WorldWideScience

Sample records for brain microvascular endothelial

  1. Polylactic Acid Nanoparticles Targeted to Brain Microvascular Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Huafang; HU Yu; SUN Wangqiang; XIE Changsheng

    2005-01-01

    In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular endothelial cells (BMECs) targeting was examined by in vivo experiments and fluorescence microscopy. The results showed that PLA nanoparticles are less toxic than PACA nanoparticles but their BMECs targeting is similar to PACA nanoparticles. The experiments suggest that drugs can be loaded onto the particles and become more stable through adsorption on the surface of PLA nanoparticles with high surface activity. The surface of PLA nanoparticles was obviously modified and the hydrophilicity was increased as well in the presence of non-ionic surfactants on PLA nanoparticles. As a targeting moiety, polysobate 80 (T-80) can facilitate BMECs targeting of PLA nanoparticles.

  2. Shear Stress Inhibits Apoptosis of Ischemic Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiafeng Shen

    2013-01-01

    Full Text Available As a therapeutic strategy for ischemic stroke, to restore or increase cerebral blood flow (CBF is the most fundamental option. Laminar shear stress (LS, as an important force generated by CBF, mainly acts on brain microvascular endothelial cells (BMECs. In order to study whether LS was a protective factor in stroke, we investigated LS-intervented ischemic apoptosis of rat BMECs (rBMECs through PE Annexin V/7-AAD, JC-1 and Hoechst 33258 staining to observe the membranous, mitochondrial and nuclear dysfunction. Real-time PCR and western blot were also used to test the gene and protein expressions of Tie-2, Bcl-2 and Akt, which were respectively related to maintain membranous, mitochondrial and nuclear norm. The results showed that LS could be a helpful stimulus for ischemic rBMECs survival. Simultaneously, membranous, mitochondrial and nuclear regulation played an important role in this process.

  3. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    OpenAIRE

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment.

  4. Involvement of Focal Adhesion Kinase in Escherichia coli Invasion of Human Brain Microvascular Endothelial Cells

    OpenAIRE

    Reddy, Marpadga A; Wass, Carol A.; Kim, Kwang Sik; Schlaepfer, David D.; Prasadarao, Nemani V.

    2000-01-01

    Escherichia coli K1 traversal across the blood-brain barrier is an essential step in the pathogenesis of neonatal meningitis. We have previously shown that invasive E. coli promotes the actin rearrangement of brain microvascular endothelial cells (BMEC), which constitute a lining of the blood-brain barrier, for invasion. However, signal transduction mechanisms involved in E. coli invasion are not defined. In this report we show that tyrosine kinases play a major role in E. coli invasion of hu...

  5. Transport and regulation mechanism of the colloidal gold liposomes in the brain microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    WANG Lipeng; CHANG Yanzhong

    2015-01-01

    Objective:Blood-brain barrier is the key barrier of brain in the innate immune. It can prevent the harmful substances from the blood into the brain. In order to keep the brain in a relatively stable environment and maintain the normal function of the nervous system, it can also pump harmful substances or excess substances outside the brain selectively. Among them, brain microvascular endothelial cell tissue is a key part in the blood-brain barrier's function. The number of the patients with central nervous system ( CNS) diseases increased year by year. The therapeutic drug is usually inhibited by the blood-brain barrier and is difficult to work. Therefore, how to modify the drug and to make it easier to cross the blood brain barrier is the key point to cure CNS. At present, more than 95% research focus only on how nano drugs can enter the cell, the way and efficiency to enter the cell and the research of effect of nano drug etc. For the process of drug carrier in endocytosis, intracellular transport and release and regulation of research are rarely reported. Clathrin and P-glycoprotein are related protein in endo-cytosis and exocytosis with nano drug. Clathrin is located on the plasma membrane. It participates in endocytosis of some nutrients, and maybe the entry into the cell of some drugs. P-glycoprotein is located in the membrane of cer-ebral capillary endothelial cells. It can efflux drugs relying on ATP. Although there is a certain understanding of the cell in the inner swallow and efflux. But the process of the liposome drug is not clear. To solve the above prob-lems, using colloidal gold liposome nano materials to trace liposome's transport and regulation mechanism in brain microvascular endothelial cells, and study endocytosis, release, distribution and regulation mechanism of nano lipo-somes in brain microvascular. The solution of this problem can guide to construct reasonable drug carrier, and look forward to clarifing the molecular basis and mechanism of

  6. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells

    OpenAIRE

    Bouchet, Bénédicte; Vanier, Ghyslaine; Jacques, Mario; Gottschalk, Marcelo

    2008-01-01

    International audience Haemophilus parasuis is a swine pathogen that causes Glässer's disease, which is characterized by polyserositis and meningitis. The pathogenesis of the H. parasuis infection is poorly understood. To cause meningitis, H. parasuis has to cross the blood-brain barrier (BBB) to gain access to the central nervous system (CNS). We recently showed that H. parasuis adheres to and invades porcine brain microvascular endothelial cells (PBMEC). The aim of this study was to eval...

  7. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment. PMID:17875991

  8. Isolation and expansion of human and mouse brain microvascular endothelial cells.

    Science.gov (United States)

    Navone, Stefania E; Marfia, Giovanni; Invernici, Gloria; Cristini, Silvia; Nava, Sara; Balbi, Sergio; Sangiorgi, Simone; Ciusani, Emilio; Bosutti, Alessandra; Alessandri, Giulio; Slevin, Mark; Parati, Eugenio A

    2013-09-01

    Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I-precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires ∼7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of ∼60 d. PMID:23928501

  9. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function. PMID:26041660

  10. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells

    Science.gov (United States)

    Gräfe, C.; Slabu, I.; Wiekhorst, F.; Bergemann, C.; von Eggeling, F.; Hochhaus, A.; Trahms, L.; Clement, J. H.

    2016-06-01

    Crossing the blood–brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood–brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles’ shape, material, size, and coating.

  11. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells.

    Science.gov (United States)

    Gräfe, C; Slabu, I; Wiekhorst, F; Bergemann, C; von Eggeling, F; Hochhaus, A; Trahms, L; Clement, J H

    2016-06-01

    Crossing the blood-brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood-brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles' shape, material, size, and coating. PMID:27163489

  12. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells.

    Science.gov (United States)

    Stebbins, Matthew J; Wilson, Hannah K; Canfield, Scott G; Qian, Tongcheng; Palecek, Sean P; Shusta, Eric V

    2016-05-15

    The blood-brain barrier (BBB) is a critical component of the central nervous system (CNS) that regulates the flux of material between the blood and the brain. Because of its barrier properties, the BBB creates a bottleneck to CNS drug delivery. Human in vitro BBB models offer a potential tool to screen pharmaceutical libraries for CNS penetration as well as for BBB modulators in development and disease, yet primary and immortalized models respectively lack scalability and robust phenotypes. Recently, in vitro BBB models derived from human pluripotent stem cells (hPSCs) have helped overcome these challenges by providing a scalable and renewable source of human brain microvascular endothelial cells (BMECs). We have demonstrated that hPSC-derived BMECs exhibit robust structural and functional characteristics reminiscent of the in vivo BBB. Here, we provide a detailed description of the methods required to differentiate and functionally characterize hPSC-derived BMECs to facilitate their widespread use in downstream applications. PMID:26518252

  13. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial

    Directory of Open Access Journals (Sweden)

    Dan M

    2012-07-01

    with the capillary fraction. Electron microscopy showed the ceria ENM located on the endothelial cell luminal surface.Conclusion: Ceria ENM association with brain capillary endothelial cells saturated between 20 and 60 seconds and ceria ENM brain uptake was not diffusion-mediated. During the 120-second ceria ENM perfusion, ceria ENM predominately associated with the surface of the brain capillary cells, providing the opportunity for its cell uptake or redistribution back into circulating blood.Keywords: ceria engineered nanomaterial, brain microvascular endothelial cell association, in situ brain perfusion, capillary depletion

  14. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  15. Hepatitis C virus infection induces elevation of CXCL10 in human brain microvascular endothelial cells.

    Science.gov (United States)

    Liu, Yuan; Chen, Li; Zou, Ziying; Zhu, Bing; Hu, Zonghai; Zeng, Ping; Wu, Lijuan; Xiong, Jie

    2016-09-01

    Hepatitis C virus (HCV) primarily infects liver tissues, while pathogenesis of extrahepatic tissues has been reported. About 50% of patients with HCV infection suffer from neurological disease. The underlying molecular mechanisms remain unclear. In the present study, we aimed to investigate the induction of CXC chemokine ligand 10 (CXCL10) in human brain microvascular endothelial cells (HBMECs) by HCV infection. CXCL10 and its receptor CXCR3 were constitutively expressed in HBMECs. HCV infection induced CXCL10 elevation in HBMECs. The elevation of CXCL10 in HBMECs was eliminated when HCV infection was blocked by neutralizing antibodies. NF-κB is a positive regulator for CXCL10 transcription. HCV infection led to an increased phosphorylation of NF-κB (ser536) in HBMECs, and CXCL10 induced by HCV was slightly decreased when an inhibitor of NF-κB was added. IL1 beta and IFN gama were also upregulated in HCV infected HBMECs, and could be depressed by inhibitor of NF-κB. Thus, HCV infection leads to upregulated expression of CXCL10 in HBMECs, which is probably via the phosphorylation of NF-κB. The findings of this study provide potential mechanisms and novel targets for HCV induced neuroinflammation. J. Med. Virol. 88:1596-1603, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895737

  16. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    Full Text Available BACKGROUND: Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  17. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  18. Effect of curcumin on the adhesion of platelets to brain microvascular endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Zhen-lun GU; Zheng-hong QIN; Zhong-qin LIANG

    2008-01-01

    Aim: To determine whether curcumin prevents the adhesion of platelets to brain microvascular endothelial cells (BMECs) cultured in vitro. Methods: [3H]Ad-chine-labeled platelets were incubated with BMECs to investigate the role of curcumin in the adhesion of platelets to BMECs. The number of platelets adher-ing to the BMECs monolayer was determined by liquid scintillation spectroscopy. The thrombin-induced expression of platelets P-selectin, glycoprotein Ⅱb (GPⅡb), and glycoprotein Ⅲa (GPⅢa) on the cell surface, was measured by flow cytometry. P-selectin mRNA levels of BMECs were determined by RT-PCR. The TNF-α-induced expressions of P-selectin and E-selectin on the surface of BMECs were determined by Western blotting. Results: The adhesion between thrombin-acti-vated platelets and normal BMECs, and that of TNF-α-activated BMECs and normal platelets were significantly increased, and this increase could be inhibited by curcumin (30-240 μmol/L) in a concentration-dependant manner. The platelets activated with thrombin and BMECs stimulated by TNF-α demonstrated an upregulated expressions of P-selectin and E-selectin, and this increase, when pretreated with curcumin for 30 min, could be restrained dose dependently. Curcumin also inhibited the increase of the GPⅡb/GPⅢa expression of thrombin-activated platelets in a concentration-dependent manner. Conclusion: Curcumin can inhibit the platelets to BMECs. This effect may be related to the decreased expressions of P-selectin, E-selectin, and GPⅡb/GPⅢa on platelets and BMECs.

  19. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    International Nuclear Information System (INIS)

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H2O2-induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-κB (NF-κB) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-κB activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease

  20. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Jumnongprakhon, Pichaya; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2016-09-01

    Melatonin is a neurohormone and has high potent of antioxidant that is widely reported to be active against methamphetamine (METH)-induced toxicity to neuron, glial cells, and brain endothelial cells. However, the role of melatonin on the inflammatory responses which are mostly caused by blood-brain barrier (BBB) impairment by METH administration has not been investigated. This study used the primary rat brain microvascular endothelial cells (BMVECs) to determine the protective mechanism of melatonin on METH-induced inflammatory responses in the BBB via nuclear factor-ĸB (NF-κB) and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Herein, we demonstrated that melatonin reduced the level of the inflammatory mediators, including intercellular adhesion molecules (ICAM)-1, vascular cell adhesion molecules (VCAM)-1, matrix metallopeptidase (MMP)-9, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) caused by METH. These responses were related to the decrease of the expression and translocation of the NF-κB p65 subunit and the activity of NADPH oxidase (NOX)-2. In addition, melatonin promoted the antioxidant processes, modulated the expression and translocation of Nrf2, and also increased the level of heme oxygenase (HO)-1, NAD (P) H: quinone oxidoreductase (NQO)-1, γ-glutamylcysteine synthase (γ-GCLC), and the activity of superoxide dismutase (SOD) through NOX2 mechanism. In addition, we found that the protective role of melatonin in METH-induced inflammatory responses in the BBB was mediated through melatonin receptors (MT1/2). We concluded that the interaction of melatonin with its receptor prevented METH-induced inflammatory responses by suppressing the NF-κB signaling and promoting the Nrf2 signaling before BBB impairment. PMID:27268413

  1. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells

    OpenAIRE

    Yan Wang; Ning Wang; Biao Cai; Guang-yun Wang; Jing Li; Xing-xing Piao

    2015-01-01

    Drugs for the treatment and prevention of nervous system diseases must permeate the blood-brain barrier to take effect. In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms. However, to date, no unified method has been described for establishing a blood-brain barrier model. Here, we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyest...

  2. Influence of curvature on the morphology of brain microvascular endothelial cells

    Science.gov (United States)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 μm and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  3. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-02-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  4. Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury

    Institute of Scientific and Technical Information of China (English)

    Weihong Yang; Ling Li; Ruxun Huang; Zhong Pei; Songjie Liao; Jinsheng Zeng

    2012-01-01

    Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on oxygen glucose deprivation -induced hypoxia inducible factor-1α expression. In this study, we hypothesized that DL-3-n-butylphthalide can protect against oxygen glucose deprivation-induced injury of newborn rat brain microvascular endothelial cells by means of upregulating hypoxia inducible factor-1α expression. MTT assay and Hoechst staining results showed that DL-3-n-butylphthalide protected brain microvascular endothelial cells against oxygen glucose deprivation-induced injury in a dose-dependent manner. Western blot and immunofluorescent staining results further confirmed that the protective effect was related to upregulation of hypoxia inducible factor-1α. Real-time RT-PCR reaction results showed that DL-3-n-butylphthalide reduced apoptosis by inhibiting downregulation of pro-apoptotic gene caspase-3 mRNA expression and upregulation of apoptosis-executive protease bcl-2 mRNA expression; however, DL-3-n-butylphthalide had no protective effects on brain microvascular endothelial cells after knockdown of hypoxia inducible factor-1α by small interfering RNA. These findings suggest that DL-3-n-butylphthalide can protect brain microvascular endothelial cells against oxygen glucose deprivation-induced injury by upregulating bcl-2 expression and downregulating caspase-3 expression though hypoxia inducible factor-1α pathway.

  5. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Science.gov (United States)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  6. The multifaceted responses of primary human astrocytes and brain microvascular endothelial cells to the Lyme disease spirochete, Borrelia burgdorferi

    Directory of Open Access Journals (Sweden)

    Catherine A. Brissette

    2013-08-01

    Full Text Available The vector-borne pathogen, Borrelia burgdorferi, causes a multi-system disorder including neurological complications. These neurological disorders, collectively termed neuroborreliosis, can occur in up to 15% of untreated patients. The neurological symptoms are probably a result of a glial-driven, host inflammatory response to the bacterium. However, the specific contributions of individual glial and other support cell types to the pathogenesis of neuroborreliosis are relatively unexplored. The goal of this project was to characterize specific astrocyte and endothelial cell responses to B. burgdorferi. Primary human astrocytes and primary HBMEC (human brain microvascular endothelial cells were incubated with B. burgdorferi over a 72-h period and the transcriptional responses to the bacterium were analyzed by real-time PCR arrays. There was a robust increase in several surveyed chemokine and related genes, including IL (interleukin-8, for both primary astrocytes and HBMEC. Array results were confirmed with individual sets of PCR primers. The production of specific chemokines by both astrocytes and HBMEC in response to B. burgdorferi, including IL-8, CXCL-1, and CXCL-10, were confirmed by ELISA. These results demonstrate that primary astrocytes and HBMEC respond to virulent B. burgdorferi by producing a number of chemokines. These data suggest that infiltrating phagocytic cells, particularly neutrophils, attracted by chemokines expressed at the BBB (blood–brain barrier may be important contributors to the early inflammatory events associated with neuroborreliosis.

  7. Comparison of immortalized bEnd5 and primary mouse brain microvascular endothelial cells as in vitro blood–brain barrier models for the study of T cell extravasation

    OpenAIRE

    Steiner, Oliver; Coisne, Caroline; Engelhardt, Britta; Lyck, Ruth

    2010-01-01

    Important insights into the molecular mechanism of T cell extravasation across the blood–brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally sui...

  8. In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs)

    OpenAIRE

    Gallagher, Erin; Minn, IL; Chambers, Janice E.; Searson, Peter C.

    2016-01-01

    Background Current therapies for organophosphate poisoning involve administration of oximes, such as pralidoxime (2-PAM), that reactivate the enzyme acetylcholinesterase. Studies in animal models have shown a low concentration in the brain following systemic injection. Methods To assess 2-PAM transport, we studied transwell permeability in three Madin-Darby canine kidney (MDCKII) cell lines and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). To determine whether 2-...

  9. Effect of baicalin and berberine on transport of nimodipine on primary-cultured, rat brain microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Dong-mei ZHANG; Hai-yan LIU; Lin XIE; Xiao-dong LIU

    2007-01-01

    Aim: To investigate whether baicalin and berberine affects the transport of nimodipine (NMD) across the blood-brain barrier (BBB). Methods: Primary-cultured, rat brain microvascular endothelial cells (rBMEC) were used as an in vitro model of the BBB. When cells became confluent, the steady-state uptake of NMD by rBMEC with or without baicalin and berberine was measured. The ef-fects of baicalin and berberine on the efflux of NMD from rBMEC were also studied.Results: Baicalin (2-5 μg/mL) increased the uptake of NMD, and baicalin (10-20 μg/mL) decreased the uptake. The steady-state uptake of NMD was higher than that of control group in the presence of 0.01-1 μg/mL berberine, but was lower in the presence of 2-10 μg/mL berberine. Conclusion: The bidirectional effect of baicalin and berberine on the uptake of NMD by rBMEC was found. Higher concentration showed an inhibitory effect, and lower concentration demonstrated an increasing effect.

  10. Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier.

    Science.gov (United States)

    Elmorsy, Ekramy; Elzalabany, Laila M; Elsheikha, Hany M; Smith, Paul A

    2014-10-01

    Although the mechanisms of action of antipsychotics (APs) on neuronal function are well understood, very little is known about their effects on cells of the blood-brain barrier (BBB); one function of which is to limit the access of these amphiphilic compounds to the central nervous system. To address this question we have investigated the cytological and functional effects of four APs: chlorpromazine (CLP), haloperidol (HAL), risperidone (RIS) and clozapine (CLZ), at concentrations typical of high therapeutic dosage on a human brain microvascular endothelial cell (HBMEC) model of the BBB. At ~10 µM all four APs impaired the ability of HBMECs to reduce MTT which was followed by decreased Trypan blue exclusion and increased Lactate dehydrogenase release. These effects were associated with oxidative stress which was partly reversed by incubation in 10mM glutathione. At their EC50 concentrations for MTT reduction, all four APs disrupted cellular ultrastructure and morphology. HAL, CPZ and CLZ increased Caspase -3, -8 and -9 activity, chromatin condensation and fragmentation, data indicative of apoptosis. These events were associated with decreased transcytosis of Evans blue and increased transendothelial potential difference and electrical resistance of this BBB model. These findings suggest that at high therapeutic concentrations, CPZ and CLZ are likely to incur cytoxic effects and apoptosis of BBB endothelia with an impairment of barrier functionality. Such events may underlie the aetiology of neuroleptic associated cerebral oedema and neuroleptic malignant syndrome. PMID:25139421

  11. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Long Min

    2012-02-01

    Full Text Available Abstract Background Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC, is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown. Methods In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1 of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated. Results We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network. Conclusion These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.

  12. Modulation of Myosin Light-Chain Phosphorylation by p21-Activated Kinase 1 in Escherichia coli Invasion of Human Brain Microvascular Endothelial Cells

    OpenAIRE

    Rudrabhatla, Rajyalakshmi S.; Sukumaran, Sunil K.; Bokoch, Gary M.; Prasadarao, Nemani V.

    2003-01-01

    Cytoskeletal dynamics, modulated by actin-myosin interactions, play an important role in Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC). Herein, we show that inhibitors of myosin function, butanedione monoxide and ML-7, significantly blocked the E. coli invasion of HBMEC. The invasive E. coli induces myosin light-chain (MLC) phosphorylation during the invasion process, which gets recruited to the site of actin condensation beneath the bacteria. We also sho...

  13. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Lin Chih-Chung

    2013-01-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3 cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.

  14. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs.

    Science.gov (United States)

    Lombardo, Laura; Pellitteri, Rosalia; Balazy, Michael; Cardile, Venera

    2008-05-01

    Our work contributes to the understanding of the mechanisms of drug resistance in epilepsis. This study aimed to investigate i) the levels of expression of P-glycoprotein (P-gp), and multidrug resistance-associated proteins (MRP)1 and 2, ii) the activation of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), and iii) the relationship between increased P-gp and MRPs expression and PXR and CAR activation, in immortalized rat brain microvascular endothelial cell lines, GPNT and RBE4, following treatment with the antiepileptic drugs (AEDs), topiramate, phenobarbital, carbamazepine, tiagabine, levetiracetam, and phenytoin, using Western blotting and immunocytochemistry methods. Carbamazepine, phenobarbital and phenytoin induced the highest levels of P-gp and MPRs expression that was associated with increased activation of PXR and CAR receptors as compared to levetiracetam, tiagabine and topiramate. We conclude that P-gp and MRPs are differently overexpressed in GPNT and RBE4 by various AEDs and both PXR and CAR are involved in the drug-resistant epilepsy induced by carbamazepine, phenobarbital and phenytoin. PMID:18473823

  15. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-01-01

    Full Text Available Drugs for the treatment and prevention of nervous system diseases must permeate the blood-brain barrier to take effect. In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms. However, to date, no unified method has been described for establishing a blood-brain barrier model. Here, we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-µm pores, and conducted transepithelial electrical resistance measurements, leakage tests and assays for specific blood-brain barrier enzymes. We show that the permeability of our model is as low as that of the blood-brain barrier in vivo. Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.

  16. Opiates Upregulate Adhesion Molecule Expression in Brain MicroVascular Endothelial Cells (BMVEC: Implications for Altered Blood Brain Barrier (BBB Permeability

    Directory of Open Access Journals (Sweden)

    Madhavan P.N. Nair

    2006-01-01

    Full Text Available The blood-brain barrier (BBB is an intricate cellular system composed of vascular endothelial cells and perivascular astrocytes that restrict the passage of immunocompetent cells into the central nervous system (CNS. Expression of the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 on brain microvascular endothelial cells (BMVEC and their interaction with human immunodeficiency virus (HIV-1 viral proteins may help enhance viral adhesion and virus-cell fusion resulting in increased infectivity. Additionally, transmigration through the BBB is facilitated by both endothelial and monocyte/macrophage-derived nitric oxide (NO. Dysregulated production of NO by BMVEC due to opiates and HIV-1 viral protein interactions play a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB. Opioids act as co-factors in the neuropathogenesis of HIV-1 by facilitating BBB dysfunction however, no studies have been done to investigate the role of opiates alone or in combination with HIV-1 viral proteins on adhesion molecule expression in BMVEC. We hypothesize that opiates such as heroin and morphine in conjunction with the HIV-1 viral protein gp120 increase the expression of adhesion molecules ICAM-1 and VCAM-1 and these effects are mediated via the modulation of NO. Results show that opiates alone and in synergy with gp120 increase both the genotypic and phenotypic expression of ICAM-1 and VCAM-1 by BMVEC, additionally, these opiate induced effects may be the result of increased NO production. These studies will provide a better understanding of how opiate abuse in conjunction with HIV-1 infection facilitates the breakdown of the BBB and exacerbates the neuropathogenesis of HIV-1. Elucidation of the mechanisms of BBB modulation will provide new therapeutic approaches to maintain BBB integrity

  17. Prevention of Escherichia coli K1 Penetration of the Blood-Brain Barrier by Counteracting the Host Cell Receptor and Signaling Molecule Involved in E. coli Invasion of Human Brain Microvascular Endothelial Cells▿

    OpenAIRE

    Zhu, Longkun; Pearce, Donna; Kim, Kwang Sik

    2010-01-01

    Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interacti...

  18. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    Science.gov (United States)

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research. PMID:27070801

  19. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells

    OpenAIRE

    O’Carroll, Simon J.; Kho, Dan Ting; Wiltshire, Rachael; Nelson, Vicky; Rotimi, Odunayo; Johnson, Rebecca; Angel, Catherine E.; Graham, E. Scott

    2015-01-01

    Background The vasculature of the brain is composed of endothelial cells, pericytes and astrocytic processes. The endothelial cells are the critical interface between the blood and the CNS parenchyma and are a critical component of the blood-brain barrier (BBB). These cells are innately programmed to respond to a myriad of inflammatory cytokines or other danger signals. IL-1β and TNFα are well recognised pro-inflammatory mediators, and here, we provide compelling evidence that they regulate t...

  20. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    Science.gov (United States)

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries. PMID:26251121

  1. Microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Spanel-Borowski Katherina

    2003-11-01

    Full Text Available Abstract The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of

  2. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Science.gov (United States)

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured

  3. SILAC and LC-MS/MS identification of Streptococcus equi ssp. zooepidemicus proteins that contribute to mouse brain microvascular endothelial cell infection.

    Science.gov (United States)

    Zhe, Ma; Jie, Peng; Hui, Zhang; Bin, Xu; Xiaomeng, Pei; Huixing, Lin; Chengping, Lu; Hongjie, Fan

    2016-08-01

    Streptococcus equi ssp. zooepidemicus (SEZ) causes meningitis in both humans and animals. Some dissociative proteins of SEZ are cytotoxic to mouse brain microvascular endothelial cells (mBMECs) and may contribute to the penetration of SEZ across the blood-brain barrier (BBB). In this study, the ability of SEZ to penetrate across an in vitro BBB model was confirmed. We used stable isotope labeling with amino acids in cell culture (SILAC) to label SEZ proteins with heavy or light isotope-tagged amino acids, along with LC-MS/MS to determine which SEZ proteins were involved in interactions with mBMECs. The efficiency of SEZ protein isotope labeling was 94.7 %, which was sufficient for further analysis. Forty-nine labeled peptides were identified as binding to mBMECs, which matched to 25 SEZ proteins. Bioinformatic analysis indicated that most of these proteins were cytoplasmic. These proteins may have functions in breaching the host BBB, and some of them are known virulence factors in other bacteria. Indirect immunofluorescence results indicated that SEZ enolase had binding activity toward mBMECs. Protective test results showed that enolase was a protective antigen against SEZ infection. This research is the first application of SILAC combined with LC-MS/MS to identify SEZ proteins that may contribute to the infection of mBMECs and potentially show functions related to breaching the BBB. The outcomes provide many future avenues for research into the mechanism of SEZ-induced meningitis. PMID:27178179

  4. Escherichia coli K1 RS218 Interacts with Human Brain Microvascular Endothelial Cells via Type 1 Fimbria Bacteria in the Fimbriated State

    Science.gov (United States)

    Teng, Ching-Hao; Cai, Mian; Shin, Sooan; Xie, Yi; Kim, Kee-Jun; Khan, Naveed Ahmed; Di Cello, Francescopaolo; Kim, Kwang Sik

    2005-01-01

    Escherichia coli K1 is a major gram-negative organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMEC) are a prerequisite for E. coli penetration into the central nervous system in vivo. In the present study, we showed using DNA microarray analysis that E. coli K1 associated with HBMEC expressed significantly higher levels of the fim genes compared to nonassociated bacteria. We also showed that E. coli K1 binding to and invasion of HBMEC were significantly decreased with its fimH deletion mutant and type 1 fimbria locked-off mutant, while they were significantly increased with its type 1 fimbria locked-on mutant. E. coli K1 strains associated with HBMEC were predominantly type 1 fimbria phase-on (i.e., fimbriated) bacteria. Taken together, we showed for the first time that type 1 fimbriae play an important role in E. coli K1 binding to and invasion of HBMEC and that type 1 fimbria phase-on E. coli is the major population interacting with HBMEC. PMID:15845498

  5. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  6. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Calpha interaction in human brain microvascular endothelial cells.

    Science.gov (United States)

    Sukumaran, Sunil K; Quon, Michael J; Prasadarao, Nemani V

    2002-12-27

    The morbidity and mortality associated with Escherichia coli K1 meningitis during the neonatal period have remained significant over the last decade and are once again on the rise. Transcytosis of brain microvascular endothelial cells (BMEC) by E. coli within an endosome to avoid lysosomal fusion is crucial for dissemination into the central nervous system. Central to E. coli internalization of BMEC is the expression of OmpA (outer membrane protein A), which interacts with its receptor for the actin reorganization that leads to invasion. However, nothing is known about the nature of the signaling events for the formation of endosomes containing E. coli K1. We show here that E. coli K1 infection of human BMEC (HBMEC) results in activation of caveolin-1 for bacterial uptake via caveolae. The interaction of caveolin-1 with phosphorylated protein kinase Calpha (PKCalpha) at the E. coli attachment site is critical for the invasion of HBMEC. Optical sectioning of confocal images of infected HBMEC indicates continuing association of caveolin-1 with E. coli during transcytosis. Overexpression of a dominant-negative form of caveolin-1 containing mutations in the scaffolding domain blocked the interaction of phospho-PKCalpha with caveolin-1 and the E. coli invasion of HBMEC, but not actin cytoskeleton rearrangement or the phosphorylation of PKCalpha. The interaction of caveolin-1 with phospho-PKCalpha was completely abrogated in HBMEC overexpressing dominant-negative forms of either focal adhesion kinase or PKCalpha. Treatment of HBMEC with a cell-permeable peptide that represents the scaffolding domain, which was coupled to an antennapedia motif of a Drosophila transcription factor significantly blocked the interaction of caveolin-1 with phospho-PKCalpha and E. coli invasion. These results show that E. coli K1 internalizes HBMEC via caveolae and that the scaffolding domain of caveolin-1 plays a significant role in the formation of endosomes. PMID:12386163

  7. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  8. The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

    OpenAIRE

    Lee, Na-Young; Rieckmann, Peter; Kang, Young-Sook

    2012-01-01

    The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western b...

  9. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Axel Haarmann

    2015-08-01

    Full Text Available Dimethyl fumarate (DMF is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  10. The expression of ADAMTS13 in human microvascular endothelial cells.

    Science.gov (United States)

    Wang, Anyou; Duan, Qiaohong; Wu, Jingsheng; Liu, Xin; Sun, Zimin

    2016-06-01

    ADAMTS13, as a specific von Willebrand factor (VWF)-cleaving protease, prevents microvascular thrombosis of VWF/platelet thrombi. It has been reported that human vascular endothelial cells could also synthesize and secrete ADAMTS13, and these reports were focused in human umbilical vascular endothelial cells. Considering the particularity of its huge quantity and structure of human microvascular endothelial cells (HMECs) in the body, whether ADAMTS13 is expressed in HMECs also needs to be confirmed. To investigate whether ADAMTS13 is expressed in HMECs. Real-time PCR (RT-PCR) amplification detected ADAMTS13 mRNA in HMEC-1 cell line. The expression and distribution of ADAMTS13 protein and VWF were detected by fluorescence immunoassay and western blot. We observed the expression and distribution of ADAMTS13 in HMECs. We confirmed the expression of ADAMTS13 mRNA in HMEC-1, and found that there were some partly common distributions of ADAMTS13 protein and VWF. This study provides the evidence that HMECs also express ADAMTS13. HMECs might also be a primary source for human plasma ADAMTS13. The overlap region for the distribution of ADAMTS13 and VWF suggests that ADAMTS13 might have a potential regulation role for VWF inside cells. PMID:26366828

  11. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  12. Barrier stabilizing mediators in regulation of microvascular endothelial permeability

    Institute of Scientific and Technical Information of China (English)

    HUANG Qiao-bing

    2012-01-01

    Increase of microvascular permeability is one of the most important pathological events in the pathogenesis of trauma and bum injury.Massive leakage of fluid from vascular space leads to lose of blood plasma and decrease of effective circulatory blood volume,resulting in formation of severe tissue edema,hypotension or even shock,especially in severe bum injury.Fluid resuscitation has been the only valid approach to sustain patient's blood volume for a long time,due to the lack of overall and profound understanding of the mechanisms of vascular hyperpenneability response.There is an emerging concept in recent years that some so-called barrier stabilizing mediators play a positive role in preventing the increase of vascular permeability.These mediators may be released in response to proinflammatory mediators and serve to restore endothelial barrier function.Some of these stabilizing mediators are important even in quiescent state because they preserve basal vascular permeability at low levels.This review introduces some of these mediators and reveals their underlying signaling mechanisms during endothelial barrier enhancing process.

  13. Cytokine-induced changes in the gene expression profile of a human cerebral microvascular endothelial cell-line, hCMEC/D3

    OpenAIRE

    Lopez-Ramirez, Miguel Alejandro; Male, David Kingsley; Wang, Chunfang; Sharrack, Basil; Wu, Dongsheng; Romero, Ignacio Andres

    2013-01-01

    Background: The human cerebral microvascular endothelial cell line, hCMEC/D3, has been used extensively to model the blood–brain barrier (BBB) in vitro. Recently, we reported that cytokine-treatment induced loss of brain endothelial barrier properties. In this study, we further determined the gene expression pattern of hCMEC/D3 cells in response to activation with TNFα and IFNγ. Findings: Using a microarray approach, we observed that expression of genes involved in the control of ...

  14. Brain microvascular function during cardiopulmonary bypass

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.

  15. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.

    Science.gov (United States)

    Aung, Hnin Hnin; Altman, Robin; Nyunt, Tun; Kim, Jeffrey; Nuthikattu, Saivageethi; Budamagunta, Madhu; Voss, John C; Wilson, Dennis; Rutledge, John C; Villablanca, Amparo C

    2016-06-01

    Dysfunction of the cerebrovasculature plays an important role in vascular cognitive impairment (VCI). Lipotoxic injury of the systemic endothelium in response to hydrolyzed triglyceride-rich lipoproteins (TGRLs; TGRL lipolysis products) or a high-fat Western diet (WD) suggests similar mechanisms may be present in brain microvascular endothelium. We investigated the hypothesis that TGRL lipolysis products cause lipotoxic injury to brain microvascular endothelium by generating increased mitochondrial superoxide radical generation, upregulation of activating transcription factor 3 (ATF3)-dependent inflammatory pathways, and activation of cellular oxidative stress and apoptotic pathways. Human brain microvascular endothelial cells were treated with human TGRL lipolysis products that induced intracellular lipid droplet formation, mitochondrial superoxide generation, ATF3-dependent transcription of proinflammatory, stress response, and oxidative stress genes, as well as activation of proapoptotic cascades. Male apoE knockout mice were fed a high-fat/high-cholesterol WD for 2 months, and brain microvessels were isolated by laser capture microdissection. ATF3 gene transcription was elevated 8-fold in the hippocampus and cerebellar brain region of the WD-fed animals compared with chow-fed control animals. The microvascular injury phenotypes observed in vitro and in vivo were similar. ATF3 plays an important role in mediating brain microvascular responses to acute and chronic lipotoxic injury and may be an important preventative and therapeutic target for endothelial dysfunction in VCI. PMID:27087439

  16. Characterization of calcium signals provoked by lysophosphatidylinositol in human microvascular endothelial cells.

    Science.gov (United States)

    Al Suleimani, Y M; Hiley, C R

    2016-01-01

    The lipid molecule, lysophosphatidylinositol (LPI), is hypothesised to form part of a novel lipid signalling system that involves the G protein-coupled receptor GPR55 and distinct intracellular signalling cascades in endothelial cells. This work aimed to study the possible mechanisms involved in LPI-evoked cytosolic Ca(2+) mobilization in human brain microvascular endothelial cells. Changes in intracellular Ca(2+) concentrations were measured using cell population Ca(2+) assay. LPI evoked biphasic elevation of intracellular calcium concentration, a rapid phase and a sustained phase. The rapid phase was attenuated by the inhibitor of PLC (U 73122), inhibitor of IP(3) receptors, 2-APB and the depletor of endoplasmic reticulum Ca(2+) store, thapsigargin. The sustained phase, on the other hand, was enhanced by U 73122 and abolished by the RhoA kinase inhibitor, Y-27632. In conclusion, the Ca(2+) signal evoked by LPI is characterised by a rapid phase of Ca(2+) release from the endoplasmic reticulum, and requires activation of the PLC-IP(3) signalling pathway. The sustained phase mainly depends on RhoA kinase activation. LPI acts as novel lipid signalling molecule in endothelial cells, and elevation of cytosolic Ca(2+) triggered by it may present an important intracellular message required in gene expression and controlling of vascular tone. PMID:26596318

  17. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions.

    Science.gov (United States)

    Ghosh, Suparna; Lakshmanan, Arun P; Hwang, Mu Ji; Kubba, Haidar; Mushannen, Ahmed; Triggle, Chris R; Ding, Hong

    2015-12-01

    The cellular mechanisms whereby metformin, the first line drug for type 2 diabetes (T2DM), mediates its antidiabetic effects remain elusive, particularly as to whether metformin has a direct protective action on the vasculature. This study was designed to determine if a brief 3-h exposure to metformin protects endothelial function against the effects of hyperglycaemia. We investigated the protective effects of metformin on endothelial-dependent vasodilatation (EDV) in thoracic aortae from T2DM db/db mice and on high glucose (HG, 40 mM) induced changes in endothelial nitric oxide synthase (eNOS) signaling in mouse microvascular endothelial cells (MMECs) in culture. Exposure of aortae from db+/? non-diabetic control mice to high glucose (HG, 40 mM) containing Krebs for 3-h significantly (PEDV compared to ACh-induced EDV in aortae maintained in normal glucose (NG, 11 mM) Krebs. The reduction of EDV was partially reversed following a 3-h exposure to 50 μM metformin; metformin also improved ACh-induced EDV in aortae from diabetic db/db mice. Immunoblot analysis of MMECs cultured in HG versus NG revealed a significant reduction of the ratio of phosphorylated (p-eNOS)/eNOS and p-Akt/Akt, but not the expression of total eNOS or Akt. The 3-h exposure of MMECs to metformin significantly (P<0.05) reversed the HG-induced reduction in phosphorylation of both eNOS and Akt; however, no changes were detected for phosphorylation of AMPK or the expression of SIRT1. Our data indicate that a 3-h exposure to metformin can reverse/reduce the impact of HG on endothelial function, via mechanisms linked to increased phosphorylation of eNOS and Akt. PMID:26467186

  18. Gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis

    Institute of Scientific and Technical Information of China (English)

    吴荣谦; 徐迎新; 宋旭华; 孟宪钧

    2002-01-01

    To study the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis in mice. Methods: Male mice were subjected to cecal ligation and puncture (CLP) and microvascular endothelial cells in pulmonary and hepatic tissues were harvested at 3 hours (early sepsis) and 12 hours (late sepsis) after CLP, respectively. Gene expression of the adhesion molecules was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Simultaneously, the alterations of myeloperoxidase (MPO) activity in pulmonary and hepatic tissues were also examined. Results: E-selectin mRNA levels markedly increased at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, then they returned to the normal level at 12 hours after CLP. Increases in intercellular adhesion molecule-1 (ICAM-1) mRNA levels were found at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, and these levels became higher at 12 hours after CLP. Adhesion molecule-1 (VCAM-1) mRNA expression of vascular cells also increased significantly at 3 hours and 12 hours after CLP in both pulmonary and hepatic microvascular endothelial cells. The level of VCAM-1 mRNA in hepatic microvascular endothelial cells was higher at 3 hours than that at 12 hours after CLP, while the level of VCAM-1 mRNA in pulmonary microvascular endothelial cells was higher at 12 hours than that at 3 hours after CLP. The MPO activity in pulmonary and hepatic tissues increased at 3 hours after CLP, compared with that of the sham group. They both declined significantly at 12 hours after CLP, but they were still higher than that of the sham group. Conclusions: The up-regulation of the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells is an important step for the migration and accumulation of leukocytes at the site of inflammation, which plays a critical role in organ damage during sepsis. And the contribution

  19. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    Science.gov (United States)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  20. Isolation and characterisation of human pulmonary microvascular endothelial cells from patients with severe emphysema

    OpenAIRE

    Mackay, Laura S; Dodd, Sara; Dougall, Iain G; Tomlinson, Wendy; Lordan, James; Fisher, Andrew J.; Corris, Paul A

    2013-01-01

    Background Loss of the pulmonary microvasculature in the pathogenesis of emphysema has been put forward as a credible alternative to the classical inflammatory cell driven proteolysis hypothesis. Mechanistic studies in this area have to date employed animal models, immortalised cell lines, primary endothelial cells isolated from large pulmonary arteries and non-pulmonary tissues and normal human pulmonary microvascular endothelial cells. Although these studies have increased our understanding...

  1. Non-invasive Assessment of Microvascular and Endothelial Function

    OpenAIRE

    Cheng, Cynthia; Daskalakis, Constantine; Falkner, Bonita

    2013-01-01

    The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary d...

  2. ACTOVEGIN INFLUENCE ON METABOLIC AND VASOMOTOR FUNCTION OF MICROVASCULAR ENDOTHELIAL OF HUMAN SKIN

    Directory of Open Access Journals (Sweden)

    A. A. Fedorovich

    2016-01-01

    Full Text Available Aim. To evaluate effects of Actovegin (deproteinized hemoderivative on vasomotor and metabolic functions of microvascular skin endothelium in healthy volunteers during acute pharmacological test.Material and methods. 24 healthy male volunteers, aged 18-26 years (21,9±2,7, received Actovegin i.v. during 2 hour infusion through the left cubital vein. Right forearm skin laser Doppler flowmetry (LDF with wavelet analysis of the microcirculatory oscillations was used initially and after 2 hour Actovegin infusion to assess microvascular endothelial responses (microcirculatory blood flow changes to Actovegin. Saline infusion in 5 subjects used for control data receiving.Results. Actovegin significantly increased in maximal amplitude endothelial rhythm (at a frequency of 0.01 Hz by 76% (p<0,001 and functional contribution of microvascular endothelium in the overall level of tissue perfusion by 79% (p<0,001. Control saline infusion resulted in reduction of these indices by 52 and 54%, respectively. Actovegin also increased significantly myogenic rhythm amplitude (vascular tone reduction by 35% (p<0,05 and decreased diastolic blood pressure by 3 mm Hg (p=0,076, which is likely result of increased endothelium nitric oxide release.Conclusion. Microcirculatory oscillations at the frequency of 0.01 Hz reflect both vasomotor and metabolic function of microvascular endothelium. Actovegin improves oxygen and glucose tissue utilization as well as increases nitric oxide production with microvascular smooth muscle tone reduction.

  3. Radiation-induced apoptosis in microvascular endothelial cells.

    OpenAIRE

    Langley, R. E.; Bump, E A; Quartuccio, S. G.; Medeiros, D.; Braunhut, S. J.

    1997-01-01

    The response of the microvasculature to ionizing radiation is thought to be an important factor in the overall response of both normal tissues and tumours. It has recently been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects large vessel endothelial cells from radiation-induced apoptosis in vitro. Microvessel cells are phenotypically distinct from large vessel cells. We studied the apoptotic response of confluent monolayers of capillary en...

  4. Quantification of Malignant Breast Cancer Cell MDA-MB-231 Transmigration Across Brain and Lung Microvascular Endothelium.

    Science.gov (United States)

    Fan, Jie; Fu, Bingmei M

    2016-07-01

    Tumor cell extravasation through the endothelial barrier forming the microvessel wall is a crucial step during tumor metastasis. However, where, how and how fast tumor cells transmigrate through endothelial barriers remain unclear. Using an in vitro transwell model, we performed a transmigration assay of malignant breast tumor cells (MDA-MB-231) through brain and lung microvascular endothelial monolayers under control and pathological conditions. The locations and rates of tumor cell transmigration as well as the changes in the structural components (integrity) of endothelial monolayers were quantified by confocal microscopy. Endothelial monolayer permeability to albumin P (albumin) was also quantified under the same conditions. We found that about 98% of transmigration occurred at the joints of endothelial cells instead of cell bodies; tumor cell adhesion and transmigration degraded endothelial surface glycocalyx and disrupted endothelial junction proteins, consequently increased P (albumin); more tumor cells adhered to and transmigrated through the endothelial monolayer with higher P (albumin); P (albumin) and tumor transmigration were increased by vascular endothelial growth factor, a representative of cytokines, and lipopolysaccharides, a typical systemic inflammatory factor, but reduced by adenosine 3',5'-cyclic monophosphate. These results suggest that reinforcing endothelial structural integrity is an effective approach for inhibiting tumor extravasation. PMID:26603751

  5. Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress.

    OpenAIRE

    Shono, T; Ono, M; H. Izumi; Jimi, S I; Matsushima, K; Okamoto, T.; Kohno, K.; Kuwano, M.

    1996-01-01

    Oxygen radicals are induced under various pathologic conditions associated with neovascularization. Oxygen radicals modulate angiogenesis in cultured human microvascular endothelial cells by an unknown mechanism. Treatment of human microvascular endothelial cells for 15 min with 0.1 to 0.5 mM hydrogen peroxide (H2O2) or 100 U of tumor necrosis factor alpha per ml induced tubular morphogenesis in type I collagen gels. Gel shift assays with nuclear extracts demonstrated that H2O2 increases the ...

  6. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    Science.gov (United States)

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  7. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. PMID:26851257

  8. Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy

    OpenAIRE

    Cemazar, M; Parkins, C. S.; Holder, A L; Chaplin, D. J.; Tozer, G. M.; Sersa, G

    2001-01-01

    Recent studies have indicated that the antitumour effectiveness of electrochemotherapy, a combination of chemotherapeutic drugs with application of high voltage electric pulses applied to the tumour nodule (electroporation), result in a significant reduction in tumour blood flow and may therefore be mediated by an anti-vascular mechanism. The aim of this study was to evaluate the cytotoxicity of electroporation with bleomycin or cisplatin on cultured human microvascular endothelial cells (HME...

  9. Early gene response of human brain endothelial cells to Listeria monocytogenes

    Science.gov (United States)

    The gene expression of human brain microvascular endothelial cells (HBMEC) to Listeria monocytogenes at 4 hour infection was analyzed. Four hours after infection, the expression of 456 genes of HBMEC had changed (p<0.05). We noted that many active genes were involved in the formyl-methionylleucylph...

  10. 脑微血管内皮细胞与周细胞共培养构建体外血脑屏障模型%Establishment of an in vitro blood-brain harrier modal by coculturing brain microvascular endothelial cells and pericytes

    Institute of Scientific and Technical Information of China (English)

    鹿文葆; 秦伟伟; 张秋菊; 李宏伟; 刘淑英; 修瑞娟

    2012-01-01

    目的 应用原代培养的大鼠脑微血管内皮细胞(brain microvascular endothelial cell,BMVEC)与脑周细胞共培养建立可模拟在体状态的稳定体外血脑屏障(blood-brain barrier,BBB)模型.方法 原代分离、纯化培养大鼠BMVEC和周细胞,通过免疫细胞化学染色方法鉴定分离的细胞,应用Transwell插槽(孔径0.4μm)共培养构建体外BBB模型,经4h渗漏试验、紧密连接蛋白鉴定、跨内皮电阻检测以及通透性试验评价其屏障功能,比较共培养模型与单纯BMVEC模型膜两侧电阻值差异以及对小分子荧光素钠(sodium fluorescein,Na-F)通透性的差异.结果 融合的BMVEC单层呈现典型的鹅卵石样外观,脑周细胞呈典型的不规则外形并具有重叠生长等特性.免疫双标法鉴定显示,脑周细胞阳性表达α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和神经元-胶质抗原2(neuron-glial antigen2,NG2);共培养模型内皮细胞融合后,液面渗漏试验呈阳性;免疫细胞化学染色显示,内皮细胞间形成连续而致密的紧密连接;与BMVEC模型相比,共培养模型跨内皮细胞电阻[( 190.762±10.326)Ω/cm2对(96.503±8.012)Ω/cm2;t=- 24.489,P<0.01]显著增高,通透性显著降低(为单内皮模型的56.149% ±3.572%;t=19.330,P<0.01).结论 原代分离大鼠BMVEC 和周细胞共培养体外模型的形态、结构及屏障功能具备BBB的基本特征,为研究BBB提供了一种有用工具.%Objective To establish a stable in vitro model of blood-brain barrier (BBB) simulating in vivo state using the primary-cultured rat brain microvascular endothelial cells (BMVECs) and pericytes.Methods The primary rat BMVECs and pericytes were isolated,purified and cultured.The isolated cells were identified by immunocytochemical staining method.An in vitro model of BBB was constructed using Transwell inserts (pore size 0.4 μm) coculture.Its barrier function was evaluated by the 4-hour leakage test,tight junction

  11. Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Growth hormone (GH) has been implicated in the pathogenesis of proliferative diabetic retinopathy. The authors sought to determine whether this could be mediated by an effect of GH on proliferation of endothelial cells, and, for this purpose, established long-term cultures of human retinal microvascular endothelial cells (hREC) from normal postmortem human eyes. High-purity hREC preparations were selected for experiments, based on immunogluorescence with acetylated low density lipoprotein (LDL) and anti-factor VIII-related antigen. Growth requirements for these cells were complex, including serum for maintenance at slow growth rates and additional mitogens for more rapid proliferation. Exposure of hREC to physiologic doses of human GH (hGH) resulted in 100% greater cell number vs. control but could be elicited only in the presence of serum. When differing serum conditions were compared, hGH stimulated [3H]thymidine incorporation up to 1.6- to 2.2-fold under each condition and increased DNA content significantly in the presence of human, horse, and fetal calf serum. In summary, hREC respond to physiologic concentrations of hGH in vitro with enhanced proliferation. This specific effect of GH on retinal microvascular endothelial cells supports the hypothesis of role for GH in endothelial cell biology

  12. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  13. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    Science.gov (United States)

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-01-01

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs. PMID:27141997

  14. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sara; Castiglioni; Clelia; Caspani; Alessandra; Cazzaniga; Jeanette; AM; Maier

    2014-01-01

    AIM: To study the response to silver nanoparticles(Ag NP) of human microvascular endothelial cells, protagonists of angiogenesis. METHODS: We cultured human microvascular endothelial cells and endothelial colony-forming cells in their corresponding growth medium. Stock solutions of Ag NP were prepared in culture medium and sonicated before use. They were added at different concentrations and for different times to culture media. The toxicity of Ag NP was investigated by measuring the reduction of yellow tetrazolium salt to dark purple formazan(MTT assay) at 575 nm. After staining with trypan blue, cell proliferation was assessed by counting viable cells. The lactate dehydrogenase leakage assay was performed on culture media by following the oxidation of NADH to NAD+ and monitoring the reaction kinetically at 340 nm. Reactive oxygen species production was quantified using 2’-7’-dichlorofluorescein diacetate. The alkaline comet assay was performed after mixing the cells with low melting-point agarose. Electrophoresis was then conducted and the samples were stained with ethidium bromide and analyzed with a fluorescence microscope.RESULTS: Ag NP are cytotoxic in a dose and time dependent fashion for HMEC. At high concentrations, Ag NP determine loss of membrane integrity as demonstrated by the increased activity of lactate dehydrogenase in the culture medium. Ag NP rapidly stimulate the formation of free radicals. However, pre-incubation with Trolox, apocynin, or N-acetyl-L-cysteine, antioxidants which have different structure and act through different mechanisms, is not sufficient to prevent cytotoxicity. Ag NP also induce DNA damage dose-dependently, as shown by comet assay. When exposed to sublethal concentrations of Ag NP for long times, the cells remain viable but are growth retarded. Interestingly, removal of Ag NP partially rescues cell growth. Also genotoxicity is reversible upon removal of Ag NP from culture medium, suggesting that no permanent

  15. Cultivation and Characterization of Pulmonary Microvascular Endothelial Cells from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Jianfeng Gao, Ding Zhang, Muhammad Shahzad, Kerong Zhang, Liru Zhao and Jiakui Li*

    2013-07-01

    Full Text Available To improve the understanding on the biological properties of endothelial cells (ECs, a method for the isolation and identification in vitro culture of avian pulmonary microvascular endothelial cells (PMVECs is described. The isolated and cultured cells from chick embryos were identified by cellular morphology and immunocytochemistry. The results showed that the cultured cells exhibited typical cobblestone morphology viewed under an inverted microscope; and were bound with Bandeiraea simplicifolia lectin and stained positive for CD31 and factor VIII-related antigen. In conclusion, the findings of present study for the isolation and cultivation of PMVECs may allow more detailed analysis of their biological properties, and provide a valuable model for studying pathological processes including pulmonary hypertension, ascites and pulmonary vascular remodeling in broiler chickens.

  16. Electroporation of Brain Endothelial Cells on Chip toward Permeabilizing the Blood-Brain Barrier.

    Science.gov (United States)

    Bonakdar, Mohammad; Wasson, Elisa M; Lee, Yong W; Davalos, Rafael V

    2016-01-19

    The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway. PMID:26789772

  17. Effect of Irradiation on Microvascular Endothelial Cells of Parotid Glands in the Miniature Pig

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effect of irradiation on microvascular endothelial cells in miniature pig parotid glands. Methods and Materials: A single 25-Gy dose of irradiation (IR) was delivered to parotid glands of 6 miniature pigs. Three other animals served as non-IR controls. Local blood flow rate in glands was measured pre- and post-IR with an ultrasonic Doppler analyzer. Samples of parotid gland tissue were taken at 4 h, 24 h, 1 week, and 2 weeks after IR for microvascular density (MVD) analysis and sphingomyelinase (SMase) assay. Histopathology and immunohistochemical staining (anti-CD31 and anti-AQP1) were used to assess morphological changes. MVD was determined by calculating the number of CD31- or AQP1-stained cells per field. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay was used to detect apoptotic cells. The activity of acid and neutral Mg2+-dependent SMase (ASMase and NSMase, respectively) was also assayed. Results: Local parotid gland blood flow rate decreased rapidly at 4 h post-IR and remained below control levels throughout the 14-day observation period. Parotid MVD also declined from 4 to 24 hours and remained below control levels thereafter. The activity levels of ASMase and NSMase in parotid glands increased rapidly from 4 to 24 h post-IR and then declined gradually. The frequency of detecting apoptotic nuclei in the glands followed similar kinetics. Conclusions: Single-dose IR led to a significant reduction of MVD and local blood flow rate, indicating marked damage to microvascular endothelial cells in miniature pig parotid glands. The significant and rapid increases of ASMase and NSMase activity levels may be important in this IR-induced damage.

  18. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity.

    OpenAIRE

    Turner, G D; Ly, V. C.; Nguyen, T.H.; Nguyen, H.P.; Bethell, D.; Wyllie, S.; Louwrier, K.; Fox, S B; Gatter, K C; Day, N P; Tran, T. H.; White, N J; Berendt, A R

    1998-01-01

    Fatal Plasmodium falciparum malaria is accompanied by systemic endothelial activation. To study endothelial activation directly during malaria and sepsis in vivo, the expression of cell adhesion molecules on dermal microvascular endothelium was examined in skin biopsies and correlated with plasma levels of soluble (circulating) ICAM-1, E-selectin, and VCAM-1 and the cytokine tumor necrosis factor (TNF)-alpha. Skin biopsies were obtained from 61 cases of severe malaria, 42 cases of uncomplicat...

  19. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  20. Isolation and Culture of Human Microvascular endothelium for comparison of the morphological and molecular characteristics of Microvascular endothelial cells under normal gravity against simulated micro gravity

    Directory of Open Access Journals (Sweden)

    Tholcopiyan L

    2010-01-01

    Full Text Available BACKGROUND: Vascular endothelial cells play a major role in wound healing and also in growth of the tumors. Angiogenesis can be a target for treating diseases that are due to either poor vascularisation or decreased blood supply as in stroke, ulcers, heart disease, etc or abnormal and increased vasculature like in tumours. Application of specific compounds that may inhibit or induce the creation of new blood vessels in the body may help in the treatment of such diseases (1. Ex vivo generation of blood vessels may offer an excellent alternative to the synthetic valves that are being currently used in cardiology. Micro gravity also referred to, as weightlessness is not essentially zero gravity but rather minimal gravity. According to cell type, micro gravity causes variety of changes in proliferation and differentiation of cells while also affecting the migration of cells and cellular functions (2, 3. Siamwala et al from AUKBC have already studied the effects of microgravity on the microvascular endothelial cells from bovine lung and macrovascular endothelial cells from the bovine pulmonary artery. It was observed that the proliferation and migration of macrovascular endothelial cells were increased in microgravity (4, 5. Nitric oxide production was also studied and observed that microgravity treatment did not change nitric oxide production by microvascular endothelial cells (4OBJECTIVE: Isolation and Comparison of culture characteristics of Human microvascular endothelium cultured conventionally and in novel nanomaterial scaffold and further study the morphological and molecular characteristics of microvascular endothelial cells under normal gravity against simulated micro gravityMATERIALS AND METHODS: The human Omentum samples were obtained using surgical procedures after informed consent. The microvascular endothelial cells were isolated following the protocol described by Scott et al (6.The isolated cells were seeded in two groups; Group I

  1. Differential cellular effects of electroporation and electrochemotherapy in monolayers of human microvascular endothelial cells.

    Science.gov (United States)

    Meulenberg, Cécil J W; Todorovic, Vesna; Cemazar, Maja

    2012-01-01

    In vivo electroporation of tumours shows disruption of blood flow and creates a vascular effect with an initial rapid and transient vasoconstriction phase and a much longer lasting phase with changed microvascular endothelium. These changes are not well understood but are presumed to involve the cytoskeleton. The paper presents for the first time differential in vitro effects describing cytoskeleton changes and monolayer integrity changes by both electroporation and electrochemotherapy of monolayers of human microvascular endothelial cells (HMEC-1). After the application of electric field pulses, the morphology of cells, and both the F-actin and Beta-tubulin cytoskeleton proteins were affected. During both electroporation and electrochemotherapy, the initial phase of cellular damage was noticed at 10 min as swollen cells and honeycomb-like actin bundles. The electroporation-induced cellular effects, observed from electric pulses >150 V, were voltage-dependent and within 24 hrs partly recoverable. The electrochemotherapy-induced cellular effects developed at 2 hrs in spindle-like cells, and more densely packed F-actin and Beta-tubulin were observed, which were dependent on the amount of bleomycin and the voltages applied (>50 V). In addition, for electrochemotherapy with electric pulses >150 V cellular changes were not recoverable within 24 hrs. The effects on monolayer integrity were reflected in the enhanced monolayer permeability, with the electrochemotherapy showing an earlier onset and synergy. We conclude that electrochemotherapy as compared to electroporation leads within 24 hrs to a quicker and more pronounced monolayer integrity damage and endothelial cell death, which together provide further insight into the cellular changes of the vascular disruption of electrochemotherapy. PMID:23300747

  2. Differential cellular effects of electroporation and electrochemotherapy in monolayers of human microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Cécil J W Meulenberg

    Full Text Available In vivo electroporation of tumours shows disruption of blood flow and creates a vascular effect with an initial rapid and transient vasoconstriction phase and a much longer lasting phase with changed microvascular endothelium. These changes are not well understood but are presumed to involve the cytoskeleton. The paper presents for the first time differential in vitro effects describing cytoskeleton changes and monolayer integrity changes by both electroporation and electrochemotherapy of monolayers of human microvascular endothelial cells (HMEC-1. After the application of electric field pulses, the morphology of cells, and both the F-actin and Beta-tubulin cytoskeleton proteins were affected. During both electroporation and electrochemotherapy, the initial phase of cellular damage was noticed at 10 min as swollen cells and honeycomb-like actin bundles. The electroporation-induced cellular effects, observed from electric pulses >150 V, were voltage-dependent and within 24 hrs partly recoverable. The electrochemotherapy-induced cellular effects developed at 2 hrs in spindle-like cells, and more densely packed F-actin and Beta-tubulin were observed, which were dependent on the amount of bleomycin and the voltages applied (>50 V. In addition, for electrochemotherapy with electric pulses >150 V cellular changes were not recoverable within 24 hrs. The effects on monolayer integrity were reflected in the enhanced monolayer permeability, with the electrochemotherapy showing an earlier onset and synergy. We conclude that electrochemotherapy as compared to electroporation leads within 24 hrs to a quicker and more pronounced monolayer integrity damage and endothelial cell death, which together provide further insight into the cellular changes of the vascular disruption of electrochemotherapy.

  3. The influence of Flt3 ligand on proliferation of irradiated microvascular endothelial cells

    International Nuclear Information System (INIS)

    Objective: To investigate the influence of FL on proliferation of irradiated microvascular endothelial cells. (ECVs), and possible mechanism of FL in radiation protection of ECVs. Methods: The ECVs were screened for Flt3 receptor expression by flow cytometric analysis. The proliferation of ECVs stimulated by FL was measured by the micro-culture tetrazolium assay (MTT). The apoptosis of ECVs caused by irradiation was measured with Annexin V-PI. Two apoptosis-related genes, Bcl-XL and Bax, were also analyzed by RT-PCR. Results: Flt3 receptors were expressed on the surface of ECVs. FL stimulated the proliferation of ECVs at very low concentrations (0.5-15 ng/ml) with the maximum stimulation at 15 ng/ml. A significant increase in Bax activity and a decrease in Bcl-XL activity were seen at 24 h and 48 h post-irradiation, respectively. When the culture medium with FL was added 2 h before or immediately after irradiation, the expression of Bax fell sharply at 24 h and 48 h post-irradiation. The change in Bcl-XL activity was not so marked and a mild increase in Bcl-XL expression was seen only at 48 h post-irradiation. FL inhibited the apoptosis of ECVs caused by irradiation and stimulated the proliferation of irradiated ECVs. Conclusion: FL down-regulates the expression of Bax in irradiated ECVs, and inhibits the apoptosis of the ECVs. Thus, FL may find a use in radio-protection of hematopoietic cells via protection of the microvascular endothelial cells in the bone marrow microenvironment

  4. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase.

    Science.gov (United States)

    Wallace, Breanna K; Foroutan, Shahin; O'Donnell, Martha E

    2011-08-01

    Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive (86)Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O(2)), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK. PMID:21562306

  5. Albumin leak across human pulmonary microvascular vs. umbilical vein endothelial cells under septic conditions.

    Science.gov (United States)

    Shelton, Jennifer L; Wang, Lefeng; Cepinskas, Gediminas; Sandig, Martin; Inculet, Richard; McCormack, David G; Mehta, Sanjay

    2006-01-01

    Human pulmonary microvascular endothelial cell (HPMVEC) injury is central to the pathophysiology of human lung injury. However, septic HPMVEC barrier dysfunction and the contribution of neutrophils have not been directly addressed in vitro. Instead, human EC responses are often extrapolated from studies of human umbilical vein EC (HUVEC). We hypothesized that HUVEC was not a good model for investigating HPMVEC barrier function under septic conditions. HPMVEC was isolated from lung tissue resected from lung cancer patients using magnetic bead-bound anti-PECAM-1 antibody. In confluent monolayers in 3-mum cell-culture inserts, we assessed trans-EC Evans-Blue (EB)-conjugated albumin leak under basal, unstimulated conditions and following stimulation with either lipopolysaccharide or a mixture of equal concentrations of TNF-alpha, IL-1beta and IFN-gamma (cytomix). Basal EB-albumin leak was significantly lower across HPMVEC than HUVEC (0.64 +/- 0.06% vs. 1.13 +/- 0.10%, respectively, P neutrophils markedly and dose-dependently enhanced cytomix-induced EB-albumin leak across HPMVEC (P neutrophil presence, and HUVEC is not a suitable model for studying HPMVEC septic barrier responses. The direct study of HPMVEC septic responses will lead to a better understanding of human lung injury. PMID:16376951

  6. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium. (author)

  7. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A

    2011-10-01

    Full Text Available Abstract Background Brain microvascular pericytes are important constituents of the neurovascular unit. These cells are physically the closest cells to the microvascular endothelial cells in brain capillaries. They significantly contribute to the induction and maintenance of the barrier functions of the blood-brain barrier. However, very little is known about their immune activities or their roles in neuroinflammation. Here, we focused on the immunological profile of brain pericytes in culture in the quiescent and immune-challenged state by studying their production of immune mediators such as nitric oxide (NO, cytokines, and chemokines. We also examined the effects of immune challenge on pericyte expression of low density lipoprotein receptor-related protein-1 (LRP-1, a protein involved in the processing of amyloid precursor protein and the brain-to-blood efflux of amyloid-β peptide. Methods Supernatants were collected from primary cultures of mouse brain pericytes. Release of nitric oxide (NO was measured by the Griess reaction and the level of S-nitrosylation of pericyte proteins measured with a modified "biotin-switch" method. Specific mitogen-activated protein kinase (MAPK pathway inhibitors were used to determine involvement of these pathways on NO production. Cytokines and chemokines were analyzed by multianalyte technology. The expression of both subunits of LRP-1 was analyzed by western blot. Results Lipopolysaccharide (LPS induced release of NO by pericytes in a dose-dependent manner that was mediated through MAPK pathways. Nitrative stress resulted in S-nitrosylation of cellular proteins. Eighteen of twenty-three cytokines measured were released constitutively by pericytes or with stimulation by LPS, including interleukin (IL-12, IL-13, IL-9, IL-10, granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor, eotaxin, chemokine (C-C motif ligand (CCL-3, and CCL-4. Pericyte expressions of both subunits of

  8. LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels

    Directory of Open Access Journals (Sweden)

    Lan-hui Qin

    2015-01-01

    Full Text Available Disrupted blood-brain barrier (BBB integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS- induced dysregulation of tight junction (TJ proteins. Human cerebral microvascular endothelial cells (hCMEC/D3 were exposed to LPS, SB203580 (p38MAPK inhibitor, or SP600125 (JNK inhibitor, and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO- 1 were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR, and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA. LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22 µg/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor and SB-3CT (a specific MMP-2 inhibitor partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK.

  9. Effect of Sodium Butyrate on Lung Vascular TNFSF15 (TL1 A) Expression: Differential Expression Patterns in Pulmonary Artery and Microvascular Endothelial Cells

    OpenAIRE

    Safaya, Surinder; Klings, Elizabeth S.; Odhiambo, Adam; Li, Guihua; Farber, Harrison W.; Martin H Steinberg

    2009-01-01

    Vascular endothelial growth inhibitor TNFSF15 (TL1 A), a ligand for TNFRSF25 (DR3) and decoy receptor TNFRSF6B (DcR3), is expressed in human pulmonary arterial (HPAEC) and lung microvascular (HMVEC) endothelial cells where it might modulate inflammation and sickle vasculopathy. Pulmonary disease, endothelial abnormalities and inflammation are prominent features of sickle cell disease (SCD). Butyrate has opposing effects on endogenous TNFSF15 expression in pulmonary endothelium, acting as an i...

  10. EFFECTS OF TOTAL SAPONINS OF PANAX NOTOGINSENG AND LIGUSTRAZINE ON THE PROLIFERATION OF CEREBRAL MICROVASCULAR ENDOTHELIAL CELLS OF RATS

    Institute of Scientific and Technical Information of China (English)

    李敏杰; 刘勇; 丁海燕

    2002-01-01

    Objective To investigate the effects of Total Saponins of Panax notoginseng(PNS) and Liguastrazine(LIT) on the proliferation of cultured cerebral microvascular endothelial cells. Methods The inverted microscope was used to observe endothelial cells and immunochemical methods was also used to detect FVIII-related antigens so as to observe endothelial cells. PNS or LIT in concentrations 0.5 g*L-1, 1.0 g*L-1 and 2.0 g*L-1 were used on the cultured cerebral endothelial cells of rats for 24 hours. MTT method was adopted to determine the outcome of endothelial proliferation. Results 1. Immunochemical methods was used to detect FVIII-related antigens. The brownish yellow showed positive, and the observation of the cultured endothelial cells under inverted microscope showed that the cells appeared to be in the morphological form of cobble-stones. 2. PNS in lower concentration (0.5 g*L-1) could facilitate the proliferation of the cells, while 1 g*L-1 and 2 g*L-1 of PNS could inhibit the proliferation of the cells. 0.5 g*L-1 of LIT could facilitate the proliferation of cellswhile LIT of 1 g*L-1 and 2 g*L-1 had no significant effect. Conclusion The two kind of TCM ingredients extracted in lower concentration could facilitate the proliferation of the cells. And, at the same concentration, the inhibition of PNS on the cells is stronger than that of LIT.

  11. Repression of retinal microvascular endothelial cells by transthyretin under simulated diabetic retinopathy conditions

    Science.gov (United States)

    Shao, Jun; Yao, Yong

    2016-01-01

    AIM To investigate biological effects of transthyretin (TTR) on the development of neovascularization under simulated diabetic retinopathy (DR) condition associated with high glucose and hypoxia. METHODS Human retinal microvascular endothelial cells (hRECs) were cultured in normal and simulated DR environments with high glucose and hypoxia. The normal serum glucose concentration is approximately 5.5 mmol/L; thus, hyperglycemia was simulated with 25 mmol/L glucose, while hypoxia was induced using 200 µmol/L CoCl2. The influence of TTR on hRECs and human retinal pigment epithelial cells (hRPECs) was determined by incubating the cells with 4 µmol/L TTR in normal and abnormal media. A co-culture system was then employed to evaluate the effects of hRPECs on hRECs. RESULTS Decreased hRECs and hRPECs were observed under abnormal conditions, including high-glucose and hypoxic media. In addition, hRECs were significantly inhibited by 4 µmol/L exogenous TTR during hyperglycemic culture. During co-culture, hRPECs inhibited hRECs in both the normal and abnormal environments. CONCLUSION hREC growth is inhibited by exogenous TTR under simulated DR environments with high-glucose and hypoxic, particularly in the medium containing 25 mmol/L glucose. hRPECs, which manufacture TTR in the eye, also represses hRECs in the same environment. TTR is predicted to inhibit the proliferation of hRECs and neovascularization. PMID:27366679

  12. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells.

    Science.gov (United States)

    Thomsen, L B; Linemann, T; Pondman, K M; Lichota, J; Kim, K S; Pieters, R J; Visser, G M; Moos, T

    2013-10-16

    The blood-brain barrier (BBB) formed by brain capillary endothelial cells (BCECs) constitutes a firm physical, chemical, and immunological barrier, making the brain accessible to only a few percent of potential drugs intended for treatment inside the central nervous system. With the purpose of overcoming the restraints of the BBB by allowing the transport of drugs, siRNA, or DNA into the brain, a novel approach is to use superparamagnetic iron oxide nanoparticles (SPIONs) as drug carriers. The aim of this study was to investigate the ability of fluorescent SPIONs to pass through human brain microvascular endothelial cells facilitated by an external magnet. The ability of SPIONs to penetrate the barrier was shown to be significantly stronger in the presence of an external magnetic force in an in vitro BBB model. Hence, particles added to the luminal side of the in vitro BBB model were found in astrocytes cocultured at a remote distance on the abluminal side, indicating that particles were transported through the barrier and taken up by astrocytes. Addition of the SPIONs to the culture medium did not negatively affect the viability of the endothelial cells. The magnetic force-mediated dragging of SPIONs through BCECs may denote a novel mechanism for the delivery of drugs to the brain. PMID:23919894

  13. Human micro-vascular endothelial cell seeding on Cr-DLC thin films for mechanical heart valve applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, N. [Centre for Mechanical Technology and Automation, University of Aveiro (Portugal)]. E-mail: n.ali@mec.ua.pt; Kousar, Y. [Centre for Mechanical Technology and Automation, University of Aveiro (Portugal); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Singh, V. [Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806 (United States); Pease, M. [Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806 (United States); Ogwu, A.A. [Thin Film Centre, University of Paisley, Scotland (United Kingdom); Gracio, J. [Centre for Mechanical Technology and Automation, University of Aveiro (Portugal); Titus, E. [Centre for Mechanical Technology and Automation, University of Aveiro (Portugal); Meletis, E.I. [Materials Science and Engineering, The University of Texas at Arlington, TX (United States); Jackson, M.J. [Department of Mechanical Engineering, University of Purdue (United States)

    2006-09-25

    In this investigation, chromium modified diamond-like-carbon (Cr-DLC) films were studied for potential applications in mechanical heart valves. Three Cr- DLC samples were prepared using a magnetron sputtering technique employing an intensified plasma assisted processing (IPAP) system. The three samples consisted of the following Cr content: 1 at.%, 5 at.% and 10 at.%. The biological response of human micro-vascular endothelial cells (HMV-EC) seeded on Cr-DLC films was evaluated in terms of initial cell attachment and growth. The Cr-DLC films were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS) and by the contact angle technique. Endothelial cell adhesion and growth was found to be affected by changing the Cr content of Cr-DLC films.

  14. Human micro-vascular endothelial cell seeding on Cr-DLC thin films for mechanical heart valve applications

    International Nuclear Information System (INIS)

    In this investigation, chromium modified diamond-like-carbon (Cr-DLC) films were studied for potential applications in mechanical heart valves. Three Cr- DLC samples were prepared using a magnetron sputtering technique employing an intensified plasma assisted processing (IPAP) system. The three samples consisted of the following Cr content: 1 at.%, 5 at.% and 10 at.%. The biological response of human micro-vascular endothelial cells (HMV-EC) seeded on Cr-DLC films was evaluated in terms of initial cell attachment and growth. The Cr-DLC films were characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS) and by the contact angle technique. Endothelial cell adhesion and growth was found to be affected by changing the Cr content of Cr-DLC films

  15. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC are known to release paracrine factors (some of which are contained within exosomes that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC. pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6 and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™. The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS. Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2 exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01. Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05 and increased hPMEC tube formation by 7.2 fold (p<0.05. MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both

  16. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  17. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  18. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Science.gov (United States)

    Freeman, Brandi D; Martins, Yuri C; Akide-Ndunge, Oscar B; Bruno, Fernando P; Wang, Hua; Tanowitz, Herbert B; Spray, David C; Desruisseaux, Mahalia S

    2016-03-01

    Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954

  19. Notch signaling mediates crosstalk between endothelial cells and macrophages via Dll4 and IL6 in cardiac microvascular inflammation.

    Science.gov (United States)

    Pabois, Angélique; Pagie, Sylvain; Gérard, Nathalie; Laboisse, Christian; Pattier, Sabine; Hulin, Philippe; Nedellec, Steven; Toquet, Claire; Charreau, Béatrice

    2016-03-15

    Although short-term outcomes have improved with modern era immunosuppression, little progress has been made in long-term graft survival in cardiac transplantation. Antibody-mediated rejection (AMR) is one of the leading causes of graft failure and contributes significantly to poor long-term outcomes. Endothelial cell (EC) injury, intravascular macrophage infiltrate and microvascular inflammation are the histological features of AMR. Nevertheless, mechanisms of AMR remain unclear and treatment is still limited. Here, we investigated the mechanisms underlying vascular and inflammatory cell network involved in AMR at endothelial and macrophage levels, using endomyocardial transplant biopsies and EC/monocyte cocultures. First, we found that AMR associates with changes in Notch signaling at endothelium/monocyte interface including loss of endothelial Notch4 and the acquisition of the Notch ligand Dll4 in both cell types. We showed that endothelial Dll4 induces macrophage polarization into a pro-inflammatory fate (CD40(high)CD64(high)CD200R(low) HLA-DR(low)CD11b(low)) eliciting the production of IL-6. Dll4 and IL-6 are both Notch-dependent and are required for macrophage polarization through selective down and upregulation of M2- and M1-type markers, respectively. Overall, these findings highlight the impact of the graft's endothelium on macrophage recruitment and differentiation upon AMR via Notch signaling. We identified Dll4 and IL-6 as coregulators of vascular inflammation in cardiac transplantation and as potential targets for immunotherapy. PMID:26826491

  20. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sandra Beer

    2008-09-01

    Full Text Available Sandra Beer1,2, François Feihl1, Juan Ruiz2, Irène Juhan-Vague3, Marie-Françoise Aillaud3, Sandrine Golay Wetzel1, Lucas Liaudet4, Rolf C Gaillard2, Bernard Waeber1Centre Hospitalier Universitaire Vaudois, Division de Physiopathologie Clinique, Lausanne, Suisse1Division de Physiopathologie Clinique, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse; 2Service d’Endocrinologie, de Diabétologie et de Métabolisme, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse; 3Laboratoire d’hématologie, Centre Hospitalier Universitaire de Marseille; Inserm UMR 626, Marseille, France; 4Service de Médecine Intensive de l’Adulte, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, SuisseAim: Patients with non-insulin-dependent diabetes mellitus (NIDDM are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV, and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF, plasminogen activator inhibitor-1 (PAI-1, tissue plasminogen activator (t-PA, tissue factor pathway inhibitor (TFPI, and the soluble form of thrombomodulin (s-TM] patients with NIDDM.Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endotheliumdependent vasodilation and sodium nitroprusside (endothelium-independent vasodilation, as well as the reactive hyperemia triggered by the transient occlusion of the circulation.Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of

  1. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sandra Beer

    2008-12-01

    Full Text Available Sandra Beer1,2, François Feihl1, Juan Ruiz2, Irène Juhan-Vague3, Marie-Françoise Aillaud3, Sandrine Golay Wetzel1, Lucas Liaudet4, Rolf C Gaillard2, Bernard Waeber1Centre Hospitalier Universitaire Vaudois, Division de Physiopathologie Clinique, Lausanne, Suisse1Division de Physiopathologie Clinique, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse; 2Service d’Endocrinologie, de Diabétologie et de Métabolisme, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse; 3Laboratoire d’hématologie, Centre Hospitalier Universitaire de Marseille; Inserm UMR 626, Marseille, France; 4Service de Médecine Intensive de l’Adulte, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, SuisseAim: Patients with non-insulin-dependent diabetes mellitus (NIDDM are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV, and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF, plasminogen activator inhibitor-1 (PAI-1, tissue plasminogen activator (t-PA, tissue factor pathway inhibitor (TFPI, and the soluble form of thrombomodulin (s-TM] patients with NIDDM.Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endotheliumdependent vasodilation and sodium nitroprusside (endothelium-independent vasodilation, as well as the reactive hyperemia triggered by the transient occlusion of the circulation.Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of

  2. Intracerebral microvascular measurements during deep brain stimulation implantation using laser doppler perfusion monitoring

    OpenAIRE

    Wårdell, Karin; Blomstedt, P.; Richter, Johan; Antonsson, Johan; Eriksson, Ola; Zsigmond, Peter; Bergenheim, A.T.; Hariz, M I.

    2007-01-01

    The aim of the study was to investigate if laser Doppler perfusion monitoring (LDPM) can be used in order to differentiate between gray and white matter and to what extent microvascular perfusion can be recorded in the deep brain structures during stereotactic neurosurgery. An optical probe constructed to fit in the Leksell® Stereotactic System was used for measurements along the trajectory and in the targets (globus pallidus internus, subthalamic nucleus, zona incerta, thalamus) during the i...

  3. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  4. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit

    OpenAIRE

    Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand'Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva

    2015-01-01

    Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BB...

  5. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  6. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    International Nuclear Information System (INIS)

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury

  7. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  8. Differential Cellular Effects of Electroporation and Electrochemotherapy in Monolayers of Human Microvascular Endothelial Cells

    OpenAIRE

    Meulenberg, CÉcil J. W.; Todorovic, Vesna; Cemazar, Maja

    2012-01-01

    In vivo electroporation of tumours shows disruption of blood flow and creates a vascular effect with an initial rapid and transient vasoconstriction phase and a much longer lasting phase with changed microvascular endothelium. These changes are not well understood but are presumed to involve the cytoskeleton. The paper presents for the first time differential in vitro effects describing cytoskeleton changes and monolayer integrity changes by both electroporation and electrochemotherapy of mon...

  9. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit

    Science.gov (United States)

    Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith

    2015-01-01

    Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470

  10. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  11. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells.

    Science.gov (United States)

    Thangjam, Gagan S; Birmpas, Charalampos; Barabutis, Nektarios; Gregory, Betsy W; Clemens, Mary Ann; Newton, Joseph R; Fulton, David; Catravas, John D

    2016-05-15

    The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation. PMID:27036868

  12. Effect of bevacizumab (Avastin™) on mitochondrial function of in vitro retinal pigment epithelial, neurosensory retinal and microvascular endothelial cells

    Science.gov (United States)

    Luthra, Saurabh; Sharma, Ashish; Dong, Joyce; Neekhra, Aneesh; Gramajo, Ana L; Seigel, Gail M; Kenney, M Cristina; Kuppermann, Baruch D

    2013-01-01

    Purpose: To evaluate the effect of bevacizumab on the mitochondrial function of human retinal pigment epithelial (ARPE-19), rat neurosensory retinal (R28) and human microvascular endothelial (HMVEC) cells in culture. Materials and Methods: ARPE-19 and R28 cells were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab. The HMVEC cultures were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab or 1 mg/ml of immunoglobulin G (control). Mitochondrial function assessed by mitochondrial dehydrogenase activity (MDA) was determined using the WST-1 assay. Results: Bevacizumab doses of 0.125 to 1 mg/ml for 5 days did not significantly affect the MDA of ARPE-19 cells. Bevacizumab treatment at 0.125 and 0.25 mg/ml (clinical dose) did not significantly affect the MDA of R28 cells; however, 0.50 and 1 mg/ml doses significantly reduced the R28 cell mitochondrial function. All doses of bevacizumab significantly reduced the MDA of proliferating and non-proliferating HMVEC. Conclusion: Bevacizumab exposure for 5 days was safe at clinical doses in both ARPE-19 and R28 retinal neurosensory cells in culture. By contrast, bevacizumab exposure at all doses show a significant dose-dependent decrease in mitochondrial activity in both the proliferating and non-proliferating HMVEC in vitro. This suggests a selective action of bevacizumab on endothelial cells at clinical doses. PMID:24413824

  13. Disruption of Nrf2 Signaling Impairs Angiogenic Capacity of Endothelial Cells: Implications for Microvascular Aging

    OpenAIRE

    Valcarcel-Ares, M. Noa; Gautam, Tripti; Warrington, Junie P.; Bailey-Downs, Lora; Sosnowska, Danuta; de Cabo, Rafael; Losonczy, Gyorgy; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2012-01-01

    The redox-sensitive transcription factor NF-E2–related factor 2 (Nrf2) plays a key role in preserving a healthy endothelial phenotype and maintaining the functional integrity of the vasculature. Previous studies demonstrated that aging is associated with Nrf2 dysfunction in endothelial cells, which alters redox signaling and likely promotes the development of large vessel disease. Much less is known about the consequences of Nrf2 dysfunction at the level of the microcirculation...

  14. ASSOCIATION BETWEEN INSULIN RESISTANCE AND NITRIC OXIDE IN HUMAN RETINAL MICROVASCULAR ENDOTHELIAL CELLS IN VITRO

    OpenAIRE

    Bushra, Sumbul

    2015-01-01

    Diabetic retinopathy (DR) a major consequence of diabetes is considered the leading cause of vision loss and blindness worldwide among working adults. Endothelial dysfunction expediting imbalance in vascular homeostasis, is one of the primary manifestation leading to the pathogenesis of DR. NO a major vasodilator involved in the regulation of vascular homeostasis is reported to be released by insulin dependent PI3K/ Akt signaling pathway. Endothelial dysfunction impairs ocular ...

  15. Prostaglandin F2-alpha receptor (FPr expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs

    Directory of Open Access Journals (Sweden)

    Forni Monica

    2007-07-01

    Full Text Available Abstract Background The corpus luteum (CL is a transient endocrine gland and prostaglandin F2-alpha is considered to be the principal luteolysin in pigs. In this species, the in vivo administration of prostaglandin F2-alpha induces apoptosis in large vessels as early as 6 hours after administration. The presence of the prostaglandin F2-alpha receptor (FPr on the microvascular endothelial cells (pCL-MVECs of the porcine corpus luteum has not yet been defined. The aim of the study was to assess FPr expression in pCL-MVECs in the early and mid-luteal phases (EL-p, ML-p, and during pregnancy (P-p. Moreover, the effectiveness of prostaglandin F2-alpha treatment in inducing pCL-MVEC apoptosis was tested. Methods Porcine CLs were collected in the EL and ML phases and during P-p. All CLs from each animal were minced together and the homogenates underwent enzymatic digestion. The pCL-MVECs were then positively selected by an immunomagnetic separation protocol using Dynabeads coated with anti-CD31 monoclonal antibody and seeded in flasks in the presence of EGM 2-MV (Microvascular Endothelial Cell Medium-2. After 4 days of culture, the cells underwent additional immunomagnetic selection and were seeded in flasks until the confluent stage. PCR Real time, western blot and immunodetection assays were utilized to assess the presence of FPr on pCL-MVEC primary cultures. Furthermore, the influence of culture time (freshly isolated, cultured overnight and at confluence and hormonal treatment (P4 and E2 on FPr expression in pCL-MVECs was also investigated. Apoptosis was detected by TUNEL assay of pCL-MVECs exposed to prostaglandin F2-alpha. Results We obtained primary cultures of pCL-MVECs from all animals. FPr mRNA and protein levels showed the highest value (ANOVA in CL-MVECs derived from the early-luteal phase. Moreover, freshly isolated MVECs showed a higher FPr mRNA value than those cultured overnight and confluent cells (ANOVA. prostaglandin F2-alpha

  16. V-ATPase regulates communication between microvascular endothelial cells and metastatic cells.

    Science.gov (United States)

    Sennoune, S R; Arutunyan, A; del Rosario, C; Castro-Marin, R; Hussain, F; Martinez-Zaguilan, R

    2014-01-01

    To metastasize distant organs, tumor cells and endothelial cells lining the blood vessels must crosstalk. The nature of this communication that allows metastatic cells to intravasate and travel through the circulation and to extravasate to colonize different organs is poorly understood. In this study, we evaluated one of the first steps in this process—the proximity and physical interaction of endothelial and metastatic cells. To do this, we developed a cell separator chamber that allows endothelial and metastatic cells to grow side by side. We have shown in our previous studies that V-ATPases at the cell surface (pmV-ATPase) are involved in angiogenesis and metastasis. Therefore, we hypothesized that the physical proximity/interaction between endothelial and metastatic cells expressing pmV-ATPase will increase its activity in both cell types, and such activity in turn will increase pmV-ATPase expression on the membranes of both cell types. To determine pmV-ATPase activity we measured the proton fluxes (JH+) across the cell membrane. Our data indicated that interaction between endothelial and metastatic cells elicited a significant increase of JH+ via pmV-ATPase in both cell types. Bafilomycin, a V-ATPase inhibitor, significantly decrease JH+. In contrast, JH+ of the non-metastatic cells were not affected by the endothelial cells and vice-versa. Altogether, our data reveal that one of the early consequences of endothelial and metastatic cell interaction is an increase in pmV-ATPase that helps to acidify the extracellular medium and favors protease activity. These data emphasize the significance of the acidic tumor microenvironment enhancing a metastatic and invasive phenotype. PMID:24606724

  17. Visfatin Mediates SCLC Cells Migration across Brain Endothelial Cells through Upregulation of CCL2

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2015-05-01

    Full Text Available Small-cell lung cancer (SCLC is characterized as an aggressive tumor with brain metastasis. Although preventing SCLC metastasis to the brain is immensely important for survival, the molecular mechanisms of SCLC cells penetrating the blood–brain barrier (BBB are largely unknown. Recently, visfatin has been considered as a novel pro-inflammatory adipocytokine involved in various cancers. Herein, we present evidence that elevated levels of visfatin in the serum of SCLC patients were associated with brain metastasis, and visfain was increased in NCI-H446 cells, a SCLC cell line, during interacting with human brain microvascular endothelial cells (HBMEC. Using in vitro BBB model, we found that visfatin could promote NCI-H446 cells migration across HBMEC monolayer, while the effect was inhibited by knockdown of visfatin. Furthermore, our findings indicated that CC chemokine ligand 2 (CCL2 was involved in visfatin-mediated NCI-H446 cells transendothelial migtation. Results also showed that the upregulation of CCL2 in the co-culture system was reversed by blockade of visfatin. In particular, visfatin-induced CCL2 was attenuated by specific inhibitor of PI3K/Akt signaling in NCI-H446 cells. Taken together, we demonstrated that visfatin was a prospective target for SCLC metastasis to brain, and understanding the molecular mediators would lead to effective strategies for inhibition of SCLC brain metastasis.

  18. Microvascular permeability of brain astrocytoma with contrastenhanced magnetic resonance imaging: correlation analysis with histopathologic grade

    Institute of Scientific and Technical Information of China (English)

    JIA Zhong-zheng; GENG Dao-ying; LIU Ying; CHEN Xing-rong; ZHANG Jun

    2013-01-01

    Background The degree of pathological microvascular proliferation is an important element in evaluation of the astrocytoma grade.This study was aimed to quantitatively assess the microvascular permeability of brain astrocytoma with the volume transfer constant (Ktrans) and volume of extravascular extracellular space per unit volume of tissue (Ve) from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and to evaluate the effectiveness of the Ktrans and Ve in the grading of astrocytoma.Methods The highest values of the Ktrans and Ve of 67 patients with astrocytoma (27 with grade Ⅱ,12 with grade Ⅲ,and 28 with grade Ⅳ) were obtained.The comparisons of the differences of the Ktrans and Ve between the different grades were conducted using the Mann-Whitney rank-sum tests.Spearman's rank correlation coefficients were determined between Ktrans values,Ve values and astrocytoma grades.Receiver operating characteristic (ROC) curve analyses were performed to determine the cut-off values for the Ktrans and Ve to distinguish between the different grades of astrocytoma.Results There were significant differences (P<0.001) between the different grades in the Ktrans values and Ve values,except for grades Ⅲ and Ⅳ.The Ktrans values and Ve values were both correlated with astrocytoma grades (both P<0.001).The ROC curve analyses showed that the cut-off values for the Ktrans and Ve provided the best combination of sensitivity and specificity in distinguishing between grade Ⅱ and grade Ⅲ or Ⅳ astrocytomas.Conclusions DCE-MRI can play an important role in assessing the microvascular permeability and the grading of brain astrocytoma.

  19. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Daniel J. Kosman

    2015-07-01

    Full Text Available The transcellular trafficking of iron from the blood into the brain interstitium depends on iron uptake proteins in the apical membrane of brain microvascular capillary endothelial cells and efflux proteins at the basolateral, abluminal membrane. In this review, we discuss the three mechanisms by which these cells take-up iron from the blood and the sole mechanism by which they efflux this iron into the abluminal space. We then focus on the regulation of this efflux pathway by exocrine factors that are released from neighboring astrocytes. Also discussed are the cytokines secreted by capillary cells that regulate the expression of these glial cell signals. Among the interstitial factors that regulate iron efflux into the brain is the amyloid precursor protein. The role of this amyliodogenic species in brain iron metabolism is discussed. Last, we speculate on the potential relationship between iron transport at the blood-brain barrier and neurological disorders associated with iron mismanagement.

  20. The effect of different training modes on skeletal muscle microvascular density and endothelial enzymes controlling NO availability.

    Science.gov (United States)

    Cocks, Matthew; Wagenmakers, Anton J M

    2016-04-15

    It is becoming increasingly apparent that a high vasodilator response of the skeletal muscle microvasculature to insulin and exercise is of critical importance for adequate muscle perfusion and long-term microvascular and muscle metabolic health. Previous research has shown that a sedentary lifestyle, obesity and ageing lead to impairments in the vasodilator response, while a physically active lifestyle keeps both microvascular density and vasodilator response high. To investigate the molecular mechanisms behind these impairments and the benefits of exercise training interventions, our laboratory has recently developed quantitative immunofluorescence microscopy methods to measure protein content of eNOS and NAD(P)Hoxidase specifically in the endothelial layer of capillaries and arterioles of human skeletal muscle. As eNOS produces nitric oxide (NO) and NAD(P)Hoxidase produces superoxide anions (O2 (-) , quenching NO) we propose that the eNOS/NAD(P)Hoxidase protein ratio is a marker of vasodilator capacity. The novel methods show that endurance training (ET) and high intensity interval training (HIT), generally regarded as a time-efficient alternative to ET, increase eNOS protein content and the eNOS/NADP(H)oxidase protein ratio in previously sedentary lean and obese young men. Resistance exercise training had smaller but qualitatively similar effects. Western blot data of other laboratories suggest that endurance exercise training leads to similar changes in sedentary elderly men. Future research will be required to investigate the relative importance of other sources and tissues in the balance between NO and O2 (-) production seen by the vascular smooth muscle layer of terminal arterioles. PMID:25809076

  1. Effect of Diazoxide Preconditioning on Cultured Rat Myocardium Microvascular Endothelial Cells against Apoptosis and Relation of PI3K/Akt Pathway

    OpenAIRE

    Su, Cao; Xia, Tao; Ren, Shen; Qing, She; Jing, Ding; Lian, Huang; Bin, Qin; Yuan, Zhou; Xiang, Zhu

    2014-01-01

    Background: Anti-apoptotic mechanism for cell protection on reperfusion may provide a new method to reduce reperfusion injury. Aims: The aim of the present study is to explore the effect of mitochondrial ATP sensitive potassium channel (Mito-KATP) opener diazoxide (DZ) preconditioning on hypoxia/ reoxygen (H/R) injury of rat myocardium microvascular endothelial cells (MMECs) against apoptosis and relation of PI3K/Akt pathway. Study Design: Animal experimentation. ...

  2. Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Fridriksdottir, Agla J R; Kjartansson, Jens;

    2007-01-01

    lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) showed that blood and lymphatic vessels could be distinguished. An antibody against CD31 was used to refine protocols for isolation of microvasculature from reduction mammoplasties. BRENCs retained critical traits even at high passage, including...

  3. 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Prázdný, M.; Škrha, J.; Fenclová, Z.; Kalousová, M.; Urban, P.; Navrátil, Tomáš; Šenholdová, Z.; Šmerhovský, Z.

    2007-01-01

    Roč. 26, - (2007), s. 705-713. ISSN 0960-3271 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2,3,7,8-TCDD * endothelial dysfunction * oxidative stress * superoxide dismutase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.335, year: 2007

  4. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome: Influence of arterial hypertension

    Czech Academy of Sciences Publication Activity Database

    Prázný, M.; Ježková, J.; Horová, E.; Lazárová, V.; Hána, V.; Kvasnička, J.; Pecen, Ladislav; Marek, J.; Škrha, J.; Kršek, M.

    2008-01-01

    Roč. 57, č. 1 (2008), s. 13-22. ISSN 0862-8408 Institutional research plan: CEZ:AV0Z10300504 Keywords : Cushing’s syndrome * vascular reactivity * endothelial function * oxidative stress * laser Doppler flowmetry Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.653, year: 2008

  5. Targeted siRNA Delivery to Diseased Microvascular Endothelial Cells-Cellular and Molecular Concepts

    NARCIS (Netherlands)

    Kowalski, Piotr S.; Leus, Niek G. J.; Scherphof, Gerrit L.; Ruiters, Marcel H. J.; Kamps, Jan A. A. M.; Molema, Grietje

    2011-01-01

    Increased insight in the role of endothelial cells in the pathophysiology of cancer, inflammatory and cardiovascular diseases, has drawn great interest in pharmacological interventions aiming at the endothelium in diseased sites. Their location in the body makes them suitable targets for therapeutic

  6. Assessment of endothelial function by brachial artery flow mediated dilatation in microvascular disease

    Directory of Open Access Journals (Sweden)

    Naidu Otikunta

    2011-12-01

    Full Text Available Abstract Background Cardiac syndrome X is an important therapeutic and diagnostic challenge to physician. Study of Csx patients may help to understand the pathophysiology of coronary microcirculation and to gain an insight on the management of these group patients. Methods We measured the flow mediated dilation of the brachial artery both endothelium dependent and independent vasodilatation by high resolution ultrasound in 30 cardiac syndrome X patients and matched with 30 healthy control subjects. Results Significantly decreased flow mediated dilatation was observed in patients when compared to control (9.42 ± 7.20 vs 21.11 ± 9.16 p 11.11(p Conclusions The study suggests impairment of endothelial function in cardiac syndrome X patients. Increased Systolic blood pressure and body mass index may increase the risk of impairment of endothelial function in this group of patients.

  7. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    International Nuclear Information System (INIS)

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway

  8. Tumour necrosis factor α enhances CCL2 and ICAM-1 expression in peripheral nerve microvascular endoneurial endothelial cells

    Directory of Open Access Journals (Sweden)

    Evan B. Stubbs

    2013-02-01

    Full Text Available Recruitment and trafficking of autoreactive leucocytes across the BNB (blood–nerve barrier is an early pathological insult in GBS (Guillain-Barré syndrome, an aggressive autoimmune disorder of the PNS (peripheral nervous system. Whereas the aetiology and pathogenesis of GBS remain unclear, pro-inflammatory cytokines, including TNFα (tumour necrosis factor α, are reported to be elevated early in the course of GBS and may initiate nerve injury by activating the BNB. Previously, we reported that disrupting leucocyte trafficking in vivo therapeutically attenuates the course of an established animal model of GBS. Here, PNMECs (peripheral nerve microvascular endothelial cells that form the BNB were harvested from rat sciatic nerves, immortalized by SV40 (simian virus 40 large T antigen transduction and subsequently challenged with TNFα. Relative changes in CCL2 (chemokine ligand 2 and ICAM-1 (intercellular adhesion molecule 1 expression were determined. We report that TNFα elicits marked dose- and time-dependent increases in CCL2 and ICAM-1 mRNA and protein content and promotes secretion of functional CCL2 from immortalized and primary PNMEC cultures. TNFα-mediated secretion of CCL2 promotes, in vitro, the transendothelial migration of CCR2-expressing THP-1 monocytes. Increased CCL2 and ICAM-1 expression in response to TNFα may facilitate recruitment and trafficking of autoreactive leucocytes across the BNB in autoimmune disorders, including GBS.

  9. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  10. Hypertension alters phosphorylation of VASP in brain endothelial cells.

    Science.gov (United States)

    Arlier, Zulfikar; Basar, Murat; Kocamaz, Erdogan; Kiraz, Kemal; Tanriover, Gamze; Kocer, Gunnur; Arlier, Sefa; Giray, Semih; Nasırcılar, Seher; Gunduz, Filiz; Senturk, Umit K; Demir, Necdet

    2015-04-01

    Hypertension impairs cerebral vascular function. Vasodilator-stimulated phosphoprotein (VASP) mediates active reorganization of the cytoskeleton via membrane ruffling, aggregation and tethering of actin filaments. VASP regulation of endothelial barrier function has been demonstrated by studies using VASP(-/-) animals under conditions associated with tissue hypoxia. We hypothesize that hypertension regulates VASP expression and/or phosphorylation in endothelial cells, thereby contributing to dysfunction in the cerebral vasculature. Because exercise has direct and indirect salutary effects on vascular systems that have been damaged by hypertension, we also investigated the effect of exercise on maintenance of VASP expression and/or phosphorylation. We used immunohistochemistry, Western blotting and immunocytochemistry to examine the effect of hypertension on VASP expression and phosphorylation in brain endothelial cells in normotensive [Wistar-Kyoto (WKY)] and spontaneously hypertensive (SH) rats under normal and exercise conditions. In addition, we analyzed VASP regulation in normoxia- and hypoxia-induced endothelial cells. Brain endothelial cells exhibited significantly lower VASP immunoreactivity and phosphorylation at the Ser157 residue in SHR versus WKY rats. Exercise reversed hypertension-induced alterations in VASP phosphorylation. Western blotting and immunocytochemistry indicated reduction in VASP phosphorylation in hypoxic versus normoxic endothelial cells. These results suggest that diminished VASP expression and/or Ser157 phosphorylation mediates endothelial changes associated with hypertension and exercise may normalize these changes, at least in part, by restoring VASP phosphorylation. PMID:24894047

  11. Heparin Binds Endothelial Cell Growth Factor, the Principal Endothelial Cell Mitogen in Bovine Brain

    Science.gov (United States)

    Maciag, Thomas; Mehlman, Tevie; Friesel, Robert; Schreiber, Alain B.

    1984-08-01

    Endothelial cell growth factor (ECGF), an anionic polypeptide mitogen, binds to immobilized heparin. The interaction between the acidic polypeptide and the anionic carbohydrate suggests a mechanism that is independent of ion exchange. Monoclonal antibodies to purified bovine ECGF inhibited the biological activity of ECGF in crude preparations of bovine brain. These data indicate that ECGF is the principal mitogen for endothelial cells from bovine brain, that heparin affinity chromatography may be used to purify and concentrate ECGF, and that the affinity of ECGF for heparin may have structural and perhaps biological significance.

  12. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  13. ATP5A1 and ATP5B are highly expressed in glioblastoma tumor cells and endothelial cells of microvascular proliferation.

    Science.gov (United States)

    Xu, Guiyan; Li, Jian Yi

    2016-02-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor. Microvascular proliferation is one of the characteristic pathologic features of GBM. Mitochondrial dysfunction plays an important role in the pathogenesis of GBM. In this study, microvascular proliferation from GBM and normal brain blood vessels were laser microdissected and total RNA was isolated from these microvasculatures. The difference of mRNA expression profiles among GBM microvasculature, normal brain blood vessels and GBM tumor cells was evaluated by mitochondria and metabolism PCR gene arrays. It was found that the mRNA levels of ATP5A1 and ATP5B in GBM tumor cells as well as microvascular proliferation were significantly higher compared with normal brain blood vessels. Immunohistochemical stains with anti-ATP5A1 antibody or anti-ATP5B antibody were performed on tissue microarray, which demonstrated strongly positive expression of ATP5A1 and ATP5B in GBM tumor cells and GBM microvascular proliferation while normal blood vessels were negative. By analyzing The Cancer Genome Atlas data sets for GBM and other cancers, genomic DNA alterations (mutation, amplification or deletion) were less likely the reason for the high expression of ATP5A1 and ATP5B in GBM. Our miRNA microarray data showed that miRNAs that target ATP5A1 or ATP5B were down-regulated, which might be the most likely reason for the high expression of ATP5A1 and ATP5B in GBM tumor cells and microvascular proliferation. These findings help us better understand the pathogenesis of GBM, and agents against ATP5A1 and/or ATP5B might effectively kill both tumor cells and microvascular proliferation in GBM. MiRNAs, such as Let-7f, miR-16, miR-23, miR-100 and miR-101, that target ATP5A1 or ATP5B, might be potential therapeutic agents for GBM. PMID:26526033

  14. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...... that glycocalyx disruption preceded cerebral manifestations. The contribution of this loss to pathogenesis should be studied further....

  15. Isolation and Culture of Human Microvascular endothelium for comparison of the morphological and molecular characteristics of Microvascular endothelial cells under normal gravity against simulated micro gravity

    OpenAIRE

    Tholcopiyan L; Thamaraikannan P; Murugan P; Srinivasan V.; Majumder S.; Manjunath S; Chatterjee S.; Abraham S

    2010-01-01

    BACKGROUND: Vascular endothelial cells play a major role in wound healing and also in growth of the tumors. Angiogenesis can be a target for treating diseases that are due to either poor vascularisation or decreased blood supply as in stroke, ulcers, heart disease, etc or abnormal and increased vasculature like in tumours. Application of specific compounds that may inhibit or induce the creation of new blood vessels in the body may help in the treatment of such diseases (1). Ex vivo generati...

  16. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    DEFF Research Database (Denmark)

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq;

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected and.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  17. The assessment of immature microvascular density in brain gliomas with dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhong Zheng, E-mail: jzz2397@163.com [Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu (China); Gu, Hong Mei, E-mail: guhongmei71@163.com [Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu (China); Zhou, Xue Jun, E-mail: zxj0925101@sina.com [Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu (China); Shi, Jin Long, E-mail: shij_ns@163.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Li, Min Da, E-mail: 115218103@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu (China); Zhou, Guo Feng, E-mail: 292768853@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu (China); Wu, Xian Hua, E-mail: wuxianhua58@sohu.com [Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu (China)

    2015-09-15

    Highlights: • It is very important to evaluate glioma immature microvessel in a noninvasive manner for clinical practice. • In this work, we evaluated the immature microvascular density (MVD) in brain gliomas by comparing with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and CD105 positive MVD. • Our study provided a direct histologic microvascular that correlated with DCE-MRI, which may help to support the alternative hypothesis that DCE-MRI can assess the malignant and immature microvessels within gliomas. • Specifically, we validated the hypothesis that DCE-MRI could reflect immature MVD within gliomas. - Abstract: Purpose: This study was designed to quantitatively evaluate the immature microvascular density (MVD) of brain gliomas using the volume transfer constant (K{sup trans}) and volume of extravascular extracellular space per unit volume of tissue (V{sub e}) from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) noninvasively. Materials and methods: Fifty-seven patients (35 males, 22 females; age range, 14–70, mean age 46 ± 12 years old) with brain glioma were included in this study. The maximal values of K{sup trans} and V{sub e} of all patients with brain glioma (grade II 24, III 7 and IV 26) were obtained. The CD105-microvascular density (CD105-MVD) of each tumor was measured in surgical specimen. The differences of K{sup trans}, V{sub e} and CD105-MVD between the different grades of gliomas were analyzed using the Mann–Whitney U-test. The Pearman correlation coefficient was determined between K{sup trans}, V{sub e} and CD105-MVD. A P-value of less than 0.05 was considered statistically significant. Results: The differences in K{sup trans}, V{sub e} and CD105-MVD were statistically significant between low-grade glioma (LGG) and high-grade glioma (HGG) (P = 0.001, P < 0.001, P < 0.001). The K{sup trans}, V{sub e} and CD105-MVD of grade II were significantly lower than those of grade III and IV. K{sup trans} and

  18. The assessment of immature microvascular density in brain gliomas with dynamic contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Highlights: • It is very important to evaluate glioma immature microvessel in a noninvasive manner for clinical practice. • In this work, we evaluated the immature microvascular density (MVD) in brain gliomas by comparing with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and CD105 positive MVD. • Our study provided a direct histologic microvascular that correlated with DCE-MRI, which may help to support the alternative hypothesis that DCE-MRI can assess the malignant and immature microvessels within gliomas. • Specifically, we validated the hypothesis that DCE-MRI could reflect immature MVD within gliomas. - Abstract: Purpose: This study was designed to quantitatively evaluate the immature microvascular density (MVD) of brain gliomas using the volume transfer constant (Ktrans) and volume of extravascular extracellular space per unit volume of tissue (Ve) from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) noninvasively. Materials and methods: Fifty-seven patients (35 males, 22 females; age range, 14–70, mean age 46 ± 12 years old) with brain glioma were included in this study. The maximal values of Ktrans and Ve of all patients with brain glioma (grade II 24, III 7 and IV 26) were obtained. The CD105-microvascular density (CD105-MVD) of each tumor was measured in surgical specimen. The differences of Ktrans, Ve and CD105-MVD between the different grades of gliomas were analyzed using the Mann–Whitney U-test. The Pearman correlation coefficient was determined between Ktrans, Ve and CD105-MVD. A P-value of less than 0.05 was considered statistically significant. Results: The differences in Ktrans, Ve and CD105-MVD were statistically significant between low-grade glioma (LGG) and high-grade glioma (HGG) (P = 0.001, P < 0.001, P < 0.001). The Ktrans, Ve and CD105-MVD of grade II were significantly lower than those of grade III and IV. Ktrans and Ve were positively correlated with CD105-MVD in HGG (P < 0.001, P < 0

  19. Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury.

    Science.gov (United States)

    Huang, Xin-Tao; Zhang, Yong-Qiang; Li, Sheng-Jie; Li, Sheng-Hui; Tang, Qing; Wang, Zhi-Tao; Dong, Jing-Fei; Zhang, Jian-Ning

    2013-12-15

    Endothelial progenitor cells (EPCs) play a key role in tissue repair and regeneration. Previous studies have shown a positive correlation between the number of circulating EPCs and clinical outcomes of patients with traumatic brain injury (TBI). A recent study has further shown that intravenous infusion of human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) improves outcomes of mice subjected to experimental TBI. This follow-up study was designed to determine whether intracerebroventricular (i.c.v.) infusion of ECFCs, which may reduce systemic effects of these cells, could repair the blood-brain barrier (BBB) and promote angiogenesis of mice with TBI. Adult nude mice were exposed to fluid percussion injury and transplanted i.c.v. with ECFCs on day 1 post-TBI. These ECFCs were detected at the TBI zone 3 days after transplantation by SP-DiIC18(3) and fluorescence in situ hybridization. Mice with ECFCs transplant had reduced Evans blue extravasation and brain water content, increased expression of ZO-1 and claudin-5, and showed a higher expression of angiopoietin 1. Consistent with the previous report, mice with ECFCs transplant had also increased microvascular density. Modified neurological severity score and Morris water maze test indicated significant improvements in motor ability, spatial acquisition and reference memory in mice receiving ECFCs, compared to those receiving saline. These data demonstrate the beneficial effects of ECFC transplant on BBB integrity and angiogenesis in mice with TBI. PMID:23957220

  20. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  1. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells

    OpenAIRE

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L.; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J.; Otterson, Mary F.; Stoner, Gary D.; Shaker, Reza; Rafiee, Parvaneh

    2014-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat’s digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endot...

  2. Engineering a Dual-Layer Chitosan-Lactide Hydrogel To Create Endothelial Cell Aggregate-Induced Microvascular Networks In Vitro and Increase Blood Perfusion In Vivo.

    Science.gov (United States)

    Kim, Sungwoo; Kawai, Toshiyuki; Wang, Derek; Yang, Yunzhi

    2016-08-01

    Here, we report the use of chemically cross-linked and photo-cross-linked hydrogels to engineer human umbilical vein endothelial cell (HUVEC) aggregate-induced microvascular networks to increase blood perfusion in vivo. First, we studied the effect of chemically cross-linked and photo-cross-linked chitosan-lactide hydrogels on stiffness, degradation rates, and HUVEC behaviors. The photo-cross-linked hydrogel was relatively stiff (E = ∼15 kPa) and possessed more compact networks, denser surface texture, and lower enzymatic degradation rates than the relatively soft, chemically cross-linked hydrogel (E = ∼2 kPa). While both hydrogels exhibited nontoxicity, the soft chemically cross-linked hydrogels expedited the formation of cell aggregates compared to the photo-cross-linked hydrogels. Cells on the less stiff, chemically cross-linked hydrogels expressed more matrix metalloproteinase (MMP) activity than the stiffer, photo-cross-linked hydrogel. This difference in MMP activity resulted in a more dramatic decrease in mechanical stiffness after 3 days of incubation for the chemically cross-linked hydrogel, as compared to the photo-cross-linked one. After determining the physical and biological properties of each hydrogel, we accordingly engineered a dual-layer hydrogel construct consisting of the relatively soft, chemically cross-linked hydrogel layer for HUVEC encapsulation, and the relatively stiff, acellular, photo-cross-linked hydrogel for retention of cell-laden microvasculature above. This dual-layer hydrogel construct enabled a lasting HUVEC aggregate-induced microvascular network due to the combination of stable substrate, enriched cell adhesion molecules, and extracellular matrix proteins. We tested the dual-layer hydrogel construct in a mouse model of hind-limb ischemia, where the HUVEC aggregate-induced microvascular networks significantly enhanced blood perfusion rate to ischemic legs and decreased tissue necrosis compared with both no treatment and

  3. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  4. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage

    DEFF Research Database (Denmark)

    Lundblad, Cornelia; Haanes, Kristian A; Grände, Gustaf;

    2015-01-01

    migraine for many patients, their site of action remains unidentified. It has been suggested that during migraine attacks the leakiness of the blood-brain barrier (BBB) is altered, increasing the passage of anti-migraine drugs. This study aimed to investigate the effect of experimental inflammation......, following dural application of complete Freund's adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. METHODS: In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface....... Following 2, 24 or 48 h of inflammation we calculated permeability-surface area product (PS) for [(51)Cr]-EDTA in the trigeminal ganglion (TG), spinal trigeminal nucleus, cortex, periaqueductal grey and cerebellum. RESULTS: We observed that [(51)Cr]-EDTA did not pass into the central nervous system (CNS) in...

  5. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    Science.gov (United States)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  6. Interactions of Neuropathogenic Escherichia coli K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Science.gov (United States)

    Yousuf, Farzana Abubakar; Yousuf, Zuhair; Iqbal, Junaid; Siddiqui, Ruqaiyyah; Khan, Hafsa; Khan, Naveed Ahmed

    2014-01-01

    Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin), adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (IbeA, CNF1), metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism) showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (CNF1), metabolism (D-serine catabolism) abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity. PMID:24818136

  7. Interactions of Neuropathogenic Escherichia coli K1 (RS218 and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Farzana Abubakar Yousuf

    2014-01-01

    Full Text Available Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin, adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (IbeA, CNF1, metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (CNF1, metabolism (D-serine catabolism abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity.

  8. Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Kanmogne GD

    2012-05-01

    Full Text Available Georgette D Kanmogne1, Sangya Singh1, Upal Roy1, Xinming Liu1, JoEllyn McMillan1, Santhi Gorantla1, Shantanu Balkundi1, Nathan Smith1, Yazen Alnouti2, Nagsen Gautam2, You Zhou3, Larisa Poluektova1, Alexander Kabanov2, Tatiana Bronich2, Howard E Gendelman11Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 2Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE; 3Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USAAbstract: Despite the successes of antiretroviral therapy (ART, HIV-associated neurocognitive disorders remain prevalent in infected people. This is due, in part, to incomplete ART penetration across the blood–brain barrier (BBB and lymph nodes and to the establishment of viral sanctuaries within the central nervous system. In efforts to improve ART delivery, our laboratories developed a macrophage-carriage system for nanoformulated crystalline ART (nanoART (atazanavir, ritonavir, indinavir, and efavirenz. We demonstrate that nanoART transfer from mononuclear phagocytes (MP to human brain microvascular endothelial cells (HBMEC can be realized through cell-to-cell contacts, which can facilitate drug passage across the BBB. Coculturing of donor MP containing nanoART with recipient HBMEC facilitates intercellular particle transfer. NanoART uptake was observed in up to 52% of HBMEC with limited cytotoxicity. Folate coating of nanoART increased MP to HBMEC particle transfer by up to 77%. To translate the cell assays into relevant animal models of disease, ritonavir and atazanavir nanoformulations were injected into HIV-1-infected NOD/scid-γcnull mice reconstituted with human peripheral blood lymphocytes. Atazanavir and ritonavir levels in brains of mice treated with folate-coated nanoART were three- to four-fold higher than in mice treated with noncoated particles. This was associated with decreased viral load in the spleen and

  9. Effects ofPlasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sarah D Alessandro; Nicoletta Basilico; Mauro Prato

    2013-01-01

    Objective:To investigate the regulation of matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in human microvascular endothelium(HMEC-1) exposed to erythrocytes infected by different strains ofPlasmodium falciparum (P. falciparum).Methods:HMEC-1 cells were co-incubated for72 h with erythrocytes infected by late stage trophozoite of D10(chloroquine-sensitive) orW2(chloroquine-resistant)P. falciparum strains.Cell supernatants were then collected and the levels of pro- or active gelatinasesMMP-9 andMMP-2 were evaluated by gelatin zymography and densitometry.The release of pro-MMP-9,MMP-3,MMP-1 andTIMP-1 proteins was analyzed by western blotting and densitometry.Results:Infected erythrocytes inducedde novo proMMP-9 andMMP-9 release.Neither basal levels of proMMP-2 were altered, nor activeMMP-2 was found.MMP-3 andMMP-1 secretion was significantly enhanced, whereas basalTIMP-1 was unaffected.All effects were similar for both strains. Conclusions:P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of activeMMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators.This work provides new evidence onMMP involvement in malaria, pointing atMMP-9 as a possible target in adjuvant therapy.

  10. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    International Nuclear Information System (INIS)

    Highlights: ► The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. ► Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. ► Differential degradation appears related to nuclear vs. sarcolemmal localization. ► Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  11. Blood-brain barrier permeability imaging using perfusion computed tomography

    Directory of Open Access Journals (Sweden)

    Avsenik Jernej

    2015-06-01

    Full Text Available Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases.

  12. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells

    OpenAIRE

    Cui, Hongmei; Chen, Bernadette; Chicoine, Louis G.; Nelin, Leif D.

    2011-01-01

    1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2.

  13. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    International Nuclear Information System (INIS)

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with [3H]-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, α-methyldopa, L-DOPA, α-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB

  14. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.

  15. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  16. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    OpenAIRE

    Mange, J P; Stephan, R; Borel, N; Wild, P; Kim, K. S.; Pospischil, A; Lehner, A

    2006-01-01

    BACKGROUND: Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and...

  17. Photodynamic efficacy of liposome-delivered hypocrellin B in microvascular endothelial cells in vitro and chicken combs in vivo: a potential photosensitizer for port wine stain

    International Nuclear Information System (INIS)

    Photodynamic therapy (PDT) has been proved a successful method for port wine stain (PWS), but the prolonged skin photosensitivity induced by the photosensitizers used currently seriously limits the clinical application of PDT. In this study, we investigate the feasibility of hypocrellin B (HB), a promising second-generation photosensitizer for the treatment of PWS. The photodynamic effect of liposome-delivered HB was evaluated in vitro with microvascular endothelial cells (MEC) and in vivo with chicken combs. The dark cytotoxicity and photocytotoxicity of liposomal HB in MEC were evaluated using the MTT assay. Gross and histological examinations were performed to investigate the selective occlusion of the superficial dermal microvasculature in the chicken comb. The result showed that photocytotoxicity of liposomal HB was dependent on both light dose and drug concentration. PDT with HB (0.5–1 mg kg−1) and a light dose of 120 J cm−2 showed selective destruction of the superficial dermal microvasculature of the chicken comb, leaving the overlying epidermis intact. This is the first study to investigate the potential efficacy of HB-PDT as a novel modality for the treatment of PWS. These findings suggest that liposomal HB is a safe and effective photosensitizer for PWS. (paper)

  18. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  19. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Directory of Open Access Journals (Sweden)

    Marta S Laranjeira

    2014-03-01

    Full Text Available Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs and human dermal microvascular endothelial cells (HDMECs on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves. Our results showed that cells had a higher metabolic activity (HGF, HDMEC and increased gene expression levels of fibroblast-specific protein-1 (FSP-1 and collagen type I (COL I on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  20. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  1. Tongxinluo Inhibits Cyclooxygenase-2, Inducible Nitric Oxide Synthase, Hypoxia-inducible Factor-2α/Vascular Endothelial Growth Factor to Antagonize Injury in Hypoxia-stimulated Cardiac Microvascular Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ning Li; Xiu-Juan Wang; Bin Li; Kun Liu; Jin-Sheng Qi; Bing-Hui Liu; Ye Tian

    2015-01-01

    Background:Endothelial dysfunction is considered as the initiating process and pathological basis of cardiovascular disease.Cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS),inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS)are key enzymes with opposing actions in inflammation and oxidative stress,which are believed to be the major driver of endothelial dysfunction.And in hypoxia (Hx),Hx-inducible factor (HIF)-1 α and HIF-2α are predominantly induced to activate vascular endothelial growth factor (VEGF),resulting in abnormal proliferation.Whether and how Tongxinluo (TXL) modulates COX-2,PGIS,iNOS,eNOS,HIF-1 α,HIF-2α,and VEGF in Hx-stimulated human cardiac microvascular endothelial cells (HCMECs) have not been clarified.Methods:HCMEC were treated with CoCl2 to mimic Hx and the mRNA expressions of COX-2,PGIS,iNOS,eNOS,HIF-1α,HIF-2α,and VEGF were first confirmed,and then their mRNA expression and protein content as well as the cell pathological alterations were evaluated for TXL treatment with different concentrations.In addition,the effector molecular of inflammation prostaglandin E2 (PGE2)and the oxidative marker nitrotyrosine (NT) was adopted to reflect HCMEC injury.Results:Hx could induce time-dependent increase of COX-2,iNOS,HIF-2α,and VEGF in HCMEC.Based on the Hx-induced increase,TXL could mainly decrease COX-2,iNOS,HIF-2α,and VEGF in a concentration-dependent manner,with limited effect on the increase of PGIS and eNOS.Their protein contents verified the mRNA expression changes,which was consistent with the cell morphological alterations.Furthermore,high dose TXL could inhibit the Hx-induced increase of PGE2 and NT contents,attenuating the inflammatory and oxidative injury.Conclusions:TXL could inhibit inflammation-related COX-2,oxidative stress-related iNOS,and HIF-2α/VEGF to antagonize Hx-induced HCMEC injury.

  2. Nanoparticle accumulation and transcytosis in brain endothelial cell layers

    Science.gov (United States)

    Ye, Dong; Raghnaill, Michelle Nic; Bramini, Mattia; Mahon, Eugene; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In order to investigate the capacity of nanoparticles to access and transport across the BBB, several different nanomaterials, including silica, titania and albumin- or transferrin-conjugated gold nanoparticles of different sizes, were exposed to a human in vitro BBB model of endothelial hCMEC/D3 cells. Extensive transmission electron microscopy imaging was applied in order to describe nanoparticle endocytosis and typical intracellular localisation, as well as to look for evidence of eventual transcytosis. Our results show that all of the nanoparticles were internalised, to different extents, by the BBB model and accumulated along the endo-lysosomal pathway. Rare events suggestive of nanoparticle transcytosis were also observed for several of the tested materials.The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In

  3. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  4. Repeatability of the evaluation of systemic microvascular endothelial function using laser doppler perfusion monitoring: clinical and statistical implications

    Directory of Open Access Journals (Sweden)

    Eduardo Tibiriçá

    2011-01-01

    Full Text Available OBJECTIVE: An awareness of the repeatability of biological measures is required to properly design and calculate sample sizes for longitudinal interventional studies. We investigated the day-to-day repeatability of measures of systemic microvascular reactivity using laser Doppler perfusion monitoring. METHODS: We performed laser Doppler perfusion monitoring in combination with skin iontophoresis using acetylcholine and sodium nitroprusside as well as post-occlusive reactive and thermal hyperemia twice within two weeks. The repeatability was assessed by calculating the within-subject standard deviations, limits of agreement, typical errors and intra-class correlation coefficients between days 1 and 2. The ratio of the within-subject standard deviation to the mean values obtained on days 1 and 2 (within-subject standard deviation/GM was used to determine the condition with the best repeatability. RESULTS: Twenty-four healthy subjects, aged 24.6 + 3.8 years, were recruited. The area under the curve of the vasodilatory response to post-occlusive reactivity showed marked variability (within-subject standard deviation/GM = 0.83, while the area under the curve for acetylcholine exhibited less variability (within-subject standard deviation/ GM = 0.52 and was comparable to the responses to sodium nitroprusside and thermal treatment (within-subject standard deviations/GM of 0.67 and 0.56, respectively. The area under the blood flow/time curve for vasodilation during acetylcholine administration required the smallest sample sizes, the area under the blood flow/time curve during post-occlusive reactivity required the largest sample sizes, and the area under the blood flow/time curves of vasodilation induced by sodium nitroprusside and thermal treatment required intermediate sizes. CONCLUSIONS: In view of the importance of random error related to the day-to-day repeatability of laser Doppler perfusion monitoring, we propose an original and robust statistical

  5. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    Science.gov (United States)

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. PMID:26661181

  6. Microvascular Cranial Nerve Palsy

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Aug. 02, 2012 Microvascular cranial nerve palsy ( ...

  7. Signaling mechanisms in tumor necrosis factor alpha-induced death of microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Rueda Bo R

    2003-02-01

    Full Text Available Abstract The microvasculature of the corpus luteum (CL, which comprises greater than 50% of the total number of cells in the CL, is thought to be the first structure to undergo degeneration via apoptosis during luteolysis. These studies compared the apoptotic potential of various cytokines (tumor necrosis factor α, TNFα; interferon gamma, IFNγ; soluble Fas ligand, sFasL, a FAS activating antibody (FasAb, and the luteolytic hormone prostaglandin F2α (PGF2α on CL-derived endothelial (CLENDO cells. Neither sFasL, FasAb nor PGF2α had any effect on CLENDO cell viability. Utilizing morphological and biochemical parameters it was evident that TNFα and IFNγ initiated apoptosis in long-term cultures. However, TNFα was the most potent stimulus for CLENDO cell apoptosis at early time points. Unlike many other studies described in non-reproductive cell types, TNFα induced apoptosis of CLENDO cells occurs in the absence of inhibitors of protein synthesis. TNFα-induced death is typically associated with acute activation of distinct intracellular signaling pathways (e.g. MAPK and sphingomyelin pathways. Treatment with TNFα for 5–30 min activated MAPKs (ERK, p38, and JNK, and increased ceramide accumulation. Ceramide, a product of sphingomyelin hydrolysis, can serve as an upstream activator of members of the MAPK family independently in numerous cell types, and is a well-established pro-apoptotic second messenger. Like TNFα, treatment of CLENDO cells with exogenous ceramide significantly induced endothelial apoptosis. Ceramide also activated the JNK pathway, but had no effect on ERK and p38 MAPKs. Pretreatment of CLENDO cells with glutathione (GSH, an intracellular reducing agent and known inhibitor of reactive oxygen species (ROS or TNFα-induced apoptosis, significantly attenuated TNFα-induced apoptosis. It is hypothesized that TNFα kills CLENDO cells through elevation of reactive oxygen species, and intracellular signals that promote

  8. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.

    Science.gov (United States)

    Lopez-Ramirez, Miguel Alejandro; Reijerkerk, Arie; de Vries, Helga E; Romero, Ignacio Andres

    2016-08-01

    Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. PMID:27118674

  9. Organization of Endothelial Cells, Pericytes, and Astrocytes into a 3D Microfluidic in Vitro Model of the Blood-Brain Barrier.

    Science.gov (United States)

    Wang, Jack D; Khafagy, El-Sayed; Khanafer, Khalil; Takayama, Shuichi; ElSayed, Mohamed E H

    2016-03-01

    The endothelial cells lining the capillaries supplying the brain with oxygen and nutrients form a formidable barrier known as the blood-brain barrier (BBB), which exhibits selective permeability to small drug molecules and virtually impermeable to macromolecular therapeutics. Current in vitro BBB models fail to replicate this restrictive behavior due to poor integration of the endothelial cells with supporting cells (pericytes and astrocytes) following the correct anatomical organization observed in vivo. We report the coculture of mouse brain microvascular endothelial cells (b.End3), pericytes, with/without C8-D1A astrocytes in layered microfluidic channels forming three-dimensional (3D) bi- and triculture models of the BBB. The live/dead assay indicated high viability of all cultured cells up to 21 days. Trans-endothelial electrical resistance (TEER) values confirmed the formation of intact monolayers after 3 days in culture and showed statistically higher values for the triculture model compared to the single and biculture models. Screening the permeability of [(14)C]-mannitol and [(14)C]-urea showed the ability of bi- and triculture models to discriminate between different markers based on their size. Further, permeability of [(14)C]-mannitol across the triculture model after 18 days in culture matched its reported permeability across the BBB in vivo. Mathematical calculations also showed that the radius of the tight junctions pores (R) in the triculture model is similar to the reported diameter of the BBB in vivo. Finally, both the bi- and triculture models exhibited functional expression of the P-glycoprotein efflux pump, which increased with the increase in the number of days in culture. These results collectively indicate that the triculture model is a robust in vitro model of the BBB. PMID:26751280

  10. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  11. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted; Jin, Guang; Liu, Baoling; Boer, Christa; Johansson, Pär I; Halaweish, Ihab; Maxwell, Jake; Alam, Hasan B

    2014-01-01

    BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related deaths. These insults disrupt coagulation and endothelial systems. This study investigated whether previously reported differences in lesion size and brain swelling during normal saline (NS...

  12. HIV-1 Tat Regulates Occludin and Aβ Transfer Receptor Expression in Brain Endothelial Cells via Rho/ROCK Signaling Pathway

    Science.gov (United States)

    Chen, Yanlan; Jiang, Wenlin; Wu, Xianghong; Ye, Biao; Zhou, Xiaoting

    2016-01-01

    HIV-1 transactivator protein (Tat) has been shown to play an important role in HIV-associated neurocognitive disorders. The aim of the present study was to evaluate the relationship between occludin and amyloid-beta (Aβ) transfer receptors in human cerebral microvascular endothelial cells (hCMEC/D3) in the context of HIV-1-related pathology. The protein expressions of occludin, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in hCMEC/D3 cells were examined using western blotting and immunofluorescent staining. The mRNA levels of occludin, RAGE, and LRP1 were measured using quantitative real-time polymerase chain reaction. HIV-1 Tat at 1 µg/mL and the Rho inhibitor hydroxyfasudil (HF) at 30 µmol/L, with 24 h exposure, had no significant effect on hCMEC/D3 cell viability. Treatment with HIV-1 Tat protein decreased mRNA and protein levels of occludin and LRP1 and upregulated the expression of RAGE; however, these effects were attenuated by HF. These data suggest that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-mediated changes in occludin, RAGE, and LRP1 in hCMEC/D3 cells. HF may have a beneficial influence by protecting the integrity of the blood-brain barrier and the expression of Aβ transfer receptors.

  13. Blood-based biomarkers of microvascular pathology in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Ewers, Michael

    2012-02-01

    Sporadic Alzheimer\\'s disease (AD) is a genetically complex and chronically progressive neurodegenerative disorder with molecular mechanisms and neuropathologies centering around the amyloidogenic pathway, hyperphosphorylation and aggregation of tau protein, and neurofibrillary degeneration. While cerebrovascular changes have not been traditionally considered to be a central part of AD pathology, a growing body of evidence demonstrates that they may, in fact, be a characteristic feature of the AD brain as well. In particular, microvascular abnormalities within the brain have been associated with pathological AD hallmarks and may precede neurodegeneration. In vivo assessment of microvascular pathology provides a promising approach to develop useful biological markers for early detection and pathological characterization of AD. This review focuses on established blood-based biological marker candidates of microvascular pathology in AD. These candidates include plasma concentration of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) that are increased in AD. Measures of endothelial vasodilatory function including endothelin (ET-1), adrenomedullin (ADM), and atrial natriuretic peptide (ANP), as well as sphingolipids are significantly altered in mild AD or during the predementia stage of mild cognitive impairment (MCI), suggesting sensitivity of these biomarkers for early detection and diagnosis. In conclusion, the emerging clinical diagnostic evidence for the value of blood-based microvascular biomarkers in AD is promising, however, still requires validation in phase II and III diagnostic trials. Moreover, it is still unclear whether the described protein dysbalances are early or downstream pathological events and how the detected systemic microvascular alterations relate to cerebrovascular and neuronal pathologies in the AD brain.

  14. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  15. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  16. Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Tahanian E

    2011-05-01

    Full Text Available Elizabeth Tahanian¹, Luis Arguello Sanchez¹, Tze Chieh Shiao², René Roy², Borhane Annabi¹¹Centre de Recherche BioMED, ²Centre de Recherche PharmaQAM, Département de chimie, Université du Québec à Montréal, QC, CanadaAbstract: Brain endothelial cells play an essential role as structural and functional components of the blood–brain barrier (BBB. Increased BBB breakdown and brain injury are associated with neuroinflammation and are thought to trigger mechanisms involving matrix metalloproteinase upregulation. Emerging evidence also indicates that cyclooxygenase (COX inhibition limits BBB disruption, but the mechanisms linking metalloproteinase to COX remain unknown. In this study, we sought to investigate the nuclear factor-kappa B (NF-κB signaling pathway, a common pathway in both the regulation of matrix metalloproteinase-9 (MMP-9 and COX-2 expression, and the inhibitory properties of several chemopreventive flavonoids. Human brain microvascular endothelial cells were treated with a combination of phorbol 12-myristate 13-acetate (PMA, a carcinogen documented to increase MMP-9 and COX-2 through NF-κB, and several naturally occurring flavonoids. Among the molecules tested, we found that fisetin, apigenin, and luteolin specifically and dose-dependently antagonized PMA-induced COX-2 and MMP-9 gene and protein expressions as assessed by qRT-PCR, immunoblotting, and zymography respectively. We further demonstrate that flavonoids impact on IκK-mediated phosphorylation activity as demonstrated by the inhibition of PMA-induced IκB phosphorylation levels. Our results suggest that BBB disruption during neuroinflammation could be pharmacologically reduced by a specific class of flavonoids acting as NF-κB signal transduction inhibitors.Keywords: blood–brain barrier, flavonoids, neuroinflammation, NF-κB signal transduction inhibitors

  17. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Directory of Open Access Journals (Sweden)

    van Doorn Ruben

    2012-06-01

    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  18. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  19. Microvascular inflammation in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Laura Vitiello

    2014-06-01

    Full Text Available Atherogenesis is the pathogenetic process leading to formation of the atheroma lesion. It is associated to a chronic inflammatory state initially stimulated by an aberrant accumulation of lipid molecules beyond the endothelial barrier. This event triggers a cascade of deleterious events mainly through immune cell stimulation with the consequent liberation of potent pro-inflammatory and tissue damaging mediators. The atherogenetic process implies marked modifications of endothelial cell functions and a radical change in the endothelial–leukocyte interaction pattern. Moreover, accumulating evidence shows an important link between microvascular and inflammatory responses and major cardiovascular risk factors. This review illustrates the current knowledge on the effects of obesity, hypercholesterolemia and diabetes on microcirculation; their pathophysiological implications will be discussed.

  20. Effects of radiation on capillary endothelial cells derived from Mongolian gerbil brain

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shuichi; Tanaka, Ryuichi; Minakawa, Takashi; Onda, Kiyoshi (Niigata Univ. (Japan). Brain Research Inst.)

    1990-09-01

    Confluent monolayers of capillary endothelial cells derived from Mongolian gerbil brain were irradiated with a single exposure of x-rays, and their radiosensitivity and sequential changes in morphology, staining intensity for factor VIII-related antigen (F VIII RAg), and capacity to produce prostacyclin (PGI{sub 2}) were examined. The radiobiologic parameters that characterized the dose-response survival curve for these cells were found to be n=1.9, D{sub q}=140 rad, and D{sub 0}=190 rad. Morphologically, nuclear and cytoplasmic swelling, vacuolation of cytoplasm, and giant cell formation occurred in a dose dependent manner after 24 hours from irradiation. Decreased staining intensity for F VIII RAg was observed in morphologically affected cells. The capacity to synthesize PGI{sub 2} was significantly enhanced at 24 hours, but less significant at 72 hours after irradiation. The present data suggest that the radiosensitivity of brain capillary endothelial cells may be somewhat lower than that of endothelial cells originated from larger vessels, and that radiation induced morphological and functional changes in the brain capillary endothelial cells may be quantitatively similar to the changes in endothelial cells of larger vessels. (author).

  1. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier

    OpenAIRE

    Villaseñor, Roberto; Ozmen, Laurence; Messaddeq, Nadia; Grüninger, Fiona; Loetscher, Hansruedi; Keller, Annika; Betsholtz, Christer; Freskgård, Per-Ola; Collin, Ludovic

    2016-01-01

    The Blood-Brain Barrier (BBB) restricts access of large molecules to the brain. The low endocytic activity of brain endothelial cells (BECs) is believed to limit delivery of immunoglobulins (IgG) to the brain parenchyma. Here, we report that endogenous mouse IgG are localized within intracellular vesicles at steady state in BECs in vivo. Using high-resolution quantitative microscopy, we found a fraction of endocytosed IgG in lysosomes. We observed that loss of pericytes (key components of the...

  2. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  3. Vascular endothelial growth factor:an attractive target in the treatment of hypoxic/ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hui Guo; Hui Zhou; Jie Lu; Yi Qu; Dan Yu; Yu Tong

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repairvia the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.

  4. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: Implications for inflammatory demyelinating disease

    OpenAIRE

    Winkler, Clayton W.; Foster, Scott C.; Itakura, Asako; Matsumoto, Steven G.; Asari, Akira; McCarty, Owen J. T.; Sherman, Larry S.

    2013-01-01

    Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular ...

  5. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor.

    Science.gov (United States)

    Dinh, Quynh N; Young, Morag J; Evans, Megan A; Drummond, Grant R; Sobey, Christopher G; Chrissobolis, Sophocles

    2016-04-15

    Elevated aldosterone levels, which promote cerebral vascular oxidative stress, inflammation, and endothelial dysfunction, may increase stroke risk, independent of blood pressure and other risk factors. The main target receptor of aldosterone, the mineralocorticoid receptor (MR), is expressed in many cell types, including endothelial cells. Endothelial cell dysfunction is thought to be an initiating step contributing to cardiovascular disease and stroke; however the importance of MR expressed on endothelial cells in the brain is unknown. Here we have examined whether endothelial cell MR mediates cerebral vascular oxidative stress and brain inflammation during aldosterone excess. In male mice, aldosterone (0.72mg/kg/day, 14 days) caused a small increase (~14mmHg) in blood pressure. The MR blocker spironolactone (25mg/kg/d, ip) abolished this increase, whereas endothelial cell MR-deficiency had no effect. Aldosterone increased superoxide production capacity in cerebral arteries, and also mRNA expression of the pro-inflammatory cytokines chemokine (C-C motif) ligand 7 (CCL7), CCL8 and interleukin (IL)-1β in the brain. These increases were prevented by both spironolactone treatment and endothelial cell MR-deficiency; whereas IL-1β expression was blocked by spironolactone only. Endothelial cell MR mediates aldosterone-induced increases in cerebrovascular superoxide levels and chemokine expression in the brain, but not blood pressure or brain IL-1β. Endothelial cell-targeted MR antagonism may represent a novel approach to treat cerebrovascular disease and stroke, particularly during conditions of aldosterone excess. PMID:26923165

  6. Murine brain endothelial cells differently modulate interferon-γ and interleukin-17 production in vitro

    Directory of Open Access Journals (Sweden)

    Momčilović Miljana

    2009-01-01

    Full Text Available Brain endothelial cells (BEC are the major constituents of the blood-brain barrier (BBB, the structure that controls entrance of immune cells into CNS parenchyma. Our aim was to investigate the influence of BEC on production of IL-17 and IFN-γ-cytokines that are important for CNS inflammation. To that end, co-cultivations of the bEnd.3 brain endothelial cell line and lymph node cells (LNC were performed, and gene expression and production of IL-17 and IFN-γ were determined. It was found that bEnd.3 cells inhibited expression and production of IFN-γ, but not of IL-17. Additionally, bEnd.3 cells also reduced production of the major IFN-γ-promoting cytokine - IL-12 - in LNC. The observed variation in modulation of pro-inflammatory cytokines by BEC could be of importance for the understanding of CNS inflammation.

  7. Endothelial cells derived from the blood-brain barrier and islets of Langerhans differ in their response to the effects of bilirubin on oxidative stress under hyperglycemic conditions

    Directory of Open Access Journals (Sweden)

    JaimeKapitulnik

    2012-07-01

    Full Text Available Unconjugated bilirubin (UCB is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS. High glucose levels (hyperglycemia generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB. In the current study we show that UCB (1-40 M induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langherans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM glucose levels. While UCB (0.1-40 M did not alter ROS production in cells exposed to normal glucose, relatively low ('physiological' UCB concentrations (0.1-5 M attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20-40 M increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.

  8. Defense at the border : the blood-brain barrier versus bacterial foreigners

    NARCIS (Netherlands)

    van Sorge, Nina M.; Doran, Kelly S.

    2012-01-01

    Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical home

  9. In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse.

    OpenAIRE

    Kaul, D K; Fabry, M E; Costantini, F; E. M. Rubin; Nagel, R L

    1995-01-01

    Intravascular sickling, red cell-endothelium interaction, and altered microvascular responses have been suggested to contribute to the pathophysiology of human sickle cell disease, but have never been demonstrated under in vivo flow. To address this issue, we have examined a transgenic mouse line, alphaHbetaSbetaS-Antilles [betaMDD] which has a combined high (78%) expression of beta S and beta S-Antilles globins. In vivo microcirculatory studies using the cremaster muscle preparation showed a...

  10. ATP increases the migration of microglia across the brain endothelial cell monolayer.

    Science.gov (United States)

    Maeda, Tomoji; Inagaki, Manato; Fujita, Yu; Kimoto, Takehiro; Tanabe-Fujimura, Chiaki; Zou, Kun; Liu, Junjun; Liu, Shuyu; Komano, Hiroto

    2016-04-01

    The cerebral microcapillary endothelium, known as the blood-brain barrier (BBB), acts as a barrier between the blood and the interstitial fluid of the brain. The BBB therefore controls the passage of nutrients into the central nervous system (CNS). Microglia show a specific affinity for migration into the CNS, and this migration appears to occur independently of BBB integrity. To study the migration of microglia across the BBB, we developed an in vitro co-culture system of mouse brain endothelial cells (MBECs) and Ra2 microglia using Transwell inserts. We first investigated the influence of microglia or ATP, a microglial chemotactic factor, on MBEC barrier integrity. The addition of microglia or ATP led to the disruption of the MBEC monolayer and significantly decreased barrier function as measured by trans-endothelial electrical resistance (TEER) and electric cell-substrate impedance sensing (ECIS). Furthermore, ATP promoted the migration of microglia but not macrophages across the MBEC monolayer. An inhibitor of matrix metalloproteinases (MMPs) decreased the transmigration of microglia in our system, indicating that MMPs play a role in microglial chemotaxis. We specifically identify a role for microglia-derived MMP-2. In conclusion, we offer evidence that microglia migration across the brain endothelial cell monolayer is increased in the presence of ATP in a manner that involves MMP secretion. PMID:26934979

  11. Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury

    Directory of Open Access Journals (Sweden)

    An Y

    2014-05-01

    Full Text Available Ying An,1,2 Natalya Belevych,1,2 Yufen Wang,1,2 Hao Zhang,1 Jason S Nasse,3 Harvey Herschman,4 Qun Chen,1,2 Andrew Tarr,1,2 Xiaoyu Liu,1,2 Ning Quan1,21Institute for Behavior Medicine Research, 2Department of Oral Biology, College of Dentistry, 3Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; 4Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USAAbstract: In a previous study, we found that intracerebral administration of excitotoxin (RS-(tetrazole-5yl glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2flox/flox. In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2 in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.Keywords: neural injury, prostaglandins, neutrophil, conditional COX-2 deletion, PGI2

  12. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease.

    Science.gov (United States)

    Dalkara, Turgay; Alarcon-Martinez, Luis

    2015-10-14

    Increases in neuronal activity cause an enhanced blood flow to the active brain area. This neurovascular coupling is regulated by multiple mechanisms: Adenosine and lactate produced as metabolic end-products couple activity with flow by inducing vasodilation. As a specific mechanism to the brain, synaptic activity-induced Ca(2+) increases in astrocytes, interneurons and neurons translate neuronal activity to vasoactive signals such as arachidonic acid metabolites and NO. K(+) released onto smooth muscle cells through Ca(2+)-activated K(+) channels on end-feet can also induce vasodilation during neuronal activity. An intense communication between the endothelia, pericytes and astrocytes is required for development and functioning of the neurovascular unit as well as the BBB. The ratio of pericytes to endothelial cells is higher in the cerebral microcirculation than other tissues. Pericytes play a role in distribution of microvascular blood flow in response to the local demand as a final regulatory step after arterioles, which feed a larger cohort of cells. Pericyte-endothelial communication is essential for vasculogenesis. Pericyte also take part in leukocyte infiltration and immune responses. The microvascular injury induced by ischemia/reperfusion plays a critical role in tissue survival after recanalization by inducing sustained pericyte contraction and microcirculatory clogging (no-reflow) and by disrupting BBB integrity. Suppression of oxidative/nitrative stress or sustained adenosine delivery during re-opening of an occluded artery improves the outcome of recanalization by promoting microcirculatory reflow. Pericyte dysfunction in retinal microvessels is the main cause of diabetic retinopathy. Recent findings suggest that the age-related microvascular dysfunction may initiate the neurodegenerative changes seen Alzheimer׳s dementia. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke. PMID:25862573

  13. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects.

    Science.gov (United States)

    Glynos, Constantinos; Athanasiou, Chariclea; Kotanidou, Anastasia; Korovesi, Ioanna; Kaziani, Katerina; Livaditi, Olga; Dimopoulou, Ioanna; Maniatis, Nikolaos A; Tsangaris, Iraklis; Roussos, Charis; Armaganidis, Apostolos; Orfanos, Stylianos E

    2013-04-01

    Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors' lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls. No subject suffered from acute lung injury or any other overt lung pathology. Applying indicator-dilution type techniques, we measured single-pass transpulmonary percent metabolism (%M) and hydrolysis (v) of the synthetic, biologically inactive, and highly specific for ACE substrate (3)H-benzoyl-Phe-Ala-Pro, under first order reaction conditions, and calculated lung functional capillary surface area (FCSA). Substrate %M (35 ± 6.8%) and v (0.49 ± 0.13) in BD patients were decreased as compared to controls (55.9 ± 4.9, P = 0.033 and 0.9 ± 0.15, P = 0.033, respectively), denoting decreased pulmonary endothelial enzyme activity at the capillary level; FCSA, a reflection of endothelial enzyme activity per vascular bed, was also decreased (BD patients: 1,563 ± 562 mL/min vs 4,235 ± 559 in controls; P = 0.003). We conclude that BD is associated with subtle pulmonary endothelial injury, expressed by decreased PCEB-ACE activity. The applied indicator-dilution type technique provides direct and quantifiable indices of pulmonary endothelial function at the bedside that may reveal the existence of preclinical lung pathology in potential lung donors. PMID:24015344

  14. Brain-stem auditory evoked responses during microvascular decompression for trigeminal neuralgia: Predicting post-operative hearing loss

    Directory of Open Access Journals (Sweden)

    Ramnarayan Ramachandran

    2006-01-01

    Full Text Available Context: The importance of brainstem auditory evoked potential monitoring in reducing hearing loss during microvascular decompression for trigeminal neuralgia is now accepted. However the extent of the changes in the pattern of these potentials and the safe limits to which these changes are relevant in reducing postoperative hearing loss have not been established. Aims: The aim of this study is to quantify these changes and relate these to the postoperative hearing loss. Settings and Design: This study was done at the Walton Centre for neurology and neurosurgery, Liverpool, United Kingdom. The study was designed to give a measure of the change in the wave pattern following microvascular decompression and relate it to postoperative hearing loss. Materials and Methods: Seventy-five patients undergoing microvascular decompression for trigeminal neuralgia had preoperative and postoperative hearing assessments and intraoperative brainstem auditory evoked potential monitoring. Statistical Analysis Used: Chi-square tests. Results: It was found that the wave V latency was increased by more than 0.9ms in nine patients, eight of whom suffered significant postoperative hearing loss as demonstrated by audiometry. It was also seen that progressive decrease in amplitude of wave V showed progressive hearing loss with 25% loss when amplitude fell by 50 and 100% loss when wave V was lost completely. However most of the patients did not have a clinically manifest hearing loss. Conclusions: A per-operative increase in the latency of wave V greater than 0.9 ms and a fall of amplitude of wave V of more than 50% indicates a risk to hearing.

  15. Histopathological aspects of endothelial dysfunction in the vessels of brain microcirculation in case of diabetic encephalopathy

    Directory of Open Access Journals (Sweden)

    Pashkovska N.V.

    2008-01-01

    Full Text Available The desquamation of endothelium of arteries, small veins and venules, the arteriolospasm and perivascular edematization of varying degrees of severity was established in histological preparations of different brain regions in case of diabetic encephalopathy. It was shown, that variation coefficients of optical density of stained nuclear chromatin of endotheliocytes in the vessels of brain microcirculation were reliably higher in case of diabetic encephalopathy as compared with corresponding indices of control group; this indicated the decrease of functional capability of these cells and the development of endothelial dysfunction.

  16. Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study

    OpenAIRE

    de Moraes, Roger; Van Bavel, Diogo; Gomes, Marília de Brito; Tibiriçá, Eduardo

    2016-01-01

    Background The aim of the present study was to evaluate changes in microvascular density and reactivity in patients with type 1 diabetes (T1D) resulting from low intensity chronic exercise training. Methods This study included 22 (34 ± 7 years) consecutive outpatients with T1D and disease duration > 6 years. We used intravital video-microscopy to measure basal skin capillary density and capillary recruitment using post-occlusive reactive hyperemia (PORH) in the dorsum of the fingers. Endothel...

  17. THE RELATIONSHIP BETWEEN PERITUMORAL BRAIN EDEMA AND VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION IN PATIENTS WITH MENINGIOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To determine whether VEGF plays a role in the development of peritumoral brain edema. Methods 50 meningioma patients and their VEGF expression were studied. We took a mono- clonal antibody from mouse to VEGF to stain the tumor cells, the vascular endothelial cells and the interstitial cells. The severity of brain edema was evaluated according to CT or MR scans by the following equation: edema index = Vtumor+edema/Vtumor. The relationship between VEGF expression and edema index was analyzed statisti- cally. Results VEGF was expressed in meningioma tumor cells, which is usually concentrated at the pe- ripheral sites of the tumor. There was a positive linear correlation between the expression and the brain edema index. Conclusion VEGF may play a role in the development of peritumoral brain edema in meningioma patient.

  18. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L;

    1988-01-01

    cultured subconfluent cells actively synthesizing matrix. Endothelial cells express a 69-kD laminin-binding protein that is membrane associated and appears to colocalize with actin microfilaments. The topological distribution of 69 kD and its cytoskeletal associations can be modulated by the cell during...

  19. Circulating endothelial progenitor cells in traumatic brain injury: an emerging therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-jie; JIANG Rong-cai; LIU Li; ZHANG Jian-ning

    2010-01-01

    Traumatic brain injury (TBI) is a major cause ofmortality and morbidity in the world. Recent clinical investigations and basic researches suggest that strategies to improve angiogenesis following TBI may provide promising opportunities to improve clinical outcomes and brain functional recovery. More and more evidences show that circulating endothelial progenitor cells (EPCs), which have been identified in the peripheral blood, may play an important role in the pathologic and physiological angiogenesis in adults. Moreover, impressive data demonstrate that EPCs are mobilized from bone marrow to blood circulation in response to traumatic or inflammatory stimulations.In this review, we discussed the role of EPCs in the repair of brain injury and the possible therapeutic implication for functional recovery of TBl in the future.

  20. The effect of beta-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells

    DEFF Research Database (Denmark)

    Sorensen, M; Steenberg, B; Knipp, G T; Wang, W; Steffansen, B; Frokjaer, S; Borchardt, R T

    1997-01-01

    PURPOSE: To investigate the effects of the beta-turn structure of a peptide on its permeation via the paracellular and transcellular routes across cultured bovine brain microvessel endothelial cell (BBMEC) monolayers, an in vitro model of the blood-brain barrier (BBB). METHODS: The effective perm...

  1. Prognostic significance of Ki67 proliferation index, HIF1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases

    International Nuclear Information System (INIS)

    Survival upon diagnosis of brain metastases (BM) in patients with non-small cell lung cancer (NSCLC) is highly variable and established prognostic scores do not include tissue-based parameters. Patients who underwent neurosurgical resection as first-line therapy for newly diagnosed NSCLC BM were included. Microvascular density (MVD), Ki67 tumor cell proliferation index and hypoxia-inducible factor 1 alpha (HIF-1 alpha) index were determined by immunohistochemistry. NSCLC BM specimens from 230 patients (151 male, 79 female; median age 56 years; 199 nonsquamous histology) and 53/230 (23.0 %) matched primary tumor samples were available. Adjuvant whole-brain radiation therapy (WBRT) was given to 153/230 (66.5 %) patients after neurosurgical resection. MVD and HIF-1 alpha indices were significantly higher in BM than in matched primary tumors. In patients treated with adjuvant WBRT, low BM HIF-1 alpha expression was associated with favorable overall survival (OS), while among patients not treated with adjuvant WBRT, BM HIF-1 alpha expression did not correlate with OS. Low diagnosis-specific graded prognostic assessment score (DS-GPA), low Ki67 index, high MVD, low HIF-1 alpha index and administration of adjuvant WBRT were independently associated with favorable OS. Incorporation of tissue-based parameters into the commonly used DS-GPA allowed refined discrimination of prognostic subgroups. Ki67 index, MVD and HIF-1 alpha index have promising prognostic value in BM and should be validated in further studies. (orig.)

  2. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier.

    Science.gov (United States)

    Villaseñor, Roberto; Ozmen, Laurence; Messaddeq, Nadia; Grüninger, Fiona; Loetscher, Hansruedi; Keller, Annika; Betsholtz, Christer; Freskgård, Per-Ola; Collin, Ludovic

    2016-01-01

    The Blood-Brain Barrier (BBB) restricts access of large molecules to the brain. The low endocytic activity of brain endothelial cells (BECs) is believed to limit delivery of immunoglobulins (IgG) to the brain parenchyma. Here, we report that endogenous mouse IgG are localized within intracellular vesicles at steady state in BECs in vivo. Using high-resolution quantitative microscopy, we found a fraction of endocytosed IgG in lysosomes. We observed that loss of pericytes (key components of the BBB) in pdgf-b(ret/ret) mice affects the intracellular distribution of endogenous mouse IgG in BECs. In these mice, endogenous IgG was not detected within lysosomes but instead accumulate at the basement membrane and brain parenchyma. Such IgG accumulation could be due to reduced lysosomal clearance and increased sorting to the abluminal membrane of BECs. Our results suggest that, in addition to low uptake from circulation, IgG lysosomal degradation may be a downstream mechanism by which BECs further restrict IgG access to the brain. PMID:27149947

  3. Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors

    OpenAIRE

    Andreas Noack; Sandra Noack; Manuela Buettner; Naim, Hassan Y.; Wolfgang Löscher

    2016-01-01

    The blood–brain barrier (BBB) controls the entry of compounds into the brain, thereby regulating brain homeostasis. Efflux transporters such as P-glycoprotein (Pgp) significantly contribute to BBB function. Multiple signaling pathways modulate the expression and activity of Pgp in response to xenobiotics and disease. A non-genetic way of intercellular transfer of Pgp occurs in cancer cells, but whether this also occurs in non-cancer cells such as endothelial cells that form the BBB is not kno...

  4. Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells

    Science.gov (United States)

    Whitson, P. A.; Huls, M. H.; Sams, C. F.

    1991-01-01

    Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.

  5. PECAM-1 is involved in neutrophil transmigration across Histophilus somni treated bovine brain endothelial cells.

    Science.gov (United States)

    Tiwari, Raksha; Sullivan, J; Czuprynski, C J

    2009-09-01

    Histophilus somni (H. somni) is a gram-negative bacterial pathogen that causes respiratory, reproductive, and central nervous system disease in cattle. The hallmark of systemic H. somni infection is diffused vasculitis that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis (TME). Because platelet endothelial cell adhesion molecule-1 (PECAM-1) and endothelial nitric oxide synthase (eNOS) play fundamental roles in maintaining homeostasis in blood vessels, we sought to determine if PECAM-1 and eNOS expression play a role in events related to the pathogenesis of TME. Our findings demonstrate that neutrophil transmigration across H. somni-treated TBBEC (SV-40 transformed bovine brain endothelial cell line) was reduced by treatment with anti-PECAM-1 antibodies. Confocal microscopy indicated that H. somni treatment leads to redistribution of PECAM-1 and eNOS on the surface of TBBEC. These findings suggest that PECAM-1 and eNOS may play a role in the early pathogenesis of TME. PMID:19524660

  6. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  7. Roles of LOX-1 in microvascular dysfunction.

    Science.gov (United States)

    Lubrano, Valter; Balzan, Silvana

    2016-05-01

    Studies from human and animal models with metabolic disease and hypertension highlight atrophic remodeling, reduced lumen size and thinner vascular walls of microvessels with profound density reduction. This impaired vascular response limits the perfusion of peripheral tissues inducing organ damage. These conditions are strongly associated with oxidative stress and in particular with the up-regulation of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Several factors such as cytokines, shear stress, and advanced glycation end-products, especially oxLDL, can up-regulate LOX-1. The activation of this receptor induces the production of adhesion molecules, cytokines and the release of reactive oxygen species via NADPH oxidase. LOX-1 is considered a potent mediator of endothelial dysfunction and it is significantly associated with reduced microvascular endothelium NO-dependent vasodilation in hypercholesterolemia and hypertension. Microvascular endothelial cells increased the expression of IL-6 in association with the increased concentration of LDL and its degree of oxidation. Moreover, increased IL-6 levels are associated with up-regulation of LOX-1 in a dose-dependent manner. Another consequence of microvascular inflammation is the generation of small amounts of ROS, similar to those induced by low concentration of oxLDL (<5μg/mL) which induces capillary tube formation of endothelial cells, through LOX-1 up-regulation. In light of its central role, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases and microvascular disorders. PMID:26907636

  8. Ethanol suppression of peripheral blood mononuclear cell trafficking across brain endothelial cells in immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Lola C Hudson

    2010-01-01

    Full Text Available Lola C Hudson1, Brenda A Colby1, Rick B Meeker21Department of Molecular Biosciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; 2Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAAbstract: Earlier studies suggested that the combination of alcohol use and immunodeficiency virus infection resulted in more severe neurologic disease than either condition individually. These deleterious interactions could be due to increased immune cell and virus trafficking or may result from interactions between ethanol and human immunodeficiency virus (HIV-associated toxicity within the brain. To determine the extent to which increased trafficking played a role, we examined the effect of ethanol on the migration of different peripheral blood mononuclear cell (PBMCs subsets across a brain endothelial cell monolayer. We utilized combinations of feline brain endothelial cells with astrocytes, and/or microglia with either acute exposure to 0.08 g/dL ethanol, a combination of ethanol and feline immunodeficiency virus (FIV, or FIV alone. Adherence of PBMCs to endothelium was increased in all combinations of cells with the addition of ethanol. Despite increased PBMC adhesion with ethanol treatment, transmigration of B cells, monocytes, CD4 T cells and CD8 T cells was not increased and was actually decreased in the presence of astrocytes. Expression of three common adhesion molecules, intercellular adhesion molecule-1 (ICAM1, ICAM2, and vascular cell adhesion molecule, was unchanged or slightly decreased by ethanol. This indicated that although adherence is increased by ethanol it is not due to an increased expression of adhesion molecules. RANTES, MIP1α, MIP1β, and MCP-1 mRNA expression was also studied in brain endothelial cells, astrocytes and microglia by reverse transcriptase-polymerase chain reaction. Ethanol treatment of astrocytes resulted in modest changes of

  9. Visualization of brain tumor using I-123-vascular endothelial growth factor scintigraphy

    International Nuclear Information System (INIS)

    Full text: Aim:Vascular endothelial growth factor (VEGF) is a major angiogenic factor. VEGF receptors have been shown to be overexpressed in a variety of tumor vessels including glioblastoma, which may provide the molecular basis for a successful use of radiolabeled VEGF as tumor angiogenesis tracer. In this study we investigated the usefulness of 1231- VEGF as angiogenesis tracer for imaging brain tumors in vivo. Methods and Results: SPECT examinations were performed 30 minutes and 18 hours after intravenous application of 1231-VEGF (191 ± 15 MBq) in 20 patients with brain tumor. Glioblastomas were visualized in 7 of 8 patients (88 %) shortly after application of 1231- VEGF and were still clearly shown 18 hours post injection. Negative scan results were obtained in one patient with a small glioblastoma size (diameter <2.0 cm) and in 3 patients with benign glioma as well as in 5 patients with glioblastoma after receiving radiotherapy and for chemotherapy. Weak positive results were obtained in 3 patients with brain lymphoma or other tumors. No side effects were observed in patients after administration of 1231- VEG F. Conclusion: Our results indicate that 1231- VEGF scintigraphy may be useful to visualize the angiogenesis of brain tumors and to monitor the treatment response.

  10. C-type natriuretic peptide modulates permeability of the blood–brain barrier

    OpenAIRE

    BOHARA, Manoj; Kambe, Yuki; Nagayama, Tetsuya; TOKIMURA, Hiroshi; Arita, Kazunori; Miyata, Atsuro

    2014-01-01

    C-type natriuretic peptide (CNP) is abundant in brain and is reported to exert autocrine function in vascular cells, but its effect on blood–brain barrier (BBB) permeability has not been clarified yet. Here, we examined this effect. Transendothelial electrical resistance (TEER) of in vitro BBB model, composed of bovine brain microvascular endothelial cells and astrocytes, was significantly dose dependently decreased by CNP (1, 10, and 100 nmol/L). C-type natriuretic peptide treatment reduced ...

  11. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    OpenAIRE

    Hind, William H.; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J.; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was mo...

  12. Influenza infects lung microvascular endothelium leading to microvascular leak: role of apoptosis and claudin-5.

    Directory of Open Access Journals (Sweden)

    Susan M Armstrong

    Full Text Available Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza.

  13. Acute Modulation of Sugar Transport in Brain Capillary Endothelial Cell Cultures during Activation of the Metabolic Stress Pathway*

    OpenAIRE

    Cura, Anthony J.; Carruthers, Anthony

    2010-01-01

    GLUT1-catalyzed equilibrative sugar transport across the mammalian blood-brain barrier is stimulated during acute and chronic metabolic stress; however, the mechanism of acute transport regulation is unknown. We have examined acute sugar transport regulation in the murine brain microvasculature endothelial cell line bEnd.3. Acute cellular metabolic stress was induced by glucose depletion, by potassium cyanide, or by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which reduce or deplete i...

  14. Resveratrol Targeting of Carcinogen-Induced Brain Endothelial Cell Inflammation Biomarkers MMP-9 and COX-2 is Sirt1-Independent

    OpenAIRE

    Borhane Annabi; Simon Lord-Dufour; Amélie Vézina; Richard Béliveau

    2012-01-01

    The occurrence of a functional relationship between the release of metalloproteinases (MMPs) and the expression of cyclooxygenase (COX)-2, two inducible pro-inflammatory biomarkers with important pro-angiogenic effects, has recently been inferred. While brain endothelial cells play an essential role as structural and functional components of the blood-brain barrier (BBB), increased BBB breakdown is thought to be linked to neuroinflammation. Chemopreventive mechanisms targeting both MMPs and C...

  15. Effects of infrasound on Ca2 +-activated-K + channel of the bovine retinal microvascular endothelial cells%次声对视网膜微血管内皮细胞钙激活钾通道的影响

    Institute of Scientific and Technical Information of China (English)

    邱萍; 李泱; 高伟; 郭群; 张作明; 姜勇; 王士雯

    2005-01-01

    背景:次声暴露导致大鼠血-视网膜屏障通透性增加.但由于视网膜微血管内皮细胞来源困难,关于其屏障损伤的离子机制报道较少.目的:探讨次声对视网膜微血管内皮细胞钙激活钾通道的影响.设计:完全随机实验对照的开放性研究.地点和材料:实验在第四军医大学航空临床教研室膜片钳实验室进行,实验对象为培养牛视网膜微血管内皮细胞.干预:取传代的牛视网膜微血管内皮细胞8 Hz,130 dB次声暴露0.5 h.主要观察指标:视网膜微血管内皮细胞钙激活钾通道的活动情况.结果:8 Hz,130dB次声暴露0.5 h后,视网膜微血管内皮细胞KCA通道活性增加,暴露后置于孵箱内0.5 h再行膜片钳离子电流的检测,则离子通道的活性也有所下降.结论:次声通过增加视网膜微血管内皮细胞钙激活钾通道的活性,导致膜去极化,引起钙离子进入细胞,内皮细胞收缩,造成一定程度的血-视网膜屏障通透性的损害.%BACKGROUND: The permeability of blood-retinal barrier in rats can be increased due to the exposure under infrasound. There is rare research on ionic mechanism of such damage to barrier because of lacking the sources of retinal microvascular endothelial cells.OBJECTIVE: To investigate the impact of infrasound on calcium-activated potassium channel(BKca) of bovine retinal microvascular endothelial cells (BRECs).DESIGN: A completely randomized controlled opening study.SETTING and MATERIALS: The research was conducted in the Laboratory for patch-clamp, Department of Clinical Aerospace Medicine, Fourth Military Medical University of Chinese PLA. Experimental subjects were BRECs cultured.INTERVENTIONS: The cultured BRECs were exposed to the infrasound of 8 Hz, 130 dB for 30 minutes.MAIN OUTCOME MEASURES: The activity of BKCa in BRECs was observed.RESULTS: The activity of BKCa channel in BRECs increased after the exposure of infrasound of 8 Hz, 130 dB for 30 minutes. BRECs were

  16. Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Alexander Simonis

    2014-06-01

    Full Text Available The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains.

  17. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (Ktrans) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (Ktrans, Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for Ktrans; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for Ktrans; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, Ktrans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  18. Selective biological response of human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells on cold-plasma-modified polyester vascular prostheses

    International Nuclear Information System (INIS)

    The aim of this work was to improve the hemocompatibility and the selectivity according to cells of non-woven poly(ethylene terephthalate) (PET) membranes. Non-woven PET membranes were modified by a combined plasma-chemical process. The surface of these materials was pre-activated by cold-plasma treatment and poly(acrylic acid) (PAA) was grafted by the in situ free radical polymerization of acrylic acid (AA). The extent of this reaction and the number of carboxylic groups incorporated were evaluated by colorimetric titration using toluidine blue O. All samples were characterized by SEM, AFM and thermogravimetric analysis, and the mechanical properties of the PAA grafted sample were determined. A selective cell response was observed when human pulmonary artery smooth muscle cells (HPASMC) or human pulmonary micro vascular endothelial cells (HPMEC) were seeded on the modified surfaces. HPASMC proliferation decreased about 60%, while HPMEC proliferation was just reduced about 10%. PAA grafted samples did not present hemolytic activity and the platelet adhesion decreased about 28% on PAA grafted surfaces.

  19. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten;

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression in...... tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p <0.05). The capillary length in the meningiomas was...

  20. IL-6 stimulates a concentration-dependent increase in MCP-1 in immortalised human brain endothelial cells [version 2; referees: 1 approved, 2 approved with reservations

    OpenAIRE

    Jai Min Choi; Odunayo O. Rotimi; Simon J O`Carroll; Nicholson, Louise F. B.

    2016-01-01

    Systemic inflammation is associated with neurodegeneration, with elevated interleukin-6 (IL-6) in particular being correlated with an increased risk of dementia. The brain endothelial cells of the blood brain barrier (BBB) serve as the interface between the systemic circulation and the brain microenvironment and are therefore likely to be a key player in the development of neuropathology associated with systemic inflammation. Endothelial cells are known to require soluble IL-6 receptor (sIL-6...

  1. Prognostic significance of Ki67 proliferation index, HIF1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Berghoff, A.S. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Ilhan-Mutlu, A.; Preusser, M. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Woehrer, A.; Hainfellner, J.A. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Hackl, M. [Austrian National Cancer Registry, Statistics Austria, Vienna (Austria); Widhalm, G. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Neurosurgery, Vienna (Austria); Dieckmann, K. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Department of Radiotherapy, Vienna (Austria); Melchardt, T. [Paracelsus Medical University Hospital Salzburg, Third Medical Department, Salzburg (Austria); Dome, B. [Medical University of Vienna, Department of Surgery, Vienna (Austria); Heinzl, H. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Vienna (Austria); Birner, P. [Medical University of Vienna, Comprehensive Cancer Center CNS Tumors Unit, Vienna (Austria); Medical University of Vienna, Institute of Clinical Pathology, Vienna (Austria)

    2014-07-15

    Survival upon diagnosis of brain metastases (BM) in patients with non-small cell lung cancer (NSCLC) is highly variable and established prognostic scores do not include tissue-based parameters. Patients who underwent neurosurgical resection as first-line therapy for newly diagnosed NSCLC BM were included. Microvascular density (MVD), Ki67 tumor cell proliferation index and hypoxia-inducible factor 1 alpha (HIF-1 alpha) index were determined by immunohistochemistry. NSCLC BM specimens from 230 patients (151 male, 79 female; median age 56 years; 199 nonsquamous histology) and 53/230 (23.0 %) matched primary tumor samples were available. Adjuvant whole-brain radiation therapy (WBRT) was given to 153/230 (66.5 %) patients after neurosurgical resection. MVD and HIF-1 alpha indices were significantly higher in BM than in matched primary tumors. In patients treated with adjuvant WBRT, low BM HIF-1 alpha expression was associated with favorable overall survival (OS), while among patients not treated with adjuvant WBRT, BM HIF-1 alpha expression did not correlate with OS. Low diagnosis-specific graded prognostic assessment score (DS-GPA), low Ki67 index, high MVD, low HIF-1 alpha index and administration of adjuvant WBRT were independently associated with favorable OS. Incorporation of tissue-based parameters into the commonly used DS-GPA allowed refined discrimination of prognostic subgroups. Ki67 index, MVD and HIF-1 alpha index have promising prognostic value in BM and should be validated in further studies. (orig.) [German] Die Ueberlebensprognose von Patienten mit zerebralen Metastasen eines nicht-kleinzelligen Lungenkarzinoms (NSCLC) ist sehr variabel. Bisher werden gewebsbasierte Parameter nicht in die prognostische Beurteilung inkludiert. Neurochirurgische Resektate zerebraler NSCLC-Metastasen wurden in dieser Studie untersucht. Die Gefaessdichte (''microvascular density'', MVD), der Ki67-Proliferationsindex sowie der HIF-1α-Index wurden mittels

  2. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    Directory of Open Access Journals (Sweden)

    Go Suzuki

    Full Text Available Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  3. Uptake of codeine into intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells.

    Science.gov (United States)

    Fischer, Wiebke; Bernhagen, Jennifer; Neubert, Reinhard H H; Brandsch, Matthias

    2010-09-11

    Orally administered codeine has to permeate both the intestinal and the blood-brain barrier in order to act as analgesic and cough suppressant. In this study we characterized the uptake of codeine at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells. At both cell types, uptake of [(3)H]codeine was independent of an inwardly directed Na(+) gradient. Uptake was, however, strongly stimulated by an outwardly directed H(+) gradient and inhibited by the protonophore FCCP. [(3)H]Codeine uptake into Caco-2 cells was strongly temperature dependent. In the presence of excess amounts of unlabeled codeine, the uptake was inhibited by up to 87% (Caco-2) or 94% (RBE4), respectively. Synthetic opioids and some non-opioid organic cations like propranolol, pyrilamine and quinidine potently inhibited [(3)H]codeine uptake. Several prototype substrates of known transporters for amino acids, neurotransmitters and organic cations were ineffective. Our data are consistent with a hypothetic saturable, H(+)-dependent (antiport) mechanism not yet identified on a molecular level. The pH dependence of codeine uptake and its intracellular accumulation can partially also be explained by a model comprising diffusional membrane permeation of unionized species of codeine followed by codeine sequestration into acidic vesicles and distribution into cellular lipids. PMID:20510359

  4. The damage of pulmonary microvascular endothelial cell barrier and acute respiratory distress syndrome%肺微血管内皮细胞屏障功能损伤与急性呼吸窘迫综合征

    Institute of Scientific and Technical Information of China (English)

    韩凤

    2015-01-01

    急性呼吸窘迫综合征( ARDS)是急性呼吸衰竭发生的主要原因,其特征是弥漫性的肺泡损伤,伴透明膜形成,肺泡腔高蛋白性水肿、毛细血管损伤和肺泡上皮破裂,它最突出的临床表现为顽固的低氧血症. 尽管在最佳的通气支持和液体平衡的治疗改善后,它仍有很高的死亡率及短、长期的并发症. 因此,对这种综合征的早期识别和治疗性干预措施的早期应用至关重要. 本综述描述了肺微血管内皮细胞( PMVECs )屏障功能损伤与ARDS发生、发展的相互关系.具体来说是描述了ARDS定义、PMVECs的屏障功能,以及在ARDS的发生、发展时PMVECs的通透性改变,异常凋亡、分泌和功能失调,以期深入探讨ARDS可能的病理生理学机制.%The acute respiratory distress syndrome ( ARDS) is a major cause of acute respiratory failure characterized by a diffused alveolar damage , formation of hyaline membranes , protein -rich edema fluid in the alveolar spaces , capillary injury and disruption of the alveolar epithelium , and the most prominent clinical manifestation of ARDS is refractory hypoxemia . Despite improvements in intensive care with optimal ventilation support and fluid balance , its development also leads to high mortality, as well as short -and long -term complications.Therefore, early recognition of this syndrome and application of demonstrated therapeutic interventions are essential to change the natural course of this devastating entity .In this review article , we describe the mutual relation between the damage of pulmonary microvascular endothelial cell ( PMVECs ) barrier and the occurrence and development of ARDS .Specifically , we describe the Berlin definition of ARDS and barrier function of PMVECs, as well as the permeability changes , the abnormal apoptosis and secretion and the dysfunction of PMVECs in the development of ARDS in order to further discuss its possible pathophysiological mechanism.

  5. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites

    Energy Technology Data Exchange (ETDEWEB)

    Cordon-Cardo, C.; O' Brien, J.P.; Casals, D.; Biedler, J.L.; Melamed, M.R.; Bertino, J.R. (Memorial Sloan-Kettering Cancer Center, New York, NY (USA)); Rittman-Grauer, L. (Hybritech, Inc., San Diego, CA (USA))

    1989-01-01

    Endothelial cells of human capillary blood vessels at the blood-brain and other blood-tissue barrier sites express P-glycoprotein as detected by mouse monoclonal antibodies against the human multidrug-resistance gene product. This pattern of endothelial cell expression may indicate a physiological role for P-glycoprotein in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as the testes. These tissues, which limit the access of systemic drugs, are known pharmacologic sanctuaries for metastatic cancer. P-glycoprotein expression in capillary endothelium of brain and testes and not other tissues (i.e., kidney and placenta) may in part explain this phenomenon and could have important implications in cancer chemotherapy.

  6. Traversal of Candida albicans across Human Blood-Brain Barrier In Vitro

    OpenAIRE

    Jong, Ambrose Y.; Stins, Monique F.; Huang, Sheng-He; Chen, Steven H. M.; Kim, Kwang Sik

    2001-01-01

    Candida albicans is an opportunistic pathogen, which primarily affects neonates and immunocompromised individuals. The pathogen can invade the central nervous system, resulting in meningitis. At present, the pathogenesis of C. albicans meningitis is unclear. We used an in vitro model of the human blood-brain barrier to investigate the interaction(s) of C. albicans with human brain microvascular endothelial cells (BMEC). Binding of C. albicans to human BMEC was time and inoculum dependent. Inv...

  7. Different Classes of Proteoglycans Contribute to the Attachment of Borrelia burgdorferi to Cultured Endothelial and Brain Cells

    OpenAIRE

    Leong, John M.; Wang, Hong; Magoun, Loranne; Field, Jodie A.; Morrissey, Pamela E.; Robbins, Douglas; Tatro, Jeffrey B.; Coburn, Jenifer; Parveen, Nikhat

    1998-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, infects multiple tissues, such as the heart, joint, skin, and nervous system and has been shown to recognize heparan sulfate and dermatan sulfate proteoglycans. In this study, we examined the contribution of different classes of proteoglycans to the attachment of the infectious B. burgdorferi strain N40 to several immortalized cell lines and primary cultured cells, including endothelial cells and brain cells. Bacterial attachment was inhibite...

  8. P. falciparum isolate-specific distinct patterns of induced apoptosis in pulmonary and brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Nadine N'Dilimabaka

    Full Text Available The factors implicated in the transition from uncomplicated to severe clinical malaria such as pulmonary oedema and cerebral malaria remain unclear. It is known that alterations in vascular integrity due to endothelial cell (EC activation and death occur during severe malaria. In this study, we assessed the ability of different P. falciparum clinical isolates to induce apoptosis in ECs derived from human lung and brain. We observed that induction of EC apoptosis was sensitive to the environmental pH and required direct contact between the parasite and the cell, though it was not correlated to the ability of the parasite to cytoadhere. Moreover, the extent of induced apoptosis in the two EC types varied with the isolate. Analysis of parasite genes transcript led us to propose that the activation of different pathways, such as Plasmodium apoptosis-linked pathogenicity factors (PALPF, PALPF-2, PALPF-5 and PF11_0521, could be implied in EC death. These observations provide an experimental framework to decipher the molecular mechanism implicated in the genesis of severe malaria.

  9. Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors.

    Science.gov (United States)

    Noack, Andreas; Noack, Sandra; Buettner, Manuela; Naim, Hassan Y; Löscher, Wolfgang

    2016-01-01

    The blood-brain barrier (BBB) controls the entry of compounds into the brain, thereby regulating brain homeostasis. Efflux transporters such as P-glycoprotein (Pgp) significantly contribute to BBB function. Multiple signaling pathways modulate the expression and activity of Pgp in response to xenobiotics and disease. A non-genetic way of intercellular transfer of Pgp occurs in cancer cells, but whether this also occurs in non-cancer cells such as endothelial cells that form the BBB is not known. A human brain endothelial cell line (hCMEC/D3) was used to study whether cell-to-cell Pgp transfer occurs during co-culturing with Pgp-EGFP expressing hCMEC/D3 cells. The Pgp-EGFP fusion protein was transferred from donor to recipient cells by cell-to-cell contact and Pgp-EGFP enriched vesicles, which were exocytosed by donor cells and endocytosed by adherent recipient cells. Flow cytometry experiments with the Pgp substrate eFLUXX-ID Gold demonstrated that the transferred Pgp is functional in the recipient cells. Exposure of the donor cells with inhibitors of histone deacetylases (HDACs) resulted in an enhanced intercellular Pgp transfer. Non-genetic transfer of a resistance phenotype and its regulation by HDACs is a novel mechanism of altering BBB functionality. This mechanism may have important implications for understanding drug-induced alterations in Pgp expression and activity. PMID:27375084

  10. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    Science.gov (United States)

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  11. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  12. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  13. Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells.

    Science.gov (United States)

    Aukema, Harold M; Winter, Tanja; Ravandi, Amir; Dalvi, Siddhartha; Miller, Donald W; Hatch, Grant M

    2016-05-01

    The human blood-brain barrier (BBB) is the restrictive barrier between the brain parenchyma and the circulating blood and is formed in part by microvessel endothelial cells. The brain contains significant amounts of arachidonic acid (ARA), and docosahexaenoic acid (DHA), which potentially give rise to the generation of bioactive oxylipins. Oxylipins are oxygenated fatty acid metabolites that are involved in an assortment of biological functions regulating neurological health and disease. Since it is not known which oxylipins are generated by human brain microvessel endothelial cells (HBMECs), they were incubated for up to 30 min in the absence or presence of 0.1-mM ARA, eicosapentaenoic acid (EPA) or DHA bound to albumin (1:1 molar ratio), and the oxylipins generated were examined using high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Of 135 oxylipins screened in the media, 63 were present at >0.1 ng/mL at baseline, and 95 were present after incubation with fatty acid. Oxylipins were rapidly generated and reached maximum levels by 2-5 min. While ARA, EPA and DHA each stimulated the production of oxylipins derived from these fatty acids themselves, ARA also stimulated the production of oxylipins from endogenous 18- and 20-carbon fatty acids, including α-linolenic acid. Oxylipins generated by the lipoxygenase pathway predominated both in resting and stimulated states. Oxylipins formed via the cytochrome P450 pathway were formed primarily from DHA and EPA, but not ARA. These data indicate that HBMECs are capable of generating a plethora of bioactive lipids that have the potential to modulate BBB endothelial cell function. PMID:26439837

  14. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro.

    Directory of Open Access Journals (Sweden)

    Roberta Paolinelli

    Full Text Available Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.

  15. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    Directory of Open Access Journals (Sweden)

    Chia-Wei Huang

    2015-01-01

    Full Text Available Neonatal hypoxic-ischemic (HI brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs from adipose-derived stem cells (ASCs and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1 and vascular endothelial growth factor receptor 2 (VEGFR2 was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment.

  16. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette;

    2016-01-01

    The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of the present study......-culture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane...... proteins was analysed using RT-qPCR, mass spectrometry, and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the mono-culture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major...

  17. Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Dorovini-Zis Katerina

    2010-01-01

    Full Text Available Abstract Background Chemokines are emerging as important mediators of CNS inflammation capable of activating leukocyte integrins and directing the migration of leukocyte subsets to sites of antigenic challenge. In this study we investigated the expression, release and binding of CCL2 (MCP-1 and CCL3 (MIP-1α in an in vitro model of the human blood-brain barrier. Methods The kinetics of expression and cytokine upregulation and release of the β-chemokines CCL2 and CCL3 were studied by immunocytochemistry and enzyme-linked immunosorbent assay in primary cultures of human brain microvessel endothelial cells (HBMEC. In addition, the differential binding of these chemokines to the basal and apical endothelial cell surfaces was assessed by immunoelectron microscopy. Results Untreated HBMEC synthesize and release low levels of CCL2. CCL3 is minimally expressed, but not released by resting HBMEC. Treatment with TNF-α, IL-1β, LPS and a combination of TNF-α and IFN-γ, but not IFN-γ alone, significantly upregulated the expression and release of both chemokines in a time-dependent manner. The released CCL2 and CCL3 bound to the apical and basal endothelial surfaces, respectively. This distribution was reversed in cytokine-activated HBMEC resulting in a predominantly basal localization of CCL2 and apical distribution of CCL3. Conclusions Since cerebral endothelial cells are the first resident CNS cells to contact circulating leukocytes, expression, release and presentation of CCL2 and CCL3 on cerebral endothelium suggests an important role for these chemokines in regulating the trafficking of inflammatory cells across the BBB in CNS inflammation.

  18. AB112. Expression of brain-specific angiogenesis inhibitor 1 and association with p53, microvessel density and vascular endothelial growth factor in the tissue of human bladder transitional cell carcinoma

    Science.gov (United States)

    Tian, Dawei; Hu, Hailong; Wu, Changli

    2016-01-01

    Objective Brain-specific angiogenesis inhibitor 1 (BAI1) was initially described in 1997, and there have since been a number of studies on its expression in different types of cancer. The aim of the present study was to investigate the expression levels of BAI1 in bladder transitional cell carcinoma (BTCC) at different stages and the mechanism by which it inhibits tumor endothelial cell proliferation. Methods Normal bladder mucosa biopsy specimens were obtained as the control group, and human BTCC biopsy specimens were used as the study group. Immunohistochemical assays were used to detect the expression levels of BAI1, vascular endothelial growth factor (VEGF) and mutant p53, in addition to microvessel density (MVD) in the tissues. Western blotting was used to analyze the differential expression of BAI1 in the two samples. Results Statistical analysis was performed, which indicated that BAI1 expression levels in the normal bladder mucosa group were significantly higher than those in the BTCC group and were associated with clinical staging. BAI1 levels in the T1 stage BTCC tissues were higher than those in the T2–4 stage BTCC tissues (P<0.05). BAI1 expression levels were negatively correlated with those of VEGF (r=−0.661, P<0.001), mutant p53 (r=−0.406, P=0.002) and with the MVD (r=−0.675, P<0.001). Conclusions BAI1 may be involved in the negative regulation of BTCC microvascular proliferation, and its expression may be associated with a reduction in p53 mutations.

  19. The Noncompetitive AMPAR Antagonist Perampanel Abrogates Brain Endothelial Cell Permeability in Response to Ischemia: Involvement of Claudin-5.

    Science.gov (United States)

    Lv, Jian-Meng; Guo, Xiao-Min; Chen, Bo; Lei, Qi; Pan, Ya-Juan; Yang, Qian

    2016-07-01

    The blood-brain barrier (BBB) is formed by brain endothelial cells, and decreased BBB integrity contributes to vasogenic cerebral edema and increased mortality after stroke. In the present study, we investigated the protective effect of perampanel, an orally active noncompetitive AMPA receptor antagonist, on BBB permeability in an in vitro ischemia model in murine brain endothelial cells (mBECs). The results showed that perampanel significantly attenuated oxygen glucose deprivation (OGD)-induced loss of cell viability, release of lactate dehydrogenase, and apoptotic cell death in a dose-dependent manner. Perampanel treatment did not alter the expression and surface distribution of various glutamate receptors. Furthermore, the results of calcium imaging showed that perampanel had no effect on OGD-induced increase in intracellular Ca(2+) concentrations. Treatment with perampanel markedly reduced the paracellular permeability of mBECs after OGD in different time points, as measured by transepithelial electrical resistance assay. In addition, the expression of claudin-5 at protein level, but not at mRNA level, was increased by perampanel treatment after OGD. Knockdown of claudin-5 partially prevented perampanel-induced protection in cell viability and BBB integrity in OGD-injured mBECs. These data show that the noncompetitive AMPA receptor antagonist perampanel affords protection against ischemic stroke through caludin-5 mediated regulation of BBB permeability. PMID:26306919

  20. Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.

    Science.gov (United States)

    Blank, Thomas; Detje, Claudia N; Spieß, Alena; Hagemeyer, Nora; Brendecke, Stefanie M; Wolfart, Jakob; Staszewski, Ori; Zöller, Tanja; Papageorgiou, Ismini; Schneider, Justus; Paricio-Montesinos, Ricardo; Eisel, Ulrich L M; Manahan-Vaughan, Denise; Jansen, Stephan; Lienenklaus, Stefan; Lu, Bao; Imai, Yumiko; Müller, Marcus; Goelz, Susan E; Baker, Darren P; Schwaninger, Markus; Kann, Oliver; Heikenwalder, Mathias; Kalinke, Ulrich; Prinz, Marco

    2016-04-19

    Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded RNA ligands, and IFNs shared pathways involving engagement of melanoma differentiation-associated protein 5 (MDA5), retinoic acid-inducible gene 1 (RIG-I), and mitochondrial antiviral signaling protein (MAVS), and subsequently induced IFN responses specifically in brain endothelia and epithelia of mice. Behavioral alterations were specifically dependent on brain endothelial and epithelial IFN receptor chain 1 (IFNAR). Using gene profiling, we identified that the endothelia-derived chemokine ligand CXCL10 mediated behavioral changes through impairment of synaptic plasticity. These results identified brain endothelial and epithelial cells as natural gatekeepers for virus-induced sickness behavior, demonstrated tissue specific IFNAR engagement, and established the CXCL10-CXCR3 axis as target for the treatment of behavioral changes during virus infection and type I IFN therapy. PMID:27096319

  1. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  2. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells

    OpenAIRE

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Abbott, N Joan; Couraud, Pierre-Olivier; Pan, Weihong

    2010-01-01

    Astrocytic leptin receptors (ObR) can be upregulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb overex...

  3. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Pittet Camille L

    2011-11-01

    Full Text Available Abstract Background Multiple sclerosis (MS, an inflammatory disease of the central nervous system (CNS, is characterized by blood-brain barrier (BBB disruption and massive infiltration of activated immune cells. Engagement of programmed cell death-1 (PD-1 expressed on activated T cells with its ligands (PD-L1 and PD-L2 suppresses T cell responses. We recently demonstrated in MS lesions elevated PD-L1 expression by glial cells and absence of PD-1 on many infiltrating CD8 T cells. We have now investigated whether human brain endothelial cells (HBECs, which maintain the BBB, can express PD-L1 or PD-L2 and thereby modulate T cells. Methods We used primary cultures of HBECs isolated from non-tumoral CNS tissue either under basal or inflamed conditions. We assessed the expression of PD-L1 and PD-L2 using qPCR and flow cytometry. Human CD8 T cells were isolated from peripheral blood of healthy donors and co-cultured with HBECs. Following co-culture with HBECs, proliferation and cytokine production by human CD8 T cells were measured by flow cytometry whereas transmigration was determined using a well established in vitro model of the BBB. The functional impact of PD-L1 and PD-L2 provided by HBECs was determined using blocking antibodies. We performed immunohistochemistry for the detection of PD-L1 or PD-L2 concurrently with caveolin-1 (a cell specific marker for endothelial cells on post-mortem human brain tissues obtained from MS patients and normal controls. Results Under basal culture conditions, PD-L2 is expressed on HBECs, whilst PD-L1 is not detected. Both ligands are up-regulated under inflammatory conditions. Blocking PD-L1 and PD-L2 leads to increased transmigration and enhanced responses by human CD8 T cells in co-culture assays. Similarly, PD-L1 and PD-L2 blockade significantly increases CD4 T cell transmigration. Brain endothelium in normal tissues and MS lesions does not express detectable PD-L1; in contrast, all blood vessels in normal

  4. Fucoidan Extracted from Hijiki Protects Brain Microvessel Endothelial Cells Against Diesel Exhaust Particle Exposure-Induced Disruption.

    Science.gov (United States)

    Choi, Young-Sook; Eom, Sang-Yong; Kim, In-Soo; Ali, Syed F; Kleinman, Michael T; Kim, Yong-Dae; Kim, Heon

    2016-05-01

    This study was performed to evaluate the protective effects of fucoidan against the decreased function of primary cultured bovine brain microvessel endothelial cells (BBMECs) after exposure to diesel exhaust particles (DEPs). BBMECs were extracted from bovine brains and cultured until confluent. To evaluate the function of BBMECs, we performed a permeability test using cell-by-cell equipment and by Western blot analysis for zonular occludens-1 (ZO-1), which is a tight junction protein of BMECs, and evaluated oxidative stress in BBMECs using the DCFH-DA assay and the CUPRAC-BCS assay. The increased oxidative stress in BBMECs following DEP exposure was suppressed by fucoidan. In addition, permeability of BBMECs induced by DEP exposure was decreased by fucoidan treatment. Our results showed that fucoidan protects against BBMEC disruption induced by DEP exposure. This study provides evidence that fucoidan might protect the central nervous system (CNS) against DEP exposure. PMID:27152978

  5. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Highlights: → We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. → The ER stress facilitated the expression of inward rectifier K+ channel (Kir2.1) and induced sustained membrane hyperpolarization. → The membrane hyperpolarization induced sustained Ca2+ entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. → The Kir2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K+ channel (Kir2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of Kir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca2+ concentration due to Ca2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of Kir2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  6. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells.

    Science.gov (United States)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-08-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4-5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba(2+)-sensitive inward rectifier K(+) current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca(2+) imaging study revealed that the hypoxic stress enhanced store-operated Ca(2+) (SOC) entry, which was significantly reduced in the presence of 100 μM Ba(2+). On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba(2+). We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca(2+) entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. PMID:27235552

  7. Acute Alcohol Intoxication-Induced Microvascular Leakage

    Science.gov (United States)

    Doggett, Travis M.; Breslin, Jerome W.

    2014-01-01

    Background Alcohol intoxication can increase inflammation and worsen injury, yet the mechanisms involved are not clear. We investigated whether acute alcohol intoxication elevates microvascular permeability, and investigated potential signaling mechanisms in endothelial cells that may be involved. Methods Conscious rats received a 2.5 g/kg alcohol bolus via gastric catheters to produce acute intoxication. Microvascular leakage of intravenously administered FITC-albumin from the mesenteric microcirculation was assessed by intravital microscopy. Endothelial-specific mechanisms were studied using cultured endothelial cell monolayers. Transendothelial electrical resistance (TER) served as an index of barrier function, before and after treatment with alcohol or its metabolite acetaldehyde. Pharmacologic agents were used to test the roles of alcohol metabolism, oxidative stress, p38 mitogen-activated protein (MAP) kinase, myosin light chain kinase (MLCK), rho kinase (ROCK), and exchange protein activated by cAMP (Epac). VE-cadherin localization was investigated to assess junctional integrity. Rac1 and RhoA activation were assessed by ELISA assays. Results Alcohol significantly increased FITC-albumin extravasation from the mesenteric microcirculation. Alcohol also significantly decreased TER and disrupted VE-cadherin organization at junctions. Acetaldehyde significantly decreased TER, but inhibition of ADH or application of a superoxide dismutase mimetic failed to prevent alcohol-induced decreases in TER. Inhibition of p38 MAP kinase, but not MLCK or ROCK, significantly attenuated the alcohol-induced barrier dysfunction. Alcohol rapidly decreased GTP-bound Rac1 but not RhoA during the drop in TER. Activation of Epac increased TER, but did not prevent alcohol from decreasing TER. However, activation of Epac after initiation of alcohol-induced barrier dysfunction quickly resolved TER to baseline levels. Conclusions Our results suggest that alcohol intoxication increases

  8. Influence of mild hypothermia on vascular endothelial growth factor and infarct volume in brain tissues after cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Fei Ye; Gangming Xi; Biyong Qin; Shifeng Wang; Chengyan Li

    2006-01-01

    BACKGROUND: It has been demonstrated that mild hypothermia has obvious protective effect on both whole and local cerebral ischemia. However, the definite mechanism is still unclear for the brain protection of mild hypothermia on cerebral edema, inhibiting inflammatory reaction, stabilizing blood brain barrier, etc.OBJECTIVE: To investigate the effect of mild hypothermia on the expression of vascular endothelial growth factor and the infarct volume after cerebral ischemia in rats, and analyze the brain protective mechanism of mild hypothermia.DESIGN: A randomized grouping and controlled animal trial.SETTING: Department of Neurology, People's Hospital of Yunyang Medical College.MATERIALS: Twenty adult male SD rats of clean degree, weighing (250±30) g, were provided by the animal experimental center, School of Medicine, Wuhan University. The kits for SP immunohistochemistry were purchased from Beijing Zhongshan Golden Bridge Biotechnology Co., Ltd.METHODS: The experiments were carried out in the laboratory of Department of Neurology, Renmen Hospital of Wuhan University from May to July 2005. ① The 20 rats were divided randomly into normal temperature group (n =10) and mild hypothermia group (n =10). Models of permanent middle cerebral artery occlusion were established with modified nylon suture embolization. The rats were assessed with the Longa standards: O point for without nerve dysfunction; 1 for mild neurological deficit (fore claws could no extend completely); 2 for moderate neurological deficit (circling towards the affected side); 3 for severe neurological deficit (tilting towards the affected side); 4 for coma and unconscious; 1 -3 points represented that models were successfully established. The rats of the normal temperature group were fed at room temperature, and those in the mild hypothermia group were induced by hypothermia from 2 hours postoperatively, and the rectal temperature was kept at 34-35 ℃ for 72 hours. ② Measurement of infarct volume

  9. Effects of amelogenins on angiogenesis-associated processes of endothelial cells

    DEFF Research Database (Denmark)

    Almqvist, S; Kleinman, H K; Werthén, M; Thomsen, P; Ågren, Sven Per Magnus

    2011-01-01

    To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay.......To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay....

  10. Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5

    DEFF Research Database (Denmark)

    Schankin, Christoph J; Kruse, Lars S; Reinisch, Veronika M; Jungmann, Steffen; Kristensen, Julie C; Grau, Stefan; Ferrari, Uta; Sinicina, Inga; Goldbrunner, Roland; Straube, Andreas; Kruuse, Christina

    2010-01-01

    OBJECTIVE: To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells. BACKGROUND: Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic...... adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell...... line containing such PDEs. METHODS: Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after...

  11. Effect of low-dose methylprednisolone on peripheral blood endothelial progenitor cells and its significance in rats after brain injury

    Directory of Open Access Journals (Sweden)

    Bin ZHANG

    2011-05-01

    Full Text Available Objective To explore the effects of low-dose methylprednisolone(MP treatment after traumatic brain injury(TBI in rats on the number of peripheral blood endothelial progenitor cells(EPCs and injury area of the brain.Methods One hundred and fifty-four adult male Wistar rats were involved in the present study,and they were randomly divided into normal control group(n=18,TBI control group(n=38,MP control group(n=30,MP+TBI group(n=30 and TBI+MP group(n=38.The TBI model was reproduced by fluid percussion injury(FPI.MP(5mg/kg was intraperitoneally administered once a day for 4 days.Peripheral venous blood samples were taken on day 1,3,7 and 14,and the counts of EPCs were determined by flow cytometry.The rats were sacrificed on day 1 and 3,brain edema was estimated by dry-wet weight method,and the blood-brain barrier(BBB permeability was determined by Evans-blue extravasation.Results The counts of peripheral blood EPCs were significantly higher in MP control group,MP+TBI group and TBI+MP group on day 1,3 and 7 than that in normal control and TBI control group,and it returned to the level of normal control group on day 14.The BBB permeability was improved and brain edema alleviated in MP+TBI and TBI+MP group on day 3.Conclusion The administration of low-dose MP may increase the count of peripheral blood EPCs in rats,decrease BBB damage,and alleviate brain edema.

  12. Design and physicochemical characterization of poly(amidoamine) nanoparticles and the toxicological evaluation in human endothelial cells: applications to peptide delivery to the brain

    NARCIS (Netherlands)

    Coue, G.M.J.P.C.; Freese, C.; Unger, R.E.; Kirkpatrick, C.J.; Pickl, K.E.; Sinner, F.M.; Engbersen, J.F.J.

    2013-01-01

    In this study, we investigated nanoparticles formulated by self-assembly of a biodegradable poly(amidoamine) (PAA) and a fluorescently labeled peptide, in their capacity to internalize in endothelial cells and deliver the peptide, with possible applications for brain drug delivery. The nanoparticles

  13. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

    OpenAIRE

    Morrison Laurie J; Baker Andrew J; Crnko Naomi T; Rhind Shawn G; Shek Pang N; Scarpelini Sandro; Rizoli Sandro B

    2010-01-01

    Abstract Background Traumatic brain injury (TBI) initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial ...

  14. Delivering minocycline into brain endothelial cells with liposome-based technology

    OpenAIRE

    Xing, Changhong; Levchenko, Tatyana; Guo, Shuzhen; Stins, Monique; Torchilin, Vladimir P.; Eng H Lo

    2012-01-01

    Minocycline has been proposed as a way to blunt neurovascular injury from matrix metalloproteinases (MMPs) during stroke. However, recent clinical trials suggest that high levels of minocycline may have deleterious side-effects. Here, we showed that very high minocycline concentrations damage endothelial cells via calpain/caspase pathways. To alleviate this potential cytotoxicity, we encapsulated minocycline in liposomes. Low concentrations of minocycline could not reduce tumor necrosis facto...

  15. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain

    Science.gov (United States)

    Chrissobolis, Sophocles; Banfi, Botond; Sobey, Christopher G.

    2012-01-01

    Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg−1·day−1 for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2−/y) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1+/y) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1−/y) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2−/y mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1. PMID:22628375

  16. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  17. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  18. Regulation of Monocarboxylic Acid Transporter 1 Trafficking by the Canonical Wnt/β-Catenin Pathway in Rat Brain Endothelial Cells Requires Cross-talk with Notch Signaling.

    Science.gov (United States)

    Liu, Zejian; Sneve, Mary; Haroldson, Thomas A; Smith, Jeffrey P; Drewes, Lester R

    2016-04-01

    The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelialMct1mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitorN-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways. PMID:26872974

  19. Tbx1 regulates brain vascularization.

    Science.gov (United States)

    Cioffi, Sara; Martucciello, Stefania; Fulcoli, Filomena Gabriella; Bilio, Marchesa; Ferrentino, Rosa; Nusco, Edoardo; Illingworth, Elizabeth

    2014-01-01

    The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin. PMID:23945394

  20. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate

    OpenAIRE

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast an...

  1. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    OpenAIRE

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growt...

  2. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4.

    Directory of Open Access Journals (Sweden)

    Heling Chu

    Full Text Available Vascular endothelial growth factor (VEGF has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH is largely unknown. Our previous study has shown aquaporin-4 (AQP4 plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165 was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+ and AQP4 knock-out (AQP4(-/- mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+ mice at each time point, but had no effect on AQP4(-/- mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/- mice, but not AQP4(+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK and extracellular signal-regulated kinase (p-ERK and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  3. Microvascular inflammation in atherosclerosis

    OpenAIRE

    Laura Vitiello; Ilaria Spoletini; Stefania Gorini; Laura Pontecorvo; Davide Ferrari; Elisabetta Ferraro; Eugenio Stabile; Massimiliano Caprio; Andrea la Sala

    2014-01-01

    Atherogenesis is the pathogenetic process leading to formation of the atheroma lesion. It is associated to a chronic inflammatory state initially stimulated by an aberrant accumulation of lipid molecules beyond the endothelial barrier. This event triggers a cascade of deleterious events mainly through immune cell stimulation with the consequent liberation of potent pro-inflammatory and tissue damaging mediators. The atherogenetic process implies marked modifications of endothelial cell functi...

  4. Microvascular alterations in transplantation

    OpenAIRE

    Khairoun, Meriem

    2015-01-01

    Endothelial injury and repair are most important concepts for our understanding of renal disease and allograft injury. The concept that injury to the endothelium may precede renal fibrosis strongly suggests that interventions to maintain vascular integrity are of major importance for renal function. This thesis focuses on the mechanisms involved in the process of endothelial damage and repair in renal disease, (early) diabetes mellitus (DM) and renal ischemia-reperfusion (I/R) injury. Further...

  5. Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro.

    Science.gov (United States)

    Mu, Chaofeng; Dave, Nimita; Hu, Jing; Desai, Pankaj; Pauletti, Giovanni; Bai, Shuhua; Hao, Jiukuan

    2013-01-01

    Novel aptamer-functionalized polyethylene glycol-polylactic acid (PEG-PLA) (APP) micelles were developed with the objective to target the transferrin receptor on brain endothelial cells. Flurbiprofen, a potential drug for therapeutic management of Alzheimer's disease (AD), was loaded into the APP micelles using the co-solvent evaporation method. Results indicated that 9.03% (w/w) of flurbiprofen was entrapped in APP with good retention capacity in vitro. Targeting potential of APPs was investigated using the transferring receptor-expressing murine brain endothelial bEND5 cell line. APPs significantly enhanced surface association of micelles to bEND5 cells as quantified by fluorescence spectroscopy. Most importantly, APPs significantly enhanced intracellular flurbiprofen delivery when compared to unmodified micelles. These results suggest that APP micelles may offer an effective strategy to deliver therapeutically effective flurbiprofen concentrations into the brain for AD patients. PMID:23517066

  6. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten;

    2011-01-01

    (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined...... positively correlated to the PTBE (p = 0.038). If VEGF is responsible for the formation of PTBE, the edema may be treated with the anti-VEGF drug Bevacizumab (Avastin), which has been shown to reduce PTBE in patients with glioblastoma multiforme....

  7. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    Science.gov (United States)

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  8. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  9. Neuregulin1–β decreases interleukin–1β–induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability

    Science.gov (United States)

    Wu, Limin; Ramirez, Servio H.; Andrews, Allison M.; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H.; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. PMID:26438054

  10. The Physiochemistry of Capped Nanosilver Predicts Its Biological Activity in Rat Brain Endothelial Cells (REBEC4)

    Science.gov (United States)

    The “capping” or coating of nanosilver (nanoAg) extends its potency by limiting its oxidation and aggregation and stabilizing its size and shape. The ability of such coated nanoAg to alter the permeability and activate oxidative stress pathways in rat brain endothelia...

  11. 1α,25-Dihydroxyvitamin D3-Liganded Vitamin D Receptor Increases Expression and Transport Activity of P-glycoprotein in Isolated Rat Brain Capillaries and Human and Rat Brain Microvessel Endothelial Cells

    OpenAIRE

    Durk, Matthew R.; Chan, Gary N.Y.; Campos, Christopher R.; Peart, John C.; Chow, Edwin C.Y.; Lee, Eason; Cannon, Ronald E.; Bendayan, Reina; Miller, David S.; Pang, K. Sandy

    2012-01-01

    MDR1/P-gp induction by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] for 4 h increased P-gp protein expression (4-fold). Incubation with 1,25(OH)2D3 for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate...

  12. Microvascular alterations in transplantation

    NARCIS (Netherlands)

    Khairoun, Meriem

    2015-01-01

    Endothelial injury and repair are most important concepts for our understanding of renal disease and allograft injury. The concept that injury to the endothelium may precede renal fibrosis strongly suggests that interventions to maintain vascular integrity are of major importance for renal function.

  13. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training

    OpenAIRE

    Suzuki, Go; Tokuno, Shinichi; Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to...

  14. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects

    OpenAIRE

    Glynos, Constantinos; Athanasiou, Chariclea; Kotanidou, Anastasia; Korovesi, Ioanna; Kaziani, Katerina; Livaditi, Olga; Dimopoulou, Ioanna; Maniatis, Nikolaos A; Tsangaris, Iraklis; Roussos, Charis; Armaganidis, Apostolos; Orfanos, Stylianos E

    2013-01-01

    Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors’ lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of...

  15. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  16. Evaluation of brain tumor endothelial permeability by dynamic magnetic resonance Magnevist contrast imaging on a low-field MR-tomograph

    International Nuclear Information System (INIS)

    In order to study the endothelial permeability to hydrophilic macromolecules in brain tumors the technique for evaluating the Gd-DTPA absorption kinetics on results of dynamic MRI performed by means of the low-field MR-tomograph Magnetom Open and for calculating the index of blood-tumor GdDTPA transport is developed. 27 patients with various brain tumors are examined. The indices of Magnevist transport to tumor tissue vary substantially, depending on the degree of malignancy and deliver essential information on permeability of tumor capillary bed

  17. Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    OpenAIRE

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. ...

  18. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells.

    Science.gov (United States)

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Joan Abbott, N; Couraud, Pierre-Olivier; Pan, Weihong

    2010-12-01

    Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability. PMID:20977476

  19. Methyl mercury uptake across bovine brain capillary endothelial cells in vitro: The role of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Aschner, M.; Clarkson, T.W. (Environmental Health Sciences Center, University of Rochester, School of Medicine and Dentistry, Rochester, New York (USA))

    1989-01-01

    Previous studies in the rat in vivo have demonstrated that co-injection of methyl mercury (MeHg) with L-cysteine into the common carotid artery enhances brain Hg levels folowing a single capillary pass through the CNS vasculature. In order to elucidate the relationship between MeHg transport and the neutral amino acid transport carrier system, regulatory aspects of MeHg transport across the bovine blood-brain barrier were investigated in isolated brain microvessel preparations. Following 1 hour co-incubations of /sup 203/Hg-MeHgCl with 0.1 mM L-cysteine at 37 deg. C, /sup 203/Hg uptake by suspended microvessels was significantly increased (P<0.05) compared with controls. This enhanced capillary uptake of /sup 203/Hg was abolished by co-incubations of microvessels with 0.1 mM L-cysteine-L-methionine, or 0.1 mM L-cysteine plus AT-125 (alpha S, 5S-alpha-amino-3-chloro-4,5-dihydro-5-isoxazolacetic acid), an irreversible inhibitor of gamma-glutamyl-transpeptidase. One hr co-incubations of bovine capilaries with /sup 203/Hg-MeHgCl and 0.1 mM D-cysteine at 37 deg. C or 0.1 mM L-cysteine at 0 deg. did not increase rat of /sup 203/Hg uptake compared with controls. These results indicate that L-cysteine enhances the rate of capillary MeHg uptake. The accumulation of /sup 203/Hg in the bovine microvessels appears to be a carrier-mediated process. It is inhibited by L-methionin, a competitive substrate for neutral amino acid transport, and by AT-125. Capillary uptake of /sup 203/Hg is stereospecific to the L-enantiomorph of cystine, suggesting selective uptake of MeHg across the blood-brain barrier. The data emphasize the relationship between the L-enantiomorph neutral amino acid carrier system and MeHg transport across the capillaries. (author).

  20. Effect of Qi-tonifying and Stasis-eliminating Therapy (益气活血法)on Expression of Vascular Endothelial Growth Factor and Its Receptors Fit-1,Fik-1 in the Brain of Intracerebral Hemorrhagic Rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To investigate the effects and mechanism of qi-tonifying and stasis eliminating(QTSE)therapy on the expression of vascular endothelial growth factor(VEGF)and its receptors Fit-1 and Fik-1 in the brains of intracerebral hemorrhagic(model)rats.Methods:One hundred and eighty Sprague-Dawley rats were randomly divided into six groups:the normal group (n=5),the sham-operative(SO)group(n=35),the model group(n=35),the QTSE group(n=35),the QT group(n=35)and the SE group(n=35).All the rats except those in the normal group and SO group were established into an intracerebral hemorrhage(ICH)model by intracerebral injection of collagenase type Ⅶ and the latter three were orally administered with Buyang Huanwu Decoction (补阳还五汤,a classical recipe for QTSE)or with some of its components for qi-tonification and for stasis-elimination,respectively.To the other three groups,normal saline solutions were given instead.Behavioral tests were carried out in the animals randomly chosen from each group on days 1,2,4,7,14,21 and 28 after modeling.The expressions of VEGF,Fik-1 and Fit-1 were determined by immunohistochemistry and the number of vascular segments with positive expression in the injured brain area of the rats was calculated.Results,From day 7 onwards,the asymmetric forelimb use rate in the QTSE group recovered more significantly than that in the other model groups.In the model group,the expressions of VEGF,Fik-1 and Fit-1 appeared on day 1 and reached a peak on day 21,then weakened gradually.In the QTSE group,as compared with the other model groups,a higher level of VEGF expression was shown from day 7(P<0.01)and a higher level of Fit-1 expression was shown from the 7th day to the 21st day(P<0.01).Conclusion:QTSE therapy can up-regulate the expressions of VEGF and its receptors(Flk-1 and Fit-1)and improve the recovery of kinetic function in the ICH rats,which may be correlated with its action in modulating vascular regeneration to promote the

  1. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.T.; Borchardt, R.T.

    1987-05-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of (/sup 125/I)-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23/sup 0/C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37/sup 0/C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37/sup 0/C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation.

  2. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    Science.gov (United States)

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  3. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype

    OpenAIRE

    Zhu, Bing; Zhang, Li; Alexeyev, Mikhail; Alvarez, Diego F.; Strada, Samuel J.; Stevens, Troy

    2008-01-01

    Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stabl...

  4. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways

    Directory of Open Access Journals (Sweden)

    Yenari Midori A

    2011-03-01

    Full Text Available Abstract Background We previously showed that microglia damage blood brain barrier (BBB components following ischemic brain insults, but the underlying mechanism(s is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4 activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC. However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO and inducible NO synthase (iNOS induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS also prevented injury in these cocultures. To assess the signaling pathway(s involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection.

  5. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1

  6. Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Store-operated Ca2+ entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca2+ influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs

  7. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  8. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    International Nuclear Information System (INIS)

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 ± 1.87 mM, the maximum uptake rate, Jmax, was 144.7 ± 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 ± 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of [3H]acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for [3H]acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of [3H]acetic acid at medium pH of 5.0 and 6.0, whereas 4,4'-diisothiocyanostilben-2,2'-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of [3H]acetic acid, whereas di- and tricarboxylic acids did not. The uptake of [3H]acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of [3H]acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH

  9. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A. (Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University (Japan))

    1991-09-01

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 {plus minus} 1.87 mM, the maximum uptake rate, Jmax, was 144.7 {plus minus} 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 {plus minus} 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of (3H)acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for (3H)acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of (3H)acetic acid at medium pH of 5.0 and 6.0, whereas 4,4{prime}-diisothiocyanostilben-2,2{prime}-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of (3H)acetic acid, whereas di- and tricarboxylic acids did not. The uptake of (3H)acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of (3H)acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH.

  10. Plasmodium-infected erythrocytes (pRBC induce endothelial cell apoptosis via a heme-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu M

    2016-03-01

    Full Text Available Mingli Liu, Carmen Dickinson-Copeland, Salifu Hassana, Jonathan K Stiles Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA Abstract: Heme is cytotoxic to the plasmodium parasite, which converts it to an insoluble crystalline form called hemozoin (malaria pigment in erythrocytes during replication. The increased serum levels of free heme cause tissue damage, activation of microvascular endothelial and glial cells, focal inflammation, activation of apoptotic pathways, and neuronal tissue damage. Several hypotheses have been proposed to explain how these causative factors exacerbate fatal malaria. However, none of them fully explain the detailed mechanisms leading to the high morbidity and mortality associated with malaria. We have previously reported that heme-induced brain microvascular endothelial cell (HBVEC apoptosis is a major contributor to severe malaria pathogenesis. Here, we hypothesized that heme (at clinically relevant levels induces inflammation and apoptosis in HBVEC, a process that is mediated by independent proinflammatory and proapoptotic signaling pathways. In this study, we determined the key signaling molecules associated with heme-mediated apoptosis in HBVEC in vitro using RT2 profiler polymerase chain reaction array technology and confirmed results using immunostaining techniques. While several expressed genes in HBVEC were altered upon heme stimulation, we determined that the apoptotic effects of heme were mediated through p73 (tumor protein p73. The results provide an opportunity to target heme-mediated apoptosis therapeutically in malaria-infected individuals. Keywords: heme, endothelial cells, signaling pathways, cerebral malaria

  11. Modified Continuous Loop Technique for microvascular anastomosis

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    2001-01-01

    Full Text Available A modified method of continuous loop technique for microvascular anastomosis is described. The handling of loop is easier & even last suture is placed under vision. This makes the microvascular anastomosis easier and simpler.

  12. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...... the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...

  13. Aquaporin 4 expression and ultrastructure of the blood-brain barrier following cerebral contusion injury

    Institute of Scientific and Technical Information of China (English)

    Xinjun Li; Yangyun Han; Hong Xu; Zhongshu Sun; Zengjun Zhou; Xiaodong Long; Yumin Yang; Linbo Zou

    2013-01-01

    This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2–72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelial cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.

  14. Microvascular Injury in Ketamine-Induced Bladder Dysfunction.

    Science.gov (United States)

    Lin, Chih-Chieh; Lin, Alex Tong-Long; Yang, An-Hang; Chen, Kuang-Kuo

    2016-01-01

    The pathogenesis of ketamine-induced cystitis (KC) remains unclear. In this study, bladder microvascular injury was investigated as a possible contributing mechanism. A total of 36 KC patients with exposure to ketamine for more than 6 months, and 9 control subjects, were prospectively recruited. All participants completed questionnaires, including the O'Leary-Sant interstitial cystitis symptom index (ICSI) and the interstitial cystitis problem index (ICPI). All KC patients received a urodynamic study and radiological exams. Bladder tissues were obtained from cystoscopic biopsies in the control group and after hydrodistention in the KC group. Double-immunofluorescence staining of N-methyl-d-aspartate receptor subunit 1 (NMDAR1) and the endothelial marker, cluster of differentiation 31 (CD31), was performed to reveal the existence of NMDAR1 on the endothelium. Electron microscopy (EM) was applied to assess the microvascular change in the urinary bladder and to measure the thickening of the basement membrane (BM). A proximity ligation assay (PLA) was used to quantify the co-localization of the endothelial CD31 receptor and the mesenchymal marker [fibroblast-specific protein 1 (FSP-1)]. The Mann-Whitney U test and Spearman's correlation coefficient were used for statistical analysis. The mean ICSI [14.38 (± 4.16)] and ICPI [12.67 (± 3.54)] scores of the KC group were significantly higher than those (0 and 0, respectively) of the control group (both p < 0.001). The KC patients had decreasing cystometric bladder capacity (CBC) with a mean volume of 65.38 (± 48.67) mL. NMDAR1 was expressed on endothelial cells in both groups under immunofluorescence staining. Moreover, KC patients had significant BM duplication of microvessels in the mucosa of the urinary bladder under EM. The co-expression of the endothelial marker CD31 and mesenchymal marker FSP1 was significantly stained and calculated under PLA. In conclusion, microvascular injury and mesenchymal phenotypic

  15. Intravascular Stenting in Microvascular Anastomoses

    DEFF Research Database (Denmark)

    Assersen, Kristine; Sørensen, Jens

    2015-01-01

    Background The effect of intravascular stenting (IVaS) on microvascular anastomoses has given adverse results. For experienced microsurgeons the benefit of IVaS is doubtful. We have investigated the potential benefit of the IVaS technique for two groups of inexperienced microsurgeons with differe...

  16. Microvascular Disease After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Qi Lun Ooi

    2015-11-01

    Full Text Available Background/Aims: Individuals who reach end-stage kidney disease (CKD5 have a high risk of vascular events that persists even after renal transplantation. This study compared the prevalence and severity of microvascular disease in transplant recipients and patients with CKD5. Methods: Individuals with a renal transplant or CKD5 were recruited consecutively from renal clinics, and underwent bilateral retinal photography (Canon CR5-45, Canon. Their retinal images were deidentified and reviewed for hypertensive/microvascular signs by an ophthalmologist and a trained grader (Wong and Mitchell classification, and for vessel caliber at a grading centre using a computer-assisted method and Knudtson's modification of the Parr-Hubbard formula. Results: Ninety-two transplant recipients (median duration 6.4 years, range 0.8 to 28.8 and 70 subjects with CKD5 were studied. Transplant recipients were younger (pConclusions: Hypertensive/microvascular disease occurred just as often and was generally as severe in transplant recipients and subjects with CKD5. Microvascular disease potentially contributes to increased cardiac events post- transplantation.

  17. 高糖缺氧环境下转甲状腺素蛋白对视网膜血管内皮细胞的影响%Transthyretinin repress retinal microvascular endothelial cells under high glucose and hypoxia environment

    Institute of Scientific and Technical Information of China (English)

    邵珺; 姚勇

    2016-01-01

    Objective To explore transthyretin (TTR) effect on retinal vascular endothelial cells (hREC) under high glucose and hypoxia environment.Methods hREC and human retinal pigment epithelial cell (hRPEC) were cultured at low-glucose (LG),high glucose (HG) and hypoxia.The glucose concentration was increased from 5.5 mmol/L up to 25 mmol/L,and hypoxia was induced by 200 μmol/L CoCl2.The cells were divided into LG group,LG-hypoxia group,HG group,HG-hypoxia group according to the different cell culture environment.The growth index was detected at 0,4,8,16,24,36,48,60,72 hours after cultured.Furthermore,hREC and hRPEC were also cultured with additional TTR (4 μmol/L),respectively.Then transwell co-culture system was employed to reveal the effects of hRPEC on the growth of hREC.Results At 72 hours after cultured,the growth index of hREC and hRPEC in LG group were increased as compared with LG-hypoxia group and HG group (hREC:F=17.098,22.970;P<0.05.hRPEC:F=45.442,9.011;P<0.05);the growth index of hREC and hRPEC were decreased in HG group and HG-hypoxia group (hREC:F=146.184,P<0.05;hRPEC:F=27.907,P<0.05).Additionally,hREC could be significantly repressed by added TTR during culture with high concentration of glucose (F=161.430,24.106;P<0.05).hREC could be significantly increased by added TTR during culture with low concentration of glucose (F =200.486,48.662;P < 0.05).In co-culture process,hRPEC revealed inhibition activity against hREC under both natural and abnormal environment (LG group:F=15.711,P< 0.05;LG-hypoxia group:F =45.659,P<0.05;HG group:F =7.857,P <0.05;HG-hypoxia group:F=6.348,P<0.05).Conclusion Under high glucose and hypoxia environment,the growth of hREC from neovascular could be inhibited by TTR.%目的 观察高糖缺氧环境下转甲状腺素蛋白(TTR)对人视网膜血管内皮细胞(hREC)的影响.方法 分别于5.5 mmol/L葡萄糖(低糖,LG)、25.0 mmol/L葡萄糖(高糖,HG)以及200 μmol/LCoCl2诱导的缺氧环境中培养hREC

  18. Rhizoma Chuanxiong regulates vascular endothelial growth factor production in hypoxic human umbilical vein endothelial cells in vitro and in peri-infarct rat brain tissue

    Institute of Scientific and Technical Information of China (English)

    Muke Zhou; Mi Yang; Ning Chen; Yucai Wang; Jian Guo; Xue Yang; Zhijian Zhang; Dong Zhou; Li He

    2009-01-01

    BACKGROUND: Vascular endothelial growth factor (VEGF) acts as "molecular bridge" following ischemic stroke to improve and restore blood supply and reduce infarction volume. Clinical studies have demonstrated the efficacy of Rhizoma Chuanxiong (Chuanxiong) in the treatment of ischemic cerebrovascular diseases. However, whether it promotes endogenous VEGF expression in ischemic stroke remains unknown.OBJECTIVE: To investigate the influence of Rhizoma Chuanxiong on VEGF production in vitro cultured human umbilical vein endothelial cells and on VEGF expression in ischemic cerebral tissues to explore its role in angiogenesis.DESIGN, TIME AND SE'B'ING: In vitro basic comparison of traditional Chinese drug-containing serum pharmacology; in vivo randomized, controlled, animal experiment. This study was performed at the Medical Laboratory of West China Hospital, Sichuan University between December 2002 and April 2004.MATERIALS: Two Chinese rabbits were selected. One was intragastrically perfused with 5.8 g/kg Rhizoma Chuanxiong extract twice per day for three consecutive days to prepare Rhizoma Chuanxiong extract-containing serum. The remaining rabbit was intragastdcally perfused with the same volume of normal saline twice per day for three consecutive days. Rhizoma Chuanxiong extract was provided by Beijing Traditional Chinese Medicine Research Institute, predominantly composed of ligustrazine, ligustilide, and ferulic acid. ChemiKineTM human VEGF Kit was purchased from Chemicon, USA; mouse anti-VEGF monoclonal antibody and biotin-goat anti-mouse IgG were purchased from Santa Cruz Biotechnology. Inc., USA.METHODS: (1) In vitro experiment: in vitro cultured human umbilical vein endothelial cells were separately incubated in rabbit serum with 10% Rhizoma Chuanxiong extract, normal medium without rabbit serum, and rabbit serum without Rhizoma Chuanxiong extract (blank control). In addition, cells from the three groups were incubated under normoxia (5% CO2, 95% air) and

  19. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Yamazaki, Daiju [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu; Yamamura, Hisao [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2011-07-29

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  20. Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E.

    Directory of Open Access Journals (Sweden)

    Shwetank

    Full Text Available Japanese encephalitis virus (JEV is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-β and TNF-α production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP. In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-α as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-α and IFN-β as well as the dsRNA analog, poly (I:C. Both IFN-β and TNF-α further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.

  1. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells

    Science.gov (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.

    2010-10-01

    Magnetic iron oxide nanoparticles (NPs) are considered for various diagnostic and therapeutic applications in brain including their use as contrast agent for magnetic resonance imaging. In delivery application, the critical step is the transport across cell layers and the internalization of NPs into specific cells, a process often limited by poor targeting specificity and low internalization efficiency. The development of the models of brain endothelial cells and choroidal plexus epithelial cells in culture has allowed us to investigate into these mechanisms. Our strategy is aimed at exploring different routes to the entrapment of iron oxide NPs in these brain related cells. Here we demonstrated that not only cells endowed with a good phagocytic activity like activated macrophages but also endothelial brain capillary and choroidal plexus epithelial cells do internalize iron oxide NPs. Our study of the intracellular trafficking of NPs by TEM, and confocal microscopy revealed that NPs are mainly internalized by the endocytic pathway. Iron oxide NPs were dispersed in water and coated with 3,4-dihydroxyl-L-phenylalanine (L-DOPA) using standard procedures. Magnetic lipid NPs were prepared by NANOVECTOR: water in oil in water (W/O/W) microemulsion process has been applied to directly coat different iron based NPs by lipid layer or to encapsulate them into Solid Lipid Nanoparticles (SLNs). By these coating/loading the colloidal stability was improved without strong alteration of the particle size distribution. Magnetic lipid NPs could be reconstituted after freeze drying without appreciable changes in stability. L-DOPA coated NPs are stable in PBS and in MEM (Modified Eagle Medium) medium. The magnetic properties of these NPs were not altered by the coating processes. We investigated the cellular uptake, cytotoxicity, and interaction of these NPs with rat brain capillary endothelial (REB4) and choroidal plexus epithelial (Z310) cells. By means of widefield, confocal

  2. The importance of endothelin-1 for microvascular dysfunction in diabetes

    Directory of Open Access Journals (Sweden)

    Majid Kalani

    2008-08-01

    Full Text Available Majid KalaniDepartment of Clinical Sciences Karolinska Institutet, Dept of Cardiology, Danderyd Hospital, Stockholm, SwedenAbstract: Most of the late diabetic complications such as retinopathy, nephropathy, and neuropathy, have their basis in disturbed microvascular function. Structural and functional changes in the microcirculation are present in diabetes mellitus irrespective of the organ studied, and the pathogenesis is complex. Endothelial dysfunction, characterized by an imbalance between endothelium-derived vasodilator and vasoconstrictor substances, plays an important role in the pathogenesis of diabetic microangiopathy. Increased circulating levels of endothelin-1 (ET-1, a potent vasoconstrictor peptide, has been found in patients with diabetes, and a positive correlation between plasma ET-1 levels and microangiopathy in patients with type 2 diabetes has been demonstrated. In addition to its direct vasoconstrictor effects, enhanced levels of ET-1 may contribute to endothelial dysfunction through inhibitory effects on nitric oxide (NO production. Vascular endothelial dysfunction may precede insulin resistance, although the feature of insulin resistance syndrome includes factors that have negative effects on endothelial function. Furthermore, ET-1 induces a reduction in insulin sensitivity and may take part in the development of the metabolic syndrome. In the following, the mechanisms by which ET-1 contributes to the development of diabetic microangiopathy and the potentially beneficial effect of selective ETA receptor antagonists are discussed.Keywords: endothelin-1, diabetes mellitus, microcirculation, diabetic microangiopathy, ETA-receptor antagonist

  3. The inter-connection between fibrosis and microvascular remodeling in idiopathic pulmonary fibrosis: Reality or just a phenomenon

    Directory of Open Access Journals (Sweden)

    Mona Mlika

    2016-01-01

    Conclusion: Many theories have been reported concerning the UIP's pathogenesis. Recently, many authors reported that the primum movens of these lesions was an epithelial/endothelial injury which induces uncontrolled fibrosis and microvascular remodeling using different pathways. This puts emphasis on the necessity of multi-target therapies in order to improve the management of this fatal disease.

  4. Application of brain stem evoked potential monitoring in microvascular decompression for hemifacial spasm%面肌痉挛显微血管减压术中脑干听觉诱发电位监测的应用

    Institute of Scientific and Technical Information of China (English)

    张岚; 贾靖; 周同亮; 付桂香; 张黎; 袁越; 于炎冰

    2010-01-01

    目的 研究脑干听觉诱发电位(BAEP)监测在显微血管减压术(MVD)治疗面肌痉挛手术中的应用.方法 回顾性分析90例面肌痉挛患者在MVD术中进行BAEP监测的临床资料.结果 MVD手术操作过程均可引起BAEP改变,包括:BAEP的Ⅰ、Ⅲ、Ⅴ波绝对潜伏期明显延长(P<0.01),Ⅰ~Ⅲ、Ⅲ~Ⅴ、Ⅰ~Ⅴ波间期明显延长(P<0.01),Ⅲ波、Ⅴ波波幅明显降低(P<0.01);有16例术中Ⅴ波绝对潜伏期延长超过1ms,Ⅰ波波幅也有明显降低(P<0.01),但术后无听力障碍;手术结束时Ⅲ~Ⅴ波间期及16例的Ⅰ、Ⅴ波波幅恢复较快.2例术后患侧听力丧失的患者中,1例术中Ⅴ波波幅逐渐降低至消失,另1例术中未监测到Ⅴ波波形.结论 MVD手术操作过程均可引起BAEP改变;Ⅴ波绝对潜伏期延迟超过1ms者相对多见,但无听力受损;Ⅴ波波幅下降程度可为术中神经功能受损提供客观指标,以采取相应措施减少听力并发症的发生.%Objective To study the application of brain stem evoked potential(BAEP) monitoring in microvascular decompression (MVD) for treatment of hemifacial spasm (HFS).Method The clinical data of 90 patients of HFS treated by MVD under introperative monitoring of BAEP were evaluated retrospectively.Results Changes of BAEP were monitored in all MVD procedures.The changes included elongation of obsolute latency of Ⅰ ,Ⅲ,Ⅴ waves(P<0.01); elongation of inter-wave period of Ⅰ~Ⅲ,Ⅲ~Ⅴ,Ⅰ~Ⅴ waves (P<0.01); decrease of the amplitude of Ⅲ,Ⅴ waves(P<0.01).But there was no change in the amplitude of Ⅰ wave.The elongation of the obsolute latency of Ⅴ wave (≥ 1 ms) and decrease of the amplitude of Ⅰ waves (P<0.01) were observed in 16 patients,but there was no auditory dysfunction in these patients.The inter-wave periods of Ⅲ~Ⅴ waves of all patients and the amplitudes of Ⅰ,Ⅴ waves of those 16 patients were returned to normal levels quickly at the end of

  5. Microvascular anastomes in irradiated vessels

    International Nuclear Information System (INIS)

    The aim of the study was to investigate the healing of microvascular anastomoses in rat common femoral arteries and veins eight to nine months after the vessels had received irradiation. Patency rates in non irradiated arteries and veins were 92% and 100% respectively. The rate in irradiated arteries and veins (all groups together) was 96% and 69% respectively. The venous patency rate in the 5000, 7000 and 9000 rads groups taken together (13 rats) fell to 55%. (Auth.)

  6. Microvascular inflammatory response in the skin

    OpenAIRE

    Evilevitch, Vladimir

    2005-01-01

    This thesis examines the microvascular inflammatory response in the skin. The microvascular response includes vasodilatation and plasma exudation. In the first three studies, the combined response was measured in guinea pig skin with a technique based on detection of radiolabelled protein. Transferrin was labelled in vivo by injection of 113mIn and the conversion electrons detected over the skin using a plastic scintillator. The duration of the microvascular response after histamine an...

  7. Diabetes mellitus aggravates hemorrhagic transformation after ischemic stroke via mitochondrial defects leading to endothelial apoptosis.

    Directory of Open Access Journals (Sweden)

    Keisuke Mishiro

    Full Text Available Diabetes is a crucial risk factor for stroke and is associated with increased frequency and poor prognosis. Although endothelial dysfunction is a known contributor of stroke, the underlying mechanisms have not been elucidated. The aim of this study was to elucidate the mechanism by which chronic hyperglycemia may contribute to the worsened prognosis following stroke, especially focusing on mitochondrial alterations. We examined the effect of hyperglycemia on hemorrhagic transformation at 24 hours after middle cerebral artery occlusion (MCAO in streptozotocin (STZ -induced diabetic mice. We also examined the effects of high-glucose exposure for 6 days on cell death, mitochondrial functions and morphology in human brain microvascular endothelial cells (HBMVECs or human endothelial cells derived from induced pluripotent stem cells (iCell endothelial cells. Hyperglycemia aggravated hemorrhagic transformation, but not infarction following stroke. High-glucose exposure increased apoptosis, capase-3 activity, and release of apoptosis inducing factor (AIF and cytochrome c in HBMVECs as well as affected mitochondrial functions (decreased cell proliferation, ATP contents, mitochondrial membrane potential, and increased matrix metalloproteinase (MMP-9 activity, but not reactive oxygen species production. Furthermore, morphological aberration of mitochondria was observed in diabetic cells (a great deal of fragmentation, vacuolation, and cristae disruption. A similar phenomena were seen also in iCell endothelial cells. In conclusion, chronic hyperglycemia aggravated hemorrhagic transformation after stroke through mitochondrial dysfunction and morphological alteration, partially via MMP-9 activation, leading to caspase-dependent apoptosis of endothelial cells of diabetic mice. Mitochondria-targeting therapy may be a clinically innovative therapeutic strategy for diabetic complications in the future.

  8. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System

    OpenAIRE

    Whisler, Jordan A.; Chen, Michelle B.; Kamm, Roger D.

    2012-01-01

    The mechanical and biochemical microenvironment influences the morphological characteristics of microvascular networks (MVNs) formed by endothelial cells (ECs) undergoing the process of vasculogenesis. The objective of this study was to quantify the role of individual factors in determining key network parameters in an effort to construct a set of design principles for engineering vascular networks with prescribed morphologies. To achieve this goal, we developed a multiculture microfluidic pl...

  9. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  10. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    Science.gov (United States)

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  11. Multimodal investigations of trans-endothelial cell trafficking under condition of disrupted blood-brain barrier integrity

    OpenAIRE

    Masaryk Thomas; Desai Nirav K; Franic Linda; Nguyen Minh T; Teng Qingshan; Marchi Nicola; Rasmussen Peter; Trasciatti Silvia; Janigro Damir

    2010-01-01

    Abstract Background Stem cells or immune cells targeting the central nervous system (CNS) bear significant promises for patients affected by CNS disorders. Brain or spinal cord delivery of therapeutic cells is limited by the blood-brain barrier (BBB) which remains one of the recognized rate-limiting steps. Osmotic BBB disruption (BBBD) has been shown to improve small molecule chemotherapy for brain tumors, but successful delivery of cells in conjunction with BBBD has never been reported. We h...

  12. Study on correlation between circulating endothelial progenitor cells and brain natriuretic peptide in patients with myocardial infarction complicated heart failure after stem cell mobilization

    Directory of Open Access Journals (Sweden)

    Zi-lin ZHAO

    2014-06-01

    Full Text Available Objective: It is to observe the correlation between circulating endothelial progenitor cells (endothelial progenitor cells, EPCs and brain natriuretic peptide (BNP in patients with myocardial infarction and heart failure after stem cell mobilizer granulocyte colony stimulating factor (granulocyte colony stimulating factor, G-CSF.Methods: Patients were divided into the control group(37 and the observation group (38. The observation group took injection of G-CSF, 10μg/kg, for 7d. The Two groups were observed the amount of circulating EPCs , the levels of BNP, TNF- α and other indicators, and make clinical analysis. Results: Compared with control group, the amount of EPCs were significantly increased, the level of BNP, TNF- α were decreased, the difference between the observation group and control group is statistical significant (P < 0.05; the amount of  EPCs had negative correlation with BNP. Conclusion: The application of stem cell mobilization of circulating EPCs can improve the clinical curative effect of myocardial infarction patients and heart failure, cyclic EPCs and BNP detection can effectively evaluate the heart function and prognosis.

  13. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    Directory of Open Access Journals (Sweden)

    J.P. Borges

    2016-01-01

    Full Text Available Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61 and healthy age-matched subjects (n=24. Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01. With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04. In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  14. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging.

    Science.gov (United States)

    Borges, J P; Lopes, G O; Verri, V; Coelho, M P; Nascimento, P M C; Kopiler, D A; Tibirica, E

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; PAPU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men. PMID:27599202

  15. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis.

    Science.gov (United States)

    Yano, S; Shinohara, H; Herbst, R S; Kuniyasu, H; Bucana, C D; Ellis, L M; Davis, D W; McConkey, D J; Fidler, I J

    2000-09-01

    We investigated the molecular mechanisms of angiogenesis in experimental brain metastasis. Cells from six different human cancer cell lines (proven to produce visceral metastasis) were injected into the internal carotid artery of nude mice. Colon carcinoma (KM12SM) and lung adenocarcinoma (PC14PE6 and PC14Br) cells produced large, fast-growing parenchymal brain metastases, whereas lung squamous cell carcinoma (H226), renal cell carcinoma (SN12PM6), and melanoma (TXM13) cells produced only a few slow-growing brain metastases. Rapidly progressing brain metastases contained many enlarged blood vessels. The expression of VEGF mRNA and protein by the tumor cells directly correlated with angiogenesis and growth of brain metastasis. Causal evidence for the essential role of VEGF in this process was provided by transfecting PC14PE6 and KM12SM cells with antisense-VEGF165 gene, which significantly decreased the incidence of brain metastasis. In contrast, transfection of H226 human lung squamous carcinoma cells with sense-VEGF121 or sense-VEGF165 neither enhanced nor inhibited formation of brain metastases. Collectively, the results indicate that VEGF expression is necessary but not sufficient for the production of brain metastasis and that the inhibition of VEGF represents an important therapeutic target. PMID:10987313

  16. Endothelial progenitors in sepsis: vox clamantis in deserto?

    OpenAIRE

    Goligorsky, Michael S

    2011-01-01

    In this issue of Critical Care, Patschan and colleagues present a study of endothelial progenitor cells (EPCs) in patients with sepsis. The importance of this study is in focusing attention on several frequently ignored aspects of sepsis. Among those are the phenomenon of microvascular dysfunction, which is potentially responsible for profound metabolic perturbations at the tissue level, and the role of endothelial progenitors in repair processes. Other important aspects of the study are the ...

  17. Microvascularization on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke; Miglino, Maria Angélica

    2012-01-01

    microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base of the...... bulbous protrusions, the fetal venules arise. The blood vessel orientation in the materno-fetal interface of the placentae of collared peccaries suggests a blood flow pattern of the type countercurrent to cross current. The same pattern has been reported in domestic swine demonstrating that, even after 38...

  18. Endoscopic and Microscopic Microvascular Decompression.

    Science.gov (United States)

    Piazza, Matthew; Lee, John Y K

    2016-07-01

    The introduction of the endoscope into the neurosurgeon's armamentarium has revolutionized ventral and anterior skull-base surgery and, more recently, has been used in the surgical treatment of cerebellopontine angle (CPA) pathology. The utilization of the endoscope in microvascular decompression (MVD) for trigeminal neuralgia and other associated cranial nerve hyperactivity syndromes allows for unparalleled panoramic views and illumination of the neurovascular structures within the CPA and identification of vessel-nerve contact traditionally unseen using the microscope. In this article, the technical advantages and challenges of using the endoscope for MVD, operative technique, and patient outcomes of endoscopic MVD are discussed. PMID:27324997

  19. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Neverve, Jodi; Nekolla, Stephan G.; Schwaiger, Markus; Bengel, Frank M. [Nuklearmedizinische Klinik und Poliklinik der Technischen Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Abletshauser, Claudia [Department of Medicine, Novartis Pharma GmbH, Nuernberg (Germany); Schnell, Oliver; Standl, Eberhard [Institut fuer Diabetesforschung, Munich (Germany)

    2002-12-01

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  20. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  1. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    Science.gov (United States)

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma. PMID:26308584

  2. Re-evaluation of the role of P-glycoprotein in in vitro drug permeability studies with the bovine brain microvessel endothelial cells.

    Science.gov (United States)

    Hakkarainen, Jenni J; Rilla, Kirsi; Suhonen, Marjukka; Ruponen, Marika; Forsberg, Markus M

    2014-03-01

    1.  Currently available in vitro blood-brain barrier models all have recognized restrictions. In addition to leakiness, inconsistent data about P-glycoprotein mediated efflux limit the attractiveness of the primary bovine brain microvessel endothelial cells (BBMECs). Therefore, we re-evaluated the role of P-glycoprotein mediated efflux with two culture conditions in BBMECs for prediction of drug permeability of potential P-glycoprotein substrates. 2.  BBMECs were monocultured on filters on petri dishes and on filter inserts, and expression and localization of P-glycoprotein were compared by using western blot and confocal microscopy, respectively. The functionality of P-glycoprotein was assessed by using cellular uptake, calcein-AM and bidirectional transport assays. 3.  P-glycoprotein expression was higher in BBMECs cultured on filter inserts decreasing the permeability of digoxin and paclitaxel, but not the permeability of vinblastine. However, the monocultured BBMECs were not able to demonstrate efflux in the bidirectional transport assays. Under certain culture conditions, occludin may not be correctly located, perhaps explaining in part the leakiness of BBMECs. 4.  In conclusion, BBMECs, despite possessing a functional P-glycoprotein, under certain culture conditions may not be a suitable in vitro model for the bidirectional transport assays and for predicting the permeability of drugs and xenobiotics that are potential P-glycoprotein substrates. PMID:23924297

  3. Effects of hyperoxia on microvascular cells in vitro

    International Nuclear Information System (INIS)

    Microvascular cells are most vulnerable to direct oxygen damage. Using an in vitro model system we have investigated the effect of elevated oxygen on the proliferation, morphology, and integrity of microvascular endothelial cells (EC) and pericytes. Cultivation of these cells at oxygen concentrations of 40% for 1 wk resulted in the inhibition of EC proliferation but had no effect on the growth of the pericytes. Similarly, hyperoxia induced a dramatic change in the shape of the EC, increasing their spread area by close to six-fold. Under the same conditions, the spread area of the pericytes was unaffected. To understand the effect of the hyperoxic treatment on the cells, the integrity of various membrane systems was assessed. 51Cr release was used to monitor plasma membrane integrity. There was no difference in chromium release by EC and pericytes over the 7 d of growth under normoxic and hyperoxic conditions. Mitochondrial integrity was examined by staining the cells with Rhodamine 123, which is selectively accumulated by the mitochondria. The staining pattern of the mitochondria of both EC and pericytes was altered by growth in the elevated oxygen. Finally, the lysosomes were visualized using acridine orange. The acridine orange staining pattern revealed enlarged and perinuclear lysosomes in the EC but no change in the pericyte lysosomal staining pattern. Thus, the cells of the microvasculature seem to be differentially affected by hyperoxia, a fact that may be significant in the etiology of reperfusion injury, ischemic disease, and pathologies associated with prematurity

  4. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  5. In Vitro Permeation of FITC-loaded Ferritins Across a Rat Blood-brain Barrier: a Model to Study the Delivery of Nanoformulated Molecules.

    Science.gov (United States)

    Fiandra, Luisa; Mazzucchelli, Serena; Truffi, Marta; Bellini, Michela; Sorrentino, Luca; Corsi, Fabio

    2016-01-01

    Brain microvascular endothelial cells, supported by pericytes and astrocytes endfeet, are responsible for the low permeation of large hydrosoluble drugs through the blood-brain barrier (BBB), causing difficulties for effective pharmacological therapies. In recent years, different strategies for promoting brain targeting have aimed to improve drug delivery and activity at this site, including innovative nanosystems for drug delivery across the BBB. In this context, an in vitro approach based on a simplified cellular model of the BBB provides a useful tool to investigate the effect of nanoformulations on the trans-BBB permeation of molecules. This study describes the development of a double-layer BBB, consisting of co-cultured commercially available primary rat brain microvascular endothelial cells and astrocytes. A multiparametric approach for the validation of the model, based on the measurement of the transendothelial electrical resistance and the apparent permeability of a high molecular weight dextran, is also described. As proof of concept for the employment of this BBB model to study the effect of different nanoformulations on the translocation of fluorescent molecules across the barrier, we describe the use of fluorescein isothiocyanate (FITC), loaded into ferritin nanoparticles. The ability of ferritins to improve the trans-BBB permeation of FITC was demonstrated by flux measurements and confocal microscopy analyses. The results suggest this is a useful system for validating nanosystems for delivery of drugs across the BBB. PMID:27583454

  6. Multimodal investigations of trans-endothelial cell trafficking under condition of disrupted blood-brain barrier integrity

    Directory of Open Access Journals (Sweden)

    Masaryk Thomas

    2010-03-01

    Full Text Available Abstract Background Stem cells or immune cells targeting the central nervous system (CNS bear significant promises for patients affected by CNS disorders. Brain or spinal cord delivery of therapeutic cells is limited by the blood-brain barrier (BBB which remains one of the recognized rate-limiting steps. Osmotic BBB disruption (BBBD has been shown to improve small molecule chemotherapy for brain tumors, but successful delivery of cells in conjunction with BBBD has never been reported. We have used a clinically relevant model (pig of BBBD to attempt brain delivery of TALL-104, a human leukemic T cell line. TALL-104 cells are potent tumor killers and have demonstrated potential for systemic tumor therapy. The pig model used is analogous to the clinical BBBD procedure. Cells were injected in the carotid artery after labeling with the MRI T1 contrast agent GdHPDO3A. Contrast CT scans were used to quantify BBBD and MRI was used to detect Gd++-loaded cells in the brain. Transcranial Doppler was used to monitor cerebral blood flow. EEG recordings were used to detect seizures. Immunocytochemical detection (Cresyl Violet, anti-human CD8 for TALL-104, Evans Blue for BBB damage, GFAP and NEUN was performed. Results At the concentration used TALL-104 cells were tolerated. Incomplete BBBD did not allow cell entry into the brain. MRI scans at 24 and 48 hours post-injection allowed visualization of topographically segregated cells in the hemisphere that underwent successful BBBD. Perivascular location of TALL-104 was confirmed in the BBBD hemisphere by Cresyl violet and CD8 immunocytochemistry. No significant alteration in CBF or EEG activity was recorded during cell injections. Conclusions Our data show that targeted CNS cell therapy requires blood-brain barrier disruption. MRI-detectable cytotoxic anti-neoplastic cells can be forced to transverse the BBB and accumulate in the perivascular space. The virtual absence of toxicity, the high anti-tumor activity

  7. Inflammation Modulates RLIP76/RALBP1 Electrophile-Glutathione Conjugate Transporter and Housekeeping Genes in Human Blood-Brain Barrier Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bennani-Baiti

    Full Text Available Endothelial cells are often present at inflammation sites. This is the case of endothelial cells of the blood-brain barrier (BBB of patients afflicted with neurodegenerative disorders such as Alzheimer's, Parkinson's, or multiple sclerosis, as well as in cases of bacterial meningitis, trauma, or tumor-associated ischemia. Inflammation is a known modulator of gene expression through the activation of transcription factors, mostly NF-κB. RLIP76 (a.k.a. RALBP1, an ATP-dependent transporter of electrophile-glutathione conjugates, modulates BBB permeability through the regulation of tight junction function, cell adhesion, and exocytosis. Genes and pathways regulated by RLIP76 are transcriptional targets of tumor necrosis factor alpha (TNF-α pro-inflammatory molecule, suggesting that RLIP76 may also be an inflammation target. To assess the effects of TNF-α on RLIP76, we faced the problem of choosing reference genes impervious to TNF-α. Since such genes were not known in human BBB endothelial cells, we subjected these to TNF-α, and measured by quantitative RT-PCR the expression of housekeeping genes commonly used as reference genes. We find most to be modulated, and analysis of several inflammation datasets as well as a metaanalysis of more than 5000 human tissue samples encompassing more than 300 cell types and diseases show that no single housekeeping gene may be used as a reference gene. Using three different algorithms, however, we uncovered a reference geneset impervious to TNF-α, and show for the first time that RLIP76 expression is induced by TNF-α and follows the induction kinetics of inflammation markers, suggesting that inflammation can influence RLIP76 expression at the BBB. We also show that MRP1 (a.k.a. ABCC1, another electrophile-glutathione transporter, is not modulated in the same cells and conditions, indicating that RLIP76 regulation by TNF-α is not a general property of glutathione transporters. The reference geneset

  8. Systemic and cerebral vascular endothelial growth factor levels increase in murine cerebral malaria along with increased calpain and caspase activity and can be reduced by erythropoietin treatment

    Directory of Open Access Journals (Sweden)

    Casper eHempel

    2014-06-01

    Full Text Available The pathogenesis of cerebral malaria includes compromised microvascular perfusion, increased inflammation, cytoadhesion and endothelial activation. These events cause blood-brain barrier disruption and neuropathology and can be associated with the vascular endothelial growth factor (VEGF signalling pathway. We studied this pathway in mice infected with Plasmodium berghei ANKA causing murine cerebral malaria with or without the use of erythropoietin as adjunct therapy. ELISA and western blotting was used for quantification of VEGF and relevant proteins in brain and plasma. Cerebral malaria increased levels of VEGF in brain and plasma and decreased plasma levels of soluble VEGF receptor 2. Erythropoietin treatment normalised VEGF receptor 2 levels and reduced brain VEGF levels. Hypoxia-inducible factor (HIF-1α was significantly upregulated whereas cerebral HIF-2α and erythropoietin levels remained unchanged. Furthermore, we noticed increased caspase-3 and calpain activity in terminally ill mice, as measured by protease-specific cleavage of α-spectrin and p35. In conclusion, we detected increased cerebral and systemic VEGF as well as HIF-1α, which in the brain were reduced to normal in erythropoietin-treated mice. Also caspase and calpain activity was reduced markedly in erythropoietin-treated mice.

  9. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  10. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction

    OpenAIRE

    Bomsztyk, Karol; Mar, Daniel; An, Dowon; Sharifian, Roya; Mikula, Michal; Gharib, Sina A; Altemeier, William A.; Liles, W. Conrad; Denisenko, Oleg

    2015-01-01

    Introduction The Tie2/angiopoietin (Tie2/Ang) and vascular endothelial growth factor receptor-ligand systems (VEGFR/VEGF) are recognized to play important roles in the regulation of microvascular endothelial function. Downregulation of these genes during sepsis has been implicated in the pathogenesis of sepsis-related microvascular leak and multiple organ dysfunction syndrome. Mechanisms responsible for dysregulation of angiogenic genes in sepsis are poorly defined. Methods Western blot, reve...

  11. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    OpenAIRE

    Eigenmann, Daniela E; Xue, Gongda; Kwang S Kim; Moses, Ashlee V.; Hamburger, Matthias; Oufir, Mouhssin

    2013-01-01

    Background Reliable human in vitro blood–brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellu...

  12. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model

    DEFF Research Database (Denmark)

    Sillesen, Martin; Rasmussen, Lars S; Jin, Guang; Jepsen, Cecilie H; Imam, Ayesha; Hwabejire, John O; Halaweish, Ihab; DeMoya, Marc; Velmahos, George; Johansson, Pär I; Alam, Hasan B

    2014-01-01

    complement systems. METHODS: A total of 33 swine were allocated to either TBI + HS (n = 27, TBI and volume-controlled 40% blood loss) or controls (n = 6, anesthesia and instrumentation). TBI + HS animals were left hypotensive (mean arterial pressure, 30-35 mm Hg) for 2 hours. Blood samples were drawn at...... baseline, 3 minutes and 15 minutes after injury, as well as following 2 hours of hypotension. Markers of coagulation, anticoagulation, endothelial activation/glycocalyx shedding, inflammation, complement, and sympathoadrenal function were measured. RESULTS: The TBI + HS group demonstrated an immediate (3...... inflammation (tumor necrosis factor α [TNF-α], 81.1 pg/mL vs. 50.8 pg/mL, p = 0.03) and activation of the protein C system (activated protein C, 56.7 ng/mL vs. 26.1 ng/mL, p = 0.01) were evident following the 2-hour hypotension phase. CONCLUSION: The combination of TBI and shock results in an immediate...

  13. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Fang, Zhi; He, Quan-Wei; Li, Qian; Chen, Xiao-Lu; Baral, Suraj; Jin, Hui-Juan; Zhu, Yi-Yi; Li, Man; Xia, Yuan-Peng; Mao, Ling; Hu, Bo

    2016-06-01

    The mechanism of blood-brain barrier (BBB) disruption, involved in poststroke edema and hemorrhagic transformation, is important but elusive. We investigated microRNA-150 (miR-150)-mediated mechanism in the disruption of BBB after stroke in rats. We found that up-regulation of miR-150 increased permeability of BBB as detected by MRI after permanent middle cerebral artery occlusion in vivo as well as increased permeability of brain microvascular endothelial cells after oxygen-glucose deprivation in vitro. The expression of claudin-5, a key tight junction protein, was decreased in the ischemic boundary zone after up-regulation of miR-150. We found in brain microvascular endothelial cells that overexpression of miR-150 decreased not only cell survival rate but also the expression levels of claudin-5 after oxygen-glucose deprivation. With dual-luciferase assay, we confirmed that miR-150 could directly regulate the angiopoietin receptor Tie-2. Moreover, silencing Tie-2 with lentivirus-delivered small interfering RNA reversed the effect of miR-150 on endothelial permeability, cell survival, and claudin-5 expression. Furthermore, poststroke treatment with antagomir-150, a specific miR-150 antagonist, contributed to BBB protection, infarct volume reduction, and amelioration of neurologic deficits. Collectively, our findings suggested that miR-150 could regulate claudin-5 expression and endothelial cell survival by targeting Tie-2, thus affecting the permeability of BBB after permanent middle cerebral artery occlusion in rats, and that miR-150 might be a potential alternative target for the treatment of stroke.-Fang, Z., He, Q.-W., Li, Q., Chen, X.-L., Baral, S., Jin, H.-J., Zhu, Y.-Y., Li, M., Xia, Y.-P., Mao, L., Hu, B. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. PMID:26887441

  14. Laser Doppler flowmetry in microvascular surgery

    OpenAIRE

    Adrichem, Léon

    1992-01-01

    textabstractIn the first part of this thesis, describing clinical and experimental studies, laser Doppler flowmetry is evaluated as diagnostic tool to assess tissue microcirculation after various microvascular operations. The second part concerns the application of laser Doppler flowmetry to investigate and to objectivate the negative effects of cigarette smoking upon the microcirculation under normal circumstances as well as after microvascular operative procedures. Success of plastic and re...

  15. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

    Directory of Open Access Journals (Sweden)

    Morrison Laurie J

    2010-01-01

    Full Text Available Abstract Background Traumatic brain injury (TBI initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury. Methods Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS vs 0.9% normal saline (NS, on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b and degranulation (CD63, CD66b molecules. Circulating concentrations of soluble (sL- and sE-selectins (sL-, sE-selectins, vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1, pro/antiinflammatory cytokines [tumor necrosis factor (TNF-α and interleukin (IL-10], tissue factor (sTF, thrombomodulin (sTM and D-dimers (D-D were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group. Results TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to

  16. Asymmetric dimethylarginine, endothelial nitric oxide bioavailability and mortality in sepsis.

    Directory of Open Access Journals (Sweden)

    Joshua S Davis

    Full Text Available BACKGROUND: Plasma concentrations of asymmetric dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelial dysfunction, but the role of ADMA in acute inflammatory states is less well defined. METHODS AND RESULTS: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digital microvascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2-4 days later. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baseline plasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45-103] than in hospital controls (143 [123-166], p<0.0001 and correlated with microvascular reactivity (r = 0.34, R(2 = 0.12, p = 0.02. Baseline plasma ADMA was independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile (≥ 0.66 µmol/L = 20.8 [2.2-195.0], p = 0.008, and was independently correlated with severity of organ failure. Increase in ADMA over time correlated with increase in organ failure and decrease in microvascular reactivity. CONCLUSIONS: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potential mechanism linking increased plasma ADMA with organ failure and death in sepsis.

  17. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain. PMID:25407801

  18. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  19. Effects of vascular endothelial growth factor on angiogenesis of the endothelial cells isolated from cavernous malformations

    Institute of Scientific and Technical Information of China (English)

    TAN YuZhen; ZHAO Yao; WANG HaiJie; ZHOU LiangFu; MAO Ying; LIU Rui; SHU Jia; WANG YongFei

    2008-01-01

    Human cerebral cavernous malformation (CM) is a common vascular malformation of the central nervous system. We have investigated the biological characteristics of CM endothelial cells and the cellular and molecular mechanisms of CM angiogenesis to offer new insights into exploring effective measures for treatment of this disease. The endothelial cells were isolated from CM tissue masses dissected during operation and expanded in vitro. Expression of VEGFR-1 and VEGFR-2 was examined with immunocytochemical staining. Proliferation, migration and tube formation of CM endothelial cells were determined using MTT, wounding and transmigration assays, and three-dimensional collagen type Ⅰ gel respectively. The endothelial cells were successfully isolated from the tissue specimens of 25 CMs dissected without dipolar electrocoagulation. The cells show the general characteristics of the vascular endothelial cells. Expression of VEGFR-1 and VEGFR-2 on the cells is higher than that on the normal cerebral microvascular endothelial cells. After treatment with VEGF, numbers of the proliferated and migrated cells, the maximal distance of cell migration and the length and area of capillary-like struc-tures formed in the three-dimensional collagen gel increase significantly. These results demonstrate that expression of VEGFR-1 and VEGFR-2 on CM endothelial cells is up-regulated. By binding to re-ceptors, VEGF may activate the downstream signaling pathways and promote proliferation, migration and tube formation of CM endothelial cells. VEGF/VEGFR signaling pathways play important regulating roles in CM angiogenesis.

  20. Effects of macrophage-activating lipopeptide-2 (MALP-2) on the vascularisation of implanted polyurethane scaffolds seeded with microvascular fragments.

    Science.gov (United States)

    Grässer, C; Scheuer, C; Parakenings, J; Tschernig, T; Eglin, D; Menger, M D; Laschke, M W

    2016-01-01

    The seeding of scaffolds with adipose tissue-derived microvascular fragments represents a promising strategy to establish a sufficient blood supply in tissue constructs. Herein, we analysed whether a single application of macrophage-activating lipopeptide-2 (MALP-2) at the implantation site further improves the early vascularisation of such microvessel-seeded constructs. Microvascular fragments were isolated from epididymal fat pads of C57BL/6 mice. The fragments were seeded on polyurethane scaffolds, which were implanted into mouse dorsal skinfold chambers exposed to MALP-2 or vehicle (control). The inflammatory host tissue response and the vascularisation of the scaffolds were analysed using intravital fluorescence microscopy, histology and immunohistochemistry. We found that the numbers of microvascular adherent leukocytes were significantly increased in MALP-2-treated chambers during the first 3 days after scaffold implantation when compared to controls. This temporary inflammation resulted in an improved vascularisation of the host tissue surrounding the implants, as indicated by a higher density of CD31-positive microvessels at day 14. However, the MALP-2-exposed scaffolds themselves presented with a lower functional microvessel density in their centre. In addition, in vitro analyses revealed that MALP-2 promotes apoptotic cell death of endothelial and perivascular cells in isolated microvascular fragments. Hence, despite the beneficial pro-angiogenic properties of MALP-2 at the implantation site, the herein evaluated approach may not be recommended to improve the vascularisation capacity of microvascular fragments in tissue engineering applications. PMID:27386841

  1. Leukocyte infiltration into spinal cord of EAE mice is attenuated by removal of endothelial leptin signaling.

    Science.gov (United States)

    Ouyang, Suidong; Hsuchou, Hung; Kastin, Abba J; Mishra, Pramod K; Wang, Yuping; Pan, Weihong

    2014-08-01

    Leptin, a pleiotropic adipokine, crosses the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) from the periphery and facilitates experimental autoimmune encephalomyelitis (EAE). EAE induces dynamic changes of leptin receptors in enriched brain and spinal cord microvessels, leading to further questions about the potential roles of endothelial leptin signaling in EAE progression. In endothelial leptin receptor specific knockout (ELKO) mice, there were lower EAE behavioral scores in the early phase of the disorder, better preserved BSCB function shown by reduced uptake of sodium fluorescein and leukocyte infiltration into the spinal cord. Flow cytometry showed that the ELKO mutation decreased the number of CD3 and CD45 cells in the spinal cord, although immune cell profiles in peripheral organs were unchanged. Not only were CD4(+) and CD8(+) T lymphocytes reduced, there were also lower numbers of CD11b(+)Gr1(+) granulocytes in the spinal cord of ELKO mice. In enriched microvessels from the spinal cord of the ELKO mice, the decreased expression of mRNAs for a few tight junction proteins was less pronounced in ELKO than WT mice, as was the elevation of mRNA for CCL5, CXCL9, IFN-γ, and TNF-α. Altogether, ELKO mice show reduced inflammation at the level of the BSCB, less leukocyte infiltration, and better preserved tight junction protein expression and BBB function than WT mice after EAE. Although leptin concentrations were high in ELKO mice and microvascular leptin receptors show an initial elevation before inhibition during the course of EAE, removal of leptin signaling helped to reduce disease burden. We conclude that endothelial leptin signaling exacerbates BBB dysfunction to worsen EAE. PMID:24576482

  2. 人羊膜匀浆上清液对脂多糖致伤的大鼠肺微血管内皮细胞增殖及分泌炎症因子的影响%Effect of supernatant of human amnion homogenate on lipopolysaccharide induced pulmonary microvascular endotheli-al cells injury and their proliferation and expression of proinflammatory factors in rats

    Institute of Scientific and Technical Information of China (English)

    陈云鹏; 朱富军; 龚震宇; 辛海明; 王磊; 童亚林; 刘亮; 吕璐; 莫永亮; 詹球; 阳齐琼; 梁静

    2015-01-01

    长因子、细胞因子,对 LPS致伤的 RPMVECs增殖具有促进作用,并减少致伤后炎症因子分泌。%Objective:To investigate the protective effect of supernatant of human amnion homogenate (hAHS)on proliferation and expression of proinflammatory mediators by lipopolysaccharide (LPS)induced inj ured pulmonary microvascular endothelial cells of rats (RPMVECs).Methods:hAHS was prepared from fresh human amnion. The total protein content and the content of epithelial growth factor (EGF),basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF),interleukin-4 (IL-4),IL-10,angiogenin-1 (Ang-1),humanβ-defensin2 (HBD2)of hAHS were determined with Coomassie blue staining and ELISA. The effect of 0,10%,15%, 20%,25% hAHS on cell proliferation activity of RPMVECs was respectively determined with MTT assay,in or-der to determine the optimal concentration of hAHS on promoting RPMVECs proliferation. According to different co-culture conditions,RPMVECs were randomly divided into 4 groups:group N (cultured with 10%FBS+DMEM/F12),group A(10%FBS+DMEM/F12+15%hAHS),group B (10%FBS+DMEM/F12+LPS),and group C (10%FBS+DMEM/F12+15%hAHS+LPS). At 0,12,24,48,72 hours after culturing with the corre-sponding medium of each group,optical density values (A values)of each group were determined respectively with MTT assay to determine the proliferation activity,and the contents of IL-6,IL-8,TNF-αlevels in the culture su-pernates were also determined by ELISA at 6,8,10,12 and 24 hours. Results:The total protein concentration of hAHS was (725.125±12.625)mg/L,and levels of EGF,bFGF,VEGF,IL-4,IL-10,Ang-1,HDB2 were re-spectively(504.785±4.665)ng/L,(4.426±0.138)ng/L,(0.185±0.006)ng/L,(25.650±4.104)ng/L,(13.733 ±2.197)ng/L,(15.561±0.496)ng/L,(4.763±0.714)ng/L.10%-20% hAHS was shown to promote prolifer-ation of RPMVECs,and 15% hAHS,and the best result was observed on 7 and 9 days. The proliferation rate of RPMVECs in 25% hAHS group at 7,9 and 11 days was lower than those in the 0%hAHS group (P<0

  3. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1

    Directory of Open Access Journals (Sweden)

    Krupinski Jerzy

    2012-12-01

    Full Text Available Abstract Background Citicoline is one of the neuroprotective agents that have been used as a therapy in stroke patients. There is limited published data describing the mechanisms through which it acts. Methods We used in vitro angiogenesis assays: migration, proliferation, differentiation into tube-like structures in Matrigel™ and spheroid development assays in human brain microvessel endothelial cells (hCMEC/D3. Western blotting was performed on protein extraction from hCMEC/D3 stimulated with citicoline. An analysis of citicoline signalling pathways was previously studied using a Kinexus phospho-protein screening array. A staurosporin/calcium ionophore-induced apoptosis assay was performed by seeding hCMEC/D3 on to glass coverslips in serum poor medium. In a pilot in vivo study, transient MCAO in rats was carried out with and without citicoline treatment (1000 mg/Kg applied at the time of occlusion and subsequently every 3 days until euthanasia (21 days. Vascularity of the stroke-affected regions was examined by immunohistochemistry. Results Citicoline presented no mitogenic and chemotactic effects on hCMEC/D3; however, it significantly increased wound recovery, the formation of tube-like structures in Matrigel™ and enhanced spheroid development and sprouting. Citicoline induced the expression of phospho-extracellular-signal regulated kinase (ERK-1/2. Kinexus assays showed an over-expression of insulin receptor substrate-1 (IRS-1. Knock-down of IRS-1 with targeted siRNA in our hCMEC/D3 inhibited the pro-angiogenic effects of citicoline. The percentage of surviving cells was higher in the presence of citicoline. Citicoline treatment significantly increased the numbers of new, active CD105-positive microvessels following MCAO. Conclusions The findings demonstrate both a pro-angiogenic and protective effect of citicoline on hCMEC/D3 in vitro and following middle cerebral artery occlusion (MCAO in vivo.

  4. Fingolimod (FTY720-P Does Not Stabilize the Blood–Brain Barrier under Inflammatory Conditions in an in Vitro Model

    Directory of Open Access Journals (Sweden)

    Michael K. Schuhmann

    2015-12-01

    Full Text Available Breakdown of the blood-brain barrier (BBB is an early hallmark of multiple sclerosis (MS, a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P, a signaling protein, via S1P receptors (S1P1. Fingolimod phosphate (FTY720-P a functional S1P1 antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeability—in particular, on the tight junction proteins occludin, claudin 5 and ZO-1—has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P1 plays a dual role in vascular permeability, depending on its ligand. Thus, S1P1 provides a mechanistic basis for FTY720-P-associated disruption of endothelial barriers—such as the blood-retinal barrier—which might result in macular edema.

  5. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers

    Science.gov (United States)

    Anand, Prachi; O'Neil, Alison; Lin, Emily; Douglas, Trevor; Holford, Mandë

    2015-08-01

    The blood brain barrier (BBB) is often an insurmountable obstacle for a large number of candidate drugs, including peptides, antibiotics, and chemotherapeutic agents. Devising an adroit delivery method to cross the BBB is essential to unlocking widespread application of peptide therapeutics. Presented here is an engineered nanocontainer for delivering peptidic drugs across the BBB encapsulating the analgesic marine snail peptide ziconotide (Prialt®). We developed a bi-functional viral nanocontainer based on the Salmonella typhimurium bacteriophage P22 capsid, genetically incorporating ziconotide in the interior cavity, and chemically attaching cell penetrating HIV-Tat peptide on the exterior of the capsid. Virus like particles (VLPs) of P22 containing ziconotide were successfully transported in several BBB models of rat and human brain microvascular endothelial cells (BMVEC) using a recyclable noncytotoxic endocytic pathway. This work demonstrates proof in principle for developing a possible alternative to intrathecal injection of ziconotide using a tunable VLP drug delivery nanocontainer to cross the BBB.

  6. Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (P-Glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis.

    Science.gov (United States)

    Qosa, Hisham; Lichter, Jessica; Sarlo, Mark; Markandaiah, Shashirekha S; McAvoy, Kevin; Richard, Jean-Philippe; Jablonski, Michael R; Maragakis, Nicholas J; Pasinelli, Piera; Trotti, Davide

    2016-08-01

    The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313. PMID:27158936

  7. Microvascular decompression for trigeminal neuralgia

    International Nuclear Information System (INIS)

    Background: Trigeminal Neuralgia (TGN) is the most frequently diagnosed type of facial pain. In idiopathic type of TGN it is caused by the neuro-vascular conflict involving trigeminal nerve. Microvascular decompression (MVD) aims at addressing this basic pathology in the idiopathic type of TGN. This study was conducted to determine the outcome and complications of patients with idiopathic TGN undergoing MVD. Method: In a descriptive case series patients with idiopathic TGN undergoing MVD were included in consecutive manner. Patients were diagnosed on the basis of detailed history and clinical examination. Retromastoid approach with craniectomy was used to access cerebellopontine angle (CP-angle) and microsurgical decompression was done. Patients were followed up for 6 months. Results: A total of 53 patients underwent MVD with mean age of 51.6±4.2 years and male predominance. In majority of cases (58.4 percentage) both Maxillary and Mandibular divisions were involved. Per-operatively superior cerebellar artery (SCA) was causing the neuro-vascular conflict in 33 (62.2 percentage) of the cases, anterior inferior cerebellar artery (AICA) in 6 (11.3 percentage) cases, both CSA and AICA in 3 (5.6 percentage) cases, venous compressions in only 1 (1.8percentage) patient and thick arachnoid adhesions were seen in 10 (18.9 percentage) patients. Postoperatively, 33 (68 percentage) patients were pain free, in 14 (26.45 percentage) patients pain was significantly improved whereas in 3 (5.6 percentage) patients there was mild improvement in symptoms. Three (5.6 percentage) patients did not improve after the primary surgery. Cerebrospinal fluid (CSF) leak was encountered in 7 (13.2 percentage) patients post-operatively, 4 (7.5 percentage) patients developed wound infection and 1 (1.8 percentage) patient developed aseptic meningitis. Three (5.6 percentage) patients had transient VII nerve palsy while one patient developed permanent VII nerve palsy. Conclusion: MVD is a safe and

  8. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain

    Directory of Open Access Journals (Sweden)

    Honnold Shelley P

    2011-04-01

    Full Text Available Abstract Background Neuroinvasion of Venezuelan equine encephalitis virus (VEEV and subsequent initiation of inflammation in the brain plays a crucial role in the outcome of VEEV infection in mice. Adhesion molecules expressed on microvascular endothelial cells in the brain have been implicated in the modulation of the blood brain barrier (BBB and inflammation in brain but their role in VEEV pathogenesis is not very well understood. In this study, we evaluated the expression of extracellular matrix and adhesion molecules genes in the brain of VEEV infected mice. Findings Several cell to cell adhesion molecules and extracellular matrix protein genes such as ICAM-1, VCAM-1, CD44, Cadherins, integrins, MMPs and Timp1 were differentially regulated post-VEEV infection. ICAM-1 knock-out (IKO mice infected with VEEV had markedly reduced inflammation in the brain and demonstrated a delay in the onset of clinical symptoms of disease. A differential regulation of inflammatory genes was observed in the IKO mice brain compared to their WT counterparts. Conclusions These results improve our present understanding of VEEV induced inflammation in mouse brain.

  9. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats.

    Science.gov (United States)

    Dreyfuss, D; Basset, G; Soler, P; Saumon, G

    1985-10-01

    The mechanisms by which intermittent positive-pressure ventilation with high inflation pressure (HIPPV) induces pulmonary edema remain uncertain. In this study we investigated the physiologic and anatomic changes related to HIPPV at 45 cmH2O peak inspiratory pressure in rats. Edema was quantified by the extravascular lung water obtained from postmortem weighing and by 22Na distribution space. Pulmonary microvascular permeability was assessed by dry lung weight and fractional albumin uptake. After only 5 min of HIPPV, there was a significant increase in Na space, dry lung weight, and fractional albumin uptake when compared with that in control rats mechanically ventilated at 7 cmH2O peak inspiratory pressure. These changes suggest that edema may be due at least in part to alterations in microvascular permeability. Moderate peribronchovascular edema was present. At the ultrastructural level, some endothelial cells were found detached from their basement membrane. This lesion has been previously described in other types of pulmonary microvascular injury. The above findings remained almost unchanged after 10 min of HIPPV. After 20 min of HIPPV, we observed the outpouring of a high protein content alveolar flooding accompanied by a further significant increase in fractional albumin uptake and dry lung weight. Additional anatomic damage appeared including epithelial lesions and hyaline membranes. Thus, HIPPV edema presents all the features of high permeability edema. These results may be of concern in the ventilatory management of patients with acute respiratory failure in order to avoid additional damages induced by local overinflation. PMID:3901844

  10. Inhibition of autophagy ameliorates pulmonary microvascular dilation and PMVECs excessive proliferation in rat experimental hepatopulmonary syndrome

    Science.gov (United States)

    Xu, Duo; Chen, Bing; Gu, Jianteng; Chen, Lin; Belguise, Karine; Wang, Xiaobo; Yi, Bin; Lu, Kaizhi

    2016-01-01

    Hepatopulmonary syndrome (HPS) is a defective liver-induced pulmonary vascular disorder with massive pulmonary microvascular dilation and excessive proliferation of pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that autophagy is involved in pulmonary diseases, protectively or detrimentally. Thus, it is interesting and important to explore whether autophagy might be involved in and critical in HPS. In the present study, we report that autophagy was activated in common bile duct ligation (CBDL) rats and cultured pulmonary PMVECs induced by CBDL rat serum, two accepted in vivo and in vitro experimental models of HPS. Furthermore, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) significantly alleviated pathological alterations and typical symptom of HPS in CBDL rats in vivo, and consistently 3-MA significantly attenuated the CBDL rat serum-induced excessive proliferation of PMVECs in vitro. All these changes mediated by 3-MA might explain the observed prominent improvement of pulmonary appearance, edema, microvascular dilatation and arterial oxygenation in vivo. Collectively, these results suggest that autophagy activation may play a critical role in the pathogenesis of HPS, and autophagy inhibition may have a therapeutic potential for this disease. PMID:27480323

  11. Changes of microvascular architecture, ultrastructure and permeability of rat jejunal villi at different ages

    Institute of Scientific and Technical Information of China (English)

    Yan-Min Chen; Jin-Sheng Zhang; Xiang-Lin Duan

    2003-01-01

    AIM: To investigate the changes of microvascular architecture, ultrastructure and permeability of rat jejunal villi at different ages.METHODS: Microvascular corrosion casting, scanning electron microscopy, transmission electron microscopy and Evans blue infiltration technique were used in this study.RESULTS: The intestinal villous plexus of adult rats consisted of arterioles, capillary network and venules. The marginal capillary extended to the base part of the villi and connected to the capillary networks of adjacent villi. In newborn rats,the villous plexus was rather simple, and capillary network was not formed. The villous plexus became cone-shaped and was closely arrayed in ablactation rats. In adult rats,the villous plexus became tongue-shaped and was enlarged both in height and width. In aged rats, the villous plexus shrank in volume and became shorter and narrower. The diametral ratio of villous arteriole to villous venule increased as animals became older. The number of endothelial holes,the thickness of basal membrane and the permeability of microvasculature were increased over the entire course of development from newborn period to aged period.CONCLUSION: The digestive and absorptive functions of the rat jejunum at different ages are highly dependent upon the state of villous microvascular architecture and permeability, and blood circulation is enhanced by collateral branches such as marginal capillary, through which blood is drained to the capillary networks of adjacent villi.

  12. How to assess microvascular structure in humans.

    Science.gov (United States)

    Rizzoni, Damiano; Aalkjaer, Christian; De Ciuceis, Carolina; Porteri, Enzo; Rossini, Claudia; Rosei, Claudia Agabiti; Sarkar, Annamaria; Rosei, Enrico Agabiti

    2011-12-01

    Structural alterations of subcutaneous small resistance arteries, as indicated by an increased media to lumen ratio, are frequently present in hypertensive and/or diabetic patients. However, the evaluation of microvascular structure is not an easy task. Among the methods that may be applied to humans, plethysmographic evaluation of small arteries and wire or pressure micromyography were extensively used in the last decades. Media to lumen ratio of small arteries evaluated by micromyography was demonstrated to possess a strong prognostic significance; however, its extensive evaluation is limited by the invasiveness of the assessment, since a biopsy of subcutaneous fat is needed. Non-invasive approaches were then proposed, including capillaroscopy, which provides information about microvascular rarefaction. Recently, the interest of investigators has focused on the retinal microvascular bed. In particular, a non-invasive measurement of wall thickness to internal lumen ratio of retinal arterioles using scanning laser Doppler flowmetry has been recently introduced. Preliminary data suggest a fairly good agreement between this approach and micromyographic measurements, generally considered the gold standard approach. Therefore, the evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the immediate future, an evaluation to be performed in all hypertensive patients, in order to obtain a better stratification of cardiovascular risk. PMID:22283671

  13. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  14. Acrolein Oxidizes the Cytosolic and Mitochondrial Thioredoxins in Human Endothelial Cells

    OpenAIRE

    Szadkowski, Adam; Myers, Charles R.

    2007-01-01

    Acrolein is a reactive aldehyde that is a widespread environmental pollutant and can be generated endogenously from lipid peroxidation. The thioredoxin (Trx) system in endothelial cells plays a major role in the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, cells maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. In human microvascular endothelial cells, Trx1 was more sensitive than Trx2 to oxidation by...

  15. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy

    OpenAIRE

    O'Callaghan, Ryan; Job, Kathleen M.; Dull, Randal O; Hlady, Vladimir

    2011-01-01

    The mechanical properties of endothelial glycocalyx were studied using atomic force microscopy with a silica bead (diameter ∼18 μm) serving as an indenter. Even at indentations of several hundred nanometers, the bead exerted very low compressive pressures on the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx and allowed for an averaging of stiffness in the bead-cell contact area. The elastic modulus of BLMVEC glycocalyx was determined as a pointwise function of the indentation...

  16. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation.

    Science.gov (United States)

    Lopez-Ramirez, Miguel Alejandro; Wu, Dongsheng; Pryce, Gareth; Simpson, Julie E; Reijerkerk, Arie; King-Robson, Josh; Kay, Oliver; de Vries, Helga E; Hirst, Mark C; Sharrack, Basil; Baker, David; Male, David Kingsley; Michael, Gregory J; Romero, Ignacio Andres

    2014-06-01

    Blood-brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR-155 as a critical miRNA in neuroinflammation at the BBB. miR-155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR-155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR-155 was strongly and rapidly upregulated by inflammatory cytokines. miR-155 up-regulation mimicked cytokine-induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR-155 partially prevented a cytokine-induced increase in permeability. Furthermore, miR-155 modulated brain endothelial barrier function by targeting not only cell-cell complex molecules such as annexin-2 and claudin-1, but also focal adhesion components such as DOCK-1 and syntenin-1. We propose that brain endothelial miR-155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders. PMID:24604078

  17. Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women

    OpenAIRE

    Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O.; Lerman, Amir

    2015-01-01

    Background Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary...

  18. Sphingosine-1-Phosphate Signaling in Endothelial Disorders.

    Science.gov (United States)

    Sanchez, Teresa

    2016-06-01

    Numerous preclinical studies indicate that sustained endothelial activation significantly contributes to tissue edema, perpetuates the inflammatory response, and exacerbates tissue injury ultimately resulting in organ failure. However, no specific therapies aimed at restoring endothelial function are available as yet. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of endothelial function and endothelial responses to injury. Recent studies indicate that S1PR are attractive targets to treat not only disorders of the arterial endothelium but also microvascular dysfunction caused by ischemic or inflammatory injury. In this article, we will review the current knowledge of the role of S1P and its receptors in endothelial function in health and disease, and we will discuss the therapeutic potential of targeting S1PR not only for disorders of the arterial endothelium but also the microvasculature. The therapeutic targeting of S1PR in the endothelium could help to bridge the gap between biomedical research in vascular biology and clinical practice. PMID:27115142

  19. Endothelial progenitors in sepsis: vox clamantis in deserto?

    Science.gov (United States)

    Goligorsky, Michael S

    2011-01-01

    In this issue of Critical Care, Patschan and colleagues present a study of endothelial progenitor cells (EPCs) in patients with sepsis. The importance of this study is in focusing attention on several frequently ignored aspects of sepsis. Among those are the phenomenon of microvascular dysfunction, which is potentially responsible for profound metabolic perturbations at the tissue level, and the role of endothelial progenitors in repair processes. Other important aspects of the study are the regenerative capacity of mobilized EPCs and the dissociation between the numerical value and clonogenic competence. Attempting to restore the competence to EPCs should be a priority in the future. PMID:21489327

  20. Specific albumin binding to microvascular endothelium in culture

    International Nuclear Information System (INIS)

    The specific binding of rat serum albumin (RSA) to confluent microvascular endothelial cells in culture derived from the vasculature of the rat epididymal fat pad was studied at 4 degree C by radioassay and immunocytochemistry. Radioiodinated RSA (125I-RSA) binding to the cells reached equilibrium at ∼ 20 min incubation. Albumin binding was a slowly saturating function over concentrations ranging from 0.01 to 50 mg/ml. Specific RSA binding with a moderate apparent affinity constant of 1.0 mg/ml and with a maximum binding concentration of 90 ng/cm2 was immunolocalized with anti-RSA antibody to the outer (free) side of the enothelium. Scatchard analysis of the binding yielded a nonlinear binding curve with a concave-upward shape. Dissociation rate analysis supports negative cooperativity of albumin binding, but multiple binding sites may also be present. Albumin binding fulfilled many requirements for ligand specificity including saturability, reversibility, competibility, and dependence on both cell type and cell number. The results are discussed in terms of past in situ investigations on the localization of albumin binding to vascular endothelium and its effect on transendothelial molecular transport

  1. Diabetic microvascular complications: possible targets for improved macrovascular outcomes

    Directory of Open Access Journals (Sweden)

    Bijan Roshan

    2010-12-01

    Full Text Available John A D’Elia1, George Bayliss1,2, Bijan Roshan1, Manish Maski1, Ray E Gleason1, Larry A Weinrauch11Renal Unit, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; 2Department of Medicine, Rhode Island Hospital, Alpert School of Medicine, Brown University, Providence, RI, USAAbstract: The results of recent outcome trials challenge hypotheses that tight control of both glycohemoglobin and blood pressure diminishes macrovascular events and survival among type 2 diabetic patients. Relevant questions exist regarding the adequacy of glycohemoglobin alone as a measure of diabetes control. Are we ignoring mechanisms of vasculotoxicity (profibrosis, altered angiogenesis, hypertrophy, hyperplasia, and endothelial injury inherent in current antihyperglycemic medications? Is the polypharmacy for lowering cholesterol, triglyceride, glucose, and systolic blood pressure producing drug interactions that are too complex to be clinically identified? We review angiotensin–aldosterone mechanisms of tissue injury that magnify microvascular damage caused by hyperglycemia and hypertension. Many studies describe interruption of these mechanisms, without hemodynamic consequence, in the preservation of function in type 1 diabetes. Possible interactions between the renin–angiotensin–aldosterone system and physiologic glycemic control (through pulsatile insulin release suggest opportunities for further clinical investigation.Keywords: angiotensin-converting enzyme inhibitor, pulsatile insulin, diabetic nephropathy, cardiac autonomic neuropathy, podocytes, beta cells 

  2. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection.

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    Full Text Available Cryptococcal meningoencephalitis is the most common fungal disease in the central nervous system. The mechanisms by which Cryptococcus neoformans invades the brain are largely unknown. In this study, we found that C. neoformans-derived microvesicles (CnMVs can enhance the traversal of the blood-brain barrier (BBB by C. neoformans invitro. The immunofluorescence imaging demonstrates that CnMVs can fuse with human brain microvascular endothelial cells (HBMECs, the constituents of the BBB. This activity is presumably due to the ability of the CnMVs to activate HBMEC membrane rafts and induce cell fusogenic activity. CnMVs also enhanced C. neoformans infection of the brain, found in both infected brains and cerebrospinal fluid. In infected mouse brains, CnMVs are distributed inside and around C. neoformans-induced cystic lesions. GFAP (glial fibrillary acidic protein-positive astrocytes were found surrounding the cystic lesions, overlapping with the 14-3-3-GFP (14-3-3-green fluorescence protein fusion signals. Substantial changes could be observed in areas that have a high density of CnMV staining. This is the first demonstration that C. neoformans-derived microvesicles can facilitate cryptococcal traversal across the BBB and accumulate at lesion sites of C. neoformans-infected brains. Results of this study suggested that CnMVs play an important role in the pathogenesis of cryptococcal meningoencephalitis.

  3. Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells

    OpenAIRE

    Pendyala, Srikanth; Gorshkova, Irina A.; Usatyuk, Peter V.; He, Donghong; Pennathur, Arjun; Lambeth, J. David; Thannickal, Victor J.; Natarajan, Viswanathan

    2009-01-01

    In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells (HLMVECs) express higher levels of Nox4 and p22phox compared to Nox1, Nox2, Nox3, or Nox5. Immunofluorescence microscopy and Western blot a...

  4. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  5. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  6. Correlation of Ultrastructural Changes of Endothelial Cells and Astrocytes Occurring during Blood Brain Barrier Damage after Traumatic Brain Injury with Biochemical Markers of Blood Brain Barrier Leakage and Inflammatory Response

    Czech Academy of Sciences Publication Activity Database

    Vajtr, D.; Benada, Oldřich; Kukačka, J.; Průša, R.; Houšťava, L.; Toupalík, P.; Kizek, R.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 263-268. ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50200510 Keywords : Blood brain barrier * Expansive contusion * Metalloproteinases Subject RIV: EE - Microbiology, Virology Impact factor: 1.430, year: 2009

  7. Densidade microvascular no carcinoma de língua Microvascular density in carcinoma of the tongue

    Directory of Open Access Journals (Sweden)

    ALI AMAR

    2002-09-01

    Full Text Available OBJETIVO: Avaliar a densidade microvascular no carcinoma epidermóide de língua oral, no sítio primário e em suas metástases linfáticas. MÉTODOS: Foram avaliados retrospectivamente 30 pacientes com carcinoma epidermóide restrito à língua oral, submetidos a tratamento cirúrgico incluindo esvaziamento cervical. A densidade microvascular foi avaliada por imunohistoquímica empregando o anticorpo anti-CD34 e quantificada à microscopia óptica, no tumor primário e em suas metástases linfonodais. Foi avaliada a relação entre a densidade microvascular, as variáveis clínicas e histológicas e o prognóstico. RESULTADOS: A densidade microvascular apresentou mediana de 15,4 vasos/campo (5,5 a 25,3 nos tumores primários e 16,4 vasos/campo (12 a 32,2 nas metástases linfáticas. Foi observada uma relação inversa entre a densidade microvascular no tumor primário e na respectiva metástase linfática (r= -0,68 e p=0,04. A densidade microvascular não apresentou relação com outras variáveis histológicas ou com o prognóstico. CONCLUSÃO: Há Uma relação inversa entre a densidade microvascular no sítio primário e na metástase linfonodal, sugerindo um controle regional ou sistêmico da angiogênese.BACKGROUND. Assessment of microvascular density in squamous cell carcinoma of the oral tongue (primary lesion and metastasis. METHODS. Immunohistochemical analysis by anti CD-34 of neoangiogenesis density and its relation with clinical and histological data concerning the prognosis. After optic microscopy amplification, the relation between microvascular density, clinico-histological data and prognosis, was established. RESULTS. The microvascular density presented 15.4 vessels/field (5.5 to 25.3 in primary tumors and 16.4 vessels/field (12 to 32.2 in lymph node metastases. It was observed an inverse relation between microvascular density in primary lesions and their lymph node metastasis (r= -0.68 and p=0,04. CONCLUSIONS. No evidence was

  8. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition

    Science.gov (United States)

    Alluri, Himakarnika; Wilson, Rickesha L.; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R.; Davis, Matthew L.; Huang, Jason H.; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  9. Cardiovascular sex differences influencing microvascular exchange

    OpenAIRE

    Huxley, Virginia H.; Wang, Jianjie

    2010-01-01

    The vital role of the cardiovascular (CV) system is maintenance of body functions via the matching of exchange to tissue metabolic demand. Sex-specific differences in the regulatory mechanisms of CV function and the metabolic requirements of men and women, respectively, have been identified and appreciated. This review focuses on sex differences of parameters influencing exchange at the point of union between blood and tissue, the microvasculature. Microvascular architecture, blood pressure (...

  10. What is the contribution of two genetic variants regulating VEGF levels to type 2 diabetes risk and to microvascular complications?

    DEFF Research Database (Denmark)

    Bonnefond, Amélie; Saulnier, Pierre-Jean; Stathopoulou, Maria G;

    2013-01-01

    Vascular endothelial growth factor (VEGF) is a key chemokine involved in tissue growth and organ repair processes, particularly angiogenesis. Elevated circulating VEGF levels are believed to play a role in type 2 diabetes (T2D) microvascular complications, especially diabetic retinopathy. Recently......6921438 or rs10738760 on diabetic microvascular complications or the variation in related traits in T2D patients.In spite of their impact on the variance in circulating VEGF, we did not find any association between SNPs rs6921438 and rs10738760, and the risk of T2D, diabetic nephropathy or retinopathy......, a genome-wide association study identified two common single nucleotide polymorphisms (SNPs; rs6921438 and rs10738760) explaining nearly half of the variance in circulating VEGF levels. Considering the putative contribution of VEGF to T2D and its complications, we aimed to assess the effect of these...

  11. Evaluation of coronary microvascular function in patients with vasospastic angina

    Directory of Open Access Journals (Sweden)

    Ken Ishibashi

    2013-01-01

    reserve did not differ significantly between the 2 groups. CONCLUSION: These findings suggest that microvascular coronary function may be preserved despite endothelial dysfunction of the epicardial coronary arteries in patients with VSA.

  12. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  13. Diabetes-Enhanced Tumor Necrosis Factor-α Production Promotes Apoptosis and the Loss of Retinal Microvascular Cells in Type 1 and Type 2 Models of Diabetic Retinopathy

    OpenAIRE

    Behl, Yugal; Krothapalli, Padmaja; Desta, Tesfahun; DiPiazza, Amanda; Roy, Sayon; Graves, Dana T.

    2008-01-01

    Retinal microvascular cell loss plays a critical role in the pathogenesis of diabetic retinopathy. To examine this further, type 1 streptozotocin-induced diabetic rats and type 2 Zucker diabetic fatty rats were treated by intravitreal injection of the tumor necrosis factor-specific inhibitor pegsunercept, and the impact was measured by analysis of retinal trypsin digests. For type 2 diabetic rats, the number of endothelial cells and pericytes positive for diabetes-enhanced activated caspase-3...

  14. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase in the...... extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P < 0.05) compared with non-stimulated muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P < 0.05) in the intensely contracted, but not in the moderately contracted muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P < 0.05), whereas endothelial cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  15. The pleiotropic effects of simvastatin on retinal microvascular endothelium has important implications for ischaemic retinopathies.

    Directory of Open Access Journals (Sweden)

    Reinhold J Medina

    Full Text Available BACKGROUND: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo. METHODS AND FINDINGS: Retinal microvascular endothelial cells (RMECs were treated with 0.01-10 microM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 microM simvastatin significantly increasing proliferation (p<0.05, and 0.01 microM simvastatin significantly promoting migration (p<0.05, sprouting (p<0.001, and tubulogenesis (p<0.001. High concentration of simvastatin (10 microM had the opposite effect, significantly inhibiting proliferation (p<0.01, migration (p<0.01, sprouting (p<0.001, and tubulogenesis (p<0.05. Furthermore, simvastatin concentrations higher than 1 microM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin (0.2 mg/Kg promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01. By contrast, high dose simvastatin(20 mg/Kg significantly prevented re-vascularisation (p<0.01 and concomitantly increased pathological neovascularisation (p<0.01. We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures. CONCLUSIONS: A beneficial effect of low

  16. Prolonged cyclic strain inhibits human endothelial cell growth.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  17. Globotriaosylsphingosine accumulation and not alpha-galactosidase-A deficiency causes endothelial dysfunction in Fabry disease.

    Directory of Open Access Journals (Sweden)

    Mehdi Namdar

    Full Text Available BACKGROUND: Fabry disease (FD is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA resulting in the accumulation of globotriaosylsphingosine (Gb3 in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients.

  18. Direct ink writing of microvascular networks

    Science.gov (United States)

    Wu, Willie

    Nature is replete with examples of embedded microvascular systems that enable efficient fluid flow and distribution for autonomic healing, cooling, and energy harvesting. The ability to incorporate microvascular networks in functional materials systems is therefore both scientifically and technologically important. In this PhD thesis, the direct-write assembly of planar and 3D biomimetic microvascular networks within polymer and hydrogel matrices is demonstrated. In addition, the influence of network design of fluid transport efficiency is characterized. Planar microvascular networks composed of periodic lattices of uniformal microchannels and hierarchical, branching architectures are constructed by direct-write assembly of a fugitive organic ink. Several advancements are required to facilitate their patterning, including pressure valving, dual ink printing, and dynamic pressure variation to allow tunable control of ink deposition. The hydraulic conductance is measured using a high pressure flow meter as a function of network design. For a constant vascular volume and areal coverage, 2- and 4-generation branched architectures that obey Murray's Law exhibited the highest hydraulic conductivity. These experimental observations are in good agreement with predictions made by analytic models. 3D microvascular networks are fabricated by omnidirectional printing a fugitive organic ink into a photopolymerizable hydrogel matrix that is capped with fluid filler of nearly identical composition. Using this approach, 3D networks of arbitrary design can be patterned. After ink deposition is complete, the matrix and fluid filler are chemically cross-linked via UV irradiation, and the ink is removed by liquefication. Aqueous solutions composed of a triblock copolymer of polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO constitute the materials system of choice due to their thermal- and concentration-dependent phase behavior. Specifically, the fugitive ink consists of a 23 w

  19. Microvascular reconstruction of complex craniofacial defects.

    OpenAIRE

    Aspoas, A. R.; Wilson, G R; McLean, N R; Mendelow, A D; Crawford, P. J.

    1997-01-01

    Many large vault or skull base tumours are best treated by wide surgical excision and primary reconstruction using a microvascular free tissue transfer (free flap). We report 23 patients who were reconstructed using free flaps, eight having been previously treated surgically elsewhere and seven of whom had recurrent disease after radiotherapy. There was one flap failure and a local recurrence rate of 16% (3/19). The outcome at a mean follow-up period of 29 months, was 19 patients alive and fo...

  20. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model

    Directory of Open Access Journals (Sweden)

    Xu L

    2015-09-01

    Full Text Available Liming Xu,1,2,* Mo Dan,1,* Anliang Shao,1 Xiang Cheng,1,3 Cuiping Zhang,4 Robert A Yokel,5 Taro Takemura,6 Nobutaka Hanagata,6 Masami Niwa,7,8 Daisuke Watanabe7,81National Institutes for Food and Drug Control, No 2, Temple of Heaven, Beijing, 2School of Information and Engineering, Wenzhou Medical University, Wenzhou, 3School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 4Beijing Neurosurgical Institute, Capital Medical University, Beijing, People’s Republic of China; 5College of Pharmacy, University of Kentucky, Lexington, KY, USA; 6Nanotechnology Innovation Station for Nanoscale Science and Technology, National Institute for Materials Science, Tsukuba, Ibaraki, 7Department of Pharmacology, Nagasaki University, 8BBB Laboratory, PharmaCo-Cell Company, Ltd., Nagasaki, Japan*These authors contributed equally to this workBackground: Silver nanoparticles (Ag-NPs can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB and the underlying mechanism(s of action on the BBB and the brain are not well understood.Method: To investigate Ag-NP suspension (Ag-NPS-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM. Global gene expression of astrocytes was measured using a DNA microarray.Results: A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the

  1. Control of perfusable microvascular network morphology using a multiculture microfluidic system.

    Science.gov (United States)

    Whisler, Jordan A; Chen, Michelle B; Kamm, Roger D

    2014-07-01

    The mechanical and biochemical microenvironment influences the morphological characteristics of microvascular networks (MVNs) formed by endothelial cells (ECs) undergoing the process of vasculogenesis. The objective of this study was to quantify the role of individual factors in determining key network parameters in an effort to construct a set of design principles for engineering vascular networks with prescribed morphologies. To achieve this goal, we developed a multiculture microfluidic platform enabling precise control over paracrine signaling, cell-seeding densities, and hydrogel mechanical properties. Human umbilical vein endothelial cells (HUVECs) were seeded in fibrin gels and cultured alongside human lung fibroblasts (HLFs). The engineered vessels formed in our device contained patent, perfusable lumens. Communication between the two cell types was found to be critical in avoiding network regression and maintaining stable morphology beyond 4 days. The number of branches, average branch length, percent vascularized area, and average vessel diameter were found to depend uniquely on several input parameters. Importantly, multiple inputs were found to control any given output network parameter. For example, the vessel diameter can be decreased either by applying angiogenic growth factors--vascular endothelial growth factor (VEGF) and sphingosine-1-phsophate (S1P)--or by increasing the fibrinogen concentration in the hydrogel. These findings introduce control into the design of MVNs with specified morphological properties for tissue-specific engineering applications. PMID:24151838

  2. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage

    International Nuclear Information System (INIS)

    Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Radiotherapy side-effects diminish patients’ quality of life, yet effective biological interventions for normal tissue damage are lacking. Protecting microvascular endothelial cells from the effects of irradiation is emerging as a targeted damage-reduction strategy. We illustrate the concept of the microvasculature as a mediator of overall normal tissue radiation toxicity through cell death, vascular inflammation (hemodynamic and molecular changes) and a change in functional capacity. Endothelial cell targeted therapies that protect against such endothelial cell perturbations and the development of acute normal tissue damage are mostly under preclinical development. Since acute radiation toxicity is a common clinical problem in cutaneous, gastrointestinal and mucosal tissues, we also focus on damage in these tissues

  3. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma

    Institute of Scientific and Technical Information of China (English)

    PAN Jian-wei; ZHAN Ren-ya; TONG Ying; ZHOU Yong-qing; ZHANG Ming

    2005-01-01

    Objective: To investigate the relationship between the expression of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and angiogenesis in primary astrocytoma. Methods: Thirty-seven primary astrocytomas and 4 astrocytic hyperplasia samples were collected and divided into three groups according to histological grade. The expression of eNOS, VEGF and factor Ⅷ related antigen (FVIIIRAg) were assayed by immunohistochemistry. Microvascular density was assessed by FVIIIRAg immunoreactivity. The intensity of immunoreactivity was graded according to the percentage of positive tumor cells. Results: No eNOS and VEGF were expressed in the astrocytes and vascular endothelium in astrocytic hyperplasia.The expression of eNOS or VEGF was light in low-grade astrocytoma and strong in glioblastoma. eNOS expression in astrocytoma was very positively correlated with VEGF. eNOS and VEGF expression in anaplastic astrocytoma was median in contrast to the low grade astrocytoma and glioblastoma. Lower microvascular density was found in low grade astrocytoma than that in higher grade malignant ones. The expressions of eNOS and VEGF were correlated with microvascular density and tumor malignancy.Conclusion: This finding suggests that eNOS and VEGF may have cooperative effect in tumor angiogenesis and play an important role in the pathogenesis of primary astrocytoma.

  4. Endothelial activation, lymphangiogenesis, and humoral rejection of kidney transplants.

    Science.gov (United States)

    Phillips, Sharon; Kapp, Meghan; Crowe, Deborah; Garces, Jorge; Fogo, Agnes B; Giannico, Giovanna A

    2016-05-01

    Antibody-mediated rejection (ABMR) is implicated in 45% of renal allograft failure and 57% of late allograft dysfunction. Peritubular capillary C4d is a specific but insensitive marker of ABMR. The 2013 Banff Conference ABMR revised criteria included C4d-negative ABMR with evidence of endothelial-antibody interaction. We hypothesized that endothelial activation and lymphangiogenesis are increased with C4d-negative ABMR and correlate with intragraft T-regulatory cells and T-helper 17. Seventy-four renal transplant biopsies were selected to include (a) ABMR with C4d Banff scores ≥2 (n = 35), (b) variable microvascular injury and C4d score 0-1 (n = 24), and (c) variable microvascular injury and C4d score = 0 (n = 15). Controls included normal preimplantation donor kidneys (n = 5). Immunohistochemistry for endothelial activation (P- and E-selectins [SEL]), lymphangiogenesis (D2-40), T-regulatory cells (FOXP3), and T-helper 17 (STAT3) was performed. Microvessel and inflammatory infiltrate density was assessed morphometrically in interstitium and peritubular capillaries. All transplants had significantly higher microvessel and lymph vessel density compared with normal. Increased expression of markers of endothelial activation predicted transplant glomerulopathy (P-SEL, P = .003). Increased P-SEL and D2-40 were associated with longer interval from transplant to biopsy (P = .005). All 3 markers were associated with increased interstitial fibrosis, tubular atrophy, and graft failure (P-SEL, P < .001; E-SEL, P = .0011; D2-40, P = .012). There was no association with the intragraft FOXP3/STAT3 ratio. We conclude that endothelial activation and lymphangiogenesis could represent a late response to injury leading to fibrosis and progression of kidney damage, and are independent of the intragraft FOXP3/STAT3 ratio. Our findings support the therapeutic potential of specifically targeting endothelial activation. PMID:27067786

  5. Effects of radiation therapy in microvascular anastomoses

    Energy Technology Data Exchange (ETDEWEB)

    Fried, M.P.

    1985-07-01

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels.

  6. Effects of radiation therapy in microvascular anastomoses

    International Nuclear Information System (INIS)

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels

  7. Impaired coronary microvascular function in diabetics

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Go [Kobe Rosai Hospital (Japan)

    2000-06-01

    Global and regional myocardial uptake was determined with technetium-99m tetrofosmin and a 4 hour exercise (370 MBq iv) and rest (740 MBq iv) protocol, in 24 patients with non-insulin dependent diabetes mellitus and in 22 control subjects. The purpose of this study was to evaluate impaired coronary microvascular function in diabetics by measurement of % uptake increase in myocardial counts. The parameter of % uptake increase ({delta}MTU) was calculated as the ratio of exercise counts to rest myocardial counts with correction of myocardial uptake for dose administered and physical decay between the exercise study and the rest study. Global {delta}MTU was significantly lower in the diabetics than in control subjects (14.4{+-}5.4% vs. 21.7{+-}8.5%, p<0.01). Regional {delta}MTU in each of 4 left ventricular regions (anterior, septal, inferior, posterolateral) was significantly lower in the diabetic group than in the control group (p<0.01) respectively, but there were no significant differences between {delta}MTU in the 4 left ventricular regions in the same group. {delta}MTU was useful as a non-invasive means of evaluating impaired coronary microvascular function in diabetics. (author)

  8. Ammonia inhibits the C-type natriuretic peptide-dependent cyclic GMP synthesis and calcium accumulation in a rat brain endothelial cell line.

    Science.gov (United States)

    Konopacka, Agnieszka; Zielińska, Magdalena; Albrecht, Jan

    2008-05-01

    Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy. PMID:18222015

  9. A Fluorescent Polymer Probe with High Selectivity toward Vascular Endothelial Cells for and beyond Noninvasive Two-Photon Intravital Imaging of Brain Vasculature.

    Science.gov (United States)

    Mettra, B; Appaix, F; Olesiak-Banska, J; Le Bahers, T; Leung, A; Matczyszyn, K; Samoc, M; van der Sanden, B; Monnereau, C; Andraud, C

    2016-07-13

    A chromophore-engineering strategy that relies on the introduction of a ground-state distortion in a quadrupolar chromophore was used to obtain a quasi-quadrupolar chromophore with red emission and large two-photon absorption (2PA) cross-section in polar solvents. This molecule was functionalized with water-solubilizing polymer chains. It constitutes not only a remarkable contrast agent for intravital two-photon microscopy of the functional cerebral vasculature in a minimally invasive configuration but presents intriguing endothelial staining ability that makes it a valuable probe for premortem histological staining. PMID:27267494

  10. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications.

    Science.gov (United States)

    Avogaro, Angelo; Fadini, Gian Paolo

    2014-10-01

    We performed a review of the literature to determine whether the dipeptidyl peptidase-4 inhibitors (DPP4-I) may have the capability to directly and positively influence diabetic microvascular complications. The literature was scanned to identify experimental and clinical evidence that DPP4-I can ameliorate diabetic microangiopathy. We retrieved articles published between 1 January 1980 and 1 March 2014 in English-language peer-reviewed journals using the following terms: ("diabetes" OR "diabetic") AND ("retinopathy" OR "retinal" OR "nephropathy" OR "renal" OR "albuminuria" OR "microalbuminuria" OR "neuropathy" OR "ulcer" OR "wound" OR "bone marrow"); ("dipeptidyl peptidase-4" OR "dipeptidyl peptidase-IV" OR "DPP-4" OR "DPP-IV"); and ("inhibition" OR "inhibitor"). Experimentally, DPP4-I appears to improve inflammation, endothelial function, blood pressure, lipid metabolism, and bone marrow function. Several experimental studies report direct potential beneficial effects of DPP4-I on all microvascular diabetes-related complications. These drugs have the ability to act either directly or indirectly via improved glucose control, GLP-1 bioavailability, and modifying nonincretin substrates. Although preliminary clinical data support that DPP4-I therapy can protect from microangiopathy, insufficient evidence is available to conclude that this class of drugs directly prevents or decreases microangiopathy in humans independently from improved glucose control. Experimental findings and preliminary clinical data suggest that DPP4-I, in addition to improving metabolic control, have the potential to interfere with the onset and progression of diabetic microangiopathy. Further evidence is needed to confirm these effects in patients with diabetes. PMID:25249673

  11. A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Gustafsson, Finn; Holstein-Rathlou, N.-H.

    2003-01-01

    a persistent change in luminal diameter. On this basis we hypothesize that wall influencing substances released from the endothelium in response to shear stress have a certain optimal level in the vascular wall. Deviation from this level will cause vascular remodeling, i.e. a structural change in luminal...... diameter, until equilibrium is restored. The model explains several of the key features observed experimentally in the microcirculation in normotension and hypertension. Most importantly, it suggests a scenario where overall network structure and network hemodynamics depend on adaptation to local...... hemodynamic stimuli in the individual vessel. Simulated results show emanating microvascular networks with properties similar to those observed in vivo. The model points to an altered endothelial function as a key factor in the development of vascular changes characteristic of hypertension....

  12. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  13. Modifications of microvascular EC surface modulate phototoxicity of a porphycene anti-ICAM-1 immunoconjugate; therapeutic implications

    Science.gov (United States)

    Rosàs, Elisabet; Santomá, Pablo; Duran-Frigola, Miquel; Hernandez, Bryan; Llinàs, Maria C.; Ruiz-González, Rubén; Nonell, Santi; Sánchez-García, David; Edelman, Elazer R.; Balcells, Mercedes

    2013-01-01

    Inflammation and shear stress can upregulate expression of cellular adhesion molecules in endothelial cells (EC). The modified EC surface becomes a mediating interface between the circulating blood elements and the endothelium, and grants opportunity for immunotherapy. In photodynamic therapy (PDT), immunotargeting might overcome the lack of selectivity of currently used sensitizers. In this study, we hypothesized that differential ICAM-1 expression modulates the effects of a drug targeted to surface ICAM-1. A novel porphycene-anti-ICAM-1 conjugate was synthesized and applied to treat endothelial cells from macro and microvasculature. Results show that the conjugate induces phototoxicity in inflamed, but not in healthy, microvascular EC. Conversely, macrovascular EC exhibited phototoxicity regardless of their state. These findings have two major implications; the relevance of ICAM-1 as a modulator of drug effects in microvasculature, and the potential of the porphycene bioconjugate as a promising novel PDT agent. PMID:23844929

  14. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines

    Directory of Open Access Journals (Sweden)

    Kanami Orihara

    2008-10-01

    Full Text Available Kanami Orihara, Akio MatsudaDepartment of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, JapanAbstract: Chronic obstructive pulmonary disease (COPD and bronchial asthma are common respiratory diseases that are caused by chronic infl ammation of the airways. Although these diseases are mediated by substantially distinct immunological reactions, especially in mild cases, they both show increased numbers of neutrophils, increased production of tumor necrosis factor-alpha (TNF-α and poor responses to corticosteroids, particularly in patients with severe diseases. These immunological alterations may contribute strongly to airway structural changes, commonly referred to as airway remodeling. Microvascular alterations, a component of airway remodeling and caused by chronic inflammation, are observed and appear to be clinically involved in both diseases. It has been well established that vascular endothelial growth factor (VEGF plays important roles in the airway microvascular alterations in mild and moderate cases of both diseases, but any role that VEGF might play in severe cases of these diseases remains unclear. Here, we review recent research findings, including our own data, and discuss the possibility that TNF-α and its associated CXC chemokines play roles in microvascular alterations that are even more crucial than those of VEGF in patients with severe COPD or asthma.Keywords: TNF-α, CXC chemokines, corticosteroid, pulmonary microvessels, COPD, asthma

  15. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    Science.gov (United States)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  16. Phase transition of the microvascular network architecture in human pathologies.

    Science.gov (United States)

    Bianciardi, Giorgio; Traversi, Claudio; Cattaneo, Ruggero; De Felice, Claudia; Monaco, Annalisa; Tosi, Gianmarco; Parrini, Stefano; Latini, Giuseppe

    2012-01-01

    We have investigated the microvascular pattern in acquired or genetic diseases in humans. The lower gingival and vestibular oral mucosa, as well as the optic nerve head, was chosen to characterize the vascular pattern complexity due to the simple accessibility and visibility Local fractal dimensions, fractal dimension of the minimum path and Lempel-Ziv complexity have been used as operational numerical tools to characterize the microvascular networks. In the normal healthy subjects microvascular networks show nonlinear values corresponding to the complexity of a diffusion limited aggregation (DLA) model, while in several acquired or genetic diseases they are approaching the ones of an invasion percolation model. PMID:23193796

  17. Mandibular reconstruction with composite microvascular tissue transfer

    International Nuclear Information System (INIS)

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons [lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)]. Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure

  18. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    Science.gov (United States)

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability. PMID:16538461

  19. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men.

    Science.gov (United States)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Limb, Marie C; Williams, John P; Smith, Kenneth

    2016-05-01

    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow, and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective, leg blood flow (LBF), muscle microvascular blood volume (MBV), and MPS were measured under postabsorptive and postprandial (intravenous Glamin (Fresenius Kabi, Germany), dextrose to sustain glucose ∼7.5 mmol·L(-1)) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time that nutrition began. Leg (femoral artery) blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound using Definity (Lantheus Medical Imaging, Mass., USA) perflutren contrast agent and MPS using [1, 2-(13)C2]leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However, this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism. PMID:27120341

  20. Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53

    OpenAIRE

    Li, Jian-Mei; Fan, Lampson M; George, Vinoj T.; Brooks, Gavin

    2007-01-01

    Endothelial cells (EC) express constitutively two major isoforms (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 ~1:13), but was ...

  1. 脂多糖对大鼠肺微血管内皮细胞ACE和ACE2表达的影响及血管紧张素转换酶抑制剂的干预作用%Effects of lipolysaccharide on expression of ACE and ACE2 in rat pulmonary microvascular endothelial cells and intervention effects of angiotensinconverting enzyme inhibitor

    Institute of Scientific and Technical Information of China (English)

    李亚春; 李颖川; 周明; 江伟

    2012-01-01

    目的 观察脂多糖(LPS)对大鼠肺微血管内皮细胞(PMVECs)血管紧张素转换酶(ACE)和血管紧张素转换酶2(ACE2)表达的影响及血管紧张素转换酶抑制剂( ACEI) Captopril的干预作用.方法 组织块法体外培养大鼠PMVECs,观察LPS对PMVECs作用的时间和浓度相关毒性以及Captopril的干预作用;再将PMVECs随机分为4组:对照组(n=6),不加干预措施;Captopril组(n=6),10-5mol/L Captopril孵育细胞8 h;LPS组(n=6),1 mg/mL LPS孵育细胞8 h;Captoril+ LPS组(n=6),10-5 moL/L Captopril孵育细胞30 min后再加入1 mg/mL LPS孵育8h.CCK8检测细胞活性;Western blotting法检测各组细胞ACE和ACE2的表达.结果 LPS可对大鼠PMECs产生明显的毒性作用,并可使细胞ACE表达上调及ACE2表达下降;经Captopril干预后,可明显抑制LPS的细胞毒性作用,并逆转LPS对PMVECs中ACE及ACE2表达的影响,使ACE和ACE2表达水平回调至对照组水平.结论ACEI能减轻LPS所致的PMVECs毒性作用,而ACE及ACE2表达的变化可能在这一过程中起重要作用.%Objective To investigate the effects of lipolysaccharide (LPS) on expression of angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) in rat pulmonary microvaeculai endothelial cells (PMVECs) and the intervention effects of angiotensin-converting enzyme inhibitor (ACEI) Captopril. Methods Rat PMVECs were cultured in vitro with tissue explants adherant method, the toxic effects of LPS on PMVECs were investigated by treatment of PMVECs with different concentrations of LPS for different time, and the intervention effects of Captopril were observed. PMVECs were randomly divided into control group (without intervention, n = 6), Captopril group (treatment with 10 -5 mol/L Captopril for 8 h, n =6), LPS group (treatment with 1 mg/mL LPS for 8 h, n =6) and Captoril + LPS group (treatment with 10 -5 mol/L Captopril for 30 min and 1 mg/mL LPS for 8 h, n =6) . Cell viability was determined by CCK8, and the

  2. Radioprotection of mouse CNS endothelial cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, N.; Coultas, P.; Martin, R. [Peter McCallum Cancer Institute, Melbourne, VIC (Australia)

    1996-12-31

    Full text: Radioprotection using the minor groove binding DNA ligand Hoechst 33342 has been demonstrated in vitro, and more recently in vivo, in mouse lung. Intravenous administration was used for the lung studies, and both endothelial and alveolar epithelial cells-showed good up-take. Radiation damage to the endothelial cell population has also been postulated as important in late developing radionecrosis of spinal cord and brain. Endothelial cell density in brain can be readily determined by a fluorescent-histochemical technique. Treatment with a monoamine oxidase inhibitor and subsequent injection with L-DOPA results in an accumulation of dopamine (DA) in CNS endothelial cells. DA is converted to a fluorophore by exposure to paraformaldehyde, and cell numbers assayed by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed the loss, within 24 hours, of a sensitive subpopulation comprising about 15% of the endothelial cells. Ten minutes after intravenous injection of Hoechst 33342 (80mg/kg) the ligand is confined by its limited penetration to the endothelial cells in mouse brain. When we irradiated at this time, there was protection against early endothelial cell loss. Ablation of the sensitive subpopulation in unprotected mice takes place over a dose range of 1 to 3 Gy {gamma}-rays, but doses between 12 to 20 Gy are required in the presence of ligand. This protection equates to a very high dose modification factor of about 7 and possibly reflects a suppression of apoptosis in the sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole and how the observed protection affects late CNS necrosis development has yet to be determined. However present results clearly show potential for the use of DNA-binding radioprotectors with limited penetration for investigations into the relative significance of

  3. Enolase of Streptococcus Suis Serotype 2 Enhances Blood-Brain Barrier Permeability by Inducing IL-8 Release.

    Science.gov (United States)

    Sun, Yingying; Li, Na; Zhang, Jing; Liu, Hongtao; Liu, Jianfang; Xia, Xiaojing; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Lei, Liancheng

    2016-04-01

    Streptococcus suis serotype 2 (SS2) is an emerging zoonosis, and meningitis is the most frequent clinical manifestation, but mechanism of its virulent factor, enolase (Eno), is unknown in meningitis. In this study, Eno was inducibly expressed and added to an in vitro Transwell co-culture model of the blood-brain barrier (BBB) consisted of porcine brain microvascular endothelial cells (PBMECs) and astrocytes (ACs), the results showed that Eno induces a significant increase in BBB permeability and promotes the release of IL-8 et al. cytokines. Furthermore, IL-8 could significantly destroy the integrity of the BBB model in vitro. In mice models administered Eno for 24 h, Eno could significantly promote Evans blue (EB) moving from the blood to the brain and significantly increased the serum and brain levels of IL-8, as detected by ELISA. While G31P (IL-8 receptor antagonist) significantly decreased the concentration of EB in the brains of mice injected with Eno. The present study demonstrated that SS2 Eno may play an important role in disrupting BBB integrity by prompting IL-8 release. PMID:26732390

  4. A tissue in the tissue: models of microvascular plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Hornbech, Morten Sonne; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    The microcirculation is a dense space-filling network that, with few exceptions, invests every tissue in the body. To maintain an optimal function, any lasting change in volume or physiological activity level of a tissue is met with a corresponding structural change in the supplying microvascular...... detailed models of microvascular rarefaction, remodeling and growth. In the present paper we review some of the models of microvascular adaptation that have appeared in the literature within the last two decades. We focus on models in which local vessel structure and/or network structure is allowed to...... structural and mechanical properties of the vascular wall itself. This has allowed the emerging concept of tone as a pervasive factor in remodeling to enter microvascular models and this concept may become a cornerstone in future modeling work. The main goal in the present paper is briefly to review and...

  5. Vascular endothelial growth factor expression and angiogenesis in various grades and subtypes of meningioma

    Directory of Open Access Journals (Sweden)

    Priya Dharmalingam

    2013-01-01

    Full Text Available Background: Vascular endothelial growth factor (VEGF expression has been extensively studied in astrocytoma, whereas relatively less literature exists on VEGF expression in meningioma. Materials and Methods: Patients operated for meningioma from 2006 to 2011 (n = 46 were included. Tumor was subtyped and graded as per WHO grading. Immunohistochemistry was performed for MIB labeling index, VEGF, and CD 34 staining. The patterns of VEGF expression in various histological subtypes and grades and its correlation with microvascular density were analyzed. Results: This series consisted of 40 Grade I meningioma, 4 Grade II tumors, and 2 Grade III tumors. While 14 (30.4% tumors showed no staining with VEGF antibody, 32 (69.6% were positive for VEGF. Sixty five percent of Grade I tumors showed VEGF positivity, while 100% of Grade II and Grade III tumors were VEGF positive (P = 0.157. The mean microvascular density in VEGF-negative tumors was 9.00, while that of VEGF-positive tumors was 17.81(P = 0.013. There was a gradual increase in microvascular density from tumors which are negative for VEGF to tumors which expressed moderate to strong VEGF, the difference being statistically significant (P = 0.009. Conclusions: VEGF expression correlated with the microvascular density in meningioma irrespective of tumor grade, with a gradual increase in microvascular density in relation to the VEGF score.

  6. Numerical simulations for microvascular shape memory polymer composites

    Science.gov (United States)

    Li, Y.; Goulbourne, N. C.

    2015-05-01

    Microvascular shape memory polymer (SMP) composites are a new class of active composites consisting of an embedded microvascular network in a SMP matrix. The microvascular network can be used to deliver thermal, chemical, electrical, and magnetic stimulation to the SMP matrix thus integrating the activation/deactivation mechanism and opening up a new functional space for active polymers. Here, we focus on thermomechanical coupling triggered through fluid transport within the polymer. A modified thermo-viscoelastic model is used to simulate the response of microvascular SMP composites. The model is developed within a finite deformation continuum mechanics framework and captures the free recovery response of the SMP composite. The present model includes two glass transition temperatures to describe the structural relaxation time and the stress relaxation time, respectively. The model results are calibrated with experimental data from the literature. Lined and unlined microvascular composites fabricated with a varying number of channels and thermal profiles were recorded by infrared camera. Using a range of thermal inputs, we calculate the corresponding free recovery response of microvascular SMP composites. We show that the response can be optimized by tailoring a number of controllable parameters including channel spacing, inlet temperature, fluid flow rate, and the heating/cooling protocol.

  7. Dermatan sulfate activates nuclear factor-κb and induces endothelial and circulating intercellular adhesion molecule-1

    OpenAIRE

    Penc, Stanley F.; Pomahac, Bohdan; Eriksson, Elof; Detmar, Michael; Gallo, Richard L

    1999-01-01

    Proteoglycans (PGs) can influence cell behaviors through binding events mediated by their glycosaminoglycan (GAG) chains. This report demonstrates that chondroitin sulfate B, also known as dermatan sulfate (DS), a major GAG released during the inflammatory phase of wound repair, directly activates cells at the physiologic concentrations of DS found in wounds. Cultured human dermal microvascular endothelial cells exposed to DS responded with rapid nuclear translocation of nuclear factor-κB (NF...

  8. Endogenous regulation of angiogenesis in the rat aorta model. Role of vascular endothelial growth factor.

    OpenAIRE

    Nicosia, R F; Lin, Y. J.; Hazelton, D.; Qian, X.

    1997-01-01

    The purpose of this study was to investigate the role of vascular endothelial growth factor (VEGF) in the rat aorta model of angiogenesis. Freshly cut aortic rings generated microvascular outgrowths in serum-free collagen gel culture. Angiogenesis was reduced to 10% when the explants were embedded in collagen 10 to 14 days after excision from the animal. Immunochemical studies of conditioned medium demonstrated secretion of VEGF by the aortic cultures. Levels of VEGF decreased during the seco...

  9. Cancer gene therapy with iCaspase-9 transcriptionally targeted to tumor endothelial cells

    OpenAIRE

    Song, Wenying; Dong, Zhihong; Jin, Taocong; Mantellini, Maria G.; Núñez, Gabriel; Jacques E Nör

    2008-01-01

    Antiangiogenic therapies have shown varying results partly because each tumor type secretes a distinct panel of angiogenic factors to sustain its own microvascular network. In addition, recent evidence demonstrated that tumors develop resistance to antiangiogenic therapy by turning on alternate angiogenic pathways when one pathway is therapeutically inhibited. Here, we test the hypothesis that expression of a caspase-based artificial death switch in tumor-associated endothelial cells will dis...

  10. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice.

    Science.gov (United States)

    Ku, Jacqueline M; Taher, Mohammadali; Chin, Kai Yee; Barsby, Tom; Austin, Victoria; Wong, Connie H Y; Andrews, Zane B; Spencer, Sarah J; Miller, Alyson A

    2016-09-01

    The major ghrelin forms, acylated ghrelin and des-acylated ghrelin, are novel gastrointestinal hormones. Moreover, emerging evidence indicates that these peptides may have other functions including neuro- and vaso-protection. Here, we investigated whether post-stroke treatment with acylated ghrelin or des-acylated ghrelin could improve functional and histological endpoints of stroke outcome in mice after transient middle cerebral artery occlusion (tMCAo). We found that des-acylated ghrelin (1 mg/kg) improved neurological and functional performance, reduced infarct and swelling, and decreased apoptosis. In addition, it reduced blood-brain barrier (BBB) disruption in vivo and attenuated the hyper-permeability of mouse cerebral microvascular endothelial cells after oxygen glucose deprivation and reoxygenation (OGD + RO). By contrast, acylated ghrelin (1 mg/kg or 5 mg/kg) had no significant effect on these endpoints of stroke outcome. Next we found that des-acylated ghrelin's vasoprotective actions were associated with increased expression of tight junction proteins (occludin and claudin-5), and decreased cell death. Moreover, it attenuated superoxide production, Nox activity and expression of 3-nitrotyrosine. Collectively, these results demonstrate that post-stroke treatment with des-acylated ghrelin, but not acylated ghrelin, protects against ischaemia/reperfusion-induced brain injury and swelling, and BBB disruption, by reducing oxidative and/or nitrosative damage. PMID:27303049

  11. Reversibility of endothelial dysfunction in diabetes: role of polyphenols.

    Science.gov (United States)

    Suganya, N; Bhakkiyalakshmi, E; Sarada, D V L; Ramkumar, K M

    2016-07-01

    The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis. PMID:27264638

  12. Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease

    DEFF Research Database (Denmark)

    Mekonnen, Girum; Corban, Michel T; Hung, Olivia Y;

    2015-01-01

    BACKGROUND: Soluble urokinase-type plasminogen activator receptor (suPAR) is a novel biomarker released from leukocytes and endothelial cells that has been associated with atherosclerotic cardiovascular disease. We hypothesized that plasma suPAR level is an independent predictor of coronary...... microvascular function. METHODS: Coronary blood flow velocity and plasma suPAR levels were evaluated in patients with non-obstructive coronary artery disease. Coronary flow reserve (CFR) was calculated as the ratio of hyperemic to basal average peak blood flow velocity and coronary microvascular dysfunction was...... defined as CFR ≤ 2.0 in the setting of a fractional flow reserve value of ≥0.75. Plasma suPAR levels were measured using ELISA technique. The association between suPAR and CFR was investigated using univariate and multivariate regression analyses. RESULTS: In 66 patients, 47% were men, 26% had diabetes...

  13. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate

    Directory of Open Access Journals (Sweden)

    Shityakov S

    2015-03-01

    Full Text Available Sergey Shityakov,1 Ellaine Salvador,1 Giorgia Pastorin,2 Carola Förster1 1Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany; 2Department of Pharmacy, National University of Singapore, Singapore Abstract: In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT–FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT–FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT–FITC rapid dissociation as an intermediate phase. Keywords: blood–brain barrier, multiwalled carbon nanotube, fluorescein isothiocyanate, Transwell® system, aggregation, fluorescence microscopy, molecular dynamics

  14. The inner CSF-brain barrier

    DEFF Research Database (Denmark)

    Whish, Sophie; Dziegielewska, Katarzyna M; Møllgård, Kjeld;

    2015-01-01

    outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11...

  15. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    DEFF Research Database (Denmark)

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J;

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  16. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Peddagangannagari Sreekanthreddy

    2016-01-01

    Full Text Available The aim of this study was to develop a three-dimensional (3D model of the human blood-brain barrier in vitro, which mimics the cellular architecture of the CNS and could be used to analyse the delivery of nanoparticles to cells of the CNS. The model includes human astrocytes set in a collagen gel, which is overlaid by a monolayer of human brain endothelium (hCMEC/D3 cell line. The model was characterised by transmission electron microscopy (TEM, immunofluorescence microscopy and flow cytometry. A collagenase digestion method could recover the two cell types separately at 92-96% purity.  Astrocytes grown in the gel matrix do not divide and they have reduced expression of aquaporin-4 and the endothelin receptor, type B compared to two-dimensional cultures, but maintain their expression of glial fibrillary acidic protein. The effects of conditioned media from these astrocytes on the barrier phenotype of the endothelium was compared with media from astrocytes grown conventionally on a two-dimensional (2D substratum. Both induce the expression of tight junction proteins zonula occludens-1 and claudin-5 in hCMEC/D3 cells, but there was no difference between the induced expression levels by the two media. The model has been used to assess the transport of glucose-coated 4nm gold nanoparticles and for leukocyte migration. TEM was used to trace and quantitate the movement of the nanoparticles across the endothelium and into the astrocytes. This blood-brain barrier model is very suitable for assessing delivery of nanoparticles and larger biomolecules to cells of the CNS, following transport across the endothelium.

  17. Radioprotection of mouse CNS endothelial cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, N.; Coultas, P.; Martin, R. [Peter MacCallum Cancer institute, Melbourne, Victoria (Australia)

    1997-03-01

    After treatments with monoamine oxidase inhibitors and L-DOPA, the blood brain barrier causes a build-up of dopamine in brain capillary endothelial cells. Conversion of the dopamine to a fluorophore provides a marker which can be used to measure endothelial cell density by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed loss within 24 hours of a sub-population of about 15 % of the endothelial cells. As a first step, rather than use the later endpoints of radionecrosis it was decided to examine directly whether Hoechst 33342 could protect against this rapid initial endothelial cell loss. Ten minutes after intravenous injection of Joechst 33342, in mouse brain the ligand was confined to endothelial cells and, for irradiation at this time, there was protection against endothelial cell loss over the first 24 hours after after exposure. Ablation of the sensitive subpopulation in unprotected mice took place over a dose range of 1 to 3 Gy {gamma}-rays but doses between 12 to 20 Gy were required in the presence of the ligand. This protection equated to a high dose modification factor of approximately 7 and may reflect suppression of apoptosis in this sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole, and how the observed protection affects late CNS necrosis development, has yet to be determined. However these results suggest a potential use of DNA-binding radioprotectors with limited penetration in investigations of the relative significance of endothelial and parenchymal damage in normal tissue responses to ionising radiation. (authors)

  18. Radioprotection of mouse CNS endothelial cells in vivo

    International Nuclear Information System (INIS)

    After treatments with monoamine oxidase inhibitors and L-DOPA, the blood brain barrier causes a build-up of dopamine in brain capillary endothelial cells. Conversion of the dopamine to a fluorophore provides a marker which can be used to measure endothelial cell density by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed loss within 24 hours of a sub-population of about 15 % of the endothelial cells. As a first step, rather than use the later endpoints of radionecrosis it was decided to examine directly whether Hoechst 33342 could protect against this rapid initial endothelial cell loss. Ten minutes after intravenous injection of Joechst 33342, in mouse brain the ligand was confined to endothelial cells and, for irradiation at this time, there was protection against endothelial cell loss over the first 24 hours after after exposure. Ablation of the sensitive subpopulation in unprotected mice took place over a dose range of 1 to 3 Gy γ-rays but doses between 12 to 20 Gy were required in the presence of the ligand. This protection equated to a high dose modification factor of approximately 7 and may reflect suppression of apoptosis in this sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole, and how the observed protection affects late CNS necrosis development, has yet to be determined. However these results suggest a potential use of DNA-binding radioprotectors with limited penetration in investigations of the relative significance of endothelial and parenchymal damage in normal tissue responses to ionising radiation. (authors)

  19. Scalp reconstruction by microvascular free tissue transfer

    International Nuclear Information System (INIS)

    We report on a series of patients with scalp defects who have been treated with a variety of free flaps, spanning the era of microvascular free tissue transfer from its incipient stages to the present. Between 1971 and 1987, 18 patients underwent scalp reconstruction with 21 free flaps: 11 latissimus dorsi, 3 scalp transfers between identical twins, 3 groin, one combined latissimus dorsi and serratus anterior, two serratus anterior, and one omentum. These flaps were used to cover scalp defects resulting from burns, trauma, radiation, and tumors in patients ranging from 7 to 79 years of age. Follow-up has ranged from 3 weeks to 7 years. All of our flaps survived and covered complex defects, many of which had failed more conservative attempts at cover. One patient received radiation therapy to his flap without unfavorable sequelae. This experience began with a pioneering omental flap and includes cutaneous and muscle flaps. The latissimus dorsi is our first choice for free flap reconstruction of extensive, complicated scalp wounds because of its large size, predictable blood supply, ease of harvesting, and provision of excellent vascularity to compromised beds

  20. Scalp reconstruction by microvascular free tissue transfer

    Energy Technology Data Exchange (ETDEWEB)

    Furnas, H.; Lineaweaver, W.C.; Alpert, B.S. (Davies Medical Center, San Francisco, CA (USA))

    1990-05-01

    We report on a series of patients with scalp defects who have been treated with a variety of free flaps, spanning the era of microvascular free tissue transfer from its incipient stages to the present. Between 1971 and 1987, 18 patients underwent scalp reconstruction with 21 free flaps: 11 latissimus dorsi, 3 scalp transfers between identical twins, 3 groin, one combined latissimus dorsi and serratus anterior, two serratus anterior, and one omentum. These flaps were used to cover scalp defects resulting from burns, trauma, radiation, and tumors in patients ranging from 7 to 79 years of age. Follow-up has ranged from 3 weeks to 7 years. All of our flaps survived and covered complex defects, many of which had failed more conservative attempts at cover. One patient received radiation therapy to his flap without unfavorable sequelae. This experience began with a pioneering omental flap and includes cutaneous and muscle flaps. The latissimus dorsi is our first choice for free flap reconstruction of extensive, complicated scalp wounds because of its large size, predictable blood supply, ease of harvesting, and provision of excellent vascularity to compromised beds.

  1. Computer-based analysis of microvascular alterations in a mouse model for Alzheimer's disease

    Science.gov (United States)

    Heinzer, Stefan; Müller, Ralph; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Ulmann-Schuler, Alexandra; Krucker, Thomas

    2007-03-01

    Vascular factors associated with Alzheimer's disease (AD) have recently gained increased attention. To investigate changes in vascular, particularly microvascular architecture, we developed a hierarchical imaging framework to obtain large-volume, high-resolution 3D images from brains of transgenic mice modeling AD. In this paper, we present imaging and data analysis methods which allow compiling unique characteristics from several hundred gigabytes of image data. Image acquisition is based on desktop micro-computed tomography (µCT) and local synchrotron-radiation µCT (SRµCT) scanning with a nominal voxel size of 16 µm and 1.4 µm, respectively. Two visualization approaches were implemented: stacks of Z-buffer projections for fast data browsing, and progressive-mesh based surface rendering for detailed 3D visualization of the large datasets. In a first step, image data was assessed visually via a Java client connected to a central database. Identified characteristics of interest were subsequently quantified using global morphometry software. To obtain even deeper insight into microvascular alterations, tree analysis software was developed providing local morphometric parameters such as number of vessel segments or vessel tortuosity. In the context of ever increasing image resolution and large datasets, computer-aided analysis has proven both powerful and indispensable. The hierarchical approach maintains the context of local phenomena, while proper visualization and morphometry provide the basis for detailed analysis of the pathology related to structure. Beyond analysis of microvascular changes in AD this framework will have significant impact considering that vascular changes are involved in other neurodegenerative diseases as well as in cancer, cardiovascular disease, asthma, and arthritis.

  2. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.-P.; Harris, K.; Chin, Y.H. [Miami Univ., FL (United States). School of Medicine; Falanga, V.; Taylor, J.R. [Miami Univ., FL (United States). School of Medicine]|[Miami Veteran Affairs Medical Center, Miami, FL (United States)

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author).

  3. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources

    Science.gov (United States)

    Lippmann, Ethan S.; Al-Ahmad, Abraham; Azarin, Samira M.; Palecek, Sean P.; Shusta, Eric V.

    2014-02-01

    Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics, but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge, we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs), pericytes, astrocytes and neurons derived from renewable cell sources. First, retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs, particularly through adherens junction, tight junction, and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (~5,000 Ωxcm2). Overall, this scalable human BBB model may enable a wide range of neuroscience studies.

  4. Arsenic, reactive oxygen, and endothelial dysfunction.

    Science.gov (United States)

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  5. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity.

    Science.gov (United States)

    Miner, Jonathan J; Daniels, Brian P; Shrestha, Bimmi; Proenca-Modena, Jose L; Lew, Erin D; Lazear, Helen M; Gorman, Matthew J; Lemke, Greg; Klein, Robyn S; Diamond, Michael S

    2015-12-01

    The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development. PMID:26523970

  6. Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT).

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; De Hertogh, Gert; van den Eynde, Kathleen; Alam, Kaiser; Van Raemdonck, Katrien; Opdenakker, Ghislain; Van Damme, Jo; Geboes, Karel; Struyf, Sofie

    2015-03-01

    Myofibroblasts expressing α-smooth muscle actin (α-SMA) are the key cellular mediator of fibrosis. Fibrovascular epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) are characterized by the accumulation of a large number of myofibroblasts. We explored the hypothesis that proliferating endothelial cells via endothelial-to-mesenchymal transition (EndoMT) and/or bone marrow-derived circulating fibrocytes contribute to the myofibroblast population present in PDR epiretinal membranes. Epiretinal membranes from 14 patients with PDR were studied by immunohistochemistry. All membranes contained neovessels expressing the endothelial cell marker CD31. CD31(+) endothelial cells co-expressed the fibroblast/myofibroblast markers fibroblast-specific protein-1 (FSP-1) and α-SMA, indicative for the occurrence of endoMT. In the stroma, cells expressing FSP-1, α-SMA, the leukocyte common antigen CD45, and the myelomonocytic marker CD11b were detected. Double labeling showed co-localization of CD45 with FSP-1 and α-SMA and co-localization of CD11b with α-SMA and matrix metalloproteinase-9, demonstrating the presence of infiltrating fibrocytes. In addition, we investigated the phenotypic changes that take place in human retinal microvascular endothelial cells following exposure to transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Retinal microvascular endothelial cells changed morphology upon cytokine exposure, lost the expression of endothelial cell markers (endothelial nitric oxide synthase and vascular endothelial-cadherin) and started to express mesenchymal markers (calponin, snail, transgelin and FSP-1). These results suggest that endothelial cells as well as circulating fibrocytes may differentiate into myofibroblasts in the diabetic eye and contribute to pathologic fibrosis in PDR. PMID:25637870

  7. Preparation of a designed poly(trimethylene carbonate) microvascular network by stereolithography.

    Science.gov (United States)

    Schüller-Ravoo, Sigrid; Zant, Erwin; Feijen, Jan; Grijpma, Dirk W

    2014-12-01

    Designed flexible and elastic network structures are prepared by stereolithography using a photo-crosslinkable resin based on a poly(trimethylene carbonate) (PTMC) macromer with a molecular weight of 3150 g/mol. Physical properties and the compatibility with human umbilical vein endothelial cells (HUVECs) are evaluated. The hydrophobic networks are found to be flexible and elastic, with an E modulus of 7.9 ± 0.1 MPa, a tensile strength of 3.5 ± 0.1 MPa and an elongation at break of 76.7 ± 0.7%. HUVECs attach and proliferate well on the surfaces of the built structures. A three-dimensional microvascular network is designed to serve as a perfusable scaffold for tissue engineering. In the design, 5 generations of open channels each branch into 4 smaller channels yielding a microvascular region with a high density of capillaries. The overall cross-sectional area through which medium or blood can be perfused remains constant. These structures would ensure efficient nourishment of cells in a large volume of tissue. Built by stereolithography using the PTMC resin, the smallest channels of these structures have square cross-sectional areas, with inner widths of approximately 224 μm and wall thicknesses of approximately 152 μm. The channels are open, allowing water to perfuse the scaffold at 0.279 ± 0.006 mL/s at 80 mmHg and 0.335 ± 0.009 mL/s at 120 mmHg. PMID:25319598

  8. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313

  9. Free and microvascular bone grafting in the irradiated dog mandible

    International Nuclear Information System (INIS)

    Microvascular and free rib grafts were placed in 4.5 cm defects in an edentate mandibular body defect 18 to 28 days after completion of 50 Gy of irradiation from a 60Co source. The animals were sacrificed from two to forty weeks postoperatively and evaluated clinically, radiographically, and histologically. There was a marked difference in the alveolar mucosal viability with the two grafts. Mucosal dehiscence was not observed over any of the microvascular grafts, but was present in seven-eighths of the free grafts. Union of the microvascular bone graft to the host bone occurred within six weeks. In contrast, after six weeks the free graft was sequestered in all the animals. An unexpected finding with both types of graft was the marked subperiosteal bone formation. This bone appeared to be derived from the host bed, stabilizing and bridging the defects bilaterally. The results suggest that radiated periosteum may play an important role in osteogenesis

  10. Sublingual microvascular perfusion is altered during normobaric and hyperbaric hyperoxia.

    Science.gov (United States)

    Milstein, Dan M J; Helmers, Renée; Hackmann, Sanne; Belterman, Charly N W; van Hulst, Robert A; de Lange, Jan

    2016-05-01

    Hyperoxia and hyperbaric oxygen therapy can restore oxygen tensions in tissues distressed by ischemic injury and poor vascularization and is believed to also yield angiogenesis and regulate tissue perfusion. The aim of this study was to develop a model in which hyperoxia-driven microvascular changes could be quantified and to test the hypothesis that microcirculatory responses to both normobaric (NB) and hyperbaric (HB) hyperoxic maneuvers are reversible. Sublingual mucosa microcirculation vessel density, proportion of perfused vessels, vessel diameters, microvascular flow index, macrohemodynamic, and blood gas parameters were examined in male rabbits breathing sequential O2/air mixtures of 21%, 55%, 100%, and return to 21% during NB (1.0bar) and HB (2.5bar) conditions. The results indicate that NB hyperoxia (55% and 100%) produced significant decreases in microvascular density and vascular diameters (pvasoconstriction during HB conditions suggests a beneficial mechanism associated with maintaining peak tissue perfusion states. PMID:26851620

  11. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome

    Czech Academy of Sciences Publication Activity Database

    Durovcová, V.; Prázný, M.; Ježková, J.; Horová, E.; Hána, V.; Kvasnička, J.; Pecen, Ladislav; Marek, J.; Škrha, J.; Kršek, M.

    2008-01-01

    Roč. 16, - (2008), P400. ISSN 1479-6848. [European Congress of Endocrinology. 03.05.2008-07.05.2008, Berlin] Institutional research plan: CEZ:AV0Z10300504 Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  12. ADIPONECTIN DIMINISHES ORGAN-SPECIFIC MICROVASCULAR ENDOTHELIAL CELL ACTIVATION ASSOCIATED WITH SEPSIS

    NARCIS (Netherlands)

    van Meurs, Matijs; Castro, Pedro; Shapiro, Nathan I.; Lu, Shulin; Yano, Midori; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Ichiro; Zijlstra, Jan G.; Molema, Grietje; Parikh, Samir M.; Aird, William C.; Yano, Kiichiro

    2012-01-01

    Experimental sepsis was induced in male C57BL/6j, adiponectin-deficient mice (ADPNKO), and wild-type littermates by i.p. injection of 16 mg/kg lipopolysaccharide or cecal ligation and puncture. Blood and tissue samples were harvested 24 h after model induction. Circulating adiponectin is reduced in

  13. Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression.

    Science.gov (United States)

    Hossain, Mokarram; Qadri, Syed M; Xu, Najia; Su, Yang; Cayabyab, Francisco S; Heit, Bryan; Liu, Lixin

    2015-09-01

    During inflammation, leukocyte-endothelial cell interactions generate molecular signals that regulate cell functions. The Ca(2+)- and F-actin-binding leukocyte-specific protein 1 (LSP1) expressed in leukocytes and nonhematopoietic endothelial cells is pivotal in regulating microvascular permeability and leukocyte recruitment. However, cell-specific function of LSP1 during leukocyte recruitment remains elusive. Using intravital microscopy of cremasteric microvasculature of chimeric LSP1-deficient mice, we show that not neutrophil but endothelial LSP1 regulates neutrophil transendothelial migration and extravascular directionality without affecting the speed of neutrophil migration in tissue in response to CXCL2 chemokine gradient. The expression of PECAM-1-sensitive α6β1 integrins on the surface of transmigrated neutrophils was blunted in mice deficient in endothelial LSP1. Functional blocking studies in vivo and in vitro elucidated that α6β1 integrins orchestrated extravascular directionality but not the speed of neutrophil migration. In LSP1-deficient mice, PECAM-1 expression was reduced in endothelial cells, but not in neutrophils. Similarly, LSP1-targeted small interfering RNA silencing in murine endothelial cells mitigated mRNA and protein expression of PECAM-1, but not ICAM-1 or VCAM-1. Overexpression of LSP1 in endothelial cells upregulated PECAM-1 expression. Furthermore, the expression of transcription factor GATA-2 that regulates endothelial PECAM-1 expression was blunted in LSP1-deficient or LSP1-silenced endothelial cells. The present study unravels endothelial LSP1 as a novel cell-specific regulator of integrin α6β1-dependent neutrophil extravascular chemotactic function in vivo, effective through GATA-2-dependent transcriptional regulation of endothelial PECAM-1 expression. PMID:26238489

  14. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation

    OpenAIRE

    Mark, Karen S.; Davis, Thomas P.

    2002-01-01

    Cerebral microvessel endothelial cells that form the bloodbrain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies ...

  15. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  16. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE−/− mice was maintained.

  17. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  18. Endothelial Semaphorin 7A Promotes Inflammation in Seawater Aspiration-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Minlong Zhang

    2014-10-01

    Full Text Available Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI. Although several studies have shown that Semaphorin 7A (SEMA7A promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague–Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  19. Isolation of endothelial cells from human placental microvessels: effect of different proteolytic enzymes on releasing endothelial cells from villous tissue.

    Science.gov (United States)

    Ugele, B; Lange, F

    2001-01-01

    Approaches for the isolation of human placental microvascular endothelial cells (HPMEC) using proteolytic enzymes have been described recently. However, the isolation procedure and enzyme composition most suitable for optimal disaggregation of placental tissue and isolation of HPMEC has not yet been established. We tested different proteolytic enzymes and enzyme mixtures for their capabilities of releasing endothelial cells from human term placental villous tissue. Best results were obtained with a mixture of collagenase/dispase/deoxyribonuclease I (0.28%/0.25%/0.01%). By adding a discontinuous Percoll gradient centrifugation step to the enzymatic dispersion, about 1 x 10(6) cells/g tissue with more than 30% von Willebrand factor (vWf)-positive cells were obtained. However, the total cell number and number of vWf-positive cells were highly dependent on the lot of collagenase used. A perfusion step prior to mincing of villous tissue did not increase the amount of vWf-positive cells. We conclude that the methods described in this study are suitable to isolate high yields of HPMEC and that the composition of the collagenase preparation is crucial to the successful release of endothelial cells from placental tissue. To obtain pure HPMEC, further separation steps, e.g., cell sorting with antibodies against endothelial specific cell surface antigens are necessary. PMID:11573814

  20. Endothelium dependent vasomotion and in vitro markers of endothelial repair in patients with severe sepsis: an observational study.

    Directory of Open Access Journals (Sweden)

    Sabrina H van Ierssel

    Full Text Available BACKGROUND: Outcome in sepsis is mainly defined by the degree of organ failure, for which endothelial dysfunction at the macro- and microvascular level is an important determinant. In this study we evaluated endothelial function in patients with severe sepsis using cellular endothelial markers and in vivo assessment of reactive hyperaemia. MATERIALS AND METHODS: Patients with severe sepsis (n = 30 and 15 age- and gender- matched healthy volunteers were included in this study. Using flow cytometry, CD34+/KDR+ endothelial progenitor cells (EPC, CD31+ T-cells, and CD31+/CD42b- endothelial microparticles (EMP were enumerated. Migratory capacity of cultured circulating angiogenic cells (CAC was assessed in vitro. Endothelial function was determined using peripheral arterial tonometry at the fingertip. RESULTS: In patients with severe sepsis, a lower number of EPC, CD31+ T-cells and a decreased migratory capacity of CAC coincided with a blunted reactive hyperaemia response compared to healthy subjects. The number of EMP, on the other hand, did not differ. The presence of organ failure at admission (SOFA score was inversely related with the number of CD31+ T-cells. Furthermore, the number of EPC at admission was decreased in patients with progressive organ failure within the first week. CONCLUSION: In patients with severe sepsis, in vivo measured endothelial dysfunction coincides with lower numbers and reduced function of circulating cells implicated in endothelial repair. Our results suggest that cellular markers of endothelial repair might be valuable in the assessment and evolution of organ dysfunction.

  1. Enhanced delivery of etoposide across the blood-brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles.

    Science.gov (United States)

    Kuo, Yung-Chih; Wang, I-Hsin

    2016-08-01

    Melanotransferrin antibody (MA) and tamoxifen (TX) were conjugated on etoposide (ETP)-entrapped solid lipid nanoparticles (ETP-SLNs) to target the blood-brain barrier (BBB) and glioblastom multiforme (GBM). MA- and TX-conjugated ETP-SLNs (MA-TX-ETP-SLNs) were used to infiltrate the BBB comprising a monolayer of human astrocyte-regulated human brain-microvascular endothelial cells (HBMECs) and to restrain the proliferation of malignant U87MG cells. TX-grafted ETP-SLNs (TX-ETP-SLNs) significantly enhanced the BBB permeability coefficient for ETP and raised the fluorescent intensity of calcein-AM when compared with ETP-SLNs. In addition, surface MA could increase the BBB permeability coefficient for ETP about twofold. The viability of HBMECs was higher than 86%, suggesting a high biocompatibility of MA-TX-ETP-SLNs. Moreover, the efficiency in antiproliferation against U87MG cells was in the order of MA-TX-ETP-SLNs  >  TX-ETP-SLNs  >  ETP-SLNs  >  SLNs. The capability of MA-TX-ETP-SLNs to target HBMECs and U87MG cells during internalization was verified by immunochemical staining of expressed melanotransferrin. MA-TX-ETP-SLNs can be a potent pharmacotherapy to deliver ETP across the BBB to GBM. PMID:26768307

  2. Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method

    Science.gov (United States)

    Yang, Runze; Dunn, Jeff F.

    2015-11-01

    Hypoxia (low oxygen) is associated with many brain disorders as well as inflammation, but the lack of widely available technology has limited our ability to study hypoxia in human brain. Multiple sclerosis (MS) is a poorly understood neurological disease with a significant inflammatory component which may cause hypoxia. We hypothesized that if hypoxia were to occur, there should be reduced microvascular hemoglobin saturation (StO2). In this study, we aimed to determine if reduced StO2 can be detected in MS using frequency domain near-infrared spectroscopy (fdNIRS). We measured fdNIRS data in cortex and assessed disability of 3 clinical isolated syndrome (CIS), 72 MS patients and 12 controls. Control StO2 was 63.5 ± 3% (mean ± SD). In MS patients, 42% of StO2 values were more than 2 × SD lower than the control mean. There was a significant relationship between StO2 and clinical disability. A reduced microvascular StO2 is supportive (although not conclusive) that there may be hypoxic regions in MS brain. This is the first study showing how quantitative NIRS can be used to detect reduced StO2 in patients with MS, opening the door to understanding how microvascular oxygenation impacts neurological conditions.

  3. Effects of the PPARγ agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse

    International Nuclear Information System (INIS)

    Peroxisome proliferator-activated receptor gamma (PPARγ) agonists and PPARγ/α dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPARγ agonist, in vivo and in vitro. Troglitazone (400 and 800 mg/kg/day) induced hemangiosarcomas in mice in a 2-year bioassay. We showed that troglitazone increased endothelial cell proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses after 4 weeks of treatment. Troglitazone was cytotoxic both to human dermal microvascular endothelial cells (HMEC1) and mouse mammary fat pad microvascular endothelial cells (MFP MVEC) at high concentrations. However, MFP MVEC were more resistant to the cytotoxic effects of troglitazone based on the much lower LC50 in HMEC1 (17.4 μM) compared to MFP MVEC (92.2 μM). Troglitazone increased the proliferation and survival of MFP MVEC but not HMEC1 in growth factor reduced conditions. Our data demonstrate that troglitazone may induce hemangiosarcomas in mice, at least in part, through enhancement of survival and proliferation of microvascular endothelial cells. Such an effect does not occur with human cells, suggesting that human may react differently to exposure to PPAR agonists compared with mice.

  4. Characterization of TEM1/endosialin in human and murine brain tumors

    International Nuclear Information System (INIS)

    TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models. In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice. TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, αSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts. TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1

  5. Evidence of microvascular dysfunction in patients with cystic fibrosis.

    Science.gov (United States)

    Rodriguez-Miguelez, Paula; Thomas, Jeffrey; Seigler, Nichole; Crandall, Reva; McKie, Kathleen T; Forseen, Caralee; Harris, Ryan A

    2016-06-01

    Cystic fibrosis (CF) is a genetic, multisystemic disorder with broad clinical manifestations apart from the well-characterized pulmonary dysfunction. Recent findings have described impairment in conduit vessel function in patients with CF; however, whether microvascular function is affected in this population has yet to be elucidated. Using laser-Doppler imaging, we evaluated microvascular function through postocclusive reactive hyperemia (PORH), local thermal hyperemia (LTH), and iontophoresis with acetylcholine (ACh). PORH [518 ± 174% (CF) and 801 ± 125% (control), P = 0.039], LTH [1,338 ± 436% (CF) and 1,574 ± 620% (control), P = 0.045], and iontophoresis with ACh [416 ± 140% (CF) and 617 ± 143% (control), P = 0.032] were significantly lower in patients with CF than control subjects. In addition, the ratio of PORH to LTH was significantly (P = 0.043) lower in patients with CF (55.3 ± 5.1%) than control subjects (68.8 ± 3.1%). Significant positive correlations between LTH and forced expiratory volume in 1 s (%predicted) (r = 0.441, P = 0.013) and between the PORH-to-LTH ratio and exercise capacity (r = 0.350, P = 0.049) were observed. These data provide evidence of microvascular dysfunction in patients with CF compared with control subjects. In addition, our data demonstrate a complex relationship between microvascular function and classical markers of disease severity (i.e., pulmonary function and exercise capacity) in CF. PMID:27084387

  6. CMR of microvascular obstruction and hemorrhage in myocardial infarction

    OpenAIRE

    Wu Katherine C

    2012-01-01

    Abstract Microvascular obstruction (MO) or no-reflow phenomenon is an established complication of coronary reperfusion therapy for acute myocardial infarction. It is increasingly recognized as a poor prognostic indicator and marker of subsequent adverse LV remodeling. Although MO can be assessed using various imaging modalities including electrocardiography, myocardial contrast echocardiography, nuclear scintigraphy, and coronary angiography, evaluation by cardiovascular magnetic resonance (C...

  7. Relationship between vitreous and serum vascular endothelial growth factor levels, control of diabetes and microalbuminuria in proliferative diabetic retinopathy

    OpenAIRE

    Bahariv; N; Zarghami N; Panahi F; Dokht Ghafari M Y; Mahdavi Fard A; Mohajeri A

    2012-01-01

    Nader Baharivand1, Nosratollah Zarghami2, Farid Panahi3, Yazdan Dokht Ghafari M3, Ali Mahdavi Fard1, Abbas Mohajeri21Department of Ophthalmology, Nikookari Eye Hospital, 2Department of Clinical Biochemistry and Radiopharmacy, Drug Applied Research Center, 3Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IranBackground: Diabetic retinopathy is a serious microvascular disorder of the retina. Vascular endothelial growth factor (VEGF) expression, induced by high glucose levels...

  8. Blood Pressure Regulation VIII: Resistance Vessel Tone and Implications for a Pro-Atherogenic Conduit Artery Endothelial Cell Phenotype

    OpenAIRE

    Padilla, Jaume; Jenkins, Nathan T.; Laughlin, M. Harold; Fadel, Paul J.

    2013-01-01

    Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream...

  9. Relationship between vitreous and serum vascular endothelial growth factor levels, control of diabetes and microalbuminuria in proliferative diabetic retinopathy

    OpenAIRE

    Baharivand, Nader; Zarghami, Nosratollah; Panahi, Farid; Dokht Ghafari, M Yazdan; Fard, Ali Mahdavi; Mohajeri, Abbas

    2012-01-01

    Background Diabetic retinopathy is a serious microvascular disorder of the retina. Vascular endothelial growth factor (VEGF) expression, induced by high glucose levels and hypoxia, is a main feature in retinopathy. The aim of this study was to evaluate the relationship between vitreous and serum VEGF levels and control of diabetes and microalbuminuria in patients with proliferative diabetic retinopathy. Methods Sixty-five patients were enrolled in this case-control study, comprising 30 patien...

  10. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1 in the seizure-induced P-glycoprotein (P-gp overexpression and the underlying mechanism. Kainic acid (KA-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS group, KA-induced epileptic seizure (EP group, and EP group pretreated with HMGB1 (EP+HMGB1 group or BoxA (HMGB1 antagonist, EP+BoxA group. Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS [toll-like receptor 4 (TLR4 antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-κB inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-κB in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-κB p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-κB in brain microvascular endothelial cells.

  11. Influenza-Induced Priming and Leak of Human Lung Microvascular Endothelium upon Exposure to Staphylococcus aureus.

    Science.gov (United States)

    Wang, Changsen; Armstrong, Susan M; Sugiyama, Michael G; Tabuchi, Arata; Krauszman, Adrienn; Kuebler, Wolfgang M; Mullen, Brendan; Advani, Suzanne; Advani, Andrew; Lee, Warren L

    2015-10-01

    A major cause of death after influenza virus infection is lung injury due to a bacterial superinfection, yet the mechanism is unknown. Death has been attributed to virus-induced immunosuppression and bacterial overgrowth, but this hypothesis is based on data from the preantibiotic era and animal models that omit antimicrobial therapy. Because of diagnostic uncertainty, most patients with influenza receive antibiotics, making bacterial overgrowth unlikely. Respiratory failure after superinfection presents as acute respiratory distress syndrome, a disorder characterized by lung microvascular leak and edema. The objective of this study was to determine whether the influenza virus sensitizes the lung endothelium to leak upon exposure to circulating bacterial-derived molecular patterns from Staphylococcus aureus. In vitro as well as in vivo models of influenza followed by S. aureus superinfection were used. Molecular mechanisms were explored using molecular biology, knockout mice, and human autopsy specimens. Influenza virus infection sensitized human lung endothelium to leak when challenged with S. aureus, even at low doses of influenza and even when the pathogens were given days apart. Influenza virus increased endothelial expression of TNFR1 both in vitro and in intact lungs, a finding corroborated by human autopsy specimens of patients with influenza. Leak was recapitulated with protein A, a TNFR1 ligand, and sequential infection caused protein A-dependent loss of IκB, cleavage of caspases 8 and 3, and lung endothelial apoptosis. Mice infected sequentially with influenza virus and S. aureus developed significantly increased lung edema that was protein A and TNFR1 dependent. Influenza virus primes the lung endothelium to leak, predisposing patients to acute respiratory distress syndrome upon exposure to S. aureus. PMID:25693001

  12. Knock-down of CD44 regulates endothelial cell differentiation via NFκB-mediated chemokine production.

    Directory of Open Access Journals (Sweden)

    Berit Olofsson

    Full Text Available A striking feature of microvascular endothelial cells is their capacity to fuse and differentiate into tubular structures when grown in three-dimensional (3D extracellular matrices, in collagen or Matrigel, mimicking the in vivo blood vessel formation. In this study we demonstrate that human telomerase-immortalised foreskin microvascular endothelial (TIME cells express high levels of the hyaluronan receptor CD44 and the hyaluronidase HYAL2. Knock-down of CD44 or HYAL2 resulted in an inability of TIME cells to form a tubular network, suggesting a key regulatory role of hyaluronan in controlling TIME cell tubulogenesis in 3D matrices. Knock-down of CD44 resulted in an upregulation of mRNA expression of the chemokines CXCL9 and CXCL12, as well as their receptors CXCR3 and CXCR4. This was accompanied by a defect maturation of the tubular structure network and increased phosphorylation of the inhibitor of NFκB kinase (IKK complex and thus translocation of NFκB into the nucleus and activation of chemokine targed genes. Furthermore, the interaction between CD44 and hyaluronan determines the adhesion of breast cancer cells. In summary, our observations support the notion that the interaction between CD44 and hyaluronan regulates microvascular endothelial cell tubulogenesis by affecting the expression of cytokines and their receptors, as well as breast cancer dissemination.

  13. Endothelial cell growth factor and ionophore A23187 stimulation of production of inositol phosphates in porcine aorta endothelial cells.

    OpenAIRE

    Moscat, J; Moreno, F.; Herrero, C.; C. López; García-Barreno, P.

    1988-01-01

    The existence of a bovine brain-derived endothelial cell growth factor has recently been reported, but its mode of action is unknown. We show that the endothelial cell growth factor is a potent stimulant of inositol monophosphate release in porcine aorta endothelial cells. Although the activation of phospholipase C by this factor does not appear to be dependent on Ca2+, the Ca2+ ionophore A23187 stimulates release of inositol phosphates. It is suggested that the inositol 1,4,5-trisphosphate 3...

  14. Iodine deficiency induces a VEGF-dependent microvascular response in salivary glands and in the stomach.

    Science.gov (United States)

    Vanderstraeten, Jessica; Derradji, Hanane; Craps, Julie; Sonveaux, Pierre; Colin, Ides M; Many, Marie-Christine; Gérard, Anne-Catherine

    2016-08-01

    Despite efforts to optimize iodine supply in iodine deficient countries, iodine deficiency (ID) remains a global problem worldwide. Activation of the local microvasculature by ID in the thyroid gland aims at improving the local supply of iodide. For this purpose, the thyrocytes secrete vascular endothelial growth factor (VEGF) that acts on adjacent capillaries, via a reactive oxygen species (ROS)/Hypoxia Inducible factor (HIF)-dependent pathway. Beside the thyroid, other organs including salivary glands and the stomach do express the sodium/iodide symporter (NIS) and are able to take iodide up, potentially rendering them sensitive to ID. To verify this hypothesis, ID-induced effects on the local microvasculature were studied in salivary glands and in the stomach. ID was induced by feeding young mice with an iodide-deficient diet and NIS inhibitor perchlorate in the drinking water. In salivary glands, ID induced a transient increase in HIF-1α protein expression accompanied by a transient, VEGF-dependent increase in blood flow. In the gastric mucosa, ID transiently increased VEGF expression in the mucin-secreting epithelium and in ghrelin-secreting endocrine cells. These observations suggest that microvascular changes in response to ID occur in NIS-expressing tissues other than the thyroid. NIS expressing cells could be viewed as iodide sensors that respond to ID by inducing vascular changes, probably to optimize iodide bioavailability at regional or systemic levels. PMID:26838679

  15. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  16. Copper Exposure Perturbs Brain Inflammatory Responses and Impairs Clearance of Amyloid-Beta.

    Science.gov (United States)

    Kitazawa, Masashi; Hsu, Heng-Wei; Medeiros, Rodrigo

    2016-07-01

    Copper promotes a toxic buildup of amyloid-beta (Aβ) and neurofibrillary tangle pathology in the brain, and its exposure may increase the risk for Alzheimer's disease (AD). However, underlying molecular mechanisms by which copper triggers such pathological changes remain largely unknown. We hypothesized that the copper exposure perturbs brain inflammatory responses, leading to impairment of Aβ clearance from the brain parenchyma. Here, we investigated whether copper attenuated Aβ clearance by microglial phagocytosis or by low-density lipoprotein-related receptor protein-1 (LRP1) dependent transcytosis in both in vitro and in vivo When murine monocyte BV2 cells were exposed to copper, their phagocytic activation induced by fibrillar Aβ or LPS was significantly reduced, while the secretion of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, were increased. Interestingly, not only copper itself but also IL-1β, IL-6, or TNF-α were capable of markedly reducing the expression of LRP1 in human microvascular endothelial cells (MVECs) in a concentration-dependent manner. While copper-mediated downregulation of LRP1 was proteasome-dependent, the cytokine-induced loss of LRP1 was proteasome- or lysosome-independent. In the mouse model, copper exposure also significantly elevated neuroinflammation and downregulated LRP1 in the brain, consistent with our in vitro results. Taken together, our findings support the pathological impact of copper on inflammatory responses and Aβ clearance in the brain, which could serve as key mechanisms to explain, in part, the copper exposure as an environmental risk factor for AD. PMID:27122238

  17. Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro

    Directory of Open Access Journals (Sweden)

    Miyaji Haruki

    2011-08-01

    Full Text Available Abstract Background Increased matrix metalloproteinase (MMP-9 in the plasma and brain is associated with blood-brain barrier (BBB disruption through proteolytic activity in neuroinflammatory diseases. MMP-9 is present in the brain microvasculature and its vicinity, where brain microvascular endothelial cells (BMECs, pericytes and astrocytes constitute the BBB. Little is known about the cellular source and role of MMP-9 at the BBB. Here, we examined the ability of pericytes to release MMP-9 and migrate in response to inflammatory mediators in comparison with BMECs and astrocytes, using primary cultures isolated from rat brains. Methods The culture supernatants were collected from primary cultures of rat brain endothelial cells, pericytes, or astrocytes. MMP-9 activities and levels in the supernatants were measured by gelatin zymography and western blot, respectively. The involvement of signaling molecules including mitogen-activated protein kinases (MAPKs and phosphoinositide-3-kinase (PI3K/Akt in the mediation of tumor necrosis factor (TNF-α-induced MMP-9 release was examined using specific inhibitors. The functional activity of MMP-9 was evaluated by a cell migration assay. Results Zymographic and western blot analyses demonstrated that TNF-α stimulated pericytes to release MMP-9, and this release was much higher than from BMECs or astrocytes. Other inflammatory mediators [interleukin (IL-1β, interferon-γ, IL-6 and lipopolysaccharide] failed to induce MMP-9 release from pericytes. TNF-α-induced MMP-9 release from pericytes was found to be mediated by MAPKs and PI3K. Scratch wound healing assay showed that in contrast to BMECs and astrocytes the extent of pericyte migration was significantly increased by TNF-α. This pericyte migration was inhibited by anti-MMP-9 antibody. Conclusion These findings suggest that pericytes are most sensitive to TNF-α in terms of MMP-9 release, and are the major source of MMP-9 at the BBB. This pericyte

  18. Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs

    International Nuclear Information System (INIS)

    The purpose of the present investigation was to study the effects of ionizing radiation on endothelial cells derived from diverse normal tissues. We first compared the effects of radiation on clonogenic survival and tube formation of endothelial cells, and then investigated the molecular signaling pathways involved in endothelial cell survival and angiogenesis. Among the different endothelial cells studied, human hepatic sinusoidal endothelial cells (HHSECs) were the most radio-resistant and human dermal microvascular endothelial cells were the most radio-sensitive. The radio-resistance of HHSECs was related to adenosine monophosphate-activated protein kinase and p38 mitogen-activated protein kinase-mediated expression of MMP-2 and vascular endothelial growth factor receptor-2 (VEGFR-2), whereas the increased radio-sensitivity of HDMECs was related to extracellular signal-regulated kina0se-mediated generation of angiostatin. These observations demonstrate that there are distinct differences in the radiation responses of normal endothelial cells obtained from diverse organs, which may provide important clues for protection of normal tissue from radiation exposure. (author)

  19. A Serine-Threonine Kinase (StkP Regulates Expression of the Pneumococcal Pilus and Modulates Bacterial Adherence to Human Epithelial and Endothelial Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Jenny A Herbert

    Full Text Available The pneumococcal serine threonine protein kinase (StkP acts as a global regulator in the pneumococcus. Bacterial mutants deficient in StkP are less virulent in animal models of infection. The gene for this regulator is located adjacent to the gene for its cognate phosphatase in the pneumococcal genome. The phosphatase dephosphorylates proteins phosphorylated by StkP and has been shown to regulate a number of key pneumococcal virulence factors and to modulate adherence to eukaryotic cells. The role of StkP in adherence of pneumococci to human cells has not previously been reported. In this study we show StkP represses the pneumococcal pilus, a virulence factor known to be important for bacterial adhesion. In a serotype 4 strain regulation of the pilus by StkP modulates adherence to human brain microvascular endothelial cells (HBMEC and human lung epithelial cells. This suggests that the pneumococcal pilus may play a role in adherence during infections such as meningitis and pneumonia. We show that regulation of the pilus occurs at the population level as StkP alters the number of pili-positive cells within a single culture. As far as we are aware this is the first gene identified outside of the pilus islet that regulates the biphasic expression of the pilus. These findings suggest StkPs role in cell division may be linked to regulation of expression of a cell surface adhesin.

  20. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  1. Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish.

    Science.gov (United States)

    Cossins, Andrew R; Williams, Daryl R; Foulkes, Nick S; Berenbrink, Michael; Kipar, Anja

    2009-03-01

    Myoglobin (Mb) is famous as a muscle-specific protein--yet the common carp expresses the gene (cMb1) encoding this protein in a range of non-muscle tissues and also expresses a novel isoform (cMb2) in the brain. Using a homologous antibody and riboprobes, we have established the relative amounts and cellular sites of non-muscle Mb expression in different tissues. The amounts of carp myoglobin (cMb) in supernatants of different tissues were just 0.4-0.7% relative to that of heart supernatants and were upregulated by two-to-four fold in liver, gill and brain following 5 days of hypoxic treatment. Brain exhibited both cMb proteins in western analysis, whereas all other tissues had only cMb1. We have also identified cells expressing cMb protein and cMb mRNA using immunohistology and RNA in situ hybridisation (RNA-ISH), respectively. Mb was strongly expressed throughout all cardiac myocytes and a subset of skeletal muscle fibres, whereas it was restricted to a small range of specific cell types in each of the non-muscle tissues. These include pillar and epithelial cells in secondary gill lamellae, hepatocytes, some neurones, and tubular epithelial cells in the kidney. Capillaries and small blood vessels in all tissues exhibited Mb expression within vascular endothelial cells. The cMb2 riboprobe located expression to a subset of neurones but not to endothelial cells. In zebrafish, which possesses only one Mb gene, a similar expression pattern of Mb protein and mRNA was observed. This establishes a surprisingly cell-specific distribution of Mb within non-muscle tissues in both carp and zebrafish, where it probably plays an important role in the regulation of microvascular, renal and brain function. PMID:19218513

  2. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures

    Science.gov (United States)

    Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J.; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John

    2015-01-01

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1–20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10–20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation. PMID:25979079

  3. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    International Nuclear Information System (INIS)

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy

  4. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  5. Mitochondria and Endothelial Function

    OpenAIRE

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review...

  6. Endothelin and endothelial dysfunction.

    Science.gov (United States)

    Masaki, Tomoh; Sawamura, Tatsuya

    2006-03-01

    Nitric oxide (NO) and endothelin (ET) produced in endothelial cells are leading molecules which regulate vascular function. Failure of the physiological balance between these two molecules is usually referred to as endothelial dysfunction. ET was initially identified as a potent vasoconstrictive peptide. Three ET isoforms and two ET receptors have been identified. One of the isoforms, ET-1, plays a significant role in many cardiovascular diseases. On the other hand, oxidized low-density lipoprotein (oxLDL) is known to induce endothelial dysfunction. The endothelial receptor for oxLDL was cloned, and named lectin-like oxidized receptor-1 (LOX-1). Activation of LOX-1 generates reactive oxygen species (ROS), and acivates a transcriptional factor, nuclear factor κB (NFκB), resulting in down-regulation of NO and up-regulation of ET-1. LOX-1 might be a key molecule in the generation of endothelial dysfunction. In endothelial dysfunction, ET-1 is an aggravating factor of cardiovascular diseases. PMID:25792766

  7. The therapeutic effect of curcumin in male albino rats and its putative mechanisms on cerebral microvascular flow.

    Science.gov (United States)

    Xia, Jie; Wang, Hui; Zhang, Qi-Mei; Zheng, Zheng; Han, Zhong-Mou

    2016-07-01

    The present study aimed to investigate the therapeutic effect of curcumin on hypertension and its putative mechanisms in the cerebral microcirculation. The surgical preparation was made to generate a cranial window for observation of the capillary network in the cerebral cortex region. Digital image processing, intravital videomicroscopy, and laser Doppler flow meter were used in this investigation. The number of open capillaries, arterial blood pressure, red cell velocity, microvascular diameter, circulating endothelial cells, relative blood flow and frequency were determined. Control rats showed severe dysfunction in the microcirculation with increased blood pressure. In curcumin treated mice, the blood pressure significantly reduced compared to their respective controls. Curcumin significantly increased blood velocity and LDF flow in hypertensive and normotensive rats. Curcumin significantly altered the circulating endothelial cells and open capillaries number in the male albino rats. Our results suggested that the curcumin exerts its therapeutic effect in male albino rats by regulating vasomotion function, increasing blood perfusion, releasing the peripheral resistance and opening efficiently capillaries. Taking all these data together, it is concluded that the curcumin might be useful in the regulation of the cerebral microcirculatory function and hypertension. PMID:27017961

  8. Skeletal muscle microvascular function in girls with Turner syndrome

    OpenAIRE

    West, Sarah L.; Clodagh S. O'Gorman; Elzibak, Alyaa H.; Jessica Caterini; Noseworthy, Michael D.; Tammy Rayner; Jill Hamilton; Wells, Greg D

    2015-01-01

    Background: Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) s...

  9. Microvascular filtration in subjects with connective tissue disorders.

    OpenAIRE

    Edwards, J C; Snaith, M L

    1984-01-01

    A simple non-invasive method for studying microvascular filtration in the non-articular tissues of the forearm is described. Rates of filtration under a standard hydrostatic pressure were measured in 20 normal female subjects and 44 female subjects with connective tissue disorders. An increased mean filtration rate was found in 14 subjects with rheumatoid arthritis. In 20 subjects with systemic lupus erythematosus and 10 subjects with scleroderma no such generalised increase in filtration rat...

  10. Preventing microvascular complications in type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Vijay Viswanathan

    2015-01-01

    Full Text Available Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progression starts at glycated hemoglobin (HbA1c level of 7%. As per the American Diabetes Association, a new pediatric glycemic control target of HbA1c 20 years as compared to patients <10 years of age. Screening of these complications should be done regularly, and appropriate preventive strategies should be followed. Angiotensin converting enzyme inhibitors and angiotensin II receptor blocker reduce progression from microalbuminuria to macroalbuminuria and increase the regression rate to normoalbuminuria. Diabetic microvascular complications can be controlled with tight glycemic therapy, dyslipidemia management and blood pressure control along with renal function monitoring, lifestyle changes, including smoking cessation and low-protein diet. An integrated and personalized care would reduce the risk of development of microvascular complications in T1DM patients. The child with diabetes who receives limited care is more likely to develop long-term complications at an earlier age. Screening for subclinical complications and early interventions with intensive therapy is the need of the hour.

  11. Borneol Depresses P-Glycoprotein Function by a NF-κB Signaling Mediated Mechanism in a Blood Brain Barrier in Vitro Model

    Directory of Open Access Journals (Sweden)

    Xiang Fan

    2015-11-01

    Full Text Available P-glycoprotein (P-gp on brain microvascular endothelial cells (BMECs that form the blood brain barrier (BBB, influences transportation of substances between blood and brain. The objective of this study was to characterize the effects of borneol on P-gp efflux function on BBB and explore the potential mechanisms. We established an in vitro BBB model comprised of rat BMECs and astrocytes to measure the effects of borneol on the known P-gp substrates transport across BBB, and examined the function and expression of P-gp in BMECs and the signaling pathways regulating P-gp expression. Borneol increased intracellular accumulation of Rhodamine 123, enhanced verapamil and digoxin across the BBB in vitro model, and depressed mdr1a mRNA and P-gp expression. Borneol could activate nuclear factor-κB (NF-κB and inhibition of NF-κB with MG132 (carbobenzoxy-Leu-Leu-leucinal and SN50 (an inhibitory peptide obscuring the P-gp decreases induced by borneol. These data suggested that borneol depresses P-gp function in BMECs by a NF-κB signaling medicated mechanism in a BBB in vitro model.

  12. Ultrastructural and Temporal Changes of the Microvascular Basement Membrane and Astrocyte Interface Following Focal Cerebral Ischemia

    OpenAIRE

    Kwon, Il; Kim, Eun Hee; del Zoppo, Gregory J.; Heo, Ji Hoe

    2009-01-01

    Microvascular integrity is lost during cerebral ischemia. Detachment of the microvascular basement membrane (BM) from the astrocyte, as well as degradation of the BM, is responsible for the loss of microvascular integrity. However, their ultrastructural and temporal changes during cerebral ischemia are not well known. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) for 1, 4, 8, 12, 16, 20, and 48 hr. By using transmission electron microscopy, the p...

  13. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex.

    Science.gov (United States)

    Taylor, Zachary J; Hui, Edward S; Watson, Ashley N; Nie, Xingju; Deardorff, Rachael L; Jensen, Jens H; Helpern, Joseph A; Shih, Andy Y

    2016-08-01

    Small cerebral infarcts, i.e. microinfarcts, are common in the aging brain and linked to vascular cognitive impairment. However, little is known about the acute growth of these minute lesions and their effect on blood flow in surrounding tissues. We modeled microinfarcts in the mouse cortex by inducing photothrombotic clots in single penetrating arterioles. The resultant hemodynamic changes in tissues surrounding the occluded vessel were then studied using in vivo two-photon microscopy. We were able to generate a spectrum of infarct volumes by occluding arterioles that carried a range of blood fluxes. Those resulting from occlusion of high-flux penetrating arterioles (flux of 2 nL/s or higher) exhibited a radial outgrowth that encompassed unusually large tissue volumes. The gradual expansion of these infarcts was propagated by an evolving insufficiency in capillary flow that encroached on territories of neighboring penetrating arterioles, leading to the stagnation and recruitment of their perfusion domains into the final infarct volume. Our results suggest that local collapse of microvascular function contributes to tissue damage incurred by single penetrating arteriole occlusions in mice, and that a similar mechanism may add to pathophysiology induced by microinfarcts of the human brain. PMID:26661182

  14. Glioma-associated endothelial cells show evidence of replicative senescence

    International Nuclear Information System (INIS)

    The innately programmed process of replicative senescence has been studied extensively with respect to cancer, but primarily from the perspective of tumor cells overcoming this stringent innate barrier and acquiring the capacity for unlimited proliferation. In this study, we focus on the potential role of replicative senescence affecting the non-t