available Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase, causes Leigh syndrome (LS, a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration.Here we used the Ndufs4(KO mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient "rest" of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native

  7. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  8. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  9. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    Science.gov (United States)

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  10. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-10-01

    Full Text Available Yanping Wang,1,2 Xiaoling Zhang,2 Qiaobing Guan,2 Lihong Wan,2 Yahui Yi,2 Chun-Feng Liu1 1Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 2Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People’s Republic of China Abstract: The pathophysiology of idiopathic trigeminal neuralgia (ITN has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected. Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002. Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. Keywords: trigeminal neuralgia, resting fMRI, brain, chronic pain, local connectivity

  11. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  12. Common DNA methylation alterations in multiple brain regions in autism.

    Science.gov (United States)

    Ladd-Acosta, C; Hansen, K D; Briem, E; Fallin, M D; Kaufmann, W E; Feinberg, A P

    2014-08-01

    Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485,000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

  13. Time series analysis of brain regional volume by MR image

    International Nuclear Information System (INIS)

    Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)

  14. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    Science.gov (United States)

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Normal regional brain iron concentration in restless legs syndrome measured by MRI

    Directory of Open Access Journals (Sweden)

    Susanne Knake

    2009-12-01

    Full Text Available Susanne Knake1, Johannes T Heverhagen2, Katja Menzler1, Boris Keil2, Wolfgang H Oertel1, Karin Stiasny-Kolster11Department of Neurology, Center of Nervous Diseases, 2Department of Radiology, Philipps University, Marburg, GermanyAbstract: Using a T2* gradient echo magnetic resonance imaging (MRI sequence, regional T2 signal intensity (SI values, a surrogate marker for T2 values, were determined in 12 regions of interest (substantia nigra, pallidum, caudate head, thalamus, occipital white matter, and frontal white matter bilaterally and in two reference regions (cerebrospinal fluid and bone in 12 patients suffering from moderate to severe idiopathic restless legs syndrome (RLS; mean age 58.5 ± 8.7 years for 12.1 ± 9.1 years and in 12 healthy control subjects (mean age 56.8 ± 10.6 years. Iron deposits shorten T2 relaxation times on T2-weighted MRI. We used regional T2* SI to estimate regional T2-values. A T2-change ratio was calculated for each region of interest relative to the reference regions. We did not find significant differences in any of the investigated brain regions. In addition, serum measures involved in iron metabolism did not correlate with T2 SI values. We could not replicate earlier findings describing reduced regional brain iron concentrations in patients with RLS. Our results do not support the view of substantially impaired regional brain iron in RLS.Keywords: restless legs syndrome, pathophysiology, iron, MRI, substantia nigra

  16. A Method for Automatic Extracting Intracranial Region in MR Brain Image

    Science.gov (United States)

    Kurokawa, Keiji; Miura, Shin; Nishida, Makoto; Kageyama, Yoichi; Namura, Ikuro

    It is well known that temporal lobe in MR brain image is in use for estimating the grade of Alzheimer-type dementia. It is difficult to use only region of temporal lobe for estimating the grade of Alzheimer-type dementia. From the standpoint for supporting the medical specialists, this paper proposes a data processing approach on the automatic extraction of the intracranial region from the MR brain image. The method is able to eliminate the cranium region with the laplacian histogram method and the brainstem with the feature points which are related to the observations given by a medical specialist. In order to examine the usefulness of the proposed approach, the percentage of the temporal lobe in the intracranial region was calculated. As a result, the percentage of temporal lobe in the intracranial region on the process of the grade was in agreement with the visual sense standards of temporal lobe atrophy given by the medical specialist. It became clear that intracranial region extracted by the proposed method was good for estimating the grade of Alzheimer-type dementia.

  17. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S.; Harada, M.; Nishitani, H. [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K. [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  18. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  19. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  20. Plasma diffusion in systems with disrupted magnetic surfaces

    International Nuclear Information System (INIS)

    Morozov, D.K.; Pogutse, O.P.

    1982-01-01

    Plasma diffusion is analyzed in the case in which the system of magnetic surfaces is disrupted by a stochastic perturbation of the magnetic field. The diffusion coefficient is related to the statistical properties of the field. The statistical characteristics of the field are found when the magnetic surfaces near the separatrix are disrupted by an external perturbation. The diffusion coefficient is evaluated in the region in which the magnetic surfaces are disrupted. In this region the diffusion coefficient is of the Bohm form

  1. Aberrant brain functional connectome in patients with obstructive sleep apnea.

    Science.gov (United States)

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping

    2018-01-01

    Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These

  2. Anxiety type modulates immediate versus delayed engagement of attention-related brain regions.

    Science.gov (United States)

    Spielberg, Jeffrey M; De Leon, Angeline A; Bredemeier, Keith; Heller, Wendy; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-09-01

    Background Habituation of the fear response, critical for the treatment of anxiety, is inconsistently observed during exposure to threatening stimuli. One potential explanation for this inconsistency is differential attentional engagement with negatively valenced stimuli as a function of anxiety type. Methods The present study tested this hypothesis by examining patterns of neural habituation associated with anxious arousal, characterized by panic symptoms and immediate engagement with negatively valenced stimuli, versus anxious apprehension, characterized by engagement in worry to distract from negatively valenced stimuli. Results As predicted, the two anxiety types evidenced distinct patterns of attentional engagement. Anxious arousal was associated with immediate activation in attention-related brain regions that habituated over time, whereas anxious apprehension was associated with delayed activation in attention-related brain regions that occurred only after habituation in a worry-related brain region. Conclusions Results further elucidate mechanisms involved in attention to negatively valenced stimuli and indicate that anxiety is a heterogeneous construct with regard to attention to such stimuli.

  3. Molecular and Functional Properties of Regional Astrocytes in the Adult Brain.

    Science.gov (United States)

    Morel, Lydie; Chiang, Ming Sum R; Higashimori, Haruki; Shoneye, Temitope; Iyer, Lakshmanan K; Yelick, Julia; Tai, Albert; Yang, Yongjie

    2017-09-06

    The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1 -translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors ( emx2 , lhx2 , and hopx ), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity. SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions. Copyright © 2017 the authors 0270-6474/17/378706-12$15.00/0.

  4. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure.

    Science.gov (United States)

    Meintjes, E M; Narr, K L; van der Kouwe, A J W; Molteno, C D; Pirnia, T; Gutman, B; Woods, R P; Thompson, P M; Jacobson, J L; Jacobson, S W

    2014-01-01

    Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD). Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM) methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6-11.0 years) and controls (n = 16, 9.5-11.0 years). Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1) the thalamus, midbrain, and ventromedial frontal lobe, (2) the superior cerebellum and inferior occipital lobe, (3) the dorsolateral frontal cortex, and (4) the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA) regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  5. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    E.M. Meintjes

    2014-01-01

    Full Text Available Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD. Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6–11.0 years and controls (n = 16, 9.5–11.0 years. Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1 the thalamus, midbrain, and ventromedial frontal lobe, (2 the superior cerebellum and inferior occipital lobe, (3 the dorsolateral frontal cortex, and (4 the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  6. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

    OpenAIRE

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R.; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-01

    Summary Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in?age from 16 to 106 years. We show that astrocyte-?and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional express...

  7. Brain regional uptake of radioactive Sc, Mn, Zn, Se, Rb and Zr tracers into normal mice during aging

    International Nuclear Information System (INIS)

    Amano, R.; Enomoto, S.

    2001-01-01

    Radioactive multitracer technique was applied to study the brain regional uptake of trace elements by the normal mice during aging. The brain regional radioactivities of 46 Sc, 54 Mn, 65 Zn, 75 Se, 83 Rb and 88 Zr were measured 48 hours after intraperitoneal injection of a solution in normal mice aged 6 to 52 weeks to evaluate the brain regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, and pons and medulla) uptakes. The radioactive distributions of 46 Sc, 54 Mn and 88 Zr tracers were variable and region-specific in the brain, while those of 65 Zn, 75 Se and 83 Rb tracers were comparable among all regions of interest. The brain regional uptakes of all tracers slightly increased with age from 10 to 28 weeks, and then remained constant during aging after 28 weeks. These uptake variations may be involved in the functional degenerative process of the blood-brain barrier during aging. (author)

  8. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus.

    Science.gov (United States)

    Connor, David A; Kutlu, Munir G; Gould, Thomas J

    2017-07-01

    Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.

  9. Delineation of separate brain regions used for scientific versus engineering modes of thinking

    Science.gov (United States)

    Patterson, Clair C.

    1994-08-01

    Powerful, latent abilities for extreme sophistication in abstract rationalization as potential biological adaptive behavioral responses were installed entirely through accident and inadvertence by biological evolution in the Homo sapiens sapiens species of brain. These potentials were never used, either in precursor species as factors in evolutionary increase in hominid brain mass, nor in less sophisticated forms within social environments characterized by Hss tribal brain population densities. Those latent abilities for unnatural biological adaptive behavior were forced to become manifest in various ways by growths in sophistication of communication interactions engendered by large growths in brain population densities brought on by developments in agriculture at the onset of the Holocene. It is proposed that differences probably exist between regions of the Hss brain involved in utilitarian, engineering types of problem conceptualization-solving versus regions of the brain involved in nonutilitarian, artistic-scientific types of problem conceptualization-solving. Populations isolated on separate continents from diffusive contact and influence on cultural developments, and selected for comparison of developments during equivalent stages of technological and social sophistication in matching 4000 year periods, show, at the ends of those periods, marked differences in aesthetic attributes expressed in cosmogonies, music, and writing (nonutilitarian thinking related to science and art). On the other hand the two cultures show virtually identical developments in three major stages of metallurgical technologies (utilitarian thinking related to engineering). Such archaeological data suggest that utilitarian modes of thought may utilize combinations of neuronal circuits in brain regions that are conserved among tribal populations territorially separated from each other for tens of thousands of years. Such conservation may not be true for neuronal circuits involved in

  10. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    Directory of Open Access Journals (Sweden)

    Timothy C. Durazzo

    2015-07-01

    Full Text Available Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal on cerebral perfusion (i.e., blood flow. Predominately middle-aged male (47 ± 11 years of age smokers (n = 34 and non-smokers (n = 27 were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  11. Motor Preparation Disrupts Proactive Control in the Stop Signal Task

    Directory of Open Access Journals (Sweden)

    Wuyi Wang

    2018-05-01

    Full Text Available In a study of the stop signal task (SST we employed Bayesian modeling to compute the estimated likelihood of stop signal or P(Stop trial by trial and identified regional processes of conflict anticipation and response slowing. A higher P(Stop is associated with prolonged go trial reaction time (goRT—a form of sequential effect—and reflects proactive control of motor response. However, some individuals do not demonstrate a sequential effect despite similar go and stop success (SS rates. We posited that motor preparation may disrupt proactive control more in certain individuals than others. Specifically, the time interval between trial and go signal onset—the fore-period (FP—varies across trials and a longer FP is associated with a higher level of motor preparation and shorter goRT. Greater motor preparatory activities may disrupt proactive control. To test this hypothesis, we compared brain activations and Granger causal connectivities of 81 adults who demonstrated a sequential effect (SEQ and 35 who did not (nSEQ. SEQ and nSEQ did not differ in regional activations to conflict anticipation, motor preparation, goRT slowing or goRT speeding. In contrast, SEQ and nSEQ demonstrated different patterns of Granger causal connectivities. P(Stop and FP activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop activities unidirectionally in nSEQ, and FP activities Granger caused goRT speeding activities in nSEQ but not SEQ. These findings support the hypothesis that motor preparation disrupts proactive control in nSEQ and provide direct neural evidence for interactive go and stop processes.

  12. Brain regions for sound processing and song release in a small grasshopper.

    Science.gov (United States)

    Balvantray Bhavsar, Mit; Stumpner, Andreas; Heinrich, Ralf

    2017-05-01

    We investigated brain regions - mostly neuropils - that process auditory information relevant for the initiation of response songs of female grasshoppers Chorthippus biguttulus during bidirectional intraspecific acoustic communication. Male-female acoustic duets in the species Ch. biguttulus require the perception of sounds, their recognition as a species- and gender-specific signal and the initiation of commands that activate thoracic pattern generating circuits to drive the sound-producing stridulatory movements of the hind legs. To study sensory-to-motor processing during acoustic communication we used multielectrodes that allowed simultaneous recordings of acoustically stimulated electrical activity from several ascending auditory interneurons or local brain neurons and subsequent electrical stimulation of the recording site. Auditory activity was detected in the lateral protocerebrum (where most of the described ascending auditory interneurons terminate), in the superior medial protocerebrum and in the central complex, that has previously been implicated in the control of sound production. Neural responses to behaviorally attractive sound stimuli showed no or only poor correlation with behavioral responses. Current injections into the lateral protocerebrum, the central complex and the deuto-/tritocerebrum (close to the cerebro-cervical fascicles), but not into the superior medial protocerebrum, elicited species-typical stridulation with high success rate. Latencies and numbers of phrases produced by electrical stimulation were different between these brain regions. Our results indicate three brain regions (likely neuropils) where auditory activity can be detected with two of these regions being potentially involved in song initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    International Nuclear Information System (INIS)

    Filas, Benjamen A; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V; Taber, Larry A; Beebe, David C

    2012-01-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis. (paper)

  14. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune

    2013-03-01

    The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p  0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. Copyright © 2012 SETAC.

  15. Disruption of structural covariance networks for language in autism is modulated by verbal ability.

    Science.gov (United States)

    Sharda, Megha; Khundrakpam, Budhachandra S; Evans, Alan C; Singh, Nandini C

    2016-03-01

    The presence of widespread speech and language deficits is a core feature of autism spectrum disorders (ASD). These impairments have often been attributed to altered connections between brain regions. Recent developments in anatomical correlation-based approaches to map structural covariance offer an effective way of studying such connections in vivo. In this study, we employed such a structural covariance network (SCN)-based approach to investigate the integrity of anatomical networks in fronto-temporal brain regions of twenty children with ASD compared to an age and gender-matched control group of twenty-two children. Our findings reflected large-scale disruption of inter and intrahemispheric covariance in left frontal SCNs in the ASD group compared to controls, but no differences in right fronto-temporal SCNs. Interhemispheric covariance in left-seeded networks was further found to be modulated by verbal ability of the participants irrespective of autism diagnosis, suggesting that language function might be related to the strength of interhemispheric structural covariance between frontal regions. Additionally, regional cortical thickening was observed in right frontal and left posterior regions, which was predicted by decreasing symptom severity and increasing verbal ability in ASD. These findings unify reports of regional differences in cortical morphology in ASD. They also suggest that reduced left hemisphere asymmetry and increased frontal growth may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.

  16. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H.

    1990-01-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of [ 3 H]-2-deoxy-D-glucose and [ 14 C]iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work

  17. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    Science.gov (United States)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  18. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    Science.gov (United States)

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the

  19. The brain's default network: origins and implications for the study of psychosis.

    Science.gov (United States)

    Buckner, Randy L

    2013-09-01

    The brain's default network is a set of regions that is spontaneously active during passive moments. The network is also active during directed tasks that require participants to remember past events or imagine upcoming events. One hypothesis is that the network facilitates construction of mental models (simulations) that can be used adaptively in many contexts. Extensive research has considered whether disruption of the default network may contribute to disease. While an intriguing possibility, a specific challenge to this notion is the fact that it is difficult to accurately measure the default network in patients where confounds of head motion and compliance are prominent. Nonetheless, some intriguing recent findings suggest that dysfunctional interactions between front-oparietal control systems and the default network contribute to psychosis. Psychosis may be a network disturbance that manifests as disordered thought partly because it disrupts the fragile balance between the default network and competing brain systems.

  20. Symbolic joint entropy reveals the coupling of various brain regions

    Science.gov (United States)

    Ma, Xiaofei; Huang, Xiaolin; Du, Sidan; Liu, Hongxing; Ning, Xinbao

    2018-01-01

    The convergence and divergence of oscillatory behavior of different brain regions are very important for the procedure of information processing. Measurements of coupling or correlation are very useful to study the difference of brain activities. In this study, EEG signals were collected from ten subjects under two conditions, i.e. eyes closed state and idle with eyes open. We propose a nonlinear algorithm, symbolic joint entropy, to compare the coupling strength among the frontal, temporal, parietal and occipital lobes and between two different states. Instead of decomposing the EEG into different frequency bands (theta, alpha, beta, gamma etc.), the novel algorithm is to investigate the coupling from the entire spectrum of brain wave activities above 4Hz. The coupling coefficients in two states with different time delay steps are compared and the group statistics are presented as well. We find that the coupling coefficient of eyes open state with delay consistently lower than that of eyes close state across the group except for one subject, whereas the results without delay are not consistent. The differences between two brain states with non-zero delay can reveal the intrinsic inter-region coupling better. We also use the well-known Hénon map data to validate the algorithm proposed in this paper. The result shows that the method is robust and has a great potential for other physiologic time series.

  1. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  2. Regional brain activation associated with addiction of computer games in adolescents

    International Nuclear Information System (INIS)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D.

    2001-01-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents

  3. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-09-01

    Full Text Available Abundant clinical, epidemiological, imaging, genetic, molecular, and pathophysiological data together indicate that there occur an unusual inflammatory reaction and a disruption of the innate-immune signaling system in Alzheimer’s disease (AD brain. Despite many years of intense study, the origin and molecular mechanics of these AD-relevant pathogenic signals are still not well understood. Here, we provide evidence that an intensely pro-inflammatory bacterial lipopolysaccharide (LPS, part of a complex mixture of pro-inflammatory neurotoxins arising from abundant Gram-negative bacilli of the human gastrointestinal (GI tract, are abundant in AD-affected brain neocortex and hippocampus. For the first time, we provide evidence that LPS immunohistochemical signals appear to aggregate in clumps in the parenchyma in control brains, and in AD, about 75% of anti-LPS signals were clustered around the periphery of DAPI-stained nuclei. As LPS is an abundant secretory product of Gram-negative bacilli resident in the human GI-tract, these observations suggest (i that a major source of pro-inflammatory signals in AD brain may originate from internally derived noxious exudates of the GI-tract microbiome; (ii that due to aging, vascular deficits or degenerative disease these neurotoxic molecules may “leak” into the systemic circulation, cerebral vasculature, and on into the brain; and (iii that this internal source of microbiome-derived neurotoxins may play a particularly strong role in shaping the human immune system and contributing to neural degeneration, particularly in the aging CNS. This “Perspectives” paper will further highlight some very recent developments that implicate GI-tract microbiome-derived LPS as an important contributor to inflammatory-neurodegeneration in the AD brain.

  4. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  5. Molecular regionalization in the compact brain of the meiofaunal annelid Dinophilus gyrociliatus (Dinophilidae

    Directory of Open Access Journals (Sweden)

    Alexandra Kerbl

    2016-08-01

    Full Text Available Abstract Background Annelida is a morphologically diverse animal group that exhibits a remarkable variety in nervous system architecture (e.g., number and location of longitudinal cords, architecture of the brain. Despite this heterogeneity of neural arrangements, the molecular profiles related to central nervous system patterning seem to be conserved even between distantly related annelids. In particular, comparative molecular studies on brain and anterior neural region patterning genes have focused so far mainly on indirect-developing macrofaunal taxa. Therefore, analyses on microscopic, direct-developing annelids are important to attain a general picture of the evolutionary events underlying the vast diversity of annelid neuroanatomy. Results We have analyzed the expression domains of 11 evolutionarily conserved genes involved in brain and anterior neural patterning in adult females of the direct-developing meiofaunal annelid Dinophilus gyrociliatus. The small, compact brain shows expression of dimmed, foxg, goosecoid, homeobrain, nk2.1, orthodenticle, orthopedia, pax6, six3/6 and synaptotagmin-1. Although most of the studied markers localize to specific brain areas, the genes six3/6 and synaptotagmin-1 are expressed in nearly all perikarya of the brain. All genes except for goosecoid, pax6 and nk2.2 overlap in the anterior brain region, while the respective expression domains are more separated in the posterior brain. Conclusions Our findings reveal that the expression patterns of the genes foxg, orthodenticle, orthopedia and six3/6 correlate with those described in Platynereis dumerilii larvae, and homeobrain, nk2.1, orthodenticle and synaptotagmin-1 resemble the pattern of late larvae of Capitella teleta. Although data on other annelids are limited, molecular similarities between adult Dinophilus and larval Platynereis and Capitella suggest an overall conservation of molecular mechanisms patterning the anterior neural regions, independent

  6. Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles.

    Science.gov (United States)

    Meairs, Stephen

    2015-08-31

    Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood-brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer's disease is presented.

  7. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  8. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Konrad, Kerstin; Eickhoff, Simon B

    2010-06-01

    In recent years, a change in perspective in etiological models of attention deficit hyperactivity disorder (ADHD) has occurred in concordance with emerging concepts in other neuropsychiatric disorders such as schizophrenia and autism. These models shift the focus of the assumed pathology from regional brain abnormalities to dysfunction in distributed network organization. In the current contribution, we report findings from functional connectivity studies during resting and task states, as well as from studies on structural connectivity using diffusion tensor imaging, in subjects with ADHD. Although major methodological limitations in analyzing connectivity measures derived from noninvasive in vivo neuroimaging still exist, there is convergent evidence for white matter pathology and disrupted anatomical connectivity in ADHD. In addition, dysfunctional connectivity during rest and during cognitive tasks has been demonstrated. However, the causality between disturbed white matter architecture and cortical dysfunction remains to be evaluated. Both genetic and environmental factors might contribute to disruptions in interactions between different brain regions. Stimulant medication not only modulates regionally specific activation strength but also normalizes dysfunctional connectivity, pointing to a predominant network dysfunction in ADHD. By combining a longitudinal approach with a systems perspective in ADHD in the future, it might be possible to identify at which stage during development disruptions in neural networks emerge and to delineate possible new endophenotypes of ADHD. (c) 2010 Wiley-Liss, Inc.

  9. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    Science.gov (United States)

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen

    2015-01-01

    associated with blood-borne horseradish peroxidase leakage indicating blood-brain barrier breakdown. The cerebrospinal fluid aquaporin-4-immunoglobulin G therefore distributes widely in brain to initiate astrocytopathy and blood-brain barrier breakdown....... was evaluated. A distinct distribution pattern of aquaporin-4-immunoglobulin G deposition was observed in the subarachnoid and subpial spaces where vessels penetrate the brain parenchyma, via a paravascular route with intraparenchymal perivascular deposition. Perivascular astrocyte-destructive lesions were...

  11. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    Science.gov (United States)

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Comparison of regional gene expression differences in the brains of the domestic dog and human

    Directory of Open Access Journals (Sweden)

    Kennerly Erin

    2004-11-01

    Full Text Available Abstract Comparison of the expression profiles of 2,721 genes in the cerebellum, cortex and pituitary gland of three American Staffordshire terriers, one beagle and one fox hound revealed regional expression differences in the brain but failed to reveal marked differences among breeds, or even individual dogs. Approximately 85 per cent (42 of 49 orthologue comparisons of the regional differences in the dog are similar to those that differentiate the analogous human brain regions. A smaller percentage of human differences were replicated in the dog, particularly in the cortex, which may generally be evolving more rapidly than other brain regions in mammals. This study lays the foundation for detailed analysis of the population structure of transcriptional variation as it relates to cognitive and neurological phenotypes in the domestic dog.

  13. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  14. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    Science.gov (United States)

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Neurofilament phosphorylation and disruption: A possible mechanism of chronic aluminium toxicity in Wistar rats

    International Nuclear Information System (INIS)

    Kaur, Amarpreet; Joshi, Kusum; Minz, Ranjana Walker; Gill, Kiran Dip

    2006-01-01

    The present study was designed to investigate the possible effects of chronic aluminium exposure on neurofilament phosphorylation and its subsequent disruption in various regions of the rat brain. An intra-gastric dose of aluminium (10 mg/kg bw for 12 weeks) resulted in a marked enhancement of Ca 2+ /CaM dependent protein kinase activity as compared to cAMP dependent protein kinase. The levels of phosphoprotein phosphatase were found to be significantly depleted only in the cerebral cortex. After in vitro phosphorylation using [ 32 γ-P] ATP, various proteins were resolved on one-dimensional 8% SDS-PAGE, stained with Coomassie Blue and autoradiographed. The amount of 32 P-incorporated was quantified using ADOPE PHOTOSHOP (7.0). The 200 kDa neurofilament protein was identified using immunoblotting. Finally, the extent of phosphorylation induced neurofilamentous damage was assessed using immunocytochemical studies. The cytoskeletal proteins were found to be aggregated and disrupted in all the three neuronal regions following 12 weeks of aluminium treatment. This study lends further support to the possible role of aluminium as a potent neurotoxic agent and in the etiopathogenisis of various neurodegenerative diseases

  16. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise

    Directory of Open Access Journals (Sweden)

    Hee-Tae Roh

    2017-06-01

    Conclusion: Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.

  17. Individual differences in personality traits reflect structural variance in specific brain regions.

    Science.gov (United States)

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  18. Blood–brain barrier and laser technology for drug brain delivery

    Directory of Open Access Journals (Sweden)

    Oxana V. Semyachkina-Glushkovskaya

    2017-09-01

    Photodynamic therapy (PDT is usual clinical method of surgical navigation for the resection of brain tumor and anti-cancer therapy. Nowadays, the application of PDT is considered as a potential promising tool for brain drug delivery via opening of BBB. Here, we show the first successful experimental results in this field discussing the adventures and disadvantages of PDT-related BBB disruption as well as alternatives to overcome these limitations and possible mechanisms with new pathways for brain clearance via glymphatic and lymphatic systems.

  19. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A prospective study of corpus callosum regional volumes and neurocognitive outcomes following cranial radiation for pediatric brain tumors.

    Science.gov (United States)

    Rashid, Arif; Ram, Ashwin N; Kates, Wendy R; Redmond, Kristin J; Wharam, Moody; Mark Mahone, E; Horska, Alena; Terezakis, Stephanie

    2017-06-01

    Cranial radiation therapy (CRT) may disrupt the corpus callosum (CC), which plays an important role in basic motor and cognitive functions. The aim of this prospective longitudinal study was to assess changes in CC mid-sagittal areas, CC volumes, and performance on neuropsychological (NP) tests related to the CC in children following CRT. Twelve pediatric patients were treated with CRT for primary brain malignancies. Thirteen age-matched healthy volunteers served as controls. Brain MRIs and NP assessment emphasizing motor dexterity, processing speed, visuomotor integration, and working memory (visual and verbal) were performed at baseline and at 6, 15, and 27 months following completion of CRT. Linear mixed effects (LME) analyses were used to evaluate patient NP performance and changes in regional CC volumes (genu, anterior body, mid-body, posterior body, and splenium) and mid-sagittal areas over time and with radiation doses, correcting for age at CRT start. The mean age at CRT was 9.41 (range 1.2-15.7) years. The median prescription dose was 54 (range 18-59.4) Gy. LME analysis revealed a significant decrease in overall CC volumes over time (p memory (both p memory. Further prospective study of larger cohorts of patients is needed to establish the relationship between CRT dose, neuroanatomical, and functional changes in the CC.

  1. Protection of the blood-brain barrier by hypercapnia during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Mayhan, W.G.; Heistad, D.D.

    1986-01-01

    The purpose of this study was to examine effects of hypercapnia on susceptibility of the blood-brain barrier to disruption during acute hypertension. Two methods were used to test the hypothesis that cerebral vasodilation during hypercapnia increases disruption of the blood-brain barrier. First, permeability of the blood-brain barrier was measured in anesthetized cats with 125 I-labeled serum albumin. Severe hypertension markedly increased permeability of the blood-brain barrier during normocapnia, but not during hypercapnia. The protective effect of hypercapnia was not dependent on sympathetic nerves. Second, in anesthetized rats, permeability of the barrier was quantitated by clearance of fluorescent dextran. Disruption of the blood-brain barrier during hypertension was decreased by hypercapnia. Because disruption of the blood-brain barrier occurred primarily in pial venules, the authors also measured pial venular diameter and pressure. Acute hypertension increased pial venular pressure and diameter in normocapnic rats. Hypercapnia alone increased pial venular pressure and pial venular diameter, and acute hypertension during hypercapnia further increased venular pressure. The magnitude of increase in pial venular pressure during acute hypertension was significantly less in hypercapnic than in normocapnic rats. They conclude that hypercapnia protects the blood-brain barrier. Possible mechanisms of this effect include attenuation of the incremental increase in pial venular pressure by hypercapnia or a direct effect on the blood-brain barrier not related to venous pressure

  2. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  3. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Expression of ICAM-1 in blood-spinal cord barrier disruption and CNS radiation injury

    International Nuclear Information System (INIS)

    Nordal, R.A.; Li, Y.-Q.; Wong, C.S.

    2003-01-01

    Full text: Intercellular adhesion molecule-1 (ICAM-1) expression is increased following a number of CNS insults in association with blood-brain barrier (BBB) disruption. While disruption of ICAM-1 expression reduces injury in diverse pathologies ranging from trauma to ischemia, its role in CNS radiation injury is not understood. Adult rats received 0 to 22 Gy to a 1.6 cm length of the cervical spinal cord. Expression of ICAM-1 was studied using immunohistochemistry (IHC). Blood-spinal cord barrier (BSCB) disruption was detected by IHC for endogenous albumin and the BBB protein endothelial barrier antigen (EBA). To assess the role of ICAM-1 in the mechanisms of BSCB disruption, animals received IV injections of an ICAM-1-specific blocking antibody (IA-29) or vehicle control, and BSCB disruption was examined by albumin IHC. ICAM-1, albumin, and EBA staining areas were quantified by digital image analysis. ICAM-1 expression localized predominantly to endothelium in non-irradiated spinal cord sections. Some expression was also identified in astrocytes. ICAM-1 expression was increased in white matter, but not in grey matter following radiation. After 22 Gy, ICAM-1 protein increased at 24 hours, and increased again from baseline at 17-20 weeks. Induction was seen in both the total immunostained area, and in the number of ICAM-1 positive glia. A dose response was observed in ICAM-1 expression 20 weeks after 16-20 Gy. BSCB disruption also increased with doses 16-20 Gy at 20 weeks. Blocking ICAM-1 with IA-29 significantly decreased BSCB leakage of albumin at 24 hours (p=0.03). Regions with both increased ICAM-1 expression and BSCB disruption were identified in white matter. Thus the dose response and spatial distribution of increased ICAM-1 expression parallels that for BSCB disruption. These results are consistent with a role for increased ICAM-1 expression in radiation-induced BSCB disruption. The effect of blocking ICAM-1 with a neutralizing antibody suggests its

  5. MR-guided focused ultrasound: a potentially disruptive technology.

    Science.gov (United States)

    Bradley, William G

    2009-07-01

    A disruptive technology is a technological innovation that overturns the existing dominant technologies in a market. Magnetic resonance (MR)-guided focused ultrasound (MRgFUS) is a noninvasive procedure based on the combination of real-time MR anatomic guidance, MR thermometry, and high-intensity focused ultrasound. Several hundred transducer elements become convergent at a point under MR guidance, leading to heating and coagulation necrosis. Outside the focal point, there is no significant heating. There is no need to break the skin for procedures in the body or to perform a craniotomy for procedures in the brain. This lack of invasiveness is what makes MRgFUS so disruptive compared with surgery. At present, MRgFUS has been used for the ablation of uterine fibroids, breast tumors, painful bony metastases, and liver tumors. In the brain, it has been used for the ablation of glioblastomas and for functional neurosurgery. Phantom and animal studies suggest future applications for prostate cancer and acute stroke treatment.

  6. Total regional and global number of synapses in the human brain neocortex

    NARCIS (Netherlands)

    Tang, Y.; Nyengaard, J.R.; Groot, D.M.G. de; Jorgen, H.; Gundersen, G.

    2001-01-01

    An estimator of the total number of synapses in neocortex of human autopsy brains based on unbiased stereological principles is described. Each randomly chosen cerebral hemisphere was stratified into the four major neocortical regions. Uniform sampling with a varying sampling fraction in each region

  7. Statistical study of TCV disruptivity and H-mode accessibility

    International Nuclear Information System (INIS)

    Martin, Y.; Deschenaux, C.; Lister, J.B.; Pochelon, A.

    1997-01-01

    Optimising tokamak operation consists of finding a path, in a multidimensional parameter space, which leads to the desired plasma characteristics and avoids hazards regions. Typically the desirable regions are the domain where an L-mode to H-mode transition can occur, and then, in the H-mode, where ELMs and the required high density< y can be maintained. The regions to avoid are those with a high rate of disruptivity. On TCV, learning the safe and successful paths is achieved empirically. This will no longer be possible in a machine like ITER, since only a small percentage of disrupted discharges will be tolerable. An a priori knowledge of the hazardous regions in ITER is therefore mandatory. This paper presents the results of a statistical analysis of the occurrence of disruptions in TCV. (author) 4 figs

  8. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  9. Power loading on the first wall during disruptions in TFTR

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.; Wilfrid, E.

    1992-01-01

    Heating of the first wall of TFTR due to disruptions is investigated experimentally using an extensive array of thermocouples. By comparing results from discharges with and without disruptions, we extract effects due to the disruption alone. Disruptions preferentially heat the same areas which are heated during discharges without disruptions. Hot areas are inward protrusions or regions unshielded by neighboring areas. Peaking factors in the toroidal direction, defined as peak temperature divided by average toroidal temperature, as a function of poloidal angle, are calculated. For nondisruptive discharges, the peaking factor varies between 2 and 4. For the disruptive portion of a discharge only, the peaking factor near the midplane, where most of the energy is deposited, ranges from 3 to 5. Further away from the midplane, the peaking factor can reach 28, although the heat load is less in that region. (orig.)

  10. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  11. Disrupted Topological Organization in Whole-Brain Functional Networks of Heroin-Dependent Individuals: A Resting-State fMRI Study

    OpenAIRE

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subj...

  12. Towards Developmental Connectomics of the Human Brain

    Directory of Open Access Journals (Sweden)

    Miao eCao

    2016-03-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

  13. Toward Developmental Connectomics of the Human Brain.

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  14. Toward Developmental Connectomics of the Human Brain

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  15. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    Directory of Open Access Journals (Sweden)

    Liv de Vries

    2017-09-01

    Full Text Available Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX, lateral complex (LX and anterior optic tubercles (AOTU, it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior

  16. Effect of CDP-choline on the biosynthesis of phospholipids in brain regions during hypoxic treatment

    International Nuclear Information System (INIS)

    Alberghina, M.; Viola, M.; Serra, I.; Mistretta, A.; Giuffrida, A.M.

    1981-01-01

    Acute administration of CDP-choline (i.p. 100 mg/Kg b.w.), 10 min before the intraventricular injection of labeled precursors, [2-3H] glycerol and [1-14C]-palmitate, was able to correct the impairment caused by hypoxic treatment of lipid metabolism in some brain regions, ie, cerebral hemispheres, cerebellum, and brainstem. After CDP-choline treatment, an increase of the specific radioactivity of total lipids and of phospholipids was observed in mitochondria purified from the three above-mentioned brain regions of the hypoxic animals, while no effect on the other subcellular fractions was found. CDP-Choline had a stimulating effect particularly on the incorporation of both precursors into mitochondrial PC, PE, and polyglycerophosphatides isolated form the three brain regions examined. The results obtained show that the action of CDP-choline in restoring lipid metabolism was more pronounced in brain mitochondria, which, among subcellular fractions, were the most affected by the hypoxic treatment

  17. MHD instabilities leading to disruption in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Takechi, M.; Fujita, T.; Ishii, Y.; Ozeki, T.; Suzuki, T.; Isayama, A.

    2005-01-01

    High performance reversed shear discharges with strong internal transport barrier (ITB) and flat pressure profile in the plasma core region disrupt frequently even with low beta. We analyzed MHD instabilities leading to low beta disruption with measuring fluctuations and current profile with MSE measurement. We mainly observed two type of disruptions. One is the disruption without precursor at q surf ∼integer. The other is the disruption with n=1 precursor of γ>10 ms. The poloidal mode number of the n=1 mode is equal to outermost integer of q. The n=1 mode exist from peripheral region to ITB layer or peripheral region and ITB and the phase is 180 degree different between them. To explain these characteristics of disruption, we introduce the simple model such as, disruption occurs when the both MHD instabilities at plasma surface and at safety factor being equal to surface mode are unstable. This simple model can explain almost all observed disruption by two process. One is the surface mode triggered disruption, which occurs when q surf change, corresponding q surface at ITB layer change discretely. The other is the internal mode triggered disruption, which occurs when corresponding q surface become unstable gradually. (author)

  18. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to 'disrupted cortical connectivity' to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such

  19. White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging are uniquely sensitive to the white matter (WM damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases. We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD. In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

  20. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer.

    Science.gov (United States)

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.

  1. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study.

    Science.gov (United States)

    Resnick, S M; Espeland, M A; Jaramillo, S A; Hirsch, C; Stefanick, M L; Murray, A M; Ockene, J; Davatzikos, C

    2009-01-13

    To determine whether menopausal hormone therapy (HT) affects regional brain volumes, including hippocampal and frontal regions. Brain MRI scans were obtained in a subset of 1,403 women aged 71-89 years who participated in the Women's Health Initiative Memory Study (WHIMS). WHIMS was an ancillary study to the Women's Health Initiative, which consisted of two randomized, placebo-controlled trials: 0.625 mg conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE + MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial follow-up intervals were 4.0 years for CEE + MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal, and frontal lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors, were the main outcome variables. Compared with placebo, covariate-adjusted mean frontal lobe volume was 2.37 cm(3) lower among women assigned to HT (p = 0.004), mean hippocampal volume was slightly (0.10 cm(3)) lower (p = 0.05), and differences in total brain volume approached significance (p = 0.07). Results were similar for CEE + MPA and CEE-Alone. HT-associated reductions in hippocampal volumes were greatest in women with the lowest baseline Modified Mini-Mental State Examination scores (scores equine estrogens with or without MPA are associated with greater brain atrophy among women aged 65 years and older; however, the adverse effects are most evident in women experiencing cognitive deficits before initiating hormone therapy.

  2. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  3. Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles

    Directory of Open Access Journals (Sweden)

    Stephen Meairs

    2015-08-01

    Full Text Available Medical treatment options for central nervous system (CNS diseases are limited due to the inability of most therapeutic agents to penetrate the blood–brain barrier (BBB. Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer’s disease is presented.

  4. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  5. Disruption of Brain-Heart Coupling in Sepsis

    NARCIS (Netherlands)

    Admiraal, Marjolein M.; Gilmore, Emily J.; Van Putten, Michel J.A.M.; Zaveri, Hitten P.; Hirsch, Lawrence J.; Gaspard, Nicolas

    2017-01-01

    Purpose: To investigate heart rate and EEG variability and their coupling in patients with sepsis and determine their relationship to sepsis severity and severity of sepsis-Associated brain dysfunction. Methods: Fifty-Two patients with sepsis were prospectively identified, categorized as comatose (N

  6. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    Science.gov (United States)

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  7. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    Science.gov (United States)

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM.

  8. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  9. Combining region- and network-level brain-behavior relationships in a structural equation model.

    Science.gov (United States)

    Bolt, Taylor; Prince, Emily B; Nomi, Jason S; Messinger, Daniel; Llabre, Maria M; Uddin, Lucina Q

    2018-01-15

    Brain-behavior associations in fMRI studies are typically restricted to a single level of analysis: either a circumscribed brain region-of-interest (ROI) or a larger network of brain regions. However, this common practice may not always account for the interdependencies among ROIs of the same network or potentially unique information at the ROI-level, respectively. To account for both sources of information, we combined measurement and structural components of structural equation modeling (SEM) approaches to empirically derive networks from ROI activity, and to assess the association of both individual ROIs and their respective whole-brain activation networks with task performance using three large task-fMRI datasets and two separate brain parcellation schemes. The results for working memory and relational tasks revealed that well-known ROI-performance associations are either non-significant or reversed when accounting for the ROI's common association with its corresponding network, and that the network as a whole is instead robustly associated with task performance. The results for the arithmetic task revealed that in certain cases, an ROI can be robustly associated with task performance, even when accounting for its associated network. The SEM framework described in this study provides researchers additional flexibility in testing brain-behavior relationships, as well as a principled way to combine ROI- and network-levels of analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study.

    Science.gov (United States)

    Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong

    2017-02-15

    Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.

  12. [Tourette syndrome and reading disorder in a boy with left parietofrontal tract disruption].

    Science.gov (United States)

    Martín Fernández-Mayoralas, D; Fernández-Jaén, A; Gómez Herrera, J J; Jiménez de la Peña, M

    2014-01-01

    We present the case of a nine-year-old boy with Tourette syndrome and reading disorder with a history of a severe infectious process in the late neonatal period. Brain MRI showed a left parietal malacotic cavity and diffusion tensor imaging and tractography showed a striking disruption of the white matter bundle that joins the left parietal region with the ipsilateral frontal region with involvement of the left superior longitudinal fasciculus and of the left arcuate fasciculus. Although Tourette syndrome and reading disorder are fundamentally hereditary neuropsychiatric disorders, they can also occur secondary to cerebral alterations like those existing in this boy. The introduction of modern neuroimaging techniques in patients with neuropsychiatric disorders (or the risk of developing them) can be very useful in the diagnosis and prognosis in the future. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  13. Mutualism Disruption Threatens Global Plant Biodiversity: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Clare E Aslan

    Full Text Available As global environmental change accelerates, biodiversity losses can disrupt interspecific interactions. Extinctions of mutualist partners can create "widow" species, which may face reduced ecological fitness. Hypothetically, such mutualism disruptions could have cascading effects on biodiversity by causing additional species coextinctions. However, the scope of this problem - the magnitude of biodiversity that may lose mutualist partners and the consequences of these losses - remains unknown.We conducted a systematic review and synthesis of data from a broad range of sources to estimate the threat posed by vertebrate extinctions to the global biodiversity of vertebrate-dispersed and -pollinated plants. Though enormous research gaps persist, our analysis identified Africa, Asia, the Caribbean, and global oceanic islands as geographic regions at particular risk of disruption of these mutualisms; within these regions, percentages of plant species likely affected range from 2.1-4.5%. Widowed plants are likely to experience reproductive declines of 40-58%, potentially threatening their persistence in the context of other global change stresses.Our systematic approach demonstrates that thousands of species may be impacted by disruption in one class of mutualisms, but extinctions will likely disrupt other mutualisms, as well. Although uncertainty is high, there is evidence that mutualism disruption directly threatens significant biodiversity in some geographic regions. Conservation measures with explicit focus on mutualistic functions could be necessary to bolster populations of widowed species and maintain ecosystem functions.

  14. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    Science.gov (United States)

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  15. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  16. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain

    NARCIS (Netherlands)

    Hoekzema, E.; Schagen, S.E.E.; Kreukels, B.P.C.; Veltman, D.J.; Cohen-Kettenis, P.T.; Delemarre-van d Waal, H.A.; Bakkera, J.

    2015-01-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural

  17. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain

    NARCIS (Netherlands)

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, J.

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural

  18. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    International Nuclear Information System (INIS)

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-01-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented

  19. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.

    Science.gov (United States)

    Jing, Y; Liu, P; Leitch, B

    2016-01-15

    During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; pagmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Regional Brain Activation during Meditation Shows Time and Practice Effects: An Exploratory FMRI Study

    Directory of Open Access Journals (Sweden)

    E. Baron Short

    2010-01-01

    Full Text Available Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC. Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13, and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8 and long-term (n = 5 practitioners (>10 years revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  1. Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.

    Science.gov (United States)

    Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L

    2016-11-01

    To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Aberrant regional brain activities in alcohol dependence: a functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Tu XZ

    2018-03-01

    Full Text Available Xianzhu Tu,1 Juanjuan Wang,2 Xuming Liu,3 Jiyong Zheng4 1Department of Psychiatry, Seventh People’s Hospital of Wenzhou City, Wenzhou, Zhejiang, People’s Republic of China; 2Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 3Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 4Department of Medical Imaging, The Affiliated Huai’an No 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, People’s Republic of China Objective: Whether moderate alcohol consumption has health benefits remains controversial, but the harmful effects of excessive alcohol consumption on behavior and brain function are well recognized. The aim of this study was to investigate alcohol-induced regional brain activities and their relationships with behavioral factors. Subjects and methods: A total of 29 alcohol-dependent subjects (9 females and 20 males and 29 status-matched healthy controls (11 females and 18 males were recruited. Severity of alcohol dependence questionnaire (SADQ and alcohol use disorders identification test (AUDIT were used to evaluate the severity of alcohol craving. Regional homogeneity (ReHo analysis was used to explore the alcohol-induced regional brain changes. Receiver operating characteristic (ROC curve was used to investigate the ability of regional brain activities to distinguish alcohol-dependent subjects from healthy controls. Pearson correlations were used to investigate the relationships between alcohol-induced ReHo differences and behavioral factors. Results: Alcohol-dependent subjects related to healthy controls showed higher ReHo areas in the right superior frontal gyrus (SFG, bilateral medial frontal gyrus (MFG, left precentral gyrus (PG, bilateral middle temporal gyrus (MTG, and right inferior temporal gyrus (ITG and lower ReHo areas in

  3. Atypical functional connectivity in autism spectrum disorder is associated with disrupted white matter microstructural organisation

    Directory of Open Access Journals (Sweden)

    Jane eMcGrath

    2013-09-01

    Full Text Available Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were 1. to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM in ASD and 2. to examine the relationships between aberrant neural connectivity and behaviour in ASD. 22 individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19 and five paired regions: left caudate head, left caudate body, left uncus, left thalamus and left cuneus. Measures of WM microstructural organisation were extracted from these tracts. Fractional anisotropy reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant white matter microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute 1. to abnormal functional connectivity and 2. to atypical visuospatial processing in ASD.

  4. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  5. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    Directory of Open Access Journals (Sweden)

    Zude Zhu

    Full Text Available While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC and low cloze (LC probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC was found in several regions, especially the left middle frontal gyrus (MFG and right inferior frontal gyrus (IFG, which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  6. Acetamiprid Accumulates in Different Amounts in Murine Brain Regions

    Directory of Open Access Journals (Sweden)

    Hayato Terayama

    2016-09-01

    Full Text Available Neonicotinoids such as acetamiprid (ACE belong to a new and widely used single class of pesticides. Neonicotinoids mimic the chemical structure of nicotine and share agonist activity with the nicotine acetylcholine receptor (nAchR. Neonicotinoids are widely considered to be safe in humans; however, they have recently been implicated in a number of human health disorders. A wide range of musculoskeletal and neuromuscular disorders associated with high doses of neonicotinoids administered to animals have also been reported. Consequently, we used a mouse model to investigate the response of the central nervous system to ACE treatment. Our results show that exposure to ACE-containing water for three or seven days (decuple and centuple of no observable adverse effect level (NOAEL/day caused a decrease in body weight in 10-week old A/JJmsSlc (A/J mice. However, the treatments did not affect brain histology or expression of CD34. ACE concentrations were significantly higher in the midbrain of ACE-treated mice than that of the normal and vehicle groups. Expression levels of α7, α4, and β2 nAChRs were found to be low in the olfactory bulb and midbrain of normal mice. Furthermore, in the experimental group (centuple ACE-containing water for seven days, β2 nAChR expression decreased in many brain regions. Information regarding the amount of accumulated ACE and expression levels of the acetylcholine receptor in each region of the brain is important for understanding any clinical symptoms that may be associated with ACE exposure.

  7. Relationship between regional brain glucose metabolism and temperament factor of personality

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24{+-}4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor.

  8. Relationship between regional brain glucose metabolism and temperament factor of personality

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24±4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor

  9. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    Science.gov (United States)

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  10. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study

    Directory of Open Access Journals (Sweden)

    Brooks Samantha J

    2011-11-01

    Full Text Available Abstract Background Previous Magnetic Resonance Imaging (MRI studies of people with anorexia nervosa (AN have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume. Methods Voxel based morphometry (VBM, corrected for total intracranial volume, age, BMI, years of education in 14 women with AN (8 RAN and 6 BPAN and 21 women (HC was performed. Correlations between brain volume and dietary restraint were done using Statistical Package for the Social Sciences (SPSS. Results Increased right dorsolateral prefrontal cortex (DLPFC and reduced right anterior insular cortex, bilateral parahippocampal gyrus, left fusiform gyrus, left cerebellum and right posterior cingulate volumes in AN compared to HC. RAN compared to BPAN had reduced left orbitofrontal cortex, right anterior insular cortex, bilateral parahippocampal gyrus and left cerebellum. Age negatively correlated with right DLPFC volume in HC but not in AN; dietary restraint and BMI predicted 57% of variance in right DLPFC volume in AN. Conclusions In AN, brain volume differences were found in appetitive, somatosensory and top-down control brain regions. Differences in regional GMV may be linked to levels of appetitive restraint, but whether they are state or trait is unclear. Nevertheless, these discrete brain volume differences provide candidate brain regions for further structural and functional study in people with eating disorders.

  11. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.

    Directory of Open Access Journals (Sweden)

    Nisha Puthiyedth

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation.The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD from the Entorhinal Cortex (EC, Hippocampus (HIP, Middle temporal gyrus (MTG, Posterior cingulate cortex (PC, Superior frontal gyrus (SFG and visual cortex (VCX brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets.We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we

  12. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    Science.gov (United States)

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.

  13. Drug-Induced Apoptosis: Mechanism by which Alcohol and Many Other Drugs Can Disrupt Brain Development

    Directory of Open Access Journals (Sweden)

    John W. Olney

    2013-07-01

    Full Text Available Maternal ingestion of alcohol during pregnancy can cause a disability syndrome termed Fetal Alcohol Spectrum Disorder (FASD, which may include craniofacial malformations, structural pathology in the brain, and a variety of long-term neuropsychiatric disturbances. There is compelling evidence that exposure to alcohol during early embryogenesis (4th week of gestation can cause excessive death of cell populations that are essential for normal development of the face and brain. While this can explain craniofacial malformations and certain structural brain anomalies that sometimes accompany FASD, in many cases these features are absent, and the FASD syndrome manifests primarily as neurobehavioral disorders. It is not clear from the literature how alcohol causes these latter manifestations. In this review we will describe a growing body of evidence documenting that alcohol triggers widespread apoptotic death of neurons and oligodendroglia (OLs in the developing brain when administered to animals, including non-human primates, during a period equivalent to the human third trimester of gestation. This cell death reaction is associated with brain changes, including overall or regional reductions in brain mass, and long-term neurobehavioral disturbances. We will also review evidence that many drugs used in pediatric and obstetric medicine, including general anesthetics (GAs and anti-epileptics (AEDs, mimic alcohol in triggering widespread apoptotic death of neurons and OLs in the third trimester-equivalent animal brain, and that human children exposed to GAs during early infancy, or to AEDs during the third trimester of gestation, have a significantly increased incidence of FASD-like neurobehavioral disturbances. These findings provide evidence that exposure of the developing human brain to GAs in early infancy, or to alcohol or AEDs in late gestation, can cause FASD-like neurodevelopmental disability syndromes. We propose that the mechanism by which

  14. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  15. Altered relationships between rCBF in different brain regions of never-treated schizophrenics

    International Nuclear Information System (INIS)

    Sabri, O.; Schreckenberger, M.; Cremerius, U.; Dickmann, C.; Schulz, G.; Zimny, M.; Buell, U.; Erkwoh, R.; Owega, A.; Sass, H.

    1997-01-01

    Aim of this study was to investigate the relations between regional cerebral blood flow (rCBF) of different brain regions in acute schizophrenia and following neuroleptic treatment. Methods: Twenty-two never-treated, acute schizophrenic patients were examined with HMPAO brain SPECT and assessed psychopathologically, and reexamined following neuroleptic treatment (over 96.8 days) and psychopathological remission. rCBF was determined by region/cerebellar count quotients obtained from 98 irregular regions of interest (ROIs), summed up to 11 ROIs on each hemisphere. In acute schizophrenics, interregional rCBF correlations of each ROI to every other ROI were compared to the interregional correlations following neuroleptic treatment and to those of controls. Results: All significant correlations of rCBF ratios of different brain regions were exclusively positive in controls and patients. In controls, all ROIs of one hemisphere except the mesial temporal ROI correlated significantly to its contralateral ROI. Each hemisphere showed significant frontal-temporal correlations, as well as cortical-subcortical and some cortico-limbic. In contrast, in acute schizophrenics nearly every ROI correlated significantly with every other ROI, without a grouping or relation of the rCBF of certain ROIs as in controls. After neuroleptic treatment and clinical improvement, this diffuse pattern of correlations remained. Conclusions: These results indicate differences in the neuronal interplay between regions in schizophrenic and healthy subjects. In nevertreated schizophrenics, diffuse interregional rCBF correlations can be seen as a sign of change and dysfunction of the systems regulating specificity and diversity of the neuronal functions. Neuroleptic therapy and psychopathologic remission showed no normalizing effect on interregional correlations. (orig.) [de

  16. Disrupted sensory gating in pathological gambling.

    Science.gov (United States)

    Stojanov, Wendy; Karayanidis, Frini; Johnston, Patrick; Bailey, Andrew; Carr, Vaughan; Schall, Ulrich

    2003-08-15

    Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.

  17. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System.

    Science.gov (United States)

    Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P

    2017-07-01

    A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.

  18. Bodily illusions disrupt tactile sensations.

    Science.gov (United States)

    D'Amour, Sarah; Pritchett, Lisa M; Harris, Laurence R

    2015-02-01

    To accurately interpret tactile information, the brain needs to have an accurate representation of the body to which to refer the sensations. Despite this, body representation has only recently been incorporated into the study of tactile perception. Here, we investigate whether distortions of body representation affect tactile sensations. We perceptually altered the length of the arm and the width of the waist using a tendon vibration illusion and measured spatial acuity and sensitivity. Surprisingly, we found reduction in both tactile acuity and sensitivity thresholds when the arm or waist was perceptually altered, which indicates a general disruption of low-level tactile processing. We postulate that the disruptive changes correspond to the preliminary stage as the body representation starts to change and may give new insights into sensory processing in people with long-term or sudden abnormal body representation such as are found in eating disorders or following amputation.

  19. Aberrant Topologies and Reconfiguration Pattern of Functional Brain Network in Children with Second Language Reading Impairment

    Science.gov (United States)

    Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng

    2016-01-01

    Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption…

  20. Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Suarez-May, Marcela A; Favila, Rafel; Aguilar-Castañeda, Erika

    2013-12-01

    Macroanatomical right-left hemispheric differences in the brain are termed asymmetries, although there is no clear information on the global influence of gender and brain-regions. The aim of this study was to evaluate the main effects and interactions of these variables on the measurement of volumetric asymmetry indices (VAIs). Forty-seven healthy young-adult volunteers (23 males, 24 females) agreed to undergo brain magnetic resonance imaging in a 3T scanner. Image post processing using voxel-based volumetry allowed the calculation of 54 VAIs from the frontal, temporal, parietal and occipital lobes, limbic system, basal ganglia, and cerebellum for each cerebral hemisphere. Multivariate ANCOVA analysis calculated the main effects and interactions on VAIs of gender and brain regions controlling the effect of age. The only significant finding was the main effect of brain regions (F (6, 9373.605) 44.369, P gender and brain regions (F (6, 50.517) .239, P = .964). Volumetric asymmetries are present across all brain regions, with larger values found in the limbic system and parietal lobe. The absence of a significant influence of gender and age in the evaluation of the numerous measurements generated by multivariate analyses in this study should not discourage researchers to report and interpret similar results, as this topic still deserves further assessment. Copyright © 2013 Wiley Periodicals, Inc.

  1. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  2. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  3. Regional brain glucose use in unstressed rats after two days of starvation

    International Nuclear Information System (INIS)

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and [6- 14 C]glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of 14 C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation

  4. Protein profiles of serum, brain regions and hypophyses of pubertal ...

    African Journals Online (AJOL)

    The effects of dietary fumonisin B1 (FB1 ), a toxin produced mainly by Fusarium verticillioides and F. proliferatum that grow on maize worldwide, on protein profiles of serum, brain regions and hypophyses were studied in 24 male Large White weanling pigs randomly divided into four groups (n = 6). In a completely ...

  5. Financial literacy is associated with medial brain region functional connectivity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  7. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    Science.gov (United States)

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Disruptions and Their Mitigation in TEXTOR

    International Nuclear Information System (INIS)

    Finken, K.H.; Jaspers, R.; Kraemer-Flecken, A.; Savtchkov, A.; Lehnen, M.; Waidmann, G.

    2005-01-01

    Disruptions remain a major concern for tokamak devices, particularly for large machines. The critical issues are the induced (halo) currents and the resulting forces, the excessive heating of exposed surfaces by the instantaneous power release, and the possible occurrence of highly energetic runaway electrons. The key topics of the investigations on TEXTOR in the recent years concerned (a) the power deposition pattern recorded by a fast infrared scanner, (b) the runaway generation measured by synchrotron radiation in the infrared spectral region, (c) method development for 'healing' discharges that are going to disrupt, and (d) massive gas puffing for mitigating the adverse effects of disruptions

  9. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  10. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  11. Disruption of structure–function coupling in the schizophrenia connectome

    Directory of Open Access Journals (Sweden)

    Luca Cocchi

    2014-01-01

    Full Text Available Neuroimaging studies have demonstrated that the phenomenology of schizophrenia maps onto diffuse alterations in large-scale functional and structural brain networks. However, the relationship between structural and functional deficits remains unclear. To answer this question, patients with established schizophrenia and matched healthy controls underwent resting-state functional and diffusion weighted imaging. The network-based statistic was used to characterize between-group differences in whole-brain functional connectivity. Indices of white matter integrity were then estimated to assess the structural correlates of the functional alterations observed in patients. Finally, group differences in the relationship between indices of functional and structural brain connectivity were determined. Compared to controls, patients with schizophrenia showed decreased functional connectivity and impaired white matter integrity in a distributed network encompassing frontal, temporal, thalamic, and striatal regions. In controls, strong interregional coupling in neural activity was associated with well-myelinated white matter pathways in this network. This correspondence between structure and function appeared to be absent in patients with schizophrenia. In two additional disrupted functional networks, encompassing parietal, occipital, and temporal cortices, the relationship between function and structure was not affected. Overall, results from this study highlight the importance of considering not only the separable impact of functional and structural connectivity deficits on the pathoaetiology of schizophrenia, but also the implications of the complex nature of their interaction. More specifically, our findings support the core nature of fronto-striatal, fronto-thalamic, and fronto-temporal abnormalities in the schizophrenia connectome.

  12. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  13. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  14. Applications of the Morris water maze in translational traumatic brain injury research.

    Science.gov (United States)

    Tucker, Laura B; Velosky, Alexander G; McCabe, Joseph T

    2018-05-01

    Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance. Published by Elsevier Ltd.

  15. Regional cerebral blood flow and brain atrophy in senile dementia of Alzheimer type (SDAT)

    International Nuclear Information System (INIS)

    Okada, Kazunori; Kobayashi, Shoutai; Yamaguchi, Shuhei; Kitani, Mituhiro; Tsunematsu, Tokugoro

    1987-01-01

    To investigate the relationship between the reduction of cerebal blood flow and brain atrophy in SDAT, these were measured in 13 cases of senile dementia of Alzheimer type, and compared to 15 cases of multi-infarct Dementia, 39 cases of lacunar infarction without dementia (non-demented CVD group) and 69 cases of aged normal control. Brain atrophy was evaluated by two-dimensional method on CT film by digitizer and regional cerebral blood flow (rCBF) was measured by 133 Xe inhalation method. The degree of brain atrophy in SDAT was almost similar of that of MID. But it was more severe than that of non-demented group. MID showed the lowest rCBF among these groups. SDAT showed significantly lower rCBF than that of aged control, but rCBF in SDAT was equal to that of lacunar stroke without dementia. Focal reduction of cerebral blood flow in bilateral fronto-parietal and left occipital regions were observed in SDAT. Verbal intelligence score (Hasegawa's score) correlated with rCBF and brain atrophy index in MID, and a tendency of correlation between rCBF and brain atrophy in MID was also observed. However, there was no correlation among those indices in SDAT. These findings suggest that the loss of brain substance dose not correspond to the reduction of rCBF in SDAT and simultaneous measurement of rCBF and brain atrophy was useful to differ SDAT from MID. (author)

  16. Sex differences and the development of the rabbit brain: effects of vinclozolin.

    Science.gov (United States)

    Bisenius, Erin S; Veeramachaneni, D N Rao; Sammonds, Ginger E; Tobet, Stuart

    2006-09-01

    The preoptic/anterior hypothalamic area (POA/AH) is one of the most sexually dimorphic areas of the vertebrate brain and plays a pivotal role in regulating male sexual behavior. Vinclozolin is a fungicide thought to be an environmental antiandrogen, which disrupts masculine sexual behavior when administered to rabbits during development. In this study, we examined several characteristics of the rabbit POA/AH for sexual dimorphism and endocrine disruption by vinclozolin. Pregnant rabbits were dosed orally with vinclozolin (10 mg/kg body weight) or carrot paste vehicle once daily for 6 wk beginning at midgestation and continuing through nursing until Postpartum Week 4. At 6 wk, offspring were perfused with 4% paraformaldehyde and brains processed for immunocytochemical localization of tyrosine hydroxylase, calbindin, gonadotropin-releasing hormone (GnRH), or Nissl stain. There were significant sex differences in the distribution of calbindin in the POA/AH and the size of cells in the dorsal POA/AH (values greater in females than in males), but not in the number or distribution of tyrosine hydroxylase or GnRH neurons. In both sexes, exposure to vinclozolin significantly increased calbindin expression in the ventral POA/AH and significantly decreased number of GnRH neurons selectively in the region of the organum vasculosum of the lamina terminalis (OVLT) but not more caudally in the POA/AH. This is the first documentation of a sexually dimorphic region in the rabbit brain, and further supports the use of this species as a model for studying the influence of vinclozolin on reproductive development with potential application to human systems.

  17. Disrupting neuronal transmission: Mechanism of DBS?

    Directory of Open Access Journals (Sweden)

    Satomi eChiken

    2014-03-01

    Full Text Available Applying high-frequency stimulation to deep brain rain structure, known as deep brain stimulation (DBS, has now been recognized an effective therapeutic option for a wide range of neurological and psychiatric disorders. DBS targeting the basal ganglia thalamo-cortical loop, especially the internal segment of the globus pallidus, subthalamic nucleus and thalamus, has been widely employed as a successful surgical therapy for movement disorders, such as Parkinson’s disease, dystonia and tremor. However, the neurophysiological mechanism underling the action of DBS remains unclear and is still under debate: does DBS inhibit or excite local neuronal elements? In this review, we will examine this question and propose the alternative interpretation: DBS dissociates inputs and outputs, resulting in disruption of abnormal signal transmission.

  18. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  19. Fingolimod prevents blood-brain barrier disruption induced by the sera from patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Hideaki Nishihara

    Full Text Available OBJECTIVE: Effect of fingolimod in multiple sclerosis (MS is thought to involve the prevention of lymphocyte egress from lymphoid tissues, thereby reducing autoaggressive lymphocyte infiltration into the central nervous system across blood-brain barrier (BBB. However, brain microvascular endothelial cells (BMECs represent a possible additional target for fingolimod in MS patients by directly repairing the function of BBB, as S1P receptors are also expressed by BMECs. In this study, we evaluated the effects of fingolimod on BMECs and clarified whether fingolimod-phosphate restores the BBB function after exposure to MS sera. METHODS: Changes in tight junction proteins, adhesion molecules and transendothelial electrical resistance (TEER in BMECs were evaluated following incubation in conditioned medium with or without fingolimod/fingolimod-phosphate. In addition, the effects of sera derived from MS patients, including those in the relapse phase of relapse-remitting (RR MS, stable phase of RRMS and secondary progressive MS (SPMS, on the function of BBB in the presence of fingolimod-phosphate were assessed. RESULTS: Incubation with fingolimod-phosphate increased the claudin-5 protein levels and TEER values in BMECs, although it did not change the amount of occludin, ICAM-1 or MelCAM proteins. Pretreatment with fingolimod-phosphate restored the changes in the claudin-5 and VCAM-1 protein/mRNA levels and TEER values in BMECs after exposure to MS sera. CONCLUSIONS: Pretreatment with fingolimod-phosphate prevents BBB disruption caused by both RRMS and SPMS sera via the upregulation of claudin-5 and downregulation of VCAM-1 in BMECs, suggesting that fingolimod-phosphate is capable of directly modifying the BBB. BMECs represent a possible therapeutic target for fingolimod in MS patients.

  20. Short- and long-term health consequences of sleep disruption.

    Science.gov (United States)

    Medic, Goran; Wille, Micheline; Hemels, Michiel Eh

    2017-01-01

    Sleep plays a vital role in brain function and systemic physiology across many body systems. Problems with sleep are widely prevalent and include deficits in quantity and quality of sleep; sleep problems that impact the continuity of sleep are collectively referred to as sleep disruptions. Numerous factors contribute to sleep disruption, ranging from lifestyle and environmental factors to sleep disorders and other medical conditions. Sleep disruptions have substantial adverse short- and long-term health consequences. A literature search was conducted to provide a nonsystematic review of these health consequences (this review was designed to be nonsystematic to better focus on the topics of interest due to the myriad parameters affected by sleep). Sleep disruption is associated with increased activity of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis, metabolic effects, changes in circadian rhythms, and proinflammatory responses. In otherwise healthy adults, short-term consequences of sleep disruption include increased stress responsivity, somatic pain, reduced quality of life, emotional distress and mood disorders, and cognitive, memory, and performance deficits. For adolescents, psychosocial health, school performance, and risk-taking behaviors are impacted by sleep disruption. Behavioral problems and cognitive functioning are associated with sleep disruption in children. Long-term consequences of sleep disruption in otherwise healthy individuals include hypertension, dyslipidemia, cardiovascular disease, weight-related issues, metabolic syndrome, type 2 diabetes mellitus, and colorectal cancer. All-cause mortality is also increased in men with sleep disturbances. For those with underlying medical conditions, sleep disruption may diminish the health-related quality of life of children and adolescents and may worsen the severity of common gastrointestinal disorders. As a result of the potential consequences of sleep disruption, health care

  1. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  2. Repeated verum but not placebo acupuncture normalizes connectivity in brain regions dysregulated in chronic pain

    Directory of Open Access Journals (Sweden)

    Natalia Egorova

    2015-01-01

    Full Text Available Acupuncture, an ancient East Asian therapy, is aimed at rectifying the imbalance within the body caused by disease. Studies evaluating the efficacy of acupuncture with neuroimaging tend to concentrate on brain regions within the pain matrix, associated with acute pain. We, however, focused on the effect of repeated acupuncture treatment specifically on brain regions known to support functions dysregulated in chronic pain disorders. Transition to chronic pain is associated with increased attention to pain, emotional rumination, nociceptive memory and avoidance learning, resulting in brain connectivity changes, specifically affecting the periaqueductal gray (PAG, medial frontal cortex (MFC and bilateral hippocampus (Hpc. We demonstrate that the PAG–MFC and PAG–Hpc connectivity in patients with chronic pain due to knee osteoarthritis indeed correlates with clinical severity scores and further show that verum acupuncture-induced improvement in pain scores (compared to sham is related to the modulation of PAG–MFC and PAG–Hpc connectivity in the predicted direction. This study shows that repeated verum acupuncture might act by restoring the balance in the connectivity of the key pain brain regions, altering pain-related attention and memory.

  3. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. A longitudinal analysis of regional brain volumes in macaques exposed to X-irradiation in early gestation.

    Directory of Open Access Journals (Sweden)

    Kristina Aldridge

    Full Text Available Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate.Five Rhesus macaques were exposed to x-irradiation in early gestation (E30-E41, and four control monkeys were sham-irradiated at comparable ages. Whole brain magnetic resonance imaging was performed at 6 months, 12 months, and 3 and 5 years of age. Volumes of whole cerebrum, cortical gray matter, caudate, putamen, and thalamus were estimated using semi-automated segmentation methods and high dimensional brain mapping. Volume reductions spanning all ages were observed in irradiated monkeys in the putamen (15-24%, p = 0.01 and in cortical gray matter (6-15%, p = 0.01. Upon covarying for whole cerebral volume, group differences were reduced to trend levels (putamen: p = 0.07; cortical gray matter: p = 0.08. No group-by-age effects were significant.Due to the small number of observations, the conclusions drawn from this study must be viewed as tentative. Early gestational irradiation may result in non-uniform reduction of gray matter, mainly affecting the putamen and cerebral cortex. This may be relevant to understanding how early prenatal environmental insult could lead to brain morphological differences in neurodevelopmental diseases.

  5. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control.

    Science.gov (United States)

    Catanese, Mary C; Vandenberg, Laura N

    2017-11-07

    Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  7. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  8. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  9. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  10. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.; Rizzu, Patrizia; Francescatto, Margherita; Vitezic, Morana; Leday, Gwenaë l G.R.; Sanchez, Javier Simon; Khamis, Abdullah M.; Takahashi, Hazuki; van de Berg, Wilma D.J.; Medvedeva, Yulia A.; van de Wiel, Mark A.; Daub, Carsten O.; Carninci, Piero; Heutink, Peter

    2013-01-01

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites

  11. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.

    Science.gov (United States)

    Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B

    2012-06-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.

  13. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Directory of Open Access Journals (Sweden)

    Prasad Shirvalkar

    2018-03-01

    Full Text Available Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1 identifying biomarkers of the subjective pain experience and (2 integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment.

  14. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.

    Science.gov (United States)

    Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B

    2012-01-01

    Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model.

    Directory of Open Access Journals (Sweden)

    Aida J Chaves

    Full Text Available Influenza A virus (IAV causes central nervous system (CNS lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i detecting Evans blue (EB extravasation into the brain, (ii determining the leakage of the serum protein immunoglobulin Y (IgY into the brain and (iii assessing the stability of the tight-junction (TJ proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi. The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma.

  16. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  17. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups. This dataset is associated with the following...

  18. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.

  19. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    Science.gov (United States)

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  20. Sugar for the brain: the role of glucose in physiological and pathological brain function.

    Science.gov (United States)

    Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas

    2013-10-01

    The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  2. Affective network and default mode network in depressive adolescents with disruptive behaviors

    Directory of Open Access Journals (Sweden)

    Kim SM

    2015-12-01

    Full Text Available Sun Mi Kim,1 Sung Yong Park,1 Young In Kim,1 Young Don Son,2 Un-Sun Chung,3,4 Kyung Joon Min,1 Doug Hyun Han1 1Department of Psychiatry, School of Medicine, Chung-Ang University, Seoul, 2Department of Biomedical Engineering, Gachon University of Medicine and Science, Incheon, 3Department of Psychiatry, School of Medicine, Kyungpook National University, 4School Mental Health Resources and Research Center, Kyungpook National University Children’s Hospital, Daegu, South Korea Aim: Disruptive behaviors are thought to affect the progress of major depressive disorder (MDD in adolescents. In resting-state functional connectivity (RSFC studies of MDD, the affective network (limbic network and the default mode network (DMN have garnered a great deal of interest. We aimed to investigate RSFC in a sample of treatment-naïve adolescents with MDD and disruptive behaviors.Methods: Twenty-two adolescents with MDD and disruptive behaviors (disrup-MDD and 20 age- and sex-matched healthy control (HC participants underwent resting-state functional magnetic resonance imaging (fMRI. We used a seed-based correlation approach concerning two brain circuits including the affective network and the DMN, with two seed regions ­including the bilateral amygdala for the limbic network and the bilateral posterior cingulate cortex (PCC for the DMN. We also observed a correlation between RSFC and severity of depressive symptoms and disruptive behaviors.Results: The disrup-MDD participants showed lower RSFC from the amygdala to the orbitofrontal cortex and parahippocampal gyrus compared to HC participants. Depression scores in disrup-MDD participants were negatively correlated with RSFC from the amygdala to the right orbitofrontal cortex. The disrup-MDD participants had higher PCC RSFC compared to HC participants in a cluster that included the left precentral gyrus, left insula, and left parietal lobe. Disruptive behavior scores in disrup-MDD patients were positively

  3. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer

    OpenAIRE

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers non...

  4. Abnormal Brain Responses to Action Observation in Complex Regional Pain Syndrome.

    Science.gov (United States)

    Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta

    2017-03-01

    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    Science.gov (United States)

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  6. Global and regional brain mean diffusivity changes in patients with heart failure.

    Science.gov (United States)

    Woo, Mary A; Palomares, Jose A; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Kumar, Rajesh

    2015-04-01

    Heart failure (HF) patients show gray and white matter changes in multiple brain sites, including autonomic and motor coordination areas. It is unclear whether the changes represent acute or chronic tissue pathology, a distinction necessary for understanding pathological processes that can be resolved with diffusion tensor imaging (DTI)-based mean diffusivity (MD) procedures. We collected four DTI series from 16 HF (age 55.1 ± 7.8 years, 12 male) and 26 control (49.7 ± 10.8 years, 17 male) subjects with a 3.0-Tesla magnetic resonance imaging scanner. MD maps were realigned, averaged, normalized, and smoothed. Global and regional MD values from autonomic and motor coordination sites were calculated by using normalized MD maps and brain masks; group MD values and whole-brain smoothed MD maps were compared by analysis of covariance (covariates; age and gender). Global brain MD (HF vs. controls, units × 10(-6) mm(2) /sec, 1103.8 ± 76.6 vs. 1035.9 ± 69.4, P = 0.038) and regional autonomic and motor control site values (left insula, 1,085.4 ± 95.7 vs. 975.7 ± 65.4, P = 0.001; right insula, 1,050.2 ± 100.6 vs. 965.7 ± 58.4, P = 0.004; left hypothalamus, 1,419.6 ± 165.2 vs. 1,234.9 ± 136.3, P = 0.002; right hypothalamus, 1,446.5 ± 178.8 vs. 1,273.3 ± 136.9, P = 0.004; left cerebellar cortex, 889.1 ± 81.9 vs. 796.6 ± 46.8, P right cerebellar cortex, 797.8 ± 50.8 vs. 750.3 ± 27.5, P = 0.001; cerebellar deep nuclei, 1,236.1 ± 193.8 vs. 1,071.7 ± 107.1, P = 0.002) were significantly higher in HF vs. control subjects, indicating chronic tissue changes. Whole-brain comparisons showed increased MD values in HF subjects, including limbic, basal-ganglia, thalamic, solitary tract nucleus, frontal, and cerebellar regions. Brain injury occurs in autonomic and motor control areas, which may contribute to deficient function in HF patients. The chronic tissue changes likely

  7. Effects of feedborne fusarium mycotoxins on brain regional neurochemistry of turkeys.

    Science.gov (United States)

    Girish, C K; MacDonald, E J; Scheinin, M; Smith, T K

    2008-07-01

    An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of turkeys. The possible preventative effect of a poly-meric glucomannan mycotoxin adsorbent (GMA) was also determined. Forty-five 1-d-old male turkey poults were fed wheat-, corn-, and soybean meal-based diets up to wk 6, formulated with control grains, contaminated grains, or contaminated grains + 0.2% GMA. Deoxynivalenol was the major contaminant, and the concentrations were 2.2 and 3.3 mg/kg of feed during starter and grower phases, respectively. Concentrations of brain monoamine neurotransmitters and metabolites were measured in discrete regions of the brain including the pons, hypothalamus, and cortex by HPLC with electrochemical detection. Neurotransmitters and metabolites analyzed included norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). The concentration of 5-HIAA and the 5-HIAA:5-HT-ratio were significantly decreased in pons after feeding contaminated grains. Dietary supplementation with GMA prevented these effects. In the pons, a significant positive correlation (r = 0.52, P effects on the concentrations of neurotransmitters and metabolites in hypothalamus and cortex. It was concluded that consumption of grains naturally contaminated with Fusarium mycotoxins adversely altered the pons serotonergic system of turkeys. Supplementation with GMA partially inhibited these effects.

  8. Regional distribution of TL-201 in the brain and spinal cord after injection into the cerebrospinal fluid: Imaging of brain tumors

    International Nuclear Information System (INIS)

    Woo, D.V.; Rubertone, J.; Vincent, S.; Brady, L.W. Jr.

    1986-01-01

    Radiotracers are typically employed to evaluate the brain ventricular space; however, there are no agents designed to be taken up into specific neuronal regions after injection into the cerebrospinal fluids (CSF). The authors report studies in which T1-201 was stereotaxically administered into the lateral or fourth ventricles of Sprague-Dawley rats. Brains were removed (n = 42) 2-6 hours after injection and sectioned for apposition to autoradiographic film. Specific uptake was observed in active neurons of the diencephalon, mesencephalon, cerebellum, brain stem, and spinal gray matter. Astrocytoma cell implants into the caudate nucleus of Sprague-Dawley rats induced histologically confirmed brain tumors (n = 5). Significant localization of T1-201 was observed in the tumor 4 hours after injection into the lateral ventricle. These findings suggest that T1-201 may be useful for delineating specific neuronal function via CSF circulation and for imaging actively growing brain tumors

  9. Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge Emil; Pai, Akshay Sadananda Uppinakudru

    2014-01-01

    BACKGROUND:Alzheimer's disease (AD) is a progressive, incurable neurodegenerative disease and the most common type of dementia. It cannot be prevented, cured or drastically slowed, even though AD research has increased in the past 5-10 years. Instead of focusing on the brain volume or on the single...... brain structures like hippocampus, this paper investigates the relationship and proximity between regions in the brain and uses this information as a novel way of classifying normal control (NC), mild cognitive impaired (MCI), and AD subjects.METHODS:A longitudinal cohort of 528 subjects (170 NC, 240...... to whole brain and hippocampus volume.RESULTS:We found that both our markers was able to significantly classify the subjects. The surface connectivity marker showed the best results with an area under the curve (AUC) at 0.877 (p...

  10. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.

    Science.gov (United States)

    Yamakami, I; Yamaura, A; Isobe, K

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.

  11. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Yamakami, Iwao; Yamaura, Akira; Isobe, Katsumi

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99m technetium-hexamethyl propyleneamine oxime (HMPAO). Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated: 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient. (author)

  12. Brain regional distributions of the minor and trace elements, Na, Mg, Cl, K, Mn, Zn, Rb and Br, in young and aged mice

    International Nuclear Information System (INIS)

    Amano, R.; Oishi, S.; Ishie, M.; Kimura, M.

    2001-01-01

    Brain regional cerebral concentrations of minor and trace elements, Na, Mg, Cl, K, Mn, Zn, Rb and Br were determined in young and aged mice, by instrumental neutron activation analysis for small amounts of regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, midbrain, pons and medulla olfactory bulb) samples. Significant age-related differences were found for Mn concentration in all brain regions: The Mn concentration of the young brain was higher than those of aged brain, in addition, Zn was distributed heterogeneously, and highly concentrated in cerebral cortex and hippocampus regions in both young and aged mice. These results suggest that, in the aged brain, Mn is required less than in the young brain, on the other hand, Zn is required equally in both young and aged brains. (author)

  13. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects; Corbet, Thomas F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Policy and Decision Analytics; Baker, Arnold B. [ABB Consulting, Albuquerque, NM (United States); O' Rourke, Julia M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  14. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  15. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  16. Structural brain alterations in hemifacial spasm: A voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Tu, Ye; Yu, Tian; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei

    2016-02-01

    Hemifacial spasm (HFS) is characterized by involuntary, irregular clonic or tonic movement of muscles innervated by the facial nerve. We evaluated structural reorganization in brain gray matter and white matter and whether neuroplasticity is linked to clinical features in HFS patients. High-resolution structural magnetic resonance imaging and diffusion tensor imaging data were acquired by 3.0 T MRI from 42 patients with HFS and 30 healthy subjects. The severity of the spasm was assessed according to Jankovic disability rating scale. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis were performed to identify regional grey matter volume (GMV) changes and whole-brain microstructural integrity disruption measured by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). The VBM analysis showed that patients with HFS reduced GMV in the right inferior parietal lobule and increased GMV in the cerebellar lobule VIII, when compared with healthy subjects. Furthermore, within the HFS disease group, GMV decreased with the disease duration in the right inferior parietal lobule. TBSS did not identify group differences in diffusivity parameters. While no white matter integrity disruption was detected in the brain of patients with HFS, our study identified evident GMV changes in brain areas which were known to be involved in motor control. Our results suggest that HFS, a chronic neurovascular conflict disease, is related to structural reorganization in the brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound.

    Science.gov (United States)

    Stavarache, Mihaela A; Petersen, Nicholas; Jurgens, Eric M; Milstein, Elizabeth R; Rosenfeld, Zachary B; Ballon, Douglas J; Kaplitt, Michael G

    2018-04-27

    OBJECTIVE Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent

  18. A novel PET imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood-brain barrier

    Science.gov (United States)

    Bankstahl, Jens P.; Bankstahl, Marion; Kuntner, Claudia; Stanek, Johann; Wanek, Thomas; Meier, Martin; Ding, Xiao-Qi; Müller, Markus; Langer, Oliver; Löscher, Wolfgang

    2013-01-01

    About one third of epilepsy patients are pharmacoresistant. Overexpression of P-glycoprotein and other multidrug transporters at the blood-brain barrier is thought to play an important role in drug-refractory epilepsy. Thus, quantification of regionally different P-glycoprotein activity in the brain in vivo is essential to identify P-glycoprotein overactivity as the relevant mechanism for drug-resistance in an individual patient. Using the radiolabeled P-glycoprotein substrate (R)-[11C]verapamil and different doses of co-administered tariquidar, which is an inhibitor of P-glycoprotein, we evaluated whether small-animal positron emission tomography (PET) can quantify regional changes in transporter function in the rat brain at baseline and 48 h after a pilocarpine-induced status epilepticus. P-glycoprotein expression was additionally quantified by immunohistochemistry. To reveal putative seizure-induced changes in blood-brain barrier integrity, we performed gadolinium-enhanced magnetic resonance scans on a 7.0 Tesla small-animal scanner. Before P-glycoprotein modulation, brain uptake of (R)-[11C]verapamil was low in all regions investigated in control and post-status epilepticus rats. After administration of 3 mg/kg tariquidar, which inhibits P-glycoprotein only partially, we observed increased regional differentiation in brain activity uptake in post-status epilepticus versus control rats, which diminished after maximal P-glycoprotein inhibition. Regional increases in the efflux rate constant k2, but not in distribution volume VT or influx rate constant K1, correlated significantly with increases in P-glycoprotein expression measured by immunohistochemistry. This imaging protocol proves to be suitable to detect seizure-induced regional changes in P-glycoprotein activity and is readily applicable to humans, with the aim to detect relevant mechanisms of pharmacoresistance in epilepsy in vivo. PMID:21677164

  19. Thermal deposition analysis during disruptions on DIII-D using infrared scanners

    International Nuclear Information System (INIS)

    Lee, R.L.; Hyatt, A.W.; Kellman, A.G.; Taylor, P.L.; Lasnier, C.J.

    1995-12-01

    The DIII-D tokamak generates plasma discharges with currents up to 3 MA and auxiliary input power up to 20 MW from neutral beams and 4 MW from radio frequency systems. In a disruption, a rapid loss of the plasma current and internal thermal energy occurs and the energy is deposited onto the torus graphite wall. Quantifying the spatial and temporal characteristics of the heat deposition is important for engineering and physics-related issues, particularly for designing future machines such as ITER. Using infrared scanners with a time resolution of 120 micros, measurements of the heat deposition onto the all-graphite walls of DIII-D during two types of disruptions have been made. Each scanner contains a single point detector sensitive to 8--12 microm radiation, allowing surface temperatures from 20 C to 2,000 C to be measured. A zinc selenide window that transmits in the infrared is used as the vacuum window. Views of the upper and lower divertor regions and the centerpost provide good coverage of the first wall for single and double null divertor discharges. During disruptions, the thermal energy is not deposited evenly onto the inner surface of the tokamak, but is deposited primarily in the divertor region when operating diverted discharges. Analysis of the heat deposition during a radiative collapse disruption of a 1.5 MA discharge revealed power densities of 300--350 MW/m 2 in the divertor region. During the thermal quench of the disruption, the energy deposited onto the divertor region was more than 70% of the stored thermal energy in the discharge prior to the disruption. The spatial distribution and temporal behavior of power deposition during high β disruptions will also be presented

  20. A Means for the Scintigraphic Imaging of Regional Brain Dynamics. Regional Cerebral Blood Flow and Regional Cerebral Blood Volume

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E. J.; Bentley, R.; Gerth, W.; Hill, R. L.; Davis, D. O. [Washington University School Of Medicine, St. Louis, MO (United States)

    1969-05-15

    The use of freely diffusable inert radioactive gas as a washout indicator to measure regional cerebral blood flow has become a standardized kinetic procedure in many laboratories. Recent investigations with this technique have led us to conclude that we can reliably distinguish regional flow with perfusion against regional flow without perfusion from the early portion of the curve. Based on a detailed study of the early curve kinetics in patients with and without cerebral vascular disease we have defined the sampling duration necessary for application of the Anger gamma camera imaging process to regional changes in cerebral radioactivity. Using a standard camera and a small computer, a procedure has been developed and based upon entire field to determine the time of maximum height followed by analysis of the data in a matrix. This will permit a contour plot presentation of calculated regional cerebral blood flow in millilitres per 100 grams perfused brain per minute. In addition, we propose to augment this data by the display of regional non-perfusion blood flow versus regional cerebral flow with perfusion. Preliminary investigation on sampling duration, and Compton scattering were prerequisite to clinical scintigraphy of regional cerebral blood flow. In addition, the method of interface for the conventional Anger gamma camera to digital computers used in this procedure are discussed. Applications to further assess regional cerebral dynamics by scintigraphy are presented. (author)

  1. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    Science.gov (United States)

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  2. Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas)

    International Nuclear Information System (INIS)

    Ostertag, Sonja K.; Stern, Gary A.; Wang, Feiyue; Lemes, Marcos; Chan, Hing Man

    2013-01-01

    The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood. We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the eastern Beaufort Sea, Canada, and measured total Hg (HgT) and total selenium (SeT) by inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer or cold vapor atomic absorption spectrometry, and the chemical forms using a high performance liquid chromatography ICP-MS. At least 14% of the beluga whales had HgT concentrations higher than the levels of observable adverse effect (6.0 mg kg −1 wet weight (ww)) in primates. The concentrations of HgT differed between brain regions; median concentrations (mg kg −1 ww) were 2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 (0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain stem. Total Hg concentrations in the cerebellum increased with age (p −1 ww) was positively associated with HgT concentration, and the percent MeHg (4 to 109%) decreased exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and temporal lobe. There was a positive association between SeT and HgT in all brain regions (p < 0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The concentration of HgT in the cerebellum was significantly associated with HgT in other organs. Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies could be used to estimate HgT concentrations in the cerebellum, which is the target organ of MeHg toxicity. - Highlights: • Mercury concentrations were highest in the temporal lobe of beluga whales. • Selenium and mercury concentrations were strongly correlated. • Total mercury concentrations in the cerebellum increased with

  3. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of neurodevelopmental disorders.

  4. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Zhigang Bai

    Full Text Available To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD and examine the relationship between brain microstructure and physiological indictors in the disease.Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years. A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients.Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM but also gray matter (GM regions, as characterized by decreased fractional anisotropy (FA and increased mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD. Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part in the patients.Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.

  5. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    Science.gov (United States)

    Michinaga, Shotaro; Koyama, Yutaka

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935

  6. Inter-subject synchronization of brain responses during natural music listening

    Science.gov (United States)

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  7. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  8. Children’s Brain Development Benefits from Longer Gestation

    Directory of Open Access Journals (Sweden)

    Elysia Poggi Davis

    2011-02-01

    Full Text Available Disruptions to brain development associated with shortened gestation place individuals at risk for the development of behavioral and psychological dysfunction throughout the lifespan. The purpose of the present study was to determine if the benefit for brain development conferred by increased gestational length exists on a continuum across the gestational age spectrum among healthy children with a stable neonatal course. Neurodevelopment was evaluated with structural magnetic resonance imaging (MRI in 100 healthy right-handed six to ten year old children born between 28 and 41 gestational weeks with a stable neonatal course. Data indicate that a longer gestational period confers an advantage for neurodevelopment. Longer duration of gestation was associated with region-specific increases in grey matter density. Further, the benefit of longer gestation for brain development was present even when only full term infants were considered. These findings demonstrate that even modest decreases in the duration of gestation can exert profound and lasting effects on neurodevelopment for both term and preterm infants and may contribute to long-term risk for health and disease.

  9. Multivoxel 1H-MR spectroscopy in evaluating perienhancement region of brain tumors

    International Nuclear Information System (INIS)

    Xu Maosheng; Pan Zhiyong; Cao Zhijian; Wang Wei; Zheng Meijun; Ni Guibao

    2003-01-01

    Objective: To investigate the predictive value of multivoxel proton magnetic resonance spectroscopy (MRS) in evaluating the metabolic changes in perienhancement area of brain tumors. Methods: Fifty-one intracranial tumor patients were recruited in this study with 24 astrocytomas [grade II(8), III(7), IV(9)], 15 metastases, and 12 meningiomas. Multivoxel proton MRS was performed on a 1.5 TMR scanner using point-resolved spectroscopy (PRESS) sequence with TE of 144 ms and TR of 1000 ms. Spectra of three voxels were taken from A) enhanced, solid part of the tumor, B) perienhancement region (PER, with T 2 hyperintense areas), and C) corresponding contralateral normal appearing white matter, and those regions were evaluated in every patients. Fitted areas in the spectrum for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid/ lactate, and myo-Inositol (mI) metabolite peaks were measured and NAA/Cho, NAA/Cr, Cho/Cho (normal), Cho/Cr (n) ratios were calculated for each voxel (0.562 cm 3 in size). One way ANOVA (SPSS 11.0 for windows, Chicago, Ill.) was used for statistical analysis in metabolic ratio's difference among the brain tumors. Results: In voxel A (MRS from the solid enhanced part of the lesion), the ratios of NAA/Cho and Cho/Cho (n) changed significantly by comparing with that of normal control brain tissues, but there was no significant difference among gliomas, metastases, and meningiomas (P>0.05). On the contrary, in voxel B of MRS from perienhancement region, NAA/Cho, Cho/Cho (n), and Cho/Cr (n) ratios revealed strong correlations between metabolite concentrations and tumor types, allowing the differentiation of glial tumors from both metastases and meningiomas (P<0.05). The mean values of PER for glial tumor, metastasis, and meningiomas were 0.89, 1.31, and 1.32 for NAA/Cho; 1.54, 1.78, and 1.87 for NAA/Cr; 1.47, 1.01, and 0.96 for Cho/Cho (n); and 1.75, 1.13 and, 1.21 for Cho/Cr (n), respectively. Conclusion: Evaluation of brain tumors and

  10. Pain sensitivity is inversely related to regional grey matter density in the brain.

    Science.gov (United States)

    Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C

    2014-03-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    International Nuclear Information System (INIS)

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra

    2006-01-01

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain

  12. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja

    2011-01-01

    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...

  13. Regional distribution of enkephalinase in rat brain by autoradiography

    International Nuclear Information System (INIS)

    Waksman, G.; Hamel, E.; Besselievre, R.; Fournie-Zaluski, M.C.; Roques, B.P.; Bouboutou, R.

    1984-01-01

    The first visualization of enkephalinase (neutral metalloendopeptidase, E.C.3.4.24.11) in rat brain was obtained by autoradiography, using a new tritiated inhibitor: [ 3 H]N-[(R, S) 3-(N-hydroxy) carboxamido-2-benzyl propanoyl]-glycine ( 3 H-HCBP-Gly). The preliminary analysis of sections clearly showed a discrete localization of enkephalinase in enkephalin enriched regions, such as caudate nucleus, putamen, globus pallidus, and substantia nigra. Moreover 3 H-HCBP-Gly binding also occured in choroid plexus and spinal cord [fr

  14. Radioreceptor assay of opioid peptides in selected canine brain regions

    International Nuclear Information System (INIS)

    Desiderio, D.M.; Takeshita, H.

    1985-01-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D- 2 ala, D- 5 leu leucine enkephalin ( 3 H-DADL) and the broader-specificity ligand 3 H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex

  15. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  16. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lumei Liu

    2016-07-01

    Full Text Available Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n=5 with varying fat (control/high and iron (control/high/low contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin-H (FtH protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P<0.05. The high-fat diet altered brain iron contents and ferritin-H (FtH protein and mRNA expressions in a regional-specific manner: 1 high-fat diet significantly decreased the brain iron content in the striatum (P<0.05, but not other regions; and 2 thalamus has a more distinct change in FtH mRNA expression compared to other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P<0.05. Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay

  17. Not single brain areas but a network is involved in language: Applications in presurgical planning.

    Science.gov (United States)

    Alemi, Razieh; Batouli, Seyed Amir Hossein; Behzad, Ebrahim; Ebrahimpoor, Mitra; Oghabian, Mohammad Ali

    2018-02-01

    Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction.

    Science.gov (United States)

    Teklezgi, Belin G; Pamreddy, Annapurna; Baijnath, Sooraj; Kruger, Hendrik G; Naicker, Tricia; Gopal, Nirmala D; Govender, Thavendran

    2018-02-14

    Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (μ)-opioid agonist and treatment with naltrexone, μ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of μ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward. © 2018 Society for the Study of Addiction.

  19. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies

    Science.gov (United States)

    Trabzuni, Daniah; Wray, Selina; Vandrovcova, Jana; Ramasamy, Adaikalavan; Walker, Robert; Smith, Colin; Luk, Connie; Gibbs, J. Raphael; Dillman, Allissa; Hernandez, Dena G.; Arepalli, Sampath; Singleton, Andrew B.; Cookson, Mark R.; Pittman, Alan M.; de Silva, Rohan; Weale, Michael E.; Hardy, John; Ryten, Mina

    2012-01-01

    The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene. PMID:22723018

  20. Brain regional networks active during the mismatch negativity vary with paradigm.

    Science.gov (United States)

    MacLean, Shannon E; Blundon, Elizabeth G; Ward, Lawrence M

    2015-08-01

    We used independent component analysis (ICA) of high-density EEG recordings coupled with single dipole fitting to identify the dominant brain regions active during the MMN in two different versions of a passive oddball paradigm: a simple, monotic, frequency-deviant paradigm and a more complex, dichotic, frequency-deviant paradigm with deviants occurring in either ear alone or in both ears at the same time. In both paradigms we found brain regional sources in the temporal and frontal cortices active during the MMN period, consistent with some previous studies. In the simpler paradigm, the scalp-potential variance during the earlier (70-120 ms) MMN was mostly accounted for by a wide array of temporal, frontal, and parietal sources. In the more complex paradigm, however, a generator in the prefrontal cortex accounted for a substantial amount of the variance of the scalp potential during the somewhat later MMN period (120-200 ms). These findings are consistent with a more nuanced view of the MMN and its generators than has been held in the past. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame.

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W; Erickson, Kirk I; Boot, Walter R; Kramer, Arthur F

    2011-08-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 h to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Gene co-expression networks shed light into diseases of brain iron accumulation.

    Science.gov (United States)

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    Science.gov (United States)

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  4. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  5. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  6. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George

    2009-01-01

    with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using......Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...

  7. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    Science.gov (United States)

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  8. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester ......Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...

  9. Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption.

    Science.gov (United States)

    Richard, Jocelyn M; Berridge, Kent C

    2013-02-15

    Corticolimbic circuits, including direct projections from prefrontal cortex to nucleus accumbens (NAc), permit top-down control of intense motivations generated by subcortical circuits. In rats, localized disruptions of glutamate signaling within medial shell of NAc generate desire or dread, anatomically organized along a rostrocaudal gradient analogous to a limbic keyboard. At rostral locations in shell, these disruptions generate appetitive eating, but at caudal locations the disruptions generate progressively fearful behaviors (distress vocalizations, escape attempts, and antipredator reactions). Here, we asked whether medial prefrontal cortex can modulate intense motivations generated by subcortical NAc disruptions. We used simultaneous microinjections in medial prefrontal cortex regions and in NAc shell to examine whether the desire or dread generated by NAc shell disruptions is modulated by activation/inhibition of three specific regions of prefrontal cortex: medial orbitofrontal cortex, infralimbic cortex (homologous to area 25 or subgenual anterior cingulate in the human), or prelimbic cortex (midventral anterior cingulate). We found that activation of medial orbitofrontal cortex biased intense bivalent motivation in an appetitive direction by amplifying generation of eating behavior by middle to caudal NAc disruptions, without altering fear. In contrast, activation of infralimbic prefrontal cortex powerfully and generally suppressed both appetitive eating and fearful behaviors generated by NAc shell disruptions. These results suggest that corticolimbic projections from discrete prefrontal regions can either bias motivational valence or generally suppress subcortically generated intense motivations of desire or fear. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Disruptions in brain networks of older fallers are associated with subsequent cognitive decline: a 12-month prospective exploratory study.

    Directory of Open Access Journals (Sweden)

    Chun Liang Hsu

    Full Text Available Cognitive impairment and impaired mobility are major public health concerns. There is growing recognition that impaired mobility is an early biomarker of cognitive impairment and dementia. The neural basis for this association is currently unclear. We propose disrupted functional connectivity as a potential mechanism. In this 12-month prospective exploratory study, we compared functional connectivity of four brain networks- the default mode network (DMN, fronto-executive network (FEN, fronto-parietal network (FPN, and the primary motor sensory network (SMN--between community-dwelling older adults with ≥ two falls in the last 12 months and their non-falling counterparts (≤ one fall in the last 12 months. Functional connectivity was examined both at rest and during a simple motor tapping task. Compared with non-fallers, fallers showed more connectivity between the DMN and FPN during right finger tapping (p  = 0.04, and significantly less functional connectivity between the SMN and FPN during rest (p ≤ 0.05. Less connectivity between the SMN and FPN during rest was significantly associated with greater decline in both cognitive function and mobility over the12-month period (r =  -0.32 and 0.33 respectively; p ≤ 0.04. Thus, a recent history of multiple falls among older adults without a diagnosis of dementia may indicate sub-clinical changes in brain function and increased risk for subsequent decline.

  11. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    Science.gov (United States)

    2010-10-01

    organization of the human brain. These techniques are being applied to study brain changes through the lifespan, developmental disorders like autism , and...Individuals with a moderate TBI were over five times as likely. Animal studies suggest that TBI may disrupt brain dopamine pathways (these pathways

  12. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics.

    Science.gov (United States)

    Scifo, Enzo; Calza, Giulio; Fuhrmann, Martin; Soliymani, Rabah; Baumann, Marc; Lalowski, Maciej

    2017-06-01

    Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.

  13. Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons.

    Science.gov (United States)

    Dennis, Emily L; Babikian, Talin; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2018-02-01

    Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.

  14. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  15. MHD phenomena in a neutral beam heated high beta, low qa disruption

    International Nuclear Information System (INIS)

    Chu, M.S.; Greene, J.M.; Kim, J.S.; Lao, L.; Snider, R.T.; Stambaugh, R.D.; Strait, E.J.; Taylor, T.S.

    1988-01-01

    A neutral beam heated, β maximizing discharge at low q a in Doublet III ending in disruption is studied and correlated with theoretical models. This discharge achieved MHD β-values close to the theoretical Troyon-Sykes-Wesson limit in its evolution. The MHD phenomena of this discharge are analysed. The sequence of events leading to the high β disruptions is hypothesized as follows: the current and pressure profiles are broadened continuously by neutral beam injection. A last sawtooth internal disruption initiates an (m/n = 2/1) island through current profile steepening around the q=2 surface. The loss of plasma through stochastic field lines slows the island rotation and enhances its interaction with the limiter. The resultant enhanced island growth through island cooling or profile change enlarged the edge stochastic region. The overlapping of the edge stochastic region with the sawtooth mixing region precipitated the pressure disruption. Thus, in our hypothetical model for this discharge, β increase by neutral beam heating does not directly cause the disruption but ushers the plasma indirectly towards it through the profile broadening process and contributes to the destabilization of the 1/1 and 2/1 tearing modes. (author). 26 refs, 12 figs

  16. Types of traumatic brain injury and regional cerebral blood flow assessed by [sup 99m]Tc-HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Yamaura, Akira; Isobe, Katsumi [Chiba Univ. (Japan). School of Medicine

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with [sup 99m]technetium-hexamethyl propyleneamine oxime (HMPAO). Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated: (1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, (2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and (3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient. (author).

  17. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  18. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  19. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  20. Radioreceptor assay of opioid peptides in selected canine brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Desiderio, D.M.; Takeshita, H.

    1985-09-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D-/sup 2/ala, D-/sup 5/leu leucine enkephalin (/sup 3/H-DADL) and the broader-specificity ligand /sup 3/H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex.

  1. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 23 patients with brain tumors using the 133Xe intra-carotid injection method and a 254 channel gamma camera. The glioblastomas (4) and astrocytomas (4) all showed hyperemia in the tumor and tumor-near region. This was also seen in several...... meningiomas (4 of 7 cases) in which most of the tumor itself did not receive any isotope. Brain metastases (6) usually had a low flow in the tumor and tumor-near region. The glioblastomas tended to show markedly bending 133Xe wash-out curves pointing to pronounced heterogeneity of blood flow. Most of the flow...... maps, regardless of the tumor types, showed widespread abnormalities of rCBF not only in the tumor region but also in the region remote from the tumor. It is concluded that measurement of rCBF cannot yield accurate differential diagnostic information, but that the widespread derangement of the brain...

  2. Learning from our failures in blood-brain permeability: what can be done for new drug discovery?

    Science.gov (United States)

    Martel, Sylvain

    2015-03-01

    Many existing pharmaceuticals are rendered ineffective in the treatment of cerebral diseases due to a permeability barrier well known as the blood-brain barrier (BBB). Such barrier between the blood within brain capillaries and the extracellular fluid in brain tissue has motivated several approaches aimed at delivering therapeutics to the brain. These approaches rely on strategies that can be classified as molecular modifications, the use of BBB bypassing pathways, and BBB disruptions. Although several of these approaches that have been investigated so far show promising results, none has addressed the optimization of the ratio of the dose of the drug molecules that contributes to the therapeutic effects. As such, the extensive research efforts, such as prioritizing the enhancement of the BBB permeability alone is likely to fail to provide the best therapeutic effects for a given dose if prior systemic circulation is not avoided while enhancing the spatial targeting only to regions of the brain that need treatment. Hence, new therapeutics for the brain could be synthesized to take advantage of recent technologies for non-systemic delivery and spatially targeted brain uptake.

  3. Age-associated changes in rich-club organisation in autistic and neurotypical human brains.

    Science.gov (United States)

    Watanabe, Takamitsu; Rees, Geraint

    2015-11-05

    Macroscopic structural networks in the human brain have a rich-club architecture comprising both highly inter-connected central regions and sparsely connected peripheral regions. Recent studies show that disruption of this functionally efficient organisation is associated with several psychiatric disorders. However, despite increasing attention to this network property, whether age-associated changes in rich-club organisation occur during human adolescence remains unclear. Here, analysing a publicly shared diffusion tensor imaging dataset, we found that, during adolescence, brains of typically developing (TD) individuals showed increases in rich-club organisation and inferred network functionality, whereas individuals with autism spectrum disorders (ASD) did not. These differences between TD and ASD groups were statistically significant for both structural and functional properties. Moreover, this typical age-related changes in rich-club organisation were characterised by progressive involvement of the right anterior insula. In contrast, in ASD individuals, did not show typical increases in grey matter volume, and this relative anatomical immaturity was correlated with the severity of ASD social symptoms. These results provide evidence that rich-club architecture is one of the bases of functionally efficient brain networks underpinning complex cognitive functions in adult human brains. Furthermore, our findings suggest that immature rich-club organisation might be associated with some neurodevelopmental disorders.

  4. Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain.

    Science.gov (United States)

    Zhang, Huiwei; Wu, Ping; Ziegler, Sibylle I; Guan, Yihui; Wang, Yuetao; Ge, Jingjie; Schwaiger, Markus; Huang, Sung-Cheng; Zuo, Chuantao; Förster, Stefan; Shi, Kuangyu

    2017-02-01

    In brain 18 F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. 127 female and 128 male healthy subjects (age: 20 to 79) with brain 18 F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18 F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R 2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both

  5. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T; Ali, M M; Chandra, S V

    1985-01-01

    Effect of cadmium treatment on brain lipids, lipid peroxidation and distribution of Zn, Cu and Fe in rat brain regions was investigated. Adult male rats were exposed to Cd (100 ppm Cd as cadmium acetate) in drinking water for 30 days. The Cd exposure resulted in a significant decrease in the phospholipid content and an increase in the lipid peroxidation in the cerebral cortex and cerebellum. The total lipid content was not affected in any of the regions but a significant decrease in cholesterol and cerebroside contents were observed only in the cerebral cortex. A positive correlation between the increase in lipid peroxidation and decrease in the phospholipid content in the cerebral cortex and cerebellum was observed. A maximum accumulation of Cd occurred in the cerebral cortex. The Cu and Fe contents were significantly increased but the Zn levels decreased in the Cd-treated rats in all but the midbrain region. Results suggest that the increased peroxidation decomposition of structural lipids and the altered distribution of the essential trace metals in brain may play a significant role in Cd-induced neurotoxicity. 27 references, 2 tables.

  6. Stimulatory effect of the D2 antagonist sulpiride on glucose utilization in dopaminergic regions of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Pizzolato, G; Soncrant, T T; Larson, D M; Rapoport, S I

    1987-08-01

    Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic (/sup 14/C)2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an atypical neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the typical neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.

  7. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity

    Directory of Open Access Journals (Sweden)

    Sarah M. Rajtmajer

    2015-07-01

    Full Text Available Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs that do not require investigator supervision and permit examination of change in networks over time (or plasticity. Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g. choice of seed-region, anatomical landmarks. These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP, which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity. To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.

  8. Lutein Is Differentially Deposited across Brain Regions following Formula or Breast Feeding of Infant Rhesus Macaques.

    Science.gov (United States)

    Jeon, Sookyoung; Ranard, Katherine M; Neuringer, Martha; Johnson, Emily E; Renner, Lauren; Kuchan, Matthew J; Pereira, Suzette L; Johnson, Elizabeth J; Erdman, John W

    2018-01-01

    Lutein, a yellow xanthophyll, selectively accumulates in primate retina and brain. Lutein may play a critical role in neural and retinal development, but few studies have investigated the impact of dietary source on its bioaccumulation in infants. We explored the bioaccumulation of lutein in infant rhesus macaques following breastfeeding or formula-feeding. From birth to 6 mo of age, male and female rhesus macaques (Macaca mulatta) were either breastfed (BF) (n = 8), fed a formula supplemented with lutein, zeaxanthin, β-carotene, and lycopene (237, 19.0, 74.2, and 338 nmol/kg, supplemented formula-fed; SF) (n = 8), or fed a formula with low amounts of these carotenoids (38.6, 2.3, 21.5, and 0 nmol/kg, unsupplemented formula-fed; UF) (n = 7). The concentrations of carotenoids in serum and tissues were analyzed by HPLC. At 6 mo of age, the BF group exhibited significantly higher lutein concentrations in serum, all brain regions, macular and peripheral retina, adipose tissue, liver, and other tissues compared to both formula-fed groups (P Lutein concentrations were higher in the SF group than in the UF group in serum and all tissues, with the exception of macular retina. Lutein was differentially distributed across brain areas, with the highest concentrations in the occipital cortex, regardless of the diet. Zeaxanthin was present in all brain regions but only in the BF infants; it was present in both retinal regions in all groups but was significantly enhanced in BF infants compared to either formula group (P lutein concentrations compared to unsupplemented formula, concentrations were still well below those in BF infants. Regardless of diet, occipital cortex showed selectively higher lutein deposition than other brain regions, suggesting lutein's role in visual processing in early life. © 2018 American Society for Nutrition. All rights reserved.

  9. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    2015-04-01

    Full Text Available Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.

  10. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  11. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene®)

    Science.gov (United States)

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5–2 ppm acephate. The regions exhibited cholinesterase recovery at 2–16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: 1) ChE resistance threshold, 2) ChE compensation threshold, and 3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  12. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellu...

  14. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    International Nuclear Information System (INIS)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena; Munck, Petriina; Haataja, Leena

    2011-01-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  15. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  16. Fiber tracking for brain tumor

    International Nuclear Information System (INIS)

    Yamada, Kei; Nakamura, Hisao; Ito, Hirotoshi; Tanaka, Osamu; Kubota, Takao; Yuen, Sachiko; Kizu, Osamu; Nishimura, Tsunehiko

    2003-01-01

    The purpose of this study was to validate an innovative scanning method for patients diagnosed with brain tumors. Using a 1.5 Tesla whole body magnetic resonance (MR) imager, 23 patients with brain tumors were scanned. The recorded data points of the diffusion-tensor imaging (DTI) sequences were 128 x 37 with the parallel imaging technique. The parallel imaging technique was equivalent to a true resolution of 128 x 74. The scan parameters were repetition time (TR)=6000, echo time (TE)=88, 6 averaging with a b-value of 800 s/mm 2 . The total scan time for DTI was 4 minutes and 24 seconds. DTI scans and subsequent fiber tracking were successfully applied in all cases. All fiber tracts on the contralesional side were visualized in the expected locations. Fiber tracts on the lesional side had varying degrees of displacement, disruption, or a combination of displacement and disruption due to the tumor. Tract disruption resulted from direct tumor involvement, compression upon the tract, and vasogenic edema surrounding the tumor. This DTI method using a parallel imaging technique allows for clinically feasible fiber tracking that can be incorporated into a routine MR examination. (author)

  17. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: Preliminary results

    Science.gov (United States)

    Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.

    2013-01-01

    Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535

  18. Improving Brain Magnetic Resonance Image (MRI Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Directory of Open Access Journals (Sweden)

    Javadpour A.

    2016-06-01

    Full Text Available Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective: This study describes a new method for brain Magnetic Resonance Image (MRI segmentation via a novel algorithm based on genetic and regional growth. Methods: Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results: By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion: The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases.

  19. Short- and long-term health consequences of sleep disruption

    Directory of Open Access Journals (Sweden)

    Medic G

    2017-05-01

    Full Text Available Goran Medic,1,2 Micheline Wille,1 Michiel EH Hemels1 1Market Access, Horizon Pharma B.V., Utrecht, 2Unit of Pharmacoepidemiology & Pharmacoeconomics, Department of Pharmacy, University of Groningen, Groningen, The Netherlands Abstract: Sleep plays a vital role in brain function and systemic physiology across many body systems. Problems with sleep are widely prevalent and include deficits in quantity and quality of sleep; sleep problems that impact the continuity of sleep are collectively referred to as sleep disruptions. Numerous factors contribute to sleep disruption, ranging from lifestyle and environmental factors to sleep disorders and other medical conditions. Sleep disruptions have substantial adverse short- and long-term health consequences. A literature search was conducted to provide a nonsystematic review of these health consequences (this review was designed to be nonsystematic to better focus on the topics of interest due to the myriad parameters affected by sleep. Sleep disruption is associated with increased activity of the sympathetic nervous system and hypothalamic–pituitary–adrenal axis, metabolic effects, changes in circadian rhythms, and proinflammatory responses. In otherwise healthy adults, short-term consequences of sleep disruption include increased stress responsivity, somatic pain, reduced quality of life, emotional distress and mood disorders, and cognitive, memory, and performance deficits. For adolescents, psychosocial health, school performance, and risk-taking behaviors are impacted by sleep disruption. Behavioral problems and cognitive functioning are associated with sleep disruption in children. Long-term consequences of sleep disruption in otherwise healthy individuals include hypertension, dyslipidemia, cardiovascular disease, weight-related issues, metabolic syndrome, type 2 diabetes mellitus, and colorectal cancer. All-cause mortality is also increased in men with sleep disturbances. For those with

  20. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    Science.gov (United States)

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  1. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, R. H.; Suh, T. S.; Chung, Y. A.

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  2. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc- HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9 9m Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99m Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  3. Does ECT alter brain structure?

    Science.gov (United States)

    Devanand, D P; Dwork, A J; Hutchinson, E R; Bolwig, T G; Sackeim, H A

    1994-07-01

    The purpose of this study was to evaluate whether ECT causes structural brain damage. The literature review covered the following areas: cognitive side effects, structural brain imaging, autopsies of patients who had received ECT, post-mortem studies of epileptic subjects, animal studies of electroconvulsive shock (ECS) and epilepsy, and the neuropathological effects of the passage of electricity, heat generation, and blood-brain barrier disruption. ECT-induced cognitive deficits are transient, although spotty memory loss may persist for events immediately surrounding the ECT course. Prospective computerized tomography and magnetic resonance imaging studies show no evidence of ECT-induced structural changes. Some early human autopsy case reports from the unmodified ECT era reported cerebrovascular lesions that were due to agonal changes or undiagnosed disease. In animal ECS studies that used a stimulus intensity and frequency comparable to human ECT, no neuronal loss was seen when appropriate control animals, blind ratings, and perfusion fixation techniques were employed. Controlled studies using quantitative cell counts have failed to show neuronal loss even after prolonged courses of ECS. Several well-controlled studies have demonstrated that neuronal loss occurs only after 1.5 to 2 hours of continuous seizure activity in primates, and adequate muscle paralysis and oxygenation further delay these changes. These conditions are not approached during ECT. Other findings indicate that the passage of electricity, thermal effects, and the transient disruption of the blood-brain barrier during ECS do not result in structural brain damage. There is no credible evidence that ECT causes structural brain damage.

  4. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    Science.gov (United States)

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights

  5. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome

    Science.gov (United States)

    Becerra, Lino; Sava, Simona; Simons, Laura E.; Drosos, Athena M.; Sethna, Navil; Berde, Charles; Lebel, Alyssa A.; Borsook, David

    2014-01-01

    Pediatric complex regional pain syndrome (P-CRPS) offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks) but intensive physical and psychological treatment program, and compared them to matched healthy controls. Differences in intrinsic brain networks were observed in P-CRPS compared to controls before treatment (disease state) with the most prominent differences in the fronto-parietal, salience, default mode, central executive, and sensorimotor networks. Following treatment, behavioral measures demonstrated a reduction of symptoms and improvement of physical state (pain levels and motor functioning). Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects). These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects. PMID:25379449

  6. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Lino Becerra

    2014-01-01

    Full Text Available Pediatric complex regional pain syndrome (P-CRPS offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks but intensive physical and psychological treatment program, and compared them to matched healthy controls. Differences in intrinsic brain networks were observed in P-CRPS compared to controls before treatment (disease state with the most prominent differences in the fronto-parietal, salience, default mode, central executive, and sensorimotor networks. Following treatment, behavioral measures demonstrated a reduction of symptoms and improvement of physical state (pain levels and motor functioning. Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects. These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects.

  7. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    Science.gov (United States)

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Regional brain changes occurring during disobedience to "experts" in financial decision-making.

    Directory of Open Access Journals (Sweden)

    Victoria Y M Suen

    Full Text Available It is well recognized that individuals follow "Expert" advice, even when flawed and offers no advantage, and sometimes leads to disadvantages. The neurobiology underlying this is uncertain, and in particular there is an incomplete understanding of which brain regions are most involved when individuals chose to disobey an expert. To study this we examined functional magnetic resonance imaging (fMRI differences during an investment game where subjects received differentially credible investment advice. Participants (n = 42; 32 males played an investment game, in which they could Buy or Not Buy a sequence of stocks. The better they did, the more money they made. Participants received either "Expert" advice or "Peer" advice. Those receiving Expert advice were told the advice came from a certified financial "Expert". Those receiving Peer Advice were told the advice was that of the student administering the scans, who deliberately dressed and acted casually. Both streams of advice were predetermined and identical. The advice was scripted to be helpful initially, but progressively worse as the task continued, becoming 100% wrong by the end of the task. Subjects receiving Expert Advice followed the advice significantly longer on average, even though this was progressively worse advice. Thus, following Expert advice had poorer consequences for individuals, but this did not dissuade them from continuing to follow the advice. In contrast, when subjects disobeyed Expert advice they exhibited significant anterior cingulate cortex (ACC and superior frontal gyrus activation relative to those disobeying Peer advice. These findings may suggest that in subjects who defy authority, or believe they are doing so (in this case by disobeying an "Expert" there is increased activation of these two brain regions. This may have relevance to several areas of behavior, and the potential role of these two brain regions in regard to disobedience behavior requires further

  9. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    OpenAIRE

    Hoekzema, Elseline; Schagen, Sebastian E. E.; Kreukels, Baudewijntje P. C.; Veltman, Dick J.; Cohen-Kettenis, Peggy T.; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-01-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was o...

  10. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  11. Toward Developmental Connectomics of the Human Brain

    OpenAIRE

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorder...

  12. Towards Developmental Connectomics of the Human Brain

    OpenAIRE

    Miao eCao; Hao eHuang; Hao eHuang; Yun ePeng; Qi eDong; Yong eHe

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders...

  13. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development.

    Science.gov (United States)

    Ibarrola, N; Rodríguez-Peña, A

    1997-03-28

    To assess the role of thyroid hormone on myelin gene expression, we have studied the effect of hypothyroidism on the mRNA steady state levels for the major myelin protein genes: myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in different rat brain regions, during the first postnatal month. We found that hypothyroidism reduces the levels of every myelin protein transcript, with striking differences between the different brain regions. Thus, in the more caudal regions, the effect of hypothyroidism was extremely modest, being only evident at the earlier stages of myelination. In contrast, in the striatum and the cerebral cortex the important decrease in the myelin protein transcripts is maintained beyond the first postnatal month. Therefore, thyroid hormone modulates in a synchronous fashion the expression of the myelin genes and the length of its effect depends on the brain region. On the other hand, hyperthyroidism leads to an increase of the major myelin protein transcripts above control values. Finally, lack of thyroid hormone does not change the expression of the oligodendrocyte progenitor-specific gene, the platelet derived growth factor receptor alpha.

  14. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    Science.gov (United States)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  15. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  16. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  17. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres

    International Nuclear Information System (INIS)

    Yamakami, I.; McIntosh, T.K.

    1989-01-01

    To clarify the effect of experimental brain injury on regional CBF (rCBF), repeated rCBF measurements were performed using radiolabeled microspheres in rats subjected to fluid-percussion traumatic brain injury. Three consecutive microsphere injections in six uninjured control rats substantiated that the procedure induces no significant changes in hemodynamic variables or rCBF. Animals were subjected to left parietal fluid-percussion brain injury of moderate severity (2.1-2.4 atm) and rCBF values were determined (a) prior to injury and 15 min and 1 h following injury (n = 7); and (b) prior to injury and 30 min and 2 h following injury (n = 7). At 15 min post injury, there was a profound reduction of rCBF in all brain regions studied (p less than 0.01). Although rCBF in the hindbrain had recovered to near-normal by 30 min post injury, rCBF in both injured and contralateral (uninjured) forebrain areas remained significantly suppressed up to 1 h post injury. At 2 h post injury, recovery of rCBF to near-normal values was observed in all brain regions except the focal area of injury (left parietal cortex) where rCBF remained significantly depressed (p less than 0.01). This prolonged focal oligemia at the injury site was associated with the development of reproducible cystic necrosis in the left parietotemporal cortex at 4 weeks post injury. Our results demonstrate that acute changes in rCBF occur following experimental traumatic brain injury in rats and that rCBF remains significantly depressed up to 2 h post injury in the area circumscribing the trauma site

  18. Aberrant brain regional homogeneity and functional connectivity in middle-aged T2DM patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Daihong Liu

    2016-09-01

    Full Text Available Type 2 diabetes mellitus (T2DM has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo and functional connectivity (FC analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus and lower ReHo in right fusiform gyrus, right precentral gyrus and right medial orbit of the superior frontal gyrus. Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test forward scores revealed significant correlations with the ReHo values of the right precentral gyrus (ρ = 0.527, p = 0.014 and FC between the right fusiform gyrus and middle temporal gyrus (ρ = -0.437, p = 0.048. Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM-associated brain

  19. Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Veeraiah, Pandichelvam; Subramaniam, Vaidyanathan; Patel, Anant Bahadur

    2014-03-01

    This study investigates the effects of ethanol on neuronal and astroglial metabolism using (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of [1,6-(13)C2]/[1-(13)C]glucose or [2-(13)C]acetate, respectively. A three-compartment metabolic model was fitted to the (13)C turnover of GluC3 , GluC4, GABAC 2, GABAC 3, AspC3 , and GlnC4 from [1,6-(13)C2 ]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady-state [2-(13)C]acetate experiment and used as constraints during the metabolic model fitting. (1)H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 μmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2-(13)C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain. Depletion of ethanol and its effect on brain functions were measured using (1)H and (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of (13)C-labeled substrates. Ethanol depletion from brain follows zero order kinetics. Ethanol perturbs level of glutamate, and the excitatory and inhibitory activity in mice brain. © 2013 International Society for Neurochemistry.

  20. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Science.gov (United States)

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of disruptions on plasma-facing components

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Bourham, M.A.; Tucker, E.C.

    1995-01-01

    Erosion of plasma-facing components during disruptions is a limiting factor in the design of large tokamaks like ITER. During a disruption, much of the stored thermal energy of the plasma will be dumped onto divertor plates, resulting in local heat fluxes, which may exceed 100 GW/m 2 over a period of about 0.1--1.0 msec. Melted and/or vaporized material is produced which is redistributed in the divertor region. Simulation of disruption damage is summarized from code results and from experimental exposure of materials to high heat-flux plasmas in plasma guns. In the US several codes have been used to predict both melt/vaporization and heat transfer on surfaces as well as energy and momentum transport in the vapor/plasma shield produced at the surface

  2. Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas)

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Sonja K., E-mail: ostertag@unbc.ca [Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 (Canada); Stern, Gary A., E-mail: Gary.Stern@dfo-mpo.gc.ca [Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, R3T 2N6 (Canada); Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Wang, Feiyue, E-mail: feiyue.wang@ad.umanitoba.ca [Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Lemes, Marcos, E-mail: Marcos.lemes@ad.umanitoba.ca [Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Chan, Hing Man, E-mail: laurie.chan@uottawa.ca [Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, 1N 6N5 (Canada)

    2013-07-01

    The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood. We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the eastern Beaufort Sea, Canada, and measured total Hg (HgT) and total selenium (SeT) by inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer or cold vapor atomic absorption spectrometry, and the chemical forms using a high performance liquid chromatography ICP-MS. At least 14% of the beluga whales had HgT concentrations higher than the levels of observable adverse effect (6.0 mg kg{sup −1} wet weight (ww)) in primates. The concentrations of HgT differed between brain regions; median concentrations (mg kg{sup −1} ww) were 2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 (0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain stem. Total Hg concentrations in the cerebellum increased with age (p < 0.05). Between 35 and 45% of HgT was water-soluble, of which, 32 to 41% was methyl mercury (MeHg) and 59 to 68% was labile inorganic Hg. The concentration of MeHg (range: 0.03 to 1.05 mg kg{sup −1} ww) was positively associated with HgT concentration, and the percent MeHg (4 to 109%) decreased exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and temporal lobe. There was a positive association between SeT and HgT in all brain regions (p < 0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The concentration of HgT in the cerebellum was significantly associated with HgT in other organs. Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies could be used to estimate HgT concentrations in the cerebellum, which is the target organ of MeHg toxicity. - Highlights:

  3. Disruptive instabilities in the TBR-1

    International Nuclear Information System (INIS)

    Vannucci, A.

    1987-01-01

    The disruptive instabilities in the TBR-1 tokamak of the Plasma Physics Laboratory of the Institute of Physics-USP were investigated by using surface-barrier detectors and Mirnov magnetic coils, measuring soft X-ray emited by the plasma and poloidal magnetic fluctuations, respectively. Minor and major disruptions, as well sawteeth oscillations, were identified at the TBR-1 discharges, and their main characteristics were studied. Comparing the measured period of the internal disruptions (sawteeth) with the ones expected from scaling laws, good agreements is reached. The measured sawteeth crashes agree with the values expected from the Kadomtsev's model. External helical fields (CHR), corresponding to m/n=2/1 helicity were produced in order to inhibit or criate disruptive instabilities. A strong weakening of the mhd activity, present in the TBR-1 discharges, was clearly detected. The soft X-ray detection system, projected and constructed for this work, was used to obtain the electron temperatures of regions close to the center of the plasma column (T(r=0) ∼ 205 eV and T(r ± 3,8) ∼ 85 eV), using the absorbing foils method. Using the Spitzer formula, Z sub (eff) values were also obtained. (author) [pt

  4. Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry

    International Nuclear Information System (INIS)

    Davies, R.R.; Williams, Guy B.; Scahill, Victoria L.; Graham, Kim S.; Graham, Andrew; Hodges, John R.

    2009-01-01

    We aimed to devise a rating method for key frontal and temporal brain regions validated against quantitative volumetric methods and applicable to a range of dementia syndromes. Four standardised coronal MR images from 36 subjects encompassing controls and cases with Alzheimer's disease (AD) and frontotemporal dementia (FTD) were used. After initial pilot studies, 15 regions produced good intra- and inter-rater reliability. We then validated the ratings against manual volumetry and voxel-based morphometry (VBM) and compared ratings across the subject groups. Validation against both manual volumetry (for both frontal and temporal lobes), and against whole brain VBM, showed good correlation with visual ratings for the majority of the brain regions. Comparison of rating scores across disease groups showed involvement of the anterior fusiform gyrus, anterior hippocampus and temporal pole in semantic dementia, while anterior cingulate and orbitofrontal regions were involved in behavioural variant FTD. This simple visual rating can be used as an alternative to highly technical methods of quantification, and may be superior when dealing with single cases or small groups. (orig.)

  5. Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R.R.; Williams, Guy B. [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Scahill, Victoria L.; Graham, Kim S. [Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Graham, Andrew [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Hodges, John R. [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Cardiff University, MRC Cognition and Brain Sciences Unit, Cambridge and Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff (United Kingdom); Prince of Wales Medical Research Institute, Cognitive Neurology, Sydney, NSW (Australia)

    2009-08-15

    We aimed to devise a rating method for key frontal and temporal brain regions validated against quantitative volumetric methods and applicable to a range of dementia syndromes. Four standardised coronal MR images from 36 subjects encompassing controls and cases with Alzheimer's disease (AD) and frontotemporal dementia (FTD) were used. After initial pilot studies, 15 regions produced good intra- and inter-rater reliability. We then validated the ratings against manual volumetry and voxel-based morphometry (VBM) and compared ratings across the subject groups. Validation against both manual volumetry (for both frontal and temporal lobes), and against whole brain VBM, showed good correlation with visual ratings for the majority of the brain regions. Comparison of rating scores across disease groups showed involvement of the anterior fusiform gyrus, anterior hippocampus and temporal pole in semantic dementia, while anterior cingulate and orbitofrontal regions were involved in behavioural variant FTD. This simple visual rating can be used as an alternative to highly technical methods of quantification, and may be superior when dealing with single cases or small groups. (orig.)

  6. Geographic variation in tissue accumulation of endocrine disrupting compounds (EDCs) in grazing sheep

    Energy Technology Data Exchange (ETDEWEB)

    Rhind, S.M., E-mail: s.rhind@macaulay.ac.u [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Kyle, C.E.; Mackie, C.; Yates, K. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Duff, E.I. [Biomathematics and Statistics, Scotland, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)

    2011-02-15

    Muscle tissue was collected from ewes and lambs derived from farms throughout Scotland and sample concentrations of five endocrine disrupting compound groups were determined. Farms of origin were categorised according to geographic region. There were few statistically-significant differences with region or distance from cities. However, the magnitude of the difference between the highest and lowest mean values in ewe muscle from different regions exceeded 30% for 13 of the 15 compounds that were consistently detected in muscle, with animals derived from the industrialised region having the highest mean values for 11 of the 13 compounds. A less marked trend was apparent in the lamb muscle (8 of 13 highest were in the industrialised region). The physiological effects of such small differences in exposure to mixtures of pollutants remain to be determined. - Research highlights: Muscle tissue collected from sheep from different regions of Scotland. Concentrations of selected endocrine disrupting compounds measured. Few significant differences in concentrations, with region. Highest concentrations in sheep from industrialised areas and near to cities. - Muscle concentrations of few of the endocrine disrupting compounds, measured in the muscle of sheep from regions exposed to greater pollution, were elevated.

  7. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    Science.gov (United States)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  8. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  9. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  10. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Assunção Salustiano, Eugênia Maria; Yen, Philippe Wong; Soliman, Ahmed; Vaillancourt, Cathy

    2016-01-01

    Melatonin is an important neuroprotective factor and its receptors are expressed in the fetal brain. During normal pregnancy, maternal melatonin level increases progressively until term and is highly transferred to the fetus, with an important role in brain formation and differentiation. Maternal melatonin provides the first circadian signal to the fetus. This indolamine is also produced de novo and plays a protective role in the human placenta. In pregnancy disorders, both maternal and placental melatonin levels are decreased. Alteration in maternal melatonin level has been associated with disrupted brain programming with long-term effects. Melatonin has strong antioxidant protective effects directly and indirectly via the activation of its receptors. The fetal brain is highly susceptible to oxygenation variation and oxidative stress that can lead to neuronal development disruption. Based on that, several approaches have been tested as a treatment in case of pregnancy disorders and melatonin, through its neuroprotective effect, has been recently accepted against fetal brain injury. This review provides an overview about the protective effects of melatonin during pregnancy and on fetal brain development.

  11. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  12. The polygenic risk for bipolar disorder influences brain regional function relating to visual and default state processing of emotional information.

    Science.gov (United States)

    Dima, Danai; de Jong, Simone; Breen, Gerome; Frangou, Sophia

    2016-01-01

    Genome-wise association studies have identified a number of common single-nucleotide polymorphisms (SNPs), each of small effect, associated with risk to bipolar disorder (BD). Several risk-conferring SNPs have been individually shown to influence regional brain activation thus linking genetic risk for BD to altered brain function. The current study examined whether the polygenic risk score method, which models the cumulative load of all known risk-conferring SNPs, may be useful in the identification of brain regions whose function may be related to the polygenic architecture of BD. We calculated the individual polygenic risk score for BD (PGR-BD) in forty-one patients with the disorder, twenty-five unaffected first-degree relatives and forty-six unrelated healthy controls using the most recent Psychiatric Genomics Consortium data. Functional magnetic resonance imaging was used to define task-related brain activation patterns in response to facial affect and working memory processing. We found significant effects of the PGR-BD score on task-related activation irrespective of diagnostic group. There was a negative association between the PGR-BD score and activation in the visual association cortex during facial affect processing. In contrast, the PGR-BD score was associated with failure to deactivate the ventromedial prefrontal region of the default mode network during working memory processing. These results are consistent with the threshold-liability model of BD, and demonstrate the usefulness of the PGR-BD score in identifying brain functional alternations associated with vulnerability to BD. Additionally, our findings suggest that the polygenic architecture of BD is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions.

  13. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC

  14. A single high dose of escitalopram disrupts sensory gating and habituation, but not sensorimotor gating in healthy volunteers

    DEFF Research Database (Denmark)

    Oranje, Bob; Wienberg, Malene; Glenthøj, Birte Yding

    2011-01-01

    Early mechanisms to limit the input of sensory information to higher brain areas are important for a healthy individual. In previous studies, we found that a low dose of 10mg escitalopram (SSRI) disrupts habituation, without affecting sensory and sensorimotor gating in healthy volunteers. In the ......Early mechanisms to limit the input of sensory information to higher brain areas are important for a healthy individual. In previous studies, we found that a low dose of 10mg escitalopram (SSRI) disrupts habituation, without affecting sensory and sensorimotor gating in healthy volunteers....... In the current study a higher dose of 15mg was used. The hypothesis was that this higher dose of escitalopram would not only disrupt habituation, but also sensory and sensorimotor gating. Twenty healthy male volunteers received either placebo or 15mg escitalopram, after which they were tested in a P50...... suppression, and a habituation and prepulse inhibition (PPI) of the startle reflex paradigm. Escitalopram significantly decreased P50 suppression and habituation, but had no effect on PPI. The results indicate that habituation and sensory gating are disrupted by increased serotonergic activity, while...

  15. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain.

    Science.gov (United States)

    Gerlofs-Nijland, Miriam E; van Berlo, Damien; Cassee, Flemming R; Schins, Roel P F; Wang, Kate; Campbell, Arezoo

    2010-05-17

    The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM), present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP), derived from a specific source (diesel engine), and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE) using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1 alpha (IL-1alpha) were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-kappaB) and (AP-1) was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-alpha and TNF Receptor-subtype I (TNF-RI). Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution, however, it is valuable to assess if and to

  16. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain

    Directory of Open Access Journals (Sweden)

    Wang Kate

    2010-05-01

    Full Text Available Abstract Background The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM, present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP, derived from a specific source (diesel engine, and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Results Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α and interleukin-1 alpha (IL-1α were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-κB and (AP-1 was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-α and TNF Receptor-subtype I (TNF-RI. Conclusions Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution

  17. Regional Differences in Brain Volume Predict the Acquisition of Skill in a Complex Real-Time Strategy Videogame

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.

    2011-01-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…

  18. Congenital amusia persists in the developing brain after daily music listening.

    Science.gov (United States)

    Mignault Goulet, Geneviève; Moreau, Patricia; Robitaille, Nicolas; Peretz, Isabelle

    2012-01-01

    Congenital amusia is a neurodevelopmental disorder that affects about 3% of the adult population. Adults experiencing this musical disorder in the absence of macroscopically visible brain injury are described as cases of congenital amusia under the assumption that the musical deficits have been present from birth. Here, we show that this disorder can be expressed in the developing brain. We found that (10-13 year-old) children exhibit a marked deficit in the detection of fine-grained pitch differences in both musical and acoustical context in comparison to their normally developing peers comparable in age and general intelligence. This behavioral deficit could be traced down to their abnormal P300 brain responses to the detection of subtle pitch changes. The altered pattern of electrical activity does not seem to arise from an anomalous functioning of the auditory cortex, because all early components of the brain potentials, the N100, the MMN, and the P200 appear normal. Rather, the brain and behavioral measures point to disrupted information propagation from the auditory cortex to other cortical regions. Furthermore, the behavioral and neural manifestations of the disorder remained unchanged after 4 weeks of daily musical listening. These results show that congenital amusia can be detected in childhood despite regular musical exposure and normal intellectual functioning.

  19. Training of verbal creativity modulates brain activity in regions associated with language‐ and memory‐related demands

    Science.gov (United States)

    Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C.; Papousek, Ilona; Weiss, Elisabeth M.

    2015-01-01

    Abstract This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3‐week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty‐three participants were tested three times (psychometric tests and fMRI assessment) with an intertest‐interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time‐delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole‐brain voxel‐wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well‐known creativity‐related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. Hum Brain Mapp 36:4104–4115, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178653

  20. Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    Full Text Available Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34% of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03 than that of contralateral normal brain (mean= 1.00±0.03; p<0.005. Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05. The rCBV data were concordant with histological analysis of microvascular density (MVD. Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value.