WorldWideScience

Sample records for brain neural basis

  1. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems

    Directory of Open Access Journals (Sweden)

    Jun Kohyama

    2016-01-01

    Full Text Available There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  2. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    Science.gov (United States)

    Kohyama, Jun

    2016-01-29

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  3. Working Memory after Traumatic Brain Injury: The Neural Basis of Improved Performance with Methylphenidate.

    Science.gov (United States)

    Manktelow, Anne E; Menon, David K; Sahakian, Barbara J; Stamatakis, Emmanuel A

    2017-01-01

    Traumatic brain injury (TBI) often results in cognitive impairments for patients. The aim of this proof of concept study was to establish the nature of abnormalities, in terms of activity and connectivity, in the working memory network of TBI patients and how these relate to compromised behavioral outcomes. Further, this study examined the neural correlates of working memory improvement following the administration of methylphenidate. We report behavioral, functional and structural MRI data from a group of 15 Healthy Controls (HC) and a group of 15 TBI patients, acquired during the execution of the N-back task. The patients were studied on two occasions after the administration of either placebo or 30 mg of methylphenidate. Between group tests revealed a significant difference in performance when HCs were compared to TBI patients on placebo [ F (1, 28) = 4.426, p performance demonstrated the most benefit from methylphenidate. Changes in the TBI patient activation levels in the Left Cerebellum significantly and positively correlated with changes in performance ( r = 0.509, df = 13, p = 0.05). Whole-brain connectivity analysis using the Left Cerebellum as a seed revealed widespread negative interactions between the Left Cerebellum and parietal and frontal cortices as well as subcortical areas. Neither the TBI group on methylphenidate nor the HC group demonstrated any significant negative interactions. Our findings indicate that (a) TBI significantly reduces the levels of activation and connectivity strength between key areas of the working memory network and (b) Methylphenidate improves the cognitive outcomes on a working memory task. Therefore, we conclude that methylphenidate may render the working memory network in a TBI group more consistent with that of an intact working memory network.

  4. Neural basis for brain responses to TV commercials: a high-resolution EEG study.

    Science.gov (United States)

    Astolfi, Laura; De Vico Fallani, F; Cincotti, F; Mattia, D; Bianchi, L; Marciani, M G; Salinari, S; Colosimo, A; Tocci, A; Soranzo, R; Babiloni, F

    2008-12-01

    We investigated brain activity during the observation of TV commercials by tracking the cortical activity and the functional connectivity changes in normal subjects. The aim was to elucidate if the TV commercials that were remembered by the subjects several days after their first observation elicited particular brain activity and connectivity compared with those generated during the observation of TV commercials that were quickly forgotten. High-resolution electroencephalogram (EEG) recordings were performed in a group of healthy subjects and the cortical activity during the observation of TV commercials was evaluated in several regions of interest coincident with the Brodmann areas (BAs). The patterns of cortical connectivity were obtained in the four principal frequency bands, Theta (3-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz), Gamma (30-40 Hz) and the directed influences between any given pair of the estimated cortical signals were evaluated by use of a multivariate spectral technique known as partial directed coherence. The topology of the cortical networks has been identified with tools derived from graph theory. Results suggest that the cortical activity and connectivity elicited by the viewing of the TV commercials that were remembered by the experimental subjects are markedly different from the brain activity elicited during the observation of the TV commercials that were forgotten. In particular, during the observation of the TV commercials that were remembered, the amount of cortical spectral activity from the frontal areas (BA 8 and 9) and from the parietal areas (BA 5, 7, and 40) is higher compared with the activity elicited by the observation of TV commercials that were forgotten. In addition, network analysis suggests a clear role of the parietal areas as a target of the incoming flow of information from all the other parts of the cortex during the observation of TV commercials that have been remembered. The techniques presented here shed new light on

  5. How the Brain Wants What the Body Needs: The Neural Basis of Positive Alliesthesia.

    Science.gov (United States)

    Avery, Jason A; Burrows, Kaiping; Kerr, Kara L; Bodurka, Jerzy; Khalsa, Sahib S; Paulus, Martin P; Simmons, W Kyle

    2017-03-01

    Discontinuing unhealthy behaviors, such as overeating or drug use, depends upon an individual's ability to overcome the influence of environmental reward cues. The strength of that influence, however, varies greatly depending upon the internal state of the body. Characterizing the relationship between interoceptive signaling and shifting drug cue valuation provides an opportunity for understanding the neural bases of how changing internal states alter reward processing more generally. A total of 17 cigarette smokers rated the pleasantness of cigarette pictures when they were nicotine sated or nicotine abstinent. On both occasions, smokers also underwent functional magnetic resonance imaging (fMRI) scanning while performing a visceral interoceptive attention task and a resting-state functional connectivity scan. Hemodynamic, physiological, and behavioral parameters were compared between sated and abstinent scans. The relationships between changes in these parameters across scan sessions were also examined. Smokers rated cigarette pictures as significantly more pleasant while nicotine abstinent than while nicotine sated. Comparing abstinent with sated scans, smokers also exhibited significantly decreased mid-insula, amygdala, and orbitofrontal activity while attending to interoceptive signals from the body. Change in interoceptive activity within the left mid-insula predicted the increase in smoker's pleasantness ratings of cigarette cues. This increase in pleasantness ratings was also correlated with an increase in resting-state functional connectivity between the mid-insula and the ventral striatum and ventral pallidum. These findings support a model wherein interoceptive processing in the mid-insula of withdrawal signals from the body potentiates the motivational salience of reward cues through the recruitment of hedonic 'hot spots' within the brain's reward circuitry.

  6. Brains creating stories of selves: the neural basis of autobiographical reasoning

    Science.gov (United States)

    Cassol, Helena; Phillips, Christophe; Balteau, Evelyne; Salmon, Eric; Van der Linden, Martial

    2014-01-01

    Personal identity critically depends on the creation of stories about the self and one’s life. The present study investigates the neural substrates of autobiographical reasoning, a process central to the construction of such narratives. During functional magnetic resonance imaging scanning, participants approached a set of personally significant memories in two different ways: in some trials, they remembered the concrete content of the events (autobiographical remembering), whereas in other trials they reflected on the broader meaning and implications of their memories (autobiographical reasoning). Relative to remembering, autobiographical reasoning recruited a left-lateralized network involved in conceptual processing [including the dorsal medial prefrontal cortex (MPFC), inferior frontal gyrus, middle temporal gyrus and angular gyrus]. The ventral MPFC—an area that may function to generate personal/affective meaning—was not consistently engaged during autobiographical reasoning across participants but, interestingly, the activity of this region was modulated by individual differences in interest and willingness to engage in self-reflection. These findings support the notion that autobiographical reasoning and the construction of personal narratives go beyond mere remembering in that they require deriving meaning and value from past experiences. PMID:23482628

  7. The transsexual brain--A review of findings on the neural basis of transsexualism.

    Science.gov (United States)

    Smith, Elke Stefanie; Junger, Jessica; Derntl, Birgit; Habel, Ute

    2015-12-01

    Transsexualism describes the condition when a person's psychological gender differs from his or her biological sex and is commonly thought to arise from a discrepant cerebral and genital sexual differentiation. This review intends to give an extensive overview of structural and functional neurobiological correlates of transsexualism and their course under cross-sex hormonal treatment. Research in this field enables insight into the stability or variability of gender differences and their relation to hormonal status. For a number of sexually dimorphic brain structures or processes, signs of feminisation or masculinisation are observable in transsexual individuals, which, during hormonal treatment, partly seem to further adjust to characteristics of the desired sex. Still, it appears the data are quite inhomogeneous, mostly not replicated and in many cases available for male-to-female transsexuals only. As the prevalence of homosexuality is markedly higher among transsexuals than among the general population, disentangling correlates of sexual orientation and gender identity is a major problem. To resolve such deficiencies, the implementation of specific research standards is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders.

    Science.gov (United States)

    Zhang, Jie; Cheng, Wei; Liu, Zhaowen; Zhang, Kai; Lei, Xu; Yao, Ye; Becker, Benjamin; Liu, Yicen; Kendrick, Keith M; Lu, Guangming; Feng, Jianfeng

    2016-08-01

    SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the

  9. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  10. Neural Basis of Visual Distraction

    Science.gov (United States)

    Kim, So-Yeon; Hopfinger, Joseph B.

    2010-01-01

    The ability to maintain focus and avoid distraction by goal-irrelevant stimuli is critical for performing many tasks and may be a key deficit in attention-related problems. Recent studies have demonstrated that irrelevant stimuli that are consciously perceived may be filtered out on a neural level and not cause the distraction triggered by…

  11. The neural basis of bounded rational behavior

    Directory of Open Access Journals (Sweden)

    Coricelli, Giorgio

    2012-03-01

    Full Text Available Bounded rational behaviour is commonly observed in experimental games and in real life situations. Neuroeconomics can help to understand the mental processing underlying bounded rationality and out-of-equilibrium behaviour. Here we report results from recent studies on the neural basis of limited steps of reasoning in a competitive setting —the beauty contest game. We use functional magnetic resonance imaging (fMRI to study the neural correlates of human mental processes in strategic games. We apply a cognitive hierarchy model to classify subject’s choices in the experimental game according to the degree of strategic reasoning so that we can identify the neural substrates of different levels of strategizing. We found a correlation between levels of strategic reasoning and activity in a neural network related to mentalizing, i.e. the ability to think about other’s thoughts and mental states. Moreover, brain data showed how complex cognitive processes subserve the higher level of reasoning about others. We describe how a cognitive hierarchy model fits both behavioural and brain data.

    La racionalidad limitada es un fenómeno observado de manera frecuente tanto en juegos experimentales como en situaciones cotidianas. La Neuroeconomía puede mejorar la comprensión de los procesos mentales que caracterizan la racionalidad limitada; en paralelo nos puede ayudar a comprender comportamientos que violan el equilibrio. Nuestro trabajo presenta resultados recientes sobre la bases neuronales del razonamiento estratégico (y sus límite en juegos competitivos —como el juego del “beauty contest”. Estudiamos las bases neuronales del comportamiento estratégico en juegos con interacción entre sujetos usando resonancia magnética funcional (fMRI. Las decisiones de los participantes se clasifican acorde al grado de razonamiento estratégico: el llamado modelo de Jerarquías Cognitivas. Los resultados muestran una correlación entre niveles de

  12. Molecular basis of neural function

    International Nuclear Information System (INIS)

    Tucek, S.; Stipek, S.; Stastny, F.; Krivanek, J.

    1986-01-01

    The conference proceedings contain abstracts of plenary lectures, of young neurochemists' ESN honorary lectures, lectures at symposia and workshops and poster communications. Twenty abstracts were inputted in INIS. The subject of these were the use of autoradiography for the determination of receptors, cholecystokinin, nicotine, adrenaline, glutamate, aspartate, tranquilizers, for distribution and pharmacokinetics of obidoxime-chloride, for cell proliferation, mitosis of brain cells, DNA repair; radioimmunoassay of cholinesterase, tyrosinase; positron computed tomography of the brain; biological radiation effects on cholinesterase activity; tracer techniques for determination of adrenaline; and studies of the biological repair of nerves. (J.P.)

  13. Framing effects: behavioral dynamics and neural basis.

    Science.gov (United States)

    Zheng, Hongming; Wang, X T; Zhu, Liqi

    2010-09-01

    This study examined the neural basis of framing effects using life-death decision problems framed either positively in terms of lives saved or negatively in terms of lives lost in large group and small group contexts. Using functional MRI we found differential brain activations to the verbal and social cues embedded in the choice problems. In large group contexts, framing effects were significant where participants were more risk seeking under the negative (loss) framing than under the positive (gain) framing. This behavioral difference in risk preference was mainly regulated by the activation in the right inferior frontal gyrus, including the homologue of the Broca's area. In contrast, framing effects diminished in small group contexts while the insula and parietal lobe in the right hemisphere were distinctively activated, suggesting an important role of emotion in switching choice preference from an indecisive mode to a more consistent risk-taking inclination, governed by a kith-and-kin decision rationality. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Neural basis of acquired amusia and its recovery after stroke

    OpenAIRE

    Sihvonen, A.J.; Ripollés, P.; Leo, V.; Rodríguez-Fornells, Antoni; Soinila, S.; Särkämö, T.

    2016-01-01

    Although acquired amusia is a relatively common disorder after stroke, its precise neuroanatomical basis is still unknown. To evaluate which brain regions form the neural substrate for acquired amusia and its recovery, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study with 77 human stroke subjects. Structural MRIs were acquired at acute and 6 month poststroke stages. Amusia and aphasia were behaviorally assessed at acute and 3 month poststroke stages using t...

  15. The Neural Basis of Changing Social Norms through Persuasion

    OpenAIRE

    Yomogida, Yukihito; Matsumoto, Madoka; Aoki, Ryuta; Sugiura, Ayaka; Phillips, Adam N.; Matsumoto, Kenji

    2017-01-01

    Social norms regulate behavior, and changes in norms have a great impact on society. In most modern societies, norms change through interpersonal communication and persuasive messages found in media. Here, we examined the neural basis of persuasion-induced changes in attitude toward and away from norms using fMRI. We measured brain activity while human participants were exposed to persuasive messages directed toward specific norms. Persuasion directed toward social norms specifically activate...

  16. Sex differences in the neural basis of emotional memories.

    Science.gov (United States)

    Canli, Turhan; Desmond, John E; Zhao, Zuo; Gabrieli, John D E

    2002-08-06

    Psychological studies have found better memory in women than men for emotional events, but the neural basis for this difference is unknown. We used event-related functional MRI to assess whether sex differences in memory for emotional stimuli is associated with activation of different neural systems in men and women. Brain activation in 12 men and 12 women was recorded while they rated their experience of emotional arousal in response to neutral and emotionally negative pictures. In a recognition memory test 3 weeks after scanning, highly emotional pictures were remembered best, and remembered better by women than by men. Men and women activated different neural circuits to encode stimuli effectively into memory even when the analysis was restricted to pictures rated equally arousing by both groups. Men activated significantly more structures than women in a network that included the right amygdala, whereas women activated significantly fewer structures in a network that included the left amygdala. Women had significantly more brain regions where activation correlated with both ongoing evaluation of emotional experience and with subsequent memory for the most emotionally arousing pictures. Greater overlap in brain regions sensitive to current emotion and contributing to subsequent memory may be a neural mechanism for emotions to enhance memory more powerfully in women than in men.

  17. The neural basis of unconditional love.

    Science.gov (United States)

    Beauregard, Mario; Courtemanche, Jérôme; Paquette, Vincent; St-Pierre, Evelyne Landry

    2009-05-15

    Functional neuroimaging studies have shown that romantic love and maternal love are mediated by regions specific to each, as well as overlapping regions in the brain's reward system. Nothing is known yet regarding the neural underpinnings of unconditional love. The main goal of this functional magnetic resonance imaging study was to identify the brain regions supporting this form of love. Participants were scanned during a control condition and an experimental condition. In the control condition, participants were instructed to simply look at a series of pictures depicting individuals with intellectual disabilities. In the experimental condition, participants were instructed to feel unconditional love towards the individuals depicted in a series of similar pictures. Significant loci of activation were found, in the experimental condition compared with the control condition, in the middle insula, superior parietal lobule, right periaqueductal gray, right globus pallidus (medial), right caudate nucleus (dorsal head), left ventral tegmental area and left rostro-dorsal anterior cingulate cortex. These results suggest that unconditional love is mediated by a distinct neural network relative to that mediating other emotions. This network contains cerebral structures known to be involved in romantic love or maternal love. Some of these structures represent key components of the brain's reward system.

  18. The neural circuit basis of learning

    Science.gov (United States)

    Patrick, Kaifosh William John

    The astounding capacity for learning ranks among the nervous system's most impressive features. This thesis comprises studies employing varied approaches to improve understanding, at the level of neural circuits, of the brain's capacity for learning. The first part of the thesis contains investigations of hippocampal circuitry -- both theoretical work and experimental work in the mouse Mus musculus -- as a model system for declarative memory. To begin, Chapter 2 presents a theory of hippocampal memory storage and retrieval that reflects nonlinear dendritic processing within hippocampal pyramidal neurons. As a prelude to the experimental work that comprises the remainder of this part, Chapter 3 describes an open source software platform that we have developed for analysis of data acquired with in vivo Ca2+ imaging, the main experimental technique used throughout the remainder of this part of the thesis. As a first application of this technique, Chapter 4 characterizes the content of signaling at synapses between GABAergic neurons of the medial septum and interneurons in stratum oriens of hippocampal area CA1. Chapter 5 then combines these techniques with optogenetic, pharmacogenetic, and pharmacological manipulations to uncover inhibitory circuit mechanisms underlying fear learning. The second part of this thesis focuses on the cerebellum-like electrosensory lobe in the weakly electric mormyrid fish Gnathonemus petersii, as a model system for non-declarative memory. In Chapter 6, we study how short-duration EOD motor commands are recoded into a complex temporal basis in the granule cell layer, which can be used to cancel Purkinje-like cell firing to the longer duration and temporally varying EOD-driven sensory responses. In Chapter 7, we consider not only the temporal aspects of the granule cell code, but also the encoding of body position provided from proprioceptive and efference copy sources. Together these studies clarify how the cerebellum-like circuitry of the

  19. Towards a neural basis of music perception.

    Science.gov (United States)

    Koelsch, Stefan; Siebel, Walter A

    2005-12-01

    Music perception involves complex brain functions underlying acoustic analysis, auditory memory, auditory scene analysis, and processing of musical syntax and semantics. Moreover, music perception potentially affects emotion, influences the autonomic nervous system, the hormonal and immune systems, and activates (pre)motor representations. During the past few years, research activities on different aspects of music processing and their neural correlates have rapidly progressed. This article provides an overview of recent developments and a framework for the perceptual side of music processing. This framework lays out a model of the cognitive modules involved in music perception, and incorporates information about the time course of activity of some of these modules, as well as research findings about where in the brain these modules might be located.

  20. The neural basis of academic achievement motivation.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Ishii, Akira; Tanabe, Hiroki C; Onoe, Hirotaka; Sadato, Norihiro; Watanabe, Yasuyoshi

    2008-08-01

    We have used functional magnetic resonance imaging to study the neural correlates of motivation, concentrating on the motivation to learn and gain monetary rewards. We compared the activation in the brain obtained during reported high states of motivation for learning, with the ones observed when the motivation was based on monetary reward. Our results show that motivation to learn correlates with bilateral activity in the putamen, and that the higher the reported motivation, as derived from a questionnaire that each subject filled prior to scanning, the greater the change in the BOLD signals within the putamen. Monetary motivation also activated the putamen bilaterally, though the intensity of activity was not related to the monetary reward. We conclude that the putamen is critical for motivation in different domains and the extent of activity of the putamen may be pivotal to the motivation that drives academic achievement and thus academic successes.

  1. Neural decoding of collective wisdom with multi-brain computing.

    Science.gov (United States)

    Eckstein, Miguel P; Das, Koel; Pham, Binh T; Peterson, Matthew F; Abbey, Craig K; Sy, Jocelyn L; Giesbrecht, Barry

    2012-01-02

    Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally

  2. Neural basis of preference for human social hierarchy versus egalitarianism.

    Science.gov (United States)

    Chiao, Joan Y; Mathur, Vani A; Harada, Tokiko; Lipke, Trixie

    2009-06-01

    A fundamental way that individuals differ is in the degree to which they prefer social dominance hierarchy over egalitarianism as a guiding principle of societal structure, a phenomenon known as social dominance orientation. Here we show that preference for hierarchical rather than egalitarian social relations varies as a function of neural responses within left anterior insula and anterior cingulate cortices. Our findings provide novel evidence that preference for social dominance hierarchy is associated with neural functioning within brain regions that are associated with the ability to share and feel concern for the pain of others; this suggests a neurobiological basis for social and political attitudes. Implications of these findings for research on the social neuroscience of fairness, justice, and intergroup relations are discussed.

  3. The neural basis of monitoring goal progress

    Directory of Open Access Journals (Sweden)

    Yael eBenn

    2014-09-01

    Full Text Available The neural basis of progress monitoring has received relatively little attention compared to other sub-processes that are involved in goal directed behavior such as motor control and response inhibition. Studies of error-monitoring have identified the dorsal anterior cingulate cortex (dACC as a structure that is sensitive to conflict detection, and triggers corrective action. However, monitoring goal progress involves monitoring correct as well as erroneous events over a period of time. In the present research, 20 healthy participants underwent fMRI while playing a game that involved monitoring progress towards either a numerical or a visuo-spatial target. The findings confirmed the role of the dACC in detecting situations in which the current state may conflict with the desired state, but also revealed activations in the frontal and parietal regions, pointing to the involvement of processes such as attention and working memory in monitoring progress over time. In addition, activation of the cuneus was associated with monitoring progress towards a specific target presented in the visual modality. This is the first time that activation in this region has been linked to higher-order processing of goal-relevant information, rather than low-level anticipation of visual stimuli. Taken together, these findings identify the neural substrates involved in monitoring progress over time, and how these extend beyond activations observed in conflict and error monitoring.

  4. The neural basis of the imitation drive.

    Science.gov (United States)

    Hanawa, Sugiko; Sugiura, Motoaki; Nozawa, Takayuki; Kotozaki, Yuka; Yomogida, Yukihito; Ihara, Mizuki; Akimoto, Yoritaka; Thyreau, Benjamin; Izumi, Shinichi; Kawashima, Ryuta

    2016-01-01

    Spontaneous imitation is assumed to underlie the acquisition of important skills by infants, including language and social interaction. In this study, functional magnetic resonance imaging (fMRI) was used to examine the neural basis of 'spontaneously' driven imitation, which has not yet been fully investigated. Healthy participants were presented with movie clips of meaningless bimanual actions and instructed to observe and imitate them during an fMRI scan. The participants were subsequently shown the movie clips again and asked to evaluate the strength of their 'urge to imitate' (Urge) for each action. We searched for cortical areas where the degree of activation positively correlated with Urge scores; significant positive correlations were observed in the right supplementary motor area (SMA) and bilateral midcingulate cortex (MCC) under the imitation condition. These areas were not explained by explicit reasons for imitation or the kinematic characteristics of the actions. Previous studies performed in monkeys and humans have implicated the SMA and MCC/caudal cingulate zone in voluntary actions. This study also confirmed the functional connectivity between Urge and imitation performance using a psychophysiological interaction analysis. Thus, our findings reveal the critical neural components that underlie spontaneous imitation and provide possible reasons why infants imitate spontaneously. © The Author (2015). Published by Oxford University Press.

  5. Using imagination to understand the neural basis of episodic memory

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Maguire, Eleanor A.

    2008-01-01

    Functional MRI (fMRI) studies investigating the neural basis of episodic memory recall, and the related task of thinking about plausible personal future events, have revealed a consistent network of associated brain regions. Surprisingly little, however, is understood about the contributions individual brain areas make to the overall recollective experience. In order to examine this, we employed a novel fMRI paradigm where subjects had to imagine fictitious experiences. In contrast to future thinking, this results in experiences that are not explicitly temporal in nature or as reliant on self-processing. By using previously imagined fictitious experiences as a comparison for episodic memories, we identified the neural basis of a key process engaged in common, namely scene construction, involving the generation, maintenance and visualisation of complex spatial contexts. This was associated with activations in a distributed network, including hippocampus, parahippocampal gyrus, and retrosplenial cortex. Importantly, we disambiguated these common effects from episodic memory-specific responses in anterior medial prefrontal cortex, posterior cingulate cortex and precuneus. These latter regions may support self-schema and familiarity processes, and contribute to the brain's ability to distinguish real from imaginary memories. We conclude that scene construction constitutes a common process underlying episodic memory and imagination of fictitious experiences, and suggest it may partially account for the similar brain networks implicated in navigation, episodic future thinking, and the default mode. We suggest that further brain regions are co-opted into this core network in a task-specific manner to support functions such as episodic memory that may have additional requirements. PMID:18160644

  6. The neural basis of event simulation: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Yukihito Yomogida

    Full Text Available Event simulation (ES is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference. Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture-word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes.

  7. The Neural Basis of Changing Social Norms through Persuasion.

    Science.gov (United States)

    Yomogida, Yukihito; Matsumoto, Madoka; Aoki, Ryuta; Sugiura, Ayaka; Phillips, Adam N; Matsumoto, Kenji

    2017-11-24

    Social norms regulate behavior, and changes in norms have a great impact on society. In most modern societies, norms change through interpersonal communication and persuasive messages found in media. Here, we examined the neural basis of persuasion-induced changes in attitude toward and away from norms using fMRI. We measured brain activity while human participants were exposed to persuasive messages directed toward specific norms. Persuasion directed toward social norms specifically activated a set of brain regions including temporal poles, temporo-parietal junction, and medial prefrontal cortex. Beyond these regions, when successful, persuasion away from an accepted norm specifically recruited the left middle temporal and supramarginal gyri. Furthermore, in combination with data from a separate attitude-rating task, we found that left supramarginal gyrus activity represented participant attitude toward norms and tracked the persuasion-induced attitude changes that were away from agreement.

  8. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  9. Application of radial basis neural network for state estimation of ...

    African Journals Online (AJOL)

    An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...

  10. Tensor Basis Neural Network v. 1.0 (beta)

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-28

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  11. The neural basis of responsibility attribution in decision-making.

    Directory of Open Access Journals (Sweden)

    Peng Li

    Full Text Available Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  12. The neural basis of responsibility attribution in decision-making.

    Science.gov (United States)

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  13. On supertaskers and the neural basis of efficient multitasking.

    Science.gov (United States)

    Medeiros-Ward, Nathan; Watson, Jason M; Strayer, David L

    2015-06-01

    The present study used brain imaging to determine the neural basis of individual differences in multitasking, the ability to successfully perform at least two attention-demanding tasks at once. Multitasking is mentally taxing and, therefore, should recruit the prefrontal cortex to maintain task goals when coordinating attentional control and managing the cognitive load. To investigate this possibility, we used functional neuroimaging to assess neural activity in both extraordinary multitaskers (Supertaskers) and control subjects who were matched on working memory capacity. Participants performed a challenging dual N-back task in which auditory and visual stimuli were presented simultaneously, requiring independent and continuous maintenance, updating, and verification of the contents of verbal and spatial working memory. With the task requirements and considerable cognitive load that accompanied increasing N-back, relative to the controls, the multitasking of Supertaskers was characterized by more efficient recruitment of anterior cingulate and posterior frontopolar prefrontal cortices. Results are interpreted using neuropsychological and evolutionary perspectives on individual differences in multitasking ability and the neural correlates of attentional control.

  14. The neural basis of task switching changes with skill acquisition

    Directory of Open Access Journals (Sweden)

    Koji eJimura

    2014-05-01

    Full Text Available Learning novel skills involves reorganization and optimization of cognitive processing involving a broad network of brain regions. Previous work has shown asymmetric costs of switching to a well-trained task versus a poorly-trained task, but the neural basis of these differential switch costs is unclear. The current study examined the neural signature of task switching in the context of acquisition of new skill. Human participants alternated randomly between a novel visual task (mirror-reversed word reading and a highly practiced one (plain word reading, allowing the isolation of task switching and skill set maintenance. Two scan sessions were separated by two weeks, with behavioral training on the mirror reading task in between the two sessions. Broad cortical regions, including bilateral prefrontal, parietal, and extrastriate cortices, showed decreased activity associated with learning of the mirror reading skill. In contrast, learning to switch to the novel skill was associated with decreased activity in a focal subcortical region in the dorsal striatum. Switching to the highly practiced task was associated with a non-overlapping set of regions, suggesting substantial differences in the neural substrates of switching as a function of task skill. Searchlight multivariate pattern analysis also revealed that learning was associated with decreased pattern information for mirror versus plain reading tasks in fronto-parietal regions. Inferior frontal junction and posterior parietal cortex showed a joint effect of univariate activation and pattern information. These results suggest distinct learning mechanisms task performance and executive control as a function of learning.

  15. The neural basis of testable and non-testable beliefs.

    Directory of Open Access Journals (Sweden)

    Jonathon R Howlett

    Full Text Available Beliefs about the state of the world are an important influence on both normal behavior and psychopathology. However, understanding of the neural basis of belief processing remains incomplete, and several aspects of belief processing have only recently been explored. Specifically, different types of beliefs may involve fundamentally different inferential processes and thus recruit distinct brain regions. Additionally, neural processing of truth and falsity may differ from processing of certainty and uncertainty. The purpose of this study was to investigate the neural underpinnings of assessment of testable and non-testable propositions in terms of truth or falsity and the level of certainty in a belief. Functional magnetic resonance imaging (fMRI was used to study 14 adults while they rated propositions as true or false and also rated the level of certainty in their judgments. Each proposition was classified as testable or non-testable. Testable propositions activated the DLPFC and posterior cingulate cortex, while non-testable statements activated areas including inferior frontal gyrus, superior temporal gyrus, and an anterior region of the superior frontal gyrus. No areas were more active when a proposition was accepted, while the dorsal anterior cingulate was activated when a proposition was rejected. Regardless of whether a proposition was testable or not, certainty that the proposition was true or false activated a common network of regions including the medial prefrontal cortex, caudate, posterior cingulate, and a region of middle temporal gyrus near the temporo-parietal junction. Certainty in the truth or falsity of a non-testable proposition (a strong belief without empirical evidence activated the insula. The results suggest that different brain regions contribute to the assessment of propositions based on the type of content, while a common network may mediate the influence of beliefs on motivation and behavior based on the level of

  16. The neural basis of financial risk taking.

    Science.gov (United States)

    Kuhnen, Camelia M; Knutson, Brian

    2005-09-01

    Investors systematically deviate from rationality when making financial decisions, yet the mechanisms responsible for these deviations have not been identified. Using event-related fMRI, we examined whether anticipatory neural activity would predict optimal and suboptimal choices in a financial decision-making task. We characterized two types of deviations from the optimal investment strategy of a rational risk-neutral agent as risk-seeking mistakes and risk-aversion mistakes. Nucleus accumbens activation preceded risky choices as well as risk-seeking mistakes, while anterior insula activation preceded riskless choices as well as risk-aversion mistakes. These findings suggest that distinct neural circuits linked to anticipatory affect promote different types of financial choices and indicate that excessive activation of these circuits may lead to investing mistakes. Thus, consideration of anticipatory neural mechanisms may add predictive power to the rational actor model of economic decision making.

  17. Cultural influences on neural basis of intergroup empathy.

    Science.gov (United States)

    Cheon, Bobby K; Im, Dong-Mi; Harada, Tokiko; Kim, Ji-Sook; Mathur, Vani A; Scimeca, Jason M; Parrish, Todd B; Park, Hyun Wook; Chiao, Joan Y

    2011-07-15

    Cultures vary in the extent to which people prefer social hierarchical or egalitarian relations between individuals and groups. Here we examined the effect of cultural variation in preference for social hierarchy on the neural basis of intergroup empathy. Using cross-cultural neuroimaging, we measured neural responses while Korean and American participants observed scenes of racial ingroup and outgroup members in emotional pain. Compared to Caucasian-American participants, Korean participants reported experiencing greater empathy and elicited stronger activity in the left temporo-parietal junction (L-TPJ), a region previously associated with mental state inference, for ingroup compared to outgroup members. Furthermore, preferential reactivity within this region to the pain of ingroup relative to outgroup members was associated with greater preference for social hierarchy and ingroup biases in empathy. Together, these results suggest that cultural variation in preference for social hierarchy leads to cultural variation in ingroup-preferences in empathy, due to increased engagement of brain regions associated with representing and inferring the mental states of others. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The neural basis of deception in strategic interactions.

    Science.gov (United States)

    Volz, Kirsten G; Vogeley, Kai; Tittgemeyer, Marc; von Cramon, D Yves; Sutter, Matthias

    2015-01-01

    Communication based on informational asymmetries abounds in politics, business, and almost any other form of social interaction. Informational asymmetries may create incentives for the better-informed party to exploit her advantage by misrepresenting information. Using a game-theoretic setting, we investigate the neural basis of deception in human interaction. Unlike in most previous fMRI research on deception, the participants decide themselves whether to lie or not. We find activation within the right temporo-parietal junction (rTPJ), the dorsal anterior cingulate cortex (ACC), the (pre)cuneus (CUN), and the anterior frontal gyrus (aFG) when contrasting lying with truth telling. Notably, our design also allows for an investigation of the neural foundations of sophisticated deception through telling the truth-when the sender does not expect the receiver to believe her (true) message. Sophisticated deception triggers activation within the same network as plain lies, i.e., we find activity within the rTPJ, the CUN, and aFG. We take this result to show that brain activation can reveal the sender's veridical intention to deceive others, irrespective of whether in fact the sender utters the factual truth or not.

  19. The Neural Basis of Deception in Strategic Interactions

    Directory of Open Access Journals (Sweden)

    Kirsten G Volz

    2015-02-01

    Full Text Available Communication based on informational asymmetries abounds in politics, business, and almost any other form of social interaction. Informational asymmetries may create incentives for the better-informed party to exploit her advantage by misrepresenting information. Using a game-theoretic setting, we investigate the neural basis of deception in human interaction. Unlike in most previous fMRI research on deception, the participants decide themselves whether to lie or not. We find activation within the right temporo-parietal junction (rTPJ, the dorsal anterior cingulate cortex (ACC, the (precuneus (CUN, and the anterior frontal gyrus (aFG when contrasting lying with truth telling. Notably, our design also allows for an investigation of the neural foundations of sophisticated deception through telling the truth—when the sender does not expect the receiver to believe her (true message. Sophisticated deception triggers activation within the same network as plain lies, i.e., we find activity within the rTPJ, the CUN, and aFG. We take this result to show that brain activation can reveal the sender’s veridical intention to deceive others, irrespective of whether in fact the sender utters the factual truth or not.

  20. [Intervening in the neural basis of one's personality: a practice-oriented ethical analysis of neuropharmacology and deep-brain stimulation].

    Science.gov (United States)

    Synofzik, M

    2007-12-01

    Through the rapid progress in neuropharmacology it seems to become possible to effectively improve our cognitive capacities and emotional states by easily applicable means. Moreover, deep-brain stimulation may allow an effective therapeutic option for those neurological and psychiatric diseases which still can not be sufficiently treated by pharmacological measures. So far, however, both the benefit and the harm of these techniques are only insufficiently understood by neuroscience and detailed ethical analyses are still missing. In this article ethical criteria and most recent empirical evidence are systematically brought together for the first time. This analysis shows that it is irrelevant for an ethical evaluation whether a drug or a brain-machine interface is categorized as "enhancement" or "treatment" or whether it changes "human nature". The only decisive criteria are whether the intervention (1.) benefits the patient, (2.) does not harm the patient and (3.) is desired by the patient. However, current empirical data in both fields, neuropharmacology and deep-brain stimulation are still too sparse to adequately evaluate these criteria. Moreover, the focus in both fields has been strongly misled by neglecting the distinction between "benefit" and "efficacy": In past years research and clinical practice have only focused on physiological effects, but not on the actual benefit to the patient.

  1. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  2. The Neural Basis of Aversive Pavlovian Guidance during Planning.

    Science.gov (United States)

    Lally, Níall; Huys, Quentin J M; Eshel, Neir; Faulkner, Paul; Dayan, Peter; Roiser, Jonathan P

    2017-10-18

    Important real-world decisions are often arduous as they frequently involve sequences of choices, with initial selections affecting future options. Evaluating every possible combination of choices is computationally intractable, particularly for longer multistep decisions. Therefore, humans frequently use heuristics to reduce the complexity of decisions. We recently used a goal-directed planning task to demonstrate the profound behavioral influence and ubiquity of one such shortcut, namely aversive pruning, a reflexive Pavlovian process that involves neglecting parts of the decision space residing beyond salient negative outcomes. However, how the brain implements this important decision heuristic and what underlies individual differences have hitherto remained unanswered. Therefore, we administered an adapted version of the same planning task to healthy male and female volunteers undergoing functional magnetic resonance imaging (fMRI) to determine the neural basis of aversive pruning. Through both computational and standard categorical fMRI analyses, we show that when planning was influenced by aversive pruning, the subgenual cingulate cortex was robustly recruited. This neural signature was distinct from those associated with general planning and valuation, two fundamental cognitive components elicited by our task but which are complementary to aversive pruning. Furthermore, we found that individual variation in levels of aversive pruning was associated with the responses of insula and dorsolateral prefrontal cortices to the receipt of large monetary losses, and also with subclinical levels of anxiety. In summary, our data reveal the neural signatures of an important reflexive Pavlovian process that shapes goal-directed evaluations and thereby determines the outcome of high-level sequential cognitive processes. SIGNIFICANCE STATEMENT Multistep decisions are complex because initial choices constrain future options. Evaluating every path for long decision sequences

  3. The Neural Basis of Aversive Pavlovian Guidance during Planning

    Science.gov (United States)

    Faulkner, Paul

    2017-01-01

    Important real-world decisions are often arduous as they frequently involve sequences of choices, with initial selections affecting future options. Evaluating every possible combination of choices is computationally intractable, particularly for longer multistep decisions. Therefore, humans frequently use heuristics to reduce the complexity of decisions. We recently used a goal-directed planning task to demonstrate the profound behavioral influence and ubiquity of one such shortcut, namely aversive pruning, a reflexive Pavlovian process that involves neglecting parts of the decision space residing beyond salient negative outcomes. However, how the brain implements this important decision heuristic and what underlies individual differences have hitherto remained unanswered. Therefore, we administered an adapted version of the same planning task to healthy male and female volunteers undergoing functional magnetic resonance imaging (fMRI) to determine the neural basis of aversive pruning. Through both computational and standard categorical fMRI analyses, we show that when planning was influenced by aversive pruning, the subgenual cingulate cortex was robustly recruited. This neural signature was distinct from those associated with general planning and valuation, two fundamental cognitive components elicited by our task but which are complementary to aversive pruning. Furthermore, we found that individual variation in levels of aversive pruning was associated with the responses of insula and dorsolateral prefrontal cortices to the receipt of large monetary losses, and also with subclinical levels of anxiety. In summary, our data reveal the neural signatures of an important reflexive Pavlovian process that shapes goal-directed evaluations and thereby determines the outcome of high-level sequential cognitive processes. SIGNIFICANCE STATEMENT Multistep decisions are complex because initial choices constrain future options. Evaluating every path for long decision sequences

  4. Testing for a cultural influence on reading for meaning in the developing brain: the neural basis of semantic processing in Chinese children

    Directory of Open Access Journals (Sweden)

    Tai-Li Chou

    2009-11-01

    Full Text Available Functional magnetic resonance imaging (fMRI was used to explore the neural correlates of semantic judgments in a group of 8- to 15-year-old Chinese children. Participants were asked to indicate if pairs of Chinese characters presented visually were related in meaning. The related pairs were arranged in a continuous variable according to association strength. Pairs of characters with weaker semantic association elicited greater activation in the mid ventral region (BA 45 of left inferior frontal gyrus, suggesting increased demands on the process of selecting appropriate semantic features. By contrast, characters with stronger semantic association elicited greater activation in left inferior parietal lobule (BA 39, suggesting stronger integration of highly related features. In addition, there was a developmental increase, similar to previously reported findings in English, in left posterior middle temporal gyrus (BA 21, suggesting that older children have more elaborated semantic representations. There were additional age-related increases in the posterior region of left inferior parietal lobule and in the ventral regions of left inferior frontal gyrus, suggesting that reading acquisition relies more on the mapping from orthography to semantics in Chinese children as compared to previously reported findings in English.

  5. Identification and integration of sensory modalities: Neural basis and relation to consciousness

    NARCIS (Netherlands)

    Pennartz, C.M.A.

    2009-01-01

    A key question in studying consciousness is how neural operations in the brain can identify streams of sensory input as belonging to distinct modalities, which contributes to the representation of qualitatively different experiences. The basis for identification of modalities is proposed to be

  6. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  7. Neural Basis of Limb Ownership in Individuals with Body Integrity Identity Disorder

    OpenAIRE

    van Dijk, Milenna T.; van Wingen, Guido A.; van Lammeren, Anouk; Blom, Rianne M.; de Kwaasteniet, Bart P.; Scholte, H. Steven; Denys, Damiaan

    2013-01-01

    Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs ...

  8. Neural basis for generalized quantifier comprehension.

    Science.gov (United States)

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  9. Neural Basis of Video Gaming: A Systematic Review

    OpenAIRE

    Marc Palaus; Elena M. Marron; Raquel Viejo-Sobera; Raquel Viejo-Sobera; Diego Redolar-Ripoll

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video ga...

  10. Neural Basis of Video Gaming: A Systematic Review

    OpenAIRE

    Palaus, Marc; Marron, Elena M.; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. We aim ...

  11. Neural Basis of Acquired Amusia and Its Recovery after Stroke.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Leo, Vera; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2016-08-24

    Although acquired amusia is a relatively common disorder after stroke, its precise neuroanatomical basis is still unknown. To evaluate which brain regions form the neural substrate for acquired amusia and its recovery, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study with 77 human stroke subjects. Structural MRIs were acquired at acute and 6 month poststroke stages. Amusia and aphasia were behaviorally assessed at acute and 3 month poststroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA) and language tests. VLSM analyses indicated that amusia was associated with a lesion area comprising the superior temporal gyrus, Heschl's gyrus, insula, and striatum in the right hemisphere, clearly different from the lesion pattern associated with aphasia. Parametric analyses of MBEA Pitch and Rhythm scores showed extensive lesion overlap in the right striatum, as well as in the right Heschl's gyrus and superior temporal gyrus. Lesions associated with Rhythm scores extended more superiorly and posterolaterally. VBM analysis of volume changes from the acute to the 6 month stage showed a clear decrease in gray matter volume in the right superior and middle temporal gyri in nonrecovered amusic patients compared with nonamusic patients. This increased atrophy was more evident in anterior temporal areas in rhythm amusia and in posterior temporal and temporoparietal areas in pitch amusia. Overall, the results implicate right temporal and subcortical regions as the crucial neural substrate for acquired amusia and highlight the importance of different temporal lobe regions for the recovery of amusia after stroke. Lesion studies are essential in uncovering the brain regions causally linked to a given behavior or skill. For music perception ability, previous lesion studies of amusia have been methodologically limited in both spatial accuracy and time domain as well as by small sample sizes, providing

  12. The shared neural basis of music and language.

    Science.gov (United States)

    Yu, Mengxia; Xu, Miao; Li, Xueting; Chen, Zhencai; Song, Yiying; Liu, Jia

    2017-08-15

    Human musical ability is proposed to play a key phylogenetical role in the evolution of language, and the similarity of hierarchical structure in music and language has led to considerable speculation about their shared mechanisms. While behavioral and electrophysioglocial studies have revealed associations between music and linguistic abilities, results from functional magnetic resonance imaging (fMRI) studies on their relations are contradictory, possibly because these studies usually treat music or language as single entities without breaking down to their components. Here, we examined the relations between different components of music (i.e., melodic and rhythmic analysis) and language (i.e., semantic and phonological processing) using both behavioral tests and resting-state fMRI. Behaviorally, we found that individuals with music training experiences were better at semantic processing, but not at phonological processing, than those without training. Further correlation analyses showed that semantic processing of language was related to melodic, but not rhythmic, analysis of music. Neurally, we found that performances in both semantic processing and melodic analysis were correlated with spontaneous brain activities in the bilateral precentral gyrus (PCG) and superior temporal plane at the regional level, and with the resting-state functional connectivity of the left PCG with the left supramarginal gyrus and left superior temporal gyrus at the network level. Together, our study revealed the shared spontaneous neural basis of music and language based on the behavioral link between melodic analysis and semantic processing, which possibly relied on a common mechanism of automatic auditory-motor integration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Neural Basis of Strategic Decision Making.

    Science.gov (United States)

    Lee, Daeyeol; Seo, Hyojung

    2016-01-01

    Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in the cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex (mPFC) and temporal parietal junction (TPJ) might be recruited for cognitive processes unique to social decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Identifying Emotions on the Basis of Neural Activation.

    Science.gov (United States)

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  15. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  16. Neural Basis of Action Understanding: Evidence from Sign Language Aphasia.

    Science.gov (United States)

    Rogalsky, Corianne; Raphel, Kristin; Tomkovicz, Vivian; O'Grady, Lucinda; Damasio, Hanna; Bellugi, Ursula; Hickok, Gregory

    2013-01-01

    The neural basis of action understanding is a hotly debated issue. The mirror neuron account holds that motor simulation in fronto-parietal circuits is critical to action understanding including speech comprehension, while others emphasize the ventral stream in the temporal lobe. Evidence from speech strongly supports the ventral stream account, but on the other hand, evidence from manual gesture comprehension (e.g., in limb apraxia) has led to contradictory findings. Here we present a lesion analysis of sign language comprehension. Sign language is an excellent model for studying mirror system function in that it bridges the gap between the visual-manual system in which mirror neurons are best characterized and language systems which have represented a theoretical target of mirror neuron research. Twenty-one life long deaf signers with focal cortical lesions performed two tasks: one involving the comprehension of individual signs and the other involving comprehension of signed sentences (commands). Participants' lesions, as indicated on MRI or CT scans, were mapped onto a template brain to explore the relationship between lesion location and sign comprehension measures. Single sign comprehension was not significantly affected by left hemisphere damage. Sentence sign comprehension impairments were associated with left temporal-parietal damage. We found that damage to mirror system related regions in the left frontal lobe were not associated with deficits on either of these comprehension tasks. We conclude that the mirror system is not critically involved in action understanding.

  17. The Neural Basis of and a Common Neural Circuitry in Different Types of Pro-social Behavior

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2018-06-01

    Full Text Available Pro-social behaviors are voluntary behaviors that benefit other people or society as a whole, such as charitable donations, cooperation, trust, altruistic punishment, and fairness. These behaviors have been widely described through non self-interest decision-making in behavioral experimental studies and are thought to be increased by social preference motives. Importantly, recent studies using a combination of neuroimaging and brain stimulation, designed to reveal the neural mechanisms of pro-social behaviors, have found that a wide range of brain areas, specifically the prefrontal cortex, anterior insula, anterior cingulate cortex, and amygdala, are correlated or causally related with pro-social behaviors. In this review, we summarize the research on the neural basis of various kinds of pro-social behaviors and describe a common shared neural circuitry of these pro-social behaviors. We introduce several general ways in which experimental economics and neuroscience can be combined to develop important contributions to understanding social decision-making and pro-social behaviors. Future research should attempt to explore the neural circuitry between the frontal lobes and deeper brain areas.

  18. Neural basis of scientific innovation induced by heuristic prototype.

    Directory of Open Access Journals (Sweden)

    Junlong Luo

    Full Text Available A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers and OSI problems (to which they knew the answers. From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18 might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18 and precuneus (BA31 were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation.

  19. Neural basis of scientific innovation induced by heuristic prototype.

    Science.gov (United States)

    Luo, Junlong; Li, Wenfu; Qiu, Jiang; Wei, Dongtao; Liu, Yijun; Zhang, Qinlin

    2013-01-01

    A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation.

  20. The neural basis of body form and body action agnosia.

    Science.gov (United States)

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  1. The Neural Basis of Typewriting: A Functional MRI Study.

    Science.gov (United States)

    Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki

    2015-01-01

    To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  2. The Neural Basis of Typewriting: A Functional MRI Study.

    Directory of Open Access Journals (Sweden)

    Yuichi Higashiyama

    Full Text Available To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  3. Neural Basis of Video Gaming: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Marc Palaus

    2017-05-01

    Full Text Available Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games.Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass.Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games.Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence.Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.

  4. Neural Basis of Video Gaming: A Systematic Review

    Science.gov (United States)

    Palaus, Marc; Marron, Elena M.; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies. PMID:28588464

  5. Neural Basis of Video Gaming: A Systematic Review.

    Science.gov (United States)

    Palaus, Marc; Marron, Elena M; Viejo-Sobera, Raquel; Redolar-Ripoll, Diego

    2017-01-01

    Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.

  6. The Neural Basis of Social Influence in a Dictator Decision

    Directory of Open Access Journals (Sweden)

    Zhenyu Wei

    2017-12-01

    Full Text Available Humans tend to reduce inequitable distributions. Previous neuroimaging studies have shown that inequitable decisions are related to brain regions that associated with negative emotion and signaling conflict. In the highly complex human social environment, our opinions and behaviors can be affected by social information. In current study, we used a modified dictator game to investigate the effect of social influence on making an equitable decision. We found that the choices of participants in present task was influenced by the choices of peers. However, participants’ decisions were influenced by equitable rather than inequitable group choices. fMRI results showed that brain regions that related to norm violation and social conflict were related to the inequitable social influence. The neural responses in the dorsomedial prefrontal cortex, rostral cingulate zone, and insula predicted subsequent conforming behavior in individuals. Additionally, psychophysiological interaction analysis revealed that the interconnectivity between the dorsal striatum and insula was elevated in advantageous inequity influence versus no-social influence conditions. We found decreased functional connectivity between the medial prefrontal cortex and insula, supplementary motor area, posterior cingulate gyrus and dorsal anterior cingulate cortex in the disadvantageous inequity influence versus no-social influence conditions. This suggests that a disadvantageous inequity influence may decrease the functional connectivity among brain regions that are related to reward processes. Thus, the neural mechanisms underlying social influence in an equitable decision may be similar to those implicated in social norms and reward processing.

  7. The Neural Basis of Social Influence in a Dictator Decision.

    Science.gov (United States)

    Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong

    2017-01-01

    Humans tend to reduce inequitable distributions. Previous neuroimaging studies have shown that inequitable decisions are related to brain regions that associated with negative emotion and signaling conflict. In the highly complex human social environment, our opinions and behaviors can be affected by social information. In current study, we used a modified dictator game to investigate the effect of social influence on making an equitable decision. We found that the choices of participants in present task was influenced by the choices of peers. However, participants' decisions were influenced by equitable rather than inequitable group choices. fMRI results showed that brain regions that related to norm violation and social conflict were related to the inequitable social influence. The neural responses in the dorsomedial prefrontal cortex, rostral cingulate zone, and insula predicted subsequent conforming behavior in individuals. Additionally, psychophysiological interaction analysis revealed that the interconnectivity between the dorsal striatum and insula was elevated in advantageous inequity influence versus no-social influence conditions. We found decreased functional connectivity between the medial prefrontal cortex and insula, supplementary motor area, posterior cingulate gyrus and dorsal anterior cingulate cortex in the disadvantageous inequity influence versus no-social influence conditions. This suggests that a disadvantageous inequity influence may decrease the functional connectivity among brain regions that are related to reward processes. Thus, the neural mechanisms underlying social influence in an equitable decision may be similar to those implicated in social norms and reward processing.

  8. The Neural Basis of Vocal Pitch Imitation in Humans.

    Science.gov (United States)

    Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven

    2016-04-01

    Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.

  9. Investigating the Influence of Biological Sex on the Behavioral and Neural Basis of Face Recognition.

    Science.gov (United States)

    Scherf, K Suzanne; Elbich, Daniel B; Motta-Mena, Natalie V

    2017-01-01

    There is interest in understanding the influence of biological factors, like sex, on the organization of brain function. We investigated the influence of biological sex on the behavioral and neural basis of face recognition in healthy, young adults. In behavior, there were no sex differences on the male Cambridge Face Memory Test (CFMT)+ or the female CFMT+ (that we created) and no own-gender bias (OGB) in either group. We evaluated the functional topography of ventral stream organization by measuring the magnitude and functional neural size of 16 individually defined face-, two object-, and two place-related regions bilaterally. There were no sex differences in any of these measures of neural function in any of the regions of interest (ROIs) or in group level comparisons. These findings reveal that men and women have similar category-selective topographic organization in the ventral visual pathway. Next, in a separate task, we measured activation within the 16 face-processing ROIs specifically during recognition of target male and female faces. There were no sex differences in the magnitude of the neural responses in any face-processing region. Furthermore, there was no OGB in the neural responses of either the male or female participants. Our findings suggest that face recognition behavior, including the OGB, is not inherently sexually dimorphic. Face recognition is an essential skill for navigating human social interactions, which is reflected equally in the behavior and neural architecture of men and women.

  10. Investigating the Influence of Biological Sex on the Behavioral and Neural Basis of Face Recognition

    Science.gov (United States)

    2017-01-01

    Abstract There is interest in understanding the influence of biological factors, like sex, on the organization of brain function. We investigated the influence of biological sex on the behavioral and neural basis of face recognition in healthy, young adults. In behavior, there were no sex differences on the male Cambridge Face Memory Test (CFMT)+ or the female CFMT+ (that we created) and no own-gender bias (OGB) in either group. We evaluated the functional topography of ventral stream organization by measuring the magnitude and functional neural size of 16 individually defined face-, two object-, and two place-related regions bilaterally. There were no sex differences in any of these measures of neural function in any of the regions of interest (ROIs) or in group level comparisons. These findings reveal that men and women have similar category-selective topographic organization in the ventral visual pathway. Next, in a separate task, we measured activation within the 16 face-processing ROIs specifically during recognition of target male and female faces. There were no sex differences in the magnitude of the neural responses in any face-processing region. Furthermore, there was no OGB in the neural responses of either the male or female participants. Our findings suggest that face recognition behavior, including the OGB, is not inherently sexually dimorphic. Face recognition is an essential skill for navigating human social interactions, which is reflected equally in the behavior and neural architecture of men and women. PMID:28497111

  11. The neural basis of attaining conscious awareness of sad mood.

    Science.gov (United States)

    Smith, Ryan; Braden, B Blair; Chen, Kewei; Ponce, Francisco A; Lane, Richard D; Baxter, Leslie C

    2015-09-01

    The neural processes associated with becoming aware of sad mood are not fully understood. We examined the dynamic process of becoming aware of sad mood and recovery from sad mood. Sixteen healthy subjects underwent fMRI while participating in a sadness induction task designed to allow for variable mood induction times. Individualized regressors linearly modeled the time periods during the attainment of self-reported sad and baseline "neutral" mood states, and the validity of the linearity assumption was further tested using independent component analysis. During sadness induction the dorsomedial and ventrolateral prefrontal cortices, and anterior insula exhibited a linear increase in the blood oxygen level-dependent (BOLD) signal until subjects became aware of a sad mood and then a subsequent linear decrease as subjects transitioned from sadness back to the non-sadness baseline condition. These findings extend understanding of the neural basis of conscious emotional experience.

  12. Neural Basis of Reinforcement Learning and Decision Making

    Science.gov (United States)

    Lee, Daeyeol; Seo, Hyojung; Jung, Min Whan

    2012-01-01

    Reinforcement learning is an adaptive process in which an animal utilizes its previous experience to improve the outcomes of future choices. Computational theories of reinforcement learning play a central role in the newly emerging areas of neuroeconomics and decision neuroscience. In this framework, actions are chosen according to their value functions, which describe how much future reward is expected from each action. Value functions can be adjusted not only through reward and penalty, but also by the animal’s knowledge of its current environment. Studies have revealed that a large proportion of the brain is involved in representing and updating value functions and using them to choose an action. However, how the nature of a behavioral task affects the neural mechanisms of reinforcement learning remains incompletely understood. Future studies should uncover the principles by which different computational elements of reinforcement learning are dynamically coordinated across the entire brain. PMID:22462543

  13. Exploring the spatio-temporal neural basis of face learning

    Science.gov (United States)

    Yang, Ying; Xu, Yang; Jew, Carol A.; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2017-01-01

    Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150–250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learning, exhibited significant discriminability between the two face categories at different time points both between 150–250 ms and after 300 ms. In contrast, the nonventral face-sensitive regions, where correlation effects with learning were smaller, did exhibit some significant discriminability, but mainly after 300 ms. In sum, our findings indicate that early and recurring temporal components arising from ventral face-sensitive regions are critically involved in learning new faces. PMID:28570739

  14. Neural Plasticity and Neurorehabilitation: Teaching the New Brain Old Tricks

    Science.gov (United States)

    Kleim, Jeffrey A.

    2011-01-01

    Following brain injury or disease there are widespread biochemical, anatomical and physiological changes that result in what might be considered a new, very different brain. This adapted brain is forced to reacquire behaviors lost as a result of the injury or disease and relies on neural plasticity within the residual neural circuits. The same…

  15. Neural underpinnings of music: the polyrhythmic brain.

    Science.gov (United States)

    Vuust, Peter; Gebauer, Line K; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard ('rhythm') and the brain's anticipatory structuring of music ('the meter'). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain's general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.

  16. Neural basis of quasi-rational decision making.

    Science.gov (United States)

    Lee, Daeyeol

    2006-04-01

    Standard economic theories conceive homo economicus as a rational decision maker capable of maximizing utility. In reality, however, people tend to approximate optimal decision-making strategies through a collection of heuristic routines. Some of these routines are driven by emotional processes, and others are adjusted iteratively through experience. In addition, routines specialized for social decision making, such as inference about the mental states of other decision makers, might share their origins and neural mechanisms with the ability to simulate or imagine outcomes expected from alternative actions that an individual can take. A recent surge of collaborations across economics, psychology and neuroscience has provided new insights into how such multiple elements of decision making interact in the brain.

  17. Towards a neural basis of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2010-03-01

    Music is capable of evoking exceptionally strong emotions and of reliably affecting the mood of individuals. Functional neuroimaging and lesion studies show that music-evoked emotions can modulate activity in virtually all limbic and paralimbic brain structures. These structures are crucially involved in the initiation, generation, detection, maintenance, regulation and termination of emotions that have survival value for the individual and the species. Therefore, at least some music-evoked emotions involve the very core of evolutionarily adaptive neuroaffective mechanisms. Because dysfunctions in these structures are related to emotional disorders, a better understanding of music-evoked emotions and their neural correlates can lead to a more systematic and effective use of music in therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Using Brain Stimulation to Disentangle Neural Correlates of Conscious Vision

    Directory of Open Access Journals (Sweden)

    Tom Alexander de Graaf

    2014-09-01

    Full Text Available Research into the neural correlates of consciousness (NCCs has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as fMRI or EEG do not always afford inference on the role these brain processes play in conscious vision. Such empirical neural correlates of consciousness could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical neural correlates of consciousness.

  19. The neural basis of kinesthetic and visual imagery in sports: an ALE meta - analysis.

    Science.gov (United States)

    Filgueiras, Alberto; Quintas Conde, Erick Francisco; Hall, Craig R

    2017-12-19

    Imagery is a widely spread technique in the sport sciences that entails the mental rehearsal of a given situation to improve an athlete's learning, performance and motivation. Two modalities of imagery are reported to tap into distinct brain structures, but sharing common components: kinesthetic and visual imagery. This study aimed to investigate the neural basis of those types of imagery with Activation Likelihood Estimation algorithm to perform a meta - analysis. A systematic search was used to retrieve only experimental studies with athletes or sportspersons. Altogether, nine studies were selected and an ALE meta - analysis was performed. Results indicated significant activation of the premotor, somatosensory cortex, supplementary motor areas, inferior and superior parietal lobule, caudate, cingulate and cerebellum in both imagery tasks. It was concluded that visual and kinesthetic imagery share similar neural networks which suggests that combined interventions are beneficial to athletes whereas separate use of those two modalities of imagery may seem less efficient from a neuropsychological approach.

  20. Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods.

    Science.gov (United States)

    Tan, X R; Low, I C C; Stephenson, M C; Soong, T W; Lee, J K W

    2018-03-01

    The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A Neural Basis for the Acquired Capability for Suicide

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2016-08-01

    Full Text Available The high rate of fatal suicidal behavior in men is an urgent issue as highlighted in the public eye via news sources and media outlets. In this study, we have attempted to address this issue and understand the neural substrates underlying the gender differences in the rate of fatal suicidal behavior. The Interpersonal-Psychological Theory of Suicide (IPTS has proposed an explanation for the seemingly paradoxical relationship between gender and suicidal behavior, i.e. greater non-fatal suicide attempts by women but higher number of deaths by suicide in men. This theory states that possessing suicidal desire (due to conditions such as depression alone is not sufficient for a lethal suicide attempt. It is imperative for an individual to have acquired the capability for suicide (ACS along with suicidal desire in order to die by suicide. Therefore, higher levels of ACS in men may explain why men are more likely to die by suicide than women, despite being less likely to experience suicidal ideation or depression. In this study, we used activation likelihood estimation meta-analysis to investigate a potential ACS network that involves neural substrates underlying emotional stoicism, sensation seeking, pain tolerance, and fearlessness of death along with a potential depression network that involves neural substrates that underlie clinical depression. Brain regions commonly found in ACS and depression networks for males and females were further used as seeds to obtain regions functionally and structurally connected to them. We found that the male-specific networks were more widespread and diverse than the female-specific ones. Also, while the former involved motor regions such as the premotor cortex and cerebellum, the latter was dominated by limbic regions. This may support the fact that suicidal desire generally leads to fatal/decisive action in males while in females, it manifests as depression, ideation and generally non-fatal actions. The proposed

  2. Neural basis of disgust perception in racial prejudice.

    Science.gov (United States)

    Liu, Yunzhe; Lin, Wanjun; Xu, Pengfei; Zhang, Dandan; Luo, Yuejia

    2015-12-01

    Worldwide racial prejudice is originated from in-group/out-group discrimination. This prejudice can bias face perception at the very beginning of social interaction. However, little is known about the neurocognitive mechanism underlying the influence of racial prejudice on facial emotion perception. Here, we examined the neural basis of disgust perception in racial prejudice using a passive viewing task and functional magnetic resonance imaging. We found that compared with the disgusted faces of in-groups, the disgusted faces of out-groups result in increased amygdala and insular engagement, positive coupling of the insula with amygdala-based emotional system, and negative coupling of the insula with anterior cingulate cortex (ACC)-based regulatory system. Furthermore, machine-learning algorithms revealed that the level of implicit racial prejudice could be predicted by functional couplings of the insula with both the amygdala and the ACC, which suggests that the insula is largely involved in racially biased disgust perception through two distinct neural circuits. In addition, individual difference in disgust sensitivity was found to be predictive of implicit racial prejudice. Taken together, our results suggest a crucial role of insula-centered circuits for disgust perception in racial prejudice. © 2015 Wiley Periodicals, Inc.

  3. Towards a neural basis of processing musical semantics

    Science.gov (United States)

    Koelsch, Stefan

    2011-06-01

    Processing of meaning is critical for language perception, and therefore the majority of research on meaning processing has focused on the semantic, lexical, conceptual, and propositional processing of language. However, music is another a means of communication, and meaning also emerges from the interpretation of musical information. This article provides a framework for the investigation of the processing of musical meaning, and reviews neuroscience studies investigating this issue. These studies reveal two neural correlates of meaning processing, the N400 and the N5 (which are both components of the event-related electric brain potential). Here I argue that the N400 can be elicited by musical stimuli due to the processing of extra-musical meaning, whereas the N5 can be elicited due to the processing of intra-musical meaning. Notably, whereas the N400 can be elicited by both linguistic and musical stimuli, the N5 has so far only been observed for the processing of meaning in music. Thus, knowledge about both the N400 and the N5 can advance our understanding of how the human brain processes meaning information.

  4. Behavior and neural basis of near-optimal visual search

    Science.gov (United States)

    Ma, Wei Ji; Navalpakkam, Vidhya; Beck, Jeffrey M; van den Berg, Ronald; Pouget, Alexandre

    2013-01-01

    The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal and known reliability. In a target detection task, we randomly assigned high or low reliability to each item on a trial-by-trial basis. An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous and whether reliability was manipulated through contrast or shape. We present a neural-network implementation of near-optimal visual search based on probabilistic population coding. The network matched human performance. PMID:21552276

  5. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  6. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study.

    Science.gov (United States)

    Wang, Ping; Zhu, Xing-Ting; Qi, Zhigang; Huang, Silin; Li, Hui-Jie

    2017-01-01

    Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI) study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs) and twenty non-video game players (NVGPs) of 60 years of age or older participated in the present study, and there are no significant differences in age ( t = 0.62, p = 0.536), gender ratio ( t = 1.29, p = 0.206) and years of education ( t = 1.92, p = 0.062) between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  7. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-11-01

    Full Text Available Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs and twenty non-video game players (NVGPs of 60 years of age or older participated in the present study, and there are no significant differences in age (t = 0.62, p = 0.536, gender ratio (t = 1.29, p = 0.206 and years of education (t = 1.92, p = 0.062 between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  8. Cognitive processes and neural basis of language switching: proposal of a new model.

    Science.gov (United States)

    Moritz-Gasser, Sylvie; Duffau, Hugues

    2009-12-09

    Although studies on bilingualism are abundant, cognitive processes and neural foundations of language switching received less attention. The aim of our study is to provide new insights to this still open question: do dedicated region(s) for language switching exist or is this function underlain by a distributed circuit of interconnected brain areas, part of a more general cognitive system? On the basis of recent behavioral, neuroimaging, and brain stimulation studies, we propose an original 'hodological' model of language switching. This process might be subserved by a large-scale cortico-subcortical network, with an executive system (prefrontal cortex, anterior cingulum, caudate nucleus) controlling a more dedicated language subcircuit, which involves postero-temporal areas, supramarginal and angular gyri, Broca's area, and the superior longitudinal fasciculus.

  9. fMRI of Simultaneous Interpretation Reveals the Neural Basis of Extreme Language Control.

    Science.gov (United States)

    Hervais-Adelman, Alexis; Moser-Mercer, Barbara; Michel, Christoph M; Golestani, Narly

    2015-12-01

    We used functional magnetic resonance imaging (fMRI) to examine the neural basis of extreme multilingual language control in a group of 50 multilingual participants. Comparing brain responses arising during simultaneous interpretation (SI) with those arising during simultaneous repetition revealed activation of regions known to be involved in speech perception and production, alongside a network incorporating the caudate nucleus that is known to be implicated in domain-general cognitive control. The similarity between the networks underlying bilingual language control and general executive control supports the notion that the frequently reported bilingual advantage on executive tasks stems from the day-to-day demands of language control in the multilingual brain. We examined neural correlates of the management of simultaneity by correlating brain activity during interpretation with the duration of simultaneous speaking and hearing. This analysis showed significant modulation of the putamen by the duration of simultaneity. Our findings suggest that, during SI, the caudate nucleus is implicated in the overarching selection and control of the lexico-semantic system, while the putamen is implicated in ongoing control of language output. These findings provide the first clear dissociation of specific dorsal striatum structures in polyglot language control, roles that are consistent with previously described involvement of these regions in nonlinguistic executive control. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Neural basis of decision making guided by emotional outcomes.

    Science.gov (United States)

    Katahira, Kentaro; Matsuda, Yoshi-Taka; Fujimura, Tomomi; Ueno, Kenichi; Asamizuya, Takeshi; Suzuki, Chisato; Cheng, Kang; Okanoya, Kazuo; Okada, Masato

    2015-05-01

    Emotional events resulting from a choice influence an individual's subsequent decision making. Although the relationship between emotion and decision making has been widely discussed, previous studies have mainly investigated decision outcomes that can easily be mapped to reward and punishment, including monetary gain/loss, gustatory stimuli, and pain. These studies regard emotion as a modulator of decision making that can be made rationally in the absence of emotions. In our daily lives, however, we often encounter various emotional events that affect decisions by themselves, and mapping the events to a reward or punishment is often not straightforward. In this study, we investigated the neural substrates of how such emotional decision outcomes affect subsequent decision making. By using functional magnetic resonance imaging (fMRI), we measured brain activities of humans during a stochastic decision-making task in which various emotional pictures were presented as decision outcomes. We found that pleasant pictures differentially activated the midbrain, fusiform gyrus, and parahippocampal gyrus, whereas unpleasant pictures differentially activated the ventral striatum, compared with neutral pictures. We assumed that the emotional decision outcomes affect the subsequent decision by updating the value of the options, a process modeled by reinforcement learning models, and that the brain regions representing the prediction error that drives the reinforcement learning are involved in guiding subsequent decisions. We found that some regions of the striatum and the insula were separately correlated with the prediction error for either pleasant pictures or unpleasant pictures, whereas the precuneus was correlated with prediction errors for both pleasant and unpleasant pictures. Copyright © 2015 the American Physiological Society.

  11. Development of neural basis for chinese orthographic neighborhood size effect.

    Science.gov (United States)

    Zhao, Jing; Li, Qing-Lin; Ding, Guo-Sheng; Bi, Hong-Yan

    2016-02-01

    The brain activity of orthographic neighborhood size (N size) effect in Chinese character naming has been studied in adults, meanwhile behavioral studies have revealed a developmental trend of Chinese N-size effect in developing readers. However, it is unclear whether and how the neural mechanism of N-size effect changes in Chinese children along with development. Here we address this issue using functional magnetic resonance imaging. Forty-four students from the 3(rd) , 5(th) , and 7(th) grades were scanned during silent naming of Chinese characters. After scanning, all participants took part in an overt naming test outside the scanner, and results of the naming task showed that the 3(rd) graders named characters from large neighborhoods faster than those from small neighborhoods, revealing a facilitatory N-size effect; the 5(th) graders showed null N-size effect while the 7(th) graders showed an inhibitory N-size effect. Neuroimaging results revealed that only the 3(rd) graders exhibited a significant N-size effect in the left middle occipital activity, with greater activation for large N-size characters. Results of 5(th) and 7(th) graders showed significant N-size effects in the left middle frontal gyrus, in which 5(th) graders induced greater activation in large N-size condition than in small N-size condition, while 7(th) graders exhibited an opposite effect which was similar to the adult pattern reported in a previous study. The current findings suggested the transition from broadly tuned to finely tuned orthographic representation with reading development, and the inhibition from neighbors' phonology for higher graders. Hum Brain Mapp 37:632-647, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Neural basis of decision making guided by emotional outcomes

    Science.gov (United States)

    Matsuda, Yoshi-Taka; Fujimura, Tomomi; Ueno, Kenichi; Asamizuya, Takeshi; Suzuki, Chisato; Cheng, Kang; Okanoya, Kazuo; Okada, Masato

    2015-01-01

    Emotional events resulting from a choice influence an individual's subsequent decision making. Although the relationship between emotion and decision making has been widely discussed, previous studies have mainly investigated decision outcomes that can easily be mapped to reward and punishment, including monetary gain/loss, gustatory stimuli, and pain. These studies regard emotion as a modulator of decision making that can be made rationally in the absence of emotions. In our daily lives, however, we often encounter various emotional events that affect decisions by themselves, and mapping the events to a reward or punishment is often not straightforward. In this study, we investigated the neural substrates of how such emotional decision outcomes affect subsequent decision making. By using functional magnetic resonance imaging (fMRI), we measured brain activities of humans during a stochastic decision-making task in which various emotional pictures were presented as decision outcomes. We found that pleasant pictures differentially activated the midbrain, fusiform gyrus, and parahippocampal gyrus, whereas unpleasant pictures differentially activated the ventral striatum, compared with neutral pictures. We assumed that the emotional decision outcomes affect the subsequent decision by updating the value of the options, a process modeled by reinforcement learning models, and that the brain regions representing the prediction error that drives the reinforcement learning are involved in guiding subsequent decisions. We found that some regions of the striatum and the insula were separately correlated with the prediction error for either pleasant pictures or unpleasant pictures, whereas the precuneus was correlated with prediction errors for both pleasant and unpleasant pictures. PMID:25695644

  13. Statistical physics, neural networks, brain studies

    International Nuclear Information System (INIS)

    Toulouse, G.

    1999-01-01

    An overview of some aspects of a vast domain, located at the crossroads of physics, biology and computer science is presented: (1) During the last fifteen years, physicists advancing along various pathways have come into contact with biology (computational neurosciences) and engineering (formal neural nets). (2) This move may actually be viewed as one component in a larger picture. A prominent trend of recent years, observable over many countries, has been the establishment of interdisciplinary centers devoted to the study of: cognitive sciences; natural and artificial intelligence; brain, mind and behaviour; perception and action; learning and memory; robotics; man-machine communication, etc. What are the promising lines of development? What opportunities for physicists? An attempt will be made to address such questions and related issues

  14. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Psycho-neural Identity as the Basis for Empirical Research and Theorization in Psychology: An Interview with Mario A. Bunge

    Science.gov (United States)

    Virues-Ortega, Javier; Hurtado-Parrado, Camilo; Martin, Toby L.; Julio, Flávia

    2012-10-01

    Mario Bunge is one of the most prolific philosophers of our time. Over the past sixty years he has written extensively about semantics, ontology, epistemology, philosophy of science and ethics. Bunge has been interested in the philosophical and methodological implications of modern psychology and more specifically in the philosophies of the relation between the neural and psychological realms. According to Bunge, functionalism, the philosophical stand of current psychology, has limited explanatory power in that neural processes are not explicitly acknowledged as components or factors of psychological phenomena. In Matter and Mind (2010), Bunge has elaborated in great detail the philosophies of the mind-brain dilemma and the basis of the psychoneural identity hypothesis, which suggests that all psychological processes can be analysed in terms of neural and physical phenomena. This article is the result of a long interview with Dr. Bunge on psychoneural identity and brain-behaviour relations.

  16. The shared neural basis of empathy and facial imitation accuracy.

    Science.gov (United States)

    Braadbaart, L; de Grauw, H; Perrett, D I; Waiter, G D; Williams, J H G

    2014-01-01

    Empathy involves experiencing emotion vicariously, and understanding the reasons for those emotions. It may be served partly by a motor simulation function, and therefore share a neural basis with imitation (as opposed to mimicry), as both involve sensorimotor representations of intentions based on perceptions of others' actions. We recently showed a correlation between imitation accuracy and Empathy Quotient (EQ) using a facial imitation task and hypothesised that this relationship would be mediated by the human mirror neuron system. During functional Magnetic Resonance Imaging (fMRI), 20 adults observed novel 'blends' of facial emotional expressions. According to instruction, they either imitated (i.e. matched) the expressions or executed alternative, pre-prescribed mismatched actions as control. Outside the scanner we replicated the association between imitation accuracy and EQ. During fMRI, activity was greater during mismatch compared to imitation, particularly in the bilateral insula. Activity during imitation correlated with EQ in somatosensory cortex, intraparietal sulcus and premotor cortex. Imitation accuracy correlated with activity in insula and areas serving motor control. Overlapping voxels for the accuracy and EQ correlations occurred in premotor cortex. We suggest that both empathy and facial imitation rely on formation of action plans (or a simulation of others' intentions) in the premotor cortex, in connection with representations of emotional expressions based in the somatosensory cortex. In addition, the insula may play a key role in the social regulation of facial expression. © 2013.

  17. The neural basis of predicting the outcomes of planned actions

    Directory of Open Access Journals (Sweden)

    Andrew eJahn

    2011-11-01

    Full Text Available A key feature of human intelligence is the ability to predict the outcomes of one’s own actions prior to executing them. Action values are thought to be represented in part in the dorsal and ventral medial prefrontal cortex, yet current studies have focused on the value of executed actions rather than the anticipated value of a planned action. Thus, little is known about the neural basis of how individuals think (or fail to think about their actions and the potential consequences before they act. We scanned individuals with fMRI while they thought about performing actions that they knew would likely be correct or incorrect. Here we show that merely imagining an error, as opposed to imagining a correct outcome, increases activity in the dorsal anterior cingulate cortex, independently of subsequent actions. This activity overlaps with regions that respond to actual error commission. The findings show a distinct network that signals the prospective outcomes of one’s planned actions. A number of clinical disorders such as schizophrenia and drug abuse involve a failure to take the potential consequences of an action into account prior to acting. Our results thus suggest how dysfunctions of the medial prefrontal cortex may contribute to such failures.

  18. The brain basis of musicophilia: evidence from frontotemporal lobar degeneration

    OpenAIRE

    Phillip David Fletcher; Laura eDowney; Pirada eWitoonpanich; Jason eWarren

    2013-01-01

    Musicophilia, or abnormal craving for music, is a poorly understood phenomenon that has been associated in particular with focal degeneration of the temporal lobes. Here we addressed the brain basis of musicophilia using voxel-based morphometry (VBM) on MR volumetric brain images in a retrospectively ascertained cohort of patients meeting clinical consensus criteria for frontotemporal lobar degeneration: of 37 cases ascertained, 12 had musicophilia and 25 did not exhibit the phenomenon. The s...

  19. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders

    NARCIS (Netherlands)

    Kos, Claire; van Tol, Marie-Jose; Marsman, Jan-Bernard C.; Knegtering, Henderikus; Aleman, Andre

    2016-01-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar

  20. Using brain stimulation to disentangle neural correlates of conscious vision.

    Science.gov (United States)

    de Graaf, Tom A; Sack, Alexander T

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs.

  1. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  2. Optimal Brain Surgeon on Artificial Neural Networks in

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine

    2012-01-01

    It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...

  3. Wave forecasting in near real time basis by neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.; Prabaharan, N.

    ., forecasting of waves become an important aspect of marine environment. This paper presents application of the neural network (NN) with better update algorithms, namely rprop, quickprop and superSAB for wave forecasting. Measured waves off Marmagoa, Goa, India...

  4. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  5. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  6. Neural basis of individualistic and collectivistic views of self.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya

    2009-09-01

    Individualism and collectivism refer to cultural values that influence how people construe themselves and their relation to the world. Individualists perceive themselves as stable entities, autonomous from other people and their environment, while collectivists view themselves as dynamic entities, continually defined by their social context and relationships. Despite rich understanding of how individualism and collectivism influence social cognition at a behavioral level, little is known about how these cultural values modulate neural representations underlying social cognition. Using cross-cultural functional magnetic resonance imaging (fMRI), we examined whether the cultural values of individualism and collectivism modulate neural activity within medial prefrontal cortex (MPFC) during processing of general and contextual self judgments. Here, we show that neural activity within the anterior rostral portion of the MPFC during processing of general and contextual self judgments positively predicts how individualistic or collectivistic a person is across cultures. These results reveal two kinds of neural representations of self (eg, a general self and a contextual self) within MPFC and demonstrate how cultural values of individualism and collectivism shape these neural representations. 2008 Wiley-Liss, Inc.

  7. Neural basis of social status hierarchy across species.

    Science.gov (United States)

    Chiao, Joan Y

    2010-12-01

    Social status hierarchy is a ubiquitous principle of social organization across the animal kingdom. Recent findings in social neuroscience reveal distinct neural networks associated with the recognition and experience of social hierarchy in humans, as well as modulation of these networks by personality and culture. Additionally, allelic variation in the serotonin transporter gene is associated with prevalence of social hierarchy across species and cultures, suggesting the importance of the study of genetic factors underlying social hierarchy. Future studies are needed to determine how genetic and environmental factors shape neural systems involved in the production and maintenance of social hierarchy across ontogeny and phylogeny. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Using brain stimulation to disentangle neural correlates of conscious vision

    NARCIS (Netherlands)

    de Graaf, T.A.; Sack, A.T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But

  9. The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research.

    Science.gov (United States)

    Reber, Paul J

    2013-08-01

    Memory systems research has typically described the different types of long-term memory in the brain as either declarative versus non-declarative or implicit versus explicit. These descriptions reflect the difference between declarative, conscious, and explicit memory that is dependent on the medial temporal lobe (MTL) memory system, and all other expressions of learning and memory. The other type of memory is generally defined by an absence: either the lack of dependence on the MTL memory system (nondeclarative) or the lack of conscious awareness of the information acquired (implicit). However, definition by absence is inherently underspecified and leaves open questions of how this type of memory operates, its neural basis, and how it differs from explicit, declarative memory. Drawing on a variety of studies of implicit learning that have attempted to identify the neural correlates of implicit learning using functional neuroimaging and neuropsychology, a theory of implicit memory is presented that describes it as a form of general plasticity within processing networks that adaptively improve function via experience. Under this model, implicit memory will not appear as a single, coherent, alternative memory system but will instead be manifested as a principle of improvement from experience based on widespread mechanisms of cortical plasticity. The implications of this characterization for understanding the role of implicit learning in complex cognitive processes and the effects of interactions between types of memory will be discussed for examples within and outside the psychology laboratory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  11. Incidental regulation of attraction: The neural basis of the derogation of attractive alternatives in romantic relationships

    NARCIS (Netherlands)

    Meyer, M.L.; Berkman, E.T.; Karremans, J.C.T.M.; Lieberman, M.D.

    2011-01-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants

  12. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  13. Shindigs, brunches, and rodeos: the neural basis of event words.

    Science.gov (United States)

    Bedny, Marina; Dravida, Swethasri; Saxe, Rebecca

    2014-09-01

    Events (e.g., "running" or "eating") constitute a basic type within human cognition and human language. We asked whether thinking about events, as compared to other conceptual categories, depends on partially independent neural circuits. Indirect evidence for this hypothesis comes from previous studies showing elevated posterior temporal responses to verbs, which typically label events. Neural responses to verbs could, however, be driven either by their grammatical or by their semantic properties. In the present experiment, we separated the effects of grammatical class (verb vs. noun) and semantic category (event vs. object) by measuring neural responses to event nouns (e.g., "the hurricane"). Participants rated the semantic relatedness of event nouns, as well as of two categories of object nouns-animals (e.g., "the alligator") and plants (e.g., "the acorn")-and three categories of verbs-manner of motion (e.g., "to roll"), emission (e.g., "to sparkle"), and perception (e.g., "to gaze"). As has previously been observed, we found larger responses to verbs than to object nouns in the left posterior middle (LMTG) and superior (LSTG) temporal gyri. Crucially, we also found that the LMTG responds more to event than to object nouns. These data suggest that part of the posterior lateral temporal response to verbs is driven by their semantic properties. By contrast, a more superior region, at the junction of the temporal and parietal cortices, responded more to verbs than to all nouns, irrespective of their semantic category. We concluded that the neural mechanisms engaged when thinking about event and object categories are partially dissociable.

  14. The neural basis of intuitive and counterintuitive moral judgment

    Science.gov (United States)

    Wiech, Katja; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2012-01-01

    Neuroimaging studies on moral decision-making have thus far largely focused on differences between moral judgments with opposing utilitarian (well-being maximizing) and deontological (duty-based) content. However, these studies have investigated moral dilemmas involving extreme situations, and did not control for two distinct dimensions of moral judgment: whether or not it is intuitive (immediately compelling to most people) and whether it is utilitarian or deontological in content. By contrasting dilemmas where utilitarian judgments are counterintuitive with dilemmas in which they are intuitive, we were able to use functional magnetic resonance imaging to identify the neural correlates of intuitive and counterintuitive judgments across a range of moral situations. Irrespective of content (utilitarian/deontological), counterintuitive moral judgments were associated with greater difficulty and with activation in the rostral anterior cingulate cortex, suggesting that such judgments may involve emotional conflict; intuitive judgments were linked to activation in the visual and premotor cortex. In addition, we obtained evidence that neural differences in moral judgment in such dilemmas are largely due to whether they are intuitive and not, as previously assumed, to differences between utilitarian and deontological judgments. Our findings therefore do not support theories that have generally associated utilitarian and deontological judgments with distinct neural systems. PMID:21421730

  15. Neural basis of limb ownership in individuals with body integrity identity disorder.

    Directory of Open Access Journals (Sweden)

    Milenna T van Dijk

    Full Text Available Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs that do and do not feel as part of the body using functional MRI during separate tactile stimulation and motor execution experiments. In comparison to matched controls, individuals with BIID showed heightened responsivity of a large somatosensory network including the parietal cortex and right insula during tactile stimulation, regardless of whether the stimulated leg felt owned or alienated. Importantly, activity in the ventral premotor cortex depended on the feeling of ownership and was reduced during stimulation of the alienated compared to the owned leg. In contrast, no significant differences between groups were observed during the performance of motor actions. These results suggest that altered somatosensory processing in the premotor cortex is associated with the feeling of disownership in BIID, which may be related to altered integration of somatosensory and proprioceptive information.

  16. Neural basis of limb ownership in individuals with body integrity identity disorder.

    Science.gov (United States)

    van Dijk, Milenna T; van Wingen, Guido A; van Lammeren, Anouk; Blom, Rianne M; de Kwaasteniet, Bart P; Scholte, H Steven; Denys, Damiaan

    2013-01-01

    Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs that do and do not feel as part of the body using functional MRI during separate tactile stimulation and motor execution experiments. In comparison to matched controls, individuals with BIID showed heightened responsivity of a large somatosensory network including the parietal cortex and right insula during tactile stimulation, regardless of whether the stimulated leg felt owned or alienated. Importantly, activity in the ventral premotor cortex depended on the feeling of ownership and was reduced during stimulation of the alienated compared to the owned leg. In contrast, no significant differences between groups were observed during the performance of motor actions. These results suggest that altered somatosensory processing in the premotor cortex is associated with the feeling of disownership in BIID, which may be related to altered integration of somatosensory and proprioceptive information.

  17. Extent and neural basis of semantic memory impairment in mild cognitive impairment.

    Science.gov (United States)

    Barbeau, Emmanuel J; Didic, Mira; Joubert, Sven; Guedj, Eric; Koric, Lejla; Felician, Olivier; Ranjeva, Jean-Philippe; Cozzone, Patrick; Ceccaldi, Mathieu

    2012-01-01

    An increasing number of studies indicate that semantic memory is impaired in mild cognitive impairment (MCI). However, the extent and the neural basis of this impairment remain unknown. The aim of the present study was: 1) to evaluate whether all or only a subset of semantic domains are impaired in MCI patients; and 2) to assess the neural substrate of the semantic impairment in MCI patients using voxel-based analysis of MR grey matter density and SPECT perfusion. 29 predominantly amnestic MCI patients and 29 matched control subjects participated in this study. All subjects underwent a full neuropsychological assessment, along with a battery of five tests evaluating different domains of semantic memory. A semantic memory composite Z-score was established on the basis of this battery and was correlated with MRI grey matter density and SPECT perfusion measures. MCI patients were found to have significantly impaired performance across all semantic tasks, in addition to their anterograde memory deficit. Moreover, no temporal gradient was found for famous faces or famous public events and knowledge for the most remote decades was also impaired. Neuroimaging analyses revealed correlations between semantic knowledge and perirhinal/entorhinal areas as well as the anterior hippocampus. Therefore, the deficits in the realm of semantic memory in patients with MCI is more widespread than previously thought and related to dysfunction of brain areas beyond the limbic-diencephalic system involved in episodic memory. The severity of the semantic impairment may indicate a decline of semantic memory that began many years before the patients first consulted.

  18. The neural basis of visual behaviors in the larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. The brain basis of musicophilia: evidence from frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Phillip David Fletcher

    2013-06-01

    Full Text Available Musicophilia, or abnormal craving for music, is a poorly understood phenomenon that has been associated in particular with focal degeneration of the temporal lobes. Here we addressed the brain basis of musicophilia using voxel-based morphometry (VBM on MR volumetric brain images in a retrospectively ascertained cohort of patients meeting clinical consensus criteria for frontotemporal lobar degeneration: of 37 cases ascertained, 12 had musicophilia and 25 did not exhibit the phenomenon. The syndrome of semantic dementia was relatively over-represented among the musicophilic subgroup. A VBM analysis revealed significantly increased regional grey matter volume in left posterior hippocampus in the musicophilic subgroup relative to the non-musicophilic group (p<0.05 corrected for regional comparisons; at a relaxed significance threshold (P<0.001 uncorrected across the brain volume musicophilia was associated with additional relative sparing of regional grey matter in other temporal lobe and prefrontal areas and atrophy of grey matter in posterior parietal and orbitofrontal areas. The present findings suggest a candidate brain substrate for musicophilia as a signature of distributed network damage that may reflect a shift of hedonic processing toward more abstract (non-social stimuli, with some specificity for particular neurodegenerative pathologies.

  20. Satisfiability of logic programming based on radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-01-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems

  1. Satisfiability of logic programming based on radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  2. The neural basis of suppression and amblyopia in strabismus.

    Science.gov (United States)

    Sengpiel, F; Blakemore, C

    1996-01-01

    The neurophysiological consequences of artificial strabismus in cats and monkeys have been studied for 30 years. However, until very recently no clear picture has emerged of neural deficits that might account for the powerful interocular suppression that strabismic humans experience, nor for the severe amblyopia that is often associated with convergent strabismus. Here we review the effects of squint on the integrative capacities of the primary visual cortex and propose a hypothesis about the relationship between suppression and amblyopia. Most neurons in the visual cortex of normal cats and monkeys can be excited through either eye and show strong facilitation during binocular stimulation with contours of similar orientation in the two eyes. But in strabismic animals, cortical neurons tend to fall into two populations of monocularly excitable cells and exhibit suppressive binocular interactions that share key properties with perceptual suppression in strabismic humans. Such interocular suppression, if prolonged and asymmetric (with input from the squinting eye habitually suppressed by that from the fixating eye), might lead to neural defects in the representation of the deviating eye and hence to amblyopia.

  3. Behavioural and neural basis of anomalous motor learning in children with autism.

    Science.gov (United States)

    Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H

    2015-03-01

    Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf

  4. The neural basis of belief updating and rational decision making.

    Science.gov (United States)

    Achtziger, Anja; Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Steinhauser, Marco

    2014-01-01

    Rational decision making under uncertainty requires forming beliefs that integrate prior and new information through Bayes' rule. Human decision makers typically deviate from Bayesian updating by either overweighting the prior (conservatism) or overweighting new information (e.g. the representativeness heuristic). We investigated these deviations through measurements of electrocortical activity in the human brain during incentivized probability-updating tasks and found evidence of extremely early commitment to boundedly rational heuristics. Participants who overweight new information display a lower sensibility to conflict detection, captured by an event-related potential (the N2) observed around 260 ms after the presentation of new information. Conservative decision makers (who overweight prior probabilities) make up their mind before new information is presented, as indicated by the lateralized readiness potential in the brain. That is, they do not inhibit the processing of new information but rather immediately rely on the prior for making a decision.

  5. The Neural Basis of Risky Choice with Affective Outcomes

    Science.gov (United States)

    Suter, Renata S.; Pachur, Thorsten; Hertwig, Ralph; Endestad, Tor; Biele, Guido

    2015-01-01

    Both normative and many descriptive theories of decision making under risk are based on the notion that outcomes are weighted by their probability, with subsequent maximization of the (subjective) expected outcome. Numerous investigations from psychology, economics, and neuroscience have produced evidence consistent with this notion. However, this research has typically investigated choices involving relatively affect-poor, monetary outcomes. We compared choice in relatively affect-poor, monetary lottery problems with choice in relatively affect-rich medical decision problems. Computational modeling of behavioral data and model-based neuroimaging analyses provide converging evidence for substantial differences in the respective decision mechanisms. Relative to affect-poor choices, affect-rich choices yielded a more strongly curved probability weighting function of cumulative prospect theory, thus signaling that the psychological impact of probabilities is strongly diminished for affect-rich outcomes. Examining task-dependent brain activation, we identified a region-by-condition interaction indicating qualitative differences of activation between affect-rich and affect-poor choices. Moreover, brain activation in regions that were more active during affect-poor choices (e.g., the supramarginal gyrus) correlated with individual trial-by-trial decision weights, indicating that these regions reflect processing of probabilities. Formal reverse inference Neurosynth meta-analyses suggested that whereas affect-poor choices seem to be based on brain mechanisms for calculative processes, affect-rich choices are driven by the representation of outcomes’ emotional value and autobiographical memories associated with them. These results provide evidence that the traditional notion of expectation maximization may not apply in the context of outcomes laden with affective responses, and that understanding the brain mechanisms of decision making requires the domain of the decision

  6. The neural basis of risky choice with affective outcomes.

    Directory of Open Access Journals (Sweden)

    Renata S Suter

    Full Text Available Both normative and many descriptive theories of decision making under risk are based on the notion that outcomes are weighted by their probability, with subsequent maximization of the (subjective expected outcome. Numerous investigations from psychology, economics, and neuroscience have produced evidence consistent with this notion. However, this research has typically investigated choices involving relatively affect-poor, monetary outcomes. We compared choice in relatively affect-poor, monetary lottery problems with choice in relatively affect-rich medical decision problems. Computational modeling of behavioral data and model-based neuroimaging analyses provide converging evidence for substantial differences in the respective decision mechanisms. Relative to affect-poor choices, affect-rich choices yielded a more strongly curved probability weighting function of cumulative prospect theory, thus signaling that the psychological impact of probabilities is strongly diminished for affect-rich outcomes. Examining task-dependent brain activation, we identified a region-by-condition interaction indicating qualitative differences of activation between affect-rich and affect-poor choices. Moreover, brain activation in regions that were more active during affect-poor choices (e.g., the supramarginal gyrus correlated with individual trial-by-trial decision weights, indicating that these regions reflect processing of probabilities. Formal reverse inference Neurosynth meta-analyses suggested that whereas affect-poor choices seem to be based on brain mechanisms for calculative processes, affect-rich choices are driven by the representation of outcomes' emotional value and autobiographical memories associated with them. These results provide evidence that the traditional notion of expectation maximization may not apply in the context of outcomes laden with affective responses, and that understanding the brain mechanisms of decision making requires the domain

  7. The neural basis of risky choice with affective outcomes.

    Science.gov (United States)

    Suter, Renata S; Pachur, Thorsten; Hertwig, Ralph; Endestad, Tor; Biele, Guido

    2015-01-01

    Both normative and many descriptive theories of decision making under risk are based on the notion that outcomes are weighted by their probability, with subsequent maximization of the (subjective) expected outcome. Numerous investigations from psychology, economics, and neuroscience have produced evidence consistent with this notion. However, this research has typically investigated choices involving relatively affect-poor, monetary outcomes. We compared choice in relatively affect-poor, monetary lottery problems with choice in relatively affect-rich medical decision problems. Computational modeling of behavioral data and model-based neuroimaging analyses provide converging evidence for substantial differences in the respective decision mechanisms. Relative to affect-poor choices, affect-rich choices yielded a more strongly curved probability weighting function of cumulative prospect theory, thus signaling that the psychological impact of probabilities is strongly diminished for affect-rich outcomes. Examining task-dependent brain activation, we identified a region-by-condition interaction indicating qualitative differences of activation between affect-rich and affect-poor choices. Moreover, brain activation in regions that were more active during affect-poor choices (e.g., the supramarginal gyrus) correlated with individual trial-by-trial decision weights, indicating that these regions reflect processing of probabilities. Formal reverse inference Neurosynth meta-analyses suggested that whereas affect-poor choices seem to be based on brain mechanisms for calculative processes, affect-rich choices are driven by the representation of outcomes' emotional value and autobiographical memories associated with them. These results provide evidence that the traditional notion of expectation maximization may not apply in the context of outcomes laden with affective responses, and that understanding the brain mechanisms of decision making requires the domain of the decision to

  8. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  9. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  10. Neural basis of uncertain cue processing in trait anxiety.

    Science.gov (United States)

    Zhang, Meng; Ma, Chao; Luo, Yanyan; Li, Ji; Li, Qingwei; Liu, Yijun; Ding, Cody; Qiu, Jiang

    2016-02-19

    Individuals with high trait anxiety form a non-clinical group with a predisposition for an anxiety-related bias in emotional and cognitive processing that is considered by some to be a prerequisite for psychiatric disorders. Anxious individuals tend to experience more worry under uncertainty, and processing uncertain information is an important, but often overlooked factor in anxiety. So, we decided to explore the brain correlates of processing uncertain information in individuals with high trait anxiety using the learn-test paradigm. Behaviorally, the percentages on memory test and the likelihood ratios of identifying novel stimuli under uncertainty were similar to the certain fear condition, but different from the certain neutral condition. The brain results showed that the visual cortex, bilateral fusiform gyrus, and right parahippocampal gyrus were active during the processing of uncertain cues. Moreover, we found that trait anxiety was positively correlated with the BOLD signal of the right parahippocampal gyrus during the processing of uncertain cues. No significant results were found in the amygdala during uncertain cue processing. These results suggest that memory retrieval is associated with uncertain cue processing, which is underpinned by over-activation of the right parahippocampal gyrus, in individuals with high trait anxiety.

  11. The neural basis of cultural differences in delay discounting.

    Science.gov (United States)

    Kim, Bokyung; Sung, Young Shin; McClure, Samuel M

    2012-03-05

    People generally prefer to receive rewarding outcomes sooner rather than later. Such preferences result from delay discounting, or the process by which outcomes are devalued for the expected delay until their receipt. We investigated cultural differences in delay discounting by contrasting behaviour and brain activity in separate cohorts of Western (American) and Eastern (Korean) subjects. Consistent with previous reports, we find a dramatic difference in discounting behaviour, with Americans displaying much greater present bias and elevated discount rates. Recent neuroimaging findings suggest that differences in discounting may arise from differential involvement of either brain reward areas or regions in the prefrontal and parietal cortices associated with cognitive control. We find that the ventral striatum is more greatly recruited in Americans relative to Koreans when discounting future rewards, but there is no difference in prefrontal or parietal activity. This suggests that a cultural difference in emotional responsivity underlies the observed behavioural effect. We discuss the implications of this research for strategic interrelations between Easterners and Westerners.

  12. Comparison of the neural basis for imagined writing and drawing.

    Science.gov (United States)

    Harrington, Greg S; Farias, Dana; Davis, Christine H; Buonocore, Michael H

    2007-05-01

    Drawing and writing are complex processes that require the synchronization of cognition, language, and perceptual-motor skills. Drawing and writing have both been utilized in the treatment of aphasia to improve communication. Recent research suggests that the act of drawing an object facilitated naming, whereas writing the word diminished accurate naming in individuals with aphasia. However, the relationship between object drawing and subsequent phonological output is unclear. Although the right hemisphere is characteristically mute, there is evidence from split-brain research that the right hemisphere can integrate pictures and words, likely via a semantic network. We hypothesized that drawing activates right hemispheric and left perilesional regions that are spared in aphasic individuals and may contribute to semantic activation that supports naming. Eleven right-handed subjects participated in a functional MRI (fMRI) experiment involving imagined drawing and writing and 6 of the 11 subjects participated in a second fMRI experiment involving actual writing and drawing. Drawing and writing produced very similar group activation maps including activation bilaterally in the premotor, inferior frontal, posterior inferior temporal, and parietal areas. The comparison of drawing vs. writing revealed significant differences between the conditions in areas of the brain known for language processing. The direct comparison between drawing and writing revealed greater right hemisphere activation for drawing in language areas such as Brodmann area (BA) 46 and BA 37.

  13. The neural basis of individual face and object representation

    Directory of Open Access Journals (Sweden)

    Rebecca eWatson

    2016-03-01

    Full Text Available We routinely need to process the identity of many faces around us, and how the brain achieves this is still the subject of much research in cognitive neuroscience. To date, insights on face identity processing have come from both healthy and clinical populations. However, in order to directly compare results across and within participant groups, and across different studies, it is crucial that a standard task is utilised which includes different exemplars (for example, non-face stimuli along with faces, is memory-neutral, and taps into identity recognition across orientation and across viewpoint change. The goal of this study was to test a previously behaviourally tested, optimised face and object identity matching design in a healthy control sample whilst being scanned using fMRI. Specifically, we investigated categorical, orientation, and category-specific orientation effects while participants were focused on identity processing of simultaneously presented exemplar stimuli. Alongside observing category and orientation specific effects in a distributed set of brain regions, we also saw an interaction between stimulus category and orientation in the bilateral fusiform gyrus and bilateral middle occipital gyrus. Generally these clusters showed the pattern of a heightened response to inverted, as opposed to upright faces; and to upright, as opposed to inverted shoes. These results are discussed in relation to previous studies and to potential future research within prosopagnosic individuals.

  14. Tinnitus and neural plasticity of the brain

    NARCIS (Netherlands)

    Bartels, Hilke; Staal, Michiel J.; Albers, Frans W. J.

    Objective: To describe the current ideas about the manifestations of neural plasticity in generating tinnitus. Data Sources: Recently published source articles were identified using MEDLINE, PubMed, and Cochrane Library according to the key words mentioned below. Study Selection: Review articles and

  15. The neural basis for simulated drawing and the semantic implications.

    Science.gov (United States)

    Harrington, Greg S; Farias, Dana; Davis, Christine H

    2009-03-01

    This functional magnetic resonance imaging (fMRI) study of the mental simulation of drawing (1) investigated the neural substrates of drawing and (2) delineated the semantic aspects of drawing. The goal was to advance our understanding of how drawing a familiar object is linked to lexical semantics and therefore a viable method to use to rehabilitate aphasia. We hypothesized that the semantic aspects of drawing familiar objects compared to drawing non-objects would yield greater activation in the inferior temporal cortex and the inferior frontal cortex of the left hemisphere. To test this hypothesis, eight right-handed subjects performed an fMRI experiment that directly contrasted drawing familiar objects to non-objects using mental imagery. Simulated drawing recruited a large, distributed network of frontal, parietal, and temporal structures. In the contrast comparing drawing familiar objects to non-objects there was stronger activation in the left hemisphere within the inferior temporal, anterior inferior frontal, inferior parietal and superior frontal cortices. The activation within the inferior temporal cortex was associated with visual semantic processing and semantic mediated naming. We suggest that the anterior inferior frontal activation is linked to the inferior temporal cortex and is involved in the selection of specific semantic features of the object as well as retrieval of information regarding the perceptual aspects of the object.

  16. Neural basis of moral verdict and moral deliberation

    Science.gov (United States)

    Borg, Jana Schaich; Sinnott-Armstrong, Walter; Calhoun, Vince D.; Kiehl, Kent A.

    2011-01-01

    How people judge something to be morally right or wrong is a fundamental question of both the sciences and the humanities. Here we aim to identify the neural processes that underlie the specific conclusion that something is morally wrong. To do this, we introduce a novel distinction between “moral deliberation,” or the weighing of moral considerations, and the formation of a “moral verdict,” or the commitment to one moral conclusion. We predict and identify hemodynamic activity in the bilateral anterior insula and basal ganglia that correlates with committing to the moral verdict “this is morally wrong” as opposed to “this is morally not wrong,” a finding that is consistent with research from economic decision-making. Using comparisons of deliberation-locked vs. verdict-locked analyses, we also demonstrate that hemodynamic activity in high-level cortical regions previously implicated in morality—including the ventromedial prefrontal cortex, posterior cingulate, and temporoparietal junction—correlates primarily with moral deliberation as opposed to moral verdicts. These findings provide new insights into what types of processes comprise the enterprise of moral judgment, and in doing so point to a framework for resolving why some clinical patients, including psychopaths, may have intact moral judgment but impaired moral behavior. PMID:21590588

  17. Feeling form: the neural basis of haptic shape perception.

    Science.gov (United States)

    Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J

    2016-02-01

    The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.

  18. The neural basis of reversal learning: An updated perspective

    Science.gov (United States)

    Izquierdo, Alicia; Brigman, Jonathan L.; Radke, Anna K.; Rudebeck, Peter H.; Holmes, Andrew

    2016-01-01

    Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as an heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principle neurotransmitter systems involved. PMID:26979052

  19. [Neural basis of self-face recognition: social aspects].

    Science.gov (United States)

    Sugiura, Motoaki

    2012-07-01

    Considering the importance of the face in social survival and evidence from evolutionary psychology of visual self-recognition, it is reasonable that we expect neural mechanisms for higher social-cognitive processes to underlie self-face recognition. A decade of neuroimaging studies so far has, however, not provided an encouraging finding in this respect. Self-face specific activation has typically been reported in the areas for sensory-motor integration in the right lateral cortices. This observation appears to reflect the physical nature of the self-face which representation is developed via the detection of contingency between one's own action and sensory feedback. We have recently revealed that the medial prefrontal cortex, implicated in socially nuanced self-referential process, is activated during self-face recognition under a rich social context where multiple other faces are available for reference. The posterior cingulate cortex has also exhibited this activation modulation, and in the separate experiment showed a response to attractively manipulated self-face suggesting its relevance to positive self-value. Furthermore, the regions in the right lateral cortices typically showing self-face-specific activation have responded also to the face of one's close friend under the rich social context. This observation is potentially explained by the fact that the contingency detection for physical self-recognition also plays a role in physical social interaction, which characterizes the representation of personally familiar people. These findings demonstrate that neuroscientific exploration reveals multiple facets of the relationship between self-face recognition and social-cognitive process, and that technically the manipulation of social context is key to its success.

  20. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  1. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  2. Neural basis of music imagery and the effect of musical expertise.

    Science.gov (United States)

    Herholz, Sibylle C; Lappe, Claudia; Knief, Arne; Pantev, Christo

    2008-12-01

    Although the influence of long-term musical training on the processing of heard music has been the subject of many studies, the neural basis of music imagery and the effect of musical expertise remain insufficiently understood. By means of magnetoencephalography (MEG) we compared musicians and nonmusicians in a musical imagery task with familiar melodies. Subjects listened to the beginnings of the melodies, continued them in their imagination and then heard a tone which was either a correct or an incorrect further continuation of the melody. Only in musicians was the imagery of these melodies strong enough to elicit an early preattentive brain response to unexpected incorrect continuations of the imagined melodies; this response, the imagery mismatch negativity (iMMN), peaked approximately 175 ms after tone onset and was right-lateralized. In contrast to previous studies the iMMN was not based on a heard but on a purely imagined memory trace. Our results suggest that in trained musicians imagery and perception rely on similar neuronal correlates, and that the musicians' intense musical training has modified this network to achieve a superior ability for imagery and preattentive processing of music.

  3. Neural basis of moral elevation demonstrated through inter-subject synchronization of cortical activity during free-viewing.

    Directory of Open Access Journals (Sweden)

    Zoë A Englander

    Full Text Available Most research investigating the neural basis of social emotions has examined emotions that give rise to negative evaluations of others (e.g. anger, disgust. Emotions triggered by the virtues and excellences of others have been largely ignored. Using fMRI, we investigated the neural basis of two "other-praising" emotions--Moral Elevation (a response to witnessing acts of moral beauty, and Admiration (which we restricted to admiration for physical skill.Ten participants viewed the same nine video clips. Three clips elicited moral elevation, three elicited admiration, and three were emotionally neutral. We then performed pair-wise voxel-by-voxel correlations of the BOLD signal between individuals for each video clip and a separate resting-state run. We observed a high degree of inter-subject synchronization, regardless of stimulus type, across several brain regions during free-viewing of videos. Videos in the elevation condition evoked significant inter-subject synchronization in brain regions previously implicated in self-referential and interoceptive processes, including the medial prefrontal cortex, precuneus, and insula. The degree of synchronization was highly variable over the course of the videos, with the strongest synchrony occurring during portions of the videos that were independently rated as most emotionally arousing. Synchrony in these same brain regions was not consistently observed during the admiration videos, and was absent for the neutral videos.Results suggest that the neural systems supporting moral elevation are remarkably consistent across subjects viewing the same emotional content. We demonstrate that model-free techniques such as inter-subject synchronization may be a useful tool for studying complex, context dependent emotions such as self-transcendent emotion.

  4. Natural and artificial intelligence misconceptions about brains and neural networks

    CERN Document Server

    de Callataÿ, A

    1992-01-01

    How does the mind work? How is data stored in the brain? How does the mental world connect with the physical world? The hybrid system developed in this book shows a radically new view on the brain. Briefly, in this model memory remains permanent by changing the homeostasis rebuilding the neuronal organelles. These transformations are approximately abstracted as all-or-none operations. Thus the computer-like neural systems become plausible biological models. This illustrated book shows how artificial animals with such brains learn invariant methods of behavior control from their repeated action

  5. Neural Basis of Emotional Decision Making in Trait Anxiety

    Science.gov (United States)

    Xu, Pengfei; Gu, Ruolei; Broster, Lucas S.; Wu, Runguo; Van Dam, Nicholas T.; Jiang, Yang; Fan, Jin

    2013-01-01

    Although trait anxiety has been associated with risk decision making, whether it is related to risk per se or to the feeling of the risk, as well as the underlying neurocognitive mechanisms, remains unclear. Using a decision-making task with a manipulation of frame (i.e., written description of options as a potential gain or loss) and functional magnetic resonance imaging, we investigated the neurocognitive relationship between trait anxiety and decision making. The classic framing effect was observed: participants chose the safe option when it was described as a potential gain, but they avoided the same option when it was described as a potential loss. Most importantly, trait anxiety was positively correlated with this behavioral bias. Trait anxiety was also positively correlated with amygdala-based “emotional” system activation and its coupling with the ventromedial prefrontal cortex (vmPFC) when decisions were consistent with the framing effect, but negatively correlated with the dorsal anterior cingulate cortex (dACC)-based “analytic” system activation and its connectivity to the vmPFC when decisions ran counter to the framing effect. Our findings suggest that trait anxiety is not associated with subjective risk preference but an evaluative bias of emotional information in decision making, underpinned by a hyperactive emotional system and a hypoactive analytic system in the brain. PMID:24259585

  6. Neural basis of emotional decision making in trait anxiety.

    Science.gov (United States)

    Xu, Pengfei; Gu, Ruolei; Broster, Lucas S; Wu, Runguo; Van Dam, Nicholas T; Jiang, Yang; Fan, Jin; Luo, Yue-jia

    2013-11-20

    Although trait anxiety has been associated with risk decision making, whether it is related to risk per se or to the feeling of the risk, as well as the underlying neurocognitive mechanisms, remains unclear. Using a decision-making task with a manipulation of frame (i.e., written description of options as a potential gain or loss) and functional magnetic resonance imaging, we investigated the neurocognitive relationship between trait anxiety and decision making. The classic framing effect was observed: participants chose the safe option when it was described as a potential gain, but they avoided the same option when it was described as a potential loss. Most importantly, trait anxiety was positively correlated with this behavioral bias. Trait anxiety was also positively correlated with amygdala-based "emotional" system activation and its coupling with the ventromedial prefrontal cortex (vmPFC) when decisions were consistent with the framing effect, but negatively correlated with the dorsal anterior cingulate cortex (dACC)-based "analytic" system activation and its connectivity to the vmPFC when decisions ran counter to the framing effect. Our findings suggest that trait anxiety is not associated with subjective risk preference but an evaluative bias of emotional information in decision making, underpinned by a hyperactive emotional system and a hypoactive analytic system in the brain.

  7. The neural basis of economic decision-making in the ultimatum game

    NARCIS (Netherlands)

    Sanfey, A.G.; Rilling, J.K.; Aronson, J.A.; Nystrom, L.E.; Cohen, J.D.

    2003-01-01

    The nascent field of neuroeconomics seeks to ground economic decision-making in the biological substrate of the brain. We used functional magnetic resonance imaging of Ultimatum Game players to investigate neural substrates of cognitive and emotional processes involved in economic decision-making.

  8. Brain tumor classification using Probabilistic Neural Network

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Baghdad, Iraq. 1sami.hasan@coie.nahrainuniv.edu.iq ... The Human brain is the most amazing and complex thing known in the world [1]. ... achieved using gray level co-occurrence matrix (GLCM). This work is aimed to ...

  9. Two social brains: neural mechanisms of intersubjectivity.

    Science.gov (United States)

    Vogeley, Kai

    2017-08-19

    It is the aim of this article to present an empirically justified hypothesis about the functional roles of the two social neural systems, namely the so-called 'mirror neuron system' (MNS) and the 'mentalizing system' (MENT, also 'theory of mind network' or 'social neural network'). Both systems are recruited during cognitive processes that are either related to interaction or communication with other conspecifics, thereby constituting intersubjectivity. The hypothesis is developed in the following steps: first, the fundamental distinction that we make between persons and things is introduced; second, communication is presented as the key process that allows us to interact with others; third, the capacity to 'mentalize' or to understand the inner experience of others is emphasized as the fundamental cognitive capacity required to establish successful communication. On this background, it is proposed that MNS serves comparably early stages of social information processing related to the 'detection' of spatial or bodily signals, whereas MENT is recruited during comparably late stages of social information processing related to the 'evaluation' of emotional and psychological states of others. This hypothesis of MNS as a social detection system and MENT as a social evaluation system is illustrated by findings in the field of psychopathology. Finally, new research questions that can be derived from this hypothesis are discussed.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  10. The role of BDNF in depression on the basis of its location in the neural circuitry

    Institute of Scientific and Technical Information of China (English)

    Hui YU; Zhe-yu CHEN

    2011-01-01

    Depression is one of the most prevalent and life-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their roles in depression and antidepressant action. While these regions no doubt play important roles in the mental illness, there is compelling evi-dence that other brain regions are also involved. Brain-derived neurotrophic factor (BDNF) is broadly expressed in the developing and adult mammalian brain and has been implicated in development, neural regeneration, synaptic transmission, synaptic plasticity and neurogenesis. Recently BDNF has been shown to play an important role in the pathophysiology of depression, however there are con-troversial reports about the effects of BDNF on depression. Here, we present an overview of the current knowledge concerning BDNF actions and associated intracellular signaling in hippocampus, prefrontal cortex, nucleus accumbens (NAc) and amygdala as their rela-tion to depression.

  11. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  12. Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia.

    Science.gov (United States)

    Kovelman, Ioulia; Norton, Elizabeth S; Christodoulou, Joanna A; Gaab, Nadine; Lieberman, Daniel A; Triantafyllou, Christina; Wolf, Maryanne; Whitfield-Gabrieli, Susan; Gabrieli, John D E

    2012-04-01

    Phonological awareness, knowledge that speech is composed of syllables and phonemes, is critical for learning to read. Phonological awareness precedes and predicts successful transition from language to literacy, and weakness in phonological awareness is a leading cause of dyslexia, but the brain basis of phonological awareness for spoken language in children is unknown. We used functional magnetic resonance imaging to identify the neural correlates of phonological awareness using an auditory word-rhyming task in children who were typical readers or who had dyslexia (ages 7-13) and a younger group of kindergarteners (ages 5-6). Typically developing children, but not children with dyslexia, recruited left dorsolateral prefrontal cortex (DLPFC) when making explicit phonological judgments. Kindergarteners, who were matched to the older children with dyslexia on standardized tests of phonological awareness, also recruited left DLPFC. Left DLPFC may play a critical role in the development of phonological awareness for spoken language critical for reading and in the etiology of dyslexia.

  13. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  14. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    Science.gov (United States)

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  15. Neural basis of limb ownership in individuals with body integrity identity disorder

    NARCIS (Netherlands)

    van Dijk, Milenna T.; van Wingen, Guido A.; van Lammeren, Anouk; Blom, Rianne M.; de Kwaasteniet, Bart P.; Scholte, H. Steven; Denys, Damiaan

    2013-01-01

    Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis

  16. The Molecular Basis of Neural Memory. Part 7: Neural Intelligence (NI versus Artificial Intelligence (AI

    Directory of Open Access Journals (Sweden)

    Gerard Marx

    2017-07-01

    Full Text Available The link of memory to intelligence is incontestable, though the development of electronic artifacts with memory has confounded cognitive and computer scientists’ conception of memory and its relevance to “intelligence”. We propose two categories of “Intelligence”: (1 Logical (objective — mathematics, numbers, pattern recognition, games, programmable in binary format. (2 Emotive (subjective — sensations, feelings, perceptions, goals desires, sociability, sex, food, love. The 1st has been reduced to computational algorithms of which we are well versed, witness global technology and the internet. The 2nd relates to the mysterious process whereby (psychic emotive states are achieved by neural beings sensing, comprehending, remembering and dealing with their surroundings. Many theories and philosophies have been forwarded to rationalize this process, but as neuroscientists, we remain dissatisfied. Our own musings on universal neural memory, suggest a tripartite mechanism involving neurons interacting with their surroundings, notably the neural extracellular matrix (nECM with dopants [trace metals and neurotransmitters (NTs]. In particular, the NTs are the molecular encoders of emotive states. We have developed a chemographic representation of such a molecular code.To quote Longuet-Higgins, “Perhaps it is time for the term ‘artificial intelligence’ to be replaced by something more modest and less provisional”. We suggest “artifact intelligence” (ARTI or “machine intelligence” (MI, neither of which imply emulation of emotive neural processes, but simply refer to the ‘demotive’ (lacking emotive quality capability of electronic artifacts that employ a recall function, to calculate algorithms.

  17. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  19. The neural basis of the bystander effect--the influence of group size on neural activity when witnessing an emergency.

    Science.gov (United States)

    Hortensius, Ruud; de Gelder, Beatrice

    2014-06-01

    Naturalistic observation and experimental studies in humans and other primates show that observing an individual in need automatically triggers helping behavior. The aim of the present study is to clarify the neurofunctional basis of social influences on individual helping behavior. We investigate whether when participants witness an emergency, while performing an unrelated color-naming task in an fMRI scanner, the number of bystanders present at the emergency influences neural activity in regions related to action preparation. The results show a decrease in activity with the increase in group size in the left pre- and postcentral gyri and left medial frontal gyrus. In contrast, regions related to visual perception and attention show an increase in activity. These results demonstrate the neural mechanisms of social influence on automatic action preparation that is at the core of helping behavior when witnessing an emergency. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Multiscale neural connectivity during human sensory processing in the brain

    Science.gov (United States)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  1. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  2. Neural stem cells in the ischemic and injured brain: endogenous and transplanted.

    Science.gov (United States)

    Dong, Jing; Liu, Baohua; Song, Lei; Lu, Lei; Xu, Haitao; Gu, Yue

    2012-12-01

    Neural stem cells functions as the pool of new neurons in adult brain, and plays important roles in normal brain function. Additionally, this pool reacts to brain ischemia, hemorrhage, trauma and many kinds of diseases, serving as endogenous repair mechanisms. The present manuscript discussed the responses of adult neurogenesis to brain ischemia and other insults, then the potential of neural stem cell transplantation therapy to treat such brain injury conditions.

  3. The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects.

    Science.gov (United States)

    Tervaniemi, M; Ilvonen, T; Karma, K; Alho, K; Näätänen, R

    1997-04-18

    To reveal neurophysiological prerequisites of musicality, auditory event-related potentials (ERPs) were recorded from musical and non-musical subjects, musicality being here defined as the ability to temporally structure auditory information. Instructed to read a book and to ignore sounds, subjects were presented with a repetitive sound pattern with occasional changes in its temporal structure. The mismatch negativity (MMN) component of ERPs, indexing the cortical preattentive detection of change in these stimulus patterns, was larger in amplitude in musical than non-musical subjects. This amplitude enhancement, indicating more accurate sensory memory function in musical subjects, suggests that even the cognitive component of musicality, traditionally regarded as depending on attention-related brain processes, in fact, is based on neural mechanisms present already at the preattentive level.

  4. Neural Plastic Effects of Cognitive Training on Aging Brain

    Directory of Open Access Journals (Sweden)

    Natalie T. Y. Leung

    2015-01-01

    Full Text Available Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n=109 and the Active Control Group (n=100. Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age.

  5. Neural Plastic Effects of Cognitive Training on Aging Brain.

    Science.gov (United States)

    Leung, Natalie T Y; Tam, Helena M K; Chu, Leung W; Kwok, Timothy C Y; Chan, Felix; Lam, Linda C W; Woo, Jean; Lee, Tatia M C

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age.

  6. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  7. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  8. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  9. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  10. Bounds on Rates of Variable-Basis and Neural-Network Approximation

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2001-01-01

    Roč. 47, č. 6 (2001), s. 2659-2665 ISSN 0018-9448 R&D Projects: GA ČR GA201/00/1482 Institutional research plan: AV0Z1030915 Keywords : approximation by variable-basis functions * bounds on rates of approximation * complexity of neural networks * high-dimensional optimal decision problems Subject RIV: BA - General Mathematics Impact factor: 2.077, year: 2001

  11. METHODS OF TEXT INFORMATION CLASSIFICATION ON THE BASIS OF ARTIFICIAL NEURAL AND SEMANTIC NETWORKS

    Directory of Open Access Journals (Sweden)

    L. V. Serebryanaya

    2016-01-01

    Full Text Available The article covers the use of perseptron, Hopfild artificial neural network and semantic network for classification of text information. Network training algorithms are studied. An algorithm of inverse mistake spreading for perceptron network and convergence algorithm for Hopfild network are implemented. On the basis of the offered models and algorithms automatic text classification software is developed and its operation results are evaluated.

  12. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H215O PET

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H 2 1 5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H 2 1 5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H 2 1 5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.=20

  13. Neural representation of expected value in the adolescent brain.

    Science.gov (United States)

    Barkley-Levenson, Emily; Galván, Adriana

    2014-01-28

    Previous work shows that the adolescent reward system is hyperactive, but this finding may be confounded by differences in how teens value money. To address this, we examined the neural ontogeny of objective value representation. Adolescent and adult participants performed a monetary gambling task in which they chose to accept or reject gambles of varying expected value. Increasing expected value had a stronger influence over gambling choices in adolescents relative to adults, an effect that was paralleled by greater activation in the ventral striatum in adolescents. This unique adolescent ventral striatum response remained even after matching groups on acceptance behavior. These behavioral and neural data suggest that the value of available options has a greater influence in adolescent versus adult choices, even when objective value and subjective choice are held constant. This research provides further evidence that hyperactivation of reward circuitry in adolescence may be a normative ontogenetic shift that is due to greater valuation in the adolescent brain.

  14. The functional and structural neural basis of individual differences in loss aversion.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Motterlini, Matteo; Baud-Bovy, Gabriel; Chierchia, Gabriele; Pantaleo, Giuseppe; Tettamanti, Marco; Cappa, Stefano F

    2013-09-04

    Decision making under risk entails the anticipation of prospective outcomes, typically leading to the greater sensitivity to losses than gains known as loss aversion. Previous studies on the neural bases of choice-outcome anticipation and loss aversion provided inconsistent results, showing either bidirectional mesolimbic responses of activation for gains and deactivation for losses, or a specific amygdala involvement in processing losses. Here we focused on loss aversion with the aim to address interindividual differences in the neural bases of choice-outcome anticipation. Fifty-six healthy human participants accepted or rejected 104 mixed gambles offering equal (50%) chances of gaining or losing different amounts of money while their brain activity was measured with functional magnetic resonance imaging (fMRI). We report both bidirectional and gain/loss-specific responses while evaluating risky gambles, with amygdala and posterior insula specifically tracking the magnitude of potential losses. At the individual level, loss aversion was reflected both in limbic fMRI responses and in gray matter volume in a structural amygdala-thalamus-striatum network, in which the volume of the "output" centromedial amygdala nuclei mediating avoidance behavior was negatively correlated with monetary performance. We conclude that outcome anticipation and ensuing loss aversion involve multiple neural systems, showing functional and structural individual variability directly related to the actual financial outcomes of choices. By supporting the simultaneous involvement of both appetitive and aversive processing in economic decision making, these results contribute to the interpretation of existing inconsistencies on the neural bases of anticipating choice outcomes.

  15. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    Science.gov (United States)

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  16. Losing Neutrality: The Neural Basis of Impaired Emotional Control without Sleep.

    Science.gov (United States)

    Simon, Eti Ben; Oren, Noga; Sharon, Haggai; Kirschner, Adi; Goldway, Noam; Okon-Singer, Hadas; Tauman, Rivi; Deweese, Menton M; Keil, Andreas; Hendler, Talma

    2015-09-23

    Sleep deprivation has been shown recently to alter emotional processing possibly associated with reduced frontal regulation. Such impairments can ultimately fail adaptive attempts to regulate emotional processing (also known as cognitive control of emotion), although this hypothesis has not been examined directly. Therefore, we explored the influence of sleep deprivation on the human brain using two different cognitive-emotional tasks, recorded using fMRI and EEG. Both tasks involved irrelevant emotional and neutral distractors presented during a competing cognitive challenge, thus creating a continuous demand for regulating emotional processing. Results reveal that, although participants showed enhanced limbic and electrophysiological reactions to emotional distractors regardless of their sleep state, they were specifically unable to ignore neutral distracting information after sleep deprivation. As a consequence, sleep deprivation resulted in similar processing of neutral and negative distractors, thus disabling accurate emotional discrimination. As expected, these findings were further associated with a decrease in prefrontal connectivity patterns in both EEG and fMRI signals, reflecting a profound decline in cognitive control of emotion. Notably, such a decline was associated with lower REM sleep amounts, supporting a role for REM sleep in overnight emotional processing. Altogether, our findings suggest that losing sleep alters emotional reactivity by lowering the threshold for emotional activation, leading to a maladaptive loss of emotional neutrality. Significance statement: Sleep loss is known as a robust modulator of emotional reactivity, leading to increased anxiety and stress elicited by seemingly minor triggers. In this work, we aimed to portray the neural basis of these emotional impairments and their possible association with frontal regulation of emotional processing, also known as cognitive control of emotion. Using specifically suited EEG and f

  17. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  18. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logK oc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logK oc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logK oc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Incidental regulation of attraction: The neural basis of the derogation of attractive alternatives in romantic relationships

    Science.gov (United States)

    Meyer, Meghan L.; Berkman, Elliot T.; Karremans, Johan C.; Lieberman, Matthew D.

    2011-01-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants implicitly derogate the attractiveness of alternative partners, and the present study sought to examine the neural basis of this effect. Romantically committed participants in the present study were scanned with functional magnetic resonance imaging (fMRI) while indicating whether they would consider each of a series of attractive (or unattractive) opposite-sex others as a hypothetical dating partner both while under cognitive load and no cognitive load. Successful derogation of attractive others during the no cognitive load compared to the cognitive load trials corresponded with increased activation in the ventrolateral prefrontal cortex (VLPFC) and posterior dorsomedial prefrontal cortex (pDMPFC), and decreased activation in the ventral striatum, a pattern similar to those reported in deliberate emotion-regulation studies. Activation in the VLPFC and pDMPFC was not significant in the cognitive load condition, indicating that while the derogation effect may be implicit, it nonetheless requires cognitive resources. Additionally, activation in the right VLPFC correlated with participants’ level of relationship investment. These findings suggest that the RVLPFC may play a particularly important role in implicitly regulating the emotions that threaten the stability of a romantic relationship. PMID:21432689

  20. Incidental regulation of attraction: the neural basis of the derogation of attractive alternatives in romantic relationships.

    Science.gov (United States)

    Meyer, Meghan L; Berkman, Elliot T; Karremans, Johan C; Lieberman, Matthew D

    2011-04-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants implicitly derogate the attractiveness of alternative partners, and the present study sought to examine the neural basis of this effect. Romantically committed participants in the present study were scanned with functional magnetic resonance imaging (fMRI) while indicating whether they would consider each of a series of attractive (or unattractive) opposite-sex others as a hypothetical dating partner both while under cognitive load and no cognitive load. Successful derogation of attractive others during the no cognitive load compared to the cognitive load trials corresponded with increased activation in the ventrolateral prefrontal cortex (VLPFC) and posterior dorsomedial prefrontal cortex (pDMPFC), and decreased activation in the ventral striatum, a pattern similar to those reported in deliberate emotion-regulation studies. Activation in the VLPFC and pDMPFC was not significant in the cognitive load condition, indicating that while the derogation effect may be implicit, it nonetheless requires cognitive resources. Additionally, activation in the right VLPFC correlated with participants' level of relationship investment. These findings suggest that the RVLPFC may play a particularly important role in implicitly regulating the emotions that threaten the stability of a romantic relationship. © 2011 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  1. The neural basis of love as a subliminal prime: an event-related functional magnetic resonance imaging study.

    Science.gov (United States)

    Ortigue, S; Bianchi-Demicheli, F; Hamilton, A F de C; Grafton, S T

    2007-07-01

    Throughout the ages, love has been defined as a motivated and goal-directed mechanism with explicit and implicit mechanisms. Recent evidence demonstrated that the explicit representation of love recruits subcorticocortical pathways mediating reward, emotion, and motivation systems. However, the neural basis of the implicit (unconscious) representation of love remains unknown. To assess this question, we combined event-related functional magnetic resonance imaging (fMRI) with a behavioral subliminal priming paradigm embedded in a lexical decision task. In this task, the name of either a beloved partner, a neutral friend, or a passionate hobby was subliminally presented before a target stimulus (word, nonword, or blank), and participants were required to decide if the target was a word or not. Behavioral results showed that subliminal presentation of either a beloved's name (love prime) or a passion descriptor (passion prime) enhanced reaction times in a similar fashion. Subliminal presentation of a friend's name (friend prime) did not show any beneficial effects. Functional results showed that subliminal priming with a beloved's name (as opposed to either a friend's name or a passion descriptor) specifically recruited brain areas involved in abstract representations of others and the self, in addition to motivation circuits shared with other sources of passion. More precisely, love primes recruited the fusiform and angular gyri. Our findings suggest that love, as a subliminal prime, involves a specific neural network that surpasses a dopaminergic-motivation system.

  2. Neural correlates of socioeconomic status in the developing human brain.

    Science.gov (United States)

    Noble, Kimberly G; Houston, Suzanne M; Kan, Eric; Sowell, Elizabeth R

    2012-07-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that language, memory, social-emotional processing, and cognitive control exhibit relatively large differences across SES. Here we investigated whether volumetric differences could be observed across SES in several neural regions that support these skills. In a sample of 60 socioeconomically diverse children, highly significant SES differences in regional brain volume were observed in the hippocampus and the amygdala. In addition, SES × age interactions were observed in the left superior temporal gyrus and left inferior frontal gyrus, suggesting increasing SES differences with age in these regions. These results were not explained by differences in gender, race or IQ. Likely mechanisms include differences in the home linguistic environment and exposure to stress, which may serve as targets for intervention at a time of high neural plasticity. © 2012 Blackwell Publishing Ltd.

  3. The Neural Basis of Economic Decision-Making in the Ultimatum Game

    Science.gov (United States)

    Sanfey, Alan G.; Rilling, James K.; Aronson, Jessica A.; Nystrom, Leigh E.; Cohen, Jonathan D.

    2003-06-01

    The nascent field of neuroeconomics seeks to ground economic decision- making in the biological substrate of the brain. We used functional magnetic resonance imaging of Ultimatum Game players to investigate neural substrates of cognitive and emotional processes involved in economic decision-making. In this game, two players split a sum of money; one player proposes a division and the other can accept or reject this. We scanned players as they responded to fair and unfair proposals. Unfair offers elicited activity in brain areas related to both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex). Further, significantly heightened activity in anterior insula for rejected unfair offers suggests an important role for emotions in decision-making.

  4. The flexible brain. On mind and brain, neural darwinism and psychiatry.

    Science.gov (United States)

    den Boer, J A

    1997-09-01

    A theoretical introduction is given in which several theoretical viewpoints concerning the mind-brain problem are discussed. During the last decade philosophers like Searle, Dennett and the Churchlands have taken a more or less pure materialistic position in explaining mental phenomena. Investigators in biological psychiatry have hardly ever taken a clear position in this discussion, whereas we believe it is important that the conclusions drawn from biological research are embedded in a theoretical framework related to the mind-brain problem. In this article the thesis is defended that the theory of neural darwinism represents a major step forward and may bridge previous distinctions between biological, clinical and social psychiatry.

  5. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    Science.gov (United States)

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-06

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. Copyright © 2015 Douglas et al.

  6. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  7. An fMRI study of the neural basis hand postures specific to tool use. Presidential award proceedings

    International Nuclear Information System (INIS)

    Ohgami, Yuko; Uchida, Nobuko; Matsuo, Kayako; Nakai, Toshiharu

    2007-01-01

    Patients with apraxia are often unable to mimic the use of a tool, even when it is presented visually. Such mimicking involves various cognitive and motor processes, including the visual perception of a tool and the manipulation of imagined tools. Although previous studies reported the involvement of several brain areas, including the left inferior parietal lobule, in such tool-use action, the details of each process have not been well understood. To clarify the neural basis of the process involved in forming hand postures for using tools, we used functional magnetic resonance imaging (fMRI) in normal volunteers to investigate brain activation while they formed hand postures for tool manipulation. Three conditions were evaluated in separate block-designed fMRI series, formation of hand posture (A) using a tool, (B) imitating such a hand posture, and (C) to imitate the shape of a tool. Subjects formed their right hand in a manner specified according to the task conditions. Hand posturing for condition (A) induced activation in the left inferior frontal gyrus (BA 45), left inferior parietal lobule (BA 40), and the premotor area compared with the imitative posturing of condition (B). Activation in these areas might be related to processes shared by tool-use pantomime. On the other hand, comparison between conditions (A) and (C) demonstrated activation in the right superior parietal lobule (BA 7). This activation may reflect spatial regulation, in which the subject was prepared to hold and manipulate the tool. Formation of static hand postures to prepare for tool use may employ a neural network shared by various tool-use actions, such as pantomime. In addition, forming hand postures may require close coordination between the tool and hand. (author)

  8. Sex, Lies and fMRI—Gender Differences in Neural Basis of Deception

    Science.gov (United States)

    Falkiewicz, Marcel; Szeszkowski, Wojciech; Grabowska, Anna; Szatkowska, Iwona

    2012-01-01

    Deception has always been a part of human communication as it helps to promote self-presentation. Although both men and women are equally prone to try to manage their appearance, their strategies, motivation and eagerness may be different. Here, we asked if lying could be influenced by gender on both the behavioral and neural levels. To test whether the hypothesized gender differences in brain activity related to deceptive responses were caused by differential socialization in men and women, we administered the Gender Identity Inventory probing the participants’ subjective social sex role. In an fMRI session, participants were instructed either to lie or to tell the truth while answering a questionnaire focusing on general and personal information. Only for personal information, we found differences in neural responses during instructed deception in men and women. The women vs. men direct contrast revealed no significant differences in areas of activation, but men showed higher BOLD signal compared to women in the left middle frontal gyrus (MFG). Moreover, this effect remained unchanged when self-reported psychological gender was controlled for. Thus, our study showed that gender differences in the neural processes engaged during falsifying personal information might be independent from socialization. PMID:22952631

  9. Sex, lies and fMRI--gender differences in neural basis of deception.

    Directory of Open Access Journals (Sweden)

    Artur Marchewka

    Full Text Available Deception has always been a part of human communication as it helps to promote self-presentation. Although both men and women are equally prone to try to manage their appearance, their strategies, motivation and eagerness may be different. Here, we asked if lying could be influenced by gender on both the behavioral and neural levels. To test whether the hypothesized gender differences in brain activity related to deceptive responses were caused by differential socialization in men and women, we administered the Gender Identity Inventory probing the participants' subjective social sex role. In an fMRI session, participants were instructed either to lie or to tell the truth while answering a questionnaire focusing on general and personal information. Only for personal information, we found differences in neural responses during instructed deception in men and women. The women vs. men direct contrast revealed no significant differences in areas of activation, but men showed higher BOLD signal compared to women in the left middle frontal gyrus (MFG. Moreover, this effect remained unchanged when self-reported psychological gender was controlled for. Thus, our study showed that gender differences in the neural processes engaged during falsifying personal information might be independent from socialization.

  10. Neural basis of stereotype-induced shifts in women's mental rotation performance.

    Science.gov (United States)

    Wraga, Maryjane; Helt, Molly; Jacobs, Emily; Sullivan, Kerry

    2007-03-01

    Recent negative focus on women's academic abilities has fueled disputes over gender disparities in the sciences. The controversy derives, in part, from women's relatively poorer performance in aptitude tests, many of which require skills of spatial reasoning. We used functional magnetic imaging to examine the neural structure underlying shifts in women's performance of a spatial reasoning task induced by positive and negative stereotypes. Three groups of participants performed a task involving imagined rotations of the self. Prior to scanning, the positive stereotype group was exposed to a false but plausible stereotype of women's superior perspective-taking abilities; the negative stereotype group was exposed to the pervasive stereotype that men outperform women on spatial tasks; and the control group received neutral information. The significantly poorer performance we found in the negative stereotype group corresponded to increased activation in brain regions associated with increased emotional load. In contrast, the significantly improved performance we found in the positive stereotype group was associated with increased activation in visual processing areas and, to a lesser degree, complex working memory processes. These findings suggest that stereotype messages affect the brain selectively, with positive messages producing relatively more efficient neural strategies than negative messages.

  11. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  12. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  13. The Neural Basis of Postural Instability Gait Disorder Subtype of Parkinson's Disease: A PET and fMRI Study.

    Science.gov (United States)

    Zhang, Li; Li, Tian-Nv; Yuan, Yong-Sheng; Jiang, Si-Ming; Tong, Qing; Wang, Min; Wang, Jian-Wei; Chen, Hua-Jun; Ding, Jian; Xu, Qin-Rong; Zhang, Ke-Zhong

    2016-05-01

    The aim of this study is to further uncover the neural basis of postural instability gait disorder (PIGD) subtype of Parkinson's disease. With F-18 fluorodeoxyglucose PET (FDG-PET), brain glucose metabolism of patients with PIGD (n = 15) was compared with healthy controls (n = 17) and tremor-dominant (TD) patients (n = 15), and the correlation between metabolism and PIGD symptoms was also assessed. Within PIGD symptom-correlated hypometabolic areas, the relationship of functional connectivity (FC) with motor and cognitive symptoms was examined by using functional MRI. Compared with controls, patients with PIGD displayed a distributed pattern of brain hypometabolism including striatal, frontal, and parietal areas. Relative to the pattern of TD patients, the pattern of patients with PIGD had additional metabolic decreases in caudate and inferior parietal lobule (IPL, Brodmann area [BA] 40). In PIGD group, the metabolic reductions in IPL (BA 40), middle frontal gyrus (MFG, BA 9) and fusiform gyrus (FG, BA 20) were associated with severe PIGD symptoms. Regions showing such correlation were chosen for further seed-based FC analysis. Decreased FC within the prefrontal-parietal network (between the MFG and IPL) was associated with severe PIGD symptoms. The involvement of the caudate, FG, and prefrontal-parietal network may be associated with the prominent gait impairments of PIGD subtype. Our findings expand the pathophysiological knowledge of PIGD subtype and provide valuable information for potential neuromodulation therapies alleviating gait disorders. © 2016 John Wiley & Sons Ltd.

  14. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  15. Individual Identification Using Functional Brain Fingerprint Detected by Recurrent Neural Network.

    Science.gov (United States)

    Chen, Shiyang; Hu, Xiaoping P

    2018-03-20

    Individual identification based on brain function has gained traction in literature. Investigating individual differences in brain function can provide additional insights into the brain. In this work, we introduce a recurrent neural network based model for identifying individuals based on only a short segment of resting state functional MRI data. In addition, we demonstrate how the global signal and differences in atlases affect the individual identifiability. Furthermore, we investigate neural network features that exhibit the uniqueness of each individual. The results indicate that our model is able to identify individuals based on neural features and provides additional information regarding brain dynamics.

  16. Specific neural basis of Chinese idioms processing: an event-related functional MRI study

    International Nuclear Information System (INIS)

    Chen Shaoqi; Zhang Yanzhen; Xiao Zhuangwei; Zhang Xuexin

    2007-01-01

    Objective: To address the neural basis of Chinese idioms processing with different kinds of stimuli using an event-related fMRI design. Methods: Sixteen native Chinese speakers were asked to perform a semantic decision task during fMRI scanning. Three kinds of stimuli were used: Real idioms (Real-idiom condition); Literally plausible phrases (Pseudo-idiom condition, the last character of a real idiom was replaced by a character with similar meaning); Literally implausible strings (Non-idiom condition, the last character of a real idiom was replaced by a character with unrelated meaning). Reaction time and correct rate were recorded at the same time. Results: The error rate was 2.6%, 5.2% and 0.9% (F=3.51, P 0.05) for real idioms, pseudo-idioms and wrong idioms, respectively. Similar neural network was activated in all of the three conditions. However, the right hippocampus was only activated in the real idiom condition, and significant activations were found in anterior portion of left inferior frontal gyms (BA47) in real-and pseudo-idiom conditions, but not in non-idiom condition. Conclusion: The right hippocampus plays a specific role in the particular wording of the Chinese idioms. And the left anterior inferior frontal gyms (BA47) may be engaged in the semantic processing of Chinese idioms. The results support the notion that there were specific neural bases for Chinese idioms processing. (authors)

  17. The neural basis of human social values: evidence from functional MRI.

    Science.gov (United States)

    Zahn, Roland; Moll, Jorge; Paiva, Mirella; Garrido, Griselda; Krueger, Frank; Huey, Edward D; Grafman, Jordan

    2009-02-01

    Social values are composed of social concepts (e.g., "generosity") and context-dependent moral sentiments (e.g., "pride"). The neural basis of this intricate cognitive architecture has not been investigated thus far. Here, we used functional magnetic resonance imaging while subjects imagined their own actions toward another person (self-agency) which either conformed or were counter to a social value and were associated with pride or guilt, respectively. Imagined actions of another person toward the subjects (other-agency) in accordance with or counter to a value were associated with gratitude or indignation/anger. As hypothesized, superior anterior temporal lobe (aTL) activity increased with conceptual detail in all conditions. During self-agency, activity in the anterior ventromedial prefrontal cortex correlated with pride and guilt, whereas activity in the subgenual cingulate solely correlated with guilt. In contrast, indignation/anger activated lateral orbitofrontal-insular cortices. Pride and gratitude additionally evoked mesolimbic and basal forebrain activations. Our results demonstrate that social values emerge from coactivation of stable abstract social conceptual representations in the superior aTL and context-dependent moral sentiments encoded in fronto-mesolimbic regions. This neural architecture may provide the basis of our ability to communicate about the meaning of social values across cultural contexts without limiting our flexibility to adapt their emotional interpretation.

  18. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  19. Development and aging of a brain neural stem cell niche.

    Science.gov (United States)

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    OpenAIRE

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  1. Isointense infant brain MRI segmentation with a dilated convolutional neural network

    OpenAIRE

    Moeskops, Pim; Pluim, Josien P. W.

    2017-01-01

    Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter. In this study, we use a dilated triplanar convolutional neural network in combination with a non-dilated 3D convolutional neural network for the segmentation of white matter, gray matter and cerebrospinal fluid in infant brain MR images, as provided by the MICCAI grand challenge on 6-month infant brain MRI segmentation.

  2. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2018-04-01

    Full Text Available The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.

  3. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Directory of Open Access Journals (Sweden)

    Atsushi Ugajin

    Full Text Available Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica. Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica, on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  4. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. Copyright © 2016. Published by Elsevier Ltd.

  5. Memory and neural networks on the basis of color centers in solids.

    Science.gov (United States)

    Winnacker, Albrecht; Osvet, Andres

    2009-11-01

    Optical data recording is one of the most widely used and efficient systems of memory in the non-living world. The application of color centers in this context offers not only systems of high speed in writing and read-out due to a high degree of parallelism in data handling but also a possibility to set up models of neural networks. In this way, systems with a high potential for image processing, pattern recognition and logical operations can be constructed. A limitation to storage density is given by the diffraction limit of optical data recording. It is shown that this limitation can at least in principle be overcome by the principle of spectral hole burning, which results in systems of storage capacities close to the human brain system.

  6. Neural basis for dynamic updating of object representation in visual working memory.

    Science.gov (United States)

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Särkämö, Teppo; Leo, Vera; Rodríguez-Fornells, Antoni; Saunavaara, Jani; Parkkola, Riitta; Soinila, Seppo

    2017-12-01

    Acquired amusia provides a unique opportunity to investigate the fundamental neural architectures of musical processing due to the transition from a functioning to defective music processing system. Yet, the white matter (WM) deficits in amusia remain systematically unexplored. To evaluate which WM structures form the neural basis for acquired amusia and its recovery, we studied 42 stroke patients longitudinally at acute, 3-month, and 6-month post-stroke stages using DTI [tract-based spatial statistics (TBSS) and deterministic tractography (DT)] and the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Non-recovered amusia was associated with structural damage and subsequent degeneration in multiple WM tracts including the right inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and frontal aslant tract (FAT), as well as in the corpus callosum (CC) and its posterior part (tapetum). In a linear regression analysis, the volume of the right IFOF was the main predictor of MBEA performance across time. Overall, our results provide a comprehensive picture of the large-scale deficits in intra- and interhemispheric structural connectivity underlying amusia, and conversely highlight which pathways are crucial for normal music perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Neural basis of the undermining effect of monetary reward on intrinsic motivation.

    Science.gov (United States)

    Murayama, Kou; Matsumoto, Madoka; Izuma, Keise; Matsumoto, Kenji

    2010-12-07

    Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This "undermining effect" has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.

  9. The neural basis of precise visual short-term memory for complex recognisable objects.

    Science.gov (United States)

    Veldsman, Michele; Mitchell, Daniel J; Cusack, Rhodri

    2017-10-01

    Recent evidence suggests that visual short-term memory (VSTM) capacity estimated using simple objects, such as colours and oriented bars, may not generalise well to more naturalistic stimuli. More visual detail can be stored in VSTM when complex, recognisable objects are maintained compared to simple objects. It is not yet known if it is recognisability that enhances memory precision, nor whether maintenance of recognisable objects is achieved with the same network of brain regions supporting maintenance of simple objects. We used a novel stimulus generation method to parametrically warp photographic images along a continuum, allowing separate estimation of the precision of memory representations and the number of items retained. The stimulus generation method was also designed to create unrecognisable, though perceptually matched, stimuli, to investigate the impact of recognisability on VSTM. We adapted the widely-used change detection and continuous report paradigms for use with complex, photographic images. Across three functional magnetic resonance imaging (fMRI) experiments, we demonstrated greater precision for recognisable objects in VSTM compared to unrecognisable objects. This clear behavioural advantage was not the result of recruitment of additional brain regions, or of stronger mean activity within the core network. Representational similarity analysis revealed greater variability across item repetitions in the representations of recognisable, compared to unrecognisable complex objects. We therefore propose that a richer range of neural representations support VSTM for complex recognisable objects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fault diagnosis and performance evaluation for high current LIA based on radial basis function neural network

    International Nuclear Information System (INIS)

    Yang Xinglin; Wang Huacen; Chen Nan; Dai Wenhua; Li Jin

    2006-01-01

    High current linear induction accelerator (LIA) is a complicated experimental physics device. It is difficult to evaluate and predict its performance. this paper presents a method which combines wavelet packet transform and radial basis function (RBF) neural network to build fault diagnosis and performance evaluation in order to improve reliability of high current LIA. The signal characteristics vectors which are extracted based on energy parameters of wavelet packet transform can well present the temporal and steady features of pulsed power signal, and reduce data dimensions effectively. The fault diagnosis system for accelerating cell and the trend classification system for the beam current based on RBF networks can perform fault diagnosis and evaluation, and provide predictive information for precise maintenance of high current LIA. (authors)

  11. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  12. Engineering the Brain: Ethical Issues and the Introduction of Neural Devices.

    Science.gov (United States)

    Klein, Eran; Brown, Tim; Sample, Matthew; Truitt, Anjali R; Goering, Sara

    2015-01-01

    Neural devices now under development stand to interact with and alter the human brain in ways that may challenge standard notions of identity, normality, authority, responsibility, privacy and justice.

  13. Neural Basis of Cognitive Assessment in Alzheimer Disease, Amnestic Mild Cognitive Impairment, and Subjective Memory Complaints.

    Science.gov (United States)

    Matías-Guiu, Jordi A; Cabrera-Martín, María Nieves; Valles-Salgado, María; Pérez-Pérez, Alicia; Rognoni, Teresa; Moreno-Ramos, Teresa; Carreras, José Luis; Matías-Guiu, Jorge

    2017-07-01

    Interpreting cognitive tests is often challenging. The same test frequently examines multiple cognitive functions, and the functional and anatomical basis underlying test performance is unknown in many cases. This study analyses the correlation of different neuropsychological test results with brain metabolism in a series of patients evaluated for suspected Alzheimer disease. 20 healthy controls and 80 patients consulting for memory loss were included, in which cognitive study and 18 F-fluorodeoxyglucose PET were performed. Patients were categorized according to Reisberg's Global Deterioration Scale. Voxel-based analysis was used to determine correlations between brain metabolism and performance on the following tests: Free and Cued Selective Reminding Test (FCSRT), Boston Naming Test (BNT), Trail Making Test, Rey-Osterrieth Complex Figure test, Visual Object and Space Perception Battery (VOSP), and Tower of London (ToL) test. Mean age in the patient group was 73.9 ± 10.6 years, and 47 patients were women (58.7%). FCSRT findings were positively correlated with metabolism in the medial and anterior temporal region bilaterally, the left precuneus, and posterior cingulate. BNT results were correlated with metabolism in the middle temporal, superior, fusiform, and frontal medial gyri bilaterally. VOSP results were related to the occipital and parietotemporal regions bilaterally. ToL scores were correlated to metabolism in the right temporoparietal and frontal regions. These results suggest that different areas of the brain are involved in the processes required to complete different cognitive tests. Ascertaining the functional basis underlying these tests may prove helpful for understanding and interpreting them. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  15. Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm. (On-Line Harmonics Estimation Application

    Directory of Open Access Journals (Sweden)

    Eyad K Almaita

    2017-03-01

    Keywords: Energy efficiency, Power quality, Radial basis function, neural networks, adaptive, harmonic. Article History: Received Dec 15, 2016; Received in revised form Feb 2nd 2017; Accepted 13rd 2017; Available online How to Cite This Article: Almaita, E.K and Shawawreh J.Al (2017 Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm (On-Line Harmonics Estimation Application.  International Journal of Renewable Energy Develeopment, 6(1, 9-17. http://dx.doi.org/10.14710/ijred.6.1.9-17

  16. Isointense infant brain MRI segmentation with a dilated convolutional neural network

    NARCIS (Netherlands)

    Moeskops, P.; Pluim, J.P.W.

    2017-01-01

    Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter. In this study, we use a dilated triplanar convolutional neural network in combination with a non-dilated 3D convolutional neural network for the segmentation

  17. Games in the Brain: Neural Substrates of Gambling Addiction.

    Science.gov (United States)

    Murch, W Spencer; Clark, Luke

    2016-10-01

    As a popular form of recreational risk taking, gambling games offer a paradigm for decision neuroscience research. As an individual behavior, gambling becomes dysfunctional in a subset of the population, with debilitating consequences. Gambling disorder has been recently reconceptualized as a "behavioral addiction" in the DSM-5, based on emerging parallels with substance use disorders. Why do some individuals undergo this transition from recreational to disordered gambling? The biomedical model of problem gambling is a "brain disorder" account that posits an underlying neurobiological abnormality. This article first delineates the neural circuitry that underpins gambling-related decision making, comprising ventral striatum, ventromedial prefrontal cortex, dopaminergic midbrain, and insula, and presents evidence for pathophysiology in this circuitry in gambling disorder. These biological dispositions become translated into clinical disorder through the effects of gambling games. This influence is better articulated in a public health approach that describes the interplay between the player and the (gambling) product. Certain forms of gambling, including electronic gambling machines, appear to be overrepresented in problem gamblers. These games harness psychological features, including variable ratio schedules, near-misses, "losses disguised as wins," and the illusion of control, which modulate the core decision-making circuitry that is perturbed in gambling disorder. © The Author(s) 2015.

  18. Neural basis of feature-based contextual effects on visual search behavior

    Directory of Open Access Journals (Sweden)

    Kelly eShen

    2012-01-01

    Full Text Available Searching for a visual object is known to be adaptable to context, and it is thought to result from the selection of neural representations distributed on a visual salience map, wherein stimulus-driven and goal-directed signals are combined. Here we investigated the neural basis of this adaptability by recording superior colliculus (SC neurons while three female rhesus monkeys (Macaca mulatta searched with saccadic eye movements for a target presented in an array of visual stimuli whose feature composition varied from trial to trial. We found that sensory-motor activity associated with distracters was enhanced or suppressed depending on the search array composition and that it corresponded to the monkey's search strategy, as assessed by the distribution of the occasional errant saccades. This feature-related modulation occurred independently from the saccade goal and facilitated the process of saccade target selection. We also observed feature-related enhancement in the activity associated with distracters that had been the search target during the previous session. Consistent with recurrent processing, both feature-related neuronal modulations occurred more than 60 ms after the onset of the visually evoked responses, and their near coincidence with the time of saccade target selection suggests that they are integral to this process. These results suggest that SC neuronal activity is shaped by the visual context as dictated by both stimulus-driven and goal-directed signals. Given the close proximity of the SC to the motor circuit, our findings suggest a direct link between perception and action and no need for distinct salience and motor maps.

  19. Music perception and cognition: development, neural basis, and rehabilitative use of music.

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Huotilainen, Minna

    2013-07-01

    Music is a highly versatile form of art and communication that has been an essential part of human society since its early days. Neuroimaging studies indicate that music is a powerful stimulus also for the human brain, engaging not just the auditory cortex but also a vast, bilateral network of temporal, frontal, parietal, cerebellar, and limbic brain areas that govern auditory perception, syntactic and semantic processing, attention and memory, emotion and mood control, and motor skills. Studies of amusia, a severe form of musical impairment, highlight the right temporal and frontal cortices as the core neural substrates for adequate perception and production of music. Many of the basic auditory and musical skills, such as pitch and timbre perception, start developing already in utero, and babies are born with a natural preference for music and singing. Music has many important roles and functions throughout life, ranging from emotional self-regulation, mood enhancement, and identity formation to promoting the development of verbal, motor, cognitive, and social skills and maintaining their healthy functioning in old age. Music is also used clinically as a part of treatment in many illnesses, which involve affective, attention, memory, communication, or motor deficits. Although more research is still needed, current evidence suggests that music-based rehabilitation can be effective in many developmental, psychiatric, and neurological disorders, such as autism, depression, schizophrenia, and stroke, as well as in many chronic somatic illnesses that cause pain and anxiety. WIREs Cogn Sci 2013, 4:441-451. doi: 10.1002/wcs.1237 The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. Copyright © 2013 John Wiley & Sons, Ltd.

  20. The neural basis of temporal order processing in past and future thought.

    Science.gov (United States)

    D'Argembeau, Arnaud; Jeunehomme, Olivier; Majerus, Steve; Bastin, Christine; Salmon, Eric

    2015-01-01

    Although growing evidence has shown that remembering the past and imagining the future recruit a common core network of frontal-parietal-temporal regions, the extent to which these regions contribute to the temporal dimension of autobiographical thought remains unclear. In this fMRI study, we focused on the event-sequencing aspect of time and examined whether ordering past and future events involve common neural substrates. Participants had to determine which of two past (or future) events occurred (or would occur) before the other, and these order judgments were compared with a task requiring to think about the content of the same past or future events. For both past and future events, we found that the left posterior hippocampus was more activated when establishing the order of events, whereas the anterior hippocampus was more activated when representing their content. Aside from the hippocampus, most of the brain regions that were activated when thinking about temporal order (notably the intraparietal sulcus, dorsolateral pFC, dorsal anterior cingulate, and visual cortex) lied outside the core network and may reflect the involvement of controlled processes and visuospatial imagery to locate events in time. Collectively, these findings suggest (a) that the same processing operations are engaged for ordering past events and planned future events in time, (b) that anterior and posterior portions of the hippocampus are involved in processing different aspects of autobiographical thought, and (c) that temporal order is not necessarily an intrinsic property of memory or future thought but instead requires additional, controlled processes.

  1. Optogenetics in the Teaching Laboratory: Using Channelrhodopsin-2 to Study the Neural Basis of Behavior and Synaptic Physiology in "Drosophila"

    Science.gov (United States)

    Pulver, Stefan R.; Hornstein, Nicholas J.; Land, Bruce L.; Johnson, Bruce R.

    2011-01-01

    Here we incorporate recent advances in "Drosophila" neurogenetics and "optogenetics" into neuroscience laboratory exercises. We used the light-activated ion channel channelrhodopsin-2 (ChR2) and tissue-specific genetic expression techniques to study the neural basis of behavior in "Drosophila" larvae. We designed and implemented exercises using…

  2. An Intelligent Approach to Educational Data: Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Networks

    Science.gov (United States)

    Kayri, Murat

    2015-01-01

    The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…

  3. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    Science.gov (United States)

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  4. Automatic segmentation of MR brain images with a convolutional neural network

    NARCIS (Netherlands)

    Moeskops, P.; Viergever, M.A.; Mendrik, A.M.; de Vries, L.S.; Benders, M.J.N.L.; Išgum, I.

    2016-01-01

    Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure

  5. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  6. DATA CLASSIFICATION WITH NEURAL CLASSIFIER USING RADIAL BASIS FUNCTION WITH DATA REDUCTION USING HIERARCHICAL CLUSTERING

    Directory of Open Access Journals (Sweden)

    M. Safish Mary

    2012-04-01

    Full Text Available Classification of large amount of data is a time consuming process but crucial for analysis and decision making. Radial Basis Function networks are widely used for classification and regression analysis. In this paper, we have studied the performance of RBF neural networks to classify the sales of cars based on the demand, using kernel density estimation algorithm which produces classification accuracy comparable to data classification accuracy provided by support vector machines. In this paper, we have proposed a new instance based data selection method where redundant instances are removed with help of a threshold thus improving the time complexity with improved classification accuracy. The instance based selection of the data set will help reduce the number of clusters formed thereby reduces the number of centers considered for building the RBF network. Further the efficiency of the training is improved by applying a hierarchical clustering technique to reduce the number of clusters formed at every step. The paper explains the algorithm used for classification and for conditioning the data. It also explains the complexities involved in classification of sales data for analysis and decision-making.

  7. Absence of visual experience modifies the neural basis of numerical thinking.

    Science.gov (United States)

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-10-04

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 - 12 = x vs. 7 - 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness.

  8. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.

    Science.gov (United States)

    Kumudha, P; Venkatesan, R

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  9. Prediction of water formation temperature in natural gas dehydrators using radial basis function (RBF neural networks

    Directory of Open Access Journals (Sweden)

    Tatar Afshin

    2016-03-01

    Full Text Available Raw natural gases usually contain water. It is very important to remove the water from these gases through dehydration processes due to economic reasons and safety considerations. One of the most important methods for water removal from these gases is using dehydration units which use Triethylene glycol (TEG. The TEG concentration at which all water is removed and dew point characteristics of mixture are two important parameters, which should be taken into account in TEG dehydration system. Hence, developing a reliable and accurate model to predict the performance of such a system seems to be very important in gas engineering operations. This study highlights the use of intelligent modeling techniques such as Multilayer perceptron (MLP and Radial Basis Function Neural Network (RBF-ANN to predict the equilibrium water dew point in a stream of natural gas based on the TEG concentration of stream and contractor temperature. Literature data set used in this study covers temperatures from 10 °C to 80 °C and TEG concentrations from 90.000% to 99.999%. Results showed that both models are accurate in prediction of experimental data and the MLP model gives more accurate predictions compared to RBF model.

  10. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.

    Science.gov (United States)

    Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M

    2011-11-01

    Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.

  11. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch

    OpenAIRE

    Agate, Robert J.; Grisham, William; Wade, Juli; Mann, Suzanne; Wingfield, John; Schanen, Carolyn; Palotie, Aarno; Arnold, Arthur P.

    2003-01-01

    In mammals and birds, sex differences in brain function and disease are thought to derive exclusively from sex differences in gonadal hormone secretions. For example, testosterone in male mammals acts during fetal and neonatal life to cause masculine neural development. However, male and female brain cells also differ in genetic sex; thus, sex chromosome genes acting within cells could contribute to sex differences in cell function. We analyzed the sexual phenotype of the brain of a rare gyna...

  12. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  13. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    Science.gov (United States)

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  14. Neural basis for the ability of atypical antipsychotic drugs to improve cognition in schizophrenia

    Directory of Open Access Journals (Sweden)

    Tomiki eSumiyoshi

    2013-10-01

    Full Text Available Cognitive impairments are considered to largely affect functional outcome in patients with schizophrenia, other psychotic illnesses, or mood disorders. Specifically, there is much attention to the role of psychotropic compounds acting on serotonin (5-HT receptors in ameliorating cognitive deficits of schizophrenia.It is noteworthy that atypical antipsychotic drugs, e.g. clozapine, melperone, risperidone, olanzapine, quetiapine, aripiprazole, perospirone, blonanserin, and lurasidone, have variable affinities for these receptors. Among the 5-HT receptor subtypes, the 5-HT1A receptor is attracting particular interests as a potential target for enhancing cognition, based on preclinical and clinical evidence.The neural network underlying the ability of 5-HT1A agonists to treat cognitive impairments of schizophrenia likely includes dopamine, glutamate, and GABA neurons. A novel strategy for cognitive enhancement in psychosis may be benefitted by focusing on energy metabolism in the brain. In this context, lactate plays a major role, and has been shown to protect neurons against oxidative and other stressors. In particular, our data indicate chronic treatment with tandospirone, a partial 5-HT1A agonist, recover stress-induced lactate production in the prefrontal cortex of a rat model of schizophrenia. Recent advances of electrophysiological measures, e.g. event-related potentials, and their imaging have provided insights into facilitative effects on cognition of some atypical antipsychotic drugs acting directly or indirectly on 5-HT1A receptors.These findings are expected to promote the development of novel therapeutics for the improvement of functional outcome in people with schizophrenia.

  15. The neural basis for writing from dictation in the temporoparietal cortex.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Durand, Jean-Baptiste; Réhault, Emilie; Planton, Samuel; Draper, Louisa; Démonet, Jean-François

    2014-01-01

    Cortical electrical stimulation mapping was used to study neural substrates of the function of writing in the temporoparietal cortex. We identified the sites involved in oral language (sentence reading and naming) and writing from dictation, in order to spare these areas during removal of brain tumours in 30 patients (23 in the left, and 7 in the right hemisphere). Electrostimulation of the cortex impaired writing ability in 62 restricted cortical areas (.25 cm2). These were found in left temporoparietal lobes and were mostly located along the superior temporal gyrus (Brodmann's areas 22 and 42). Stimulation of right temporoparietal lobes in right-handed patients produced no writing impairments. However there was a high variability of location between individuals. Stimulation resulted in combined symptoms (affecting oral language and writing) in fourteen patients, whereas in eight other patients, stimulation-induced pure agraphia symptoms with no oral language disturbance in twelve of the identified areas. Each detected area affected writing in a different way. We detected the various different stages of the auditory-to-motor pathway of writing from dictation: either through comprehension of the dictated sentences (word deafness areas), lexico-semantic retrieval, or phonologic processing. In group analysis, barycentres of all different types of writing interferences reveal a hierarchical functional organization along the superior temporal gyrus from initial word recognition to lexico-semantic and phonologic processes along the ventral and the dorsal comprehension pathways, supporting the previously described auditory-to-motor process. The left posterior Sylvian region supports different aspects of writing function that are extremely specialized and localized, sometimes being segregated in a way that could account for the occurrence of pure agraphia that has long-been described in cases of damage to this region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  17. The neural basis of learning to spell again: An fMRI study of spelling training in acquired dysgraphia.

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2015-05-01

    1 For all participants we identified brain areas associated with a normalized response for the TRAINING words at the post-training time point. 2 For all participants we identified an up-regulation of the TRAINING response (i.e., the TRAINING neural response was initially low and then increased post-training; whereas in only one participant did we also observe a down-regulation of the training response (i.e., the TRAINING neural response was initially high, but then decreased post-training. 3 Although the areas associated with the normalized TRAINING response were different in each individual, they all include areas typically associated with the spelling system (Purcell et al. 2011, including the right homologues of typically left hemisphere spelling regions. Across the participants, the following areas of normalization were observed: bilateral superior temporal gyrus, inferior frontal gyrus, and the bilateral inferior temporal/fusiform gyrus. Discussion: We found that the predominant BOLD response to training involved an up-regulation of the neural response to spelling the TRAINING items. In addition, we found individual differences in the neurotopography of the normalization response patterns although all were with within brain areas that form a part of the spelling network(Purcell et al. 2011. This work provides evidence regarding one aspect of the multiplicity of neural responses associated with recovery of spelling in individuals with acquired dysgraphia.

  18. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  19. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  20. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  1. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    Science.gov (United States)

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep

  2. Neural basis of distorted self-face recognition in social anxiety disorder.

    Science.gov (United States)

    Kim, Min-Kyeong; Yoon, Hyung-Jun; Shin, Yu-Bin; Lee, Seung-Koo; Kim, Jae-Jin

    2016-01-01

    The observer perspective causes patients with social anxiety disorder (SAD) to excessively inspect their performance and appearance. This study aimed to investigate the neural basis of distorted self-face recognition in non-social situations in patients with SAD. Twenty patients with SAD and 20 age- and gender-matched healthy controls participated in this fMRI study. Data were acquired while participants performed a Composite Face Evaluation Task, during which they had to press a button indicating how much they liked a series of self-faces, attractively transformed self-faces, and attractive others' faces. Patients had a tendency to show more favorable responses to the self-face and unfavorable responses to the others' faces compared with controls, but the two groups' responses to the attractively transformed self-faces did not differ. Significant group differences in regional activity were observed in the middle frontal and supramarginal gyri in the self-face condition (patients self-face condition (patients > controls); and the middle frontal, supramarginal, and angular gyri in the attractive others' face condition (patients > controls). Most fronto-parietal activities during observation of the self-face were negatively correlated with preference scores in patients but not in controls. Patients with SAD have a positive point of view of their own face and experience self-relevance for the attractively transformed self-faces. This distorted cognition may be based on dysfunctions in the frontal and inferior parietal regions. The abnormal engagement of the fronto-parietal attentional network during processing face stimuli in non-social situations may be linked to distorted self-recognition in SAD.

  3. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients ( N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  4. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Science.gov (United States)

    Sihvonen, Aleksi J.; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  5. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Directory of Open Access Journals (Sweden)

    Aleksi J. Sihvonen

    2017-07-01

    Full Text Available Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM and morphometry (VBM study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV and white matter volume (WMV changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90, we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA. Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of

  6. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  7. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is...

  8. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain.

    Science.gov (United States)

    Shine, James M; Aburn, Matthew J; Breakspear, Michael; Poldrack, Russell A

    2018-01-29

    Cognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal 'rich club' regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain. © 2018, Shine et al.

  9. Brain Basis of Self: Self-Organization and Lessons from Dreaming

    Directory of Open Access Journals (Sweden)

    David eKahn

    2013-07-01

    Full Text Available Through dreaming a different facet of the self is created as a result of a self-organizing process in the brain. Self-organization in biological systems often happens as an answer to an environmental change for which the existing system cannot cope; self-organization creates a system that can cope in the newly changed environment. In dreaming, self-organization serves the function of organizing disparate memories into a dream since the dreamer herself is not able to control how individual memories become weaved into a dream. The self-organized dream provides, thereby, a wide repertoire of experiences; this expanded repertoire of experience results in an expansion of the self beyond that obtainable when awake. Since expression of the self is associated with activity in specific areas of the brain, the article also discusses the brain basis of the self by reviewing studies of brain injured patients, discussing brain imaging studies in normal brain functioning when focused, when daydreaming and when asleep and dreaming.

  10. Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

    OpenAIRE

    Abdelkarim M. Ertiame; D. W. Yu; D. L. Yu; J. B. Gomm

    2015-01-01

    In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is emplo...

  11. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  12. Information-geometric measures estimate neural interactions during oscillatory brain states

    Directory of Open Access Journals (Sweden)

    Yimin eNie

    2014-02-01

    Full Text Available The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG, a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  13. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H{sub 2}{sup 15}O PET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [Seoul National Univ., Seoul (Korea, Republic of)

    2000-02-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H{sub 2}{sup 1}5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H{sub 2}{sup 1}5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H{sub 2}{sup 1}5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.

  14. The neural basis of speech sound discrimination from infancy to adulthood

    OpenAIRE

    Partanen, Eino

    2013-01-01

    Rapid processing of speech is facilitated by neural representations of native language phonemes. However, some disorders and developmental conditions, such as developmental dyslexia, can hamper the development of these neural memory traces, leading to language delays and poor academic achievement. While the early identification of such deficits is paramount so that interventions can be started as early as possible, there is currently no systematically used ecologically valid paradigm for the ...

  15. Development of the disable software reporting system on the basis of the neural network

    Science.gov (United States)

    Gavrylenko, S.; Babenko, O.; Ignatova, E.

    2018-04-01

    The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems

  16. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    Science.gov (United States)

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  17. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  18. Specifying the neurobiological basis of human attachment: brain, hormones, and behavior in synchronous and intrusive mothers.

    Science.gov (United States)

    Atzil, Shir; Hendler, Talma; Feldman, Ruth

    2011-12-01

    The mother-infant bond provides the foundation for the infant's future mental health and adaptation and depends on the provision of species-typical maternal behaviors that are supported by neuroendocrine and motivation-affective neural systems. Animal research has demonstrated that natural variations in patterns of maternal care chart discrete profiles of maternal brain-behavior relationships that uniquely shape the infant's lifetime capacities for stress regulation and social affiliation. Such patterns of maternal care are mediated by the neuropeptide Oxytocin and by stress- and reward-related neural systems. Human studies have similarly shown that maternal synchrony--the coordination of maternal behavior with infant signals--and intrusiveness--the excessive expression of maternal behavior--describe distinct and stable maternal styles that bear long-term consequences for infant well-being. To integrate brain, hormones, and behavior in the study of maternal-infant bonding, we examined the fMRI responses of synchronous vs intrusive mothers to dynamic, ecologically valid infant videos and their correlations with plasma Oxytocin. In all, 23 mothers were videotaped at home interacting with their infants and plasma OT assayed. Sessions were micro-coded for synchrony and intrusiveness. Mothers were scanned while observing several own and standard infant-related vignettes. Synchronous mothers showed greater activations in the left nucleus accumbens (NAcc) and intrusive mothers exhibited higher activations in the right amygdala. Functional connectivity analysis revealed that among synchronous mothers, left NAcc and right amygdala were functionally correlated with emotion modulation, theory-of-mind, and empathy networks. Among intrusive mothers, left NAcc and right amygdala were functionally correlated with pro-action areas. Sorting points into neighborhood (SPIN) analysis demonstrated that in the synchronous group, left NAcc and right amygdala activations showed clearer

  19. A Heuristic Approach to Intra-Brain Communications Using Chaos in a Recurrent Neural Network Model

    Science.gov (United States)

    Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Nara, Shigetoshi

    2011-09-01

    To approach functional roles of chaos in brain, a heuristic model to consider mechanisms of intra-brain communications is proposed. The key idea is to use chaos in firing pattern dynamics of a recurrent neural network consisting of birary state neurons, as propagation medium of pulse signals. Computer experiments and numerical methods are introduced to evaluate signal transport characteristics by calculating correlation functions between sending neurons and receiving neurons of pulse signals.

  20. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

    OpenAIRE

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving...

  1. Models of neural dynamics in brain information processing - the developments of 'the decade'

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2002-10-31

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  2. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  3. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes

    Science.gov (United States)

    McNay, Ewan C.; Recknagel, Andrew K.

    2011-01-01

    Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cogntive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients. PMID:21907815

  4. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  5. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  6. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Science.gov (United States)

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  7. Comparative quantification of dietary supplemented neural creatine concentrations with (1)H-MRS peak fitting and basis spectrum methods.

    Science.gov (United States)

    Turner, Clare E; Russell, Bruce R; Gant, Nicholas

    2015-11-01

    Magnetic resonance spectroscopy (MRS) is an analytical procedure that can be used to non-invasively measure the concentration of a range of neural metabolites. Creatine is an important neurometabolite with dietary supplementation offering therapeutic potential for neurological disorders with dysfunctional energetic processes. Neural creatine concentrations can be probed using proton MRS and quantified using a range of software packages based on different analytical methods. This experiment examines the differences in quantification performance of two commonly used analysis packages following a creatine supplementation strategy with potential therapeutic application. Human participants followed a seven day dietary supplementation regime in a placebo-controlled, cross-over design interspersed with a five week wash-out period. Spectroscopy data were acquired the day immediately following supplementation and analyzed with two commonly-used software packages which employ vastly different quantification methods. Results demonstrate that neural creatine concentration was augmented following creatine supplementation when analyzed using the peak fitting method of quantification (105.9%±10.1). In contrast, no change in neural creatine levels were detected with supplementation when analysis was conducted using the basis spectrum method of quantification (102.6%±8.6). Results suggest that software packages that employ the peak fitting procedure for spectral quantification are possibly more sensitive to subtle changes in neural creatine concentrations. The relative simplicity of the spectroscopy sequence and the data analysis procedure suggest that peak fitting procedures may be the most effective means of metabolite quantification when detection of subtle alterations in neural metabolites is necessary. The straightforward technique can be used on a clinical magnetic resonance imaging system. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neural imaginaries and clinical epistemology: Rhetorically mapping the adolescent brain in the clinical encounter.

    Science.gov (United States)

    Buchbinder, Mara

    2015-10-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008-2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents' agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The neural basis of humour comprehension and humour appreciation: The roles of the temporoparietal junction and superior frontal gyrus.

    Science.gov (United States)

    Campbell, Darren W; Wallace, Marc G; Modirrousta, Mandana; Polimeni, Joseph O; McKeen, Nancy A; Reiss, Jeffrey P

    2015-12-01

    Psychological well-being and social acumen benefit from the recognition of humourous intent and its enjoyment. The enjoyment of humour requires recognition, but humour recognition is not necessarily accompanied by humour enjoyment. Humour recognition is crucial during social interactions, while the associated enjoyment is less critical. Few neuroimaging studies have explicitly differentiated between the neural foundations of humour comprehension and humour appreciation. Among such studies, design limitations have obscured the specification of neural correlates to humour comprehension or appreciation. We implemented a trichotomous response option to address these design limitations. Twenty-four participants rated 120 comics (90 unaltered with humourous intent and 30 caption-altered without humourous intent) as either funny jokes (FJ), not funny jokes but intended to be funny (NFJ), or not intended to be funny or non-jokes (NJ). We defined humour comprehension by NFJ minus NJ and humour appreciation by FJ minus NFJ. We measured localized blood oxygen level dependent (BOLD) neural responses with a 3T MRI scanner. We tested for BOLD responses in humour comprehension brain regions of interest (ROIs), humour appreciation ROIs, and across the whole-brain. We found significant NFJ-NJ BOLD responses in our humour comprehension ROIs and significant FJ-NFJ BOLD responses in select humour appreciation ROIs. One key finding is that comprehension accuracy levels correlated with humour-comprehension responses in the left temporo-parietal junction (TPJ). This finding represents a novel and precise neural linkage to humour comprehension. A second key finding is that the superior frontal gyrus (SFG) was uniquely associated with humour-appreciation. The SFG response suggests that complex cognitive processing underlies humour appreciation and that current models of humour appreciation be revised. Finally, our research design provides an operational distinction between humour

  10. High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson's Disease.

    Science.gov (United States)

    Blumenfeld, Zack; Brontë-Stewart, Helen

    2015-12-01

    High frequency (HF) deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD). It effectively treats the cardinal motor signs of PD, including tremor, bradykinesia, and rigidity. The most common neural target is the subthalamic nucleus, located within the basal ganglia, the region most acutely affected by PD pathology. Using chronically-implanted DBS electrodes, researchers have been able to record underlying neural rhythms from several nodes in the PD network as well as perturb it using DBS to measure the ensuing neural and behavioral effects, both acutely and over time. In this review, we provide an overview of the PD neural network, focusing on the pathophysiological signals that have been recorded from PD patients as well as the mechanisms underlying the therapeutic benefits of HF DBS. We then discuss evidence for the relationship between specific neural oscillations and symptoms of PD, including the aberrant relationships potentially underlying functional connectivity in PD as well as the use of different frequencies of stimulation to more specifically target certain symptoms. Finally, we briefly describe several current areas of investigation and how the ability to record neural data in ecologically-valid settings may allow researchers to explore the relationship between brain and behavior in an unprecedented manner, culminating in the future automation of neurostimulation therapy for the treatment of a variety of neuropsychiatric diseases.

  11. The neural basis of loss aversion in decision-making under risk.

    Science.gov (United States)

    Tom, Sabrina M; Fox, Craig R; Trepel, Christopher; Poldrack, Russell A

    2007-01-26

    People typically exhibit greater sensitivity to losses than to equivalent gains when making decisions. We investigated neural correlates of loss aversion while individuals decided whether to accept or reject gambles that offered a 50/50 chance of gaining or losing money. A broad set of areas (including midbrain dopaminergic regions and their targets) showed increasing activity as potential gains increased. Potential losses were represented by decreasing activity in several of these same gain-sensitive areas. Finally, individual differences in behavioral loss aversion were predicted by a measure of neural loss aversion in several regions, including the ventral striatum and prefrontal cortex.

  12. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study

    International Nuclear Information System (INIS)

    Vaziri, Nima; Hojabri, Alireza; Erfani, Ali; Monsefi, Mehrdad; Nilforooshan, Behnam

    2007-01-01

    Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported

  13. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  14. A Novel Animal Model for Investigating the Neural Basis of Focal Dystonia

    Science.gov (United States)

    2017-09-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...from an interaction between a predisposing condition and an environmental trigger, we proposed to use 7 Hz deep brain stimulation of the basal ganglia...benign essential blepharospasm, dry eye, motor plasticity, basal ganglia, deep brain stimulation , eyelids, blinking 16. SECURITY CLASSIFICATION OF: 17

  15. A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception

    Science.gov (United States)

    Scott, Sophie K.; Rosen, Stuart; Wickham, Lindsay; Wise, Richard J. S.

    2004-02-01

    Positron emission tomography (PET) was used to investigate the neural basis of the comprehension of speech in unmodulated noise (``energetic'' masking, dominated by effects at the auditory periphery), and when presented with another speaker (``informational'' masking, dominated by more central effects). Each type of signal was presented at four different signal-to-noise ratios (SNRs) (+3, 0, -3, -6 dB for the speech-in-speech, +6, +3, 0, -3 dB for the speech-in-noise), with listeners instructed to listen for meaning to the target speaker. Consistent with behavioral studies, there was SNR-dependent activation associated with the comprehension of speech in noise, with no SNR-dependent activity for the comprehension of speech-in-speech (at low or negative SNRs). There was, in addition, activation in bilateral superior temporal gyri which was associated with the informational masking condition. The extent to which this activation of classical ``speech'' areas of the temporal lobes might delineate the neural basis of the informational masking is considered, as is the relationship of these findings to the interfering effects of unattended speech and sound on more explicit working memory tasks. This study is a novel demonstration of candidate neural systems involved in the perception of speech in noisy environments, and of the processing of multiple speakers in the dorso-lateral temporal lobes.

  16. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  17. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  18. Transcranial Magnetic Stimulation and Connectivity Mapping: Tools for Studying the Neural Bases of Brain Disorders

    OpenAIRE

    Hampson, M.; Hoffman, R. E.

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through...

  19. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    Science.gov (United States)

    2011-04-01

    of Theresa Jones for sectioning and staining . To date, the brains have been sectioned and one set stained for Nissl . Using the Nissl stained ...three rehabilitations decreases contusion size compared to CCI-Yoked (#p=0.051). The remaining sets of brain sections have been stained with...optical densitometry, as appropriate, given staining patterns. Sample locations will be the remaining sensorimotor cortex around the injury, in the

  20. Anesthesia, brain changes, and behavior: Insights from neural systems biology.

    Science.gov (United States)

    Colon, Elisabeth; Bittner, Edward A; Kussman, Barry; McCann, Mary Ellen; Soriano, Sulpicio; Borsook, David

    2017-06-01

    Long-term consequences of anesthetic exposure in humans are not well understood. It is possible that alterations in brain function occur beyond the initial anesthetic administration. Research in children and adults has reported cognitive and/or behavioral changes after surgery and general anesthesia that may be short lived in some patients, while in others, such changes may persist. The changes observed in humans are corroborated by a large body of evidence from animal studies that support a role for alterations in neuronal survival (neuroapoptosis) or structure (altered dendritic and glial morphology) and later behavioral deficits at older age after exposure to various anesthetic agents during fetal or early life. The potential of anesthetics to induce long-term alterations in brain function, particularly in vulnerable populations, warrants investigation. In this review, we critically evaluate the available preclinical and clinical data on the developing and aging brain, and in known vulnerable populations to provide insights into potential changes that may affect the general population of patients in a more, subtle manner. In addition this review summarizes underlying processes of how general anesthetics produce changes in the brain at the cellular and systems level and the current understanding underlying mechanisms of anesthetics agents on brain systems. Finally, we present how neuroimaging techniques currently emerge as promising approaches to evaluate and define changes in brain function resulting from anesthesia, both in the short and the long-term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    Science.gov (United States)

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Vidnerová, Petra

    2009-01-01

    Roč. 1, č. 2 (2009), s. 49-57 ISSN 2005-4262 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural network * RBF networks * regularization * learning Subject RIV: IN - Informatics, Computer Science http://www.sersc.org/journals/IJGDC/vol2_no1/5.pdf

  3. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  4. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe

    Science.gov (United States)

    Fekete, Z.; Csernai, M.; Kocsis, K.; Horváth, Á. C.; Pongrácz, A.; Barthó, P.

    2017-06-01

    Objective. Temperature is an important factor for neural function both in normal and pathological states, nevertheless, simultaneous monitoring of local brain temperature and neuronal activity has not yet been undertaken. Approach. In our work, we propose an implantable, calibrated multimodal biosensor that facilitates the complex investigation of thermal changes in both cortical and deep brain regions, which records multiunit activity of neuronal populations in mice. The fabricated neural probe contains four electrical recording sites and a platinum temperature sensor filament integrated on the same probe shaft within a distance of 30 µm from the closest recording site. The feasibility of the simultaneous functionality is presented in in vivo studies. The probe was tested in the thalamus of anesthetized mice while manipulating the core temperature of the animals. Main results. We obtained multiunit and local field recordings along with measurement of local brain temperature with accuracy of 0.14 °C. Brain temperature generally followed core body temperature, but also showed superimposed fluctuations corresponding to epochs of increased local neural activity. With the application of higher currents, we increased the local temperature by several degrees without observable tissue damage between 34-39 °C. Significance. The proposed multifunctional tool is envisioned to broaden our knowledge on the role of the thermal modulation of neuronal activity in both cortical and deeper brain regions.

  5. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  6. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.

    Science.gov (United States)

    Huang, Yongzhi; Green, Alexander L; Hyam, Jonathan; Fitzgerald, James; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The neural encoding of guesses in the human brain.

    Science.gov (United States)

    Bode, Stefan; Bogler, Carsten; Soon, Chun Siong; Haynes, John-Dylan

    2012-01-16

    Human perception depends heavily on the quality of sensory information. When objects are hard to see we often believe ourselves to be purely guessing. Here we investigated whether such guesses use brain networks involved in perceptual decision making or independent networks. We used a combination of fMRI and pattern classification to test how visibility affects the signals, which determine choices. We found that decisions regarding clearly visible objects are predicted by signals in sensory brain regions, whereas different regions in parietal cortex became predictive when subjects were shown invisible objects and believed themselves to be purely guessing. This parietal network was highly overlapping with regions, which have previously been shown to encode free decisions. Thus, the brain might use a dedicated network for determining choices when insufficient sensory information is available. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Specifying the Neurobiological Basis of Human Attachment: Brain, Hormones, and Behavior in Synchronous and Intrusive Mothers

    Science.gov (United States)

    Atzil, Shir; Hendler, Talma; Feldman, Ruth

    2011-01-01

    The mother–infant bond provides the foundation for the infant's future mental health and adaptation and depends on the provision of species-typical maternal behaviors that are supported by neuroendocrine and motivation-affective neural systems. Animal research has demonstrated that natural variations in patterns of maternal care chart discrete profiles of maternal brain–behavior relationships that uniquely shape the infant's lifetime capacities for stress regulation and social affiliation. Such patterns of maternal care are mediated by the neuropeptide Oxytocin and by stress- and reward-related neural systems. Human studies have similarly shown that maternal synchrony—the coordination of maternal behavior with infant signals—and intrusiveness—the excessive expression of maternal behavior—describe distinct and stable maternal styles that bear long-term consequences for infant well-being. To integrate brain, hormones, and behavior in the study of maternal–infant bonding, we examined the fMRI responses of synchronous vs intrusive mothers to dynamic, ecologically valid infant videos and their correlations with plasma Oxytocin. In all, 23 mothers were videotaped at home interacting with their infants and plasma OT assayed. Sessions were micro-coded for synchrony and intrusiveness. Mothers were scanned while observing several own and standard infant-related vignettes. Synchronous mothers showed greater activations in the left nucleus accumbens (NAcc) and intrusive mothers exhibited higher activations in the right amygdala. Functional connectivity analysis revealed that among synchronous mothers, left NAcc and right amygdala were functionally correlated with emotion modulation, theory-of-mind, and empathy networks. Among intrusive mothers, left NAcc and right amygdala were functionally correlated with pro-action areas. Sorting points into neighborhood (SPIN) analysis demonstrated that in the synchronous group, left NAcc and right amygdala activations showed

  9. Dosha brain-types: A neural model of individual differences.

    Science.gov (United States)

    Travis, Frederick T; Wallace, Robert Keith

    2015-01-01

    This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.

  10. Dosha brain-types: A neural model of individual differences

    Directory of Open Access Journals (Sweden)

    Frederick T Travis

    2015-01-01

    Full Text Available This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.

  11. Neural basis of self and other representation in autism: an FMRI study of self-face recognition.

    Directory of Open Access Journals (Sweden)

    Lucina Q Uddin

    Full Text Available Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD. Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others.

  12. Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The Role of Reward System.

    Science.gov (United States)

    Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin

    2015-01-01

    Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of aspecific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms.

  13. The neural basis of sex differences in sexual behavior: A quantitative meta-analysis

    Science.gov (United States)

    Poeppl, Timm B.; Langguth, Berthold; Rupprecht, Rainer; Safron, Adam; Bzdok, Danilo; Laird, Angela R.; Eickhoff, Simon B.

    2016-01-01

    Sexuality as to its etymology presupposes the duality of sexes. Using quantitative neuroimaging meta-analyses, we demonstrate robust sex differences in the neural processing of sexual stimuli in thalamus, hypothalamus, and basal ganglia. In a narrative review, we show how these relate to the well-established sex differences on the behavioral level. More specifically, we describe the neural bases of known poor agreement between self-reported and genital measures of female sexual arousal, of previously proposed male proneness to affective sexual conditioning, as well as hints of unconscious activation of bonding mechanisms during sexual stimulation in women. In summary, our meta-analytic review demonstrates that neurofunctional sex differences during sexual stimulation can account for well-established sex differences in sexual behavior. PMID:27742561

  14. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Directory of Open Access Journals (Sweden)

    Xiao-Bing eGao

    2015-10-01

    Full Text Available The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc and long-term behavioral changes (such as reward seeking and addiction, stress response, etc in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation and long-term changes (such as cocaine seeking in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological behavioral, and mental health implications of these findings will be discussed.

  15. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Science.gov (United States)

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  16. Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis.

    Science.gov (United States)

    Cipolli, Carlo; Ferrara, Michele; De Gennaro, Luigi; Plazzi, Giuseppe

    2017-10-01

    Recent advances in electrophysiological [e.g., surface high-density electroencephalographic (hd-EEG) and intracranial recordings], video-polysomnography (video-PSG), transcranial stimulation and neuroimaging techniques allow more in-depth and more accurate investigation of the neural correlates of dreaming in healthy individuals and in patients with brain-damage, neurodegenerative diseases, sleep disorders or parasomnias. Convergent evidence provided by studies using these techniques in healthy subjects has led to a reformulation of several unresolved issues of dream generation and recall [such as the inter- and intra-individual differences in dream recall and the predictivity of specific EEG rhythms, such as theta in rapid eye movement (REM) sleep, for dream recall] within more comprehensive models of human consciousness and its variations across sleep/wake states than the traditional models, which were largely based on the neurophysiology of REM sleep in animals. These studies are casting new light on the neural bases (in particular, the activity of dorsal medial prefrontal cortex regions and hippocampus and amygdala areas) of the inter- and intra-individual differences in dream recall, the temporal location of specific contents or properties (e.g., lucidity) of dream experience and the processing of memories accessed during sleep and incorporated into dream content. Hd-EEG techniques, used on their own or in combination with neuroimaging, appear able to provide further important insights into how the brain generates not only dreaming during sleep but also some dreamlike experiences in waking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Neural basis of stereotype-induced shifts in women's mental rotation performance

    OpenAIRE

    Wraga, Maryjane; Helt, Molly; Jacobs, Emily; Sullivan, Kerry

    2007-01-01

    Recent negative focus on women's academic abilities has fueled disputes over gender disparities in the sciences. The controversy derives, in part, from women's relatively poorer performance in aptitude tests, many of which require skills of spatial reasoning. We used functional magnetic imaging to examine the neural structure underlying shifts in women's performance of a spatial reasoning task induced by positive and negative stereotypes. Three groups of participants performed a task involvin...

  18. PROCESSING THE INFORMATION CONTENT ON THE BASIS OF FUZZY NEURAL MODEL OF DECISION MAKING

    Directory of Open Access Journals (Sweden)

    Nina V. Komleva

    2013-01-01

    Full Text Available The article is devoted to the issues of mathematical modeling of the decision-making process of information content processing based on the fuzzy neural network TSK. Integral rating assessment of the content, which is necessary for taking a decision about its further usage, is made depended on varying characteristics. Mechanism for building individual trajectory and forming individual competence is provided to make the intellectual content search.

  19. Systematic review of the neural basis of social cognition in patients with mood disorders.

    Science.gov (United States)

    Cusi, Andrée M; Nazarov, Anthony; Holshausen, Katherine; Macqueen, Glenda M; McKinnon, Margaret C

    2012-05-01

    This review integrates neuroimaging studies of 2 domains of social cognition--emotion comprehension and theory of mind (ToM)--in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were "fMRI," "emotion comprehension," "emotion perception," "affect comprehension," "affect perception," "facial expression," "prosody," "theory of mind," "mentalizing" and "empathy" in combination with "major depressive disorder," "bipolar disorder," "major depression," "unipolar depression," "clinical depression" and "mania." Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Studies that did not include control tasks or a comparator group were included in this review. Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks under lying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders.

  20. Neural Basis of Empathy and Its Dysfunction in Autism Spectrum Disorders (ASD)

    Science.gov (United States)

    2014-10-01

    our work tests the idea that empathy derives from the activation of neural circuits that process primary emotions or feelings , such as reward or...ticipated. For all monkeys, a sterile surgery was performed to implant a head- restraint prosthesis (Crist Instruments) using standard techniques11...participated in the study. All animals underwent standard surgical procedures for implanting a head-restraint prosthesis at least 6 mo before the present study

  1. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    Science.gov (United States)

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  2. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  3. Similar judgment method of brain neural pathway using DT-MRI

    International Nuclear Information System (INIS)

    Watashiba, Yasuhiro; Sakamoto, Naohisa; Sakai, Koji; Koyamada, Koji; Kanazawa, Masanori; Doi, Akio

    2008-01-01

    Nowadays, the visualization of brain neural pathway extracted by the tractography technology is thought as a useful effective tool for the detection of involved area and the analysis of sick cause by comparison of difference of normal and patient's nerve fiber configurations and for the support of the surgery planning and the forecast of progress after an operation. So far, for the observation of the brain neural pathway, the method of the user's subjectively judging the 3D shape of them displayed in the image has been used. However, in this kind of subjective observation, verification of the propriety for the diagnostic result is difficult, in addition it cannot obtain sufficient reliability. Therefore, we think that the system to compare the shape based on a quantitative evaluation is necessary. To resolve this problem, we propose the system that enables the shape of the brain neural pathway extracted by the tractography technology to be compared quantitatively. The proposed system realized to calculate similarity between two neural pathways, and to display the difference area according to the similarity. (author)

  4. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    Science.gov (United States)

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  5. Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain

    International Nuclear Information System (INIS)

    Collombet, Jean-Marc; Four, Elise; Bernabe, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valerie; Baubichon, Dominique; Lallement, Guy

    2005-01-01

    To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning was estimated in mouse brains at various times ranging from 1 to 90 days post-poisoning. Using immunochemistry and dye staining techniques (hemalun-eosin staining), the number of degenerating neurons, the number of dividing neural progenitors, and microglial, astroglial or oligodendroglial cell activation were studied. Soman poisoning led to rapid and massive (post-soman day 1) death of mature neurons as assessed by hemalun-eosin staining. Following this acute poisoning phase, a weak toxicity effect on mature neurons was still observed for a period of 1 month after poisoning. A massive short-termed microgliosis peaked on day 3 post-poisoning. Delayed astrogliosis was observed from 3 to 90 days after soman poisoning, contributing to glial scar formation. On the other hand, oligodendroglial cells or their precursors were practically unaffected by soman poisoning. Interestingly, neural progenitors located in the subgranular zone of the dentate gyrus (SGZ) or in the subventricular zone (SVZ) of the brain survived soman poisoning. Furthermore, soman poisoning significantly increased neural progenitor proliferation in both SGZ and SVZ brain areas on post-soman day 3 or day 8, respectively. This increased proliferation rate was detected up to 1 month after poisoning

  6. Presenilins are required for maintenance of neural stem cells in the developing brain

    Directory of Open Access Journals (Sweden)

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  7. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  8. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  9. Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain

    Science.gov (United States)

    Fernando, Chrisantha; Vasas, Vera; Szathmáry, Eörs; Husbands, Phil

    2011-01-01

    We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain. PMID:21887266

  10. Comparative Application of Radial Basis Function and Multilayer Perceptron Neural Networks to Predict Traffic Noise Pollution in Tehran Roads

    Directory of Open Access Journals (Sweden)

    Ali Mansourkhaki

    2018-01-01

    Full Text Available Noise pollution is a level of environmental noise which is considered as a disturbing and annoying phenomenon for human and wildlife. It is one of the environmental problems which has not been considered as harmful as the air and water pollution. Compared with other pollutants, the attempts to control noise pollution have largely been unsuccessful due to the inadequate knowledge of its effectson humans, as well as the lack of clear standards in previous years. However, with an increase of traveling vehicles, the adverse impact of increasing noise pollution on human health is progressively emerging. Hence, investigators all around the world are seeking to findnew approaches for predicting, estimating and controlling this problem and various models have been proposed. Recently, developing learning algorithms such as neural network has led to novel solutions for this challenge. These algorithms provide intelligent performance based on the situations and input data, enabling to obtain the best result for predicting noise level. In this study, two types of neural networks – multilayer perceptron and radial basis function – were developed for predicting equivalent continuous sound level (LA eq by measuring the traffivolume, average speed and percentage of heavy vehicles in some roads in west and northwest of Tehran. Then, their prediction results were compared based on the coefficienof determination (R 2 and the Mean Squared Error (MSE. Although both networks are of high accuracy in prediction of noise level, multilayer perceptron neural network based on selected criteria had a better performance.

  11. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Science.gov (United States)

    Hampson, M; Hoffman, R E

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  12. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  13. Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?

    Directory of Open Access Journals (Sweden)

    Carole Guedj

    2017-01-01

    Full Text Available The locus coeruleus-norepinephrine (LC-NE system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.

  14. When a loved one feels unfamiliar: a case study on the neural basis of Capgras delusion.

    Science.gov (United States)

    Thiel, Christiane M; Studte, Sara; Hildebrandt, Helmut; Huster, Rene; Weerda, Riklef

    2014-03-01

    Perception of familiar faces depends on a core system analysing visual appearance and an extended system dealing with inference of mental states and emotional responses. Damage to the core system impairs face perception as seen in prosopagnosia. In contrast, patients with Capgras delusion show intact face perception but believe that closely related persons are impostors. It has been suggested that two deficits are necessary for the delusion, an aberrant perceptual or affective experience that leads to a bizarre belief as well as an impaired ability to evaluate beliefs. Using functional magnetic resonance imaging, we compared neural activity to familiar and unfamiliar faces in a patient with Capgras delusion and an age matched control group. We provide evidence that Capgras delusion is related to dysfunctional activity in the extended face processing system. The patient, who developed the delusion for the partner after a large right prefrontal lesion sparing the ventromedial and medial orbitofrontal cortex, lacked neural activity to the partner's face in left posterior cingulate cortex and left posterior superior temporal sulcus. Further, we found impaired functional connectivity of the latter region with the left superior frontal gyrus and to a lesser extent with the right superior frontal sulcus/middle frontal gyrus. The findings of this case study suggest that the first factor in Capgras delusion may be reduced neural activity in the extended face processing system that deals with inference of mental states while the second factor may be due to a lesion in the right middle frontal gyrus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Neural basis of three dimensions of agitated behaviors in patients with Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Banno K

    2014-02-01

    Full Text Available Koichi Banno,1 Shutaro Nakaaki,2 Junko Sato,1 Katsuyoshi Torii,1 Jin Narumoto,3 Jun Miyata,4 Nobutsugu Hirono,5 Toshi A Furukawa,6 Masaru Mimura,2 Tatsuo Akechi1 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 4Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 5Department of Psychology, Kobe Gakuin University; Hyogo, Japan; 6Departments of Health Promotion and Human Behavior and of Clinical Epidemiology, Graduate School of Medicine/School of Public Health, Kyoto University, Kyoto, Japan Background: Agitated behaviors are frequently observed in patients with Alzheimer disease (AD. The neural substrate underlying the agitated behaviors in dementia is unclear. We hypothesized that different dimensions of agitated behaviors are mediated by distinct neural systems. Methods: All the patients (n=32 underwent single photon emission computed tomography (SPECT. Using the Agitated Behavior in Dementia scale, we identified the relationships between regional cerebral blood flow (rCBF patterns and the presence of each of three dimensions of agitated behavior (physically agitated behavior, verbally agitated behavior, and psychosis symptoms in AD patients. Statistical parametric mapping (SPM software was used to explore these neural correlations. Results: Physically agitated behavior was significantly correlated with lower rCBF values in the right superior temporal gyrus (Brodmann 22 and the right inferior frontal gyrus (Brodmann 47. Verbally agitated behavior was significantly associated with lower rCBF values in the left inferior frontal gyrus (Brodmann 46, 44 and the left insula (Brodmann 13. The psychosis symptoms were significantly correlated

  16. DIAGNOSIS AND PREDICTION OF CHOLECYSTITIS DEVELOPMENT ON THE BASIS OF NEURAL NETWORK ANALYSIS OF RISK FACTORS

    Directory of Open Access Journals (Sweden)

    V. A. Lazarenko

    2017-01-01

    Full Text Available Purpose. To develop an artificial neural network for diagnosing and predicting the development of cholecystitis based on an analysis of data on risk factors, and to explore the possibilities of its application in real clinical practice.Materials and methods. The collection of materials was held in at the hospitals of the city of Kursk and included a survey of 488 patients with hepatopancreatoduodenal diseases. 203 patients were suffering from cholecystitis, in 285 patients the diagnosis of cholecystitis was excluded. Analysis of risk factors’ data (such as sex, age, bad habits, profession, family relationships, etc. was carried out using an internally developed artificial neural network (multilayer perceptron with hyperbolic tangent as the activation function. The computer program “System of Intellectual Analysis and Diagnosis of Diseases” was registered in accordance with established procedure (Certificate No. 2017613090.Results. The use of neural network analysis of data on risk factors in comparison with the processing of information that forms a clinical picture allows the diagnosis of a potential disease with cholecystitis before the onset of symptoms. The training of the artificial neural network with a quantitative output coding the age of probable hospitalization made it possible to generate an array of values, signifficantly (α ≤ 0.001 not differing from the empirical data. The difference between the mean calculated and mean empirical values was 0.45 for the training set and 1.75 for the clinical approbation group. The mean absolute error was within the range of 1.87–2.07 years.Conclusion. 1. The proposed new approach to the diagnosis and prognosis of cholecystitis has demonstrated its effectiveness, which is confirmed in clinical approbation by the levels of sensitivity (94.44%, m = 2.26 and specificity (80.6%, m = 3.9.2. The error in predicting the age of probable hospitalization of patients with cholecystitis did not

  17. Detection of an inhibitory cortical gradient underlying peak shift in learning: a neural basis for a false memory.

    Science.gov (United States)

    Miasnikov, Alexandre A; Weinberger, Norman M

    2012-11-01

    Experience often does not produce veridical memory. Understanding false attribution of events constitutes an important problem in memory research. "Peak shift" is a well-characterized, controllable phenomenon in which human and animal subjects that receive reinforcement associated with one sensory stimulus later respond maximally to another stimulus in post-training stimulus generalization tests. Peak shift ordinarily develops in discrimination learning (reinforced CS+, unreinforced CS-) and has long been attributed to the interaction of an excitatory gradient centered on the CS+ and an inhibitory gradient centered on the CS-; the shift is away from the CS-. In contrast, we have obtained peak shifts during single tone frequency training, using stimulation of the cholinergic nucleus basalis (NB) to implant behavioral memory into the rat. As we also recorded cortical activity, we took the opportunity to investigate the possible existence of a neural frequency gradient that could account for behavioral peak shift. Behavioral frequency generalization gradients (FGGs, interruption of ongoing respiration) were determined twice before training while evoked potentials were recorded from the primary auditory cortex (A1), to obtain a baseline gradient of "habituatory" neural decrement. A post-training behavioral FGG obtained 24h after three daily sessions of a single tone paired with NB stimulation (200 trials/day) revealed a peak shift. The peak of the FGG was at a frequency lower than the CS while the cortical inhibitory gradient was at a frequency higher than the CS frequency. Further analysis indicated that the frequency location and magnitude of the gradient could account for the behavioral peak shift. These results provide a neural basis for a systematic case of memory misattribution and may provide an animal model for the study of the neural bases of a type of "false memory". Published by Elsevier Inc.

  18. The neural basis of sublexical speech and corresponding nonspeech processing: a combined EEG-MEG study.

    Science.gov (United States)

    Kuuluvainen, Soila; Nevalainen, Päivi; Sorokin, Alexander; Mittag, Maria; Partanen, Eino; Putkinen, Vesa; Seppänen, Miia; Kähkönen, Seppo; Kujala, Teija

    2014-03-01

    We addressed the neural organization of speech versus nonspeech sound processing by investigating preattentive cortical auditory processing of changes in five features of a consonant-vowel syllable (consonant, vowel, sound duration, frequency, and intensity) and their acoustically matched nonspeech counterparts in a simultaneous EEG-MEG recording of mismatch negativity (MMN/MMNm). Overall, speech-sound processing was enhanced compared to nonspeech sound processing. This effect was strongest for changes which affect word meaning (consonant, vowel, and vowel duration) in the left and for the vowel identity change in the right hemisphere also. Furthermore, in the right hemisphere, speech-sound frequency and intensity changes were processed faster than their nonspeech counterparts, and there was a trend for speech-enhancement in frequency processing. In summary, the results support the proposed existence of long-term memory traces for speech sounds in the auditory cortices, and indicate at least partly distinct neural substrates for speech and nonspeech sound processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Study of the neural basis of striatal modulation of the jaw-opening reflex.

    Science.gov (United States)

    Barceló, Ana C; Fillipini, B; Pazo, Jorge Horacio

    2010-02-01

    Previous experimental data from this laboratory demonstrated the participation of the striatum and dopaminergic pathways in central nociceptive processing. The objective of this study was to examine the possible pathways and neural structures associated with the analgesic action of the striatum. The experiments were carried out in rats anesthetized with urethane. The jaw-opening reflex (JOR) was evoked by electrical stimulation of the tooth pulp of lower incisors and recorded in the anterior belly of the digastric muscles. Intrastriatal microinjection of apomorphine, a nonspecific dopamine agonist, reduced or abolished the JOR amplitude. Electrolytic or kainic acid lesions, unilateral to the apomorphine-injected striatum, of the globus pallidus, substantia nigra pars reticulata, subthalamic nucleus and bilateral lesion the rostroventromedial medulla (RVM), blocked the inhibition of the JOR by striatal stimulation. These findings suggest that the main output nuclei of the striatum and the RVM may be critical elements in the neural pathways mediating the inhibition of the reflex response, evoked in jaw muscles by noxious stimulation of dental pulp.

  20. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain.

    Science.gov (United States)

    Albuixech-Crespo, Beatriz; López-Blanch, Laura; Burguera, Demian; Maeso, Ignacio; Sánchez-Arrones, Luisa; Moreno-Bravo, Juan Antonio; Somorjai, Ildiko; Pascual-Anaya, Juan; Puelles, Eduardo; Bovolenta, Paola; Garcia-Fernàndez, Jordi; Puelles, Luis; Irimia, Manuel; Ferran, José Luis

    2017-04-01

    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.

  2. A Novel Animal Model for Investigating the Neural Basis of Focal Dystonia

    Science.gov (United States)

    2016-09-01

    plasticity of the human motor cortex in writer’s cramp. Brain. 2003;126:2586–2596. 46. Quartarone A, Morgante F, Sant’angelo A, Rizzo V, Bagnato S...cerebellar output in the genetically dystonic rat . Adv Neurol. 1998;78:63–78. 61. LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor ...experiments and preliminary recordings from the superior colliculus. 15. SUBJECT TERMS Dystonia, benign essential blepharospasm, dry eye, motor

  3. Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction.

    Science.gov (United States)

    Bowen, Michael T; Neumann, Inga D

    2017-12-01

    Drugs that act on the brain oxytocin (OXT) system may provide a much-needed treatment breakthrough for substance-use disorders. Targeting the brain OXT system has the potential to treat addiction to all major classes of addictive substance and to intervene across all stages of the addiction cycle. Emerging evidence suggests that OXT is able to interfere with such a wide range of addictive behaviours for such a wide range of addictive substances by rebalancing core neural systems that become dysregulated over the course of addiction. By improving our understanding of these interactions between OXT and the neural substrates of addiction, we will not only improve our understanding of addiction, but also our ability to effectively treat these devastating disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Classification of brain compartments and head injury lesions by neural networks applied to MRI

    International Nuclear Information System (INIS)

    Kischell, E.R.; Kehtarnavaz, N.; Hillman, G.R.; Levin, H.; Lilly, M.; Kent, T.A.

    1995-01-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and 'unknown'. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician's report used to train the neural network. (orig.)

  5. Classification of brain compartments and head injury lesions by neural networks applied to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kischell, E R [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Kehtarnavaz, N [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Hillman, G R [Dept. of Pharmacology, Univ. of Texas Medical Branch, Galveston, TX (United States); Levin, H [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Lilly, M [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Kent, T A [Dept. of Neurology and Psychiatry, Univ. of Texas Medical Branch, Galveston, TX (United States)

    1995-10-01

    An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and `unknown`. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician`s report used to train the neural network. (orig.)

  6. BrainCrafter: An investigation into human-based neural network engineering

    DEFF Research Database (Denmark)

    Piskur, J.; Greve, P.; Togelius, J.

    2015-01-01

    This paper presents the online application Brain-Crafter, in which users can manually build artificial neural networks (ANNs) to control a robot in a maze environment. Users can either start to construct networks from scratch or elaborate on networks created by other users. In particular, Brain......Crafter was designed to study how good we as humans are at building ANNs for control problems and if collaborating with other users can facilitate this process. The results in this paper show that (1) some users were in fact able to successfully construct ANNs that solve the navigation tasks, (2) collaboration between...

  7. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  8. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

    Science.gov (United States)

    Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad

    2018-04-01

    A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.

  9. Neural basis of attachment-caregiving systems interaction:insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Delia eLenzi

    2015-08-01

    Full Text Available The attachment and the caregiving system are complementary systems which are active simultaneously in infant and mother interactions. This ensures the infant survival and optimal social, emotional and cognitive development. In this brief review we first define the characteristics of these two behavioral systems and the theory that links them, according to what Bowlby called the attachment-caregiving social bond (Bowlby, 1969. We then follow with those neuroimaging studies that have focused on this particular issue, i.e. those which have studied the activation of the careging system in women (using infant stimuli and have explored how the individual attachment model (through the Adult Attachment Interview modulates its activity. Studies report altered activation in limbic and prefrontal areas and in basal ganglia and hypothalamus/pituitary regions. These altered activations are thought to be the neural substrate of the attachment-caregiving systems interaction.

  10. Neural basis of the time window for subjective motor-auditory integration

    Directory of Open Access Journals (Sweden)

    Koichi eToida

    2016-01-01

    Full Text Available Temporal contiguity between an action and corresponding auditory feedback is crucial to the perception of self-generated sound. However, the neural mechanisms underlying motor–auditory temporal integration are unclear. Here, we conducted four experiments with an oddball paradigm to examine the specific event-related potentials (ERPs elicited by delayed auditory feedback for a self-generated action. The first experiment confirmed that a pitch-deviant auditory stimulus elicits mismatch negativity (MMN and P300, both when it is generated passively and by the participant’s action. In our second and third experiments, we investigated the ERP components elicited by delayed auditory feedback of for a self-generated action. We found that delayed auditory feedback elicited an enhancement of P2 (enhanced-P2 and a N300 component, which were apparently different from the MMN and P300 components observed in the first experiment. We further investigated the sensitivity of the enhanced-P2 and N300 to delay length in our fourth experiment. Strikingly, the amplitude of the N300 increased as a function of the delay length. Additionally, the N300 amplitude was significantly correlated with the conscious detection of the delay (the 50% detection point was around 200 ms, and hence reduction in the feeling of authorship of the sound (the sense of agency. In contrast, the enhanced-P2 was most prominent in short-delay (≤ 200 ms conditions and diminished in long-delay conditions. Our results suggest that different neural mechanisms are employed for the processing of temporally-deviant and pitch-deviant auditory feedback. Additionally, the temporal window for subjective motor–auditory integration is likely about 200 ms, as indicated by these auditory ERP components.

  11. The neurocognitive basis of feature integration

    NARCIS (Netherlands)

    Keizer, André Willem

    2010-01-01

    One of the most striking features of the brain is that it is modular; it consists of often highly specialized areas. This modular organization requires efficient communication in order to integrate the information that is represented in distinct brain areas. In my thesis, I studied the neural basis

  12. Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain.

    Science.gov (United States)

    Menendez de la Prida, L; Sanchez-Andres, J V

    1999-09-01

    Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.

  13. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    Science.gov (United States)

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  14. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  15. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-05

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  16. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  17. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    OpenAIRE

    Papagno, Costanza; Martello, Giorgia; Mattavelli, Giulia

    2013-01-01

    Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract) noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left ...

  18. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  19. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  20. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  1. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  2. Folate status in women of reproductive age as basis of neural tube defect risk assessment.

    Science.gov (United States)

    Bailey, Lynn B; Hausman, Dorothy B

    2018-02-01

    Reliable folate status data for women of reproductive age (WRA) to assess global risk for neural tube defects (NTDs) are needed. We focus on a recent recommendation by the World Health Organization that a specific "optimal" red blood cell (RBC) folate concentration be used as the sole indicator of NTD risk within a population and discuss how to best apply this guidance to reach the goal of assessing NTD risk globally. We also emphasize the importance of using the microbiologic assay (MBA) as the most reliable assay for obtaining comparable results for RBC folate concentration across time and countries, the need for harmonization of the MBA through use of consistent key reagents and procedures within laboratories, and the requirement to apply assay-matched cutoffs for folate deficiency and insufficiency. To estimate NTD risk globally, the ideal scenario would be to have country-specific population-based surveys of RBC folate in WRA determined utilizing a harmonized MBA, as was done in recent studies in Guatemala and Belize. We conclude with guidance on next steps to best navigate the road map toward the goal of generating reliable folate status data on which to assess NTD risk in WRA in low- and middle-income countries. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  3. Neural Basis of Two Kinds of Social Influence: Obedience and Conformity

    Directory of Open Access Journals (Sweden)

    Ying eXie

    2016-02-01

    Full Text Available Event-related potentials (ERPs were used in this study to explore the neural mechanism of obedience and conformity on the model of online book purchasing. Participants were asked to decide as quickly as possible whether to buy a book based on limited information including its title, keywords and number of positive and negative reviews. Obedience was induced by forcing participants to buy books which received mostly negative reviews. In contrast, conformity was aroused by majority influence (caused by positive and negative comments. P3 and N2, two kinds of ERP components related to social cognitive process, were measured and recorded with electroencephalogram (EEG test. The results show that compared with conformity decisions, obedience decisions induced greater cognitive conflicts. In ERP measurements, greater amplitudes of N2 component were observed in the context of obedience. However, consistency level did not make a difference on P3 peak latency for both conformity and obedience. This shows that classification process is implicit in both conformity and obedience decision-making. In addition, for both conformity and obedience decisions, augmented P3 was observed when the reviews consistency (either negative or positive was higher.

  4. Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning.

    Science.gov (United States)

    Daniel, Reka; Pollmann, Stefan

    2010-01-06

    The dopaminergic system is known to play a central role in reward-based learning (Schultz, 2006), yet it was also observed to be involved when only cognitive feedback is given (Aron et al., 2004). Within the domain of information-integration category learning, in which information from several stimulus dimensions has to be integrated predecisionally (Ashby and Maddox, 2005), the importance of contingent feedback is well established (Maddox et al., 2003). We examined the common neural correlates of reward anticipation and prediction error in this task. Sixteen subjects performed two parallel information-integration tasks within a single event-related functional magnetic resonance imaging session but received a monetary reward only for one of them. Similar functional areas including basal ganglia structures were activated in both task versions. In contrast, a single structure, the nucleus accumbens, showed higher activation during monetary reward anticipation compared with the anticipation of cognitive feedback in information-integration learning. Additionally, this activation was predicted by measures of intrinsic motivation in the cognitive feedback task and by measures of extrinsic motivation in the rewarded task. Our results indicate that, although all other structures implicated in category learning are not significantly affected by altering the type of reward, the nucleus accumbens responds to the positive incentive properties of an expected reward depending on the specific type of the reward.

  5. Neural basis for hand muscle synergies in the primate spinal cord.

    Science.gov (United States)

    Takei, Tomohiko; Confais, Joachim; Tomatsu, Saeka; Oya, Tomomichi; Seki, Kazuhiko

    2017-08-08

    Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.

  6. Neural Basis of Two Kinds of Social Influence: Obedience and Conformity.

    Science.gov (United States)

    Xie, Ying; Chen, Mingliang; Lai, Hongxia; Zhang, Wuke; Zhao, Zhen; Anwar, Ch Mahmood

    2016-01-01

    Event-related potentials (ERPs) were used in this study to explore the neural mechanism of obedience and conformity on the model of online book purchasing. Participants were asked to decide as quickly as possible whether to buy a book based on limited information including its title, keywords and number of positive and negative reviews. Obedience was induced by forcing participants to buy books which received mostly negative reviews. In contrast, conformity was aroused by majority influence (caused by positive and negative comments). P3 and N2, two kinds of ERP components related to social cognitive process, were measured and recorded with electroencephalogram (EEG) test. The results show that compared with conformity decisions, obedience decisions induced greater cognitive conflicts. In ERP measurements, greater amplitudes of N2 component were observed in the context of obedience. However, consistency level did not make a difference on P3 peak latency for both conformity and obedience. This shows that classification process is implicit in both conformity and obedience decision-making. In addition, for both conformity and obedience decisions, augmented P3 was observed when the reviews consistency (either negative or positive) was higher.

  7. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    Jeon, Myounggun; Yoon, Eui-Sung; Cho, Il-Joo; Cho, Jeiwon; Jung, Dahee; Kim, Yun Kyung; Shin, Sehyun

    2014-01-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  8. The Neural Basis of Speech Perception through Lipreading and Manual Cues: Evidence from Deaf Native Users of Cued Speech

    Science.gov (United States)

    Aparicio, Mario; Peigneux, Philippe; Charlier, Brigitte; Balériaux, Danielle; Kavec, Martin; Leybaert, Jacqueline

    2017-01-01

    We present here the first neuroimaging data for perception of Cued Speech (CS) by deaf adults who are native users of CS. CS is a visual mode of communicating a spoken language through a set of manual cues which accompany lipreading and disambiguate it. With CS, sublexical units of the oral language are conveyed clearly and completely through the visual modality without requiring hearing. The comparison of neural processing of CS in deaf individuals with processing of audiovisual (AV) speech in normally hearing individuals represents a unique opportunity to explore the similarities and differences in neural processing of an oral language delivered in a visuo-manual vs. an AV modality. The study included deaf adult participants who were early CS users and native hearing users of French who process speech audiovisually. Words were presented in an event-related fMRI design. Three conditions were presented to each group of participants. The deaf participants saw CS words (manual + lipread), words presented as manual cues alone, and words presented to be lipread without manual cues. The hearing group saw AV spoken words, audio-alone and lipread-alone. Three findings are highlighted. First, the middle and superior temporal gyrus (excluding Heschl’s gyrus) and left inferior frontal gyrus pars triangularis constituted a common, amodal neural basis for AV and CS perception. Second, integration was inferred in posterior parts of superior temporal sulcus for audio and lipread information in AV speech, but in the occipito-temporal junction, including MT/V5, for the manual cues and lipreading in CS. Third, the perception of manual cues showed a much greater overlap with the regions activated by CS (manual + lipreading) than lipreading alone did. This supports the notion that manual cues play a larger role than lipreading for CS processing. The present study contributes to a better understanding of the role of manual cues as support of visual speech perception in the framework

  9. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic

  10. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  11. The neural basis of novelty and appropriateness in processing of creative chunk decomposition.

    Science.gov (United States)

    Huang, Furong; Fan, Jin; Luo, Jing

    2015-06-01

    Novelty and appropriateness have been recognized as the fundamental features of creative thinking. However, the brain mechanisms underlying these features remain largely unknown. In this study, we used event-related functional magnetic resonance imaging (fMRI) to dissociate these mechanisms in a revised creative chunk decomposition task in which participants were required to perform different types of chunk decomposition that systematically varied in novelty and appropriateness. We found that novelty processing involved functional areas for procedural memory (caudate), mental rewarding (substantia nigra, SN), and visual-spatial processing, whereas appropriateness processing was mediated by areas for declarative memory (hippocampus), emotional arousal (amygdala), and orthography recognition. These results indicate that non-declarative and declarative memory systems may jointly contribute to the two fundamental features of creative thinking. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  13. Decoupling Research on Flexible Tactile Sensors Interfered by White Gaussian Noise Using Improved Radical Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Feilu Wang

    2014-04-01

    Full Text Available Research on tactile sensors to enhance their flexibility and ability of multi- dimensional information detection is a key issue to develop humanoid robots. In view of that the tactile sensor is often affected by noise, this paper adds different white Gaussian noises (WGN into the ideal model of flexible tactile sensors based on conductive rubber purposely, then improves the standard radial basis function neural network (RNFNN to deal with the noises. The modified RBFNN is applied to approximate and decouple the mapping relationship between row-column resistance with WGNs and three-dimensional deformation. Numerical experiments demonstrate that the decoupling result of the deformation for the sensor is quite good. The results show that the improved RBFNN which doesn’t rely on the mathematical model of the system has good anti-noise ability and robustness.

  14. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model.

    Science.gov (United States)

    Zhou, Jingwen; Xu, Zhenghong; Chen, Shouwen

    2013-04-01

    The thuringiensin abiotic degradation processes in aqueous solution under different conditions, with a pH range of 5.0-9.0 and a temperature range of 10-40°C, were systematically investigated by an exponential decay model and a radius basis function (RBF) neural network model, respectively. The half-lives of thuringiensin calculated by the exponential decay model ranged from 2.72 d to 16.19 d under the different conditions mentioned above. Furthermore, an RBF model with accuracy of 0.1 and SPREAD value 5 was employed to model the degradation processes. The results showed that the model could simulate and predict the degradation processes well. Both the half-lives and the prediction data showed that thuringiensin was an easily degradable antibiotic, which could be an important factor in the evaluation of its safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The neural basis of analogical reasoning: an event-related potential study.

    Science.gov (United States)

    Qiu, Jiang; Li, Hong; Chen, Antao; Zhang, Qinglin

    2008-10-01

    The spatiotemporal analysis of brain activation during the execution of easy analogy (EA) and difficult analogy (DA) tasks was investigated using high-density event-related brain potentials (ERPs). Results showed that reasoning tasks (schema induction) elicited a more negative ERP deflection (N500-1000) than did the baseline task (BS) between 500 and 1000 ms. Dipole source analysis of difference waves (EA-BS and DA-BS) indicated that the negative components were both localized near the left thalamus, possibly associated with the retrieval of alphabetical information. Furthermore, DA elicited a more positive ERP component (P600-1000) than did EA in the same time window. Two generators of P600-1000 were located in the medial prefrontal cortex (BA10) and the left frontal cortex (BA6) which was possibly involved in integrating information in schema abstraction. In the stage of analogy mapping, a greater negativity (N400-600) in the reasoning tasks as compared to BS was found over fronto-central scalp regions. A generator of this effect was located in the left fusiform gyrus and was possibly related to associative memory and activation of schema. Then, a greater negativity in the reasoning tasks, in comparison to BS task, developed between 900-1200 ms (LNC1) and 2000-2500 ms (LNC2). Dipole source analysis (EA-BS) localized the generator of LNC1 in the left prefrontal cortex (BA 10) which was possibly related to mapping the schema to the target problem, and the generator of LNC2 in the left prefrontal cortex (BA 9) which was possibly related to deciding whether a conclusion correctly follows from the schema.

  16. Neural, cognitive, and neuroimaging markers of the suicidal brain

    Directory of Open Access Journals (Sweden)

    Sobanski T

    2015-05-01

    Full Text Available Thomas Sobanski,1 Karl-Jürgen Bär,2 Gerd Wagner2 1Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Thüringen-Kliniken "Georgius Agricola" GmbH, Saalfeld, Germany; 2Department of Psychiatry and Psychotherapy, Psychiatric Brain and Body Research Group Jena, Jena University Hospital, Jena, GermanyAbstract: Suicidal behavior (SB is characterized by the occurrence of suicide attempts with substantial intent to die. SB is a major health problem worldwide. In the great majority of cases, SB occurs in patients suffering from psychiatric disorders, mainly from affective disorders or schizophrenia. Despite this high association, there is growing evidence from genetic studies that SB might represent a psychiatric condition on its own. This review provides an overview of the most significant neurobiological and neurocognitive findings in SB. We provide evidence for specific dysfunctions within the serotonergic system, for distinct morphological abnormalities in the gray and white matter composition as well as for neurofunctional alterations in the fronto-striatal network. Additionally, the putative role of impulsivity and hopelessness as trait-like risk factors for SB is outlined. Both the personality traits are associated with altered prefrontal cortex function and deficits in cognitive and affective control similar to the findings in SB. Given the difficulties of clinical risk assessment, there is a need to identify specific markers that can predict SB more reliably. Some recent neurocognitive and functional/structural neuroimaging findings might be appropriate to use as SB indicators in the close future.Keywords: suicidal behavior, biological markers, serotonin, hopelessness, impulsivity, major depressive disorder, fMRI, PET, SPECT

  17. Median nerve fascicular anatomy as a basis for distal neural prostheses.

    Science.gov (United States)

    Planitzer, Uwe; Steinke, Hanno; Meixensberger, Jürgen; Bechmann, Ingo; Hammer, Niels; Winkler, Dirk

    2014-05-01

    Functional electrical stimulation (FES) serves as a possible therapy to restore missing motor functions of peripheral nerves by means of cuff electrodes. FES is established for improving lower limb function. Transferring this method to the upper extremity is complex, due to a lack of anatomical data on the physiological configuration of nerve fascicles. Our study's aim was to provide an anatomical basis for FES of the median nerve in the distal forearm and hand. We investigated 21 distal median nerves from 12 body donors. The peripheral fascicles were traced back by removing the external and interfascicular epineurium and then assigned to 4 quadrants. A distinct motor and sensory distribution was observed. The fascicles innervating the thenar eminence and the first lumbrical muscle originated from the nerves' radial parts in 82%. The fascicle supplying the second lumbrical muscle originated from the ulnar side in 78%. No macroscopically visible plexus formation was observed for the distal median nerve in the forearm. The findings on the distribution of the motor branches of the median nerve and the missing plexus formation may likely serve as an anatomical basis for FES of the distal forearm. However, due to the considerable variability of the motor branches, cuff electrodes will need to be adapted individually in FES. Taking into account the sensory distribution of the median nerve, FES may also possibly be applied in the treatment of regional pain syndromes. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Influence of the Training Methods in the Diagnosis of Multiple Sclerosis Using Radial Basis Functions Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ángel Gutiérrez

    2015-04-01

    Full Text Available The data available in the average clinical study of a disease is very often small. This is one of the main obstacles in the application of neural networks to the classification of biological signals used for diagnosing diseases. A rule of thumb states that the number of parameters (weights that can be used for training a neural network should be around 15% of the available data, to avoid overlearning. This condition puts a limit on the dimension of the input space. Different authors have used different approaches to solve this problem, like eliminating redundancy in the data, preprocessing the data to find centers for the radial basis functions, or extracting a small number of features that were used as inputs. It is clear that the classification would be better the more features we could feed into the network. The approach utilized in this paper is incrementing the number of training elements with randomly expanding training sets. This way the number of original signals does not constraint the dimension of the input set in the radial basis network. Then we train the network using the method that minimizes the error function using the gradient descent algorithm and the method that uses the particle swarm optimization technique. A comparison between the two methods showed that for the same number of iterations on both methods, the particle swarm optimization was faster, it was learning to recognize only the sick people. On the other hand, the gradient method was not as good in general better at identifying those people.

  19. The neural basis of social risky decision making in females with major depressive disorder.

    Science.gov (United States)

    Shao, Robin; Zhang, Hui-jun; Lee, Tatia M C

    2015-01-01

    Recent evidence indicates that Major Depressive Disorder (MDD) may be associated with reduced tendency of committing noncompliant actions during social decision-making even when the risk of being punished is low. The neural underpinnings of this behavioral pattern are unknown, although it likely relates to compromised functioning of the lateral prefrontal-striatal/limbic networks implicated in executive control, emotion regulation and risk/value-based instrumental behaviors. We employed a modified trust game (TG) that provided explicit information on the risk levels of cheating behaviors being detected and punished. Behavioral and neuro-image data were acquired and analyzed from 14 first-episode female MDD patients and 15 age- and gender-matched controls performing the role of trustee in the TG. Relative to controls, MDD patients exhibited less behavioral switching to making cheating choices under low risk, and reduced activity in the dorsal putamen, anterior insula and dorsolateral prefrontal cortex (DLPFC) during making low-risk cheating versus benevolent choices, with limited evidence indicating abnormal bilateral inferior frontal gyrus activities of patients when making high-risk cheating versus benevolent choices. Patients' left dorsal putamen/anterior insular signals correlated positively with their frequency of low-risk cheating. MDD patients' symptom severity correlated positively with their signals in the lateral prefrontal networks during decision-making. A psycho-physiological interaction analysis provided tentative evidence for the recruitment of IFG-striatal/limbic circuitry among the control participants, but greater frontopolar-striatal/limbic connectivity among the MDD patients, during low-risk decision-making. We propose that making risky social decisions based on the balancing of self-gain and other's welfare relies on the functioning of the integrated lateral prefrontal-striatal/limbic networks, which are less efficient and dysregulated among MDD

  20. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration.

    Science.gov (United States)

    Murphy, Karagh; James, Logan S; Sakata, Jon T; Prather, Jonathan F

    2017-08-01

    Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies. Copyright © 2017 the American Physiological Society.

  1. Neural markers of loss aversion in resting-state brain activity.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Baud-Bovy, Gabriel; Dodich, Alessandra; Falini, Andrea; Antonellis, Giulia; Cappa, Stefano F

    2017-02-01

    Neural responses in striatal, limbic and somatosensory brain regions track individual differences in loss aversion, i.e. the higher sensitivity to potential losses compared with equivalent gains in decision-making under risk. The engagement of structures involved in the processing of aversive stimuli and experiences raises a further question, i.e. whether the tendency to avoid losses rather than acquire gains represents a transient fearful overreaction elicited by choice-related information, or rather a stable component of one's own preference function, reflecting a specific pattern of neural activity. We tested the latter hypothesis by assessing in 57 healthy human subjects whether the relationship between behavioral and neural loss aversion holds at rest, i.e. when the BOLD signal is collected during 5minutes of cross-fixation in the absence of an explicit task. Within the resting-state networks highlighted by a spatial group Independent Component Analysis (gICA), we found a significant correlation between strength of activity and behavioral loss aversion in the left ventral striatum and right posterior insula/supramarginal gyrus, i.e. the very same regions displaying a pattern of neural loss aversion during explicit choices. Cross-study analyses confirmed that this correlation holds when voxels identified by gICA are used as regions of interest in task-related activity and vice versa. These results suggest that the individual degree of (neural) loss aversion represents a stable dimension of decision-making, which reflects in specific metrics of intrinsic brain activity at rest possibly modulating cortical excitability at choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Motor sequence learning-induced neural efficiency in functional brain connectivity.

    Science.gov (United States)

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2017-02-15

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of deep brain stimulation electrode characteristics for neural recording

    Science.gov (United States)

    Kent, Alexander R.; Grill, Warren M.

    2014-08-01

    Objective. Closed-loop deep brain stimulation (DBS) systems have the potential to optimize treatment of movement disorders by enabling automatic adjustment of stimulation parameters based on a feedback signal. Evoked compound action potentials (ECAPs) and local field potentials (LFPs) recorded from the DBS electrode may serve as suitable closed-loop control signals. The objective of this study was to understand better the factors that influence ECAP and LFP recording, including the physical presence of the electrode, the geometrical dimensions of the electrode, and changes in the composition of the peri-electrode space across recording conditions. Approach. Coupled volume conductor-neuron models were used to calculate single-unit activity as well as ECAP responses and LFP activity from a population of model thalamic neurons. Main results. Comparing ECAPs and LFPs measured with and without the presence of the highly conductive recording contacts, we found that the presence of these contacts had a negligible effect on the magnitude of single-unit recordings, ECAPs (7% RMS difference between waveforms), and LFPs (5% change in signal magnitude). Spatial averaging across the contact surface decreased the ECAP magnitude in a phase-dependent manner (74% RMS difference), resulting from a differential effect of the contact on the contribution from nearby or distant elements, and decreased the LFP magnitude (25% change). Reductions in the electrode diameter or recording contact length increased signal energy and increased spatial sensitivity of single neuron recordings. Moreover, smaller diameter electrodes (500 µm) were more selective for recording from local cells over passing axons, with the opposite true for larger diameters (1500 µm). Changes in electrode dimensions had phase-dependent effects on ECAP characteristics, and generally had small effects on the LFP magnitude. ECAP signal energy and LFP magnitude decreased with tighter contact spacing (100 µm), compared to

  4. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  5. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  6. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  7. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways.

  8. Anger in brain and body: the neural and physiological perturbation of decision-making by emotion.

    Science.gov (United States)

    Garfinkel, Sarah N; Zorab, Emma; Navaratnam, Nakulan; Engels, Miriam; Mallorquí-Bagué, Núria; Minati, Ludovico; Dowell, Nicholas G; Brosschot, Jos F; Thayer, Julian F; Critchley, Hugo D

    2016-01-01

    Emotion and cognition are dynamically coupled to bodily arousal: the induction of anger, even unconsciously, can reprioritise neural and physiological resources toward action states that bias cognitive processes. Here we examine behavioural, neural and bodily effects of covert anger processing and its influence on cognition, indexed by lexical decision-making. While recording beat-to-beat blood pressure, the words ANGER or RELAX were presented subliminally just prior to rapid word/non-word reaction-time judgements of letter-strings. Subliminal ANGER primes delayed the time taken to reach rapid lexical decisions, relative to RELAX primes. However, individuals with high trait anger were speeded up by subliminal anger primes. ANGER primes increased systolic blood pressure and the magnitude of this increase predicted reaction time prolongation. Within the brain, ANGER trials evoked an enhancement of activity within dorsal pons and an attenuation of activity within visual occipitotemporal and attentional parietal cortices. Activity within periaqueductal grey matter, occipital and parietal regions increased linearly with evoked blood pressure changes, indicating neural substrates through which covert anger impairs semantic decisions, putatively through its expression as visceral arousal. The behavioural and physiological impact of anger states compromises the efficiency of cognitive processing through action-ready changes in autonomic response that skew regional neural activity. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.

    Science.gov (United States)

    Mathalon, Daniel H; Sohal, Vikaas S

    2015-08-01

    Neural oscillations are rhythmic fluctuations over time in the activity or excitability of single neurons, local neuronal populations or "assemblies," and/or multiple regionally distributed neuronal assemblies. Synchronized oscillations among large numbers of neurons are evident in electrocorticographic, electroencephalographic, magnetoencephalographic, and local field potential recordings and are generally understood to depend on inhibition that paces assemblies of excitatory neurons to produce alternating temporal windows of reduced and increased excitability. Synchronization of neural oscillations is supported by the extensive networks of local and long-range feedforward and feedback bidirectional connections between neurons. Here, we review some of the major methods and measures used to characterize neural oscillations, with a focus on gamma oscillations. Distinctions are drawn between stimulus-independent oscillations recorded during resting states or intervals between task events, stimulus-induced oscillations that are time locked but not phase locked to stimuli, and stimulus-evoked oscillations that are both time and phase locked to stimuli. Synchrony of oscillations between recording sites, and between the amplitudes and phases of oscillations of different frequencies (cross-frequency coupling), is described and illustrated. Molecular mechanisms underlying gamma oscillations are also reviewed. Ultimately, understanding the temporal organization of neuronal network activity, including interactions between neural oscillations, is critical for elucidating brain dysfunction in neuropsychiatric disorders.

  10. Tolcapone-Enhanced Neurocognition in Healthy Adults: Neural Basis and Predictors.

    Science.gov (United States)

    Bhakta, Savita G; Light, Gregory A; Talledo, Jo A; Balvaneda, Bryan; Hughes, Erica; Alvarez, Alexis; Rana, Brinda K; Young, Jared W; Swerdlow, Neal R

    2017-12-01

    Failure of procognitive drug trials in schizophrenia may reflect the clinical heterogeneity of schizophrenia, underscoring the need to identify biomarkers of treatment sensitivity. We used an experimental medicine design to test the procognitive effects of a putative procognitive agent, tolcapone, using an electroencephalogram-based cognitive control task in healthy subjects. Healthy men and women (n=27; ages 18-35 years), homozygous for either the Met/Met or Val/Val rs4680 genotype, received placebo and tolcapone 200 mg orally across 2 test days separated by 1 week in a double-blind, randomized, counterbalanced, within-subject design. On each test day, neurocognitive performance was assessed using the MATRICS Consensus Cognitive Battery and an electroencephalogram-based 5 Choice-Continuous Performance Test. Tolcapone enhanced visual learning in low-baseline MATRICS Consensus Cognitive Battery performers (d=0.35) and had an opposite effect in high performers (d=0.5), and enhanced verbal fluency across all subjects (P=.03) but had no effect on overall MATRICS Consensus Cognitive Battery performance. Tolcapone reduced false alarm rate (d=0.8) and enhanced frontal P200 amplitude during correctly identified nontarget trials (d=0.6) in low-baseline 5 Choice-Continuous Performance Test performers and had opposite effects in high performers (d=0.5 and d=0.25, respectively). Tolcapone's effect on frontal P200 amplitude and false alarm rate was correlated (rs=-0.4, P=.05). All neurocognitive effects of tolcapone were independent of rs4680 genotype. Tolcapone enhanced neurocognition and engaged electroencephalogram measures relevant to cognitive processes in specific subgroups of healthy individuals. These findings support an experimental medicine model for identifying procognitive treatments and provide a strong basis for future biomarker-informed procognitive studies in schizophrenia patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  11. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    Science.gov (United States)

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  12. Branding and a child's brain: an fMRI study of neural responses to logos.

    Science.gov (United States)

    Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing.

  13. Neural precursor cells in the ischemic brain - integration, cellular crosstalk and consequences for stroke recovery

    Directory of Open Access Journals (Sweden)

    Dirk M. Hermann

    2014-09-01

    Full Text Available After an ischemic stroke, neural precursor cells (NPCs proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate towards the ischemic lesion where they promote tissue remodelling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to support a full recovery of lost neurological functions. Supported by solid experimental and preclinical data, the transplantation of exogenous NPCs has emerged as a potential tool for stroke treatment. Transplanted NPCs are thought to act mainly via trophic and immune modulatory effects, thereby complementing the restorative responses initially executed by the endogenous NPC population. Recent studies have attempted to elucidate how the therapeutic properties of transplanted NPCs vary depending on the route of transplantation. Systemic NPC delivery leads to potent immune modulatory actions, which prevent secondary neuronal degeneration, reduces glial scar formation, diminishes oxidative stress and stabilizes blood-brain barrier integrity. On the contrary, local stem cell delivery, allows for the accumulation of large numbers of transplanted NPCs in the brain, thus achieving high levels of locally available tissue trophic factors, which may better induce a strong endogenous NPC proliferative response.Herein we describe the diverse capabilities of exogenous (systemically vs locally transplanted NPCs in enhancing the endogenous neurogenic response after stroke, and how the route of transplantation may affect migration, survival, bystander effects and integration of the cellular graft. It is the authors’ claim that understanding these aspects will be of pivotal importance in discerning how transplanted NPCs exert their therapeutic effects in stroke.

  14. Programmable neural processing on a smartdust for brain-computer interfaces.

    Science.gov (United States)

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  15. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.

    Science.gov (United States)

    Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.

  16. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  17. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS treatment planning. In this work, we developed a deep learning convolutional neural network (CNN algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  18. Topographic factor analysis: a Bayesian model for inferring brain networks from neural data.

    Directory of Open Access Journals (Sweden)

    Jeremy R Manning

    Full Text Available The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imaging (fMRI datasets comprise a time series of three-dimensional images, where each voxel in an image (roughly reflects the activity of the brain structure(s-located at the corresponding point in space-at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic factor analysis (TFA, a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain structures activated while the data were collected, as well as the interactions between those structures.

  19. Using Neurogenetics and the Warmth-Gated Ion Channel TRPA1 to Study the Neural Basis of Behavior in Drosophila.

    Science.gov (United States)

    Berni, Jimena; Muldal, Alistair M; Pulver, Stefan R

    2010-01-01

    Here we describe a set of straightforward laboratory exercises that integrate the study of genetics, neuroanatomy, cellular physiology and animal behavior. We use genetic tools in Drosophila for visualizing and remotely activating ensembles of neurons with heat pulses. First, we show how to examine the anatomy of several neuronal populations using genetically encoded green fluorescent protein. Next we demonstrate how to use the warmth gated Drosophila TRPA1 (dTRPA1) cation channel to remotely activate neural circuits in flies. To demonstrate the cellular effects of dTRPA1 activation, we expressed dTRPA1 panneurally and recorded excitatory junctional potentials in muscles in response to warmed (29°C) saline. Finally, we present inexpensive techniques for delivering heat pulses to activate dTRPA1 in the neuronal groups we observed previously while flies are freely behaving. We suggest how to film and quantify resulting behavioral phenotypes with limited resources. Activating all neurons with dTRPA1 caused tetanic paralysis in larvae, while in adults it led to paralysis in males and continuous uncoordinated leg and wing movements in females. Activation of cholinergic neurons produced spasms and writhing in larvae while causing paralysis in adults. When a single class of nociceptive sensory neurons was activated, it caused lateral rolling in larvae, but no discernable effects in adults. Overall, these exercises illustrate principles of modern genetics, neuroanatomy, the ionic basis of neuronal excitability, and quantitative methods in neuroethology. Relatively few research studies have used dTRPA1 to activate neural circuits, so these exercises give students opportunities to test novel hypotheses and make actual contributions to the scientific record.

  20. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line.

    Science.gov (United States)

    Fujiwara, Yuki; Miyazaki, Wataru; Koibuchi, Noriyuki; Katoh, Takahiko

    2018-01-01

    Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA), which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF), an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP), and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.

  1. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line

    Directory of Open Access Journals (Sweden)

    Yuki Fujiwara

    2018-02-01

    Full Text Available Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA, which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF, an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP, and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.

  2. The strength of a remorseful heart: psychological and neural basis of how apology emolliates reactive aggression and promotes forgiveness.

    Science.gov (United States)

    Beyens, Urielle; Yu, Hongbo; Han, Ting; Zhang, Li; Zhou, Xiaolin

    2015-01-01

    Apology from the offender facilitates forgiveness and thus has the power to restore a broken relationship. Here we showed that apology from the offender not only reduces the victim's propensity to react aggressively but also alters the victim's implicit attitude and neural responses toward the offender. We adopted an interpersonal competitive game which consisted of two phases. In the first, "passive" phase, participants were punished by high or low pain stimulation chosen by the opponents when losing a trial. During the break, participants received a note from each of the opponents, one apologizing and the other not. The second, "active" phase, involved a change of roles where participants could punish the two opponents after winning. Experiment 1 included an Implicit Association Test (IAT) in between the reception of notes and the second phase. Experiment 2 recorded participants' brain potentials in the second phase. We found that participants reacted less aggressively toward the apologizing opponent than the non-apologizing opponent in the active phase. Moreover, female, but not male, participants responded faster in the IAT when positive and negative words were associated with the apologizing and the non-apologizing opponents, respectively, suggesting that female participants had enhanced implicit attitude toward the apologizing opponent. Furthermore, the late positive potential (LPP), a component in brain potentials associated with affective/motivational reactions, was larger when viewing the portrait of the apologizing than the non-apologizing opponent when participants subsequently selected low punishment. Additionally, the LPP elicited by the apologizing opponents' portrait was larger in the female than in the male participants. These findings confirm the apology's role in reducing reactive aggression and further reveal that this forgiveness process engages, at least in female, an enhancement of the victim's implicit attitude and a prosocial motivational

  3. The dynamic brain: from spiking neurons to neural masses and cortical fields.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    2008-08-01

    Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the

  4. The flexible brain - On mind and brain, neural darwinism and psychiatry

    NARCIS (Netherlands)

    DenBoer, JA

    A theoretical introduction is given in which several theoretical viewpoints concerning the mind-brain problem are discussed. During the last decade philosophers like Searle, Dennett and the Churchlands have taken a more or less pure materialistic position in explaining mental phenomena.

  5. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  6. Method of image segmentation using a neural network. Application to MR imaging of brain tumors

    International Nuclear Information System (INIS)

    Engler, E.; Gautherie, M.

    1992-01-01

    An original method of numerical images segmentation has been developed. This method is based on pixel clustering using a formal neural network configurated by supervised learning of pre-classified examples. The method has been applied to series of MR images of brain tumors (gliomas) with a view to proceed with a 3D-extraction of the tumor volume. This study is part of a project on cancer thermotherapy including the development of a scan-focused ultrasound system of tumor heating and a 3D-numerical thermal model

  7. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    Science.gov (United States)

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascular-neural network.

    Science.gov (United States)

    Lekic, Tim; Klebe, Damon; Poblete, Roy; Krafft, Paul R; Rolland, William B; Tang, Jiping; Zhang, John H

    2015-01-01

    Neonatal brain hemorrhage (NBH) of prematurity is an unfortunate consequence of preterm birth. Complications result in shunt dependence and long-term structural changes such as posthemorrhagic hydrocephalus, periventricular leukomalacia, gliosis, and neurological dysfunction. Several animal models are available to study this condition, and many basic mechanisms, etiological factors, and outcome consequences, are becoming understood. NBH is an important clinical condition, of which treatment may potentially circumvent shunt complication, and improve functional recovery (cerebral palsy, and cognitive impairments). This review highlights key pathophysiological findings of the neonatal vascular-neural network in the context of molecular mechanisms targeting the posthemorrhagic hydrocephalus affecting this vulnerable infant population.

  9. Neonatal Brain Hemorrhage (NBH) of Prematurity: Translational Mechanisms of the Vascular-Neural Network

    Science.gov (United States)

    Lekic, Tim; Klebe, Damon; Poblete, Roy; Krafft, Paul R.; Rolland, William B.; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal brain hemorrhage (NBH) of prematurity is an unfortunate consequence of preterm birth. Complications result in shunt dependence and long-term structural changes such as post-hemorrhagic hydrocephalus, periventricular leukomalacia, gliosis, and neurological dysfunction. Several animal models are available to study this condition, and many basic mechanisms, etiological factors, and outcome consequences, are becoming understood. NBH is an important clinical condition, of which treatment may potentially circumvent shunt complication, and improve functional recovery (cerebral palsy, and cognitive impairments). This review highlights key pathophysiological findings of the neonatal vascular-neural network in the context of molecular mechanisms targeting the post-hemorrhagic hydrocephalus affecting this vulnerable infant population. PMID:25620100

  10. Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool

    Directory of Open Access Journals (Sweden)

    Ksenija Zega

    2017-11-01

    Full Text Available Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16, which is known to negatively regulate mitogen-activated protein kinases (MAPKs and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16−/− developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16−/− mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16−/− mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.

  11. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Science.gov (United States)

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  12. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity

    Science.gov (United States)

    Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard

    2018-04-01

    Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.

  13. Physics strategies for sparing neural stem cells during whole-brain radiation treatments

    International Nuclear Information System (INIS)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean; Hwang, Andrew; Barani, Igor J.

    2011-01-01

    Purpose: Currently, there are no successful long-term treatments or preventive strategies for radiation-induced cognitive impairments, and only a few possibilities have been suggested. One such approach involves reducing the dose to neural stem cell compartments (within and outside of the hippocampus) during whole-brain radiation treatments for brain metastases. This study investigates the fundamental physics issues associated with the sparing of neural stem cells during photon radiotherapy for brain metastases. Methods: Several factors influence the stem cell dose: intracranial scattering, collimator leakage, beam energy, and total number of beams. The relative importance of these factors is investigated through a set of radiation therapy plans, which are all variations of an initial 6 MV intensity-modulated radiation therapy (IMRT) plan designed to simultaneously deliver a whole-brain dose of 30 Gy and maximally reduce stem cell compartment dose. Additionally, an in-house leaf segmentation algorithm was developed that utilizes jaw motion to minimize the collimator leakage. Results: The plans are all normalized such that 50% of the PTV receives 30 Gy. For the initial 6 MV IMRT plan, 50% of the stem cells receive a dose greater than 6.3 Gy. Calculations indicate that 3.6 Gy of this dose originates from intracranial scattering. The jaw-tracking segmentation algorithm, used in conjunction with direct machine parameter optimization, reduces the 50% stem cell dose to 4.3 and 3.7 Gy for 6 and 10 MV treatment beams, respectively. Conclusions: Intracranial scattering alone is responsible for a large dose contribution to the stem cell compartment. It is, therefore, important to minimize other contributing factors, particularly the collimator leakage, to maximally reduce dose to these critical structures. The use of collimator jaw tracking in conjunction with modern collimators can minimize this leakage.

  14. Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network

    International Nuclear Information System (INIS)

    Jaeger, Marion; Kienle, Alwin

    2011-01-01

    We investigated the performance of a neural network for derivation of the absorption coefficient of the brain from simulated non-invasive time-resolved reflectance measurements on the head. A five-layered geometry was considered assuming that the optical properties (except the absorption coefficient of the brain) and the thickness of all layers were known with an uncertainty. A solution of the layered diffusion equation was used to train the neural network. We determined the absorption coefficient of the brain with an RMS error of <6% from reflectance data at a single distance calculated by diffusion theory. By applying the neural network to reflectance curves obtained from Monte Carlo simulations, similar errors were found. (note)

  15. [Application of wavelet transform-radial basis function neural network in NIRS for determination of rifampicin and isoniazide tablets].

    Science.gov (United States)

    Lu, Jia-hui; Zhang, Yi-bo; Zhang, Zhuo-yong; Meng, Qing-fan; Guo, Wei-liang; Teng, Li-rong

    2008-06-01

    A calibration model (WT-RBFNN) combination of wavelet transform (WT) and radial basis function neural network (RBFNN) was proposed for synchronous and rapid determination of rifampicin and isoniazide in Rifampicin and Isoniazide tablets by near infrared reflectance spectroscopy (NIRS). The approximation coefficients were used for input data in RBFNN. The network parameters including the number of hidden layer neurons and spread constant (SC) were investigated. WT-RBFNN model which compressed the original spectra data, removed the noise and the interference of background, and reduced the randomness, the capabilities of prediction were well optimized. The root mean square errors of prediction (RMSEP) for the determination of rifampicin and isoniazide obtained from the optimum WT-RBFNN model are 0.00639 and 0.00587, and the root mean square errors of cross-calibration (RMSECV) for them are 0.00604 and 0.00457, respectively which are superior to those obtained by the optimum RBFNN and PLS models. Regression coefficient (R) between NIRS predicted values and RP-HPLC values for rifampicin and isoniazide are 0.99522 and 0.99392, respectively and the relative error is lower than 2.300%. It was verified that WT-RBFNN model is a suitable approach to dealing with NIRS. The proposed WT-RBFNN model is convenient, and rapid and with no pollution for the determination of rifampicin and isoniazide tablets.

  16. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    Science.gov (United States)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  17. Neural signatures of third-party punishment: evidence from penetrating traumatic brain injury.

    Science.gov (United States)

    Glass, Leila; Moody, Lara; Grafman, Jordan; Krueger, Frank

    2016-02-01

    The ability to survive within a cooperative society depends on impartial third-party punishment (TPP) of social norm violations. Two cognitive mechanisms have been postulated as necessary for the successful completion of TPP: evaluation of legal responsibility and selection of a suitable punishment given the magnitude of the crime. Converging neuroimaging research suggests two supporting domain-general networks; a mentalizing network for evaluation of legal responsibility and a central-executive network for determination of punishment. A whole-brain voxel-based lesion-symptom mapping approach was used in conjunction with a rank-order TPP task to identify brain regions necessary for TPP in a large sample of patients with penetrating traumatic brain injury. Patients who demonstrated atypical TPP had specific lesions in core regions of the mentalizing (dorsomedial prefrontal cortex [PFC], ventromedial PFC) and central-executive (bilateral dorsolateral PFC, right intraparietal sulcus) networks. Altruism and executive functioning (concept formation skills) were significant predictors of TPP: altruism was uniquely associated with TPP in patients with lesions in right dorsolateral PFC and executive functioning was uniquely associated with TPP in individuals with lesions in left PFC. Our findings contribute to the extant literature to support underlying neural networks associated with TPP, with specific brain-behavior causal relationships confirming recent functional neuroimaging research. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches.

    Science.gov (United States)

    Rueger, Maria Adele; Androutsellis-Theotokis, Andreas

    2013-01-01

    In the 1960s, Joseph Altman reported that the adult mammalian brain is capable of generating new neurons. Today it is understood that some of these neurons are derived from uncommitted cells in the subventricular zone lining the lateral ventricles, and the dentate gyrus of the hippocampus. The first area generates new neuroblasts which migrate to the olfactory bulb, whereas hippocampal neurogenesis seems to play roles in particular types of learning and memory. A part of these uncommitted (immature) cells is able to divide and their progeny can generate all three major cell types of the nervous system: neurons, astrocytes, and oligodendrocytes; these properties define such cells as neural stem cells. Although the roles of these cells are not yet clear, it is accepted that they affect functions including olfaction and learning/memory. Experiments with insults to the central nervous system also show that neural stem cells are quickly mobilized due to injury and in various disorders by proliferating, and migrating to injury sites. This suggests a role of endogenous neural stem cells in disease. New pools of stem cells are being discovered, suggesting an even more important role for these cells. To understand these cells and to coax them to contribute to tissue repair it would be very useful to be able to image them in the living organism. Here we discuss advances in imaging approaches as well as new concepts that emerge from stem cell biology with emphasis on the interface between imaging and stem cells.

  19. The Athlete’s Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Sebastian Ludyga

    2016-01-01

    Full Text Available The “neural efficiency” hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n=14; 55.6 ± 2.8 mL/min/kg and lower (LOW; n=15; 46.4 ± 4.1 mL/min/kg maximal oxygen consumption (VO2MAX. Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F=12.04; p=0.002, as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p≤0.018 and the exercise condition (p≤0.025. The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes.

  20. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  1. An introduction to neural networks surgery, a field of neuromodulation which is based on advances in neural networks science and digitised brain imaging.

    Science.gov (United States)

    Sakas, D E; Panourias, I G; Simpson, B A

    2007-01-01

    Operative Neuromodulation is the field of altering electrically or chemically the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks and produce therapeutic effects. The present article reviews relevant literature on procedures or devices applied either in contact with the cerebral cortex or cranial nerves or in deep sites inside the brain in order to treat various refractory neurological conditions such as: a) chronic pain (facial, somatic, deafferentation, phantom limb), b) movement disorders (Parkinson's disease, dystonia, Tourette syndrome), c) epilepsy, d) psychiatric disease, e) hearing deficits, and f) visual loss. These data indicate that in operative neuromodulation, a new field emerges that is based on neural networks research and on advances in digitised stereometric brain imaging which allow precise localisation of cerebral neural networks and their relay stations; this field can be described as Neural networks surgery because it aims to act extrinsically or intrinsically on neural networks and to alter therapeutically the neural signal transmission with the use of implantable electrical or electronic devices. The authors also review neurotechnology literature relevant to neuroengineering, nanotechnologies, brain computer interfaces, hybrid cultured probes, neuromimetics, neuroinformatics, neurocomputation, and computational neuromodulation; the latter field is dedicated to the study of the biophysical and mathematical characteristics of electrochemical neuromodulation. The article also brings forward particularly interesting lines of research such as the carbon nanofibers electrode arrays for simultaneous electrochemical recording and stimulation, closed-loop systems for responsive neuromodulation, and the intracortical electrodes for restoring hearing or vision. The present review of cerebral neuromodulatory procedures highlights the transition from the

  2. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  3. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Katharine A Dunlop

    2016-02-01

    Full Text Available The term eating disorders (ED encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS. NIBS, including repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related rewards and punishment cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and their underlying behavioral and neurobiological targets associated with ED as potential candidates for NIBS and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  4. Emergence of Convolutional Neural Network in Future Medicine: Why and How. A Review on Brain Tumor Segmentation

    Science.gov (United States)

    Alizadeh Savareh, Behrouz; Emami, Hassan; Hajiabadi, Mohamadreza; Ghafoori, Mahyar; Majid Azimi, Seyed

    2018-03-01

    Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea emerging.

  5. Involvement of Atm and Trp53 in neural cell loss due to Terf2 inactivation during mouse brain development.

    Science.gov (United States)

    Kim, Jusik; Choi, Inseo; Lee, Youngsoo

    2017-11-01

    Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.

  6. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    OpenAIRE

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  7. Novel theory of the human brain: information-commutation basis of architecture and principles of operation

    Directory of Open Access Journals (Sweden)

    Bryukhovetskiy AS

    2015-02-01

    Full Text Available Andrey S Bryukhovetskiy Center for Biomedical Technologies, Federal Research and Clinical Center for Specialized Types of Medical Assistance and Medical Technologies of the Federal Medical Biological Agency, NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia Abstract: Based on the methodology of the informational approach and research of the genome, proteome, and complete transcriptome profiles of different cells in the nervous tissue of the human brain, the author proposes a new theory of information-commutation organization and architecture of the human brain which is an alternative to the conventional systemic connective morphofunctional paradigm of the brain framework. Informational principles of brain operation are defined: the modular principle, holographic principle, principle of systematicity of vertical commutative connection and complexity of horizontal commutative connection, regulatory principle, relay principle, modulation principle, “illumination” principle, principle of personalized memory and intellect, and principle of low energy consumption. The author demonstrates that the cortex functions only as a switchboard and router of information, while information is processed outside the nervous tissue of the brain in the intermeningeal space. The main structural element of information-commutation in the brain is not the neuron, but information-commutation modules that are subdivided into receiver modules, transmitter modules, and subscriber modules, forming a vertical architecture of nervous tissue in the brain as information lines and information channels, and a horizontal architecture as central, intermediate, and peripheral information-commutation platforms. Information in information-commutation modules is transferred by means of the carriers that are characteristic to the specific information level from inductome to genome, transcriptome, proteome, metabolome, secretome, and magnetome

  8. Neural basis of phonological awareness in beginning readers with familial risk of dyslexia-Results from shallow orthography.

    Science.gov (United States)

    Dębska, Agnieszka; Łuniewska, Magdalena; Chyl, Katarzyna; Banaszkiewicz, Anna; Żelechowska, Agata; Wypych, Marek; Marchewka, Artur; Pugh, Kenneth R; Jednoróg, Katarzyna

    2016-05-15

    Phonological processing ability is a key factor in reading acquisition, predicting its later success or causing reading problems when it is weakened. Our aim here was to establish the neural correlates of auditory word rhyming (a standard phonological measure) in 102 young children with (FHD+) and without familial history of dyslexia (FHD-) in a shallow orthography (i.e. Polish). Secondly, in order to gain a deeper understanding on how schooling shapes brain activity to phonological awareness, a comparison was made of children who had had formal literacy instruction for several months (in first grade) and those who had not yet had any formal instruction in literacy (in kindergarten). FHD+ children compared to FHD- children in the first grade scored lower in an early print task and showed longer reaction times in the in-scanner rhyme task. No behavioral differences between FHD+ and FHD- were found in the kindergarten group. On the neuronal level, overall familial risk was associated with reduced activation in the bilateral temporal, tempo-parietal and inferior temporal-occipital regions, as well as the bilateral inferior and middle frontal gyri. Subcortically, hypoactivation was found in the bilateral thalami, caudate, and right putamen in FHD+. A main effect of the children's grade was present only in the left inferior frontal gyrus, where reduced activation for rhyming was shown in first-graders. Several regions in the ventral occipital cortex, including the fusiform gyrus, and in the right middle frontal and postcentral gyri, displayed an interaction between familial risk and grade. The present results show strong influence of familial risk that may actually increase with formal literacy instruction. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Spatio-temporal neural stem cell behavior that leads to both perfect and imperfect structural brain regeneration in adult newts.

    Science.gov (United States)

    Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu

    2018-06-14

    Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.

  10. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    Science.gov (United States)

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  11. Confused or not Confused?: Disentangling Brain Activity from EEG Data Using Bidirectional LSTM Recurrent Neural Networks.

    Science.gov (United States)

    Ni, Zhaoheng; Yuksel, Ahmet Cem; Ni, Xiuyan; Mandel, Michael I; Xie, Lei

    2017-08-01

    Brain fog, also known as confusion, is one of the main reasons for low performance in the learning process or any kind of daily task that involves and requires thinking. Detecting confusion in a human's mind in real time is a challenging and important task that can be applied to online education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM Recurrent Neural Networks to classify students' confusion in watching online course videos from EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art performance compared with other machine learning approaches, and shows strong robustness as evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful tool to model and understand brain activity.

  12. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    Science.gov (United States)

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  14. Acute stress evokes sexually dimorphic, stressor-specific patterns of neural activation across multiple limbic brain regions in adult rats.

    Science.gov (United States)

    Sood, Ankit; Chaudhari, Karina; Vaidya, Vidita A

    2018-03-01

    Stress enhances the risk for psychiatric disorders such as anxiety and depression. Stress responses vary across sex and may underlie the heightened vulnerability to psychopathology in females. Here, we examined the influence of acute immobilization stress (AIS) and a two-day short-term forced swim stress (FS) on neural activation in multiple cortical and subcortical brain regions, implicated as targets of stress and in the regulation of neuroendocrine stress responses, in male and female rats using Fos as a neural activity marker. AIS evoked a sex-dependent pattern of neural activation within the cingulate and infralimbic subdivisions of the medial prefrontal cortex (mPFC), lateral septum (LS), habenula, and hippocampal subfields. The degree of neural activation in the mPFC, LS, and habenula was higher in males. Female rats exhibited reduced Fos positive cell numbers in the dentate gyrus hippocampal subfield, an effect not observed in males. We addressed whether the sexually dimorphic neural activation pattern noted following AIS was also observed with the short-term stress of FS. In the paraventricular nucleus of the hypothalamus and the amygdala, FS similar to AIS resulted in robust increases in neural activation in both sexes. The pattern of neural activation evoked by FS was distinct across sexes, with a heightened neural activation noted in the prelimbic mPFC subdivision and hippocampal subfields in females and differed from the pattern noted with AIS. This indicates that the sex differences in neural activation patterns observed within stress-responsive brain regions are dependent on the nature of stressor experience.

  15. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  16. Neural tension technique is no different from random passive movements in reducing spasticity in patients with traumatic brain injury

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Nielsen, Dorthe; Holm, Karl

    2012-01-01

    Purpose: Neural tension technique (NTT) is a therapy believed to reduce spasticity and to increase range of motion (ROM). This study compared the ability of NTT and random passive movements (RPMs) to reduce spasticity in the knee flexors in 10 spastic patients with brain injury. Methods: An RCT...

  17. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity.

    Science.gov (United States)

    Résibois, Maxime; Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-08-01

    According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. © The Author (2017). Published by Oxford University Press.

  18. Long-term neural recordings using MEMS based moveable microelectrodes in the brain

    Directory of Open Access Journals (Sweden)

    Nathan Jackson

    2010-06-01

    Full Text Available One of the critical requirements of the emerging class of neural prosthetic devices is to maintain good quality neural recordings over long time periods. We report here a novel (Micro-ElectroMechanical Systems based technology that can move microelectrodes in the event of deterioration in neural signal to sample a new set of neurons. Microscale electro-thermal actuators are used to controllably move microelectrodes post-implantation in steps of approximately 9 µm. In this study, a total of 12 moveable microelectrode chips were individually implanted in adult rats. Two of the 12 moveable microelectrode chips were not moved over a period of 3 weeks and were treated as control experiments. During the first three weeks of implantation, moving the microelectrodes led to an improvement in the average SNR from 14.61 ± 5.21 dB before movement to 18.13 ± 4.99 dB after movement across all microelectrodes and all days. However, the average RMS values of noise amplitudes were similar at 2.98 ± 1.22 µV and 3.01 ± 1.16 µV before and after microelectrode movement. Beyond three weeks, the primary observed failure mode was biological rejection of the PMMA (dental cement based skull mount resulting in the device loosening and eventually falling from the skull. Additionally, the average SNR for functioning devices beyond three weeks was 11.88 ± 2.02 dB before microelectrode movement and was significantly different (p<0.01 from the average SNR of 13.34 ± 0.919 dB after movement. The results of this study demonstrate that MEMS based technologies can move microelectrodes in rodent brains in long-term experiments resulting in improvements in signal quality. Further improvements in packaging and surgical techniques will potentially enable movable microelectrodes to record cortical neuronal activity in chronic experiments.

  19. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature.

    Science.gov (United States)

    Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman

    2016-05-01

    The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    Science.gov (United States)

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  1. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    Science.gov (United States)

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  2. Co-speech gestures influence neural activity in brain regions associated with processing semantic information.

    Science.gov (United States)

    Dick, Anthony Steven; Goldin-Meadow, Susan; Hasson, Uri; Skipper, Jeremy I; Small, Steven L

    2009-11-01

    Everyday communication is accompanied by visual information from several sources, including co-speech gestures, which provide semantic information listeners use to help disambiguate the speaker's message. Using fMRI, we examined how gestures influence neural activity in brain regions associated with processing semantic information. The BOLD response was recorded while participants listened to stories under three audiovisual conditions and one auditory-only (speech alone) condition. In the first audiovisual condition, the storyteller produced gestures that naturally accompany speech. In the second, the storyteller made semantically unrelated hand movements. In the third, the storyteller kept her hands still. In addition to inferior parietal and posterior superior and middle temporal regions, bilateral posterior superior temporal sulcus and left anterior inferior frontal gyrus responded more strongly to speech when it was further accompanied by gesture, regardless of the semantic relation to speech. However, the right inferior frontal gyrus was sensitive to the semantic import of the hand movements, demonstrating more activity when hand movements were semantically unrelated to the accompanying speech. These findings show that perceiving hand movements during speech modulates the distributed pattern of neural activation involved in both biological motion perception and discourse comprehension, suggesting listeners attempt to find meaning, not only in the words speakers produce, but also in the hand movements that accompany speech.

  3. Neural correlates of naturalistic social cognition: brain-behavior relationships in healthy adults.

    Science.gov (United States)

    Deuse, L; Rademacher, L M; Winkler, L; Schultz, R T; Gründer, G; Lammertz, S E

    2016-11-01

    Being able to infer the thoughts, feelings and intentions of those around us is indispensable in order to function in a social world. Despite growing interest in social cognition and its neural underpinnings, the factors that contribute to successful mental state attribution remain unclear. Current knowledge is limited because the most widely used tasks suffer from two main constraints: (i) They fail to capture individual variability due to ceiling effects and (ii) they use highly simplistic, often artificial stimuli inapt to mirror real-world socio-cognitive demands. In the present study, we address these problems by employing complex depictions of naturalistic social interactions that vary in both valence (positive vs negative) and ambiguity (high vs low). Thirty-eight healthy participants (20 female) made mental state judgments while brain responses were obtained using functional magnetic resonance imaging (fMRI). Accuracy varied based on valence and ambiguity conditions and women were more accurate than men with highly ambiguous social stimuli. Activity of the orbitofrontal cortex predicted performance in the high ambiguity condition. The results shed light on subtle differences in mentalizing abilities and associated neural activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Classification of brain MRI with big data and deep 3D convolutional neural networks

    Science.gov (United States)

    Wegmayr, Viktor; Aitharaju, Sai; Buhmann, Joachim

    2018-02-01

    Our ever-aging society faces the growing problem of neurodegenerative diseases, in particular dementia. Magnetic Resonance Imaging provides a unique tool for non-invasive investigation of these brain diseases. However, it is extremely difficult for neurologists to identify complex disease patterns from large amounts of three-dimensional images. In contrast, machine learning excels at automatic pattern recognition from large amounts of data. In particular, deep learning has achieved impressive results in image classification. Unfortunately, its application to medical image classification remains difficult. We consider two reasons for this difficulty: First, volumetric medical image data is considerably scarcer than natural images. Second, the complexity of 3D medical images is much higher compared to common 2D images. To address the problem of small data set size, we assemble the largest dataset ever used for training a deep 3D convolutional neural network to classify brain images as healthy (HC), mild cognitive impairment (MCI) or Alzheimers disease (AD). We use more than 20.000 images from subjects of these three classes, which is almost 9x the size of the previously largest data set. The problem of high dimensionality is addressed by using a deep 3D convolutional neural network, which is state-of-the-art in large-scale image classification. We exploit its ability to process the images directly, only with standard preprocessing, but without the need for elaborate feature engineering. Compared to other work, our workflow is considerably simpler, which increases clinical applicability. Accuracy is measured on the ADNI+AIBL data sets, and the independent CADDementia benchmark.

  5. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  6. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    Science.gov (United States)

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  7. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    Science.gov (United States)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair.

    Science.gov (United States)

    Skop, Nolan B; Calderon, Frances; Cho, Cheul H; Gandhi, Chirag D; Levison, Steven W

    2016-10-01

    Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film. Fetal rat neural precursors plated onto this multifunctional film proliferated and remained multipotent for at least 3 days without providing soluble FGF-2. Moreover, they remained less mature and more highly proliferative than cells maintained on fibronectin-coated substrates in culture medium supplemented with soluble FGF-2. To create a vehicle for cell transplantation, a 3% chitosan solution was electrosprayed into a coagulation bath to generate microspheres (range 30-100 µm, mean 64 µm) that were subsequently modified. Radial glial cells seeded onto these multifunctional microspheres proliferated for at least 7 days in culture and the microspheres containing cells were small enough to be injected, using 23 Gauge Hamilton syringes, into the brains of adult rats that had previously sustained cortical contusion injuries. When analysed 3 days later, the transplanted RGCs were positive for the stem cell/progenitor marker Nestin. These results demonstrate that this multifunctional scaffold can be used as a cellular and growth factor delivery vehicle for the use in developing cell transplantation therapies for traumatic brain injuries. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Evidence for a Heritable Brain Basis to Deviance-Promoting Deficits in Self-Control.

    Science.gov (United States)

    Yancey, James R; Venables, Noah C; Hicks, Brian M; Patrick, Christopher J

    2013-01-01

    Classic criminological theories emphasize the role of impaired self-control in behavioral deviancy. Reduced amplitude of the P300 brain response is reliably observed in individuals with antisocial and substance-related problems, suggesting it may serve as a neurophysiological indicator of deficiencies in self-control that confer liability to deviancy. The current study evaluated the role of self-control capacity - operationalized by scores on a scale measure of trait disinhibition - in mediating the relationship between P300 brain response and behavioral deviancy in a sample of adult twins ( N =419) assessed for symptoms of antisocial/addictive disorders and P300 brain response. As predicted, greater disorder symptoms and higher trait disinhibition scores each predicted smaller P300 amplitude, and trait disinhibition mediated observed relations between antisocial/addictive disorders and P300 response. Further, twin modeling analyses revealed that trait disinhibition scores and disorder symptoms reflected a common genetic liability, and this genetic liability largely accounted for the observed phenotypic relationship between antisocial-addictive problems and P300 brain response. These results provide further evidence that heritable weaknesses in self-control capacity confer liability to antisocial/addictive outcomes and that P300 brain response indexes this dispositional liability.

  10. Quantum walks in brain microtubules--a biomolecular basis for quantum cognition?

    Science.gov (United States)

    Hameroff, Stuart

    2014-01-01

    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as 'quantum walks' akin to Feynman's path integral in a lattice (e.g. the 'Feynman quantum chessboard'). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical to 'topological qubits' in brain neuronal microtubules, as described in the Penrose-Hameroff 'Orch OR' theory of consciousness. Copyright © 2013 Cognitive Science Society, Inc.

  11. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    , the correlation of ECoG activity to kinematic parameters of arm movement is context-dependent, an important constraint to consider in future development of BMI systems. The third chapter delves into a fundamental organizational principle of the primate motor system---cortical control of contralateral limb movements. However, ipsilateral motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in ipsilateral primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb position. We also recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain-machine interface.

  12. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  13. Deep 3D convolution neural network for CT brain hemorrhage classification

    Science.gov (United States)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  14. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  15. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  16. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    Directory of Open Access Journals (Sweden)

    Giorgia Martello

    2013-08-01

    Full Text Available Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  17. The Cognitive Basis for Sentence Planning Difficulties in Discourse after Traumatic Brain Injury

    Science.gov (United States)

    Peach, Richard K.

    2013-01-01

    Purpose: Analyses of language production of individuals with traumatic brain injury (TBI) place increasing emphasis on microlinguistic (i.e., within-sentence) patterns. It is unknown whether the observed problems involve implementation of well-formed sentence frames or represent a fundamental linguistic disturbance in computing sentence structure.…

  18. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    OpenAIRE

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in human cerebrospinal fluid (CSF) are used as a surrogate for human brainECF concentrations. Due to qualitative and quantitative differences in processes that govern the pharmacokinetics (PK) of drugs in...

  19. Augmenting intracortical brain-machine interface with neurally driven error detectors

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  20. Contrast media and the brain - the basis of computed tomography and magnetic resonance imaging enhancement: a review

    International Nuclear Information System (INIS)

    Sage, M.R.; Wilson, A.J.; Scroop, R.

    2000-01-01

    The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely the blood-brain interface (BBB), the CSF-brain interface, and the blood-CSF interface. When either water-soluble iodinated contrast media (CM) or water-soluble paramagnetic CM are injected intravenously, they are rapidly brought into contact with both the BBB and the blood-CSF interface. It is the behaviour of the water-soluble CM at these two interfaces that determines the normal and abnormal enhancement patterns demonstrated by either CT or MRI. Unlike lipophilic solutes, current iodinated and MRI contrast media all have high affinities for plasma water, low affinities for plasma proteins and, in particular, extremely low partition coefficients. Therefore they do not penetrate the normal BBB. On the other hand, radiopharmaceuticals used in positron emission tomography (PET) and single photon emission computed tomography (SPECT) to demonstrate regional cerebral blood flow are highly lipophilic and readily cross the intact BBB completely during the first pass through the cerebral vasculature. It is the inability of the current iodinated and MRI contrast media to cross the normal intact BBB that is the basis of their use in CT and MRI studies of the brain. Copyright (1999) Blackwell Science Pty Ltd

  1. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in

  2. Brain-computer interface on the basis of EEG system Encephalan

    Science.gov (United States)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  3. Brain Immune Interactions as the Basis of Gulf War Illness: Gulf War Illness Consortium (GWIC)

    Science.gov (United States)

    2016-10-01

    neurotoxicology and neuroinflammation, damage to white matter and axonal transport, immunology , and immunogenetics. This team has designed a body of...particular consortium topic areas. The Working Groups are described in Table 3. Since subject recruitment has begun, considerable time has been spent...Committee_Documents.asp 12. Rivest, S. (2009). Regulation of innate immune responses in the brain. Nature Reviews. Immunology , 9(6), 429-439. doi

  4. Brain-Immune Interactions as the Basis of Gulf War Illness: Consortium Development

    Science.gov (United States)

    2012-12-01

    Paul Letourneau’s career. Dev. Neurobio . 71: 790-794. Janet Coller * Somogyi AA, Coller JK (2012) 15 Drugs against acute and chronic pain In...Wheeler, V.C., Humbert, S., Schiffmann, R. and Durr, A. (2012). Early alterations of brain cellular energy homeostasis in Huntington disease models. J...Environmental Protection and Massachusetts Department of Public Health, January 11, 2012, available at http://www.mass.gov/dep/ energy /wind/panel.htm

  5. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A

    2018-02-01

    OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation

  6. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  7. The malleable brain: plasticity of neural circuits and behavior - a review from students to students.

    Science.gov (United States)

    Schaefer, Natascha; Rotermund, Carola; Blumrich, Eva-Maria; Lourenco, Mychael V; Joshi, Pooja; Hegemann, Regina U; Jamwal, Sumit; Ali, Nilufar; García Romero, Ezra Michelet; Sharma, Sorabh; Ghosh, Shampa; Sinha, Jitendra K; Loke, Hannah; Jain, Vishal; Lepeta, Katarzyna; Salamian, Ahmad; Sharma, Mahima; Golpich, Mojtaba; Nawrotek, Katarzyna; Paidi, Ramesh K; Shahidzadeh, Sheila M; Piermartiri, Tetsade; Amini, Elham; Pastor, Veronica; Wilson, Yvette; Adeniyi, Philip A; Datusalia, Ashok K; Vafadari, Benham; Saini, Vedangana; Suárez-Pozos, Edna; Kushwah, Neetu; Fontanet, Paula; Turner, Anthony J

    2017-06-20

    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on doi: 10.1111/jnc.14102. © 2017 International Society for Neurochemistry.

  8. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.

  9. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity.

    Science.gov (United States)

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A M

    2015-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  10. Neural processing of calories in brain reward areas can be modulated by reward sensitivity

    Directory of Open Access Journals (Sweden)

    Inge eVan Rijn

    2016-01-01

    Full Text Available A food’s reward value is dependent on its caloric content. Furthermore, a food’s acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity, however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015, in which participants (n=30 tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n=18 (Griffioen-Roose et al., 2013. First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS questionnaire.When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate, right amygdala and anterior cingulate cortex (bilaterally correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per

  11. The alexithymic brain: the neural pathways linking alexithymia to physical disorders

    Directory of Open Access Journals (Sweden)

    Kano Michiko

    2013-01-01

    Full Text Available Abstract Alexithymia is a personality trait characterized by difficulties in identifying and describing feelings and is associated with psychiatric and psychosomatic disorders. The mechanisms underlying the link between emotional dysregulation and psychosomatic disorders are unclear. Recent progress in neuroimaging has provided important information regarding emotional experience in alexithymia. We have conducted three brain imaging studies on alexithymia, which we describe herein. This article considers the role of emotion in the development of physical symptoms and discusses a possible pathway that we have identified in our neuroimaging studies linking alexithymia with psychosomatic disorders. In terms of socio-affective processing, alexithymics demonstrate lower reactivity in brain regions associated with emotion. Many studies have reported reduced activation in limbic areas (e.g., cingulate cortex, anterior insula, amygdala and the prefrontal cortex when alexithymics attempt to feel other people’s feelings or retrieve their own emotional episodes, compared to nonalexithymics. With respect to primitive emotional reactions such as the response to pain, alexithymics show amplified activity in areas considered to be involved in physical sensation. In addition to greater hormonal arousal responses in alexithymics during visceral pain, increased activity has been reported in the insula, anterior cingulate cortex, and midbrain. Moreover, in complex social situations, alexithymics may not be able to use feelings to guide their behavior appropriately. The Iowa gambling task (IGT was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice. The

  12. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.

    Science.gov (United States)

    Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe

    2018-04-01

    Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    Science.gov (United States)

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  14. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  15. Hemispheric asymmetry of the brain as a psycho-physiological basis of individual and typological features of the formation of a sense of humour.

    OpenAIRE

    Shportun, O. N.

    2016-01-01

    The article describes the psycho-physiological peculiarities of hemispheric asymmetry of the brain as the basis of individual and typological features of the formation of a sense of humour. The analysis of the impact of the functional brain hemispheric asymmetry on emotional, intellectual and physiological features of development of sense of humour in ontogeny is conducted. Analysis of studies of inter-hemispheric asymmetry of the brain makes it possible to ascertain the impact of the functio...

  16. The Burden of Binge and Heavy Drinking on the Brain: Effects on Adolescent and Young Adult Neural Structure and Function

    Directory of Open Access Journals (Sweden)

    Anita Cservenka

    2017-06-01

    Full Text Available Introduction: Adolescence and young adulthood are periods of continued biological and psychosocial maturation. Thus, there may be deleterious effects of consuming large quantities of alcohol on neural development and associated cognition during this time. The purpose of this mini review is to highlight neuroimaging research that has specifically examined the effects of binge and heavy drinking on adolescent and young adult brain structure and function.Methods: We review cross-sectional and longitudinal studies of young binge and heavy drinkers that have examined brain structure (e.g., gray and white matter volume, cortical thickness, white matter microstructure and investigated brain response using functional magnetic resonance imaging (fMRI.Results: Binge and heavy-drinking adolescents and young adults have systematically thinner and lower volume in prefrontal cortex and cerebellar regions, and attenuated white matter development. They also show elevated brain activity in fronto-parietal regions during working memory, verbal learning, and inhibitory control tasks. In response to alcohol cues, relative to controls or light-drinking individuals, binge and heavy drinkers show increased neural response mainly in mesocorticolimbic regions, including the striatum, anterior cingulate cortex (ACC, hippocampus, and amygdala. Mixed findings are present in risky decision-making tasks, which could be due to large variation in task design and analysis.Conclusions: These findings suggest altered neural structure and activity in binge and heavy-drinking youth may be related to the neurotoxic effects of consuming alcohol in large quantities during a highly plastic neurodevelopmental period, which could result in neural reorganization, and increased risk for developing an alcohol use disorder (AUD.

  17. Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Dhivyaa Alagappan

    2009-04-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  18. Feasibility and resolution limits of opto-magnetic imaging of neural network activity in brain slices using color centers in diamond

    DEFF Research Database (Denmark)

    Karadas, Mürsel; Wojciechowski, Adam M.; Huck, Alexander

    2018-01-01

    We suggest a novel approach for wide-field imaging of the neural network dynamics of brain slices that uses highly sensitivity magnetometry based on nitrogen-vacancy (NV) centers in diamond. Invitro recordings in brain slices is a proven method for the characterization of electrical neural activi...... cell. Our results suggest that imaging of slice activity will be possible with the upcoming generation of NV magnetic field sensors, while single-shot imaging of planar cell activity remains challenging....

  19. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  20. When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations.

    Directory of Open Access Journals (Sweden)

    Bruno Rütsche

    Full Text Available The problem size effect is a well-established finding in arithmetic problem solving and is characterized by worse performance in problems with larger compared to smaller operand size. Solving small and large arithmetic problems has also been shown to involve different cognitive processes and distinct electroencephalography (EEG oscillations over the left posterior parietal cortex (LPPC. In this study, we aimed to provide further evidence for these dissociations by using transcranial direct current stimulation (tDCS. Participants underwent anodal (30min, 1.5 mA, LPPC and sham tDCS. After the stimulation, we recorded their neural activity using EEG while the participants solved small and large arithmetic problems. We found that the tDCS effects on performance and oscillatory activity critically depended on the problem size. While anodal tDCS improved response latencies in large arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the lower-alpha desynchronization in large problems increased, whereas the theta synchronization in small problems decreased. These findings reveal that the LPPC is differentially involved in solving small and large arithmetic problems and demonstrate that the effects of brain stimulation strikingly differ depending on the involved neuro-cognitive processes.

  1. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Development of modularity in the neural activity of children's brains

    International Nuclear Information System (INIS)

    Chen, Man; Deem, Michael W

    2015-01-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease. (paper)

  3. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  4. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  5. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain.

    Science.gov (United States)

    Kippin, Tod E; Cain, Sean W; Masum, Zahra; Ralph, Martin R

    2004-03-17

    Many of the effects of prenatal stress on the endocrine function, brain morphology, and behavior in mammals can be reversed by brief sessions of postnatal separation and handling. We have tested the hypothesis that the effects of both the prenatal and postnatal experiences are mediated by negative and positive regulation of neural stem cell (NSC) number during critical stages in neurodevelopment. We used the in vitro clonal neurosphere assay to quantify NSCs in hamsters that had experienced prenatal stress (maternal restraint stress for 2 hr per day, for the last 7 d of gestation), postnatal handling (maternal-offspring separation for 15 min per day during postnatal days 1-21), orboth. Prenatal stress reduced the number of NSCs derived from the subependyma of the lateral ventricle. The effect was already present at postnatal day 1 and persisted into adulthood (at least 14 months of age). Similarly, prenatal stress reduced in vivo proliferation in the adult subependyma of the lateral ventricle. Conversely, postnatal handling increased NSC number and reversed the effect of prenatal stress. The effects of prenatal stress on NSCs and proliferation and the effect of postnatal handling on NSCs did not differ between male and females. The findings demonstrate that environmental factors can produce changes in NSC number that are present at birth and endure into late adulthood. These changes may underlie some of the behavioral effects produced by prenatal stress and postnatal handling.

  7. Cerebral microbleed detection in traumatic brain injury patients using 3D convolutional neural networks

    Science.gov (United States)

    Standvoss, K.; Crijns, T.; Goerke, L.; Janssen, D.; Kern, S.; van Niedek, T.; van Vugt, J.; Alfonso Burgos, N.; Gerritse, E. J.; Mol, J.; van de Vooren, D.; Ghafoorian, M.; van den Heuvel, T. L. A.; Manniesing, R.

    2018-02-01

    The number and location of cerebral microbleeds (CMBs) in patients with traumatic brain injury (TBI) is important to determine the severity of trauma and may hold prognostic value for patient outcome. However, manual assessment is subjective and time-consuming due to the resemblance of CMBs to blood vessels, the possible presence of imaging artifacts, and the typical heterogeneity of trauma imaging data. In this work, we present a computer aided detection system based on 3D convolutional neural networks for detecting CMBs in 3D susceptibility weighted images. Network architectures with varying depth were evaluated. Data augmentation techniques were employed to improve the networks' generalization ability and selective sampling was implemented to handle class imbalance. The predictions of the models were clustered using a connected component analysis. The system was trained on ten annotated scans and evaluated on an independent test set of eight scans. Despite this limited data set, the system reached a sensitivity of 0.87 at 16.75 false positives per scan (2.5 false positives per CMB), outperforming related work on CMB detection in TBI patients.

  8. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The neural basis of non-verbal communication-enhanced processing of perceived give-me gestures in 9-month-old girls.

    Science.gov (United States)

    Bakker, Marta; Kaduk, Katharina; Elsner, Claudia; Juvrud, Joshua; Gustaf Gredebäck

    2015-01-01

    This study investigated the neural basis of non-verbal communication. Event-related potentials were recorded while 29 nine-month-old infants were presented with a give-me gesture (experimental condition) and the same hand shape but rotated 90°, resulting in a non-communicative hand configuration (control condition). We found different responses in amplitude between the two conditions, captured in the P400 ERP component. Moreover, the size of this effect was modulated by participants' sex, with girls generally demonstrating a larger relative difference between the two conditions than boys.

  10. Brain substrates of implicit and explicit memory: the importance of concurrently acquired neural signals of both memory types.

    Science.gov (United States)

    Voss, Joel L; Paller, Ken A

    2008-11-01

    A comprehensive understanding of human memory requires cognitive and neural descriptions of memory processes along with a conception of how memory processing drives behavioral responses and subjective experiences. One serious challenge to this endeavor is that an individual memory process is typically operative within a mix of other contemporaneous memory processes. This challenge is particularly disquieting in the context of implicit memory, which, unlike explicit memory, transpires without the subject necessarily being aware of memory retrieval. Neural correlates of implicit memory and neural correlates of explicit memory are often investigated in different experiments using very different memory tests and procedures. This strategy poses difficulties for elucidating the interactions between the two types of memory process that may result in explicit remembering, and for determining the extent to which certain neural processing events uniquely contribute to only one type of memory. We review recent studies that have succeeded in separately assessing neural correlates of both implicit memory and explicit memory within the same paradigm using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI), with an emphasis on studies from our laboratory. The strategies we describe provide a methodological framework for achieving valid assessments of memory processing, and the findings support an emerging conceptualization of the distinct neurocognitive events responsible for implicit and explicit memory.

  11. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    Science.gov (United States)

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  12. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks.

    Science.gov (United States)

    Dawson, Neil; Xiao, Xiaolin; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-02-01

    Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.

  13. Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science.

    Science.gov (United States)

    Bryck, Richard L; Fisher, Philip A

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this article, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  14. The brain as a "hyper-network": the key role of neural networks as main producers of the integrated brain actions especially via the "broadcasted" neuroconnectomics.

    Science.gov (United States)

    Agnati, Luigi F; Marcoli, Manuela; Maura, Guido; Woods, Amina; Guidolin, Diego

    2018-06-01

    Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the "core components" of the brain hyper-network that has as special "nodes" the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.

  15. A new method for brain tumor detection using the Bhattacharyya similarity coefficient, color conversions and neural network

    Directory of Open Access Journals (Sweden)

    Bahman Mansori

    2015-10-01

    Full Text Available Background: Magnetic resonance imaging (MRI is widely applied for examination and diagnosis of brain tumors based on its advantages of high resolution in detecting the soft tissues and especially of its harmless radiation damages to human bodies. The goal of the processing of images is automatic segmentation of brain edema and tumors, in different dimensions of the magnetic resonance images. Methods: The proposed method is based on the unsupervised method which discovers the tumor region, if there is any, by analyzing the similarities between two hemispheres and computes the image size of the goal function based on Bhattacharyya coefficient which is used in the next stage to detect the tumor region or some part of it. In this stage, for reducing the color variation, the gray brain image is segmented, then it is turned to gray again. The self-organizing map (SOM neural network is used the segmented brain image is colored and finally the tumor is detected by matching the detected region and the colored image. This method is proposed to analyze MRI images for discovering brain tumors, and done in Bu Ali Sina University, Hamedan, Iran, in 2014. Results: The results for 30 randomly selected images from data bank of MRI center in Hamedan was compared with manually segmentation of experts. The results showed that, our proposed method had the accuracy of more than 94% at Jaccard similarity index (JSI, 97% at Dice similarity score (DSS, and 98% and 99% at two measures of specificity and sensitivity. Conclusion: The experimental results showed that it was satisfactory and can be used in automatic separation of tumor from normal brain tissues and therefore it can be used in practical applications. The results showed that the use of SOM neural network to classify useful magnetic resonance imaging of the brain and demonstrated a good performance.

  16. The neural basis of the bystander effect : The influence of group size on neural activity when witnessing an emergency

    NARCIS (Netherlands)

    Hortensius, R.; de Gelder, B.

    2014-01-01

    Naturalistic observation and experimental studies in humans and other primates show that observing an individual in need automatically triggers helping behavior. The aim of the present study is to clarify the neurofunctional basis of social influences on individual helping behavior. We investigate

  17. What the success of brain imaging implies about the neural code.

    Science.gov (United States)

    Guest, Olivia; Love, Bradley C

    2017-01-19

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.

  18. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    Science.gov (United States)

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  19. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.