WorldWideScience

Sample records for brain metabolomic profiles

  1. The Role of Metabolomics in Brain Metabolism Research.

    Science.gov (United States)

    Ivanisevic, Julijana; Siuzdak, Gary

    2015-09-01

    This special edition of the Journal of Neuroimmune Pharmacology focuses on the leading edge of metabolomics in brain metabolism research. The topics covered include a metabolomic field overview and the challenges in neuroscience metabolomics. The workflow and utility of different analytical platforms to profile complex biological matrices that include biofluids, brain tissue and cells, are shown in several case studies. These studies demonstrate how global and targeted metabolite profiling can be applied to distinguish disease stages and to understand the effects of drug action on the central nervous system (CNS). Finally, we discuss the importance of metabolomics to advance the understanding of brain function that includes ligand-receptor interactions and new insights into the mechanisms of CNS disorders.

  2. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  3. Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance

    Science.gov (United States)

    2012-10-01

    cancer or a history of transurethral resection of the prostate (TURP) for benign prostatic hypertrophy are excluded. Somewhat surprisingly...AD_________________ Award Number: W81XWH-11-1-0451 TITLE: Metabolomic Profiling of Prostate Cancer...29 September 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance 5b

  4. Metabolomic profiling in LRRK2-related Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Krisztina K Johansen

    Full Text Available BACKGROUND: Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson's disease (PD. METHODOLOGY/PRINCIPAL FINDINGS: We used metabolomic profiling to identify biomarkers that are associated with idiopathic and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2 PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic. Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major metabolites of the purine pathway in plasma of PD patients. CONCLUSIONS/SIGNIFICANCE: These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in PD which may occur upstream from uric acid.

  5. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR neonates with and without signs of brain vasodilation.

    Directory of Open Access Journals (Sweden)

    Magdalena Sanz-Cortés

    Full Text Available OBJECTIVES: To characterize via NMR spectroscopy the full spectrum of metabolic changes in umbilical vein blood plasma of newborns diagnosed with different clinical forms of intrauterine growth restriction (IUGR. METHODS: 23 early IUGR cases and matched 23 adequate-for-gestational-age (AGA controls and 56 late IUGR cases with 56 matched AGAs were included in this study. Early IUGR was defined as a birth weight 35 weeks. This group was subdivided in 18 vasodilated (VD and 38 non-VD late IUGR fetuses. All AGA patients had a birth weight >10(th centile. (1H nuclear magnetic resonance (NMR metabolomics of the blood samples collected from the umbilical vein at delivery was obtained. Multivariate statistical analysis identified several metabolites that allowed the discrimination between the different IUGR subgroups, and their comparative levels were quantified from the NMR data. RESULTS: The NMR-based analysis showed increased unsaturated lipids and VLDL levels in both early and late IUGR samples, decreased glucose and increased acetone levels in early IUGR. Non-significant trends for decreased glucose and increased acetone levels were present in late IUGR, which followed a severity gradient when the VD and non-VD subgroups were considered. Regarding amino acids and derivatives, early IUGR showed significantly increased glutamine and creatine levels, whereas the amounts of phenylalanine and tyrosine were decreased in early and late-VD IUGR samples. Valine and leucine were decreased in late IUGR samples. Choline levels were decreased in all clinical subforms of IUGR. CONCLUSIONS: IUGR is not associated with a unique metabolic profile, but important changes are present in different clinical subsets used in research and clinical practice. These results may help in characterizing comprehensively specific alterations underlying different IUGR subsets.

  6. Urine metabolome profiling of immune-mediated inflammatory diseases

    OpenAIRE

    Alonso, Arnald; Julià, Antonio; Vinaixa, Maria; Domènech, Eugeni; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P; Nos, Pilar; Casbas, Ana Gutiérrez; Puig, Lluís; González-Álvaro, Isidoro; Pinto-Tasende, José A.; Blanco, Ricardo

    2016-01-01

    Background Immune-mediated inflammatory diseases (IMIDs) are a group of complex and prevalent diseases where disease diagnostic and activity monitoring is highly challenging. The determination of the metabolite profiles of biological samples is becoming a powerful approach to identify new biomarkers of clinical utility. In order to identify new metabolite biomarkers of diagnosis and disease activity, we have performed the first large-scale profiling of the urine metabolome of the six most pre...

  7. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain.

    Directory of Open Access Journals (Sweden)

    Erwin van Vliet

    Full Text Available BACKGROUND: Intrauterine Growth Restriction (IUGR due to placental insufficiency occurs in 5-10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. METHODOLOGY/PRINCIPAL FINDINGS: At gestation day 25, IUGR was induced in two New Zealand rabbits by 40-50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. CONCLUSIONS: IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino

  8. Metabolomics Reveals Metabolic Alterations by Intrauterine Growth Restriction in the Fetal Rabbit Brain

    Science.gov (United States)

    van Vliet, Erwin; Eixarch, Elisenda; Illa, Miriam; Arbat-Plana, Ariadna; González-Tendero, Anna; Hogberg, Helena T.; Zhao, Liang; Hartung, Thomas; Gratacos, Eduard

    2013-01-01

    Background Intrauterine Growth Restriction (IUGR) due to placental insufficiency occurs in 5–10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. Methodology/Principal Findings At gestation day 25, IUGR was induced in two New Zealand rabbits by 40–50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. Conclusions IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty

  9. Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure.

    Science.gov (United States)

    Laine, Jessica E; Bailey, Kathryn A; Olshan, Andrew F; Smeester, Lisa; Drobná, Zuzana; Stýblo, Miroslav; Douillet, Christelle; García-Vargas, Gonzalo; Rubio-Andrade, Marisela; Pathmasiri, Wimal; McRitchie, Susan; Sumner, Susan J; Fry, Rebecca C

    2017-01-03

    Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.

  10. Accurate, fully-automated NMR spectral profiling for metabolomics.

    Directory of Open Access Journals (Sweden)

    Siamak Ravanbakhsh

    Full Text Available Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid, BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF, defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error, in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of

  11. Evolution of metabolomics profile of crab paste during fermentation.

    Science.gov (United States)

    Chen, Daian; Ye, Yangfang; Chen, Juanjuan; Yan, Xiaojun

    2016-02-01

    Crab paste is regularly consumed by people in the coastal area of China. The fermentation time plays a key role on the quality of crab paste. Here, we investigated the dynamic evolution of metabolite profile of crab paste during fermentation by combined use of NMR spectroscopy and multivariate data analysis. Our results showed that crab paste quality was significantly affected by fermentation. The quality change was manifested in the decline of lactate, betaine, taurine, trimethylamine-N-oxide, trigonelline, inosine, adenosine diphosphate, and 2-pyridinemethanol, and in the fluctuation of a range of amino acids as well as in the accumulation of glutamate, sucrose, formate, acetate, trimethylamine, and hypoxanthine. Trimethylamine production and its increased level with fermentation could be considered as a freshness index of crab paste. These results contribute to quality assessment of crab paste and confirm the metabolomics technique as a useful tool to provide important information on the crab paste quality.

  12. Metabolomic Profiling in Individuals with a Failing Kidney Allograft

    Science.gov (United States)

    Biancone, Luigi; Bussolino, Stefania; Merugumala, Sai; Tezza, Sara; D’Addio, Francesca; Ben Nasr, Moufida; Valderrama-Vasquez, Alessandro; Usuelli, Vera; De Zan, Valentina; El Essawy, Basset; Venturini, Massimo; Secchi, Antonio; De Cobelli, Francesco; Lin, Alexander; Chandraker, Anil; Fiorina, Paolo

    2017-01-01

    Background Alteration of certain metabolites may play a role in the pathophysiology of renal allograft disease. Methods To explore metabolomic abnormalities in individuals with a failing kidney allograft, we analyzed by liquid chromatography-mass spectrometry (LC-MS/MS; for ex vivo profiling of serum and urine) and two dimensional correlated spectroscopy (2D COSY; for in vivo study of the kidney graft) 40 subjects with varying degrees of chronic allograft dysfunction stratified by tertiles of glomerular filtration rate (GFR; T1, T2, T3). Ten healthy non-allograft individuals were chosen as controls. Results LC-MS/MS analysis revealed a dose-response association between GFR and serum concentration of tryptophan, glutamine, dimethylarginine isomers (asymmetric [A]DMA and symmetric [S]DMA) and short-chain acylcarnitines (C4 and C12), (test for trend: T1-T3 = p<0.05; p = 0.01; p<0.001; p = 0.01; p = 0.01; p<0.05, respectively). The same association was found between GFR and urinary levels of histidine, DOPA, dopamine, carnosine, SDMA and ADMA (test for trend: T1-T3 = p<0.05; p<0.01; p = 0.001; p<0.05; p = 0.001; p<0.001; p<0.01, respectively). In vivo 2D COSY of the kidney allograft revealed significant reduction in the parenchymal content of choline, creatine, taurine and threonine (all: p<0.05) in individuals with lower GFR levels. Conclusions We report an association between renal function and altered metabolomic profile in renal transplant individuals with different degrees of kidney graft function. PMID:28052095

  13. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria G. Barderas

    2011-01-01

    Full Text Available Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.

  14. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng;

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees......, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy...

  15. Meta-Analysis of Untargeted Metabolomic Data: Combining Results from Multiple Profiling Experiments

    OpenAIRE

    Patti, Gary J.; Tautenhahn, Ralf; Siuzdak, Gary

    2012-01-01

    metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry-based untargeted metabolomic data that is designed to identify differences in metabolic profiles across multiple sample groups (e.g., “healthy” versus “active disease” versus “inactive disease”). By performing second-order (“meta”) analysis, the software facilitates prioritization of interesting metabolite features from large untargeted metabolomic datasets prior to the rate-limiting step of structural ...

  16. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health.

    Science.gov (United States)

    Guo, Lining; Milburn, Michael V; Ryals, John A; Lonergan, Shaun C; Mitchell, Matthew W; Wulff, Jacob E; Alexander, Danny C; Evans, Anne M; Bridgewater, Brandi; Miller, Luke; Gonzalez-Garay, Manuel L; Caskey, C Thomas

    2015-09-01

    Precision medicine, taking account of human individuality in genes, environment, and lifestyle for early disease diagnosis and individualized therapy, has shown great promise to transform medical care. Nontargeted metabolomics, with the ability to detect broad classes of biochemicals, can provide a comprehensive functional phenotype integrating clinical phenotypes with genetic and nongenetic factors. To test the application of metabolomics in individual diagnosis, we conducted a metabolomics analysis on plasma samples collected from 80 volunteers of normal health with complete medical records and three-generation pedigrees. Using a broad-spectrum metabolomics platform consisting of liquid chromatography and GC coupled with MS, we profiled nearly 600 metabolites covering 72 biochemical pathways in all major branches of biosynthesis, catabolism, gut microbiome activities, and xenobiotics. Statistical analysis revealed a considerable range of variation and potential metabolic abnormalities across the individuals in this cohort. Examination of the convergence of metabolomics profiles with whole-exon sequences (WESs) provided an effective approach to assess and interpret clinical significance of genetic mutations, as shown in a number of cases, including fructose intolerance, xanthinuria, and carnitine deficiency. Metabolic abnormalities consistent with early indications of diabetes, liver dysfunction, and disruption of gut microbiome homeostasis were identified in several volunteers. Additionally, diverse metabolic responses to medications among the volunteers may assist to identify therapeutic effects and sensitivity to toxicity. The results of this study demonstrate that metabolomics could be an effective approach to complement next generation sequencing (NGS) for disease risk analysis, disease monitoring, and drug management in our goal toward precision care.

  17. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health

    Directory of Open Access Journals (Sweden)

    Pamela Vernocchi

    2016-07-01

    Full Text Available Abstract The gut microbiota is composed of a huge number of different bacteria, which produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activity is affected by environmental stimuli leading to the generation of a wide number of compounds, which influence the host metabolome and human health. Indeed, metabolic profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  18. Identification of drug targets by chemogenomic and metabolomic profiling in yeast

    KAUST Repository

    Wu, Manhong

    2012-12-01

    OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  19. The Uses and Future Prospects of Metabolomics and Targeted Metabolite Profiling in Cell Factory Development

    DEFF Research Database (Denmark)

    Harrison, Scott James; Herrgard, Markus

    2013-01-01

    The development of cell factories for the production of chemicals has traditionally relied on measurements of product metabolite titers to assess the performance of genetically manipulated strains. With the development of improved metabolomics and targeted metabolite profiling methods, these broa......The development of cell factories for the production of chemicals has traditionally relied on measurements of product metabolite titers to assess the performance of genetically manipulated strains. With the development of improved metabolomics and targeted metabolite profiling methods......, these broader measurements of the cellular metabolic state are now becoming part of the toolbox used to characterize cell factories. In this review we briefly summarize the benefits and challenges of global metabolomics and targeted metabolite profiling methods and discuss the application of these methods...... in both pathway discovery and cell factory engineering. We focus particularly on exploring the potential of global metabolomics to complement more traditional targeted methods. We conclude the review by discussing emerging trends in metabolomics and how these developments can aid the engineering of better...

  20. Evaluation of extracts of Piper sarmentosum for accelerated stability by metabolomic fingerprint profiling

    Directory of Open Access Journals (Sweden)

    K Hussain

    2009-01-01

    Full Text Available Unlike pharmaceuticals, precise stability assessment of herbal products is challenging because of their complex nature. A new trend in natural products is that the extract is considered active as a whole whether active constituents are known or not. Hence, the stability of all the constituents must be taken into account, which is possible by analyzing metabolomic fingerprint profiles. Therefore, present study aimed to evaluate ethanol extracts of fruit of Piper sarmentosum, an important medicinal plant, for accelerated stability using metabolomic fingerprint profiling. The extract was exposed to three storage conditions of different temperature and humidity and analyzed at 0, 1, 2, 4 and 6 months by Fourier transform infrared (FTIR spectroscopy and high performance thin layer chromatography (HPTLC to get metabolomic fingerprints. FTIR fingerprints in combination with chemometrics indicated the changes in metabolomics, stirring with the passage of time at all storage conditions. Visual inspection of HPTLC densitograms revealed metabolomic changes in the extracts stored for 6 months at 60 °C and 85% relative humidity. The results of the study indicate that the products made from this plant ought to be stored at room temperature, below 30 °C and 45% relative humidity, and excessive heating must be avoided during manufacturing process. Moreover, the method may be used by natural product industry as a tool of identification, classification and discrimination (ICD.

  1. Metabolomic profiles of colostrum and milk from lactating sows

    DEFF Research Database (Denmark)

    Curtasu, Mihai Victor; Theil, Peter Kappel; Hedemann, Mette Skou

    2016-01-01

    -acetylcarnitine, 2-metylbutyroylcarnitine), glycerophosphocholine, and betaine. l-Acetylcarnitine and 2-metylbutyroylcarnitine, involved in the metabolism and transport of fatty acids, decreased in milk compared to colostrum, whereas l-carnitine presented an opposite trend (P ..., glycerophosphocholine and choline decreased from colostrum to milk, whereas betaine showed higher values in milk compared to colostrum. The use of liquid chromatography–mass spectrometry metabolomics as a hypothesis generator tool opens up new questions with regard to the origin and function of mammary gland...

  2. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    Science.gov (United States)

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ((1)H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  3. Metabolomics Approach to Anabolic Steroid Urine Profiling of Bovines Treated with Prohormones

    NARCIS (Netherlands)

    Rijk, J.C.W.; Lommen, A.; Essers, M.L.; Groot, M.J.; Hende, van J.; Doeswijk, T.G.; Nielen, M.W.F.

    2009-01-01

    In livestock production, illegal use of natural steroids is hard to prove because metabolites are either unknown or not significantly above highly fluctuating endogenous levels. In this work we outlined for the first time a metabolomics based strategy for anabolic steroid urine profiling. Urine prof

  4. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Gray, Elizabeth; Larkin, James R; Claridge, Tim D W; Talbot, Kevin; Sibson, Nicola R; Turner, Martin R

    2015-01-01

    Neurochemical biomarkers are urgently sought in ALS. Metabolomic analysis of cerebrospinal fluid (CSF) using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy is a highly sensitive method capable of revealing nervous system cellular pathology. The (1)H-NMR CSF metabolomic signature of ALS was sought in a longitudinal cohort. Six-monthly serial collection was performed in ALS patients across a range of clinical sub-types (n = 41) for up to two years, and in healthy controls at a single time-point (n = 14). A multivariate statistical approach, partial least squares discriminant analysis, was used to determine differences between the NMR spectra from patients and controls. Significantly predictive models were found using those patients with at least one year's interval between recruitment and the second sample. Glucose, lactate, citric acid and, unexpectedly, ethanol were the discriminating metabolites elevated in ALS. It is concluded that (1)H-NMR captured the CSF metabolomic signature associated with derangements in cellular energy utilization connected with ALS, and was most prominent in comparisons using patients with longer disease duration. The specific metabolites identified support the concept of a hypercatabolic state, possibly involving mitochondrial dysfunction specifically. Endogenous ethanol in the CSF may be an unrecognized novel marker of neuronal tissue injury in ALS.

  5. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation

    OpenAIRE

    Hrydziuszko, Olga; Perera, M. Thamara P. R; Laing, Richard; Kirwan, Jennifer; Silva, Michael A; Richards, Douglas A.; Murphy, Nick; Mirza, Darius F; Viant, Mark R.

    2016-01-01

    Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27...

  6. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.

    Science.gov (United States)

    Saghatelian, Alan; Cravatt, Benjamin F

    2005-08-19

    Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.

  7. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees......, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy...... metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized...

  8. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Science.gov (United States)

    Getty, Caitlyn M; Dilger, Ryan N

    2015-01-01

    Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.

  9. Metabolomic profiles of myocardial ischemia under treatment with salvianolic acid B

    Directory of Open Access Journals (Sweden)

    Lu Yonghai

    2012-03-01

    Full Text Available Abstract Background Radix Salvia miltiorrhiza (Danshen has been used as a principal herb in treating cardiovascular diseases in Chinese medicine. Salvianolic acid B (SA-B, a water-soluble active component of Danshen, was found to have anti-myocardial ischemia (anti-MI effect. This study aims to investigate mechanisms of SA-B on MI. Methods Five conventional Western medicines (isosorbide dinitrate, verapamil, propranolol, captopril and trimethazine with different mechanisms for treating cardiovascular diseases were selected as positive references to compare with SA-B in changing of the metabolomic profiles in MI rats under treatment. Potential mechanisms of SA-B were further investigated in H9C2 cell line. Results The metabolomic profiles between SA-B- and propranolol-treated MI rats were similar, since there was a big overlap between the two groups in the PLS-DA score plot. Finally, it was demonstrated that SA-B exhibited a protective effect on MI mainly by decreasing the concentration of cyclic adenosine monophosphate (cAMP and Ca2+ and inhibiting protein kinase A (PKA. Conclusion SA-B and propanolol exhibited similar metabolomic profiles, indicating that the two drugs might have a similar mechanism.

  10. Metabolomic profiles of myocardial ischemia under treatment with salvianolic acid B

    Science.gov (United States)

    2012-01-01

    Background Radix Salvia miltiorrhiza (Danshen) has been used as a principal herb in treating cardiovascular diseases in Chinese medicine. Salvianolic acid B (SA-B), a water-soluble active component of Danshen, was found to have anti-myocardial ischemia (anti-MI) effect. This study aims to investigate mechanisms of SA-B on MI. Methods Five conventional Western medicines (isosorbide dinitrate, verapamil, propranolol, captopril and trimethazine) with different mechanisms for treating cardiovascular diseases were selected as positive references to compare with SA-B in changing of the metabolomic profiles in MI rats under treatment. Potential mechanisms of SA-B were further investigated in H9C2 cell line. Results The metabolomic profiles between SA-B- and propranolol-treated MI rats were similar, since there was a big overlap between the two groups in the PLS-DA score plot. Finally, it was demonstrated that SA-B exhibited a protective effect on MI mainly by decreasing the concentration of cyclic adenosine monophosphate (cAMP) and Ca2+ and inhibiting protein kinase A (PKA). Conclusion SA-B and propanolol exhibited similar metabolomic profiles, indicating that the two drugs might have a similar mechanism. PMID:22409910

  11. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    Science.gov (United States)

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  12. Serum metabolomic profiling in acute alcoholic hepatitis identifies multiple dysregulated pathways.

    Directory of Open Access Journals (Sweden)

    Vikrant Rachakonda

    Full Text Available BACKGROUND AND OBJECTIVES: While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH, the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. METHODS: This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. RESULTS: Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. CONCLUSION

  13. Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling.

    Directory of Open Access Journals (Sweden)

    Christopher Skappak

    Full Text Available Establishing the severity of hypoxic insult during the delivery of a neonate is key step in the determining the type of therapy administered. While successful therapy is present, current methods for assessing hypoxic injuries in the neonate are limited. Urine Nuclear Magnetic Resonance (NMR metabolomics allows for the rapid non-invasive assessment of a multitude breakdown products of physiological processes. In a newborn piglet model of hypoxia, we used NMR spectroscopy to determine the levels of metabolites in urine samples, which were correlated with physiological measurements. Using PLS-DA analysis, we identified 13 urinary metabolites that differentiated hypoxic versus nonhypoxic animals (1-methylnicotinamide, 2-oxoglutarate, alanine, asparagine, betaine, citrate, creatine, fumarate, hippurate, lactate, N-acetylglycine, N-carbamoyl-β-alanine, and valine. Using this metabolomic profile, we then were able to blindly identify hypoxic animals correctly 84% of the time compared to nonhypoxic controls. This was better than using physiologic measures alone. Metabolomic profiling of urine has potential for identifying neonates that have undergone episodes of hypoxia.

  14. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Malmendal, Anders; Sørensen, Jesper

    2007-01-01

    A short exposure to a mild cold stress is sufficient to increase cold tolerance in many insects. This phenomenon, termed rapid cold hardening (RCH) expands the thermal interval that can be exploited by the insect. To investigate the possible role of altered metabolite levels during RCH, the present...... study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive...... and reproductive output after a subsequent cold shock but the RCH treatment alone was associated with costs in terms of reduced survival and reproductive output. The most pronounced changes following the RCH treatment were elevated levels of glucose and trehalose. Although, it is difficult to discern if a change...

  15. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    Science.gov (United States)

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2016-11-25

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  16. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Directory of Open Access Journals (Sweden)

    Caitlyn M Getty

    metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.

  17. Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile

    Directory of Open Access Journals (Sweden)

    Michael Snyder

    2013-09-01

    Full Text Available The integrative personal omics profile (iPOP is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling.

  18. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes.

    Science.gov (United States)

    Cortassa, Sonia; Caceres, Viviane; Bell, Lauren N; O'Rourke, Brian; Paolocci, Nazareno; Aon, Miguel A

    2015-01-06

    We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.

  19. Metabolomic profiling predicts outcome of rituximab therapy in rheumatoid arthritis

    OpenAIRE

    Sweeney, Shannon R; Kavanaugh, Arthur; Lodi, Alessia; Wang, Bo; Boyle, David; Tiziani, Stefano; Guma, Monica

    2016-01-01

    Objective: To determine whether characterisation of patients' metabolic profiles, utilising nuclear magnetic resonance (NMR) and mass spectrometry (MS), could predict response to rituximab therapy. 23 patients with active, seropositive rheumatoid arthritis (RA) on concomitant methotrexate were treated with rituximab. Patients were grouped into responders and non-responders according to the American College of Rheumatology improvement criteria, at a 20% level at 6 months. A Bruker Avance 700 M...

  20. Profiles of microbial fatty acids in the human metabolome are disease-specific

    Directory of Open Access Journals (Sweden)

    Zhanna A Ktsoyan

    2011-01-01

    Full Text Available The human gastrointestinal tract is inhabited by a diverse and dense symbiotic microbiota, the composition of which is the result of host-microbe co-evolution and co-adaptation. This tight integration creates intense crosstalk and signalling between the host and microbiota at the cellular and metabolic levels. In many genetic or infectious diseases the balance between host and microbiota may be compromised resulting in erroneous communication. Consequently, the composition of the human metabolome, which includes the gut metabolome, may be different in health and disease states in terms of microbial products and metabolites entering systemic circulation. To test this hypothesis, we measured the level of hydroxy, branched, cyclopropyl and unsaturated fatty acids, aldehydes, and phenyl derivatives in blood of patients with a hereditary autoinflammatory disorder, familial Mediterranean fever (FMF, and in patients with peptic ulceration (PU resulting from Helicobacter pylori infection. Discriminant function analysis of a data matrix consisting of 94 cases as statistical units (37 FMF patients, 14 PU patients, and 43 healthy controls and the concentration of 35 microbial products in the blood as statistical variables revealed a high accuracy of the proposed model (all cases were correctly classified. This suggests that the profile of microbial products and metabolites in the human metabolome is specific for a given disease and may potentially serve as a biomarker for disease.

  1. A serum metabolomics-based profile in low bone mineral density postmenopausal women.

    Science.gov (United States)

    Miyamoto, Takeshi; Hirayama, Akiyoshi; Sato, Yuiko; Koboyashi, Tami; Katsuyama, Eri; Kanagawa, Hiroya; Miyamoto, Hiroya; Mori, Tomoaki; Yoshida, Shigeyuki; Fujie, Atsuhiro; Morita, Mayu; Watanabe, Ryuichi; Tando, Toshimi; Miyamoto, Kana; Tsuji, Takashi; Funayama, Atsushi; Nakamura, Masaya; Matsumoto, Morio; Soga, Tomoyoshi; Tomita, Masaru; Toyama, Yoshiaki

    2017-02-01

    Osteoporosis is characterized as a metabolic disorder of bone tissue, and various metabolic markers are now available to support its diagnosis and evaluate treatment effects. Substances produced as end products of metabolomic activities are the correlated factors to the biological or metabolic status, and thus, metabolites are considered highly sensitive markers of particular pathological states, including osteoporosis. Here we undertook comprehensive serum metabolomics analysis in postmenopausal women with or without low bone mineral density (low BMD vs controls) for the first time using capillary electrophoresis/mass spectrometry. Among the metabolites tested, 57 were detected in sera. Levels of hydroxyproline, Gly-Gly and cystine, differed significantly between groups, with Gly-Gly and cystine significantly lower in the low BMD group and hydroxyproline, a reported marker of osteoporosis, significantly higher. Levels of TRACP5b, a bone resorption marker, were significantly higher in the low BMD group, supporting the study's validity. Taken together, our findings represent novel metabolomic profiling in low BMD in postmenopausal women.

  2. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G;

    2006-01-01

    on selective studies of specific compounds or characteristics or studies at the genomic or proteomic levels. In the present study, we have used untargeted NMR metabolomic profiling to examine the biological response to heat stress in Drosophila melanogaster. The metabolite profile was analyzed during recovery......Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied...... after exposure to different thermal stress treatments and compared with untreated controls. Both moderate and severe heat stress gave clear effects on the metabolite profiles. The profiles clearly demonstrated that hardening by moderate heat stress led to a faster reestablishment of metabolite...

  3. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G.;

    2006-01-01

    Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied...... on selective studies of specific compounds or characteristics or studies at the genomic or proteomic levels. In the present study, we have used untargeted NMR metabolomic profiling to examine the biological response to heat stress in Drosophila melanogaster. The metabolite profile was analyzed during recovery...... after exposure to different thermal stress treatments and compared with untreated controls. Both moderate and severe heat stress gave clear effects on the metabolite profiles. The profiles clearly demonstrated that hardening by moderate heat stress led to a faster reestablishment of metabolite...

  4. Serum metabolomic profiles from patients with acute kidney injury: a pilot study.

    Science.gov (United States)

    Sun, Jinchun; Shannon, Melissa; Ando, Yosuke; Schnackenberg, Laura K; Khan, Nasim A; Portilla, Didier; Beger, Richard D

    2012-04-15

    Low sensitivity of current clinical markers (serum creatinine and blood urea nitrogen (BUN)) in early stages of the development of acute kidney injury (AKI) limits their utility. Rapid LC/MS-based metabolic profiling of serum demonstrated in a pilot study that metabolomics could provide novel indicators of AKI. Metabolic profiles of serum samples from seventeen hospitalized patients with newly diagnosed AKI were compared with the profiles of serum from age-matched subjects with normal kidney function. Increases in acylcarnitines and amino acids (methionine, homocysteine, pyroglutamate, asymmetric dimethylarginine (ADMA), and phenylalanine) and a reduction in serum levels of arginine and several lysophosphatidyl cholines were observed in patients with AKI compared to healthy subjects. Increases in homocysteine, ADMA and pyroglutamate have been recognized as biomarkers of cardiovascular and renal disease, and acylcarnitines represent biomarkers of defective fatty acid oxidation. The results of this pilot study demonstrate the utility of metabolomics in the discovery of novel serum biomarkers that can facilitate the diagnosis and determine prognosis of AKI in hospitalized patients.

  5. Evaluation of cadmium-induced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats.

    Science.gov (United States)

    Lee, Yu Kyung; Park, Eun Young; Kim, Shiwon; Son, Ji Yeon; Kim, Tae Hyung; Kang, Won Gu; Jeong, Tae Chun; Kim, Kyu-Bong; Kwack, Seung Jun; Lee, Jaewon; Kim, Suhkmann; Lee, Byung-Mu; Kim, Hyung Sik

    2014-01-01

    The aim of this study was to investigate urinary metabolomic profiles associated with cadmium (Cd)-induced nephrotoxicity and their potential mechanisms. Metabolomic profiles were measured by high-resolution (1)H-nuclear magnetic resonance (NMR) spectroscopy in the urine of rats after oral exposure to CdCl2 (1, 5, or 25 mg/kg) for 6 wk. The spectral data were further analyzed by a multivariate analysis to identify specific urinary metabolites. Urinary excretion levels of protein biomarkers were also measured and CdCl2 accumulated dose-dependently in the kidney. High-dose (25 mg/kg) CdCl2 exposure significantly increased serum blood urea nitrogen (BUN), but serum creatinine (sCr) levels were unchanged. High-dose CdCl2 (25 mg/kg) exposure also significantly elevated protein-based urinary biomarkers including osteopontin, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecules-1 (Kim-1), and selenium-binding protein 1 (SBP1) in rat urine. Under these conditions, six urinary metabolites (citrate, serine, 3-hydroxyisovalerate, 4-hydroxyphenyllactate, dimethylamine, and betaine) were involved in mitochondrial energy metabolism. In addition, a few number of amino acids such as glycine, glutamate, tyrosine, proline, or phenylalanine and carbohydrate (glucose) were altered in urine after CdCl2 exposure. In particular, the metabolites involved in the glutathione biosynthesis pathway, including cysteine, serine, methionine, and glutamate, were markedly decreased compared to the control. Thus, these metabolites are potential biomarkers for detection of Cd-induced nephrotoxicity. Our results further indicate that redox metabolomics pathways may be associated with Cd-mediated chronic kidney injury. These findings provide a biochemical pathway for better understanding of cellular mechanism underlying Cd-induced renal injury in humans.

  6. Merging transcriptomics and metabolomics - advances in breast cancer profiling

    Directory of Open Access Journals (Sweden)

    Bathen Tone F

    2010-11-01

    Full Text Available Abstract Background Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information. Methods Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS. Results In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most

  7. Using Metabolomic Profiles as Biomarkers for Insulin Resistance in Childhood Obesity: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Xue Zhao

    2016-01-01

    Full Text Available A growing body of evidence has shown the intimate relationship between metabolomic profiles and insulin resistance (IR in obese adults, while little is known about childhood obesity. In this review, we searched available papers addressing metabolomic profiles and IR in obese children from inception to February 2016 on MEDLINE, Web of Science, the Cochrane Library, ClinicalTrials.gov, and EMASE. HOMA-IR was applied as surrogate markers of IR and related metabolic disorders at both baseline and follow-up. To minimize selection bias, two investigators independently completed this work. After critical selection, 10 studies (including 2,673 participants were eligible and evaluated by using QUADOMICS for quality assessment. Six of the 10 studies were classified as “high quality.” Then we generated all the metabolites identified in each study and found amino acid metabolism and lipid metabolism were the main affected metabolic pathways in obese children. Among identified metabolites, branched-chain amino acids (BCAAs, aromatic amino acids (AAAs, and acylcarnitines were reported to be associated with IR as biomarkers most frequently. Additionally, BCAAs and tyrosine seemed to be relevant to future metabolic risk in the long-term follow-up cohorts, emphasizing the importance of early diagnosis and prevention strategy. Because of limited scale and design heterogeneity of existing studies, future studies might focus on validating above findings in more large-scale and longitudinal studies with elaborate design.

  8. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation

    Directory of Open Access Journals (Sweden)

    Da Eun Lee

    2016-06-01

    Full Text Available Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS, ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS, and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO or Bacillus amyloliquefaciens (RK_BA for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.

  9. Metabolomic profiling of reactive persulfides and polysulfides in the aqueous and vitreous humors

    Science.gov (United States)

    Kunikata, Hiroshi; Ida, Tomoaki; Sato, Kota; Aizawa, Naoko; Sawa, Tomohiro; Tawarayama, Hiroshi; Murayama, Namie; Fujii, Shigemoto; Akaike, Takaaki; Nakazawa, Toru

    2017-01-01

    We investigate the metabolomic profile of reactive persulfides and polysulfides in the aqueous and vitreous humors. Eighteen eyes of 18 consecutive patients with diabetes mellitus (DM) and diabetic retinopathy underwent microincision vitrectomy combined with cataract surgery. Samples of the aqueous and vitreous humors were collected and underwent mass spectrometry-based metabolomic profiling of reactive persulfides and polysulfides (polysulfidomics). The effect of reactive polysulfide species on the viability of immortalized retinal cells (the RGC-5 cell line) under oxidative stress (induced with H2O2) was also evaluated with an Alamar Blue assay. The experiments showed that cysteine persulfides (CysSSH), oxidized glutathione trisulfide (GSSSG) and cystine were elevated in the aqueous humor, and CysSSH, Cys, and cystine were elevated in the vitreous. Furthermore, GSSSG, cystine, and CysSSH levels were correlated in the aqueous and vitreous humors. A comparison, in DM and control subjects, of plasma levels of reactive persulfides and polysulfides showed that they did not differ. In vitro findings revealed that reactive polysulfide species increased cell viability under oxidative stress. Thus, various reactive persulfides and polysulfides appear to be present in the eye, and some reactive sulfide species, which have a protective effect against oxidative stress, are upregulated in the aqueous and vitreous humors of DM eyes. PMID:28169324

  10. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    Science.gov (United States)

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  11. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2016-09-01

    Full Text Available Adenylosuccinate lyase (ADSL deficiency is a rare autosomal recessive neurometabolic disorder that presents with a broad-spectrum of neurological and physiological symptoms. The ADSL gene produces an enzyme with binary molecular roles in de novo purine synthesis and purine nucleotide recycling. The biochemical phenotype of ADSL deficiency, accumulation of SAICAr and succinyladenosine (S-Ado in biofluids of affected individuals, serves as the traditional target for diagnosis with targeted quantitative urine purine analysis employed as the predominate method of detection. In this study, we report the diagnosis of ADSL deficiency using an alternative method, untargeted metabolomic profiling, an analytical scheme capable of generating semi-quantitative z-score values for over 1000 unique compounds in a single analysis of a specimen. Using this method to analyze plasma, we diagnosed ADSL deficiency in four patients and confirmed these findings with targeted quantitative biochemical analysis and molecular genetic testing. ADSL deficiency is part of a large a group of neurometabolic disorders, with a wide range of severity and sharing a broad differential diagnosis. This phenotypic similarity among these many inborn errors of metabolism (IEMs has classically stood as a hurdle in their initial diagnosis and subsequent treatment. The findings presented here demonstrate the clinical utility of metabolomic profiling in the diagnosis of ADSL deficiency and highlights the potential of this technology in the diagnostic evaluation of individuals with neurologic phenotypes.

  12. The future of liquid chromatography-mass spectrometry in metabolic profiling and metabolomic studies for biomarker discovery.

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Zhang, Qibin; Page, Jason S.; Shen, Yufeng; Callister, Stephen J.; Jacobs, Jon M.; Smith, Richard D.

    2007-06-01

    The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discover will be discussed, beginning with a brief description of the evolution of metabolomics and the utilization of the three most popular analytical platforms in such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-efficiency LC separations and sensitive electrospray ionization approaches and the benefits to incorporating both in LC-MS-based approaches. The advantages and disadvantages of various quantitative approaches are reviewed, followed by the current LC-MS-based tools available for candidate biomarker characterization and identification. Finally, a brief prediction on the future path of LC-MS-based methods in metabolic profiling and metabolomic studies is given.

  13. Evaluation of dried blood spots as sample matrix for gas chromatography/mass spectrometry based metabolomic profiling.

    Science.gov (United States)

    Kong, Sing Teang; Lin, Hai-Shu; Ching, Jianhong; Ho, Paul C

    2011-06-01

    We propose using dried blood spots (DBS) as sample matrix for gas chromatography/mass spectrometry (GC/MS) based metabolomic profiling for the benefits of higher sample stability, more convenient sample acquisition with DBS, higher analyte separation power, and more readily biomarker identification with GC/MS. To establish this proposition, the metabolomic profiles generated from DBS were compared with that obtained from the conventional whole blood and plasma matrixes and also with dried plasma spots (DPS) as another covariate control. Our findings indicated that whole blood produced the most number of detectable markers (866), whereas DPS yielded the least number (614). DBS and plasma matrix, on the other hand, produced the most similar numbers of detectable (695 vs 749) and identifiable markers (137 vs 147, matching with Fiehn library). From the analysis of the DBS and plasma metabolomic profiles, it was concluded that when l-lysine 2, iminodiacetic acid 2, dl-threo-beta-hydroxyaspartic acid, citric acid, or adenosine-5-monophosphate 2 are not involved as markers, DBS could be a suitable substitute for plasma for metabolomic profiling.

  14. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  15. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    Full Text Available Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50 values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348 and Micromonospora (SBT687 were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.

  16. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements.

    Directory of Open Access Journals (Sweden)

    Herman A van Wietmarschen

    Full Text Available OBJECTIVE: The aim is to characterize subgroups or phenotypes of rheumatoid arthritis (RA patients using a systems biology approach. The discovery of subtypes of rheumatoid arthritis patients is an essential research area for the improvement of response to therapy and the development of personalized medicine strategies. METHODS: In this study, 39 RA patients are phenotyped using clinical chemistry measurements, urine and plasma metabolomics analysis and symptom profiles. In addition, a Chinese medicine expert classified each RA patient as a Cold or Heat type according to Chinese medicine theory. Multivariate data analysis techniques are employed to detect and validate biochemical and symptom relationships with the classification. RESULTS: The questionnaire items 'Red joints', 'Swollen joints', 'Warm joints' suggest differences in the level of inflammation between the groups although c-reactive protein (CRP and rheumatoid factor (RHF levels were equal. Multivariate analysis of the urine metabolomics data revealed that the levels of 11 acylcarnitines were lower in the Cold RA than in the Heat RA patients, suggesting differences in muscle breakdown. Additionally, higher dehydroepiandrosterone sulfate (DHEAS levels in Heat patients compared to Cold patients were found suggesting that the Cold RA group has a more suppressed hypothalamic-pituitary-adrenal (HPA axis function. CONCLUSION: Significant and relevant biochemical differences are found between Cold and Heat RA patients. Differences in immune function, HPA axis involvement and muscle breakdown point towards opportunities to tailor disease management strategies to each of the subgroups RA patient.

  17. Metabolomics-proteomics profiles delineate metabolic changes in kidney fibrosis disease.

    Science.gov (United States)

    Cao, Hongxin; Zhang, Aihua; Sun, Hui; Zhou, Xiaohang; Guan, Yu; Liu, Qi; Kong, Ling; Wang, Xijun

    2015-11-01

    Kidney fibrosis (KF) is a common process that leads to the progression of various types of kidney disease including kidney-yang deficiency syndrome, however, little is known regarding the underlying biology of this disorder. Fortunately, integrated omics approaches provide the molecule fingerprints related to the disease. In an attempt to address this issue, we integrated metabolomics-proteomics profiles analyzed pathogenic mechanisms of KF based on rat model. A total 37 serum differential metabolites were contributed to KF progress, involved several important metabolic pathways. Using iTRAQ-based quantitative proteomics analysis, 126 differential serum proteins were identified and provide valuable insight into the underlying mechanisms of KF. These proteins appear to be involved in complement and coagulation cascades, regulation of actin cytoskeleton, MAPK signaling pathway, RNA transport, etc. Interestingly, pathway/network analysis of integrated proteomics and metabolomics data firstly reveals that these signaling pathways were closely related with KF. It further indicated that most of these proteins play a pivotal role in the regulation of metabolism pathways.

  18. Meta-analysis of untargeted metabolomic data from multiple profiling experiments.

    Science.gov (United States)

    Patti, Gary J; Tautenhahn, Ralf; Siuzdak, Gary

    2012-02-16

    metaXCMS is a software program for the analysis of liquid chromatography/mass spectrometry-based untargeted metabolomic data. It is designed to identify the differences between metabolic profiles across multiple sample groups (e.g., 'healthy' versus 'active disease' versus 'inactive disease'). Although performing pairwise comparisons alone can provide physiologically relevant data, these experiments often result in hundreds of differences, and comparison with additional biologically meaningful sample groups can allow for substantial data reduction. By performing second-order (meta-) analysis, metaXCMS facilitates the prioritization of interesting metabolite features from large untargeted metabolomic data sets before the rate-limiting step of structural identification. Here we provide a detailed step-by-step protocol for going from raw mass spectrometry data to metaXCMS results, visualized as Venn diagrams and exported Microsoft Excel spreadsheets. There is no upper limit to the number of sample groups or individual samples that can be compared with the software, and data from most commercial mass spectrometers are supported. The speed of the analysis depends on computational resources and data volume, but will generally be less than 1 d for most users. metaXCMS is freely available at http://metlin.scripps.edu/metaxcms/.

  19. Plasma metabolomic profiles and immune responses of piglets after weaning and challenge with E. coli

    Institute of Scientific and Technical Information of China (English)

    Sugiharto Sugiharto; Mette SHedemann; Charlotte Lauridsen

    2014-01-01

    Background:The processes of weaning and exposure to pathogenic bacteria induce stress responses, which may alter the metabolism. In this study, we investigated the changes in plasma metabolites and immune responses in piglets in response to the stress induced by weaning and Escherichia coli challenge. Results:Fecal dry matter decreased (P=0.003) and nearly half (44.4%) the piglets developed diarrhea on day 2 and 3 postweaning. The concentration of plasma immunoglobulin A was higher (P<0.001) on day 11 postweaning than on day 0 or 4 postweaning. The levels of white blood cells increased continuously (P<0.001) from day 0 to day 11 postweaning. Differences in the percentages of neutrophils (P=0.029) and lymphocytes (P=0.022) were seen, but the neutrophil/lymphocyte ratio did not differ in the period after weaning. A clear separation of the metabolomic profile data for day 0 and day 4 postweaning was observed with a principal components analysis (PCA) scores plot, and the data for day 11 were located between those for day 0 and day 4 postweaning. The plasma levels of proline, taurine, and carnitine were higher, whereas those of betaine, creatine, L-arginine and acetylcarnitine were lower on day 4 postweaning than on day 0. Levels of lysophosphatidylcholine and phosphatidylcholine were either higher or lower after weaning, depending on the chain lengths or characters of these metabolites. Conclusions:Our results show a clear separation in the plasma metabolomic profiles of piglets that corresponded to the fecal responses to stress on the piglets induced by weaning or exposure to a pathogen (E. coli). These plasma metabolite profiles suggest that the challenges induced proinflammatory responses in the piglets, resulting in postweaning diarrhea, which was associated with higher concentrations of IgA in the plasma.

  20. Metabolomic profiles delineate potential roles for gadolinium chloride in the proliferation or inhibition of Hela cells.

    Science.gov (United States)

    Long, Xiao-Hui; Yang, Peng-Yuan; Liu, Qiong; Yao, Jun; Wang, Yi; He, Guo-Hua; Hong, Guang-Yan; Ni, Jia-Zuan

    2011-08-01

    Lanthanides (Lns) compounds have been reported to possess contrary effects on cell activity, i.e., promoting cell cycle progression and cell growth by lower concentration treatment, but suppressing cell proliferation and inducing cell apoptosis at higher dosing. However, the cellular processes during the intervention and the possible underlying mechanisms are still not well clarified. Using a combination of high-throughput liquid chromatography (LC) with mass spectrometry (MS), we have investigated the metabolomic profiles of Hela cells following gadolinium chloride (GdCl(3)) treatment in time- and concentration- dependent manners. A total of 48 metabolites released by Hela cells are identified to be differentially expressed (P strategy for the first time, disclose that different cell signaling pathways are activated by GdCl(3) treatment with different concentrations, leading to inhibitory or promotional effect on Hela cells.

  1. Plasma metabolomic profiles and immune responses of piglets after weaning and challenge with E. coli

    DEFF Research Database (Denmark)

    Sugiharto, Sugiharto; Hedemann, Mette Skou; Lauridsen, Charlotte

    2014-01-01

    challenge. Results Fecal dry matter decreased (P = 0.003) and nearly half (44.4%) the piglets developed diarrhea on day 2 and 3 postweaning. The concentration of plasma immunoglobulin A was higher (P blood cells increased...... continuously (P Differences in the percentages of neutrophils (P = 0.029) and lymphocytes (P = 0.022) were seen, but the neutrophil/lymphocyte ratio did not differ in the period after weaning. A clear separation of the metabolomic profile data for day 0 and day 4...... postweaning was observed with a principal components analysis (PCA) scores plot, and the data for day 11 were located between those for day 0 and day 4 postweaning. The plasma levels of proline, taurine, and carnitine were higher, whereas those of betaine, creatine, L-arginine and acetylcarnitine were lower...

  2. Combining small-volume metabolomic and transcriptomic approaches for assessing brain chemistry.

    Science.gov (United States)

    Knolhoff, Ann M; Nautiyal, Katherine M; Nemes, Peter; Kalachikov, Sergey; Morozova, Irina; Silver, Rae; Sweedler, Jonathan V

    2013-03-19

    The integration of disparate data types provides a more complete picture of complex biological systems. Here we combine small-volume metabolomic and transcriptomic platforms to determine subtle chemical changes and to link metabolites and genes to biochemical pathways. Capillary electrophoresis-mass spectrometry (CE-MS) and whole-genome gene expression arrays, aided by integrative pathway analysis, were utilized to survey metabolomic/transcriptomic hippocampal neurochemistry. We measured changes in individual hippocampi from the mast cell mutant mouse strain, C57BL/6 Kit(W-sh/W-sh). These mice have a naturally occurring mutation in the white spotting locus that causes reduced c-Kit receptor expression and an inability of mast cells to differentiate from their hematopoietic progenitors. Compared with their littermates, the mast cell-deficient mice have profound deficits in spatial learning, memory, and neurogenesis. A total of 18 distinct metabolites were identified in the hippocampus that discriminated between the C57BL/6 Kit(W-sh/W-sh) and control mice. The combined analysis of metabolite and gene expression changes revealed a number of altered pathways. Importantly, results from both platforms indicated that multiple pathways are impacted, including amino acid metabolism, increasing the confidence in each approach. Because the CE-MS and expression profiling are both amenable to small-volume analysis, this integrated analysis is applicable to a range of volume-limited biological systems.

  3. Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy.

    Directory of Open Access Journals (Sweden)

    Karen L Lindsay

    Full Text Available Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and ultimately, infant health outcomes. However, our understanding of whole body maternal and fetal metabolism during this critical life stage remains incomplete. The objective of this study is to utilize metabolomics to profile longitudinal patterns of fasting maternal metabolites among a cohort of non-diabetic, healthy pregnant women in order to advance our understanding of changes in protein and lipid concentrations across gestation, the biochemical pathways by which they are metabolized and to describe variation in maternal metabolites between ethnic groups. Among 160 pregnant women, amino acids, tricarboxylic acid (TCA cycle intermediates, keto-bodies and non-esterified fatty acids were detected by liquid chromatography coupled with mass spectrometry, while polar lipids were detected through flow-injected mass spectrometry. The maternal plasma concentration of several essential and non-essential amino acids, long-chain polyunsaturated fatty acids, free carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins significantly decreased across pregnancy. Concentrations of several TCA intermediates increase as pregnancy progresses, as well as the keto-body β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of metabolic pathways suggest a decreased beta-oxidation rate and increased carnitine palmitoyltransferase-1 enzyme activity with advancing gestation. Decreasing amino acid concentrations likely reflects placental uptake and tissue biosynthesis. The absence of any increase in plasma non-esterified fatty acids is unexpected in the catabolic phase of later pregnancy and may reflect enhanced placental fatty acid uptake and utilization for fetal tissue growth. While it appears that energy production through the TCA cycle increases as pregnancy progresses, decreasing patterns of free carnitine and acetylcarnitine as

  4. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats

    Science.gov (United States)

    Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard

    2015-01-01

    Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269

  5. Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes.

    Directory of Open Access Journals (Sweden)

    Jennifer E Ho

    Full Text Available Although obesity and cardiometabolic traits commonly overlap, underlying pathways remain incompletely defined. The association of metabolite profiles across multiple cardiometabolic traits may lend insights into the interaction of obesity and metabolic health. We sought to investigate metabolic signatures of obesity and related cardiometabolic traits in the community using broad-based metabolomic profiling.We evaluated the association of 217 assayed metabolites and cross-sectional as well as longitudinal changes in cardiometabolic traits among 2,383 Framingham Offspring cohort participants. Body mass index (BMI was associated with 69 of 217 metabolites (P<0.00023 for all, including aromatic (tyrosine, phenylalanine and branched chain amino acids (valine, isoleucine, leucine. Additional metabolic pathways associated with BMI included the citric acid cycle (isocitrate, alpha-ketoglutarate, aconitate, the tryptophan pathway (kynurenine, kynurenic acid, and the urea cycle. There was considerable overlap in metabolite profiles between BMI, abdominal adiposity, insulin resistance [IR] and dyslipidemia, modest overlap of metabolite profiles between BMI and hyperglycemia, and little overlap with fasting glucose or elevated blood pressure. Metabolite profiles were associated with longitudinal changes in fasting glucose, but the involved metabolites (ornithine, 5-HIAA, aminoadipic acid, isoleucine, cotinine were distinct from those associated with baseline glucose or other traits. Obesity status appeared to "modify" the association of 9 metabolites with IR. For example, bile acid metabolites were strongly associated with IR among obese but not lean individuals, whereas isoleucine had a stronger association with IR in lean individuals.In this large-scale metabolite profiling study, body mass index was associated with a broad range of metabolic alterations. Metabolite profiling highlighted considerable overlap with abdominal adiposity, insulin resistance

  6. Cerebral Metabolic Profiling of Hypothermic Circulatory Arrest with and Without Antegrade Selective Cerebral Perfusion: Evidence from Nontargeted Tissue Metabolomics in a Rabbit Model

    Institute of Scientific and Technical Information of China (English)

    Li-Hua Zou; Jin-Ping Liu; Hao Zhang; Shu-Bin Wu; Bing-Yang Ji

    2016-01-01

    Background:Antegrade selective cerebral perfusion (ASCP) is regarded to perform cerebral protection during the thoracic aorta surgery as an adjunctive technique to deep hypothermic circulatory arrest (DHCA).However,brain metabolism profile after ASCP has not been systematically investigated by metabolomics technology.Methods:To clarify the metabolomics profiling of ASCP,12 New Zealand white rabbits were randomly assigned into 60 min DHCA with (DHCA+ASCP [DA] group,n =6) and without (DHCA [D] group,n =6) ASCP according to the random number table.ASCP was conducted by cannulation on the right subclavian artery and cross-clamping of the innominate artery.Rabbits were sacrificed 60 min after weaning off cardiopulmonary bypass.The metabolic features of the cerebral cortex were analyzed by a nontargeted metabolic profiling strategy based on gas chromatography-mass spectrometry.Variable importance projection values exceeding 1.0 were selected as potentially changed metabolites,and then Student's t-test was applied to test for statistical significance between the two groups.Results:Metabolic profiling of brain was distinctive significantly between the two groups (Q2y =0.88 for partial least squares-DA model).In comparing to group D,62 definable metabolites were varied significantly after ASCP,which were mainly related to amino acid metabolism,carbohydrate metabolism,and lipid metabolism.Kyoto Encyclopedia of Genes and Genomes analysis revealed that metabolic pathways after DHCA with ASCP were mainly involved in the activated glycolytic pathway,subdued anaerobic metabolism,and oxidative stress.In addition,L-kynurenine (P =0.0019),5-methoxyindole-3-acetic acid (P =0.0499),and 5-hydroxyindole-3-acetic acid (P =0.0495) in tryptophan metabolism pathways were decreased,and citrulline (P =0.0158) in urea cycle was increased in group DA comparing to group D.Conclusions:The present study applied metabolomics analysis to identify the cerebral metabolic profiling in rabbits with ASCP

  7. The effect of acyclic retinoid on the metabolomic profiles of hepatocytes and hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Xian-Yang Qin

    Full Text Available BACKGROUND/PURPOSE: Acyclic retinoid (ACR is a promising chemopreventive agent for hepatocellular carcinoma (HCC that selectively inhibits the growth of HCC cells (JHH7 but not normal hepatic cells (Hc. To better understand the molecular basis of the selective anti-cancer effect of ACR, we performed nuclear magnetic resonance (NMR-based and capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS-based metabolome analyses in JHH7 and Hc cells after treatment with ACR. METHODOLOGY/PRINCIPAL FINDINGS: NMR-based metabolomics revealed a distinct metabolomic profile of JHH7 cells at 18 h after ACR treatment but not at 4 h after ACR treatment. CE-TOFMS analysis identified 88 principal metabolites in JHH7 and Hc cells after 24 h of treatment with ethanol (EtOH or ACR. The abundance of 71 of these metabolites was significantly different between EtOH-treated control JHH7 and Hc cells, and 49 of these metabolites were significantly down-regulated in the ACR-treated JHH7 cells compared to the EtOH-treated JHH7 cells. Of particular interest, the increase in adenosine-5'-triphosphate (ATP, the main cellular energy source, that was observed in the EtOH-treated control JHH7 cells was almost completely suppressed in the ACR-treated JHH7 cells; treatment with ACR restored ATP to the basal levels observed in both EtOH-control and ACR-treated Hc cells (0.72-fold compared to the EtOH control-treated JHH7 cells. Moreover, real-time PCR analyses revealed that ACR significantly increased the expression of pyruvate dehydrogenase kinases 4 (PDK4, a key regulator of ATP production, in JHH7 cells but not in Hc cells (3.06-fold and 1.20-fold compared to the EtOH control, respectively. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that ACR may suppress the enhanced energy metabolism of JHH7 cells but not Hc cells; this occurs at least in part via the cancer-selective enhancement of PDK4 expression. The cancer-selective metabolic pathways

  8. Exploring the Inflammatory Metabolomic Profile to Predict Response to TNF-α Inhibitors in Rheumatoid Arthritis.

    Science.gov (United States)

    Cuppen, Bart V J; Fu, Junzeng; van Wietmarschen, Herman A; Harms, Amy C; Koval, Slavik; Marijnissen, Anne C A; Peeters, Judith J W; Bijlsma, Johannes W J; Tekstra, Janneke; van Laar, Jacob M; Hankemeier, Thomas; Lafeber, Floris P J G; van der Greef, Jan

    2016-01-01

    In clinical practice, approximately one-third of patients with rheumatoid arthritis (RA) respond insufficiently to TNF-α inhibitors (TNFis). The aim of the study was to explore the use of a metabolomics to identify predictors for the outcome of TNFi therapy, and study the metabolomic fingerprint in active RA irrespective of patients' response. In the metabolomic profiling, lipids, oxylipins, and amines were measured in serum samples of RA patients from the observational BiOCURA cohort, before start of biological treatment. Multivariable logistic regression models were established to identify predictors for good- and non-response in patients receiving TNFi (n = 124). The added value of metabolites over prediction using clinical parameters only was determined by comparing the area under receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive- and negative predictive value and by the net reclassification index (NRI). The models were further validated by 10-fold cross validation and tested on the complete TNFi treatment cohort including moderate responders. Additionally, metabolites were identified that cross-sectionally associated with the RA disease activity score based on a 28-joint count (DAS28), erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP). Out of 139 metabolites, the best-performing predictors were sn1-LPC(18:3-ω3/ω6), sn1-LPC(15:0), ethanolamine, and lysine. The model that combined the selected metabolites with clinical parameters showed a significant larger AUC-ROC than that of the model containing only clinical parameters (p = 0.01). The combined model was able to discriminate good- and non-responders with good accuracy and to reclassify non-responders with an improvement of 30% (total NRI = 0.23) and showed a prediction error of 0.27. For the complete TNFi cohort, the NRI was 0.22. In addition, 88 metabolites were associated with DAS28, ESR or CRP (p<0.05). Our study established an accurate prediction model

  9. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis.

    Science.gov (United States)

    Hashino, E; Kuboniwa, M; Alghamdi, S A; Yamaguchi, M; Yamamoto, R; Cho, H; Amano, A

    2013-12-01

    The effects of sugar alcohols such as erythritol, xylitol, and sorbitol on periodontopathic biofilm are poorly understood, though they have often been reported to be non-cariogenic sweeteners. In the present study, we evaluated the efficacy of sugar alcohols for inhibiting periodontopathic biofilm formation using a heterotypic biofilm model composed of an oral inhabitant Streptococcus gordonii and a periodontal pathogen Porphyromonas gingivalis. Confocal microscopic observations showed that the most effective reagent to reduce P. gingivalis accumulation onto an S. gordonii substratum was erythritol, as compared with xylitol and sorbitol. In addition, erythritol moderately suppressed S. gordonii monotypic biofilm formation. To examine the inhibitory effects of erythritol, we analyzed the metabolomic profiles of erythritol-treated P. gingivalis and S. gordonii cells. Metabolome analyses using capillary electrophoresis time-of-flight mass spectrometry revealed that a number of nucleic intermediates and constituents of the extracellular matrix, such as nucleotide sugars, were decreased by erythritol in a dose-dependent manner. Next, comparative analyses of metabolites of erythritol- and sorbitol-treated cells were performed using both organisms to determine the erythritol-specific effects. In P. gingivalis, all detected dipeptides, including Glu-Glu, Ser-Glu, Tyr-Glu, Ala-Ala and Thr-Asp, were significantly decreased by erythritol, whereas they tended to be increased by sorbitol. Meanwhile, sorbitol promoted trehalose 6-phosphate accumulation in S. gordonii cells. These results suggest that erythritol has inhibitory effects on dual species biofilm development via several pathways, including suppression of growth resulting from DNA and RNA depletion, attenuated extracellular matrix production, and alterations of dipeptide acquisition and amino acid metabolism.

  10. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: effect of sex and arsenic exposure.

    Science.gov (United States)

    Huang, Madelyn C; Douillet, Christelle; Su, Mingming; Zhou, Kejun; Wu, Tao; Chen, Wenlian; Galanko, Joseph A; Drobná, Zuzana; Saunders, R Jesse; Martin, Elizabeth; Fry, Rebecca C; Jia, Wei; Stýblo, Miroslav

    2017-01-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL/6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation.

  11. Global LC/MS Metabolomics Profiling of Calcium Stressed and Immunosuppressant Drug Treated Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefan Jenkins

    2013-12-01

    Full Text Available Previous studies have shown that calcium stressed Saccharomyces cerevisiae, challenged with immunosuppressant drugs FK506 and Cyclosporin A, responds with comprehensive gene expression changes and attenuation of the generalized calcium stress response. Here, we describe a global metabolomics workflow for investigating the utility of tracking corresponding phenotypic changes. This was achieved by efficiently analyzing relative abundance differences between intracellular metabolite pools from wild-type and calcium stressed cultures, with and without prior immunosuppressant drugs exposure. We used pathway database content from WikiPathways and YeastCyc to facilitate the projection of our metabolomics profiling results onto biological pathways. A key challenge was to increase the coverage of the detected metabolites. This was achieved by applying both reverse phase (RP and aqueous normal phase (ANP chromatographic separations, as well as electrospray ionization (ESI and atmospheric pressure chemical ionization (APCI sources for detection in both ion polarities. Unsupervised principle component analysis (PCA and ANOVA results revealed differentiation between wild-type controls, calcium stressed and immunosuppressant/calcium challenged cells. Untargeted data mining resulted in 247 differentially expressed, annotated metabolites, across at least one pair of conditions. A separate, targeted data mining strategy identified 187 differential, annotated metabolites. All annotated metabolites were subsequently mapped onto curated pathways from YeastCyc and WikiPathways for interactive pathway analysis and visualization. Dozens of pathways showed differential responses to stress conditions based on one or more matches to the list of annotated metabolites or to metabolites that had been identified further by MS/MS. The purine salvage, pantothenate and sulfur amino acid pathways were flagged as being enriched, which is consistent with previously published

  12. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling.

    Science.gov (United States)

    de Jong, Felice A; Beecher, Chris

    2012-09-01

    Metabolomics or biochemical profiling is a fast emerging science; however, there are still many associated bottlenecks to overcome before measurements will be considered robust. Advances in MS resolution and sensitivity, ultra pressure LC-MS, ESI, and isotopic approaches such as flux analysis and stable-isotope dilution, have made it easier to quantitate biochemicals. The digitization of mass spectrometers has simplified informatic aspects. However, issues of analytical variability, ion suppression and metabolite identification still plague metabolomics investigators. These hurdles need to be overcome for accurate metabolite quantitation not only for in vitro systems, but for complex matrices such as biofluids and tissues, before it is possible to routinely identify biomarkers that are associated with the early prediction and diagnosis of diseases. In this report, we describe a novel isotopic-labeling method that uses the creation of distinct biochemical signatures to eliminate current bottlenecks and enable accurate metabolic profiling.

  13. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats

    OpenAIRE

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-01-01

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with...

  14. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-08-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  15. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia.

    Directory of Open Access Journals (Sweden)

    Sylwia Kuc

    Full Text Available OBJECTIVE: The first aim was to investigate specific signature patterns of metabolites that are significantly altered in first-trimester serum of women who subsequently developed preeclampsia (PE compared to healthy pregnancies. The second aim of this study was to examine the predictive performance of the selected metabolites for both early onset [EO-PE] and late onset PE [LO-PE]. METHODS: This was a case-control study of maternal serum samples collected between 8+0 and 13+6 weeks of gestation from 167 women who subsequently developed EO-PE n = 68; LO-PE n = 99 and 500 controls with uncomplicated pregnancies. Metabolomics profiling analysis was performed using two methods. One has been optimized to target eicosanoids/oxylipins, which are known inflammation markers and the other targets compounds containing a primary or secondary biogenic amine group. Logistic regression analyses were performed to predict the development of PE using metabolites alone and in combination with first trimester mean arterial pressure (MAP measurements. RESULTS: Two metabolites were significantly different between EO-PE and controls (taurine and asparagine and one in case of LO-PE (glycylglycine. Taurine appeared the most discriminative biomarker and in combination with MAP predicted EO-PE with a detection rate (DR of 55%, at a false-positive rate (FPR of 10%. CONCLUSION: Our findings suggest a potential role of taurine in both PE pathophysiology and first trimester screening for EO-PE.

  16. Characterizing Blood Metabolomics Profiles Associated with Self-Reported Food Intakes in Female Twins.

    Directory of Open Access Journals (Sweden)

    Tess Pallister

    Full Text Available Using dietary biomarkers in nutritional epidemiological studies may better capture exposure and improve the level at which diet-disease associations can be established and explored. Here, we aimed to identify and evaluate reproducibility of novel biomarkers of reported habitual food intake using targeted and non-targeted metabolomic blood profiling in a large twin cohort. Reported intakes of 71 food groups, determined by FFQ, were assessed against 601 fasting blood metabolites in over 3500 adult female twins from the TwinsUK cohort. For each metabolite, linear regression analysis was undertaken in the discovery group (excluding MZ twin pairs discordant [≥1 SD apart] for food group intake with each food group as a predictor adjusting for age, batch effects, BMI, family relatedness and multiple testing (1.17x10-6 = 0.05/[71 food groups x 601 detected metabolites]. Significant results were then replicated (non-targeted: P<0.05; targeted: same direction in the MZ discordant twin group and results from both analyses meta-analyzed. We identified and replicated 180 significant associations with 39 food groups (P<1.17x10-6, overall consisting of 106 different metabolites (74 known and 32 unknown, including 73 novel associations. In particular we identified trans-4-hydroxyproline as a potential marker of red meat intake (0.075[0.009]; P = 1.08x10-17, ergothioneine as a marker of mushroom consumption (0.181[0.019]; P = 5.93x10-22, and three potential markers of fruit consumption (top association: apple and pears: including metabolites derived from gut bacterial transformation of phenolic compounds, 3-phenylpropionate (0.024[0.004]; P = 1.24x10-8 and indolepropionate (0.026[0.004]; P = 2.39x10-9, and threitol (0.033[0.003]; P = 1.69x10-21. With the largest nutritional metabolomics dataset to date, we have identified 73 novel candidate biomarkers of food intake for potential use in nutritional epidemiological studies. We compiled our findings into the

  17. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Theodore R Sana

    Full Text Available Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC and uninfected (NRBC erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the "branched" TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca(2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted

  18. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Carroll, Sue L [ORNL; Martin, S L. [North Carolina State University; Davison, Brian H [ORNL; Palumbo, Anthony Vito [ORNL; Brown, Steven D [ORNL

    2009-01-01

    Zymomonas mobilis ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (glk, zwf, pgl, pgk, and eno) and gene pdc, encoding a key enzyme leading to ethanol production, were at least 30-fold more

  19. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Directory of Open Access Journals (Sweden)

    Palumbo Anthony V

    2009-01-01

    Full Text Available Abstract Background Zymomonas mobilis ZM4 (ZM4 produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. Results In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC, gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED pathway genes (glk, zwf, pgl, pgk, and eno and gene pdc, encoding a key enzyme leading to ethanol

  20. Relationship between the metabolite profile and technological properties of bovine milk from two dairy breeds elucidated by NMR-based metabolomics.

    Science.gov (United States)

    Sundekilde, Ulrik Kræmer; Frederiksen, Pernille Dorthea; Clausen, Morten Rahr; Larsen, Lotte Bach; Bertram, Hanne Christine

    2011-07-13

    The aim of the present study was to investigate the relationship between the metabolite profile of milk and important technological properties by using nuclear magnetic resonance (NMR)-based metabolomics. The metabolomics approach was introduced for the metabolic profiling of a set of milk samples from two dairy breeds representing a wide span in coagulation properties. The milk metabolite profiles obtained by proton and carbon NMR spectroscopy could be correlated to breed and, more interestingly, also with the coagulation profile, as established by traditional methods by using principal component analysis (PCA). The metabolites responsible for the separation into breed could mainly be ascribed to carnitine and lactose, whereas the metabolites varying in the samples with respect to coagulation properties included citrate, choline, carnitine, and lactose. The results found in the present study demonstrated a promising potential of NMR-based metabolomics for a rapid analysis and classification of milk samples, both of which are useful for the dairy industry.

  1. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  2. Metabolomic Profiling of Submaximal Exercise at a Standardised Relative Intensity in Healthy Adults

    Science.gov (United States)

    Muhsen Ali, Ali; Burleigh, Mia; Daskalaki, Evangelia; Zhang, Tong; Easton, Chris; Watson, David G.

    2016-01-01

    Ten physically active subjects underwent two cycling exercise trials. In the first, aerobic capacity (VO2max) was determined and the second was a 45 min submaximal exercise test. Urine samples were collected separately the day before (day 1) , the day of (day 2), and the day after (day 3) the submaximal exercise test (12 samples per subject). Metabolomic profiling of the samples was carried out using hydrophilic interaction chromatography (HILIC) coupled to an Orbitrap Exactive mass spectrometer. Data were extracted, database searched and then subjected to principle components (PCA) and orthogonal partial least squares (OPLSDA) modelling. The best results were obtained from pre-treating the data by normalising the metabolites to their mean output on days 1 and 2 of the trial. This allowed PCA to separate the day 2 first void samples (D2S1) from the day 2 post-exercise samples (D2S3) PCA also separated the equivalent samples obtained on day 1 (D1S1 and D1S3). OPLSDA modelling separated both the D2S1 and D2S3 samples and D1S1 and D1S3 samples. The metabolites affected by the exercise samples included a range of purine metabolites and several acyl carnitines. Some metabolites were subject to diurnal variation these included bile acids and several amino acids, the variation of these metabolites was similar on day 1 and day 2 despite the exercise intervention on day 2. Using OPLS modelling it proved possible to identify a single abundant urinary metabolite provisionally identified as oxo-aminohexanoic acid (OHA) as being strongly correlated with VO2max when the levels in the D2S3 samples were considered. PMID:26927198

  3. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation.

    Directory of Open Access Journals (Sweden)

    Brante P Sampey

    Full Text Available Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD to "Cafeteria diets" (CAF consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity

  4. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation.

    Science.gov (United States)

    Sampey, Brante P; Freemerman, Alex J; Zhang, Jimmy; Kuan, Pei-Fen; Galanko, Joseph A; O'Connell, Thomas M; Ilkayeva, Olga R; Muehlbauer, Michael J; Stevens, Robert D; Newgard, Christopher B; Brauer, Heather A; Troester, Melissa A; Makowski, Liza

    2012-01-01

    Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to "Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic

  5. Metabolomic profiling in cattle experimentally infected with Mycobacterium avium subsp. paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Jeroen De Buck

    Full Text Available The sensitivity of current diagnostics for Johne's disease, a slow, progressing enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP, is too low to reliably detect all infected animals in the subclinical stage. The objective was to identify individual metabolites or metabolite profiles that could be used as biomarkers of early MAP infection in ruminants. In a monthly follow-up for 17 months, calves infected at 2 weeks of age were compared with aged-matched controls. Sera from all animals were analyzed by 1H nuclear magnetic resonance spectrometry. Spectra were acquired, processed, and quantified for analysis. The concentration of many metabolites changed over time in all calves, but some metabolites only changed over time in either infected or non-infected groups and the change in others was impacted by the infection. Hierarchical multivariate statistical analysis achieved best separation between groups between 300 and 400 days after infection. Therefore, a cross-sectional comparison between 1-year-old calves experimentally infected at various ages with either a high- or a low-dose and age-matched non-infected controls was performed. Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS DA yielded distinct separation of non-infected from infected cattle, regardless of dose and time (3, 6, 9 or 12 months after infection. Receiver Operating Curves demonstrated that constructed models were high quality. Increased isobutyrate in the infected cattle was the most important agreement between the longitudinal and cross-sectional analysis. In general, high- and low-dose cattle responded similarly to infection. Differences in acetone, citrate, glycerol and iso-butyrate concentrations indicated energy shortages and increased fat metabolism in infected cattle, whereas changes in urea and several amino acids (AA, including the branched chain AA, indicated increased protein turnover. In conclusion, metabolomics

  6. Combining Small-Volume Metabolomic and Transcriptomic Approaches for Assessing Brain Chemistry

    OpenAIRE

    Knolhoff, Ann M.; Nautiyal, Katherine M.; Nemes, Peter; Kalachikov, Sergey; Morozova, Irina; Silver, Rae; Jonathan V. Sweedler

    2013-01-01

    The integration of disparate data types provides a more complete picture of complex biological systems. Here we combine small-volume metabolomic and transcriptomic platforms to determine subtle chemical changes and to link metabolites and genes to biochemical pathways. Capillary electrophoresis–mass spectrometry (CE–MS) and whole-genome gene expression arrays, aided by integrative pathway analysis, were utilized to survey metabolomic/transcriptomic hippocampal neurochemistry. We measured chan...

  7. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    Energy Technology Data Exchange (ETDEWEB)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.; Borenstein, Elhanan; Sanchez, Laura M.

    2015-12-22

    ABSTRACT

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in

  8. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome

    Directory of Open Access Journals (Sweden)

    Zhanna eKtsoyan

    2013-01-01

    Full Text Available In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever, the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome.

  9. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis.

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J; Saito, Kazuki

    2014-05-14

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/.

  10. Plasma metabolomic profiling to reveal antipyretic mechanism of Shuang-huang-lian injection on yeast-induced pyrexia rats.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Gao

    Full Text Available Shuang-huang-lian injection (SHLI is a famous Chinese patent medicine, which has been wildly used in clinic for the treatment of acute respiratory tract infection, pneumonia, influenza, etc. The existing randomized controlled trial (RCT studies suggested that SHLI could afford a certain anti-febrile action. However, seldom does research concern the pharmacological mechanisms of SHLI. In the current study, we explored plasma metabolomic profiling technique and selected potential metabolic markers to reveal the antipyretic mechanism of SHLI on yeast-induced pyrexia rat model using UPLC-Q-TOF/MS coupled with multivariate statistical analysis and pattern recognition techniques. We discovered a significant perturbance of metabolic profile in the plasma of fever rats and obvious reversion in SHLI-administered rats. Eight potential biomarkers, i.e. 1 3-hydeoxybutyric acid, 2 leucine, 3 16:0 LPC, 4 allocholic acid, 5 vitamin B2, 6 Cys-Lys-His, 7 18:2 LPC, and 8 3-hydroxychola-7, 22-dien-24-oic acid, were screened out by OPLS-DA approach. Five potential perturbed metabolic pathways, i.e. 1 valine, leucine, and isoleucine biosynthesis, 2 glycerophospholipid metabolism, 3 ketone bodies synthesis and degradation, 4 bile acid biosynthesis, and 5 riboflavin metabolism, were revealed to relate to the antipyretic mechanisms of SHLI. Overall, we investigated antipyretic mechanisms of SHLI at metabolomic level for the first time, and the obtained results highlights the necessity of adopting metabolomics as a reliable tool for understanding the holism and synergism of Chinese patent drug.

  11. Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions.

    Science.gov (United States)

    Rabara, Roel C; Tripathi, Prateek; Rushton, Paul J

    2017-01-01

    Understanding how plants respond to water deficit is important in order to develop crops tolerant to drought. In this study, we compare two large metabolomics datasets where we employed a nontargeted metabolomics approach to elucidate metabolic pathways perturbed by progressive dehydration in tobacco and soybean plants. The two datasets were created using the same strategy to create water deficit conditions and an identical metabolomics pipeline. Comparisons between the two datasets therefore reveal common responses between the two species, responses specific to one of the species, responses that occur in both root and leaf tissues, and responses that are specific to one tissue. Stomatal closure is the immediate response of the plant and this did not coincide with accumulation of abscisic acid. A total of 116 and 140 metabolites were observed in tobacco leaves and roots, respectively, while 241 and 207 were observed in soybean leaves and roots, respectively. Accumulation of metabolites is significantly correlated with the extent of dehydration in both species. Among the metabolites that show increases that are restricted to just one plant, 4-hydroxy-2-oxoglutaric acid (KHG) in tobacco roots and coumestrol in soybean roots show the highest tissue-specific accumulation. The comparisons of these two large nontargeted metabolomics datasets provide novel information and suggest that KHG will be a useful marker for drought stress for some members of Solanaceae and coumestrol for some legume species.

  12. Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions

    Directory of Open Access Journals (Sweden)

    Roel C. Rabara

    2017-01-01

    Full Text Available Understanding how plants respond to water deficit is important in order to develop crops tolerant to drought. In this study, we compare two large metabolomics datasets where we employed a nontargeted metabolomics approach to elucidate metabolic pathways perturbed by progressive dehydration in tobacco and soybean plants. The two datasets were created using the same strategy to create water deficit conditions and an identical metabolomics pipeline. Comparisons between the two datasets therefore reveal common responses between the two species, responses specific to one of the species, responses that occur in both root and leaf tissues, and responses that are specific to one tissue. Stomatal closure is the immediate response of the plant and this did not coincide with accumulation of abscisic acid. A total of 116 and 140 metabolites were observed in tobacco leaves and roots, respectively, while 241 and 207 were observed in soybean leaves and roots, respectively. Accumulation of metabolites is significantly correlated with the extent of dehydration in both species. Among the metabolites that show increases that are restricted to just one plant, 4-hydroxy-2-oxoglutaric acid (KHG in tobacco roots and coumestrol in soybean roots show the highest tissue-specific accumulation. The comparisons of these two large nontargeted metabolomics datasets provide novel information and suggest that KHG will be a useful marker for drought stress for some members of Solanaceae and coumestrol for some legume species.

  13. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native co

  14. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats.

    Science.gov (United States)

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-08-04

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution ¹H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats.

  15. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Hui; Xia, Xi; Li, Xiaowei; Naren, Gaowa; Fu, Qin; Wang, Yang; Wu, Congming; Ding, Shuangyang; Zhang, Suxia; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong

    2015-02-06

    Campylobacter jejuni, an important foodborne microorganism, poses severe and emergent threats to human health as antibiotic resistance becomes increasingly prevalent. The mechanisms of drug resistance are hard to decipher, and little is known at the metabolic level. Here we apply metabolomic profiling to discover metabolic changes associated with amphenicol (chloramphenicol and florfenicol) resistance mutations of Campylobacter jejuni. An optimized sample preparation method was combined with ultra-high-performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS) and pattern recognition for the analysis of small-molecule biomarkers of drug resistance. UHPLC-triple quadrupole MS operated in multiple reaction monitoring mode was used for quantitative analysis of metabolic features from UHPLC-TOF/MS profiling. Up to 41 differential metabolites involved in glycerophospholipid metabolism, sphingolipid metabolism, and fatty acid metabolism were observed in a chloramphenicol-resistant mutant strain of Campylobacter jejuni. A panel of 40 features was identified in florfenicol-resistant mutants, demonstrating changes in glycerophospholipid metabolism, sphingolipid metabolism, and tryptophan metabolism. This study shows that the UHPLC-MS-based metabolomics platform is a promising and valuable tool to generate new insights into the drug-resistant mechanism of Campylobacter jejuni.

  16. Targeted Metabolomics Approach To Detect the Misuse of Steroidal Aromatase Inhibitors in Equine Sports by Biomarker Profiling.

    Science.gov (United States)

    Chan, George Ho Man; Ho, Emmie Ngai Man; Leung, David Kwan Kon; Wong, Kin Sing; Wan, Terence See Ming

    2016-01-05

    The use of anabolic androgenic steroids (AAS) is prohibited in both human and equine sports. The conventional approach in doping control testing for AAS (as well as other prohibited substances) is accomplished by the direct detection of target AAS or their characteristic metabolites in biological samples using hyphenated techniques such as gas chromatography or liquid chromatography coupled with mass spectrometry. Such an approach, however, falls short when dealing with unknown designer steroids where reference materials and their pharmacokinetics are not available. In addition, AASs with fast elimination times render the direct detection approach ineffective as the detection window is short. A targeted metabolomics approach is a plausible alternative to the conventional direct detection approach for controlling the misuse of AAS in sports. Because the administration of AAS of the same class may trigger similar physiological responses or effects in the body, it may be possible to detect such administrations by monitoring changes in the endogenous steroidal expression profile. This study attempts to evaluate the viability of using the targeted metabolomics approach to detect the administration of steroidal aromatase inhibitors, namely androst-4-ene-3,6,17-trione (6-OXO) and androsta-1,4,6-triene-3,17-dione (ATD), in horses. Total (free and conjugated) urinary concentrations of 31 endogenous steroids were determined by gas chromatography-tandem mass spectrometry for a group of 2 resting and 2 in-training thoroughbred geldings treated with either 6-OXO or ATD. Similar data were also obtained from a control (untreated) group of in-training thoroughbred geldings (n = 28). Statistical processing and chemometric procedures using principle component analysis and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) have highlighted 7 potential biomarkers that could be used to differentiate urine samples obtained from the control and the treated groups

  17. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation.

    Science.gov (United States)

    Hrydziuszko, Olga; Perera, M Thamara P R; Laing, Richard; Kirwan, Jennifer; Silva, Michael A; Richards, Douglas A; Murphy, Nick; Mirza, Darius F; Viant, Mark R

    2016-01-01

    Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations.

  18. Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation

    Science.gov (United States)

    Laing, Richard; Kirwan, Jennifer; Silva, Michael A.; Richards, Douglas A.; Murphy, Nick; Mirza, Darius F.; Viant, Mark R.

    2016-01-01

    Use of marginal liver grafts, especially those from donors after circulatory death (DCD), has been considered as a solution to organ shortage. Inferior outcomes have been attributed to donor warm ischaemic damage in these DCD organs. Here we sought to profile the metabolic mechanisms underpinning donor warm ischaemia. Non-targeted Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry metabolomics was applied to biopsies of liver grafts from donors after brain death (DBD; n = 27) and DCD (n = 10), both during static cold storage (T1) as well as post-reperfusion (T2). Furthermore 6 biopsies from DBD donors prior to the organ donation (T0) were also profiled. Considering DBD and DCD together, significant metabolic differences were discovered between T1 and T2 (688 peaks) that were primarily related to amino acid metabolism, meanwhile T0 biopsies grouped together with T2, denoting the distinctively different metabolic activity of the perfused state. Major metabolic differences were discovered between DCD and DBD during cold-phase (T1) primarily related to glucose, tryptophan and kynurenine metabolism, and in the post-reperfusion phase (T2) related to amino acid and glutathione metabolism. We propose tryptophan/kynurenine and S-adenosylmethionine as possible biomarkers for the previously established higher graft failure of DCD livers, and conclude that the associated pathways should be targeted in more exhaustive and quantitative investigations. PMID:27835640

  19. Specific Metabolome Profile of Exhaled Breath Condensate in Patients with Shock and Respiratory Failure: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Brice Fermier

    2016-09-01

    Full Text Available Background: Shock includes different pathophysiological mechanisms not fully understood and remains a challenge to manage. Exhaled breath condensate (EBC may contain relevant biomarkers that could help us make an early diagnosis or better understand the metabolic perturbations resulting from this pathological situation. Objective: we aimed to establish the metabolomics signature of EBC from patients in shock with acute respiratory failure in a pilot study. Material and methods: We explored the metabolic signature of EBC in 12 patients with shock compared to 14 controls using LC-HRMS. We used a non-targeted approach, and we performed a multivariate analysis based on Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA to differentiate between the two groups of patients. Results: We optimized the procedure of EBC collection and LC-HRMS detected more than 1000 ions in this fluid. The optimization of multivariate models led to an excellent model of differentiation for both groups (Q2 > 0.4 after inclusion of only 6 ions. Discussion and conclusion: We validated the procedure of EBC collection and we showed that the metabolome profile of EBC may be relevant in characterizing patients with shock. We performed well in distinguishing these patients from controls, and the identification of relevant compounds may be promising for ICC patients.

  20. Specific Metabolome Profile of Exhaled Breath Condensate in Patients with Shock and Respiratory Failure: A Pilot Study

    Science.gov (United States)

    Fermier, Brice; Blasco, Hélène; Godat, Emmanuel; Bocca, Cinzia; Moënne-Loccoz, Joseph; Emond, Patrick; Andres, Christian R.; Laffon, Marc; Ferrandière, Martine

    2016-01-01

    Background: Shock includes different pathophysiological mechanisms not fully understood and remains a challenge to manage. Exhaled breath condensate (EBC) may contain relevant biomarkers that could help us make an early diagnosis or better understand the metabolic perturbations resulting from this pathological situation. Objective: we aimed to establish the metabolomics signature of EBC from patients in shock with acute respiratory failure in a pilot study. Material and methods: We explored the metabolic signature of EBC in 12 patients with shock compared to 14 controls using LC-HRMS. We used a non-targeted approach, and we performed a multivariate analysis based on Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) to differentiate between the two groups of patients. Results: We optimized the procedure of EBC collection and LC-HRMS detected more than 1000 ions in this fluid. The optimization of multivariate models led to an excellent model of differentiation for both groups (Q2 > 0.4) after inclusion of only 6 ions. Discussion and conclusion: We validated the procedure of EBC collection and we showed that the metabolome profile of EBC may be relevant in characterizing patients with shock. We performed well in distinguishing these patients from controls, and the identification of relevant compounds may be promising for ICC patients. PMID:27598216

  1. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury

    Science.gov (United States)

    Wu, Yiman; Streijger, Femke; Wang, Yining; Lin, Guohui; Christie, Sean; Mac-Thiong, Jean-Marc; Parent, Stefan; Bailey, Christopher S.; Paquette, Scott; Boyd, Michael C.; Ailon, Tamir; Street, John; Fisher, Charles G.; Dvorak, Marcel F.; Kwon, Brian K.; Li, Liang

    2016-01-01

    Suffering an acute spinal cord injury (SCI) can result in catastrophic physical and emotional loss. Efforts to translate novel therapies in acute clinical trials are impeded by the SCI community’s singular dependence upon functional outcome measures. Therefore, a compelling rationale exists to establish neurochemical biomarkers for the objective classification of injury severity. In this study, CSF and serum samples were obtained at 3 time points (~24, 48, and 72 hours post-injury) from 30 acute SCI patients (10 AIS A, 12 AIS B, and 8 AIS C). A differential chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) with a universal metabolome standard (UMS) was applied to the metabolomic profiling of these samples. This method provided enhanced detection of the amine- and phenol-containing submetabolome. Metabolic pathway analysis revealed dysregulations in arginine-proline metabolism following SCI. Six CSF metabolites were identified as potential biomarkers of baseline injury severity, and good classification performance (AUC > 0.869) was achieved by using combinations of these metabolites in pair-wise comparisons of AIS A, B and C patients. Using the UMS strategy, the current data set can be expanded to a larger cohort for biomarker validation, as well as discovering biomarkers for predicting neurologic outcome. PMID:27966539

  2. Integrated proteomic and metabolomic analysis of larval brain associated with diapause induction and preparation in the cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Zhang, Qi; Lu, Yu-Xuan; Xu, Wei-Hua

    2012-02-03

    Diapause is a developmental arrest that allows an organism to survive unfavorable environmental conditions and is induced by environmental signals at a certain sensitive developmental stage. In Helicoverpa armigera, the larval brain receives the environmental signals for diapause induction and then regulates diapause entry at the pupal stage. Here, combined proteomic and metabolomic differential display analysis was performed on the H. armigera larval brain. Using two-dimensional electrophoresis, it was found that 22 proteins were increased and 27 proteins were decreased in the diapause-destined larval brain, 37 of which were successfully identified by MALDI-TOF/TOF mass spectrometry. RT-PCR and Western blot analyses showed that the expression levels of the differentially expressed proteins were consistent with the 2-DE results. Furthermore, a total of 49 metabolites were identified in the larval brain by GC-MS analysis, including 4 metabolites at high concentrations and 14 metabolites at low concentrations. The results gave us a clue to understand the governing molecular events of the prediapause phase. Those differences that exist in the induction phase of diapause-destined individuals are probably relevant to a special memory mechanism for photoperiodic information storage, and those differences that exist in the preparation phase are likely to regulate accumulation of specific energy reserves in diapause-destined individuals.

  3. LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake

    DEFF Research Database (Denmark)

    Johansson-Persson, Anna; Barri, Thaer; Ulmius, Matilda

    2013-01-01

    The objective was to investigate the alterations of plasma metabolome profiles to identify exposure and effect markers of dietary fiber intake. Subjects (n¿=¿25) aged 58.6 (1.1)¿years (mean and SD) with a body mass index of 26.6 (0.5)¿kg/m(2) were given a high fiber (HF) and a low fiber (LF) diet......, in a 5-week randomized controlled crossover intervention. The HF diet consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products, whereas the LF diet was made of equivalent food products to the HF diet, but without adding fibers. Blood plasma samples were collected...

  4. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage.

    Science.gov (United States)

    Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E

    2012-12-01

    The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling.

  5. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents

    Science.gov (United States)

    Mhlongo, Msizi I.; Steenkamp, Paul A.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines, or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites. PMID

  6. Development of metabolite profiling and metabolomics tools for Pseudomonas taiwanensis VLB120

    DEFF Research Database (Denmark)

    Wordofa, Gossa Garedew; Kristensen, Mette; Schneider, Konstantin

    Pseudomonas sp. VLB120 is a biofilm-forming Gram negative aerobic strain that isolated from soil at Institute of Microbiology, University of Stuttgart, Germany. The strain has an ability to survive and even able to grow in the presence of toxic solvents including octanol, toluene, and styrene...... are investigating the metabolic state of P.VLB120 strain and testing the suitability of commonly used metabolomics tools for this strain, as many of the tools were designed for specific classes of metabolites or microorganisms....

  7. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects.

    Directory of Open Access Journals (Sweden)

    Joseph A Rothwell

    Full Text Available Coffee contains various bioactives implicated with human health and disease risk. To accurately assess the effects of overall consumption upon health and disease, individual intake must be measured in large epidemiological studies. Metabolomics has emerged as a powerful approach to discover biomarkers of intake for a large range of foods. Here we report the profiling of the urinary metabolome of cohort study subjects to search for new biomarkers of coffee intake. Using repeated 24-hour dietary records and a food frequency questionnaire, 20 high coffee consumers (183-540 mL/d and 19 low consumers were selected from the French SU.VI.MAX2 cohort. Morning spot urine samples from each subject were profiled by high-resolution mass spectrometry. Partial least-square discriminant analysis of multidimensional liquid chromatography-mass spectrometry data clearly distinguished high consumers from low via 132 significant (p-value<0.05 discriminating features. Ion clusters whose intensities were most elevated in the high consumers were annotated using online and in-house databases and their identities checked using commercial standards and MS-MS fragmentation. The best discriminants, and thus potential markers of coffee consumption, were the glucuronide of the diterpenoid atractyligenin, the diketopiperazine cyclo(isoleucyl-prolyl, and the alkaloid trigonelline. Some caffeine metabolites, such as 1-methylxanthine, were also among the discriminants, however caffeine may be consumed from other sources and its metabolism is subject to inter-individual variation. Receiver operating characteristics curve analysis showed that the biomarkers identified could be used effectively in combination for increased sensitivity and specificity. Once validated in other cohorts or intervention studies, these specific single or combined biomarkers will become a valuable alternative to assessment of coffee intake by dietary survey and finally lead to a better understanding of

  8. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    Energy Technology Data Exchange (ETDEWEB)

    Arbulu, M. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Sampedro, M.C. [Central Service of Analysis, SGIker, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Gómez-Caballero, A.; Goicolea, M.A. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Barrio, R.J., E-mail: r.barrio@ehu.es [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain)

    2015-02-09

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds.

  9. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    Science.gov (United States)

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  10. Profiling a gut microbiota-generated catechin metabolite's fate in human blood cells using a metabolomic approach.

    Science.gov (United States)

    Mülek, Melanie; Fekete, Agnes; Wiest, Johannes; Holzgrabe, Ulrike; Mueller, Martin J; Högger, Petra

    2015-10-10

    The microbial catechin metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1) has been found in human plasma samples after intake of maritime pine bark extract (Pycnogenol). M1 has been previously shown to accumulate in endothelial and blood cells in vitro after facilitated uptake and to exhibit anti-inflammatory activity. The purpose of the present research approach was to systematically and comprehensively analyze the metabolism of M1 in human blood cells in vitro and in vivo. A metabolomic approach that had been successfully applied for drug metabolite profiling was chosen to detect 19 metabolite peaks of M1 which were subsequently further analyzed and validated. The metabolites were categorized into three levels of identification according to the Metabolomics Standards Initiative with six compounds each confirmed at levels 1 and 2 and seven putative metabolites at level 3. The predominant metabolites were glutathione conjugates which were rapidly formed and revealed prolonged presence within the cells. Although a formation of an intracellular conjugate of M1 and glutathione (M1-GSH) was already known two GSH conjugate isomers, M1-S-GSH and M1-N-GSH were observed in the current study. Additionally detected organosulfur metabolites were conjugates with oxidized glutathione and cysteine. Other biotransformation products constituted the open-chained ester form of M1 and a methylated M1. Six of the metabolites determined in in vitro assays were also detected in blood cells in vivo after ingestion of the pine bark extract by two volunteers. The present study provides the first evidence that multiple and structurally heterogeneous polyphenol metabolites can be generated in human blood cells. The bioactivity of the M1 metabolites and their contribution to the previously determined anti-inflammatory effects of M1 now need to be elucidated.

  11. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    Science.gov (United States)

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-04

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  12. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Science.gov (United States)

    Gieger, Christian; Geistlinger, Ludwig; Altmaier, Elisabeth; Hrabé de Angelis, Martin; Kronenberg, Florian; Meitinger, Thomas; Mewes, Hans-Werner; Wichmann, H-Erich; Weinberger, Klaus M; Adamski, Jerzy; Illig, Thomas; Suhre, Karsten

    2008-11-01

    The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs) with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16) to 10(-21)). We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD) where the corresponding metabolic phenotype (metabotype) clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  13. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  14. Metabolomics in chemical ecology.

    Science.gov (United States)

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  15. The human serum metabolome.

    Directory of Open Access Journals (Sweden)

    Nikolaos Psychogios

    Full Text Available Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.

  16. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting

    Directory of Open Access Journals (Sweden)

    Ji Bo

    2012-08-01

    Full Text Available Abstract Background Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. Results We combined transcriptomics and metabolomics to characterize the response of chicken adipose tissue to two energy manipulations, fasting and insulin deprivation in the fed state. Sixteen to 17 day-old commercial broiler chickens (ISA915 were fed ad libitum, fasted for five hours, or fed but deprived of insulin by injections of anti-insulin serum. Pair-wise contrasts of expression data identified a total of 2016 genes that were differentially expressed after correction for multiple testing, with the vast majority of differences due to fasting (1780 genes. Gene Ontology and KEGG pathway analyses indicated that a short term fast impacted expression of genes in a broad selection of pathways related to metabolism, signaling and adipogenesis. The effects of insulin neutralization largely overlapped with the response to fasting, but with more modest effects on adipose tissue metabolism. Tissue metabolomics indicated unique effects of insulin on amino acid metabolism. Conclusions Collectively, these data provide a foundation

  17. Mass Spectrometry-Based Quantitative Metabolomics Revealed a Distinct Lipid Profile in Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Yun Yen

    2013-04-01

    Full Text Available Breast cancer accounts for the largest number of newly diagnosed cases in female cancer patients. Although mammography is a powerful screening tool, about 20% of breast cancer cases cannot be detected by this method. New diagnostic biomarkers for breast cancer are necessary. Here, we used a mass spectrometry-based quantitative metabolomics method to analyze plasma samples from 55 breast cancer patients and 25 healthy controls. A number of 30 patients and 20 age-matched healthy controls were used as a training dataset to establish a diagnostic model and to identify potential biomarkers. The remaining samples were used as a validation dataset to evaluate the predictive accuracy for the established model. Distinct separation was obtained from an orthogonal partial least squares-discriminant analysis (OPLS-DA model with good prediction accuracy. Based on this analysis, 39 differentiating metabolites were identified, including significantly lower levels of lysophosphatidylcholines and higher levels of sphingomyelins in the plasma samples obtained from breast cancer patients compared with healthy controls. Using logical regression, a diagnostic equation based on three metabolites (lysoPC a C16:0, PC ae C42:5 and PC aa C34:2 successfully differentiated breast cancer patients from healthy controls, with a sensitivity of 98.1% and a specificity of 96.0%.

  18. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model.

    Science.gov (United States)

    Garcia-Contreras, Rene; Sugimoto, Masahiro; Umemura, Naoki; Kaneko, Miku; Hatakeyama, Yoko; Soga, Tomoyoshi; Tomita, Masaru; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Nakajima, Hiroshi; Sakagami, Hiroshi

    2015-07-01

    Although nanoparticles (NPs) has afforded considerable benefits in various fields of sciences, several reports have shown their harmful effects, suggesting the necessity of adequate risk assessment. To clarify the mechanism of titanium dioxide nanoparticles (TiO2 NPs)-enhanced gingival inflammation, we conducted the full-scale metabolomic analyses of human gingival fibroblast cells treated with IL-1β alone or in combination with TiO2 NPs. Observation with transmission electron microscope demonstrated the incorporation of TiO2 NPs into vacuoles of the cells. TiO2 NPs significantly enhanced the IL-1β-induced prostaglandin E2 production and COX-1 and COX-2 protein expression. IL-1β reduced the intracellular concentrations of overall primary metabolites especially those of amino acid, urea cycle, polyamine, S-adenosylmethione and glutathione synthetic pathways. The addition of TiO2 NPs further augmented these IL-1β-induced metabolic changes, recommending careful use of dental materials containing TiO2 NPs towards patients with gingivitis or periodontitis. The impact of the present study is to identify the molecular targets of TiO2 NPs for the future establishment of new metabolic markers and therapeutic strategy of gingival inflammation.

  19. Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility.

    Science.gov (United States)

    Zhou, Jian; Ma, Qian; Yi, Hong; Wang, Lili; Song, Hao; Yuan, Ying-Jin

    2011-10-01

    The metabolic cooperation in the ecosystem of Bacillus megaterium and Ketogulonicigenium vulgare was investigated by cultivating them spatially on a soft agar plate. We found that B. megaterium swarmed in a direction along the trace of K. vulgare on the agar plate. Metabolomics based on gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) was employed to analyze the interaction mechanism between the two microorganisms. We found that the microorganisms interact by exchanging a number of metabolites. Both intracellular metabolism and cell-cell communication via metabolic cooperation were essential in determining the population dynamics of the ecosystem. The contents of amino acids and other nutritional compounds in K. vulgare were rather low in comparison to those in B. megaterium, but the levels of these compounds in the medium surrounding K. vulgare were fairly high, even higher than in fresh medium. Erythrose, erythritol, guanine, and inositol accumulated around B. megaterium were consumed by K. vulgare upon its migration. The oxidization products of K. vulgare, including 2-keto-gulonic acids (2KGA), were sharply increased. Upon coculturing of B. megaterium and K. vulgare, 2,6-dipicolinic acid (the biomarker of sporulation of B. megaterium), was remarkably increased compared with those in the monocultures. Therefore, the interactions between B. megaterium and K. vulgare were a synergistic combination of mutualism and antagonism. This paper is the first to systematically identify a symbiotic interaction mechanism via metabolites in the ecosystem established by two isolated colonies of B. megaterium and K. vulgare.

  20. Nephron Toxicity Profiling via Untargeted Metabolome Analysis Employing a High Performance Liquid Chromatography-Mass Spectrometry-based Experimental and Computational Pipeline*

    Science.gov (United States)

    Ranninger, Christina; Rurik, Marc; Limonciel, Alice; Ruzek, Silke; Reischl, Roland; Wilmes, Anja; Jennings, Paul; Hewitt, Philip; Dekant, Wolfgang; Kohlbacher, Oliver; Huber, Christian G.

    2015-01-01

    Untargeted metabolomics has the potential to improve the predictivity of in vitro toxicity models and therefore may aid the replacement of expensive and laborious animal models. Here we describe a long term repeat dose nephrotoxicity study conducted on the human renal proximal tubular epithelial cell line, RPTEC/TERT1, treated with 10 and 35 μmol·liter−1 of chloroacetaldehyde, a metabolite of the anti-cancer drug ifosfamide. Our study outlines the establishment of an automated and easy to use untargeted metabolomics workflow for HPLC-high resolution mass spectrometry data. Automated data analysis workflows based on open source software (OpenMS, KNIME) enabled a comprehensive and reproducible analysis of the complex and voluminous metabolomics data produced by the profiling approach. Time- and concentration-dependent responses were clearly evident in the metabolomic profiles. To obtain a more comprehensive picture of the mode of action, transcriptomics and proteomics data were also integrated. For toxicity profiling of chloroacetaldehyde, 428 and 317 metabolite features were detectable in positive and negative modes, respectively, after stringent removal of chemical noise and unstable signals. Changes upon treatment were explored using principal component analysis, and statistically significant differences were identified using linear models for microarray assays. The analysis revealed toxic effects only for the treatment with 35 μmol·liter−1 for 3 and 14 days. The most regulated metabolites were glutathione and metabolites related to the oxidative stress response of the cells. These findings are corroborated by proteomics and transcriptomics data, which show, among other things, an activation of the Nrf2 and ATF4 pathways. PMID:26055719

  1. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available BACKGROUND: Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. OBJECTIVES: To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. METHODS: The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. RESULTS: Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. CONCLUSIONS: High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  2. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-06-01

    Full Text Available Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8 isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1, 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2, and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3 that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.

  3. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation.

    Science.gov (United States)

    Ohka, Fumiharu; Ito, Maki; Ranjit, Melissa; Senga, Takeshi; Motomura, Ayako; Motomura, Kazuya; Saito, Kaori; Kato, Keiko; Kato, Yukinari; Wakabayashi, Toshihiko; Soga, Tomoyoshi; Natsume, Atsushi

    2014-06-01

    Isocitrate dehydrogenase 1 (IDH1), which localizes to the cytosol and peroxisomes, catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and in parallel converts NADP(+) to NADPH. IDH1 mutations are frequently detected in grades 2-4 gliomas and in acute myeloid leukemias (AML). Mutations of IDH1 have been identified at codon 132, with arginine being replaced with histidine in most cases. Mutant IDH1 gains novel enzyme activity converting α-KG to D-2-hydroxyglutarate (2-HG) which acts as a competitive inhibitor of α-KG. As a result, the activity of α-KG-dependent enzyme is reduced. Based on these findings, 2-HG has been proposed to be an oncometabolite. In this study, we established HEK293 and U87 cells that stably expressed IDH1-WT and IDH1-R132H and investigated the effect of glutaminase inhibition on cell proliferation with 6-diazo-5-oxo-L-norleucine (DON). We found that cell proliferation was suppressed in IDH1-R132H cells. The addition of α-KG restored cell proliferation. The metabolic features of 33 gliomas with wild type IDH1 (IDH1-WT) and with IDH1-R132H mutation were examined by global metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We showed that the 2-HG levels were highly elevated in gliomas with IDH1-R132H mutation. Intriguingly, in gliomas with IDH1-R132H, glutamine and glutamate levels were significantly reduced which implies replenishment of α-KG by glutaminolysis. Based on these results, we concluded that glutaminolysis is activated in gliomas with IDH1-R132H mutation and that development of novel therapeutic approaches targeting activated glutaminolysis is warranted.

  4. Global metabolomic profiling of acute myocarditis caused by Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Núria Gironès

    2014-11-01

    Full Text Available Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.

  5. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants.

    Science.gov (United States)

    Sampaio, Bruno Leite; Edrada-Ebel, RuAngelie; Da Costa, Fernando Batista

    2016-07-07

    Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant's metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.

  6. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants

    Science.gov (United States)

    Sampaio, Bruno Leite; Edrada-Ebel, Ruangelie; da Costa, Fernando Batista

    2016-07-01

    Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant’s metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.

  7. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  8. MicroRNA expression profiles and functions in the brain

    Institute of Scientific and Technical Information of China (English)

    Yanting Qi; Yu Zhao; Zhuyin Chen; Xiaona Chen; Marie C. Lin; Xiangfu Kong; Lihui Lai

    2008-01-01

    MicroRNAs are abundant in the brains of vertebrates and some show a brain-specific or brain-enriched expression pattern. Because microRNAs regulate the expression of hundreds of target genes, it is not surprising that they have profoundly important functions in brain development and pathological processes. For example, miR-124 plays an important role in inducing and maintaining neuronal identity through targeting at least two anti-neural factors. MicroRNAs have also been implicated in brain disorders, including brain tumors and neurodegenerative diseases. This review aims to present an overview of the expression profiles and functions of microRNAs in the developing brains of vertebrates.

  9. Influence of fermentable carbohydrates or protein on large intestinal and urinary metabolomic profiles in piglets.

    Science.gov (United States)

    Pieper, R; Neumann, K; Kröger, S; Richter, J F; Wang, J; Martin, L; Bindelle, J; Htoo, J K; Vahjen, V; Van Kessel, A G; Zentek, J

    2012-12-01

    It was recently shown that variations in the ratio of dietary fermentable carbohydrates (fCHO) and fermentable protein (fCP) differentially affect large intestinal microbial ecology and the mucosal response. Here we investigated the use of mass spectrometry to profile changes in metabolite composition in colon and urine associated with variation in dietary fCHO and fCP composition and mucosal physiology. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP and low fCHO, low fCP and high fCHO, high fCP and low fCHO, and high fCP and high fCHO. After 21 to 23 d, all pigs were euthanized and colon digesta and urine metabolite profiles were obtained by mass spectrometry. Analysis of mass spectra by partial least squares approach indicated a clustering of both colonic and urinary profiles for each pig by feeding group. Metabolite identification and annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed increased abundance of metabolites associated with arachidonic acid metabolism in colon of pigs fed a high concentration of fCP irrespective of dietary fCHO. Urinary metabolites did not show as clear patterns. Mass spectrometry can effectively differentiate metabolite profiles in colon contents and urine associated with changes in dietary composition. Whether metabolite profiling is an effective tool to identify specific metabolites (biomarkers) or metabolite profiles associated with gut function and integrity needs further elucidation.

  10. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    Kaido Paapstel

    2016-06-01

    Conclusions: We demonstrated an independent association between the serum medium- and long-chain acylcarnitine profile and aortic stiffness for the CAD patients. In addition to the lipid-related classical CVD risk markers, the intermediates of lipid metabolism may serve as novel indicators for altered vascular function.

  11. Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart Study)

    NARCIS (Netherlands)

    Ko, Darae; Riles, Eric M.; Marcos, Ernaldo G.; Magnani, Jared W.; Lubitz, Steven A.; Lin, Honghuang; Long, Michelle T.; Schnabel, Renate B.; McManus, David D.; Ellinor, Patrick T.; Ramachandran, Vasan S.; Wang, Thomas J.; Gerszten, Robert E.; Benjamin, Emelia J.; Yin, Xiaoyan; Rienstra, Michiel

    2016-01-01

    Previous studies have shown several metabolic biomarkers to be associated with prevalent and incident atrial fibrillation (AF), but the results have not been replicated.. We investigated metabolite profiles of 2,458 European ancestry participants from the Framingham Heart Study without AF at the ind

  12. Untargeted Metabolomics Analysis of ABCC6-Deficient Mice Discloses an Altered Metabolic Liver Profile

    DEFF Research Database (Denmark)

    Rasmussen, Mie Rostved; Nielsen, Kirstine Lykke; Christensen, Mia Benedicte Lykke Roest

    2016-01-01

    Loss-of-function mutations in the transmembrane ABCC6 transport protein cause pseudoxanthoma elasticum (PXE), an ectopic, metabolic mineralization disorder that affects the skin, eye, and vessels. ABCC6 is assumed to mediate efflux of one or several small molecule compounds from the liver cytosol...... in acetylation reactions, were accumulated in the liver. None of the identified metabolites seems to explain mineralization in extrahepatic tissues, but the present study now shows that abrogated ABCC6 function does cause alterations in the metabolic profile of the liver in accordance with PXE being a metabolic...

  13. Brain nonoxidative carbohydrate consumption is not explained by export of an unknown carbon source: evaluation of the arterial and jugular venous metabolome

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nyberg, Nils; Jaroszewski, Jerzy W.;

    2010-01-01

    Brain activation provokes nonoxidative carbohydrate consumption and during exercise it is dominated by the cerebral uptake of lactate resulting in that up to approximately 1 mmol/ 100 g of glucose equivalents cannot be accounted for by cerebral oxygen uptake. The fate of this 'extra' carbohydrate...... uptake is unknown, but it may be that brain metabolism is balanced by a yet-unidentified substance(s). This study used a nuclear magnetic resonance-based metabolomics approach to plasma samples obtained from the brachial artery and the right internal jugular vein in 16 healthy young males to identify...... carbon species going to and from the brain. We observed a carbohydrate accumulation of 255+/-37 micromol/100 g glucose equivalents at exhaustion not accounted for by the oxygen uptake. Although the cumulated uptake was lower than earlier observed, the results show that glucose and lactate are responsible...

  14. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis1[W][OPEN

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J.; Saito, Kazuki

    2014-01-01

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/. PMID:24828308

  15. Metabolomic profiling of mice urine and serum associated with trans-trans 2, 4-decadienal induced lung lesions by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Lin, Pinpin; Lee, Hui-Ling; Cheng, Hao-I; Chen, Chao-Yu; Tsai, Ming-Hsien; Liu, Huei-Ju

    2014-07-01

    Metabolomics has become an important tool in clinical research and the diagnosis of human disease. Intratracheal instillation of trans-trans 2,4-decadienal (tt-DDE), a major component in cooking oil fumes, has been demonstrated to cause lung lesions in mice at 8 weeks after treatment. The objective of this study was to identify any changes in metabolite profiles associated with the development of tt-DDE-induced lung lesions. Using a metabolomics strategy involving a liquid chromatography-mass spectrometry-based approach in conjunction with principal component analysis and confirmation by liquid chromatography triple quadrupole tandem mass spectrometry, we have demonstrated that the amino acid profiles of the urine and serum of tt-DDE-treated mice are changed. Ten amino acids were significantly reduced in serum of tt-DDE-treated mice at 8 weeks after treatment. Our results suggest that amino acid profiles may be useful as an early indicator of the presence of tt-DDE-induced lung lesions.

  16. MicroRNA Expression Profiling of the Porcine Developing Brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most microRNA...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  17. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp;

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  18. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children

    Directory of Open Access Journals (Sweden)

    Christian Hellmuth

    2016-01-01

    Full Text Available In obese children, hyperinsulinaemia induces adverse metabolic consequences related to the risk of cardiovascular and other disorders. Branched-chain amino acids (BCAA and acylcarnitines (Carn, involved in amino acid (AA degradation, were linked to obesity-associated insulin resistance, but these associations yet have not been studied longitudinally in obese children. We studied 80 obese children before and after a one-year lifestyle intervention programme inducing substantial weight loss >0.5 BMI standard deviation scores in 40 children and no weight loss in another 40 children. At baseline and after the 1-year intervention, we assessed insulin resistance (HOMA index, fasting glucose, HbA1c, 2 h glucose in an oral glucose tolerance test, AA, and Carn. BMI adjusted metabolite levels were associated with clinical markers at baseline and after intervention, and changes with the intervention period were evaluated. Only tyrosine was significantly associated with HOMA (p<0.05 at baseline and end and with change during the intervention (p<0.05. In contrast, ratios depicting BCAA metabolism were negatively associated with HOMA at baseline (p<0.05, but not in the longitudinal profiling. Stratified analysis revealed that the children with substantial weight loss drove this association. We conclude that tyrosine alterations in association with insulin resistance precede alteration in BCAA metabolism. This trial is registered with ClinicalTrials.gov Identifier NCT00435734.

  19. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma.

    Directory of Open Access Journals (Sweden)

    Andrew D Kelly

    Full Text Available The relatively new field of onco-metabolomics attempts to identify relationships between various cancer phenotypes and global metabolite content. Previous metabolomics studies utilized either nuclear magnetic resonance spectroscopy or gas chromatography/mass spectrometry, and analyzed metabolites present in urine and serum. However, direct metabolomic assessment of tumor tissues is important for determining altered metabolism in cancers. In this respect, the ability to obtain reliable data from archival specimens is desirable and has not been reported to date. In this feasibility study, we demonstrate the analysis of polar metabolites extracted directly from ten formalin-fixed, paraffin-embedded (FFPE specimens, including five soft tissue sarcomas and five paired normal samples. Using targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS via selected reaction monitoring (SRM, we detect an average of 106 metabolites across the samples with excellent reproducibility and correlation between different sections of the same specimen. Unsupervised hierarchical clustering and principal components analysis reliably recovers a priori known tumor and normal tissue phenotypes, and supervised analysis identifies candidate metabolic markers supported by the literature. In addition, we find that diverse biochemical processes are well-represented in the list of detected metabolites. Our study supports the notion that reliable and broadly informative metabolomic data may be acquired from FFPE soft tissue sarcoma specimens, a finding that is likely to be extended to other malignancies.

  20. Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status

    NARCIS (Netherlands)

    Pellis, L.; Erk, M.J. van; Ommen, B. van; Bakker, G.C.M.; Hendriks, H.F.J.; Cnubben, N.H.P.; Kleemann, R.; Someren, E.P. van; Bobeldijk, I.; Rubingh, C.M.; Wopereis, S.

    2012-01-01

    We introduce the metabolomics and proteomics based Postprandial Challenge Test (PCT) to quantify the postprandial response of multiple metabolic processes in humans in a standardized manner. The PCT comprised consumption of a standardized 500 ml dairy shake containing respectively 59, 30 and 12 ener

  1. Metabolomic Profiling in Selaginella lepidophylla at Various Hydration States Provides New Insights into the Mechanistic Basis of Desiccation Tolerance

    Institute of Scientific and Technical Information of China (English)

    Abou Yobi; Bernard W.M.Wone; Wenxin Xu; Danny C.Alexander; Lining Guo; John A.Ryals; Melvin J.Oliver

    2013-01-01

    Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state.In order to understand the metabolic basis of DT,S.lepidophylla was subjected to a five-stage,rehydration/dehydration cycle,then analyzed using non-biased,global metabolomics profiling technology based on GC/MS and UHLC/MS/MS2 platforms.A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized.Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance,respectively,indicating that most compounds were produced constitutively,including highly abundant trehalose,sucrose,and glucose.Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC.Vanillate,a potent antioxidant,was also more abundant in the hydrated state.Many different sugar alcohols and sugar acids were more abundant in the hydrated state.These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration,stabilize proteins,and scavenge reactive oxygen species (ROS).In contrast,nitrogen-rich and γ-glutamyl amino acids,citrulline,and nucleotide catabolism products (e.g.allantoin) were more abundant in the dry states,suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging.UV-protective compounds such as 3-(3-hydroxyphenyl)propionate,apigenin,and naringenin,were more abundant in the dry states.Most lipids were produced constitutively,with the exception of choline phosphate,which was more abundant in dry states and likely plays a role in membrane hydration and stabilization.In contrast,several polyunsaturated fatty acids were more abundant in the hydrated states,suggesting that these compounds

  2. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance.

    Science.gov (United States)

    Yobi, Abou; Wone, Bernard W M; Xu, Wenxin; Alexander, Danny C; Guo, Lining; Ryals, John A; Oliver, Melvin J; Cushman, John C

    2013-03-01

    Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS(2) platforms. A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced constitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several polyunsaturated fatty acids were more abundant in the hydrated states

  3. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures

    OpenAIRE

    Lardi, Martina; Murset, Valérie; Fischer, Hans-Martin; Mesa, Socorro; Ahrens, Christian H.; Zamboni, Nicola; Pessi, Gabriella

    2016-01-01

    Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection–time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots...

  4. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments.

    Science.gov (United States)

    Ejigu, Bedilu Alamirie; Valkenborg, Dirk; Baggerman, Geert; Vanaerschot, Manu; Witters, Erwin; Dujardin, Jean-Claude; Burzykowski, Tomasz; Berg, Maya

    2013-09-01

    Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments.

  5. Metabolomics profiles delineate uridine deficiency contributes to mitochondria-mediated apoptosis induced by celastrol in human acute promyelocytic leukemia cells

    Science.gov (United States)

    Li, Lei; Huan, Fei; Li, Aiping; Liu, Yanqing; Xia, Yankai; Duan, Jin-ao; Ma, Shiping

    2016-01-01

    Celastrol, extracted from “Thunder of God Vine”, is a promising anti-cancer natural product. However, its effect on acute promyelocytic leukemia (APL) and underlying molecular mechanism are poorly understood. The purpose of this study was to explore its effect on APL and underlying mechanism based on metabolomics. Firstly, multiple assays indicated that celastrol could induce apoptosis of APL cells via p53-activated mitochondrial pathway. Secondly, unbiased metabolomics revealed that uridine was the most notable changed metabolite. Further study verified that uridine could reverse the apoptosis induced by celastrol. The decreased uridine was caused by suppressing the expression of gene encoding Dihydroorotate dehydrogenase, whose inhibitor could also induce apoptosis of APL cells. At last, mouse model confirmed that celastrol inhibited tumor growth through enhanced apoptosis. Celastrol could also decrease uridine and DHODH protein level in tumor tissues. Our in vivo study also indicated that celastrol had no systemic toxicity at pharmacological dose (2 mg/kg, i.p., 21 days). Altogether, our metabolomics study firstly reveals that uridine deficiency contributes to mitochondrial apoptosis induced by celastrol in APL cells. Celastrol shows great potential for the treatment of APL. PMID:27374097

  6. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using 1H-NMR-based metabolomics profiles

    Science.gov (United States)

    Tian, Jun-sheng; Xia, Xiao-tao; Wu, Yan-fei; Zhao, Lei; Xiang, Huan; Du, Guan-hua; Zhang, Xiang; Qin, Xue-mei

    2016-01-01

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance (1H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method. PMID:27650680

  7. Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma.

    Science.gov (United States)

    McDonnell, Scott R P; Hwang, Steven R; Rolland, Delphine; Murga-Zamalloa, Carlos; Basrur, Venkatesha; Conlon, Kevin P; Fermin, Damian; Wolfe, Thomas; Raskind, Alexander; Ruan, Chunhai; Jiang, Jian-Kang; Thomas, Craig J; Hogaboam, Cory M; Burant, Charles F; Elenitoba-Johnson, Kojo S J; Lim, Megan S

    2013-08-01

    The mechanisms underlying the pathogenesis of the constitutively active tyrosine kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressing anaplastic large cell lymphoma are not completely understood. Here we show using an integrated phosphoproteomic and metabolomic strategy that NPM-ALK induces a metabolic shift toward aerobic glycolysis, increased lactate production, and biomass production. The metabolic shift is mediated through the anaplastic lymphoma kinase (ALK) phosphorylation of the tumor-specific isoform of pyruvate kinase (PKM2) at Y105, resulting in decreased enzymatic activity. Small molecule activation of PKM2 or expression of Y105F PKM2 mutant leads to reversal of the metabolic switch with increased oxidative phosphorylation and reduced lactate production coincident with increased cell death, decreased colony formation, and reduced tumor growth in an in vivo xenograft model. This study provides comprehensive profiling of the phosphoproteomic and metabolomic consequences of NPM-ALK expression and reveals a novel role of ALK in the regulation of multiple components of cellular metabolism. Our studies show that PKM2 is a novel substrate of ALK and plays a critical role in mediating the metabolic shift toward biomass production and tumorigenesis.

  8. A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials.

    Science.gov (United States)

    Gonçalves, João L; Figueira, José A; Rodrigues, Fátima P; Ornelas, Laura P; Branco, Ricardo N; Silva, Catarina L; Câmara, José S

    2014-10-01

    The volatile metabolomic patterns from different raw materials commonly used in beer production, namely barley, corn and hop-derived products - such as hop pellets, hop essential oil from Saaz variety and tetra-hydro isomerized hop extract (tetra hop), were established using a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). Some SPME extraction parameters were optimized. The best results, in terms of maximum signal recorded and number of isolated metabolites, were obtained with a 50/30 μm DVB/CAR/PDMS coating fiber at 40 °C for 30 min. A set of 152 volatile metabolites comprising ketones (27), sesquiterpenes (26), monoterpenes (19), aliphatic esters (19), higher alcohols (15), aldehydes (11), furan compounds (11), aliphatic fatty acids (9), aliphatic hydrocarbons (8), sulphur compounds (5) and nitrogen compounds (2) were positively identified. Each raw material showed a specific volatile metabolomic profile. Monoterpenes in hop essential oil and corn, sesquiterpenes in hop pellets, ketones in tetra hop and aldehydes and sulphur compounds in barley were the predominant chemical families in the targeted beer raw materials. β-Myrcene was the most dominant volatile metabolite in hop essential oil, hop pellets and corn samples while, in barley, the predominant volatile metabolites were dimethyl sulphide and 3-methylbutanal and, in tetra hop, 6-methyl-2-pentanone and 4-methyl-2-pentanone. Principal component analysis (PCA) showed natural sample grouping among beer raw materials.

  9. Simultaneous profiling of eicosanoid metabolome in plasma by UPLC-MS/MS method: Application to identify potential makers for rheumatoid arthritis.

    Science.gov (United States)

    Wang, Nannan; Dai, Ronghua; Wang, Weihui; Peng, Yan; Zhao, Xiaoning; Bi, Kaishun

    2016-12-01

    To evaluate the potential relationship between rheumatoid arthritis and arachidonic acid (AA) metabonomics via cyclooxygenase (COX) and lipoxygenase (LOX) pathways, a UPLC-MS/MS method has been developed and validated for simultaneous and quantitative profiling of eicosanoid metabolome in rat plasma. The analytes were extracted from plasma samples by protein precipitation procedure, and then separated on a Shim-pack XR-ODS column with mobile phase A (0.05% formic acid in water, pH=3.3 adjusted with dilute ammonium hydroxide) and mobile phase B [methanol: acetonitrile (20:80, v/v)]. The detection was performed on UPLC-MS/MS system with an electro spray ion source in the negative ion and multiple reaction-monitoring modes. The developed method was optimized to completely separate all twenty-three analytes and three internal standards in 12min. All standard calibration curves were linear and the calibration regression coefficients were ranged from 0.9903 to 0.9992 for all analytes. The recoveries of analytes were all more than 60%. By means of the method developed, the plasma samples from model rats and normal rats had been successfully determined. Results showed that AA and fifteen kinds of metabolites by LOX and COX pathways in model rat plasma were significant higher than those in normal ones(Peicosanoid metabolome occurring in plasma from rat subjects with rheumatoid arthritis. It could be a powerful manner to diagnostic and/or prognostic values for rheumatoid arthritis.

  10. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.

    Science.gov (United States)

    Lucarelli, Giuseppe; Galleggiante, Vanessa; Rutigliano, Monica; Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-05-30

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target.

  11. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination.

    Science.gov (United States)

    Pelantová, Helena; Bugáňová, Martina; Holubová, Martina; Šedivá, Blanka; Zemenová, Jana; Sýkora, David; Kaválková, Petra; Haluzík, Martin; Železná, Blanka; Maletínská, Lenka; Kuneš, Jaroslav; Kuzma, Marek

    2016-08-15

    Metformin, vildagliptin and their combination are widely used for the treatment of diabetes, but little is known about the metabolic responses to these treatments. In the present study, NMR-based metabolomics was applied to detect changes in the urinary metabolomic profile of a mouse model of diet-induced obesity in response to these treatments. Additionally, standard biochemical parameters and the expression of enzymes involved in glucose and fat metabolism were monitored. Significant correlations were observed between several metabolites (e.g., N-carbamoyl-β-alanine, N1-methyl-4-pyridone-3-carboxamide, N1-methyl-2-pyridone-5-carboxamide, glucose, 3-indoxyl sulfate, dimethylglycine and several acylglycines) and the area under the curve of glucose concentrations during the oral glucose tolerance test. The present study is the first to present N-carbamoyl-β-alanine as a potential marker of type 2 diabetes mellitus and consequently to demonstrate the efficacies of the applied antidiabetic interventions. Moreover, the elevated acetate level observed after vildagliptin administration might reflect increased fatty acid oxidation.

  12. Biomarker discovery in neurological diseases: a metabolomic approach

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2009-12-01

    Full Text Available Afaf El-Ansary, Nouf Al-Afaleg, Yousra Al-YafaeeBiochemistry Department, Science College, King Saud University, Riyadh, Saudi ArabiaAbstract: Biomarkers are pharmacological and physiological measurements or specific biochemicals in the body that have a particular molecular feature that makes them useful for measuring the progress of disease or the effects of treatment. Due to the complexity of neurological disorders, it is very difficult to have perfect markers. Brain diseases require plenty of markers to reflect the metabolic impairment of different brain cells. The recent introduction of the metabolomic approach helps the study of neurological diseases based on profiling a multitude of biochemical components related to brain metabolism. This review is a trial to elucidate the possibility to use this approach to identify plasma metabolic markers related to neurological disorders. Previous trials using different metabolomic analyses including nuclear magnetic resonance spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, and capillary electrophoresis will be traced.Keywords: metabolic biomarkers, neurological disorders. metabolome, nuclear magnetic resonance, mass spectrometry, chromatography

  13. Comparison of casein and whey in diets on performance, immune responses and metabolomic profile of weaning pigs challenged with E.coli F4

    DEFF Research Database (Denmark)

    Sugiharto, Sugiharto; Jensen, Bent Borg; Hedemann, Mette Skou

    2014-01-01

    The differences in amino acid composition in casein and whey have been thought to exert different immunomodulatory and metabolic effects. The objective of this study was to compare the effects of casein and whey on performance, immune responses and plasma metabolomic profile of weanling pigs...... challenged with E. coli F4. Two factorial experiments involving 24 weanling pigs were conducted. Diets containing casein or whey, and challenge with E. coli O149:F4 or not, were the two factors. Blood was sampled at the day before challenge and 4 and 7 days postchallenge. For measurement of mucosal immune...... responses and intestinal dimensions, samples were collected from the small intestine (SI) immediately after killing at 7 days postchallenge. Feeding the whey-diet decreased (P

  14. Visualization of Multivariate Metabolomic Data

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; CAO Bei; ZHENG Tian; LIU Lin-sheng; GUO Sheng; DUAN Jin-ao; AA Ji-ye; WANG Guang-ji; ZHANG Feng-yi; GU Rong-rong; WANG Xin-wen; ZHAO Chun-yan; LI Meng-jie; SHI Jian

    2011-01-01

    Objective Although principal components analysis profiles greatly facilitate the visualization and interpretation of the multivariate data,the quantitative concepts in both scores plot and loading plot are rather obscure.This article introduced three profiles that assisted the better understanding of metabolomic data.Methods The discriminatory profile,heat map,and statistic profile were developed to visualize the multivariate data obtained from high-throughput GC-TOF-MS analysis.Results The discriminatory profile and heat map obviously showed the discriminatory metabolites between the two groups,while the statistic profile showed the potential markers of statistic significance.Conclusion The three types of profiles greatly facilitate our understanding of the metabolomic data and the identification of the potential markers.

  15. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study

    Science.gov (United States)

    An, Yang; Pletnikova, Olga; O’Brien, Richard; Troncoso, John; Legido-Quigley, Cristina; Thambisetty, Madhav

    2017-01-01

    Background The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. Methods and findings We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and “asymptomatic Alzheimer’s disease” (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10−8, FC = 0.52, q = 1.03 x 10−6), linolenic acid (p = 2.5 x 10−4, FC = 0.84, q = 4.03 x 10−4), docosahexaenoic acid (p = 1.7 x 10−7, FC = 1.45, q = 1.24 x 10−6), eicosapentaenoic acid (p = 4.4 x 10−4, FC = 0.16, q = 6.48 x 10−4), oleic acid (p = 3.3 x 10−7, FC = 0.34, q = 1.46 x 10−6), and arachidonic acid (p = 2.98 x 10−5, FC = 0.75, q = 7.95 x 10−5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p ASYMAD>AD) and increases in docosahexanoic acid (AD>ASYMAD>control) may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few

  16. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology.

    Science.gov (United States)

    Gomez, Andres; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Mrázek, Jakub; Koppova, Ingrid; Carbonero, Franck; Ulanov, Alexander; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Gaskins, H Rex; Wilson, Brenda; Stumpf, Rebecca M; White, Bryan A; Leigh, Steven R

    2015-05-01

    The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.

  17. Metabolomic Profiling Reveals the N-Acyl-Taurine Geodiataurine in Extracts from the Marine Sponge Geodia macandrewii (Bowerbank).

    Science.gov (United States)

    Olsen, Elisabeth K; Søderholm, Kine L; Isaksson, Johan; Andersen, Jeanette H; Hansen, Espen

    2016-05-27

    A metabolomic approach was used to identify known and new natural products from the marine sponges Geodia baretti and G. macandrewii. G. baretti is known to produce bioactive natural products such as barettin (1), 8,9-dihydrobarettin (2), and bromobenzisoxazolone barettin (3), while secondary metabolites from G. macandrewii are not reported in the literature. Specimens of the two sponges were collected from different sites along the coast of Norway, and their extracts were analyzed using UHPLC-HR-MS. Metabolomic analyses revealed that extracts from both species contained barettin (1) and 8,9-dihydrobarettin (2), and all samples of G. baretti contained higher amounts of both compounds compared to G. macandrewii. The analysis of the MS data also revealed that samples of G. macandrewii contained a compound that was not present in any of the G. baretti samples. This new compound was isolated and identified as the N-acyl-taurine geodiataurine (4), and it was tested for antioxidant, anticancer, and antibacterial properties.

  18. Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival.

    Science.gov (United States)

    Brinzer, Robert A; Henderson, Louise; Marchiondo, Alan A; Woods, Debra J; Davies, Shireen A; Dow, Julian A T

    2015-12-01

    Insecticides and associated synergists are rapidly losing efficacy in target insect pest populations making the discovery of alternatives a priority. To discover novel targets for permethrin synergists, metabolomics was performed on permethrin-treated Drosophila melanogaster. Changes were observed in several metabolic pathways including those for amino acids, glycogen, glycolysis, energy, nitrogen, NAD(+), purine, pyrimidine, lipids and carnitine. Markers for acidosis, ammonia stress, oxidative stress and detoxification responses were also observed. Many of these changes had not been previously characterized after permethrin exposure. From the altered pathways, tryptophan catabolism was selected for further investigation. The knockdown of some tryptophan catabolism genes (vermilion, cinnabar and CG6950) in the whole fly and in specific tissues including fat body, midgut and Malpighian tubules using targeted RNAi resulted in altered survival phenotypes against acute topical permethrin exposure. The knockdown of vermilion, cinnabar and CG6950 in the whole fly also altered survival phenotypes against chronic oral permethrin, fenvalerate, DDT, chlorpyriphos and hydramethylnon exposure. Thus tryptophan catabolism has a previously uncharacterized role in defence against insecticides, and shows that metabolomics is a powerful tool for target identification in pesticide research.

  19. Lipid profiles in brains from sheep with natural scrapie.

    Science.gov (United States)

    Rosa, Antonella; Scano, Paola; Incani, Alessandra; Pilla, Federica; Maestrale, Caterina; Manca, Matteo; Ligios, Ciriaco; Pani, Alessandra

    2013-01-01

    Prion diseases are fatal neurodegenerative disorders affecting many mammals, ovine scrapie being the archetypal prion disease. Several independent studies in murine and cell-based models of scrapie have highlighted the presence of a link between prion generation and lipid alterations; yet, no data on natural disease are available. In this study we investigated levels of total lipids and cholesterol as well as profiles of fatty acids in brain homogenates from symptomatic and asymptomatic scrapie-infected sheep vs. healthy sheep, all belonging to the same flock. Lipid extracts were analyzed by means of gas chromatography and high performance liquid chromatography. Data of fatty acids were submitted to multivariate statistical analysis to give a picture of the brain lipid profiles of sheep. Interestingly, results revealed abnormalities in the brain fatty acid unsaturation of infected/symptomatic animals. Significant reduction of monoene 18:1 n-9 was detected in brain lipids from infected/symptomatic sheep, as compared to healthy and infected/asymptomatic animals, and this alteration occurred in combination with a significant increase in 18:0 level. The unsupervised Principal Component Analysis showed that infected/symptomatic and healthy sheep samples lie in two different regions of the plot, infected/asymptomatic lie mostly next to healthy. The increase of cerebral saturated fatty acids provides a rough indication of presumed alterations in lipid raft domains of nervous cells during scrapie, suggesting that they may exist in a notable viscous liquid-ordered state. Such physicochemical alteration would have a profound impact on the raft thermodynamic properties, its spatial organization, and signal transduction, all potentially relevant for prion generation.

  20. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis.

    Science.gov (United States)

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves.

  1. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  2. NMR-based metabolomic profiling of overweight adolescents – an elucidation of the effects of inter-/intra-individual differences, gender, pubertal development and physical activity

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian Clement; Arnberg, Karina

    2014-01-01

    in the metabolome are being commenced already in childhood. The relationship between Tanner stage and the metabolome showed that pubertal development stage was positively related to urinary creatinine excretion and negatively related to urinary citrate content. No relations between physical activity...... and the metabolome could be identified. The present study for the first time provides comprehensive information about associations between the metabolome and gender, pubertal development, and physical activity in overweight adolescents, which is an important subject group to approach in the prevention of obesity...

  3. Amino Acid and Biogenic Amine Profile Deviations in an Oral Glucose Tolerance Test: A Comparison between Healthy and Hyperlipidaemia Individuals Based on Targeted Metabolomics.

    Science.gov (United States)

    Li, Qi; Gu, Wenbo; Ma, Xuan; Liu, Yuxin; Jiang, Lidan; Feng, Rennan; Liu, Liyan

    2016-06-21

    Hyperlipidemia (HLP) is characterized by a disturbance in lipid metabolism and is a primary risk factor for the development of insulin resistance (IR) and a well-established risk factor for cardiovascular disease and atherosclerosis. The aim of this work was to investigate the changes in postprandial amino acid and biogenic amine profiles provoked by an oral glucose tolerance test (OGTT) in HLP patients using targeted metabolomics. We used ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry to analyze the serum amino acid and biogenic amine profiles of 35 control and 35 HLP subjects during an OGTT. The amino acid and biogenic amine profiles from 30 HLP subjects were detected as independent samples to validate the changes in the metabolites. There were differences in the amino acid and biogenic amine profiles between the HLP individuals and the healthy controls at baseline and after the OGTT. The per cent changes of 13 metabolites from fasting to the 2 h samples during the OGTT in the HLP patients were significantly different from those of the healthy controls. The lipid parameters were associated with the changes in valine, isoleucine, creatine, creatinine, dimethylglycine, asparagine, serine, and tyrosine (all p < 0.05) during the OGTT in the HLP group. The postprandial changes in isoleucine and γ-aminobutyric acid (GABA) during the OGTT were positively associated with the homeostasis model assessment of insulin resistance (HOMA-IR; all p < 0.05) in the HLP group. Elevated oxidative stress and disordered energy metabolism during OGTTs are important characteristics of metabolic perturbations in HLP. Our findings offer new insights into the complex physiological regulation of metabolism during the OGTT in HLP.

  4. NMR-based metabolomic profiling of overweight adolescents – an elucidation of the effects of inter-/intra-individual differences, gender, pubertal development and physical activity

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian Clement; Arnberg, Karina;

    2014-01-01

    The plasma and urine metabolome of 192 overweight 12-15-year-old adolescents (BMI of 25.4 ± 2.3 kg/m(2)) were examined in order to elucidate gender, pubertal development measured as Tanner stage, physical activity measured as number of steps taken daily, and intra-/interindividual differences...... in the metabolome are being commenced already in childhood. The relationship between Tanner stage and the metabolome showed that pubertal development stage was positively related to urinary creatinine excretion and negatively related to urinary citrate content. No relations between physical activity...... and the metabolome could be identified. The present study for the first time provides comprehensive information about associations between the metabolome and gender, pubertal development, and physical activity in overweight adolescents, which is an important subject group to approach in the prevention of obesity...

  5. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  6. NMR-Based Milk Metabolomics

    Directory of Open Access Journals (Sweden)

    Hanne C. Bertram

    2013-04-01

    Full Text Available Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits.

  7. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  8. Metabolomic profiling unravels DNA adducts in human breast that are formed from peroxidase mediated activation of estrogens to quinone methides.

    Directory of Open Access Journals (Sweden)

    Nilesh W Gaikwad

    Full Text Available Currently there are three major hypotheses that have been proposed for estrogen induced carcinogenicity, however exact etiology remains unknown. Based on the chemical logic, studies were undertaken to investigate if estrogens could generate quinone methides in an oxidative environment which then could cause DNA damage in humans. In presence of MnO2 estrogens were oxidized to quinone methides. Surprisingly quinone methides were found to be stable with t1/2 of 20.8 and 4.5 min respectively. Incubation of estrogens with lactoperoxidase (LPO and H2O2 resulted in formation of respective quinone methides (E1(E2-QM. Subsequent addition of adenine to the assay mixture lead to trapping of E1(E2-QM, resulting in formation of adenine adducts of estrogens, E1(E2-9-N-Ade. Targeted ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS based metabolomic analysis of the breast tissue extracts showed the presence of adenine adducts of estrogens, E1(E2-9-N-Ade, along with other estrogen related metabolites. Identity of E1(E2-N-Ade in LPO assay extracts and breast tissue extracts were confirmed by comparing them to pure synthesized E1(E2-9-N-Ade standards. From these results, it is evident that peroxidase enzymes or peroxidase-like activity in human breast tissue could oxidize estrogens to electrophilic and stable quinone methides in a single step that covalently bind to DNA to form adducts. The error prone repair of the damaged DNA can result in mutation of critical genes and subsequently cancer. This article reports evidence for hitherto unknown estrogen metabolic pathway in human breast, catalyzed by peroxidase, which could initiate cancer.

  9. Potentiation of the bioavailability of blueberry phenolic compounds by co-ingested grape phenolic compounds in mice, revealed by targeted metabolomic profiling in plasma and feces.

    Science.gov (United States)

    Dudonné, Stéphanie; Dal-Pan, Alexandre; Dubé, Pascal; Varin, Thibault V; Calon, Frédéric; Desjardins, Yves

    2016-08-10

    The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.

  10. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach.

    Directory of Open Access Journals (Sweden)

    Guangmang Liu

    Full Text Available This study aimed to examine the effect of pea fiber (PF and wheat bran fiber (WF supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.

  11. Noninvasive Metabolomic Profiling of Human Embryo Culture Media Using a Simple Spectroscopy Adjunct to Morphology for Embryo Assessment in in Vitro Fertilization (IVF

    Directory of Open Access Journals (Sweden)

    Jiming Hu

    2013-03-01

    Full Text Available Embryo quality is crucial to the outcome of in vitro fertilization (IVF; however, the ability to precisely distinguish the embryos with higher reproductive potential from others is poor. Morphologic evaluation used to play an important role in assessing embryo quality, but it is somewhat subjective. The culture medium is the immediate environment of the embryos in vitro, and a change of the substances in the culture medium is possibly related to the embryo quality. Thus, the present study aims to determine whether metabolomic profiling of the culture medium using Raman spectroscopy adjunct to morphology correlates with the reproductive potential of embryos in IVF and, thus, to look for a new method of assessing embryo quality. Fifty seven spent media samples were detected by Raman spectroscopy. Combined with embryo morphology scores, we found that embryos in culture media with less than 0.012 of sodium pyruvate and more than −0.00085 phenylalanine have a high reproductive potential, with up to 85.7% accuracy compared with clinical pregnancy. So, sodium pyruvate and phenylalanine in culture medium play an important role in the development of the embryo. Raman spectroscopy is an important tool that provides a new and accurate assessment of higher quality embryos.

  12. Metabolomic Profiling of Pompe Disease-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals That Oxidative Stress Is Associated With Cardiac and Skeletal Muscle Pathology.

    Science.gov (United States)

    Sato, Yohei; Kobayashi, Hiroshi; Higuchi, Takashi; Shimada, Yohta; Ida, Hiroyuki; Ohashi, Toya

    2016-08-18

    : Pompe disease (PD) is a lysosomal storage disease that is caused by a deficiency of the acid α-glucosidase, which results in glycogen accumulation in the lysosome. The major clinical symptoms of PD include skeletal muscle weakness, respiratory failure, and cardiac hypertrophy. Based on its severity and symptom onset, PD is classified into infantile and late-onset forms. Lysosomal accumulation of glycogen can promote many types of cellular dysfunction, such as autophagic dysfunction, endoplasmic reticulum stress, and abnormal calcium signaling within skeletal muscle. However, the disease mechanism underlying PD cardiomyopathy is not fully understood. Several researchers have shown that PD induced pluripotent stem cell (iPSC)-derived cardiomyocytes successfully replicate the disease phenotype and are useful disease models. We have analyzed the metabolomic profile of late-onset PD iPSC-derived cardiomyocytes and found that oxidative stress and mitochondrial dysfunction are likely associated with cardiac complications. Furthermore, we have validated that these disease-specific changes were also observed in the cardiomyocytes and skeletal muscle of a genetically engineered murine PD model. Oxidative stress may contribute to skeletal muscle and cardiomyocyte dysfunction in PD mice; however, NF-E2-related factor 2 was downregulated in cardiomyocytes and skeletal muscle, despite evidence of oxidative stress. We hypothesized that oxidative stress and an impaired antioxidative stress response mechanism may underlie the molecular pathology of late-onset PD.

  13. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach.

    Science.gov (United States)

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.

  14. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality...... and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive...

  15. Metabolomics in neonatology: fact or fiction?

    Science.gov (United States)

    Fanos, V; Van den Anker, J; Noto, A; Mussap, M; Atzori, L

    2013-02-01

    The newest 'omics' science is metabolomics, the latest offspring of genomics, considered the most innovative of the 'omics' sciences. Metabolomics, also called the 'new clinical biochemistry', is an approach based on the systematic study of the complete set of metabolites in a biological sample. The metabolome is considered the most predictive phenotype and is capable of considering epigenetic differences. It is so close to the phenotype that it can be considered the phenotype itself. In the last three years about 5000 papers have been listed in PubMed on this topic, but few data are available in the newborn. The aim of this review, after a description of background and technical procedures, is to analyse the clinical applications of metabolomics in neonatology, covering the following points: gestational age, postnatal age, type of delivery, zygosity, perinatal asphyxia, intrauterine growth restriction, prenatal inflammation and brain injury, respiratory, cardiovascular renal, metabolic diseases; sepsis, necrotizing enterocolitis and antibiotic treatment; nutritional studies on maternal milk and formula, pharma-metabolomics, long-term diseases. Pros and cons of metabolomics are also discussed. All this comes about with the non-invasive collection of a few drops of urine (exceptionally important for the neonate, especially those of low birth weight). Only time and large-scale studies to validate initial results will place metabolomics within neonatology. In any case, it is important for perinatologists to learn and understand this new technology to offer their patients the utmost in diagnostic and therapeutic opportunities.

  16. Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress

    Science.gov (United States)

    2015-10-01

    metabolomic profiling of women with and without post- traumatic stress disorder (PTSD) to derive a signature of chronic stress and then apply that metabolomic...noted that phobic anxiety and social isolation were suggestively associated with increased risk of ovarian cancer (hazard ratios of 1.14 and 1.24...TERMS ovarian cancer, psychosocial stress, depression, anxiety , social support, metabolomics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  17. p53 isoform profiling in glioblastoma and injured brain.

    Science.gov (United States)

    Takahashi, R; Giannini, C; Sarkaria, J N; Schroeder, M; Rogers, J; Mastroeni, D; Scrable, H

    2013-06-27

    The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10 to 70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, some of which can modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry and reverse transcription-PCR. We found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared with tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions.

  18. Nutritional Metabolomics

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde

    of the crucial steps is data preprocessing, which is particularly cumbersome for complex liquid chromatography mass spectrometry (LC-MS) data. Accordingly, in PAPER I, different LC-MS data preprocessing tools, MarkerLynx, MZmine, XCMS and a customised method (spectral binning and chromatographic collapsing) were......Lynx, MZmine and XCMS) and 16 to 40 % were specific to each tool. Two reasons for these differences were pointed out: (1) changing the parameter settings of each software tool has a great impact on the number of detected features; (2) each software tool employs different methods in their peak detection...... and alignment algorithms, such that each has pros and cons. Thus, the use of more than one software tool and/or the use of several parameter settings during data preprocessing are likely to decrease the risk of failing to detect features (potential marker candidates) in untargeted metabolomics. On the other...

  19. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain

    Science.gov (United States)

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with...

  20. Metabolomic Profiling of the Effects of Melittin on Cisplatin Resistant and Cisplatin Sensitive Ovarian Cancer Cells Using Mass Spectrometry and Biolog Microarray Technology

    Directory of Open Access Journals (Sweden)

    Sanad Alonezi

    2016-10-01

    Full Text Available In the present study, liquid chromatography-mass spectrometry (LC-MS was employed to characterise the metabolic profiles of two human ovarian cancer cell lines A2780 (cisplatin-sensitive and A2780CR (cisplatin-resistant in response to their exposure to melittin, a cytotoxic peptide from bee venom. In addition, the metabolomics data were supported by application of Biolog microarray technology to examine the utilisation of carbon sources by the two cell lines. Data extraction with MZmine 2.14 and database searching were applied to provide metabolite lists. Principal component analysis (PCA gave clear separation between the cisplatin-sensitive and resistant strains and their respective controls. The cisplatin-resistant cells were slightly more sensitive to melittin than the sensitive cells with IC50 values of 4.5 and 6.8 μg/mL respectively, although the latter cell line exhibited the greatest metabolic perturbation upon treatment. The changes induced by melittin in the cisplatin-sensitive cells led mostly to reduced levels of amino acids in the proline/glutamine/arginine pathway, as well as to decreased levels of carnitines, polyamines, adenosine triphosphate (ATP and nicotinamide adenine dinucleotide (NAD+. The effects on energy metabolism were supported by the data from the Biolog assays. The lipid compositions of the two cell lines were quite different with the A2780 cells having higher levels of several ether lipids than the A2780CR cells. Melittin also had some effect on the lipid composition of the cells. Overall, this study suggests that melittin might have some potential as an adjuvant therapy in cancer treatment.

  1. Metabolomics in food science.

    Science.gov (United States)

    Cevallos-Cevallos, Juan Manuel; Reyes-De-Corcuera, José Ignacio

    2012-01-01

    Metabolomics, the newest member of the omics techniques, has become an important tool in agriculture, pharmacy, and environmental sciences. Advances in compound extraction, separation, detection, identification, and data analysis have allowed metabolomics applications in food sciences including food processing, quality, and safety. This chapter discusses recent advances and applications of metabolomics in food science.

  2. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18.

    Science.gov (United States)

    Paulus, Constanze; Rebets, Yuriy; Tokovenko, Bogdan; Nadmid, Suvd; Terekhova, Larisa P; Myronovskyi, Maksym; Zotchev, Sergey B; Rückert, Christian; Braig, Simone; Zahler, Stefan; Kalinowski, Jörn; Luzhetskyy, Andriy

    2017-02-10

    Marine actinobacteria are drawing more and more attention as a promising source of new natural products. Here we report isolation, genome sequencing and metabolic profiling of new strain Streptomyces sp. MP131-18 isolated from marine sediment sample collected in the Trondheim Fjord, Norway. The 16S rRNA and multilocus phylogenetic analysis showed that MP131-18 belongs to the genus Streptomyces. The genome of MP131-18 isolate was sequenced, and 36 gene clusters involved in the biosynthesis of 18 different types of secondary metabolites were predicted using antiSMASH analysis. The combined genomics-metabolics profiling of the strain led to the identification of several new biologically active compounds. As a result, the family of bisindole pyrroles spiroindimicins was extended with two new members, spiroindimicins E and F. Furthermore, prediction of the biosynthetic pathway for unusual α-pyrone lagunapyrone isolated from MP131-18 resulted in foresight and identification of two new compounds of this family - lagunapyrones D and E. The diversity of identified and predicted compounds from Streptomyces sp. MP131-18 demonstrates that marine-derived actinomycetes are not only a promising source of new natural products, but also represent a valuable pool of genes for combinatorial biosynthesis of secondary metabolites.

  3. Ligation-free ribosome profiling of cell type-specific translation in the brain.

    Science.gov (United States)

    Hornstein, Nicholas; Torres, Daniela; Das Sharma, Sohani; Tang, Guomei; Canoll, Peter; Sims, Peter A

    2016-01-01

    Ribosome profiling has emerged as a powerful tool for genome-wide measurements of translation, but library construction requires multiple ligation steps and remains cumbersome relative to more conventional deep-sequencing experiments. We report a new, ligation-free approach to ribosome profiling that does not require ligation. Library construction for ligation-free ribosome profiling can be completed in one day with as little as 1 ng of purified RNA footprints. We apply ligation-free ribosome profiling to mouse brain tissue to identify new patterns of cell type-specific translation and test its ability to identify translational targets of mTOR signaling in the brain.

  4. Cognitive profile and brain morphological changes in obstructive sleep apnea

    OpenAIRE

    Torelli, Federico; Moscufo, Nicola; Garreffa, Girolamo; Placidi, Fabio; Romigi, Andrea; Zannino, Silvana; Bozzali, Marco; Fasano, Fabrizio; Giulietti, Giovanni; Djonlagic, Ina; Malhotra, Atul; Marciani, Maria Grazia; Guttmann, Charles RG

    2010-01-01

    Obstructive sleep apnea (OSA) is accompanied by neurocognitive impairment, likely mediated by injury to various brain regions. We evaluated brain morphological changes in patients with OSA and their relationship to neuropsychological and oximetric data. Sixteen patients affected by moderate-severe OSA (age: 55.8±6.7 years, 13 males) and fourteen control subjects (age: 57.6±5.1 years, 9 males) underwent 3.0 Tesla brain magnetic resonance imaging (MRI) and neuropsychological testing evaluating ...

  5. An explorative study of the effect of apple and apple products on the human plasma metabolome investigated by LC–MS profiling

    DEFF Research Database (Denmark)

    Rago, Daniela; Gürdeniz, Gözde; Ravn-Haren, Gitte

    2015-01-01

    Apple is one of the most commonly consumed fruits worldwide and it has been associated with several health effects, especially on plasma cholesterol and risk of cardiovascular disease both in human and animal studies. By using an untargeted metabolomics approach we wanted to investigate whether...... supplementation of whole apple or processed apple products affect the human plasma metabolome. Therefore, 24 healthy volunteers were recruited for a comprehensive 5 × 4 weeks dietary crossover study and receiving supplement of whole apples (550 g/day), clear and cloudy apple juices (500 ml/day), dried apple...

  6. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghui [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China); Wang, Junsong, E-mail: wang.junsong@gmail.com [Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094 (China); Lu, Zhaoguang; Wei, Dandan; Yang, Minghua [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China); Kong, Lingyi, E-mail: cpu_lykong@126.com [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China)

    2014-01-15

    Highlights: •A goldfish model was established to investigate the toxicity of lambda-cyhalothrin (LCT) exposure on multiple organs. •NMR based metabolomics approach were firstly used to provide a global view of the toxicity of LCT. •LCT induced neurotransmitters and osmoregulatory imbalances, oxidative stress, energy and amino acid metabolic disorders. •Glutamate–glutamine–GABA axis as a potential target for LCT toxicity was first found. -- Abstract: In this study, a {sup 1}H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate–glutamine–gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment.

  7. Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of lotus (Nelumbo nucifera

    Directory of Open Access Journals (Sweden)

    Pingfang eYang

    2016-06-01

    Full Text Available Sacred lotus (Nelumbo nucifera belongs to Nelumbonaceae family. Its seeds are widely consumed in Asia countries as snacks or even medicine. Besides the market values, lotus seed also plays crucial roles in lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP which was corresponding to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal the metabolism adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acids metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide reference data set for the evaluation of primary metabolism during lotus seed development.

  8. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera).

    Science.gov (United States)

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development.

  9. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC-MS and chemometrics.

    Science.gov (United States)

    Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A

    2017-02-15

    Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties.

  10. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  11. Metabolomics and dereplication strategies in natural products.

    Science.gov (United States)

    Tawfike, Ahmed Fares; Viegelmann, Christina; Edrada-Ebel, Ruangelie

    2013-01-01

    Metabolomic methods can be utilized to screen diverse biological sources of potentially novel and sustainable sources of antibiotics and pharmacologically-active drugs. Dereplication studies by high resolution Fourier transform mass spectrometry coupled to liquid chromatography (LC-HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy can establish the chemical profile of endophytic and/or endozoic microbial extracts and their plant or animal sources. Identifying the compounds of interest at an early stage will aid in the isolation of the bioactive components. Therefore metabolite profiling is important for functional genomics and in the search for new pharmacologically active compounds. Using the tools of metabolomics through the employment of LC-HRFTMS as well as high resolution NMR will be a very efficient approach. Metabolomic profiling has found its application in screening extracts of macroorganisms as well as in the isolation and cultivation of suspected microbial producers of bioactive natural products.Metabolomics is being applied to identify and biotechnologically optimize the production of pharmacologically active secondary metabolites. The links between metabolome evolution during optimization and processing factors can be identified through metabolomics. Information obtained from a metabolomics dataset can efficiently establish cultivation and production processes at a small scale which will be finally scaled up to a fermenter system, while maintaining or enhancing synthesis of the desired compounds. MZmine (BMC Bioinformatics 11:395-399, 2010; http://mzmine.sourceforge.net/download.shtml ) and SIEVE ( http://www.vastscientific.com/resources/index.html ; Rapid Commun Mass Spectrom 22:1912-1918, 2008) softwares are utilized to perform differential analysis of sample populations to find significant expressed features of complex biomarkers between parameter variables. Metabolomes are identified with the aid of existing high resolution MS and NMR

  12. Non-targeted plasma metabolomic profile at early and late lactation in parity 1 dams with diverging body composition at weaning

    Science.gov (United States)

    Lactation is an extremely energy demanding event, impacting naïve dams to a greater extent as they are still physiologically immature. The objective of the current study was to determine if a unique plasma metabolome exists at early and late lactation from first parity gilts having similar body meas...

  13. Non-target metabolomic profiling of the marine microalgae dunaliella tertiolecta after exposure to diuron using complementary high-resolution analytical techniques

    NARCIS (Netherlands)

    Booij, P; Lamoree, M.H.; Sjollema, S.B.; de Voogt, P.; Schollée, J.E.; Vethaak, A.D.; Leonards, P.E.G.

    2014-01-01

    Traditionally, bioassays are used to assess the toxicity of chemicals. Bioassays often focus on one specific mode of action or end point and their responses offer a limited understanding of the health status and underlying pathways of the species under consideration. Metabolomics can be used to dete

  14. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    that are highly sensitive and specific, and to undertake this challenge mass spectrometry (MS) is among the best candidates. Along with analysis of the metabolome the research area of metabolomics has evolved. Metabolomics combines metabolite profiles, data mining and biochemistry and aims at understanding...... of metabolites by one method. The results highlighted that there were discrepancies between different methods. To increase the throughput of cultivation, S. cerevisiae was grown in microtitier plates (MTPs), and the growth was found to be comparable with cultivations in shake flasks. The carbon source was either...... for databases that contain metabolite specific information, which will speed up the identification of profiled metabolites. To address the capabilities of electrospray ionization (ESI)-MS in detecting the metabolome of S. cerevisiae, the in silico metabolome of this organism was used as a template to present...

  15. Metabolomics and Epidemiology Working Group

    Science.gov (United States)

    The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.

  16. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  17. Connectivity and functional profiling of abnormal brain structures in pedophilia

    Science.gov (United States)

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  18. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Dekker, Simone E; Bambakidis, Ted; Sillesen, Martin

    2014-01-01

    BACKGROUND: We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms...... have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS: Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5...... per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene...

  19. Metabolomic determinants of necrotizing enterocolitis in preterm piglets

    Science.gov (United States)

    Studies in premature infants and animals show that carbohydrate malabsorption and gut microbiota colonisation are key elements for triggering necrotizing enterocolitis (NEC). Our aim was to determine how dietary carbohydrate composition affects the metabolomic profile and whether unique metabolite s...

  20. Metabolomics using GC-TOF-MS followed by subsequent GC-FID and HILIC-MS/MS analysis revealed significantly altered fatty acid and phospholipid species profiles in plasma of smokers.

    Science.gov (United States)

    Müller, Daniel C; Degen, Christian; Scherer, Gerhard; Jahreis, Gerhard; Niessner, Reinhard; Scherer, Max

    2014-09-01

    Mass spectrometry is an ideal tool for investigations of the metabolome in human plasma. To investigate the impact of smoking on the human metabolome, we performed an untargeted metabolic fingerprinting using GC-TOF-MS with EDTA-plasma samples from 25 smokers and 25 non-smokers. The observed elevated levels in the monounsaturated fatty acids (MUFAs) in smokers were verified by a targeted analysis using GC-FID, which revealed also significantly alterations in saturated and polyunsaturated fatty acids in smokers (p<0.05, Mann-Whitney U test). Since the main fraction of fatty acids in plasma is esterified to phospholipids, we analyzed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species composition in the plasma samples of the same subjects. The profiles of 39 PC and 40 PE species were analyzed with a newly developed and validated HILIC-ESI-MS/MS method. We were able to baseline separate the two lipid classes (PC from PE) by maintaining co-elution of individual lipid species of each class. The method shows a linear range from 0.5μM to 2000μM and an inter- and intraday coefficient of variation (CV)<20% across all analytes. Application of the validated method to the plasma samples of smokers and non-smokers, derived from a diet-controlled smoking study, revealed significantly elevated levels of PC and PE species containing MUFAs in smokers. In summary, we could demonstrate that there is a significantly altered total fatty acid profile, with increased MUFAs, in the plasma of smokers compared to non-smokers. Results obtained with the new HILIC-MS/MS method indicate that the altered fatty acid profile is also reflected in the PC and PE profile of smokers.

  1. Opiate-induced changes in brain adenosine levels and narcotic drug responses.

    Science.gov (United States)

    Wu, M; Sahbaie, P; Zheng, M; Lobato, R; Boison, D; Clark, J D; Peltz, G

    2013-01-01

    We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10-40 mg/kg) administered over a 4-day period selectively induced a twofold decrease (pOpiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal.

  2. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis

    Science.gov (United States)

    Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; Collins, Carl C.; Wolfrum, Edward J.; Broeckling, Corey D.; Prenni, Jessica E.; Jahn, Courtney E.

    2016-01-01

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end products of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  3. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available BACKGROUND: Spontaneous intracerebral hemorrhage (ICH represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. METHODOLOGY/PRINCIPAL FINDINGS: Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH and the corresponding contralateral white (CW and grey (CG matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between -3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed. The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. CONCLUSIONS: The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions.

  4. Clinical application of metabolomics in neonatology.

    Science.gov (United States)

    Fanos, Vassilios; Antonucci, Roberto; Barberini, Luigi; Noto, Antonio; Atzori, Luigi

    2012-04-01

    The youngest and more rapidly increasing "omic" discipline, called metabolomics, is the process of describing the phenotype of a cell, tissue or organism through the full complement of metabolites present. Metabolomics measure global sets of low molecular weight metabolites (including amino acids, organic acids, sugars, fatty acids, lipids, steroids, small peptides, vitamins, etc.), thus providing a "snapshot" of the metabolic status of a cell, tissue or organism in relation to genetic variations or external stimuli. The use of metabolomics appears to be a promising tool in neonatology. The management of sick newborns might improve if more information on perinatal/neonatal maturational processes and their metabolic background were available. Urine ("a window on the organism") is a biofluid particularly suitable for metabolomic analysis in neonatology because it may be collected by using simple, noninvasive techniques and because it may provide valuable diagnostic information. In this review, the authors report the few literature data on neonatal metabolomics, including their personal experience, in the following fields: intrauterine growth restriction, perinatal transition, asphyxia, brain injury and hypothermia, maternal milk evaluation, postnatal maturation, bronchiolitis, sepsis, patent ductus arteriosus, respiratory distress syndrome, nephrouropathies, metabolic diseases, antibiotic treatment, perinatal programming and long-term outcome in extremely low birth-weight infants.

  5. Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3–5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients.

  6. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  7. Plasma and Brain Fatty Acid Profiles in Mild Cognitive Impairment and Alzheimer’s Disease

    OpenAIRE

    Cunnane, Stephen C; Schneider, Julie A.; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer’s disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g...

  8. Metabolomic change precedes apple superficial scald symptoms.

    Science.gov (United States)

    Rudell, David R; Mattheis, James P; Hertog, Maarten L A T M

    2009-09-23

    Untargeted metabolic profiling was employed to characterize metabolomic changes associated with 'Granny Smith' apple superficial scald development following 1-MCP or DPA treatment. Partial least-squares discriminant analyses were used to link metabolites with scald, postharvest treatments, and storage duration. Models revealed metabolomic differentiation between untreated controls and fruit treated with DPA or 1-MCP within 1 week following storage initiation. Metabolic divergence between controls and DPA-treated fruit after 4 weeks of storage preceded scald symptom development by 2 months. alpha-Farnesene oxidation products with known associations to scald, including conjugated trienols, 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-ol, were associated with presymptomatic as well as scalded control fruit. Likewise, a large group of putative triterpenoids with mass spectral features similar to those of ursolic acid and beta-sitosterol were associated with control fruit and scald. Results demonstrate that extensive metabolomic changes associated with scald precede actual symptom development.

  9. Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats).

    Science.gov (United States)

    Miller, Marion G

    2007-02-01

    Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment.

  10. [Application and research advances of metabolomics in the field of orthopedics].

    Science.gov (United States)

    Sun, Zhijian; Qiu, Guixing; Zhao, Yu

    2015-06-01

    Metabolomics is a subject of systematic, qualitative and quantitative analysis of all metabolites in all organisms, which is applied to finding biomarkers and studying pathogenesis of diseases. Study procedures of metabolomics include data acquisition by spectroscopic/spectrometric techniques, multivariate statistical analysis and projection of the acquired metabolomic information. In recent years, metabolomics have gained popularity in orthopedic field. Metabolomic study of osteoarthritis was firstly conducted and widely developed. Metabolite profiles of different samples, including serum/plasma, urine, synovial fluid and synovial tissue, were studied and dozens of differential metabolites and several disturbed metabolic pathways were found. In addition, metabolomic studies of osteoporosis, ankylosing spondylitis and bone tumors were also conducted, which identified many potential biomarkers and made further understanding of pathogenesis of corresponding disease. However, metabolomic studies in orthopedic field just begin. More orthopedic diseases will be researched thank to the satisfactory results of previous reports.

  11. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.

  12. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  13. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Schneider, Julie A; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer's disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g for brain). Differences in plasma fatty acid profiles between AD, mild cognitive impairment (MCI), and those with no cognitive impairment (NCI) were most apparent in the plasma free fatty acids (lower oleic acid isomers and omega-6 fatty acids in AD) and phospholipids (lower omega-3 fatty acids in AD). In brain, % DHA was lower only in phosphatidylserine of mid-frontal cortex and superior temporal cortex in AD compared to NCI (-14% and -12%, respectively; both p < 0.05). The only significant correlation between plasma and brain fatty acids was between % DHA in plasma total lipids and % DHA in phosphatidylethanolamine of the angular gyrus, but only in the NCI group (+0.77, p < 0.05). We conclude that AD is associated with altered plasma status of both DHA and other fatty acids unrelated to DHA, and that the lipid class-dependent nature of these differences reflects a combination of differences in intake and metabolism.

  14. Effect of storage time on metabolite profile and alpha-glucosidase inhibitory activity of Cosmos caudatus leaves – GCMS based metabolomics approach

    Directory of Open Access Journals (Sweden)

    Neda Javadi

    2015-09-01

    Full Text Available Cosmos caudatus, which is a commonly consumed vegetable in Malaysia, is locally known as “Ulam Raja”. It is a local Malaysian herb traditionally used as a food and medicinal herb to treat several maladies. Its bioactive or nutritional constituents consist of a wide range of metabolites, including glucosinolates, phenolics, amino acids, organic acids, and sugars. However, many of these metabolites are not stable and easily degraded or modified during storage. In order to investigate the metabolomics changes occurring during post-harvest storage, C. caudatus samples were subjected to seven different storage times (0 hours, 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, and 12 hours at room temperature. As the model experiment, the metabolites identified by gas chromatography-mass spectrometry (GC-MS were correlated with α-glucosidase inhibitory activity analyzed with multivariate data analysis (MVDA to find out the variation among samples and metabolites contributing to the activity. Orthogonal partial least squares (OPLS analysis was applied to investigate the metabolomics changes. A profound chemical alteration, both in primary and secondary metabolites, was observed. The α-tocopherol, catechin, cyclohexen-1-carboxylic acid, benzoic acid, myo-inositol, stigmasterol, and lycopene compounds were found to be the discriminating metabolites at early storage; however, sugars such as sucrose, α-d-galactopyranose, and turanose were detected, which was attributed to the discriminating metabolites for late storage. The result shows that the MVDA method is a promising technique to identify biomarker compounds relative to storage at different times.

  15. Analytical methods in untargeted metabolomics: state of the art in 2015

    Directory of Open Access Journals (Sweden)

    Arnald eAlonso

    2015-03-01

    Full Text Available Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile –the metabolome- has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance (NMR and mass spectrometry (MS are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high throughput biotechnologies is also reviewed.

  16. The food metabolome

    DEFF Research Database (Denmark)

    Scalbert, Augustin; Brennan, Lorraine; Manach, Claudine

    2014-01-01

    The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according...... to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food...... by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still...

  17. Metabolomics and protozoan parasites.

    Science.gov (United States)

    Paget, Timothy; Haroune, Nicolas; Bagchi, Sushmita; Jarroll, Edward

    2013-06-01

    In this review, we examine the state-of-the-art technologies (gas and liquid chromatography, mass spectroscopy and nuclear magnetic resonance, etc.) in the well-established area of metabolomics especially as they relate to protozoan parasites.

  18. Current metabolomics: technological advances.

    Science.gov (United States)

    Putri, Sastia P; Yamamoto, Shinya; Tsugawa, Hiroshi; Fukusaki, Eiichiro

    2013-07-01

    Metabolomics, the global quantitative assessment of metabolites in a biological system, has played a pivotal role in various fields of science in the post-genomic era. Metabolites are the result of the interaction of the system's genome with its environment and are not merely the end product of gene expression, but also form part of the regulatory system in an integrated manner. Therefore, metabolomics is often considered a powerful tool to provide an instantaneous snapshot of the physiology of a cell. The power of metabolomics lies on the acquisition of analytical data in which metabolites in a cellular system are quantified, and the extraction of the most meaningful elements of the data by using various data analysis tool. In this review, we discuss the latest development of analytical techniques and data analyses methods in metabolomics study.

  19. Quality assurance of metabolomics.

    Science.gov (United States)

    Bouhifd, Mounir; Beger, Richard; Flynn, Thomas; Guo, Lining; Harris, Georgina; Hogberg, Helena; Kaddurah-Daouk, Rima; Kamp, Hennicke; Kleensang, Andre; Maertens, Alexandra; Odwin-DaCosta, Shelly; Pamies, David; Robertson, Donald; Smirnova, Lena; Sun, Jinchun; Zhao, Liang; Hartung, Thomas

    2015-01-01

    Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

  20. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus).

    Science.gov (United States)

    Xu, Hua-Dong; Wang, Jun-Song; Li, Ming-Hui; Liu, Yan; Chen, Ting; Jia, Ai-Qun

    2015-02-01

    Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment.

  1. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Spur, Eva-Margarete [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Charite Universitaetsmedizin, Berlin (Germany); Decelle, Emily A.; Cheng, Leo L. [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-07-15

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  2. Xenobiotic metabolomics: major impact on the metabolome.

    Science.gov (United States)

    Johnson, Caroline H; Patterson, Andrew D; Idle, Jeffrey R; Gonzalez, Frank J

    2012-01-01

    Xenobiotics are encountered by humans on a daily basis and include drugs, environmental pollutants, cosmetics, and even components of the diet. These chemicals undergo metabolism and detoxication to produce numerous metabolites, some of which have the potential to cause unintended effects such as toxicity. They can also block the action of enzymes or receptors used for endogenous metabolism or affect the efficacy and/or bioavailability of a coadministered drug. Therefore, it is essential to determine the full metabolic effects that these chemicals have on the body. Metabolomics, the comprehensive analysis of small molecules in a biofluid, can reveal biologically relevant perturbations that result from xenobiotic exposure. This review discusses the impact that genetic, environmental, and gut microflora variation has on the metabolome, and how these variables may interact, positively and negatively, with xenobiotic metabolism.

  3. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  4. Brain death induces the alteration of liver protein expression profiles in rabbits.

    Science.gov (United States)

    Du, Bing; Li, Ling; Zhong, Zhibiao; Fan, Xiaoli; Qiao, Bingbing; He, Chongxiang; Fu, Zhen; Wang, Yanfeng; Ye, Qifa

    2014-08-01

    At present, there is no accurate method for evaluating the quality of liver transplant from a brain-dead donor. Proteomics are used to investigate the mechanisms involved in brain death‑induced liver injury and to identify sensitive biomarkers. In the present study, age‑ and gender‑matched rabbits were randomly divided into the brain death and sham groups. The sham served as the control. A brain‑death model was established using an intracranial progressive pressurized method. The differentially expressed proteins extracted from the liver tissues of rabbits that were brain‑dead for 6 h in the two groups were determined by two‑dimensional gel electrophoresis and matrix‑assisted laser desorption ionization time of flight mass spectrometry. Although there was no obvious functional and morphological difference in 2, 4 and 6 h after brain death, results of the proteomics analysis revealed 973±34 and 987±38 protein spots in the control and brain death groups, respectively. Ten proteins exhibited a ≥2‑fold alteration. The downregulated proteins were: aldehyde dehydrogenase, runt‑related transcription factor 1 (RUNX1), inorganic pyrophosphatase, glutamate‑cysteine ligase regulatory subunit and microsomal cytochrome B5. By contrast, the expression of dihydropyrimidinase-related protein 4, peroxiredoxin‑6, 3‑phosphoinositide‑dependent protein kinase‑1, 3-mercaptopyruvate and alcohol dehydrogenase were clearly upregulated. Immunohistochemistry and western blot analysis results revealed that the expression of RUNX1 was gradually increased in a time‑dependent manner in 2, 4, and 6 h after brain death. In conclusion, alteration of the liver protein expression profile induced by brain death indicated the occurrence of complex pathological changes even if no functional or morphological difference was identified. Thus, RUNX1 may be a sensitive predict factor for evaluating the quality of brain death donated liver.

  5. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: a comparative metabolomic study.

    Directory of Open Access Journals (Sweden)

    Norbert W Lutz

    Full Text Available Many diseases, including brain disorders, are associated with perturbations of tissue metabolism. However, an often overlooked issue is the impact that inflammations outside the brain may have on brain metabolism. Our main goal was to study similarities and differences between brain metabolite profiles of animals suffering from experimental autoimmune encephalomyelitis (EAE and adjuvant arthritis (AA in Lewis rat models. Our principal objective was the determination of molecular protagonists involved in the metabolism underlying these diseases. EAE was induced by intraplantar injection of complete Freund's adjuvant (CFA and spinal-cord homogenate (SC-H, whereas AA was induced by CFA only. Naive rats served as controls (n = 9 for each group. Two weeks after inoculation, animals were sacrificed, and brains were removed and processed for metabolomic analysis by NMR spectroscopy or for immunohistochemistry. Interestingly, both inflammatory diseases caused similar, though not identical, changes in metabolites involved in regulation of brain cell size and membrane production: among the osmolytes, taurine and the neuronal marker, N-acetylaspartate, were decreased, and the astrocyte marker, myo-inositol, slightly increased in both inoculated groups compared with controls. Also ethanolamine-containing phospholipids, sources of inflammatory agents, and several glycolytic metabolites were increased in both inoculated groups. By contrast, the amino acids, aspartate and isoleucine, were less concentrated in CFA/SC-H and control vs. CFA rats. Our results suggest that inflammatory brain metabolite profiles may indicate the existence of either cerebral (EAE or extra-cerebral (AA inflammation. These inflammatory processes may act through distinct pathways that converge toward similar brain metabolic profiles. Our findings open new avenues for future studies aimed at demonstrating whether brain metabolic effects provoked by AA are pain/stress-mediated and

  6. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans.

    Science.gov (United States)

    Xiao, Man; Du, Guankui; Zhong, Guobing; Yan, Dongjing; Zeng, Huazong; Cai, Wangwei

    2016-01-01

    Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans.

  7. Profile Analyses of the Personality Assessment Inventory Following Military-Related Traumatic Brain Injury

    Science.gov (United States)

    Kennedy, Jan E.; Cooper, Douglas B.; Reid, Matthew W.; Tate, David F.; Lange, Rael T.

    2015-01-01

    Personality Assessment Inventory (PAI) profiles were examined in 160 U.S. service members (SMs) following mild–severe traumatic brain injury (TBI). Participants who sustained a mild TBI had significantly higher PAI scores than those with moderate–severe TBI on eight of the nine clinical scales examined. A two-step cluster analysis identified four PAI profiles, heuristically labeled “High Distress”, “Moderate Distress”, “Somatic Distress,” and “No Distress”. Postconcussive and posttraumatic stress symptom severity was highest for the High Distress group, followed by the Somatic and Moderate Distress groups, and the No Distress group. Profile groups differed in age, ethnicity, rank, and TBI severity. Findings indicate that meaningful patterns of behavioral and personality characteristics can be detected in active duty military SMs following TBI, which may prove useful in selecting the most efficacious rehabilitation strategies. PMID:25857403

  8. Profile analyses of the Personality Assessment Inventory following military-related traumatic brain injury.

    Science.gov (United States)

    Kennedy, Jan E; Cooper, Douglas B; Reid, Matthew W; Tate, David F; Lange, Rael T

    2015-05-01

    Personality Assessment Inventory (PAI) profiles were examined in 160 U.S. service members (SMs) following mild-severe traumatic brain injury (TBI). Participants who sustained a mild TBI had significantly higher PAI scores than those with moderate-severe TBI on eight of the nine clinical scales examined. A two-step cluster analysis identified four PAI profiles, heuristically labeled "High Distress", "Moderate Distress", "Somatic Distress," and "No Distress". Postconcussive and posttraumatic stress symptom severity was highest for the High Distress group, followed by the Somatic and Moderate Distress groups, and the No Distress group. Profile groups differed in age, ethnicity, rank, and TBI severity. Findings indicate that meaningful patterns of behavioral and personality characteristics can be detected in active duty military SMs following TBI, which may prove useful in selecting the most efficacious rehabilitation strategies.

  9. Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta for Identification of Growth Phase-Dependent Biomarkers

    Directory of Open Access Journals (Sweden)

    Taghreed Alsufyani

    2017-01-01

    Full Text Available The marine green macroalga Ulva (Chlorophyta lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS and liquid chromatography-mass spectrometry (LC-MS analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2.

  10. Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers

    Science.gov (United States)

    Alsufyani, Taghreed; Weiss, Anne; Wichard, Thomas

    2017-01-01

    The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6). Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2. PMID:28075408

  11. Transcriptional Profile of HIV-induced Nuclear Translocation of Amyloid β in Brain Endothelial Cells

    Science.gov (United States)

    András, Ibolya E.; Rampersaud, Evadnie; Eum, Sung Yong; Toborek, Michal

    2015-01-01

    Background and Aims Increased amyloid deposition in HIV-infected brains may contribute to the pathogenesis of neurocognitive dysfunction in infected patients. We have previously shown that exposure to HIV results in enhanced amyloid β (Aβ) levels in human brain microvascular endothelial cells, suggesting that brain endothelial cells contribute to accumulation of Aβ in HIV-infected brains. Importantly, Aβ not only accumulates in the cytoplasm of HIV-exposed cells but also enters the nuclei of brain endothelial cells. Methods cDNA microarray analysis was performed in order to examine changes in the transcriptional profile associated with Aβ nuclear entry in the presence of HIV-1. Results Gene network analysis indicated that inhibition of nuclear entry of Aβ resulted in enrichment in gene sets involved in apoptosis and survival, endoplasmic reticulum stress response, immune response, cell cycle, DNA damage, oxidative stress, cytoskeleton remodeling and transforming growth factor b (TGFβ) receptor signaling. Conclusions The obtained data indicate that HIV-induced Aβ nuclear uptake affects several cellular stress-related pathways relevant for HIV-induced Aβ pathology. PMID:25446617

  12. Non-targeted metabolomics and lipidomics LC-MS data from maternal plasma of 180 healthy pregnant women

    DEFF Research Database (Denmark)

    Luan, Hemi; Meng, Nan; Liu, Ping;

    2015-01-01

    Background: Metabolomics has the potential to be a powerful and sensitive approach for investigating the low molecular weight metabolite profiles present in maternal fluids and their role in pregnancy.Findings: In this Data Note, LC-MS metabolome, lipidome and carnitine profiling data were collec...

  13. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes.

    Directory of Open Access Journals (Sweden)

    Laura Camacho

    Full Text Available Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM versus non-brain metastatic (non-BM cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210 and two down-regulated miRNAs (miR-19a and miR-29c in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.

  14. Spatial and temporal profile of apoptosis following lateral fluid percussion brain injury

    Institute of Scientific and Technical Information of China (English)

    骆纯; 江基尧; 卢亦成; 朱诚

    2002-01-01

    Objective: To investigate the spatial and temporal profile of neural cell apoptosis following traumatic brain injury (TBI).   Methods: In addition to morphological evidence of apoptosis, TUNEL histochemistry assay was used to identify DNA fragmentation in situ at both light and electron microscopic levels, whereas characteristic internucleosomal DNA fragmentation of apoptosis was demonstrated by DNA gel electrophoresis.   Results: Using TUNEL method, we detected massive cells with extensive DNA fragmentation in different regions of the brains of rats subjected to experimental traumatic brain injury. Compared with the sham controls, in the injured cortex, the apoptotic cells were detectable for up to 24 h and reached a peak at 1 week after injury. The number of apoptotic cells in the white matter had a significant increase as early as 12 h after injury and peaked at 1 week. The number of apoptotic cells increased in the hippocampus at 72 h, whereas in the thalamus, the peak of apoptotic cells was at 2 weeks after injury. The number of apoptotic cells in most regions returned to sham values 2 months after injury. Gel electrophoresis of DNA extracted from affected areas of the injured brain revealed only internucleosomal fragmentation at 185-bp intervals, a feature originally described in apoptotic cell death. And no DNA ladder was detectable in the cortex and hippocampus contralateral to the injured hemisphere.   Conclusions: These data suggest that in addition to the well described necrotic cell death, a temporal course of apoptotic cell death is initiated after brain trauma in selected brain regions.

  15. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    Science.gov (United States)

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  16. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes.

    Science.gov (United States)

    Camacho, Laura; Guerrero, Paola; Marchetti, Dario

    2013-01-01

    Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM) versus non-brain metastatic (non-BM) cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM) variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210) and two down-regulated miRNAs (miR-19a and miR-29c) in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.

  17. IQ subgroups in relation to neurocognitive profiles, psychopathology and brain volume in first-episode schizophrenia

    DEFF Research Database (Denmark)

    Jensen, Maria Høj; Glenthøj, Birte Yding; Rostrup, Egill

    Background and Aim: Approximately half of patients with schizophrenia experience a deterioration in IQ before or around illness onset and recent studies have found apositive association between IQ and brain volume in first episode schizophrenia. The aim of this study was to examine the combined...... impact of estimated IQ trajectory and IQ level at illness onset on psychopathology, neurocognitive profiles and brain volume. Materials and methods: The design is a cross-sectional, case-control study of 60 first-episode antipsychotic-naïve schizophrenia patients and 60 matched healthy controls....... Promorbid IQ was estimated using the Danish Adult Reading Test and current IQ using 4 subtests from Wechsler's Adult Intelligence Scale III. Patients were divided into 4 subgroups based on a combination of both IQ trajectory from premorbid levels (stable vs. deteriorating) and IQ at illness onset (high vs...

  18. Effects of Nonylphenol on Brain Gene Expression Profiles in F1 Generation Rats

    Institute of Scientific and Technical Information of China (English)

    YIN-YIN XIA; PING ZHANG; YANG WANG

    2008-01-01

    Objective To explore the effects of nonylphenol on brain gene expression profiles in F1 generation rats by microarray technique.Methods mRNA was extracted from the brain of 2-day old F1 generation male rats Whose F0 female generation was either exposed to nonylphenol or free from nonylphenol exposure,and then it was reversely transcribed to cDNA hbeled with cy5 and cy3 fluorescence.Subsequently,cDNA probes were hybridized to two BiostarR-40S cDNA gene chips and fluorescent signals of cy5 and cy3 were scanned and analyzed. Results Two genes were differentially down-regulated.Conclusion Nonylphenol may disturb the neurcendocrine function of male rats when administered perinatally.

  19. Recent advances in metabolomics in neurological disease, and future perspectives.

    Science.gov (United States)

    Zhang, Ai-hua; Sun, Hui; Wang, Xi-jun

    2013-10-01

    Discovery of clinically relevant biomarkers for diseases has revealed metabolomics has potential advantages that classical diagnostic approaches do not. The great asset of metabolomics is that it enables assessment of global metabolic profiles of biofluids and discovery of biomarkers distinguishing disease status, with the possibility of enhancing clinical diagnostics. Most current clinical chemistry tests rely on old technology, and are neither sensitive nor specific for a particular disease. Clinical diagnosis of major neurological disorders, for example Alzheimer's disease and Parkinson's disease, on the basis of current clinical criteria is unsatisfactory. Emerging metabolomics is a powerful technique for discovering novel biomarkers and biochemical pathways to improve diagnosis, and for determination of prognosis and therapy. Identifying multiple novel biomarkers for neurological diseases has been greatly enhanced with recent advances in metabolomics that are more accurate than routine clinical practice. Cerebrospinal fluid (CSF), which is known to be a rich source of small-molecule biomarkers for neurological and neurodegenerative diseases, and is in close contact with diseased areas in neurological disorders, could potentially be used for disease diagnosis. Metabolomics will drive CSF analysis, facilitate and improve the development of disease treatment, and result in great benefits to public health in the long-term. This review covers different aspects of CSF metabolomics and discusses their significance in the postgenomic era, emphasizing the potential importance of endogenous small-molecule metabolites in this emerging field.

  20. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury

    Science.gov (United States)

    Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U.; De Gasperi, Rita; Gama Sosa, Miguel A.; Ahlers, Stephen T.; Elder, Gregory A.

    2015-01-01

    Abstract Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10−7). We detected DNA methylation perturbations in blast overpressure–exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in

  1. Metabolomic analysis of three Mollicute species.

    Directory of Open Access Journals (Sweden)

    Anna A Vanyushkina

    Full Text Available We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.

  2. Metabolomics analysis of shucked mussels' freshness.

    Science.gov (United States)

    Aru, Violetta; Pisano, Maria Barbara; Savorani, Francesco; Engelsen, Søren Balling; Cosentino, Sofia; Cesare Marincola, Flaminia

    2016-08-15

    In this work a NMR metabolomics approach was applied to analyze changes in the metabolic profile of the bivalve mollusk Mytilus galloprovincialis upon storage at 0°C and 4°C for 10 and 6 days, respectively. The most significant microbial groups involved in spoilage of mussels were also investigated. The time-related metabolic signature of mussels was analysed by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) which revealed a clear discrimination between the fresh samples and those stored at 0°C and 4°C. The results evidenced a noticeable increase in acetate, lactate, succinate, alanine, branched chain amino acids, trimethylamine and a progressive decline of osmolytes like betaine, homarine and taurine during storage. Exploration of the correlations of these metabolites with microbial counts suggested their use as potential biomarkers of spoilage. The results support the use of NMR metabolomics as a valuable tool to provide information on seafood freshness.

  3. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS).

    Science.gov (United States)

    Fuss, Taylor L; Cheng, Leo L

    2016-03-22

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  4. Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin

    Directory of Open Access Journals (Sweden)

    Dave Kunjan R

    2004-06-01

    Full Text Available Abstract Effect of long-term (90–100 days exposure of rats to soluble salt of aluminum (AlCl3 on myelin lipid profile was examined. The long-term exposure to AlCl3 resulted in a 60 % decrease in the total phospholipid (TPL content while the cholesterol (CHL content increased by 55 %. Consequently the TPL / CHL molar ratio decreased significantly by 62 %. The phospholipid composition of the myelin membrane changed drastically; the proportion of practically all the phospholipid classes decreased by 32 to 60 % except for phosphatidylcholine (PC and phosphatidylethanolamine (PE. Of the latter two, proportion of PC was unchanged while PE increased in proportion by 47 %. Quantitatively, all phospholipid classes decreased by from 42 to 76% with no change in the PE content. However the membrane fluidity was not altered in Al-treated rats. Many of the changes we observe here show striking similarities with the reported phospholipid profiles of Alzheimer brains.

  5. Olfactory cells via nasal biopsy reflect the developing brain in gene expression profiles: utility and limitation of the surrogate tissues in research for brain disorders.

    Science.gov (United States)

    Horiuchi, Yasue; Kano, Shin-Ichi; Ishizuka, Koko; Cascella, Nicola G; Ishii, Seiji; Talbot, C Conover; Jaffe, Andrew E; Okano, Hideyuki; Pevsner, Jonathan; Colantuoni, Carlo; Sawa, Akira

    2013-12-01

    Human olfactory cells obtained by rapid nasal biopsy have been suggested to be a good surrogate system to address brain disease-associated molecular changes. Nonetheless, whether use of this experimental strategy is justified remains unclear. Here we compared expression profiles of olfactory cells systematically with those from the brain tissues and other cells. Principal component analysis indicated that the expression profiles of olfactory cells are very different from those of blood cells, but are closer to those of stem cells, in particular mesenchymal stem cells, that can be differentiated into the cells of the central nervous system.

  6. Nutritional metabolomics: progress in addressing complexity in diet and health.

    Science.gov (United States)

    Jones, Dean P; Park, Youngja; Ziegler, Thomas R

    2012-08-21

    Nutritional metabolomics is rapidly maturing to use small-molecule chemical profiling to support integration of diet and nutrition in complex biosystems research. These developments are critical to facilitate transition of nutritional sciences from population-based to individual-based criteria for nutritional research, assessment, and management. This review addresses progress in making these approaches manageable for nutrition research. Important concept developments concerning the exposome, predictive health, and complex pathobiology serve to emphasize the central role of diet and nutrition in integrated biosystems models of health and disease. Improved analytic tools and databases for targeted and nontargeted metabolic profiling, along with bioinformatics, pathway mapping, and computational modeling, are now used for nutrition research on diet, metabolism, microbiome, and health associations. These new developments enable metabolome-wide association studies (MWAS) and provide a foundation for nutritional metabolomics, along with genomics, epigenomics, and health phenotyping, to support the integrated models required for personalized diet and nutrition forecasting.

  7. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: Compound class targeting in a metabolomics workflow

    NARCIS (Netherlands)

    Bobeldijk, I.; Hekman, M.; Vries de- Weij, J.van der; Coulier, L.; Ramaker, R.; Kleemann, R.; Kooistra, T.; Rubingh, C.; Freidig, A.; Verheij, E.

    2008-01-01

    We report a sensitive, generic method for quantitative profiling of bile acids and other endogenous metabolites in small quantities of various biological fluids and tissues. The method is based on a straightforward sample preparation, separation by reversed-phase high performance liquid-chromatograp

  8. Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography : a method with wide applicability to analysis of biomolecules

    NARCIS (Netherlands)

    Kamleh, A.; Barrett, M. P.; Wildridge, D.; Burchmore, R. J. S.; Scheltema, R. A.; Watson, D. G.

    2008-01-01

    It was shown that coupling hydrophilic interaction chromatography (HILIC) to Orbitrap Fourier transform mass spectrometery (FT-MS) provided an excellent tool for metabolic profiling, principally due to rapid elution of lipids in advance of most metabolites entering the mass spectrometer. We used in

  9. Expression profiles of metastatic brain tumor from lung adenocarcinomas on cDNA microarray.

    Science.gov (United States)

    Kikuchi, Takefumi; Daigo, Yataro; Ishikawa, Nobuhisa; Katagiri, Toyomasa; Tsunoda, Tatsuhiko; Yoshida, Seiichi; Nakamura, Yusuke

    2006-04-01

    Distant metastasis is one of the crucial parameters determining the type of treatment and prognosis of patients. Previous studies discovered important factors involved in multiple steps of metastasis, the precise mechanisms of metastasis still remain to be clarified. To identify genes associated with this complicated biological feature of cancer, we analyzed expression profiles of 16 metastatic brain tumors derived from primary lung adenocarcinoma (ADC) using cDNA microarray representing 23,040 genes. We applied bioinformatic algorithm to compare the expression data of these 16 brain metastatic loci with those of 37 primary NSCLCs including 22 ADCs, and found that metastatic tumor cells has very different characteristics of gene expression patterns from primary ones. Two hundred and forty-four genes that showed significantly different expression levels between the two groups included plasma membrane bounding proteins, cellular antigens, and cytoskeletal proteins that might play important roles in altering cell-cell communication, attachment, and cell motility, and enhance the metastatic ability of cancer cells. Our results provide valuable information for development of predictive markers as well as novel therapeutic target molecules for metastatic brain tumor of ADC of the lung.

  10. Brain stem global gene expression profiles in human spina bifida embryos

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Xiang Li; Wan-I Lie; Quanren He; Ting Zhang; Xiaoying Zheng; Ran Zhou; Jun Xie

    2011-01-01

    Environmental and genetic factors influence the occurrence of neural tube defects, such as spina bifida.Specific disease expression patterns will help to elucidate the pathogenesis of disease.However, results obtained from animal models, which often exhibit organism specificity, do not fully explain the mechanisms of human spina bifida onset.In the present study, three embryos with a gestational age of approximately 17 weeks and a confirmed diagnosis of spina bifida, as well as 3 age-matched normal embryos, were obtained from abortions.Fetal brain stem tissues were dissected for RNA isolation, and microarray analyses were conducted to examine profiles of gene expression in brain stems of spina bifida and normal embryos using Affymetrix HG-U1 33A 2.0 GeneChip arrays.Of the 14 500 gene transcripts examined, a total of 182 genes exhibited at least 2.5-fold change in expression, including 140 upregulated and 42 downregulated genes.These genes were placed into 19 main functional categories according to the Gene Ontology Consortium database for biological functions.Of the 182 altered genes, approximately 50% were involved in cellular apoptosis, growth, adhesion, cell cycle, stress, DNA replication and repair, signal transduction, nervous system development, oxidoreduction, immune responses, and regulation of gene transcription.Gene expression in multiple biological pathways was altered in the brain stem of human spina bifida embryos.

  11. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  12. Metabolomics in transfusion medicine.

    Science.gov (United States)

    Nemkov, Travis; Hansen, Kirk C; Dumont, Larry J; D'Alessandro, Angelo

    2016-04-01

    Biochemical investigations on the regulatory mechanisms of red blood cell (RBC) and platelet (PLT) metabolism have fostered a century of advances in the field of transfusion medicine. Owing to these advances, storage of RBCs and PLT concentrates has become a lifesaving practice in clinical and military settings. There, however, remains room for improvement, especially with regard to the introduction of novel storage and/or rejuvenation solutions, alternative cell processing strategies (e.g., pathogen inactivation technologies), and quality testing (e.g., evaluation of novel containers with alternative plasticizers). Recent advancements in mass spectrometry-based metabolomics and systems biology, the bioinformatics integration of omics data, promise to speed up the design and testing of innovative storage strategies developed to improve the quality, safety, and effectiveness of blood products. Here we review the currently available metabolomics technologies and briefly describe the routine workflow for transfusion medicine-relevant studies. The goal is to provide transfusion medicine experts with adequate tools to navigate through the otherwise overwhelming amount of metabolomics data burgeoning in the field during the past few years. Descriptive metabolomics data have represented the first step omics researchers have taken into the field of transfusion medicine. However, to up the ante, clinical and omics experts will need to merge their expertise to investigate correlative and mechanistic relationships among metabolic variables and transfusion-relevant variables, such as 24-hour in vivo recovery for transfused RBCs. Integration with systems biology models will potentially allow for in silico prediction of metabolic phenotypes, thus streamlining the design and testing of alternative storage strategies and/or solutions.

  13. Metabolomics and Prostate Cancer

    Science.gov (United States)

    2013-05-01

    metabolism reviews. Feb 2010;42(1):45-54. 6. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F. Genome-wide DNA methylation...Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N, Nikolau B, Robertson D, Sumner LW...identification confidence based on metabolomics standards initiative recommendations ( Sumner et al. 2007). Specifically, level 1 refers to confident

  14. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki

    2015-01-01

    (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P death in both parietal cortex...... at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE...... induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death....

  15. The human urine metabolome.

    Directory of Open Access Journals (Sweden)

    Souhaila Bouatra

    Full Text Available Urine has long been a "favored" biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS, direct flow injection mass spectrometry (DFI/LC-MS/MS, inductively coupled plasma mass spectrometry (ICP-MS and high performance liquid chromatography (HPLC experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify a total of: 209 (209 by NMR, 179 (85 by GC-MS, 127 (127 by DFI/LC-MS/MS, 40 (40 by ICP-MS and 10 (10 by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database

  16. Metabolomics protocols for filamentous fungi.

    Science.gov (United States)

    Gummer, Joel P A; Krill, Christian; Du Fall, Lauren; Waters, Ormonde D C; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S

    2012-01-01

    Proteomics and transcriptomics are established functional genomics tools commonly used to study filamentous fungi. Metabolomics has recently emerged as another option to complement existing techniques and provide detailed information on metabolic regulation and secondary metabolism. Here, we describe broad generic protocols that can be used to undertake metabolomics studies in filamentous fungi.

  17. Analysis of longitudinal metabolomics data

    NARCIS (Netherlands)

    Jansen, J.J.; Hoefsloot, H.C.J.; Boelens, H.F.M.; Greef, J. van der; Smilde, A.K.

    2004-01-01

    Motivation: Metabolomics datasets are generally large and complex. Using principal component analysis (PCA), a simplified view of the variation in the data is obtained. The PCA model can be interpreted and the processes underlying the variation in the data can be analysed. In metabolomics, often a p

  18. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked...... to the animal growth performance. Three dose–response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC–MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth...... metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA....

  19. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo......-metabolome in filamentous fungi, which comprises more than 30,000 known secondary metabolites. Profiles of this diverse range of secondary metabolites have, for more than 25 years, been central in development of fungal systematics, taxonomy, and ecology, today integrated in a multidisciplinary and polyphasic approach...

  20. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry

    Science.gov (United States)

    Ceuppens, Ruben; Dumont, Debora; van Brussel, Leen; van de Plas, Babs; Daniels, Ruth; Noben, Jean-Paul; Verhaert, Peter; van der Gucht, Estel; Robben, Johan; Clerens, Stefan; Arckens, Lutgarde

    2007-02-01

    One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.

  1. Unintended effects in genetically modified crops: revealed by metabolomics?

    Science.gov (United States)

    Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja

    2006-03-01

    In Europe the commercialization of food derived from genetically modified plants has been slow because of the complex regulatory process and the concerns of consumers. Risk assessment is focused on potential adverse effects on humans and the environment, which could result from unintended effects of genetic modifications: unintended effects are connected to changes in metabolite levels in the plants. One of the major challenges is how to analyze the overall metabolite composition of GM plants in comparison to conventional cultivars, and one possible solution is offered by metabolomics. The ultimate aim of metabolomics is the identification and quantification of all small molecules in an organism; however, a single method enabling complete metabolome analysis does not exist. Given a comprehensive extraction method, a hierarchical strategy--starting with global fingerprinting and followed by complementary profiling attempts--is the most logical and economic approach to detect unintended effects in GM crops.

  2. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations--Protective Effects of the Oxygen Radical Scavenger Edaravone.

    Science.gov (United States)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki; Ishida, Yusuke; Ogiwara, Yukihiko; Inazu, Masato; Kuroda, Masahiko; Karlsson, Michael; Sjovall, Fredrik; Elmér, Eskil; Uchino, Hiroyuki

    2015-12-01

    The pathophysiology of sepsis-associated encephalopathy (SAE) is complex and remains incompletely elucidated. Dysregulated reactive oxygen species (ROS) production and mitochondrial-mediated necrotic-apoptotic pathway have been proposed as part of the pathogenesis. The present study aimed at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death.

  3. The sensitivity of metabolomics versus classical regulatory toxicology from a NOAEL perspective.

    Science.gov (United States)

    van Ravenzwaay, B; Montoya, G A; Fabian, E; Herold, M; Krennrich, G; Looser, R; Mellert, W; Peter, E; Strauss, V; Walk, T; Kamp, H

    2014-05-16

    The identification of the no observed adverse effect level (NOAEL) is the key regulatory outcome of toxicity studies. With the introduction of "omics" technologies into toxicological research, the question arises as to how sensitive these technologies are relative to classical regulatory toxicity parameters. BASF SE and metanomics developed the in vivo metabolome database MetaMap®Tox containing metabolome data for more than 500 reference compounds. For several years metabolome analysis has been routinely performed in regulatory toxicity studies (REACH mandated testing or new compound development), mostly in the context of 28 day studies in rats (OECD 407 guideline). For those chemicals for which a toxicological NOAEL level was obtained at either high or mid-dose level, we evaluated the associated metabolome to investigate the sensitivity of metabolomics versus classical toxicology with respect to the NOAEL. For the definition of a metabolomics NOAEL the ECETOC criteria (ECETOC, 2007) were used. In this context we evaluated 104 cases. Comparable sensitivity was noted in 75% of the cases, increased sensitivity of metabolomics in 8%, and decreased sensitivity in 18% of the cases. In conclusion, these data suggest that metabolomics profiling has a similar sensitivity to the classical toxicological study (e.g. OECD 407) design.

  4. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  5. DIFFERENTIAL EFFECTS OF INTRAUTERINE GROWTH RESRICTION ON THE REGIONAL NEUROCHEMICAL PROFILE OF THE DEVELOPING RAT BRAIN

    Science.gov (United States)

    Maliszewski-Hall, Anne M.; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2016-01-01

    Background Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Objective Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4T. Methods IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N=12) and NG (N=13) rats. Results In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P<0.01) and [glutamate]/[glutamine] ratio (P <0.05). Lower taurine concentrations were observed in the hippocampus (P<0.01) and striatum (P <0.05). Conclusion IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants. PMID:25972040

  6. Connecting extracellular metabolomic measurements to intracellular flux states in yeast

    Directory of Open Access Journals (Sweden)

    Herrgård Markus J

    2009-03-01

    Full Text Available Abstract Background Metabolomics has emerged as a powerful tool in the quantitative identification of physiological and disease-induced biological states. Extracellular metabolome or metabolic profiling data, in particular, can provide an insightful view of intracellular physiological states in a noninvasive manner. Results We used an updated genome-scale metabolic network model of Saccharomyces cerevisiae, iMM904, to investigate how changes in the extracellular metabolome can be used to study systemic changes in intracellular metabolic states. The iMM904 metabolic network was reconstructed based on an existing genome-scale network, iND750, and includes 904 genes and 1,412 reactions. The network model was first validated by comparing 2,888 in silico single-gene deletion strain growth phenotype predictions to published experimental data. Extracellular metabolome data measured in response to environmental and genetic perturbations of ammonium assimilation pathways was then integrated with the iMM904 network in the form of relative overflow secretion constraints and a flux sampling approach was used to characterize candidate flux distributions allowed by these constraints. Predicted intracellular flux changes were consistent with published measurements on intracellular metabolite levels and fluxes. Patterns of predicted intracellular flux changes could also be used to correctly identify the regions of the metabolic network that were perturbed. Conclusion Our results indicate that integrating quantitative extracellular metabolomic profiles in a constraint-based framework enables inferring changes in intracellular metabolic flux states. Similar methods could potentially be applied towards analyzing biofluid metabolome variations related to human physiological and disease states.

  7. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis.

    Science.gov (United States)

    Gogna, Navdeep; Hamid, Neda; Dorai, Kavita

    2015-11-10

    Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity.

  8. (1)H-NMR based metabolomics study for the detection of the human urine metabolic profile effects of Origanum dictamnus tea ingestion.

    Science.gov (United States)

    Takis, Panteleimon G; Oraiopoulou, Mariam-Eleni; Konidaris, Constantinos; Troganis, Anastassios N

    2016-09-14

    (1)H NMR spectroscopy was employed to investigate the repercussion of Origanum dictamnus tea ingestion in several volunteers' urine metabolic profiles, among them two with chronic inflammatory bowel diseases (IBD), mild IBD and Crohn's disease. Herein, we demonstrate that the concentrations of a lot of urinary metabolites such as hippurate, trimethylamine oxide (TMAO), citrate, and creatinine are altered, which prompts the intestinal microflora function/content perturbation as well as kidney function regulation by dictamnus tea. Interestingly, our preliminary results showed that a high dose of dictamnus tea intake appeared to be toxic for a person with Crohn's disease, since it caused high endogenous ethanol excretion in urine. All subjects' metabolic effects caused by the dictamnus tea appeared to be reversible, when all volunteers stopped its consumption. Finally, we highlight that individuals' metabolic phenotype is reflected in their urine biofluid before and after the dictamnus tea effect while all individuals have some common and different metabolic responses to this tea, implying that each phenotype has a quite different response to this tea consumption.

  9. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    distribution within the CNS, respectively. The existence of shared specialised neuronal activities in CNS is interesting in a context of potential functional redundancy, and future studies should further explore the overall characteristics of CNS-specific versus region-specific gene profiles in the brain.

  10. Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars.

    Directory of Open Access Journals (Sweden)

    Yoshinori Fujimura

    Full Text Available BACKGROUND: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity of diverse Japanese green tea cultivars. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC in human umbilical vein endothelial cells (HUVECs. This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6 and Sunrouge (SR strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS. Multivariate statistical analyses, principal component analysis (PCA and orthogonal partial least-squares-discriminant analysis (OPLS-DA, revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive

  11. Metabolomic assessment of key maize resources: GC-MS and NMR profiling of grain from B73 hybrids of the nested association mapping (NAM) founders and of geographically diverse landraces

    Science.gov (United States)

    The present study expands metabolomic assessments of maize beyond commercial elite lines to include two sets of publicly available lines used extensively in the scientific community to investigate the genetic basis of complex plant traits or that may serve as a source of new alleles for improving mo...

  12. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Risis, Steve [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Lee-Young, Robert S. [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-08-07

    Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-{sup 13}C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac

  13. Metabolomics of genetically modified crops.

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  14. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  15. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  16. Metabolomics in diabetic complications.

    Science.gov (United States)

    Filla, Laura A; Edwards, James L

    2016-04-01

    With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy. Current clinical analyses like glycated hemoglobin and plasma glucose measurements hold some value as prognostic indicators of the severity of complications, but investigations into the underlying pathophysiology are still lacking. Advancements in biotechnology hold the key to uncovering new pathways and establishing therapeutic targets. Metabolomics, the study of small endogenous molecules, is a powerful toolset for studying pathophysiological processes and has been used to elucidate metabolic signatures of diabetes in various biological systems. Current challenges in the field involve correlating these biomarkers to specific complications to provide a better prediction of future risk and disease progression. This review will highlight the progress that has been made in the field of metabolomics including technological advancements, the identification of potential biomarkers, and metabolic pathways relevant to macro- and microvascular diabetic complications.

  17. The mate choice brain: comparing gene profiles between female choice and male coercive poeciliids.

    Science.gov (United States)

    Lynch, K S; Ramsey, M E; Cummings, M E

    2012-03-01

    Genes that mediate mate preferences potentially play a key role in promoting and maintaining biological diversity. In this study, we compare mate preference behavior in two related poeciliid fishes with contrasting behavioral phenotypes and relate these behavioral differences to gene profiles in the brain. Results reveal that one poeciliid fish, the Northern swordtail, exhibits robust mate preference as compared to the Western mosquitofish, which utilizes a coercive mating system. Female swordtails display no significant difference in association time between male- and female-exposure trials, whereas female mosquitofish spend significantly less time associating with males relative to females. Furthermore, the preference strength for large males is significantly lower in female mosquitofish relative to swordtails. We then examine expression of three candidate genes previously shown to be associated with mate preference behavior in female swordtails and linked to neural plasticity in other vertebrates: neuroserpin (NS), neuroligin-3 (NLG-3) and N-methyl-d-aspartate receptor (NMDA-R). Whole brain gene expression patterns reveal that two genes (NS and NLG-3) are positively associated with mate preference behavior in female swordtails, a pattern opposing that of the mosquitofish. In mosquitofish females, these genes are downregulated when females express biases toward males yet are elevated in association with total motor activity patterns under asocial conditions, suggesting that the presence of males in mosquitofish species may inhibit expression of these genes. Both gene expression and female behavioral responses to males exhibit opposing patterns between these species, suggesting that this genetic pathway may potentially act as a substrate for the evolution of mate preference behavior.

  18. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    Institute of Scientific and Technical Information of China (English)

    Yu Lu; Min-Yu Jian; Yi-Bing Ouyang; Ru-Quan Han

    2015-01-01

    Background:Sevoflurane and propofol are widely used anesthetics for surgery.Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid.MicroRNAs (miRNAs) regulate neural function by altering protein expression.We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain,expect to understand the mechanism of anesthetic agents.Methods:Rats were randomly assigned to a 2% sevoflurane group,600 μg·kg 1·min-1 propofol group,and a control group without anesthesia (n =4,respectively).Treatment group was under anesthesia for 6 h,and all rats breathed spontaneously with continuous monitoring of respiration and blood gases.Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR).Differential expression ofmiRNA using qRT-PCR among the control,sevoflurane,and propofol groups were compared using one-way analysis of variance (ANOVA).Results:Of 677 preloaded rat miRNAs,the microarray detected the expression of 277 miRNAs in rat cortex (40.9%),of which 9 were regulated by propofol and (or) sevoflurane.Expression levels of three miRNAs (rno-miR-339-3p,rno-miR-448,rno-miR-466b-1 *) were significantly increased following sevoflurane and six (rno-miR-339-3p,rno-miR-347,rno-miR-378*,rno-miR-412*,mo-miR-702-3p,and mo-miR-7a-2*) following propofol.Three miRNAs (rno-miR-466b-1*,rno-miR-3584-5p and rno-miR-702-3p) were differentially expressed by the two anesthetic treatment groups.Conclusions:Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns,suggesting differential regulation of protein expression.Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological function.

  19. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2015-01-01

    Full Text Available Background: Sevoflurane and propofol are widely used anesthetics for surgery. Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid. MicroRNAs (miRNAs regulate neural function by altering protein expression. We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain, expect to understand the mechanism of anesthetic agents. Methods: Rats were randomly assigned to a 2% sevoflurane group, 600 μg·kg − 1·min − 1 propofol group, and a control group without anesthesia (n = 4, respectively. Treatment group was under anesthesia for 6 h, and all rats breathed spontaneously with continuous monitoring of respiration and blood gases. Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR. Differential expression of miRNA using qRT-PCR among the control, sevoflurane, and propofol groups were compared using one-way analysis of variance (ANOVA. Results: Of 677 preloaded rat miRNAs, the microarray detected the expression of 277 miRNAs in rat cortex (40.9%, of which 9 were regulated by propofol and (or sevoflurane. Expression levels of three miRNAs (rno-miR-339-3p, rno-miR-448, rno-miR-466b-1FNx01 were significantly increased following sevoflurane and six (rno-miR-339-3p, rno-miR-347, rno-miR-378FNx01, rno-miR-412FNx01, rno-miR-702-3p, and rno-miR-7a-2FNx01 following propofol. Three miRNAs (rno-miR-466b-1FNx01, rno-miR-3584-5p and rno-miR-702-3p were differentially expressed by the two anesthetic treatment groups. Conclusions: Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns, suggesting differential regulation of protein expression. Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological

  20. 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

    Directory of Open Access Journals (Sweden)

    Poland Gregory A

    2009-11-01

    Full Text Available Abstract Background Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ and 3'-tag digital gene expression (DGE. In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC. Results Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. Conclusion 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix in detecting lower abundant transcripts.

  1. Computational approaches for systems metabolomics.

    Science.gov (United States)

    Krumsiek, Jan; Bartel, Jörg; Theis, Fabian J

    2016-06-01

    Systems genetics is defined as the simultaneous assessment and analysis of multi-omics datasets. In the past few years, metabolomics has been established as a robust tool describing an important functional layer in this approach. The metabolome of a biological system represents an integrated state of genetic and environmental factors and has been referred to as a 'link between genotype and phenotype'. In this review, we summarize recent progresses in statistical analysis methods for metabolomics data in combination with other omics layers. We put a special focus on complex, multivariate statistical approaches as well as pathway-based and network-based analysis methods. Moreover, we outline current challenges and pitfalls of metabolomics-focused multi-omics analyses and discuss future steps for the field.

  2. Metabolomics Workbench (MetWB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Metabolomics Program's Data Repository and Coordinating Center (DRCC), housed at the San Diego Supercomputer Center (SDSC), University of California, San Diego,...

  3. [The dynamics of the individual profiles of brain asymmetry in patients with craniocerebral trauma under the influence of emoxipin treatment].

    Science.gov (United States)

    Fedulov, A S; Teterkina, T I; Oleshkevich, F V

    1992-01-01

    The authors studied the effect of the drug emoxypin on the brain functional asymmetry (A) in 36 patients with craniocerebral trauma attended by occurrence of focal traumatic injuries (FTI) to the brain (experimental group). The control group consisted of 61 patients who received the traditional intensive therapy for FTI (isolated brain contusion of moderate and severe degree, intracerebral hematomas measuring 30-50 cm3 in volume in the contusion focus). Favorable changes of the brain FA indices in the individual asymmetry profiles were noted, respectively, in 76.7% and 40.9% of patients given and not given emoxypin. Complete normalization of brain FA indices by the 25th-30th day after the beginning of treatment was recorded in 60.9% of patients in the control group and in 37% of those in the experimental group. The dynamics of individual asymmetry profiles in patients with FTI provides evidence that emoxypin improves the attention, mental efficiency, memory capacity, and selectivity of mnemonic processes.

  4. Metabolomics of Genetically Modified Crops

    OpenAIRE

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resul...

  5. Metabolomics in psoriatic disease: pilot study reveals metabolite differences in psoriasis and psoriatic arthritis [v1; ref status: indexed, http://f1000r.es/3vr

    OpenAIRE

    April W. Armstrong; Julie Wu; Mary Ann Johnson; Dmitry Grapov; Baktazh Azizi; Jaskaran Dhillon; Oliver Fiehn

    2014-01-01

    Importance: While “omics” studies have advanced our understanding of inflammatory skin diseases, metabolomics is mostly an unexplored field in dermatology. Objective: We sought to elucidate the pathogenesis of psoriatic diseases by determining the differences in metabolomic profiles among psoriasis patients with or without psoriatic arthritis and healthy controls. Design: We employed a global metabolomics approach to compare circulating metabolites from patients with psoriasis, psoriasis and ...

  6. Neuropsychological profile of Parkinson's disease patients selected for deep brain stimulation surgery

    Directory of Open Access Journals (Sweden)

    Flavia Amaral Machado

    Full Text Available ABSTRACT Background: Parkinson's disease (PD shows symptoms involving motor and non-motor complications, including cognitive and behavioral changes, such changes might to contraindicate deep brain stimulation surgery (DBS. Objective: The aim of study was to investigate the neuropsychological profile of patients with PD in a waiting list for DBS. Methods: The neuropsychological evaluation was held in 30 patients of the ISCMPA Movement Disorders Clinic, with surgical indication based on the criteria of the responsible neurologists, in the period of 12 months. Instruments used: MMSE, FAB, MoCA, BDI, Semantic Verbal Fluency, PDQ-39, PDSS; and the UPDRS and Hoehn-Yahr scale. Results: The patients were mostly male (66.7% with a mean age of 59.37 (SD 10.60 and disease duration 9.33 (SD 4.08. There was cognitive impairment in 56.7% of patients by FAB and 76.7% by MoCA. Conclusion: Even in the earliest stages of the disease, there is the incidence of non-motor symptoms, especially in those subjects who had an early onset of the disease.

  7. Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis

    DEFF Research Database (Denmark)

    Park, June-Hee; Lee, Hedok; Makaryus, Rany

    2014-01-01

    RATIONALE: Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive......-PDGF mice, when compared to normal brain tissue in the control mice. CONCLUSIONS: Metabolic profiling using 1HMRS in combination with LCModel analysis did not reveal correlation between Lip13a+Lip13b spectral signatures and an increase in neurogenesis in adult rat hippocampus after ECS. However, increases...

  8. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications.

    Science.gov (United States)

    Amathieu, Roland; Triba, Mohamed Nawfal; Goossens, Corentine; Bouchemal, Nadia; Nahon, Pierre; Savarin, Philippe; Le Moyec, Laurence

    2016-01-01

    Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. It is an "omics" technique that is situated downstream of genomics, transcriptomics and proteomics. Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes. During the last decade, metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways. It is a powerful technique to improve our pathophysiological knowledge of various liver diseases. It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease. It can also assess therapeutic response or predict drug induced liver injury. Nevertheless, the usefulness of metabolomics is often not understood by clinicians, especially the concept of metabolomics profiling or fingerprinting. In the present work, after a concise description of the different techniques and processes used in metabolomics, we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies. We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical "routine".

  9. Pharma-metabolomics in neonatology: is it a dream or a fact?

    Science.gov (United States)

    Fanos, Vassilios; Barberini, Luigi; Antonucci, Roberto; Atzori, Luigi

    2012-01-01

    The 'omics' technologies represent analytical approaches that have a holistic view on molecules such as genes, transcripts, proteins and metabolites constituting a cell, tissue or organism. The profiling of genes, transcripts and proteins has been referred to as genomics, transcriptomics and proteomics. Finally, there is the youngest and most rapidly increasing of the "omics" disciplines: metabolomics. Metabolomics appears to be a new, very useful tool in neonatology, especially in the fields of pharma-metabolomics and nutri- metabolomics. Since it appears to be predictive and preventive, it can be considered the 'new clinical chemistry' for personalized neonatal medicine. At present, the use of metabolomics in neonatology is still in the pioneering phase. In clinical practice, only a limited number of metabolites are routinely measured in the biofluids of newborns by conventional analytical methods to study the metabolic status of the organism. However, the management of sick or preterm newborns might be improved if more information on perinatal/ neonatal maturational processes and their metabolic background were available. The aim of this review, after a general introduction on pharma-metabolomics, is to present the potential of NMR-based metabolomic analysis of newbom urine in neonatology in the field of pharmacology.

  10. Dynamic Profiling: Modeling the Dynamics of Inflammation and Predicting Outcomes in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Gregory Constantine

    2016-11-01

    Full Text Available Inflammation induced by traumatic brain injury (TBI is complex, individual-specific, and associated with morbidity and mortality. We sought to develop dynamic, data-driven, predictive computational models of TBI-induced inflammation based on cerebrospinal fluid (CSF biomarkers. Thirteen inflammatory mediators were determined in serial CSF samples from 27 severe TBI patients. The Glasgow Coma Scale (GCS score quantifies the initial severity of the neurological status of the patient on a numerical scale from 3 to 15. The 6-month Glasgow Outcome Scale (GOS score, the outcome variable, was taken as the variable to express and predict as a function of the other input variables. Data on each subject consisting of ten clinical (one-dimensional variables, such as age, gender, and presence of infection, along with inflammatory biomarker time series were used to generate both multinomial logistic as well as probit models that predict low (poor outcome or high (favorable outcome levels of the GOS score. To determine if CSF inflammation biomarkers could predict TBI outcome, a logistic model for low (≤3; poor neurological outcome or high levels (≥4; favorable neurological outcome of the GOS score involving a full effect of the pro-inflammatory cytokine tumor necrosis factor- and both linear and quadratic effects of the anti-inflammatory cytokine interleukin-10 was obtained. To better stratify patients as their pathology progresses over time, a technique called Dynamic Profiling was developed in which patients were clustered, using the spectral Laplacian and Hartigan's k-means method, into disjoint groups at different stages. Initial clustering was based on GCS score; subsequent clustering was performed based on clinical and demographic information and then further, sequential clustering based on the levels of individual inflammatory mediators over time. These clusters assess the risk of mortality of a new patient after each inflammatory mediator

  11. Metabolomic analysis of normal and sickle cell erythrocytes.

    Science.gov (United States)

    Darghouth, D; Koehl, B; Junot, C; Roméo, P-H

    2010-09-01

    Metabolic signatures of specialized circulating hematopoietic cells in physiological or human hematological diseases start to be described. We use a simple and highly reproductive extraction method of erythrocytes metabolites coupled with a liquid chromatography-mass spectrometry based metabolites profiling method to determine metabolomes of normal and sickle cell erythrocytes. Sickle cell erythrocytes and normal erythrocytes metabolomes display major differences in glycolysis, in glutathione, in ascorbate metabolisms and in metabolites associated to membranes turnover. In addition, the amounts of metabolites derived from urea cycle and NO metabolism that partly take place within erythrocyte were different between normal and sickle cell erythrocytes. These results show that metabolic profiling of red blood cell diseases can now be determined and might indicate new biomarkers that can be used for the follow-up of sickle cell patients.

  12. A Metabolomic Perspective on Coeliac Disease

    NARCIS (Netherlands)

    Calabrò, A.; Gralka, E.; Luchinat, C.; Saccenti, E.; Tenori, L.

    2014-01-01

    Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already pr

  13. The next wave in metabolome analysis

    DEFF Research Database (Denmark)

    Nielsen, Jens; Oliver, S.

    2005-01-01

    to the genome makes it difficult to interpret metabolomic data. Nevertheless, functional genomics has produced examples of the use of metabolomics to elucidate the phenotypes of otherwise silent mutations. Despite several successes, we believe that future metabolomic studies must focus on the accurate...

  14. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate.

    Science.gov (United States)

    Misra, Biswapriya B; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.

  15. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate.

    Directory of Open Access Journals (Sweden)

    Biswapriya B Misra

    Full Text Available Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-. Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids, and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.

  16. Variable selection in the explorative analysis of several data blocks in metabolomics

    DEFF Research Database (Denmark)

    Karaman, İbrahim; Nørskov, Natalja; Yde, Christian Clement

    highly correlated data sets in one integrated approach. Due to the high number of variables in data sets from metabolomics (both raw data and after peak picking) the selection of important variables in an explorative analysis is difficult, especially when different data sets of metabolomics data need...... to be related. Tools for the handling of mental overflow minimising false discovery rates both by using statistical and biological validation in an integrative approach are needed. In this paper different strategies for variable selection were considered with respect to false discovery and the possibility...... for biological validation. The data set used in this study is metabolomics data from an animal intervention study. The aim of the metabolomics study was to investigate the metabolic profile in pigs fed various cereal fractions with special attention to the metabolism of lignans using NMR and LC-MS based...

  17. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling

    Science.gov (United States)

    Das, Shamik; Jackson, William P.; Prasain, Jeevan K.; Hanna, Ann; Bailey, Sarah K.; Tucker, J. Allan; Bae, Sejong; Wilson, Landon S.; Samant, Rajeev S.; Barnes, Stephen; Shevde, Lalita A.

    2017-01-01

    The tumor suppressor protein Merlin is proteasomally degraded in breast cancer. We undertook an untargeted metabolomics approach to discern the global metabolomics profile impacted by Merlin in breast cancer cells. We discerned specific changes in glutathione metabolites that uncovered novel facets of Merlin in impacting the cancer cell metabolome. Concordantly, Merlin loss increased oxidative stress causing aberrant activation of Hedgehog signaling. Abrogation of GLI-mediated transcription activity compromised the aggressive phenotype of Merlin-deficient cells indicating a clear dependence of cells on Hedgehog signaling. In breast tumor tissues, GLI1 expression enhanced tissue identification and discriminatory power of Merlin, cumulatively presenting a powerful substantiation of the relationship between these two proteins. We have uncovered, for the first time, details of the tumor cell metabolomic portrait modulated by Merlin, leading to activation of Hedgehog signaling. Importantly, inhibition of Hedgehog signaling offers an avenue to target the vulnerability of tumor cells with loss of Merlin. PMID:28112165

  18. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model

    Science.gov (United States)

    Newman, Monica A.; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U.

    2017-01-01

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p pigs. The MTT showed increased (p pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles. PMID:28300770

  19. Brain Metabolic Changes in Rats following Acoustic Trauma

    Science.gov (United States)

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F.; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive “tinnitus-causing” network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine

  20. Metabolomics: moving towards personalized medicine

    Directory of Open Access Journals (Sweden)

    Reniero Fabiano

    2009-10-01

    Full Text Available Abstract In many fields of medicine there is a growing interest in characterizing diseases at molecular level with a view to developing an individually tailored therapeutic approach. Metabolomics is a novel area that promises to contribute significantly to the characterization of various disease phenotypes and to the identification of personal metabolic features that can predict response to therapies. Based on analytical platforms such as mass spectrometry or NMR-based spectroscopy, the metabolomic approach enables a comprehensive overview of the metabolites, leading to the characterization of the metabolic fingerprint of a given sample. These metabolic fingerprints can then be used to distinguish between different disease phenotypes and to predict a drug's effectiveness and/or toxicity. Several studies published in the last few years applied the metabolomic approach in the field of pediatric medicine. Being a highly informative technique that can be used on samples collected non-invasively (e.g. urine or exhaled breath condensate, metabolomics has appeal for the study of pediatric diseases. Here we present and discuss the pediatric clinical studies that have taken the metabolomic approach.

  1. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach

    Science.gov (United States)

    Yang, Liu; Yu, Qing-Tao; Ge, Ya-Zhong; Zhang, Wen-Song; Fan, Yong; Ma, Chung-Wah; Liu, Qun; Qi, Lian-Wen

    2016-01-01

    Ginseng occupies a prominent position in the list of best-selling natural products worldwide. Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) show different properties and medicinal applications in pharmacology, even though the main active constituents of them are both thought to be ginsenosides. Metabolomics is a promising method to profile entire endogenous metabolites and monitor their fluctuations related to exogenous stimulus. Herein, an untargeted metabolomics approach was applied to study the overall urine metabolic differences between Asian ginseng and American ginseng in mice. Metabolomics analyses were performed using gas chromatography-mass spectrometry (GC-MS) together with multivariate statistical data analysis. A total of 21 metabolites related to D-glutamine and D-glutamate metabolism, glutathione metabolism, TCA cycle and glyoxylate and dicarboxylate metabolism, differed significantly under the Asian ginseng treatment; 34 metabolites mainly associated with glyoxylate and dicarboxylate metabolism, TCA cycle and taurine and hypotaurine metabolism, were significantly altered after American ginseng treatment. Urinary metabolomics reveal that Asian ginseng and American ginseng can benefit organism physiological and biological functions via regulating multiple metabolic pathways. The important pathways identified from Asian ginseng and American ginseng can also help to explore new therapeutic effects or action targets so as to broad application of these two ginsengs. PMID:27991533

  2. Food metabolomics: from farm to human.

    Science.gov (United States)

    Kim, Sooah; Kim, Jungyeon; Yun, Eun Ju; Kim, Kyoung Heon

    2016-02-01

    Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans.

  3. Preprocessing of NMR metabolomics data.

    Science.gov (United States)

    Euceda, Leslie R; Giskeødegård, Guro F; Bathen, Tone F

    2015-05-01

    Metabolomics involves the large scale analysis of metabolites and thus, provides information regarding cellular processes in a biological sample. Independently of the analytical technique used, a vast amount of data is always acquired when carrying out metabolomics studies; this results in complex datasets with large amounts of variables. This type of data requires multivariate statistical analysis for its proper biological interpretation. Prior to multivariate analysis, preprocessing of the data must be carried out to remove unwanted variation such as instrumental or experimental artifacts. This review aims to outline the steps in the preprocessing of NMR metabolomics data and describe some of the methods to perform these. Since using different preprocessing methods may produce different results, it is important that an appropriate pipeline exists for the selection of the optimal combination of methods in the preprocessing workflow.

  4. Metabolomics techniques in nanotoxicology studies.

    Science.gov (United States)

    Schnackenberg, Laura K; Sun, Jinchun; Beger, Richard D

    2012-01-01

    The rapid growth in the development of nanoparticles for uses in a variety of applications including targeted drug delivery, cancer therapy, imaging, and as biological sensors has led to questions about potential toxicity of such particles to humans. High-throughput methods are necessary to evaluate the potential toxicity of nanoparticles. The omics technologies are particularly well suited to evaluate toxicity in both in vitro and in vivo systems. Metabolomics, specifically, can rapidly screen for biomarkers related to predefined pathways or processes in biofluids and tissues. Specifically, oxidative stress has been implicated as a potential mechanism of toxicity in nanoparticles and is generally difficult to measure by conventional methods. Furthermore, metabolomics can provide mechanistic insight into nanotoxicity. This chapter focuses on the application of both LC/MS and NMR-based metabolomics approaches to study the potential toxicity of nanoparticles.

  5. Cognition in patients with newly diagnosed brain metastasis: profiles and implications.

    Science.gov (United States)

    Gerstenecker, Adam; Nabors, Louis B; Meneses, Karen; Fiveash, John B; Marson, Daniel C; Cutter, Gary; Martin, Roy C; Meyers, Christina A; Triebel, Kristen L

    2014-10-01

    Cognitive impairment is a common symptom in patients with brain metastasis, and significant cognitive dysfunction is prevalent in a majority of patients who are still able to engage in basic self-care activities. In the current study, the neurocognitive performance of 32 patients with brain metastasis and 32 demographically-matched controls was examined using a battery of standardized neuropsychological tests, with the goal of comprehensively examining the cognitive functioning of newly diagnosed brain metastasis patients. The cognition of all patients was assessed within 1 week of beginning treatment for brain metastasis. Results indicated impairments in verbal memory, attention, executive functioning, and language in relation to healthy controls. Performance in relation to appropriate normative groups was also examined. Overall, cognitive deficits were prevalent and memory was the most common impairment. Given that cognitive dysfunction was present in this cohort of patients with largely minimal functional impairment, these results have implications for patients, caregivers and health care providers treating patients with brain metastasis.

  6. [Optimized sample preparation for metabolome studies on Streptomyces coelicolor].

    Science.gov (United States)

    Li, Yihong; Li, Shanshan; Ai, Guomin; Wang, Weishan; Zhang, Buchang; Yang, Keqian

    2014-04-01

    Streptomycetes produce many antibiotics and are important model microorgansims for scientific research and antibiotic production. Metabolomics is an emerging technological platform to analyze low molecular weight metabolites in a given organism qualitatively and quantitatively. Compared to other Omics platform, metabolomics has greater advantage in monitoring metabolic flux distribution and thus identifying key metabolites related to target metabolic pathway. The present work aims at establishing a rapid, accurate sample preparation protocol for metabolomics analysis in streptomycetes. In the present work, several sample preparation steps, including cell quenching time, cell separation method, conditions for metabolite extraction and metabolite derivatization were optimized. Then, the metabolic profiles of Streptomyces coelicolor during different growth stages were analyzed by GC-MS. The optimal sample preparation conditions were as follows: time of low-temperature quenching 4 min, cell separation by fast filtration, time of freeze-thaw 45 s/3 min and the conditions of metabolite derivatization at 40 degrees C for 90 min. By using this optimized protocol, 103 metabolites were finally identified from a sample of S. coelicolor, which distribute in central metabolic pathways (glycolysis, pentose phosphate pathway and citrate cycle), amino acid, fatty acid, nucleotide metabolic pathways, etc. By comparing the temporal profiles of these metabolites, the amino acid and fatty acid metabolic pathways were found to stay at a high level during stationary phase, therefore, these pathways may play an important role during the transition between the primary and secondary metabolism. An optimized protocol of sample preparation was established and applied for metabolomics analysis of S. coelicolor, 103 metabolites were identified. The temporal profiles of metabolites reveal amino acid and fatty acid metabolic pathways may play an important role in the transition from primary to

  7. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access.

    Science.gov (United States)

    Salek, Reza M; Neumann, Steffen; Schober, Daniel; Hummel, Jan; Billiau, Kenny; Kopka, Joachim; Correa, Elon; Reijmers, Theo; Rosato, Antonio; Tenori, Leonardo; Turano, Paola; Marin, Silvia; Deborde, Catherine; Jacob, Daniel; Rolin, Dominique; Dartigues, Benjamin; Conesa, Pablo; Haug, Kenneth; Rocca-Serra, Philippe; O'Hagan, Steve; Hao, Jie; van Vliet, Michael; Sysi-Aho, Marko; Ludwig, Christian; Bouwman, Jildau; Cascante, Marta; Ebbels, Timothy; Griffin, Julian L; Moing, Annick; Nikolski, Macha; Oresic, Matej; Sansone, Susanna-Assunta; Viant, Mark R; Goodacre, Royston; Günther, Ulrich L; Hankemeier, Thomas; Luchinat, Claudio; Walther, Dirk; Steinbeck, Christoph

    Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative 'coordination of standards in metabolomics' (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities' participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards.

  8. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus.

    Science.gov (United States)

    Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J

    2015-12-16

    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, L-citrulline, L-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  9. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Joanna Hajduk

    2015-12-01

    Full Text Available The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18 and a matched control group (n = 13. The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44% and specificity (84.62%, as well as the total group membership classification value (90.32% calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  10. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury

    OpenAIRE

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U.; De Gasperi, Rita; Gama Sosa, Miguel A.; Ahlers, Stephen T.; Elder, Gregory A.

    2015-01-01

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that hav...

  11. Connectome and Maturation Profiles of the Developing Mouse Brain Using Diffusion Tensor Imaging.

    Science.gov (United States)

    Ingalhalikar, Madhura; Parker, Drew; Ghanbari, Yasser; Smith, Alex; Hua, Kegang; Mori, Susumu; Abel, Ted; Davatzikos, Christos; Verma, Ragini

    2015-09-01

    This paper presents a comprehensive effort to establish a structural mouse connectome using diffusion tensor magnetic resonance imaging coupled with connectivity analysis tools. This work lays the foundation for imaging-based structural connectomics of the mouse brain, potentially facilitating a whole-brain network analysis to quantify brain changes in connectivity during development, as well as deviations from it related to genetic effects. A connectomic trajectory of maturation during postnatal ages 2-80 days is presented in the C57BL/6J mouse strain, using a whole-brain connectivity analysis, followed by investigations based on local and global network features. The global network measures of density, global efficiency, and modularity demonstrated a nonlinear relationship with age. The regional network metrics, namely degree and local efficiency, displayed a differential change in the major subcortical structures such as the thalamus and hippocampus, and cortical regions such as visual and motor cortex. Finally, the connectomes were used to derive an index of "brain connectivity index," which demonstrated a high correlation (r = 0.95) with the chronological age, indicating that brain connectivity is a good marker of normal age progression, hence valuable in detecting subtle deviations from normality caused by genetic, environmental, or pharmacological manipulations.

  12. Wechsler Adult Intelligence Scale-Third Edition profiles and their relationship to self-reported outcome following traumatic brain injury.

    Science.gov (United States)

    Harman-Smith, Yasmin E; Mathias, Jane L; Bowden, Stephen C; Rosenfeld, Jeffrey V; Bigler, Erin D

    2013-01-01

    Neuropsychological assessments of outcome after traumatic brain injury (TBI) are often unrelated to self-reported problems after TBI. The current study cluster-analyzed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) subtest scores from mild, moderate, and severe TBI (n=220) and orthopedic injury control (n=95) groups, to determine whether specific cognitive profiles are related to people's perceived outcomes after TBI. A two-stage cluster analysis produced 4- and 6-cluster solutions, with the 6-cluster solution better capturing subtle variations in cognitive functioning. The 6 clusters differed in the levels and profiles of cognitive performance, self-reported recovery, and education and injury severity. The findings suggest that subtle cognitive impairments after TBI should be interpreted in conjunction with patient's self-reported problems.

  13. Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert; Barbeta, Adrià; Sardans, Jordi; Guenther, Alex; Ogaya, Romà; Oravec, Michal; Urban, Otmar; Peñuelas, Josep

    2016-08-01

    Soils provide physical support, water, and nutrients to terrestrial plants. Upper soil layers are crucial for forest dynamics, especially under drought conditions, because many biological processes occur there and provide support, water and nutrients to terrestrial plants. We postulated that tree size and overall plant function manifested in the metabolome composition, the total set of metabolites, were dependent on the depth of upper soil layers and on water availability. We sampled leaves for stoichiometric and metabolomic analyses once per season from differently sized Quercus ilex trees under natural and experimental drought conditions as projected for the coming decades. Different sized trees had different metabolomes and plots with shallower soils had smaller trees. Soil moisture of the upper soil did not explain the tree size and smaller trees did not show higher concentrations of biomarker metabolites related to drought stress. However, the impact of drought treatment on metabolomes was higher in smaller trees in shallower soils. Our results suggested that tree size was more dependent on the depth of the upper soil layers, which indirectly affect the metabolomes of the trees, than on the moisture content of the upper soil layers. Metabolomic profiling of Q. ilex supported the premise that water availability in the upper soil layers was not necessarily correlated with tree size. The higher impact of drought on trees growing in shallower soils nevertheless indicates a higher vulnerability of small trees to the future increase in frequency, intensity, and duration of drought projected for the Mediterranean Basin and other areas. Metabolomics has proven to be an excellent tool detecting significant metabolic changes among differently sized individuals of the same species and it improves our understanding of the connection between plant metabolomes and environmental variables such as soil depth and moisture content.

  14. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  15. A brain region-specific predictive gene map for autism derived by profiling a reference gene set.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    Full Text Available Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84, we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO enrichment analysis which encompassed three main areas: 1 neurogenesis/projection, 2 cell adhesion, and 3 ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe, executive function (prefrontal cortex, and hormone secretion (pituitary. Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research.

  16. Impact of storage conditions on the urinary metabolomics fingerprint.

    Science.gov (United States)

    Laparre, Jérôme; Kaabia, Zied; Mooney, Mark; Buckley, Tom; Sherry, Mark; Le Bizec, Bruno; Dervilly-Pinel, Gaud

    2017-01-25

    Urine stability during storage is essential in metabolomics to avoid misleading conclusions or erroneous interpretations. Facing the lack of comprehensive studies on urine metabolome stability, the present work performed a follow-up of potential modifications in urinary chemical profile using LC-HRMS on the basis of two parameters: the storage temperature (+4 °C, -20 °C, -80 °C and freeze-dried stored at -80 °C) and the storage duration (5-144 days). Both HILIC and RP chromatographies have been implemented in order to globally monitor the urinary metabolome. Using an original data processing associated to univariate and multivariate data analysis, our study confirms that chemical profiles of urine samples stored at +4 °C are very rapidly modified, as observed for instance for compounds such as:N-acetyl Glycine, Adenosine, 4-Amino benzoic acid, N-Amino diglycine, creatine, glucuronic acid, 3-hydroxy-benzoic acid, pyridoxal, l-pyroglutamic acid, shikimic acid, succinic acid, thymidine, trigonelline and valeryl-carnitine, while it also demonstrates that urine samples stored at -20 °C exhibit a global stability over a long period with no major modifications compared to -80 °C condition. This study is the first to investigate long term stability of urine samples and report potential modifications in the urinary metabolome, using both targeted approach monitoring individually a large number (n > 200) of urinary metabolites and an untargeted strategy enabling assessing for global impact of storage conditions.

  17. Recent advances of metabolomics in plant biotechnology.

    Science.gov (United States)

    Okazaki, Yozo; Saito, Kazuki

    2012-01-01

    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants.

  18. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  19. LINKING MOTOR-RELATED BRAIN POTENTIALS AND VELOCITY PROFILES IN MULTI-JOINT ARM REACHING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Julià L Amengual

    2014-04-01

    Full Text Available The study of the movement related brain potentials (MRPBs needs accurate technical approaches to disentangle the specific patterns of bran activity during the preparation and execution of movements. During the last forty years, synchronizing the electromiographic activation (EMG of the muscle with the electrophysiological recordings (EEG has been commonly ussed for these purposes. However, new clinical approaches in the study of motor diseases and rehabilitation suggest the demand of new paradigms that might go further into the study of the brain activity associated with the kinematics of movement. As a response to this call, we have used a 3-D hand tracking system with the aim to record continuously the position of an ultrasonic sender located on the hand during the performance of multi-joint self-pace movements. We synchronized the time-series of position of velocity of the sender with the EEG recordings, obtaining specific patterns of brain activity as a function of the fluctuations of the kinematics during the natural movement performance. Additionally, the distribution of the brain activity during the preparation and execution phases of movement was similar that reported previously using the EMG, suggesting the validity of our technique. We claim that this paradigm could be usable in patients because of its simplicity and the potential knowledge that can be extracted from clinical protocols.

  20. Profile analysis of hepatic porcine and murine brain tissue slices obtained with a vibratome.

    Science.gov (United States)

    Mattei, G; Cristiani, I; Magliaro, C; Ahluwalia, A

    2015-01-01

    This study is aimed at characterizing soft tissue slices using a vibratome. In particular, the effect of two sectioning parameters (i.e., step size and sectioning speed) on resultant slice thickness was investigated for fresh porcine liver as well as for paraformaldehyde-fixed (PFA-fixed) and fresh murine brain. A simple framework for embedding, sectioning and imaging the slices was established to derive their thickness, which was evaluated through a purposely developed graphical user interface. Sectioning speed and step size had little effect on the thickness of fresh liver slices. Conversely, the thickness of PFA-fixed murine brain slices was found to be dependent on the step size, but not on the sectioning speed. In view of these results, fresh brain tissue was sliced varying the step size only, which was found to have a significant effect on resultant slice thickness. Although precision-cut slices (i.e., with regular thickness) were obtained for all the tissues, slice accuracy (defined as the match between the nominal step size chosen and the actual slice thickness obtained) was found to increase with tissue stiffness from fresh liver to PFA-fixed brain. This quantitative investigation can be very helpful for establishing the most suitable slicing setup for a given tissue.

  1. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  2. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  3. Metabolomics investigation of whey intake

    DEFF Research Database (Denmark)

    Stanstrup, Jan

    interest since it has been shown that it is possible to achieve greater weight loss on a high protein diet as oppose to a high carbohydrate diet. Furthermore, it has been demonstrated that specifically milk-derived whey proteins have certain biological properties that might be beneficial in the treatment...... and prevention of the metabolic syndrome related to obesity and diabetes. In this thesis the effects of whey intake on the human metabolome was investigated using a metabolomics approach. We demonstrated that intake of whey causes a decreased rate of gastric emptying compared to other protein sources....... This is in contrast to previous findings suggesting that whey is cleared faster than other proteins. Paradoxically, we also find disproportionately elevated levels of some amino acids (AAs) following the whey meal. This suggests that whey affects absorption of AAs in a way independent from, or at least not wholly...

  4. Current Advances in the Metabolomics Study on Lotus Seeds.

    Science.gov (United States)

    Zhu, Mingzhi; Liu, Ting; Guo, Mingquan

    2016-01-01

    Lotus (Nelumbo nucifera), which is distributed widely throughout Asia, Australia and North America, is an aquatic perennial that has been cultivated for over 2,000 years. It is very stimulating that almost all parts of lotus have been consumed as vegetable as well as food, especially the seeds. Except for the nutritive values of lotus, there has been increasing interest in its potential as functional food due to its rich secondary metabolites, such as flavonoids and alkaloids. Not only have these metabolites greatly contributed to the biological process of lotus seeds, but also have been reported to possess multiple health-promoting effects, including antioxidant, anti-amnesic, anti-inflammatory, and anti-tumor activities. Thus, comprehensive metabolomic profiling of these metabolites is of key importance to help understand their biological activities, and other chemical biology features. In this context, this review will provide an update on the current technological platforms, and workflow associated with metabolomic studies on lotus seeds, as well as insights into the application of metabolomics for the improvement of food safety and quality, assisting breeding, and promotion of the study of metabolism and pharmacokinetics of lotus seeds; meanwhile it will also help explore new perspectives and outline future challenges in this fast-growing research subject.

  5. Metabolomics reveals insect metabolic responses associated with fungal infection.

    Science.gov (United States)

    Xu, Yong-Jiang; Luo, Feifei; Gao, Qiang; Shang, Yanfang; Wang, Chengshu

    2015-06-01

    The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions.

  6. Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig

    DEFF Research Database (Denmark)

    Hanhineva, Kati; Barri, Thaer; Kolehmainen, Marjukka

    2013-01-01

    as various lipid species were detected. The high fat diet influenced metabolic homeostasis of Ossabaw pigs, especially the lipid metabolome, throughout all the analyzed sample types, including plasma, urine, bile, liver, pancreas, brain cortex, intestinal jejunum and proximal colon. However, even dramatic...... metabolic changes in tissues were not necessarily observed in plasma and urine. Metabolite profiling involving multiple sample types was shown to be a feasible method for the examination of a wide spectrum of metabolic species extending from small water soluble metabolites to an array of bile acids......Typical clinical biomarker analyses on urine and plasma samples from human dietary interventions do not provide adequate information about diet-induced metabolic changes taking place in tissues. The aim of this study was to show how a large-scale non-targeted metabolomic approach can be used...

  7. Magnetic Resonance Imaging Profile of Blood–Brain Barrier Injury in Patients With Acute Intracerebral Hemorrhage

    Science.gov (United States)

    Aksoy, Didem; Bammer, Roland; Mlynash, Michael; Venkatasubramanian, Chitra; Eyngorn, Irina; Snider, Ryan W.; Gupta, Sandeep N.; Narayana, Rashmi; Fischbein, Nancy; Wijman, Christine A. C.

    2013-01-01

    Background Spontaneous intracerebral hemorrhage (ICH) is associated with blood–brain barrier (BBB) injury, which is a poorly understood factor in ICH pathogenesis, potentially contributing to edema formation and perihematomal tissue injury. We aimed to assess and quantify BBB permeability following human spontaneous ICH using dynamic contrast‐enhanced magnetic resonance imaging (DCE MRI). We also investigated whether hematoma size or location affected the amount of BBB leakage. Methods and Results Twenty‐five prospectively enrolled patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were examined using DCE MRI at 1 week after symptom onset. Contrast agent dynamics in the brain tissue and general tracer kinetic modeling were used to estimate the forward leakage rate (Ktrans) in regions of interest (ROI) in and surrounding the hematoma and in contralateral mirror–image locations (control ROI). In all patients BBB permeability was significantly increased in the brain tissue immediately adjacent to the hematoma, that is, the hematoma rim, compared to the contralateral mirror ROI (P30 mL) had higher Ktrans values than small hematomas (P<0.005). Ktrans values of lobar hemorrhages were significantly higher than the Ktrans values of deep hemorrhages (P<0.005), independent of hematoma volume. Higher Ktrans values were associated with larger edema volumes. Conclusions BBB leakage in the brain tissue immediately bordering the hematoma can be measured and quantified by DCE MRI in human ICH. BBB leakage at 1 week is greater in larger hematomas as well as in hematomas in lobar locations and is associated with larger edema volumes. PMID:23709564

  8. The profile of head injuries and traumatic brain injury deaths in Kashmir

    Directory of Open Access Journals (Sweden)

    Tabish Amin

    2008-06-01

    Full Text Available Abstract This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI deaths were also studied retrospectively for a period of eight years (1996 to 2003. The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21–30 years (18.8%, followed by 11–20 years age group (17.8% and 31–40 years (14.3%. The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas. To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients

  9. Terminal Continuation (TC RNA Amplification Enables Expression Profiling Using Minute RNA Input Obtained from Mouse Brain

    Directory of Open Access Journals (Sweden)

    Stephen D. Ginsberg

    2008-10-01

    Full Text Available A novel methodology named terminal continuation (TC RNA amplification has been developed to amplify RNA from minute amounts of starting material. Utility of the TC RNA amplification method is demonstrated with two new modifications including obviating the need for second strand synthesis, and purifying the amplification template using column filtration prior to in vitro transcription (IVT. Using four low concentrations of RNA extracted from mouse brain (1, 10, 25 and 50 ng, one round TC RNA amplification was compared to one round amplified antisense RNA (aRNA in conjunction with column filtration and drop dialysis purification. The TC RNA amplification without second strand synthesis performed extremely well on customdesigned cDNA array platforms, and column filtration was found to provide higher positive detection of individual clones when hybridization signal intensity was subtracted from corresponding negative control hybridization signal levels. Results indicate that TC RNA amplification without second strand synthesis, in conjunction with column filtration, is an excellent method for RNA amplification from extremely small amounts of input RNA from mouse brain and postmortem human brain, and is compatible with microaspiration strategies and subsequent microarray analysis.

  10. The profile of head injuries and traumatic brain injury deaths in Kashmir.

    Science.gov (United States)

    Yattoo, Gh; Tabish, Amin

    2008-01-01

    This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI) deaths were also studied retrospectively for a period of eight years (1996 to 2003).The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21-30 years (18.8%), followed by 11-20 years age group (17.8%) and 31-40 years (14.3%). The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas.To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres) need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients.

  11. Lecture: profile of risks and benefits of new antiepileptic drugs in brain tumor-related epilepsy.

    Science.gov (United States)

    Maschio, Marta; Dinapoli, L

    2011-11-01

    In patients with brain tumor, seizures are the onset symptom in 20-40% of the patients, while a further 20-45% of the patients will present them during the course of the disease. These data are important when considering the choice of antiepileptic drugs for this particular patient population, because brain tumor-related epilepsy (BTRE) is often drug resistant, has a strong impact on the quality of life and weighs heavily on public health expenditures. In brain tumor patients, the presence of epilepsy is considered as the most important risk factor for long-term disability. For this reason, the problem of the proper administration of medications and their potential side effects is of great importance, because good seizure control can significantly improve the patient's psychological and relational sphere. In these patients, new generation drugs such as gabapentin, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, topiramate, and zonisamide are preferred, because they have fewer drug interactions and cause fewer side effects. Among the recently marketed drugs, lacosamide has demonstrated promising results and should be considered as a possible treatment option. Therefore, it is necessary to develop a customized treatment plan for each patient with BTRE, whose goals are complete seizure control, minimal or no side effects, and elimination of cognitive impairment and/or psychosocial problems.

  12. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice.

    Science.gov (United States)

    Shein, Steven L; Shellington, David K; Exo, Jennifer L; Jackson, Travis C; Wisniewski, Stephen R; Jackson, Edwin K; Vagni, Vincent A; Bayır, Hülya; Clark, Robert S B; Dixon, C Edward; Janesko-Feldman, Keri L; Kochanek, Patrick M

    2014-08-15

    Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.

  13. NMR-based metabolomics of prostate cancer: a protagonist in clinical diagnostics.

    Science.gov (United States)

    Kumar, Deepak; Gupta, Ashish; Nath, Kavindra

    2016-06-01

    Advances in the application of NMR spectroscopy-based metabolomic profiling of prostate cancer comprises a potential tactic for understanding the impaired biochemical pathways arising due to a disease evolvement and progression. This technique involves qualitative and quantitative estimation of plethora of small molecular weight metabolites of body fluids or tissues using state-of-the-art chemometric methods delivering an important platform for translational research from basic to clinical, to reveal the pathophysiological snapshot in a single step. This review summarizes the present arrays and recent advancements in NMR-based metabolomics and a glimpse of currently used medical imaging tactics, with their role in clinical diagnosis of prostate cancer.

  14. Development of a Traumatic Brain Injury Assessment Score Using Novel Biomarkers Discovered Through Autoimmune Profiling

    Science.gov (United States)

    2013-07-03

    the hypothesis that immune-based therapies may have a place in treating injuries of the CNS, particularly in conjunction with stem cell repair (38; 46...followed by centrifugation (3000 x g, 5 min, room temp) (35). Delipidated proteins were physically recovered as a pad positioned at the aqueous...with human serum from a patient with a well-established autoimmune profile resulting from systemic lupus erythematous. This array positively identified

  15. Recent advances in plant metabolomics and greener pastures.

    Science.gov (United States)

    Sumner, Lloyd W

    2010-01-27

    Metabolomics is an extension of the omics concept and experimental approaches. However, is metabolomics just another trendy omics fashion perturbation or is metabolomics actually delivering novel content and value? This article highlights some recent advances that definitely support the role of plant metabolomics in the movement toward greener pastures.

  16. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Science.gov (United States)

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  17. Specific expression profile and prognostic significance of peroxiredoxins in grade II-IV astrocytic brain tumors

    OpenAIRE

    Kinnula Vuokko L; Parkkila Seppo; Kallio Heini; Rodriguez Alejandra; Rantala Immo; Järvelä Sally; Soini Ylermi; Haapasalo Hannu

    2010-01-01

    Abstract Background Peroxiredoxins (Prxs) have recently been suggested to have a role in tumorigenesis. Methods We studied the expression of Prx I-VI and their relationship to patient survival in 383 grade II-IV diffuse astrocytic brain tumors. Results Prx I positivity was found in 68%, Prx II in 84%, Prx III in 90%, Prx IV in 5%, Prx V in 4% and Prx VI in 47% of the tumors. Prx I and Prx II expression decreased significantly with increasing malignancy grade (p < 0.001 and p < 0.001). Patient...

  18. WAIS-III and WMS-III profiles of mildly to severely brain-injured patients.

    Science.gov (United States)

    Fisher, D C; Ledbetter, M F; Cohen, N J; Marmor, D; Tulsky, D S

    2000-01-01

    Wechsler Adult Intelligence Scale-III (WAIS-III) and Wechsler Memory Scale-III (WMS-III; The Psychological Corporation, 1997) scores of patients with mild traumatic brain injury (MTBI, n = 23) to moderate-severe traumatic brain injury (M-S TBI, n = 22) were compared to those of 45 matched normal control patients. WAIS-III results revealed that IQ and index scores of MTBI patients did not significantly differ from those of controls, whereas M-S TBI patients received significantly lower mean scores on all measures. All M-S TBI patients' WMS-III index scores also revealed significantly lower scores in comparison to those of control participants, with the exception of Delayed Auditory Recognition. MTBI patients showed significantly lower mean index scores compared to normal controls on measures of immediate and delayed auditory memory, immediate memory, visual delayed memory, and general memory. Eta-squared analyses revealed that WMS-III visual indexes and WAIS-III processing speed showed particularly large effect sizes. These results suggest that symptomatic MTBI patients obtain some low WMS-III test scores comparable to those of more severely injured patients.

  19. Temperature elevation profile inside the rat brain induced by a laser beam

    Science.gov (United States)

    Ersen, Ali; Abdo, Ammar; Sahin, Mesut

    2014-01-01

    The thermal effect may be a desired outcome or a concerning side effect in laser-tissue interactions. Research in this area is particularly motivated by recent advances in laser applications in diagnosis and treatment of neurological disorders. Temperature as a side effect also limits the maximum power of optical transfer and harvesting of energy in implantable neural prostheses. The main objective was to investigate the thermal effect of a near-infrared laser beam directly aimed at the brain cortex. A small, custom-made thermal probe was inserted into the rat brain to make direct measurements of temperature elevations induced by a free-air circular laser beam. The time dependence and the spatial distribution of the temperature increases were studied and the maximum allowable optical power was determined to be 2.27 W/cm2 for a corresponding temperature increase of 0.5°C near the cortical surface. The results can be extrapolated for other temperature elevations, where the margin to reach potentially damaging temperatures is more relaxed, by taking advantage of linearity. It is concluded that the thermal effect depends on several factors such as the thermal properties of the neural tissue and of its surrounding structures, the optical properties of the particular neural tissue, and the laser beam size and shape. Because so many parameters play a role, the thermal effect should be investigated for each specific application separately using realistic in vivo models.

  20. Metabolomic changes in fatty liver can be modified by dietary protein and calcium during energy restriction

    Institute of Scientific and Technical Information of China (English)

    Taru K Pilvi; Tuulikki Sepp(a)nen-Laakso; Helena Simolin; Piet Finckenberg; Anne Huotari; Karl-Heinz Herzig; Riitta Korpela; Matej Ore(s)i(c); Eero M Mervaala

    2008-01-01

    AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium.METHODS: Liver metabolomic profile of lean and obese C57BI/6] mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic an alyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway metabolites.CONCLUSION: ER-induced changes on hepatic metabolomic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.

  1. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders.

    Science.gov (United States)

    Griffin, Julian L; Nicholls, Andrew W

    2006-10-01

    With the rise of systems biology, a number of approaches have been developed to globally profile a tier of organization in a cell, tissue or organism. Metabolomics is an approach that attempts to profile all the metabolites in a biological matrix. One of the major challenges of this approach, as with other 'omic' technologies, is that the metabolome is context-dependent and will vary with pathology, developmental stage and environmental factors. Thus, the possibility of globally profiling the metabolome of an organism is a genuine analytical challenge, as by definition this must also take into consideration all relevant factors that influence metabolism. Despite these challenges, the approach has already been applied to understand the metabolism in a range of animal models, and has more recently started to be projected into the clinical situation. In this review, the technologies currently being used in metabolomics will be assessed prior to examining their use to study diseases related to the metabolic syndrome, including Type II diabetes, obesity, cardiovascular disease and fatty liver disease.

  2. Specific expression profile and prognostic significance of peroxiredoxins in grade II-IV astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Kinnula Vuokko L

    2010-03-01

    Full Text Available Abstract Background Peroxiredoxins (Prxs have recently been suggested to have a role in tumorigenesis. Methods We studied the expression of Prx I-VI and their relationship to patient survival in 383 grade II-IV diffuse astrocytic brain tumors. Results Prx I positivity was found in 68%, Prx II in 84%, Prx III in 90%, Prx IV in 5%, Prx V in 4% and Prx VI in 47% of the tumors. Prx I and Prx II expression decreased significantly with increasing malignancy grade (p Conclusion The expression of Prx I and Prx II correlates with astrocytic tumor features, such as grade and patient age and proliferation activity (Prx I, and accordingly with patient survival.

  3. I know how you feel: the warm-altruistic personality profile and the empathic brain.

    Science.gov (United States)

    Haas, Brian W; Brook, Michael; Remillard, Laura; Ishak, Alexandra; Anderson, Ian W; Filkowski, Megan M

    2015-01-01

    The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth) and Agreeableness (Altruism) are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes) and within the brain (fMRI and an emotional perspective taking task) in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex) during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.

  4. I know how you feel: the warm-altruistic personality profile and the empathic brain.

    Directory of Open Access Journals (Sweden)

    Brian W Haas

    Full Text Available The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth and Agreeableness (Altruism are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes and within the brain (fMRI and an emotional perspective taking task in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.

  5. Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene networks specific for brain regions independent of genetic background

    NARCIS (Netherlands)

    de Jong, Simone; Fuller, Tova F; Janson, Esther; Strengman, Eric; Horvath, Steve; Kas, Martien J H; Ophoff, Roel A

    2010-01-01

    BACKGROUND: We performed gene expression profiling of the amygdala and hippocampus taken from inbred mouse strains C57BL/6J and A/J. The selected brain areas are implicated in neurobehavioral traits while these mouse strains are known to differ widely in behavior. Consequently, we hypothesized that

  6. Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients.

    Science.gov (United States)

    Takayama, Takahiro; Kuwabara, Tomohiro; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Inoue, Koichi; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2015-01-01

    Novel triazine-type chiral derivatization reagents, i.e., (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine (DMT-3(S)-Apy) and (S)-4,6-dimethoxy-N-(pyrrolidin-3-yl)-1,3,5-triazin-2-amine (DMT-1(S)-Apy), were developed for the highly sensitive and selective detection of chiral carboxylic acids by UPLC-MS/MS analysis. Among the synthesized reagents, DMT-3(S)-Apy was a more efficient chiral reagent for the enantiomeric separation of chiral carboxylic acids in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The DMT-3(S)-Apy was used for the determination of 13 carboxylic acids in human saliva of healthy volunteers and diabetic patients. Various biological carboxylic acids including chiral carboxylic acids, and mono- and di-carboxylic acids were clearly identified in the saliva of healthy persons and diabetic patients. The concentrations of carboxylic acids detected in the saliva of diabetic patients were relatively higher than those in the healthy persons. Furthermore, the concentration of D-lactic acid (LA) and the ratio of D/L-LA in the diabetic patients were significantly higher than those in the healthy persons. The low ratio of D/L-LA in healthy persons was also identified to be independent of age and sex. These results suggest that the determination of the D/L-LA ratio in saliva might be applicable for the diagnosis of diabetes. Based on these observations, DMT-3(S)-Apy seems to be a useful chiral derivatization reagent for the determination not only of chiral carboxylic acids but also achiral ones. In conclusion, the proposed method using DMT-3(S)-Apy is useful for the carboxylic acid metabolomics study of various specimens.

  7. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain.

    Science.gov (United States)

    Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2017-01-01

    Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo (1)H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

  8. Profile of patients with brain tumors and the role of nursing care

    Directory of Open Access Journals (Sweden)

    Kênia Cristina Soares Fonseca de Magalhães

    2016-02-01

    Full Text Available ABSTRACT Objective: to describe the profile of 200 patients with central nervous system tumors (CNST, and the role of the nursing care. Method: prospective, quantitative and descriptive analysis of medical records of 200 patients with TSNC. Results: a total of 61% of our patients had benign CNST and 39% had malignant tumors. The extent of patient dependence, according to the Karnofsky Performance Status scale, was significantly greater for patients with malignant CNST (p < .05, indicating that these patients needed more support with their activities of daily living. Conclusion: patients with CNST need specialized care, with specific guidance regarding their disease and aspects of daily living after treatment. Thus, the nurse can function as a key element for the effectiveness of care provided to patients and family members with the aim of enhancing the quality of life of all those affected, directly or indirectly, by the disease.

  9. Probabilistic Principal Component Analysis for Metabolomic Data.

    LENUS (Irish Health Repository)

    Nyamundanda, Gift

    2010-11-23

    Abstract Background Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. Results Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence intervals for estimated model parameters throughout. The optimal number of principal components is determined through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high dimensionality of the data. Conclusions The methods presented are illustrated through an application to metabolomic data sets. Jointly modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as loadings, allows for principled and clear interpretation of the underlying data structure. A software package called MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation of the presented methods in the metabolomics field.

  10. Computational Classification Approach to Profile Neuron Subtypes from Brain Activity Mapping Data.

    Science.gov (United States)

    Li, Meng; Zhao, Fang; Lee, Jason; Wang, Dong; Kuang, Hui; Tsien, Joe Z

    2015-07-27

    The analysis of cell type-specific activity patterns during behaviors is important for better understanding of how neural circuits generate cognition, but has not been well explored from in vivo neurophysiological datasets. Here, we describe a computational approach to uncover distinct cell subpopulations from in vivo neural spike datasets. This method, termed "inter-spike-interval classification-analysis" (ISICA), is comprised of four major steps: spike pattern feature-extraction, pre-clustering analysis, clustering classification, and unbiased classification-dimensionality selection. By using two key features of spike dynamic - namely, gamma distribution shape factors and a coefficient of variation of inter-spike interval - we show that this ISICA method provides invariant classification for dopaminergic neurons or CA1 pyramidal cell subtypes regardless of the brain states from which spike data were collected. Moreover, we show that these ISICA-classified neuron subtypes underlie distinct physiological functions. We demonstrate that the uncovered dopaminergic neuron subtypes encoded distinct aspects of fearful experiences such as valence or value, whereas distinct hippocampal CA1 pyramidal cells responded differentially to ketamine-induced anesthesia. This ISICA method should be useful to better data mining of large-scale in vivo neural datasets, leading to novel insights into circuit dynamics associated with cognitions.

  11. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain.

    Science.gov (United States)

    Mahady, Laura J; Perez, Sylvia E; Emerich, Dwaine F; Wahlberg, Lars U; Mufson, Elliott J

    2017-02-15

    Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75(NTR) . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75(NTR) -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.

  12. Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish

    Science.gov (United States)

    Partridge, Charlyn G.; MacManes, Matthew D.; Knapp, Rosemary; Neff, Bryan D.

    2016-01-01

    Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning. PMID:27907106

  13. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, A.; Malan, V.; De Blois, M.C.; Colleaux, L.; Munnich, A. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Natl Inst Hlth and Med Res, Paris (France); Philippe, A.; De Blois, M.C.; Colleaux, L.; Munnich, A. [HopNecker Enfants Malad, Assistance Publ Hop Paris, Dept Genet, Paris (France); Boddaert, N. [Natl Inst Hlth and Med Res, Mixed Unit Res 0205, Orsay (France); Vaivre-Douret, L.; Robel, L.; Golse, B. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Dept Psychiat, Paris (France); Vaivre-Douret, L. [Univ Paris 10, Mixed Unit Res S0669, Univ Paris 05, Univ Paris 11, Paris 10 (France); Vaivre-Douret, L. [Assistance Publ Hop Paris, Dept Obstet et Gynaecol, Paris (France); Danon-Boileau, L. [Natl Ctr Sci Res, Mixed Unit Res 7114, Paris (France); Heron, D. [Hop La Pitie Salpetriere, Assistance Publ HopParis, Dept Genet, Paris (France)

    2008-07-01

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  14. Profiling brain expression of the spermidine/spermine N1-acetyltransferase 1 (SAT1) gene in suicide.

    Science.gov (United States)

    Klempan, Timothy A; Rujescu, Dan; Mérette, Chantal; Himmelman, Carla; Sequeira, Adolfo; Canetti, Lilian; Fiori, Laura M; Schneider, Barbara; Bureau, Alexandre; Turecki, Gustavo

    2009-10-05

    Altered stress reactivity is considered to be a risk factor for both major depressive disorder and suicidal behavior. The authors have sought to expand their previous findings implicating altered expression of spermidine/spermine N(1)-acetyltransferase 1 (SAT1), the rate-limiting enzyme involved in catabolism of the polyamines spermidine and spermine in the polyamine stress response (PSR), across multiple brain regions between control individuals and depressed individuals who have died by suicide. Microarray expression of probesets annotated to SAT1 were examined across 17 brain regions in 13 controls and 26 individuals who have died by suicide (16 with a diagnosis of major depression and 10 without), all of French-Canadian origin. Profiling conducted on the Affymetrix U133A/B chipset was further examined on a second chipset (U133 Plus 2.0) using RT-PCR, and analyzed in a second, independent sample. A reduction in SAT1 expression identified through multiple probesets was observed across 12 cortical regions in depressed individuals who have died by suicide compared with controls. Of these, five cortical regions showed statistically significant reductions which were supported by RT-PCR and analysis on the additional chipset. SAT1 cortical expression levels were also found to be significantly lower in an independent sample of German subjects with major depression who died by suicide in comparison with controls. These findings suggest that downregulation of SAT1 expression may play a role in depression and suicidality, possibly by impeding the normal PSR program or through compensation for the increased polyamine metabolism accompanying the psychological distress associated with depressive disorders.

  15. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.

    Science.gov (United States)

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-06-05

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  16. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts

    Directory of Open Access Journals (Sweden)

    Lynsey Macintyre

    2014-06-01

    Full Text Available Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS and nuclear magnetic resonance (NMR spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  17. Fecal metabolome of the Hadza hunter-gatherers: a host-microbiome integrative view

    Science.gov (United States)

    Turroni, Silvia; Fiori, Jessica; Rampelli, Simone; Schnorr, Stephanie L.; Consolandi, Clarissa; Barone, Monica; Biagi, Elena; Fanelli, Flaminia; Mezzullo, Marco; Crittenden, Alyssa N.; Henry, Amanda G.; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    The recent characterization of the gut microbiome of traditional rural and foraging societies allowed us to appreciate the essential co-adaptive role of the microbiome in complementing our physiology, opening up significant questions on how the microbiota changes that have occurred in industrialized urban populations may have altered the microbiota-host co-metabolic network, contributing to the growing list of Western diseases. Here, we applied a targeted metabolomics approach to profile the fecal metabolome of the Hadza of Tanzania, one of the world’s few remaining foraging populations, and compared them to the profiles of urban living Italians, as representative of people in the post-industrialized West. Data analysis shows that during the rainy season, when the diet is primarily plant-based, Hadza are characterized by a distinctive enrichment in hexoses, glycerophospholipids, sphingolipids, and acylcarnitines, while deplete in the most common natural amino acids and derivatives. Complementary to the documented unique metagenomic features of their gut microbiome, our findings on the Hadza metabolome lend support to the notion of an alternate microbiome configuration befitting of a nomadic forager lifestyle, which helps maintain metabolic homeostasis through an overall scarcity of inflammatory factors, which are instead highly represented in the Italian metabolome. PMID:27624970

  18. Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene networks specific for brain regions independent of genetic background

    Directory of Open Access Journals (Sweden)

    Horvath Steve

    2010-01-01

    Full Text Available Abstract Background We performed gene expression profiling of the amygdala and hippocampus taken from inbred mouse strains C57BL/6J and A/J. The selected brain areas are implicated in neurobehavioral traits while these mouse strains are known to differ widely in behavior. Consequently, we hypothesized that comparing gene expression profiles for specific brain regions in these strains might provide insight into the molecular mechanisms of human neuropsychiatric traits. We performed a whole-genome gene expression experiment and applied a systems biology approach using weighted gene co-expression network analysis. Results We were able to identify modules of co-expressed genes that distinguish a strain or brain region. Analysis of the networks that are most informative for hippocampus and amygdala revealed enrichment in neurologically, genetically and psychologically related pathways. Close examination of the strain-specific gene expression profiles, however, revealed no functional relevance but a significant enrichment of single nucleotide polymorphisms in the probe sequences used for array hybridization. This artifact was not observed for the modules of co-expressed genes that distinguish amygdala and hippocampus. Conclusions The brain-region specific modules were found to be independent of genetic background and are therefore likely to represent biologically relevant molecular networks that can be studied to complement our knowledge about pathways in neuropsychiatric disease.

  19. Dysfunctional activation and brain network profiles in youth with Obsessive-Compulsive Disorder: A focus on the dorsal anterior cingulate during working memory

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2015-03-01

    Full Text Available Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD, contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC of cortical, striatal and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype.

  20. Development of quantitative metabolomics for Pichia pastoris

    NARCIS (Netherlands)

    Carnicer,, M.; Canelas, A.B.; Ten Pierick, A.; Zeng, Z.; Van Dam, J.; Albiol, J.; Ferrer, P.; Heijnen, J.J.; Van Gulik, W.

    2011-01-01

    Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest

  1. Metabolomics in Population-Based Research

    Science.gov (United States)

    Metabolomics is the study of small molecules of both endogenous and exogenous origin, such as metabolic substrates and their products, lipids, small peptides, vitamins and other protein cofactors generated by metabolism, which are downstream from genes.

  2. Metabolomics application in maternal-fetal medicine.

    Science.gov (United States)

    Fanos, Vassilios; Atzori, Luigi; Makarenko, Karina; Melis, Gian Benedetto; Ferrazzi, Enrico

    2013-01-01

    Metabolomics in maternal-fetal medicine is still an "embryonic" science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, preterm delivery, premature rupture of membranes, gestational diabetes mellitus, preeclampsia, neonatal asphyxia, and hypoxic-ischemic encephalopathy. The aim of this review is to summarize and comment on original data available in relevant published works in order to emphasize the clinical potential of metabolomics in obstetrics in the immediate future.

  3. Using metabolomics to evaluate food intake

    DEFF Research Database (Denmark)

    Manach, Claudine; Brennan, Lorraine; Dragsted, Lars Ove

    2015-01-01

    Improving dietary assessment is essential for modern nutritional epidemiology. This chapter discusses the potential of metabolomics for the identification of new biomarkers of intake and presents the first candidate biomarkers discovered using this approach. It then describes the challenges that ...

  4. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  5. First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study

    Directory of Open Access Journals (Sweden)

    Marie Austdal

    2015-09-01

    Full Text Available Hypertensive disorders of pregnancy, including preeclampsia, are major contributors to maternal morbidity. The goal of this study was to evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension from urine and serum samples in early pregnancy, and elucidate the metabolic changes related to the diseases. Metabolic profiles were obtained by nuclear magnetic resonance spectroscopy of serum and urine samples from 599 women at medium to high risk of preeclampsia (nulliparous or previous preeclampsia/gestational hypertension. Preeclampsia developed in 26 (4.3% and gestational hypertension in 21 (3.5% women. Multivariate analyses of the metabolic profiles were performed to establish prediction models for the hypertensive disorders individually and combined. Urinary metabolomic profiles predicted preeclampsia and gestational hypertension at 51.3% and 40% sensitivity, respectively, at 10% false positive rate, with hippurate as the most important metabolite for the prediction. Serum metabolomic profiles predicted preeclampsia and gestational hypertension at 15% and 33% sensitivity, respectively, with increased lipid levels and an atherogenic lipid profile as most important for the prediction. Combining maternal characteristics with the urinary hippurate/creatinine level improved the prediction rates of preeclampsia in a logistic regression model. The study indicates a potential future role of clinical importance for metabolomic analysis of urine in prediction of preeclampsia.

  6. First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study.

    Science.gov (United States)

    Austdal, Marie; Tangerås, Line H; Skråstad, Ragnhild B; Salvesen, Kjell; Austgulen, Rigmor; Iversen, Ann-Charlotte; Bathen, Tone F

    2015-09-08

    Hypertensive disorders of pregnancy, including preeclampsia, are major contributors to maternal morbidity. The goal of this study was to evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension from urine and serum samples in early pregnancy, and elucidate the metabolic changes related to the diseases. Metabolic profiles were obtained by nuclear magnetic resonance spectroscopy of serum and urine samples from 599 women at medium to high risk of preeclampsia (nulliparous or previous preeclampsia/gestational hypertension). Preeclampsia developed in 26 (4.3%) and gestational hypertension in 21 (3.5%) women. Multivariate analyses of the metabolic profiles were performed to establish prediction models for the hypertensive disorders individually and combined. Urinary metabolomic profiles predicted preeclampsia and gestational hypertension at 51.3% and 40% sensitivity, respectively, at 10% false positive rate, with hippurate as the most important metabolite for the prediction. Serum metabolomic profiles predicted preeclampsia and gestational hypertension at 15% and 33% sensitivity, respectively, with increased lipid levels and an atherogenic lipid profile as most important for the prediction. Combining maternal characteristics with the urinary hippurate/creatinine level improved the prediction rates of preeclampsia in a logistic regression model. The study indicates a potential future role of clinical importance for metabolomic analysis of urine in prediction of preeclampsia.

  7. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Directory of Open Access Journals (Sweden)

    Yufeng Jane Tseng

    2013-05-01

    Full Text Available Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.

  8. MEASURING VARIABILITY SOURCES IN NMR METABOLOMIC STUDIES

    OpenAIRE

    Rozet, Eric; de Tullio, Pascal; Hubert, Philippe; Govaerts., B.

    2013-01-01

    Due to the huge amount of information available in NMR spectra obtained from the analysis of metabolomic experiments, multivariate analysis such as Principal Component Analysis (PCA) are required to understand the influence of treatments over the metabolites [1]. However, many experiments in metabolomics studies have more complexes variability structures than simply comparing several treatments: they may include time effects, biological effects such as diet or hormonal status, and other bloc...

  9. Blood Transcriptomics and Metabolomics for Personalized Medicine

    Science.gov (United States)

    2015-10-31

    progress in human immunology , where transcriptomics of isolated cell populations provided necessary information [15–17]. Nonetheless, a review on “blood...databases are biased towards cancer , under- representing the immunology in white blood cells. Second, many path- ways are based on tissues other than blood...metabolomics in oncology: a review . Clin Cancer Res 2009;15. [52] Armitage EG. Metabolomics in cancer biomarker discovery: current trends and fu- ture

  10. LEVELS OF BRAIN-SPECIFIC S-100B PROTEIN, SPECIFIC ANTIBODIES AND CYTOKINE PROFILE IN THE PATIENTS WITH ALCOHOL-INDUCED DELIRIUM STATES

    Directory of Open Access Journals (Sweden)

    N. N. Tsybikov

    2008-01-01

    Full Text Available Abstract. Present article deals with our results concerning brain-specific S-100B protein levels, anti-S-100B autoantibodies of IgM and IgG classes, like as cytokine profiles of blood serum and cerebrospinal fluid in the patients with alcohol-induced delirium state. The results obtained provide an evidence of association between alcoholic psychosis and destruction of brain tissue, development of autoimmune reactions and altered cytokine status, thus, probably, resulting into disintegration of immune and neuroendocrine systems.

  11. Clinical impact of human breast milk metabolomics.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Dessì, Angelica; Corbu, Sara; Reali, Alessandra; Fanos, Vassilios

    2015-12-01

    Metabolomics is a research field concerned with the analysis of metabolome, the complete set of metabolites in a given cell, tissue, or biological sample. Being able to provide a molecular snapshot of biological systems, metabolomics has emerged as a functional methodology in a wide range of research areas such as toxicology, pharmacology, food technology, nutrition, microbial biotechnology, systems biology, and plant biotechnology. In this review, we emphasize the applications of metabolomics in investigating the human breast milk (HBM) metabolome. HBM is the recommended source of nutrition for infants since it contains the optimal balance of nutrients for developing babies, and it provides a range of benefits for growth, immunity, and development. The molecular mechanisms beyond the inter- and intra-variability of HBM that make its composition unique are yet to be well-characterized. Although still in its infancy, the study of HBM metabolome has already proven itself to be of great value in providing insights into this biochemical variability in relation to mother phenotype, diet, disease, and lifestyle. The results of these investigations lay the foundation for further developments useful to identify normal and aberrant biochemical changes as well as to develop strategies to promote healthy infant feeding practices.

  12. ECMDB: the E. coli Metabolome Database.

    Science.gov (United States)

    Guo, An Chi; Jewison, Timothy; Wilson, Michael; Liu, Yifeng; Knox, Craig; Djoumbou, Yannick; Lo, Patrick; Mandal, Rupasri; Krishnamurthy, Ram; Wishart, David S

    2013-01-01

    The Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) is a comprehensively annotated metabolomic database containing detailed information about the metabolome of E. coli (K-12). Modelled closely on the Human and Yeast Metabolome Databases, the ECMDB contains >2600 metabolites with links to ∼1500 different genes and proteins, including enzymes and transporters. The information in the ECMDB has been collected from dozens of textbooks, journal articles and electronic databases. Each metabolite entry in the ECMDB contains an average of 75 separate data fields, including comprehensive compound descriptions, names and synonyms, chemical taxonomy, compound structural and physicochemical data, bacterial growth conditions and substrates, reactions, pathway information, enzyme data, gene/protein sequence data and numerous hyperlinks to images, references and other public databases. The ECMDB also includes an extensive collection of intracellular metabolite concentration data compiled from our own work as well as other published metabolomic studies. This information is further supplemented with thousands of fully assigned reference nuclear magnetic resonance and mass spectrometry spectra obtained from pure E. coli metabolites that we (and others) have collected. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of E. coli's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers but also to molecular biologists, systems biologists and individuals in the biotechnology industry.

  13. Metabolomics continues to flourish: highlights from the 2014 Metabolomics Society Conference

    NARCIS (Netherlands)

    Roessner, U.; Hall, R.D.

    2014-01-01

    The Metabolomics Society has now been organising its annual meetings for 10 years! The 10th annual conference returned, in June, to Tsuruoka, Japan where the very first meeting was also held in 2005—just shortly after our society had been formally established and our journal Metabolomics had brought

  14. Nutri-metabolomics: subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces.

    Science.gov (United States)

    Bondia-Pons, Isabel; Cañellas, Nicolau; Abete, Itziar; Rodríguez, Miguel Ángel; Perez-Cornago, Aurora; Navas-Carretero, Santiago; Zulet, M Ángeles; Correig, Xavier; Martínez, J Alfredo

    2013-12-01

    Postgenomics research and development is witnessing novel intersections of omics data intensive technology and applications in health and personalized nutrition. Chief among these is the nascent field of nutri-metabolomics that harnesses metabolomics platforms to discern person-to-person variations in nutritional responses. To this end, differences in the origin and ripening stage of fruits might have a strong impact on their phytochemical composition, and consequently, on their potential nutri-metabolomics effects on health. The objective of the present study was to evaluate the effects of a 4-week cross-over nutritional intervention on the metabolic status of 24 young healthy subjects. The intervention was carried out with two tomato sauces differing in their natural lycopene content, which was achieved by using tomatoes harvested at different times. Blood samples were drawn from each subject before and after each intervention period. Aqueous and lipid extracts from serum samples were analyzed by 1H-NMR metabolic profiling combined with analysis of variance simultaneous component analysis (ASCA) and multilevel simultaneous component analysis (MSCA). These methods allowed the interpretation of the variation induced by the main factors of the study design (sauce treatment and time). The levels of creatine, creatinine, leucine, choline, methionine, and acetate in aqueous extracts were increased after the intervention with the high-lycopene content sauce, while those of ascorbic acid, lactate, pyruvate, isoleucine, alanine were increased after the normal-lycopene content sauce. In conclusion, NMR-based metabolomics of aqueous and lipid extracts allowed the detection of different metabolic changes after the nutritional intervention. This outcome might partly be due to the different ripening state of the fruits used in production of the tomato sauces. The findings presented herein collectively attest to the emergence of the field of nutri-metabolomics as a novel

  15. Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference.

    Science.gov (United States)

    Zaitsu, Kei; Miyawaki, Izuru; Bando, Kiyoko; Horie, Hiroshi; Shima, Noriaki; Katagi, Munehiro; Tatsuno, Michiaki; Bamba, Takeshi; Sato, Takako; Ishii, Akira; Tsuchihashi, Hitoshi; Suzuki, Koichi; Fukusaki, Eiichiro

    2014-02-01

    The metabolic profiles of urine and blood plasma in drug-addicted rat models based on morphine (MOR), methamphetamine (MA), and cocaine (COC)-induced conditioned place preference (CPP) were investigated. Rewarding effects induced by each drug were assessed by use of the CPP model. A mass spectrometry (MS)-based metabolomics approach was applied to urine and plasma of MOR, MA, and COC-addicted rats. In total, 57 metabolites in plasma and 70 metabolites in urine were identified by gas chromatography-MS. The metabolomics approach revealed that amounts of some metabolites, including tricarboxylic acid cycle intermediates, significantly changed in the urine of MOR-addicted rats. This result indicated that disruption of energy metabolism is deeply relevant to MOR addiction. In addition, 3-hydroxybutyric acid, L-tryptophan, cystine, and n-propylamine levels were significantly changed in the plasma of MOR-addicted rats. Lactose, spermidine, and stearic acid levels were significantly changed in the urine of MA-addicted rats. Threonine, cystine, and spermidine levels were significantly increased in the plasma of COC-addicted rats. In conclusion, differences in the metabolic profiles were suggestive of different biological states of MOR, MA, and COC addiction; these may be attributed to the different actions of the drugs on the brain reward circuitry and the resulting adaptation. In addition, the results showed possibility of predict the extent of MOR addiction by metabolic profiling. This is the first study to apply metabolomics to CPP models of drug addiction, and we demonstrated that metabolomics can be a multilateral approach to investigating the mechanism of drug addiction.

  16. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Bertini, Ivano; Cacciatore, Stefano; Jensen, Benny V;

    2012-01-01

    survival (HR, 3.4; 95% confidence interval, 2.06-5.50; P = 1.33 × 10(-6)). A number of metabolites concurred with the (1)H-NMR fingerprint of mCRC, offering insights into mCRC metabolic pathways. Our findings establish that (1)H-NMR profiling of patient serum can provide a strong metabolomic signature of m......Earlier detection of patients with metastatic colorectal cancer (mCRC) might improve their treatment and survival outcomes. In this study, we used proton nuclear magnetic resonance ((1)H-NMR) to profile the serum metabolome in patients with mCRC and determine whether a disease signature may exist...... that is strong enough to predict overall survival (OS). In 153 patients with mCRC and 139 healthy subjects from three Danish hospitals, we profiled two independent sets of serum samples in a prospective phase II study. In the training set, (1)H-NMR metabolomic profiling could discriminate patients with mCRC from...

  17. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive, no

  18. Metabolomics

    DEFF Research Database (Denmark)

    Pedersen, Hans

    ) spectroscopy (Paper II), fluorescence spectroscopy (Paper III) and gas chromatography coupled to mass spectrometry (GC-MS). The principles of the three data acquisition techniques have been briefly described and the methods have been compared. The techniques complement each other, which makes room for data...... analysis (PCA), parallel factor analysis (PARAFAC), PARAFAC2 and partial least squares discriminant analysis (PLS-DA) all being described in depth. It can be a challenge to determine the appropriate number of components in PARAFAC2, since no specific tools have been developed for this purpose. Paper I...

  19. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G

    2016-01-01

    performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS...

  20. Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Eggers, Nina; Eller, Nanna

    2009-01-01

    in intensities of several metabolites including trimethylamine oxide (TMAO), choline, propionate, alanine, methanol, and N-acetyl groups. No effects of gender and body mass index (BMI) on the salivary metabolite profile were detected. The relationships between the salivary metabolome and glycated hemoglobin...

  1. Analyzing the effects of a single episode of neonatal maternal deprivation on metabolite profiles in rat brain: a proton nuclear magnetic resonance spectroscopy study.

    Science.gov (United States)

    Llorente, R; Villa, P; Marco, E M; Viveros, M P

    2012-01-10

    Animal models have greatly contributed to the understanding of neuropsychiatric disorders and have provided extensive evidence for the "neurodevelopmental hypothesis." In this regard, a single and prolonged episode (24 h) of early maternal deprivation early in life, on postnatal day 9, has been proposed as an animal model for the investigation of certain neuropsychiatric disorders, including schizophrenia. Since metabolic changes in hippocampus (HIP) and prefrontal cortex (PFC) have been described among schizophrenic patients by using ex vivo high-resolution magic angle spinning (HR-MAS) proton ((1)H) nuclear magnetic resonance spectroscopy, in the present study we aimed to investigate the effects of maternal deprivation (MD) on the metabolite profiles of the developing brain by using the HR-MAS technique. MD significantly altered the hippocampal and cortical metabolic profile of neonatal rats (PND 13) in a sex-dependent manner. Glutamine and glutamate (Glx) and taurine of male and female rat pups were altered in both brain areas analyzed. Differences in hippocampal phosphorylethanolamine have also been found as a function of the MD protocol. In addition, MD induced some other region- and sex-dependent effects, including changes in N-acetyl aspartate and total choline signals in the hippocampi of male pups. Present findings indicate a different brain metabolic profile in our animal model of early life stress suggesting its potential utility in the implementation of translational neuropsychiatric research.

  2. MiRNA expression profiles in the brains of mice infected with scrapie agents 139A, ME7 and S15

    Science.gov (United States)

    Gao, Chen; Wei, Jing; Zhang, Bao-Yun; Shi, Qiang; Chen, Cao; Wang, Jing; Shi, Qi; Dong, Xiao-Ping

    2016-01-01

    MicroRNA (miRNA) is a class of non-coding endogenous small-molecule single-stranded RNA that regulates complementary mRNA through degradation or translation of the mRNA targets. Usually, miRNAs show remarkable cell and tissues specificity. Recently, alterations in a set of miRNAs in the brains of patients with certain neurodegenerative diseases, including prion diseases, have been reported. In this study, using deep sequencing technology, miRNA expression profiles in the brains of mice infected with scrapie agents 139A, ME7 and S15 at a terminal stage were comparatively analysed. In total, 57, 94 and 135 differentially expressed miRNAs were identified in the pooled brain samples of 139A-, ME7- and S15-infected mice, respectively, compared with the brains of age-matched normal controls. Among them, 22 were commonly increased and 14 were commonly decreased in the brains of all three infected models. In addition, a reduction in the expression of two novel miRNAs was also commonly observed. Quantitative PCR with reverse transcription analysis of six randomly selected commonly increased and decreased miRNAs in the brains of the three infected mouse models, as well as the two novel miRNAs, verified that the expression patterns were comparable to the deep sequencing data. KEGG analysis of the differentially expressed miRNAs revealed the involvement of similar pathways in all three types of infected animals. Comprehensive analysis of these miRNA profiles not only provides useful clues for understanding prion biology but also is beneficial in the search for possible diagnostic marker(s) for prion diseases. PMID:27826142

  3. Metabolomics data normalization with EigenMS.

    Directory of Open Access Journals (Sweden)

    Yuliya V Karpievitch

    Full Text Available Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminants in the MS ion source and MS sensitivity among others. In this study we aimed to test a singular value decomposition-based method, called EigenMS, for normalization of metabolomics data. We analyzed a clinical human dataset where LC-MS serum metabolomics data and physiological measurements were collected from thirty nine healthy subjects and forty with type 2 diabetes and applied EigenMS to detect and correct for any systematic bias. EigenMS works in several stages. First, EigenMS preserves the treatment group differences in the metabolomics data by estimating treatment effects with an ANOVA model (multiple fixed effects can be estimated. Singular value decomposition of the residuals matrix is then used to determine bias trends in the data. The number of bias trends is then estimated via a permutation test and the effects of the bias trends are eliminated. EigenMS removed bias of unknown complexity from the LC-MS metabolomics data, allowing for increased sensitivity in differential analysis. Moreover, normalized samples better correlated with both other normalized samples and corresponding physiological data, such as blood glucose level, glycated haemoglobin, exercise central augmentation pressure normalized to heart rate of 75, and total cholesterol. We were able to report 2578 discriminatory metabolite peaks in the normalized data (p<0.05 as compared to only 1840 metabolite signals in the raw data. Our results support the use of singular value decomposition-based normalization for metabolomics data.

  4. Effect of sleep deprivation on the human metabolome.

    Science.gov (United States)

    Davies, Sarah K; Ang, Joo Ern; Revell, Victoria L; Holmes, Ben; Mann, Anuska; Robertson, Francesca P; Cui, Nanyi; Middleton, Benita; Ackermann, Katrin; Kayser, Manfred; Thumser, Alfred E; Raynaud, Florence I; Skene, Debra J

    2014-07-22

    Sleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigated with the use of a metabolomics approach. Here we have used untargeted and targeted liquid chromatography (LC)/MS metabolomics to examine the effect of acute sleep deprivation on plasma metabolite rhythms. Twelve healthy young male subjects remained in controlled laboratory conditions with respect to environmental light, sleep, meals, and posture during a 24-h wake/sleep cycle, followed by 24 h of wakefulness. Two-hourly plasma samples collected over the 48 h period were analyzed by LC/MS. Principal component analysis revealed a clear time of day variation with a significant cosine fit during the wake/sleep cycle and during 24 h of wakefulness in untargeted and targeted analysis. Of 171 metabolites quantified, daily rhythms were observed in the majority (n = 109), with 78 of these maintaining their rhythmicity during 24 h of wakefulness, most with reduced amplitude (n = 66). During sleep deprivation, 27 metabolites (tryptophan, serotonin, taurine, 8 acylcarnitines, 13 glycerophospholipids, and 3 sphingolipids) exhibited significantly increased levels compared with during sleep. The increased levels of serotonin, tryptophan, and taurine may explain the antidepressive effect of acute sleep deprivation and deserve further study. This report, to our knowledge the first of metabolic profiling during sleep and sleep deprivation and characterization of 24 h rhythms under these conditions, offers a novel view of human sleep/wake regulation.

  5. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, A.K.; Werf, M.J. van der; Bijlsma, S.; Werff-van der Vat, B.J.C. van der; Jellema, R.H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or biologi

  6. Serum metabolomics as a novel diagnostic approach for disease: a systematic review.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2012-09-01

    Metabolomics is a promising "omics" field in systems biology; its objective is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could result in earlier intervention and provide valuable insights into the mechanisms of diseases. Because of the possible discovery of clinically relevant biomarkers, metabolomics has potential advantages that routine approaches to clinical diagnosis do not. Monitoring specific metabolite levels in serum, the most commonly used biofluid in metabolomics, has become an important way of detecting the early stages of a disease. Serum is a readily accessible and informative biofluid, making it ideal for early detection of a wide range of diseases, and analysis of serum has several advantages over analysis of other biofluids. Metabolite profiles of serum can be regarded as important indicators of physiological and pathological states and may aid understanding of the mechanism of disease occurrence and progression on the metabolic level, and provide information enabling identification of early and differential metabolic markers of disease. Analysis of these crucial metabolites in serum has become important in monitoring the state of biological organisms and is widely used for diagnosis of disease. Emerging metabolomics will drive serum analysis, facilitate and improve the development of disease treatments, and provide great benefits for public health in the long-term.

  7. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    Science.gov (United States)

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.

  8. Metabolomics Reveals Amino Acids Contribute to Variation in Response to Simvastatin Treatment

    OpenAIRE

    Miles Trupp; Hongjie Zhu; Wikoff, William R.; Rebecca A. Baillie; Zhao-Bang Zeng; Karp, Peter D.; Oliver Fiehn; Krauss, Ronald M.; Rima Kaddurah-Daouk

    2012-01-01

    UNLABELLED: Statins are widely prescribed for reducing LDL-cholesterol (C) and risk for cardiovascular disease (CVD), but there is considerable variation in therapeutic response. We used a gas chromatography-time-of-flight mass-spectrometry-based metabolomics platform to evaluate global effects of simvastatin on intermediary metabolism. Analyses were conducted in 148 participants in the Cholesterol and Pharmacogenetics study who were profiled pre and six weeks post treatment with 40 mg/day si...

  9. EFFECT OF POLYPLOIDIZATION ON THE TRASCIPTOME AND METABOLOME IN SINTETHIC POLYPLOIDS OF SOLANUM spp

    OpenAIRE

    Fasano, Carlo

    2013-01-01

    Polyploidy is very common within angiosperms. Extensive studies are available only in synthetic allopolyploids. By contrast, less is known about the consequences of autopolyploidization. Our research aimed to assess the occurrence and extent of transcriptional and metabolomic changes occurring after oryzaline-induced polyploidization of Solanum commersonii and S. bulbocastanum, two diploid (2n=2×=24) potato species widely used in breeding programmes. Whole-genome expression profiling of diplo...

  10. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics

    Directory of Open Access Journals (Sweden)

    Margaux Marie-Hélène, Olivia Luck

    2015-07-01

    Full Text Available Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear magnetic resonance (NMR spectrometry with supervised orthogonal projection on latent structure (OPLS statistical analysis. 1H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition. The spectra obtained before and after the race from the same horse (92 samples were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y=0.947, Q2Y=0.856 and CV-ANOVA p-value < 0.001. For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p-value < 0.001. The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race.

  11. Targeted Metabolomics Reveals a Male Pheromone and Sex-Specific Ascaroside Biosynthesis in Caenorhabditis elegans

    OpenAIRE

    Izrayelit, Yevgeniy; Srinivasan, Jagan; Campbell, Sydney L.; Jo, Yeara; von Reuss, Stephan H.; Genoff, Margaux-C; Paul W. Sternberg; Schroeder, Frank C.

    2012-01-01

    In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating, and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC–MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of he...

  12. Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in C. elegans

    OpenAIRE

    Izrayelit, Yevgeniy; Srinivasan, Jagan; Campbell, Sydney L.; Jo, Yeara; von Reuss, Stephan H.; Genoff, Margaux C.; Paul W. Sternberg; Schroeder, Frank C.

    2012-01-01

    In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of her...

  13. Systematic Applications of Metabolomics in Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Robert A. Dromms

    2012-12-01

    Full Text Available The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering.

  14. Basics of mass spectrometry based metabolomics.

    Science.gov (United States)

    Courant, Frédérique; Antignac, Jean-Philippe; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2014-11-01

    The emerging field of metabolomics, aiming to characterize small molecule metabolites present in biological systems, promises immense potential for different areas such as medicine, environmental sciences, agronomy, etc. The purpose of this article is to guide the reader through the history of the field, then through the main steps of the metabolomics workflow, from study design to structure elucidation, and help the reader to understand the key phases of a metabolomics investigation and the rationale underlying the protocols and techniques used. This article is not intended to give standard operating procedures as several papers related to this topic were already provided, but is designed as a tutorial aiming to help beginners understand the concept and challenges of MS-based metabolomics. A real case example is taken from the literature to illustrate the application of the metabolomics approach in the field of doping analysis. Challenges and limitations of the approach are then discussed along with future directions in research to cope with these limitations. This tutorial is part of the International Proteomics Tutorial Programme (IPTP18).

  15. Metabolomic analysis of anti-hypoxia and anti-anxiety effects of Fu Fang Jin Jing Oral Liquid.

    Directory of Open Access Journals (Sweden)

    Xia Liu

    Full Text Available BACKGROUND: Herba Rhodiolae is a traditional Chinese medicine used by the Tibetan people for treating hypoxia related diseases such as anxiety. Based on the previous work, we developed and patented an anti-anxiety herbal formula Fu Fang Jin Jing Oral Liquid (FJJOL with Herba Rhodiolae as a chief ingredient. In this study, the anti-hypoxia and anti-anxiety effects of FJJOL in a high altitude forced-swimming mouse model with anxiety symptoms will be elucidated by NMR-based metabolomics. METHODS: In our experiments, the mice were divided randomly into four groups as flatland group, high altitude saline-treated group, high altitude FJJOL-treated group, and high altitude diazepam-treated group. To cause anxiety effects and hypoxic defects, a combination use of oxygen level decreasing (hypobaric cabin and oxygen consumption increasing (exhaustive swimming were applied to mice. After a three-day experimental handling, aqueous metabolites of mouse brain tissues were extracted and then subjected to NMR analysis. The therapeutic effects of FJJOL on the hypobaric hypoxia mice with anxiety symptoms were verified. RESULTS: Upon hypoxic exposure, both energy metabolism defects and disorders of functional metabolites in brain tissues of mice were observed. PCA, PLS-DA and OPLS-DA scatter plots revealed a clear group clustering for metabolic profiles in the hypoxia versus normoxia samples. After a three-day treatment with FJJOL, significant rescue effects on energy metabolism were detected, and levels of ATP, fumarate, malate and lactate in brain tissues of hypoxic mice recovered. Meanwhile, FJJOL also up-regulated the neurotransmitter GABA, and the improvement of anxiety symptoms was highly related to this effect. CONCLUSIONS: FJJOL ameliorated hypobaric hypoxia effects by regulating energy metabolism, choline metabolism, and improving the symptoms of anxiety. The anti-anxiety therapeutic effects of FJJOL were comparable to the conventional anti-anxiety drug

  16. Lipidome and metabolome analysis of fresh tobacco leaves in different geographical regions using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Lili; Lu, Xin; Zhao, Jieyu; Zhang, Junjie; Zhao, Yanni; Zhao, Chunxia; Xu, Guowang

    2015-07-01

    The combination of the lipidome and the metabolome can provide much more information in plant metabolomics studies. A method for the simultaneous extraction of the lipidome and the metabolome of fresh tobacco leaves was developed. Method validation was performed on the basis of the optimal ratio of methanol to methyl tert-butyl ether to water (37:45:68) from the design of experiments. Good repeatability was obtained. We found that 92.2% and 91.6% of the peaks for the lipidome and the metabolome were within a relative standard deviation of 20%, accounting for 94.6% and 94.6% of the total abundance, respectively. The intraday and interday precisions were also satisfactory. A total of 230 metabolites, including 129 lipids, were identified. Significant differences were found in lipidomic and metabolomic profiles of fresh tobacco leaves in different geographical regions. Highly unsaturated galactolipids, phosphatidylethanolamines, predominant phosphatidylcholines, most of the polyphenols, amino acids, and polyamines had a higher content in Yunnan province, and low-unsaturation-degree galactolipids, triacylglycerols, glucosylceramides with trihydroxy long-chain bases, acylated sterol glucosides, and some organic acids were more abundant in Henan province. Correlation analysis between differential metabolites and climatic factors indicated the vital importance of temperature. The fatty acid unsaturation degree of galactolipids could be influenced by temperature. Accumulation of polyphenols and decreases in the ratios of stigmasterols to sitosterols and glucosylstigmasterols to glucosylsitosterols were also correlated with lower temperature in Yunnan province. Furthermore, lipids were more sensitive to climatic variations than other metabolites.

  17. Metabolomics to Explore Impact of Dairy Intake

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2015-06-01

    Full Text Available Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health.

  18. Microbiome, Metabolome and Inflammatory Bowel Disease

    Science.gov (United States)

    Ahmed, Ishfaq; Roy, Badal C.; Khan, Salman A.; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis. PMID:27681914

  19. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  20. [Metabolomics analysis of taxadiene producing yeasts].

    Science.gov (United States)

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  1. Transcriptional profiling of fibroblasts from patients with mutations in MCT8 and comparative analysis with the human brain transcriptome

    NARCIS (Netherlands)

    W.E. Visser (Wil Edward); S.M.A. Swagemakers (Sigrid); Z. Özgür (Zeliha); R. Schot (Rachel); F.W. Verheijen (Frans); W.F.J. van IJcken (Wilfred); P.J. van der Spek (Peter)

    2010-01-01

    textabstractThyroid hormone (TH) is crucial for normal brain development. TH transporters control TH homeostasis in brain as evidenced by the complex endocrine and neurological phenotype of patients with mutations in monocarboxylate transporter 8 (MCT8). We investigated the mechanisms of disease by

  2. Metabolomic applications in nutritional research: a perspective.

    Science.gov (United States)

    O'Gorman, Aoife; Brennan, Lorraine

    2015-10-01

    Metabolomics focuses on the global study of metabolites in cells, tissues and biofluids. Analytical technologies such as nuclear magnetic resonance (NMR) spectroscopy and hyphenated mass spectrometry (MS) combined with advanced multivariate statistical methods allow us to study perturbations in metabolism. The close link between metabolism and nutrition has seen the application of metabolomics in nutritional research increase in recent times. Such applications can be divided into three main categories, namely (1) the area of dietary biomarker identification, (2) diet-related diseases and (3) nutritional interventions. The present perspective gives an overview of these applications and an outlook to the future.

  3. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation.

    Science.gov (United States)

    Laiakis, Evagelia C; Mak, Tytus D; Anizan, Sebastien; Amundson, Sally A; Barker, Christopher A; Wolden, Suzanne L; Brenner, David J; Fornace, Albert J

    2014-04-01

    The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4-6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher's exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid β-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker

  4. Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study.

    Science.gov (United States)

    Surowiec, Izabella; Karimpour, Masoumeh; Gouveia-Figueira, Sandra; Wu, Junfang; Unosson, Jon; Bosson, Jenny A; Blomberg, Anders; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Trygg, Johan; Nording, Malin L

    2016-07-01

    Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas

  5. Evaluating effects of penicillin treatment on the metabolome of rats.

    Science.gov (United States)

    Sun, Jinchun; Schnackenberg, Laura K; Khare, Sangeeta; Yang, Xi; Greenhaw, James; Salminen, William; Mendrick, Donna L; Beger, Richard D

    2013-08-01

    Penicillin (PEN) V, a well-known antibiotic widely used in the treatment of Gram-positive bacterial infections, was evaluated in this study. LC/MS- and NMR-based metabolic profiling were employed to examine the effects of PEN on the host's metabolic phenotype. Male Sprague Dawley rats were randomly divided into groups that were orally administered either 0.5% methylcellulose vehicle, 100 or 2400mg PEN/kg body weight once daily for up to 14 consecutive days. Urine, plasma and tissue were collected from groups sacrificed at 6h, 24h or 14d. The body fluids were subjected to clinical chemistry and metabolomics analysis; the tissue samples were processed for histopathology. The only notable clinical chemistry observation was that gamma glutamyltransferase (GGT) significantly decreased at 24h for both dose groups, and significantly decreased at 14d for the high-dose groups. Partial least squares discriminant analysis scores plots of the metabolomics data from urine and plasma samples showed dose- and time-dependent grouping patterns. Time- and dose-dependent decreases in urinary metabolites including indole-containing metabolites (such as 3-methyldioxyindole sulfate generated from bacterial metabolism of tryptophan), organic acids containing phenyl groups (such as hippuric acid, phenyllactic acid and 3-hydroxyanthranilic acid), and metabolites conjugated with sulfate or glucuronide (such as cresol sulfate and aminophenol sulfate) indicated that the gut microflora population was suppressed. Decreases in many host-gut microbiota urinary co-metabolites (indole- and phenyl-containing metabolites, amino acids, vitamins, nucleotides and bile acids) suggested gut microbiota play important roles in the regulation of host metabolism, including dietary nutrient absorption and reprocessing the absorbed nutrients. Decreases in urinary conjugated metabolites (sulfate, glucuronide and glycine conjugates) implied that gut microbiota might have an impact on chemical detoxification

  6. Gene expression profile of brain regions reflecting aberrations in nervous system development targeting the process of neurite extension of rat offspring exposed developmentally to glycidol.

    Science.gov (United States)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Wang, Liyun; Shibutani, Makoto

    2014-12-01

    We previously found that exposure to glycidol at 1000 ppm in drinking water caused axonopathy in maternal rats and aberrations in late-stage hippocampal neurogenesis, targeting the process of neurite extension in offspring. To identify the profile of developmental neurotoxicity of glycidol, pregnant Sprague-Dawley rats were given drinking water containing glycidol from gestational day 6 until weaning on day 21 after delivery, and offspring at 0, 300 and 1000 ppm were subjected to region-specific global gene expression profiling. Four brain regions were selected to represent both cerebral and cerebellar tissues, i.e., the cingulate cortex, corpus callosum, hippocampal dentate gyrus and cerebellar vermis. Downregulated genes in the dentate gyrus were related to axonogenesis (Nfasc), myelination (Mal, Mrf and Ugt8), and cell proliferation (Aurkb and Ndc80) at ≥ 300 ppm, and upregulated genes were related to neural development (Frzb and Fzd6) at 1000 ppm. Upregulation was observed for genes related to myelination (Kl, Igf2 and Igfbp2) in the corpus callosum and axonogenesis and neuritogenesis (Efnb3, Tnc and Cd44) in the cingulate cortex, whereas downregulation was observed for genes related to synaptic transmission (Thbs2 and Ccl2) in the cerebellar vermis; all of these changes were mostly observed at 1000 ppm. Altered gene expression of Cntn3, which functions on neurite outgrowth-promotion, was observed in all four brain regions at 1000 ppm. Gene expression profiles suggest that developmental exposure to glycidol affected plasticity of neuronal networks in the broad brain areas, and dentate gyrus neurogenesis may be the sensitive target of this type of toxicity.

  7. Shotgun metabolomic approach based on mass spectrometry for hepatic mitochondria of mice under arsenic exposure.

    Science.gov (United States)

    García-Sevillano, M A; García-Barrera, T; Navarro, F; Montero-Lobato, Z; Gómez-Ariza, J L

    2015-04-01

    Mass spectrometry (MS)-based toxicometabolomics requires analytical approaches for obtaining unbiased metabolic profiles. The present work explores the general application of direct infusion MS using a high mass resolution analyzer (a hybrid systems triple quadrupole-time-of-flight) and a complementary gas chromatography-MS analysis to mitochondria extracts from mouse hepatic cells, emphasizing on mitochondria isolation from hepatic cells with a commercial kit, sample treatment after cell lysis, comprehensive metabolomic analysis and pattern recognition from metabolic profiles. Finally, the metabolomic platform was successfully checked on a case-study based on the exposure experiment of mice Mus musculus to inorganic arsenic during 12 days. Endogenous metabolites alterations were recognized by partial least squares-discriminant analysis. Subsequently, metabolites were identified by combining MS/MS analysis and metabolomics databases. This work reports for the first time the effects of As-exposure on hepatic mitochondria metabolic pathways based on MS, and reveals disturbances in Krebs cycle, β-oxidation pathway, amino acids degradation and perturbations in creatine levels. This non-target analysis provides extensive metabolic information from mitochondrial organelle, which could be applied to toxicology, pharmacology and clinical studies.

  8. Metabolomics as a potential new approach for investigating human reproductive disorders.

    Science.gov (United States)

    Courant, Frédérique; Antignac, Jean-Philippe; Monteau, Fabrice; Le Bizec, Bruno

    2013-06-07

    Metabolomics has been emerging for several years as a global chemical phenotyping approach offering fascinating descriptive capabilities for addressing life complexity. It facilitates the understanding of the mechanisms of biological and biochemical processes in complex systems and promises new insights into specific research questions. The objective of this study was to use for the first time a metabolomic approach based on liquid chromatography high resolution mass spectrometry for characterizing an alteration of the testicular function, namely impaired semen quality. Metabolomic fingerprints were generated from serum samples collected from Danish young men presenting low, intermediate, or high sperm concentrations. Serum metabolic profiles were found to be significantly different among the three groups of volunteers. The developed methodology permitted to correlate the studied clinical parameter (i.e., sperm concentration) with the metabolite profiles generated. Peptides related to the Protein Complement C3f were identified as putative markers associated with this clinical parameter. The biological interpretation and further robustness linked to this observation remain to be further investigated, in particular to address the inter- and intraindividual variabilities.

  9. Data fusion in metabolomic cancer diagnostics

    DEFF Research Database (Denmark)

    Bro, Rasmus; Nielsen, Hans Jørgen; Savorani, Francesco

    2013-01-01

    We have recently shown that fluorescence spectroscopy of plasma samples has promising abilities regarding early detection of colorectal cancer. In the present paper, these results were further developed by combining fluorescence with the biomarkers, CEA and TIMP-1 and traditional metabolomic...

  10. Analysis of metabolomics data from twin families

    NARCIS (Netherlands)

    Draisma, Hermanus Henricus Maria

    2011-01-01

    Metabolomics is the comprehensive analysis of small molecules involved in metabolism, on the basis of samples that have been obtained from organisms in a given physiological state. Data obtained from measurements of trait levels in twin families can be used to elucidate the importance of genetic and

  11. Analytical metabolomics: nutritional opportunities for personalized health.

    Science.gov (United States)

    McNiven, Elizabeth M S; German, J Bruce; Slupsky, Carolyn M

    2011-11-01

    Nutrition is the cornerstone of health; survival depends on acquiring essential nutrients, and dietary components can both prevent and promote disease. Metabolomics, the study of all small molecule metabolic products in a system, has been shown to provide a detailed snapshot of the body's processes at any particular point in time, opening up the possibility of monitoring health and disease, prevention and treatment. Metabolomics has the potential to fundamentally change clinical chemistry and, by extension, the fields of nutrition, toxicology and medicine. Technological advances, combined with new knowledge of the human genome and gut microbiome, have made and will continue to make possible earlier, more accurate, less invasive diagnoses, all while enhancing our understanding of the root causes of disease and leading to a generation of dietary recommendations that enable optimal health. This article reviews the recent contributions of metabolomics to the fields of nutrition, toxicology and medicine. It is expected that these fields will eventually blend together through development of new technologies in metabolomics and genomics into a new area of clinical chemistry: personalized medicine.

  12. Microbial metabolomics in open microscale platforms

    Science.gov (United States)

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  13. Analyzing metabolomics-based challenge tests

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; Duynhoven, van J.P.M.; Wopereis, S.; Ommen, van B.; Hendriks, M.M.W.B.; Smilde, A.K.

    2015-01-01

    Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the biolog

  14. Metabolomics in the fight against malaria

    Directory of Open Access Journals (Sweden)

    Jorge L Salinas

    2014-08-01

    Full Text Available Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC, a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.

  15. Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments.

    Science.gov (United States)

    Fasulo, Salvatore; Iacono, Francesco; Cappello, Tiziana; Corsaro, Carmelo; Maisano, Maria; D'Agata, Alessia; Giannetto, Alessia; De Domenico, Elena; Parrino, Vincenzo; Lo Paro, Giuseppe; Mauceri, Angela

    2012-10-01

    Environmental metabolomics was applied to assess the metabolic responses in transplanted mussels to environmental pollution. Specimens of Mytilus galloprovincialis, sedentary filter-feeders, were caged in anthropogenic-impacted and reference sites along the Augusta coastline (Sicily, Italy). Chemical analysis revealed increased levels of PAHs in the digestive gland of mussels from the industrial area compared with control, and marked morphological changes were also observed. Digestive gland metabolic profiles, obtained by 1H NMR spectroscopy and analyzed by multivariate statistics, showed changes in metabolites involved in energy metabolism. Specifically, changes in lactate and acetoacetate could indicate increased anaerobic fermentation and alteration in lipid metabolism, respectively, suggesting that the mussels transplanted to the contaminated field site were suffering from adverse environmental condition. The NMR-based environmental metabolomics applied in this study results thus in it being a useful and effective tool for assessing environmental influences on the health status of aquatic organisms.

  16. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    Directory of Open Access Journals (Sweden)

    Laurette Tavel

    2016-10-01

    Full Text Available Multiple myeloma (MM is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS nuclear magnetic resonance (NMR metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions.

  17. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives

    NARCIS (Netherlands)

    Koek, M.M.; Jellema, R.H.; Greef, J. van der; Tas, A.C.; Hankemeier, T.

    2011-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites rele

  18. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology.

    Science.gov (United States)

    Tan, Kar-Chun; Ipcho, Simon V S; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S

    2009-09-01

    SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.

  19. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  20. Long-term Neuroglial Cocultures as a Brain Aging Model: Hallmarks of Senescence, MicroRNA Expression Profiles, and Comparison With In Vivo Models.

    Science.gov (United States)

    Bigagli, Elisabetta; Luceri, Cristina; Scartabelli, Tania; Dolara, Piero; Casamenti, Fiorella; Pellegrini-Giampietro, Domenico E; Giovannelli, Lisa

    2016-01-01

    Our purpose was to evaluate long-term neuroglial cocultures as a model for investigating senescence in the nervous system and to assess its similarities with in vivo models. To this aim, we maintained the cultures from 15 days in vitro (mature cultures) up to 27 days in vitro (senescent cultures), measuring senescence-associated, neuronal, dendritic, and astrocytic markers. Whole microRNA expression profiles were compared with those measured in the cortex of 18- and 24-month-old C57Bl/6J aged mice and of transgenic TgCRND8 mice, a model of amyloid-β deposition. Neuroglial cocultures displayed features of cellular senescence (increased senescence-associated-β-galactosidase activity, oxidative stress, γ-H2AX expression, IL-6 production, astrogliosis) that were concentration dependently counteracted by the antiaging compound resveratrol (1-5 µM). Among the 1,080 microRNAs analyzed, 335 were downregulated or absent in 27 compared with 15 days in vitro and resveratrol reversed this effect. A substantial overlapping was found between age-associated changes in microRNA expression profiles in vitro and in TgCRND8 mice but not in physiologically aged mice, indicating that this culture model displays more similarities with pathological than physiological brain aging. Our results demonstrate that neuroglial cocultures aged in vitro can be useful for investigating the cellular and molecular mechanisms of brain aging and for preliminary testing of protective compounds.

  1. Present and foreseeable future of metabolomics in forensic analysis.

    Science.gov (United States)

    Castillo-Peinado, L S; Luque de Castro, M D

    2016-06-21

    The revulsive publications during the last years on the precariousness of forensic sciences worldwide have promoted the move of major steps towards improvement of this science. One of the steps (viz. a higher involvement of metabolomics in the new era of forensic analysis) deserves to be discussed under different angles. Thus, the characteristics of metabolomics that make it a useful tool in forensic analysis, the aspects in which this omics is so far implicit, but not mentioned in forensic analyses, and how typical forensic parameters such as the post-mortem interval or fingerprints take benefits from metabolomics are critically discussed in this review. The way in which the metabolomics-forensic binomial succeeds when either conventional or less frequent samples are used is highlighted here. Finally, the pillars that should support future developments involving metabolomics and forensic analysis, and the research required for a fruitful in-depth involvement of metabolomics in forensic analysis are critically discussed.

  2. Metabolomics and its application to studying metal toxicity.

    Science.gov (United States)

    Booth, Sean C; Workentine, Matthew L; Weljie, Aalim M; Turner, Raymond J

    2011-11-01

    Here we explain the omics approach of metabolomics and how it can be applied to study a physiological response to toxic metal exposure. This review aims to educate the metallomics field to the tool of metabolomics. Metabolomics is becoming an increasingly used tool to compare natural and challenged states of various organisms, from disease states in humans to toxin exposure to environmental systems. This approach is key to understanding and identifying the cellular or biochemical targets of metals and the underlying physiological response. Metabolomics steps are described and overviews of its application to metal toxicity to organisms are given. As this approach is very new there are yet only a small number of total studies and therefore only a brief overview of some metal metabolomics studies is described. A frank critical evaluation of the approach is given to provide newcomers to the method a clear idea of the challenges and the rewards of applying metabolomics to their research.

  3. Impact of Inhaled Nitric Oxide on the Sulfatide Profile of Neonatal Rat Brain Studied by TOF-SIMS Imaging

    Directory of Open Access Journals (Sweden)

    Hanane Kadar

    2014-03-01

    Full Text Available Despite advances in neonatal intensive care leading to an increased survival rate in preterm infants, brain lesions and subsequent neurological handicaps following preterm birth remain a critical issue. To prevent brain injury and/or enhance repair, one of the most promising therapies investigated in preclinical models is inhaled nitric oxide (iNO. We have assessed the effect of this therapy on brain lipid content in air- and iNO-exposed rat pups by mass spectrometry imaging using a time-of-flight secondary ion mass spectrometry (TOF-SIMS method. This technique was used to map the variations in lipid composition of the rat brain and, particularly, of the white matter. Triplicate analysis showed a significant increase of sulfatides (25%–50% in the white matter on Day 10 of life in iNO-exposed animals from Day 0–7 of life. These robust, repeatable and semi-quantitative data demonstrate a potent effect of iNO at the molecular level.

  4. Metabolomic profiles of colostrum and milk from lactating sows

    DEFF Research Database (Denmark)

    Curtasu, Mihai Victor; Theil, Peter Kappel; Hedemann, Mette Skou

    2016-01-01

    and the variablesresponsible for separation. PCA revealed data clusteringaccording to sample type, with differencesobserved between colostrum and milk for both ionizationmodes. Positive ionization revealed a numberof highly influential metabolites, such as l-carnitine,acyl esters of carnitine (l-acetylcarnitine, 2......Survival and growth of sucklingpiglets is highly dependent on the nutrients, growthfactors, and protective components provided bysow colostrum and milk. The macrochemical compositionundergoes large alterations during thelactation period, but knowledge of the compositionand variation of low...... molecular weight metabolitesis presently lacking. Samples of colostrum at 0, 12,24, and 36 h and milk samples on Day 3, 10, 17,and 24 relative to farrowing were collected from 4s parity sows fed a standard lactation diet. Sampleswere analyzed using a nontargeted metabolomicsapproach. Sample preparation...

  5. Biomarkers of Fatigue: Metabolomics Profiles Predictive of Cognitive Performance

    Science.gov (United States)

    2013-05-01

    homovallinate, 3-hydroxyisovalerate, alanine, 2,2-dimethylsuccinate and taurine . Tyrosine and homovanillate are metabolites associated with the dopaminergic...2,2- dimethylsuccinate and taurine were elevated in the urine of fatigue-sensitive subjects and can be linked to high percentage dietary...to show how they compare. Thus PCA models were constructed to maximize visualization of specific responses based upon the nature of the effects

  6. First trimester maternal urinary metabolomic profile to predict macrosomia

    LENUS (Irish Health Repository)

    Walshe, J

    2011-02-01

    Institute of Obstetricians & Gynaecologists, RCPI Four Provinces Meeting, Junior Obstetrics & Gynaecology Society Annual Scientific Meeting, Royal Academy of Medicine in Ireland Dublin Maternity Hospitals Reports Meeting, Nov 2010

  7. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort

    NARCIS (Netherlands)

    Fages, Anne; Duarte-Salles, Talita; Stepien, Magdalena; Ferrari, Pietro; Fedirko, Veronika; Pontoizeau, Clement; Trichopoulou, Antonia; Aleksandrova, Krasimira; Tjonneland, Anne; Olsen, Anja; Clavel-Chapelon, Franoise; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Kaaks, Rudolf; Kuhn, Tilman; Floegel, Anna; Boeing, Heiner; Lagiou, Pagona; Bamia, Christina; Trichopoulos, Dimitrios; Palli, Domenico; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Vineis, Paolo; Bueno-de-Mesquita, H. Bas; Peeters, Petra H.; Weiderpass, Elisabete; Agudo, Antonio; Molina-Montes, Esther; Maria Huerta, Jose; Ardanaz, Eva; Dorronsoro, Miren; Sjoberg, Klas; Ohlsson, Bodil; Khaw, Kay-Tee; Wareham, Nick; Travis, Ruth C.; Schmidt, Julie A.; Cross, Amanda; Gunter, Marc; Riboli, Elio; Scalbert, Augustin; Romieu, Isabelle; Elena-Herrmann, Benedicte; Jenab, Mazda

    2015-01-01

    Background: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplet

  8. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies.

    Science.gov (United States)

    Gagnebin, Yoric; Tonoli, David; Lescuyer, Pierre; Ponte, Belen; de Seigneux, Sophie; Martin, Pierre-Yves; Schappler, Julie; Boccard, Julien; Rudaz, Serge

    2017-02-22

    Among the various biological matrices used in metabolomics, urine is a biofluid of major interest because of its non-invasive collection and its availability in large quantities. However, significant sources of variability in urine metabolomics based on UHPLC-MS are related to the analytical drift and variation of the sample concentration, thus requiring normalization. A sequential normalization strategy was developed to remove these detrimental effects, including: (i) pre-acquisition sample normalization by individual dilution factors to narrow the concentration range and to standardize the analytical conditions, (ii) post-acquisition data normalization by quality control-based robust LOESS signal correction (QC-RLSC) to correct for potential analytical drift, and (iii) post-acquisition data normalization by MS total useful signal (MSTUS) or probabilistic quotient normalization (PQN) to prevent the impact of concentration variability. This generic strategy was performed with urine samples from healthy individuals and was further implemented in the context of a clinical study to detect alterations in urine metabolomic profiles due to kidney failure. In the case of kidney failure, the relation between creatinine/osmolality and the sample concentration is modified, and relying only on these measurements for normalization could be highly detrimental. The sequential normalization strategy was demonstrated to significantly improve patient stratification by decreasing the unwanted variability and thus enhancing data quality.

  9. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data

    Directory of Open Access Journals (Sweden)

    Kansuporn eSriyudthsak

    2016-05-01

    Full Text Available The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.

  10. Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Linda M. [Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at Goeteborg University, Box 434, SE-405 30 Goeteborg (Sweden); Foerlin, Lars [Department of Zoology/Zoophysiology, Goeteborg University, Box 463, SE-405 30 Goeteborg (Sweden); Karlsson, Goeran [Swedish NMR Centre at Goeteborg University, Box 465, SE-405 30 Goeteborg (Sweden); Adolfsson-Erici, Margaretha [Institute of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden); Larsson, D.G. Joakim [Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Goeteborg University, Box 434, SE-405 30 Goeteborg (Sweden)]. E-mail: joakim.larsson@fysiologi.gu.se

    2006-07-20

    Nuclear magnetic resonance (NMR) based metabolomics in combination with multivariate data analysis may become valuable tools to study environmental effects of pharmaceuticals and other chemicals in aquatic organisms. To explore the usefulness of this approach in fish, we have used {sup 1}H NMR metabolomics to compare blood plasma and plasma lipid extracts from rainbow trout exposed to the synthetic contraceptive estrogen ethinylestradiol (EE{sub 2}) with plasma from control fish. The plasma metabolite profile was affected in fish exposed to 10 ng/L but not 0.87 ng/L of EE{sub 2}, which was in agreement with an induced vitellogenin synthesis in the high dose group only, as measured by ELISA. The main affected metabolites were vitellogenin, alanine, phospholipids and cholesterol. The responses identified by this discovery-driven method could be put in context with previous knowledge of the effects of estrogens on fish. This adds confidence to the approach of using NMR metabolomics to identify environmental effects of pharmaceuticals and other contaminants.

  11. Metabolomics with Nuclear Magnetic Resonance Spectroscopy in a Drosophila melanogaster Model of Surviving Sepsis

    Science.gov (United States)

    Bakalov, Veli; Amathieu, Roland; Triba, Mohamed N.; Clément, Marie-Jeanne; Reyes Uribe, Laura; Le Moyec, Laurence; Kaynar, Ata Murat

    2016-01-01

    Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham (pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate. PMID:28009836

  12. From models to crop species: caveats and solutions for translational metabolomics

    Directory of Open Access Journals (Sweden)

    Takayuki eTohge

    2011-10-01

    Full Text Available Although plant metabolomics is largely carried out on Arabidopsis it is essentially genome-independent, and thus potentially applicable to a wide range of species. However, transfer of between species, or even between different tissues of the same species, is not facile. This is because the reliability of protocols for harvesting, handling and analysis depends on the biological features and chemical composition of the plant tissue. In parallel with the diversification of model species it is important to establish good handling and analytic practice, in order to augment computational comparisons between tissues and species. LC-MS-based metabolomics is one of the powerful approaches for metabolite profiling. By using a combination of different extraction methods, separation columns and ion detection, a very wide range of metabolites can be analysed. However, its application requires careful attention to exclude potential pitfalls, including artifactual changes in metabolite levels during sample preparation and analytic errors due to ion-suppression. Here we provide case studies with two different LC-MS-based metabolomics platforms and four species (Arabidopsis thaliana, Chlamydomonas reinhardtii, Solanum lycopersicum and Oryza sativa that illustrate how such dangers can be detected and circumvented.

  13. Metabolomics reveals increased isoleukotoxin diol (12,13-DHOME) in human plasma after acute Intralipid infusion.

    Science.gov (United States)

    Edwards, Lindsay M; Lawler, Nathan G; Nikolic, Sonja B; Peters, James M; Horne, James; Wilson, Richard; Davies, Noel W; Sharman, James E

    2012-09-01

    Intralipid is a fat emulsion that is regularly infused into humans and animals. Despite its routine use, Intralipid infusion can cause serious adverse reactions, including immunosuppression. Intralipid is a complex mix of proteins, lipids, and other small molecules, and the effect of its infusion on the human plasma metabolome is unknown. We hypothesized that untargeted metabolomics of human plasma after an Intralipid infusion would reveal novel insights into its effects. We infused Intralipid and saline into 10 healthy men in a double-blind, placebo-controlled experiment and used GC/MS, LC/MS, and NMR to profile the small-molecule composition of their plasma before and after infusion. Multivariate statistical analysis of the 40 resulting plasma samples revealed that after Intralipid infusion, a less-well-characterized pathway of linoleic acid metabolism had resulted in the appearance of (9Z)-12,13-dihydroxyoctadec-9-enoic acid (12,13-DHOME, P plasma 12,13-DHOME. Given that 12,13-DHOME is known to directly affect neutrophil function, we conclude that untargeted metabolomics may have revealed a hitherto-unknown mechanism of intralipid-induced immunosuppression.

  14. Metabolomics with Nuclear Magnetic Resonance Spectroscopy in a Drosophila melanogaster Model of Surviving Sepsis

    Directory of Open Access Journals (Sweden)

    Veli Bakalov

    2016-12-01

    Full Text Available Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR, to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid, sham (pricked with an aseptic needle, and unmanipulated (positive control. We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate.

  15. Development and optimization of a metabolomic method for analysis of adherent cell cultures.

    Science.gov (United States)

    Danielsson, Anders P H; Moritz, Thomas; Mulder, Hindrik; Spégel, Peter

    2010-09-01

    In this investigation, a gas chromatography/mass spectrometry (GC/MS)-based metabolomic protocol for adherent cell cultures was developed using statistical design of experiments. Cell disruption, metabolite extraction, and the GC/MS settings were optimized aiming at a gentle, unbiased, sensitive, and high-throughput metabolomic protocol. Due to the heterogeneity of the metabolome and the inherent selectivity of all analytical techniques, development of unbiased protocols is highly complex. Changing one parameter of the protocol may change the response of many groups of metabolites. In this investigation, statistical design of experiments and multivariate analysis also allowed such interaction effects to be taken into account. The protocol was validated with respect to linear range, precision, and limit of detection in a clonal rat insulinoma cell line (INS-1 832/13). The protocol allowed high-throughput profiling of metabolites covering the major metabolic pathways. The majority of metabolites displayed a linear range from a single well in a 96-well plate up to a 10 cm culture dish. The method allowed a total of 47 analyses to be performed in 24h.

  16. Metabolomics as an extension of proteomic analysis: study of acute kidney injury.

    Science.gov (United States)

    Portilla, Didier; Schnackenberg, Laura; Beger, Richard D

    2007-11-01

    Although proteomics studies the global expression of proteins, metabolomics characterizes and quantifies their end products: the metabolites, produced by an organism under a certain set of conditions. From this perspective it is apparent that proteomics and metabolomics are complementary and when joined allow a fuller appreciation of an organism's phenotype. Our studies using (1)H-nuclear magnetic resonance spectroscopic analysis showed the presence of glucose, amino acids, and trichloroacetic acid cycle metabolites in the urine after 48 hours of cisplatin administration. These metabolic alterations precede changes in serum creatinine. Biochemical studies confirmed the presence of glucosuria, but also showed the accumulation of nonesterified fatty acids, and triglycerides in serum, urine, and kidney tissue, despite increased levels of plasma insulin. These metabolic alterations were ameliorated by the use of fibrates. We propose that the injury-induced metabolic profile may be used as a biomarker of cisplatin-induced nephrotoxicity. These studies serve to illustrate that metabolomic studies add insight into pathophysiology not provided by proteomic analysis alone.

  17. Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics

    NARCIS (Netherlands)

    Allwood, J.W.; Erban, A.; Koning, S.; Dun, W.B.; Luedemann, A.; Lommen, A.; Kay, L.; Löscher, R.; Kopka, J.; Goodacre, R.

    2009-01-01

    The application of gas chromatography¿mass spectrometry (GC¿MS) to the `global¿ analysis of metabolites in complex samples (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining and standardisation of experimental and reporting as

  18. Metabolomics as a diagnostic tool in gastroenterology

    Institute of Scientific and Technical Information of China (English)

    Vicky; De; Preter; Kristin; Verbeke

    2013-01-01

    Metabolomics has increasingly been applied in addition to other "omic" approaches in the study of the pathophysiology of different gastrointestinal diseases.Metabolites represent molecular readouts of the cell status reflecting a physiological phenotype.In addition,changes in metabolite concentrations induced by exogenous factors such as environmental and dietary factors which do not affect the genome,are taken into account.Metabolic reactions initiated by the host or gut microbiota can lead to "marker" metabolites present in different biological fluids that allow differentiation between health and disease.Several lines of evidence implicated the involvement of intestinal microbiota in the pathogenesis of inflammatory bowel disease(IBD).Also in irritable bowel syndrome(IBS),a role of an abnormal microbiota composition,so-called dysbiosis,is supported by experimental data.These compositional alterations could play a role in the aetiology of both diseases by altering the metabolic activities of the gut bacteria.Several studies have applied a metabolomic approach to identify these metabolite signatures.However,before translating a potential metabolite biomarker into clinical use,additional validation studies are required.This review summarizes contributions that metabolomics has made in IBD and IBS and presents potential future directions within the field.

  19. Human Aging Is a Metabolome-related Matter of Gender.

    Science.gov (United States)

    Jové, Mariona; Maté, Ianire; Naudí, Alba; Mota-Martorell, Natalia; Portero-Otín, Manuel; De la Fuente, Mónica; Pamplona, Reinald

    2016-05-01

    A molecular description of the mechanisms by which aging is produced is still very limited. Here, we have determined the plasma metabolite profile by using high-throughput metabolome profiling technologies of 150 healthy humans ranging from 30 to 100 years of age. Using a nontargeted approach, we detected 2,678 metabolite species in plasma, and the multivariate analyses separated perfectly two groups indicating a specific signature for each gender. In addition, there is a set of gender-shared metabolites, which change significantly during aging with a similar tendency. Among the identified molecules, we found vitamin D2-related compound, phosphoserine (40:5), monoacylglyceride (22:1), diacylglyceride (33:2), and resolvin D6, all of them decreasing with the aging process. Finally, we found three molecules that directly correlate with age and seven that inversely correlate with age, independently of gender. Among the identified molecules (6 of 10 according to exact mass and retention time), we found a proteolytic product (l-γ-glutamyl-l-leucine), which increased with age. On the contrary, a hydroxyl fatty acid (25-hydroxy-hexacosanoic), a polyunsaturated fatty acid (eicosapentaenoic acid), two phospholipids (phosphocholine [42:9]and phosphoserine [42:3]) and a prostaglandin (15-keto-prostaglandin F2α) decreased with aging. These results suggest that lipid species and their metabolism are closely linked to the aging process.

  20. Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis.

    Directory of Open Access Journals (Sweden)

    Ketki D Verkhedkar

    Full Text Available BACKGROUND: Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. CONCLUSIONS: We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a

  1. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.

    Science.gov (United States)

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  2. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT inhibition on human cancer cells.

    Directory of Open Access Journals (Sweden)

    Vladimir Tolstikov

    Full Text Available Nicotinamide phosphoribosyltransferase (NAMPT plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer and HCT-116 (colorectal cancer cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA, and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  3. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure.

    Directory of Open Access Journals (Sweden)

    Amrita K Cheema

    Full Text Available Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS two months after 2 Gy γ radiation and results were compared to an equitoxic ⁵⁶Fe (1.6 Gy radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ⁵⁶Fe radiation preferentially altered dipeptide metabolism. Furthermore, ⁵⁶Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but

  4. Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico.

    Science.gov (United States)

    Martin, Elizabeth; González-Horta, Carmen; Rager, Julia; Bailey, Kathryn A; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Ishida, María C; Gutiérrez-Torres, Daniela S; Hernández Cerón, Roberto; Viniegra Morales, Damián; Baeza Terrazas, Francisco A; Saunders, R Jesse; Drobná, Zuzana; Mendez, Michelle A; Buse, John B; Loomis, Dana; Jia, Wei; García-Vargas, Gonzalo G; Del Razo, Luz M; Stýblo, Miroslav; Fry, Rebecca

    2015-04-01

    Chronic exposure to inorganic arsenic (iAs) has been linked to an increased risk of diabetes, yet the specific disease phenotype and underlying mechanisms are poorly understood. In the present study we set out to identify iAs exposure-associated metabolites with altered abundance in nondiabetic and diabetic individuals in an effort to understand the relationship between exposure, metabolomic response, and disease status. A nested study design was used to profile metabolomic shifts in urine and plasma collected from 90 diabetic and 86 nondiabetic individuals matched for varying iAs concentrations in drinking water, body mass index, age, and sex. Diabetes diagnosis was based on measures of fasting plasma glucose and 2-h blood glucose. Multivariable models were used to identify metabolites with altered abundance associated with iAs exposure among diabetic and nondiabetic individuals. A total of 132 metabolites were identified to shift in urine or plasma in response to iAs exposure characterized by the sum of iAs metabolites in urine (U-tAs). Although many metabolites were altered in both diabetic and nondiabetic 35 subjects, diabetic individuals displayed a unique response to iAs exposure with 59 altered metabolites including those that play a role in tricarboxylic acid cycle and amino acid metabolism. Taken together, these data highlight the broad impact of iAs exposure on the human metabolome, and demonstrate some specificity of the metabolomic response between diabetic and nondiabetic individuals. These data may provide novel insights into the mechanisms and phenotype of diabetes associated with iAs exposure.

  5. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods.

    Science.gov (United States)

    Boaz, Segal M; Champagne, Cory D; Fowler, Melinda A; Houser, Dorian H; Crocker, Daniel E

    2012-02-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to 7 weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems.

  6. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency

    Directory of Open Access Journals (Sweden)

    Jayasimman Rajendran

    2016-11-01

    Full Text Available Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21 than those on standard diet (33 ± 3.8 days, n = 30, and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders.

  7. Direct infussion Electrospray Mass Spectrometry as a new non-invasive tool for serum metabolomics in induced-stress subjects

    Directory of Open Access Journals (Sweden)

    Mónica Lorenzo-Tejedor

    2015-12-01

    Full Text Available Background and Objectives: Nanotechnology is becoming a tool for the study of changes in the metabolome of patients in different states of disease. Analytical techniques such as Electrospray Mass Spectrometry, allow to find biomarkers by determination of metabolites. Nowadays, there is not an objective analytical approach for diagnosis of stress. Thus, the objectives of this pilot work are: Describing the development of a fast, direct and non-invasive analytical protocol, applied for the first time, to study the metabolomic profile of patient´s different states through a disease. Testing the protocol in a pilot sample with non-stressed and stress-induced subjects. Methods: High resolution direct infusion electrospray mass spectrometry has been used to analyse the metabolome of blood samples (0.3 ml from six subjects. Results: Data prove a clear discrimination between non-stressed and stressed states in the metabolome. Data showed different predominant metabolites in both states. Results allow objective characterization of the state of the patient. Conclusions: Although this is a pilot study, the method was successful in discriminating different metabolites in non-stressed and stress-induced subjects.

  8. Tissue lipid metabolism and hepatic metabolomic profiling in response to supplementation of fermented cottonseed meal in the diets of broiler chickens%肉鸡日粮中添加发酵棉粕对其组织脂类代谢及肝脏代谢谱的影响

    Institute of Scientific and Technical Information of China (English)

    Cun-xi NIE; Wen-ju ZHANG; Yong-qiang WANG; Yan-feng LIU; Wen-xia GE; Jian-cheng LIU

    2015-01-01

    This study investigated the effects of fermented cottonseed meal (FCSM) on lipid metabolites, lipid metabolism-related gene expression in liver tissues and abdominal adipose tissues, and hepatic metabolomic profiling in broiler chickens. One hundred and eighty 21-d-old broiler chickens were randomly divided into three diet groups with six replicates of 10 birds in each group. The three diets consisted of a control diet supplemented with unfermented cottonseed meal, an experimental diet of cottonseed meal fermented byCandida tropicalis, and a second experi-mental diet of cottonseed meal fermented by C. tropicalis plusSaccharomyces cerevisae. The results showed that FCSM intake significantly decreased the levels of abdominal fat and hepatic triglycerides (P<0.05 for both). Dietary FCSM supplementation down-regulated the mRNA expression of fatty acid synthase and acetyl CoA carboxylase in liver tissues and the lipoprotein lipase expression in abdominal fat tissues (P<0.05 for both). FCSM intake resulted in significant metabolic changes of multiple pathways in the liver involving the tricarboxylic acid cycle, synthesis of fatty acids, and the metabolism of glycerolipid and amino acids. These findings indicated that FCSM regulated lipid me-tabolism by increasing or decreasing the expression of the lipid-related gene and by altering multiple endogenous metabolites. Lipid metabolism regulation is a complex process, this discovery provided new essential information about the effects of FCSM diets in broiler chickens and demonstrated the great potential of nutrimetabolomics in researching complex nutrients added to animal diets.%目 的:旨在研究发酵棉粕对肉鸡脂类代谢的影响.创新点:将荧光定量聚合酶链反应 PCR 和代谢组学方法相结合,就采食发酵饲料(发酵棉粕)肉鸡的组织脂类代谢相关基因及肝脏代谢谱进行分析,发现发酵棉粕具有调控肉鸡脂类代谢的作用.该研究为研究日粮中复杂

  9. Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics

    OpenAIRE

    Allwood, J W; Erban, A.; de Koning, S.; Dun, W.B.; Luedemann, A.; Lommen, A; Kay, L.; Löscher, R.; Kopka, J.; Goodacre, R

    2009-01-01

    The application of gas chromatography–mass spectrometry (GC–MS) to the ‘global’ analysis of metabolites in complex samples (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project’s (METAbolomics for Plants Health and OutReach: http://www.meta-phor.eu/) priorities towards robust technology development, a GC–MS ring ...

  10. Expression profiling in APP23 mouse brain: inhibition of Aβ amyloidosis and inflammation in response to LXR agonist treatment

    Directory of Open Access Journals (Sweden)

    Mangelsdorf David

    2007-10-01

    Full Text Available Abstract Background Recent studies demonstrate that in addition to its modulatory effect on APP processing, in vivo application of Liver X Receptor agonist T0901317 (T0 to APP transgenic and non-transgenic mice decreases the level of Aβ42. Moreover, in young Tg2576 mice T0 completely reversed contextual memory deficits. Compared to other tissues, the regulatory functions of LXRs in brain remain largely unexplored and our knowledge so far is limited to the cholesterol transporters and apoE. In this study we applied T0 to APP23 mice for various times and examined gene and protein expression. We also performed a series of experiments with primary brain cells derived from wild type and LXR knockout mice subjected to various LXR agonist treatments and inflammatory stimuli. Results We demonstrate an upregulation of genes related to lipid metabolism/transport, metabolism of xenobiotics and detoxification. Downregulated genes are involved in immune response and inflammation, cell death and apoptosis. Additional treatment experiments demonstrated an increase of soluble apolipoproteins E and A-I and a decrease of insoluble Aβ. In primary LXRwt but not in LXRα-/-β-/- microglia and astrocytes LXR agonists suppressed the inflammatory response induced by LPS or fibrillar Aβ. Conclusion The results show that LXR agonists could alleviate AD pathology by acting on amyloid deposition and brain inflammation. An increased understanding of the LXR controlled regulation of Aβ aggregation and clearance systems will lead to the development of more specific and powerful agonists targeting LXR for the treatment of AD.

  11. Plant metabolomics and its potential application for human nutrition

    NARCIS (Netherlands)

    Hall, R.D.; Brouwer, I.D.; Fitzgerald, M.A.

    2008-01-01

    With the growing interest in the use of metabolomic technologies for a wide range of biological targets, food applications related to nutrition and quality are rapidly emerging. Metabolomics offers us the opportunity to gain deeper insights into, and have better control of, the fundamental biochemic

  12. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    Science.gov (United States)

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  13. Untargeted Metabolomics Strategies—Challenges and Emerging Directions

    Science.gov (United States)

    Schrimpe-Rutledge, Alexandra C.; Codreanu, Simona G.; Sherrod, Stacy D.; McLean, John A.

    2016-09-01

    Metabolites are building blocks of cellular function. These species are involved in enzyme-catalyzed chemical reactions and are essential for cellular function. Upstream biological disruptions result in a series of metabolomic changes and, as such, the metabolome holds a wealth of information that is thought to be most predictive of phenotype. Uncovering this knowledge is a work in progress. The field of metabolomics is still maturing; the community has leveraged proteomics experience when applicable and developed a range of sample preparation and instrument methodology along with myriad data processing and analysis approaches. Research focuses have now shifted toward a fundamental understanding of the biology responsible for metabolomic changes. There are several types of metabolomics experiments including both targeted and untargeted analyses. While untargeted, hypothesis generating workflows exhibit many valuable attributes, challenges inherent to the approach remain. This Critical Insight comments on these challenges, focusing on the identification process of LC-MS-based untargeted metabolomics studies—specifically in mammalian systems. Biological interpretation of metabolomics data hinges on the ability to accurately identify metabolites. The range of confidence associated with identifications that is often overlooked is reviewed, and opportunities for advancing the metabolomics field are described.

  14. Untargeted Metabolomics Strategies—Challenges and Emerging Directions

    Science.gov (United States)

    Schrimpe-Rutledge, Alexandra C.; Codreanu, Simona G.; Sherrod, Stacy D.; McLean, John A.

    2016-12-01

    Metabolites are building blocks of cellular function. These species are involved in enzyme-catalyzed chemical reactions and are essential for cellular function. Upstream biological disruptions result in a series of metabolomic changes and, as such, the metabolome holds a wealth of information that is thought to be most predictive of phenotype. Uncovering this knowledge is a work in progress. The field of metabolomics is still maturing; the community has leveraged proteomics experience when applicable and developed a range of sample preparation and instrument methodology along with myriad data processing and analysis approaches. Research focuses have now shifted toward a fundamental understanding of the biology responsible for metabolomic changes. There are several types of metabolomics experiments including both targeted and untargeted analyses. While untargeted, hypothesis generating workflows exhibit many valuable attributes, challenges inherent to the approach remain. This Critical Insight comments on these challenges, focusing on the identification process of LC-MS-based untargeted metabolomics studies—specifically in mammalian systems. Biological interpretation of metabolomics data hinges on the ability to accurately identify metabolites. The range of confidence associated with identifications that is often overlooked is reviewed, and opportunities for advancing the metabolomics field are described.

  15. Normalization method for metabolomics data using optimal selection of multiple internal standards

    Directory of Open Access Journals (Sweden)

    Yetukuri Laxman

    2007-03-01

    Full Text Available Abstract Background Success of metabolomics as the phenotyping platform largely depends on its ability to detect various sources of biological variability. Removal of platform-specific sources of variability such as systematic error is therefore one of the foremost priorities in data preprocessing. However, chemical diversity of molecular species included in typical metabolic profiling experiments leads to different responses to variations in experimental conditions, making normalization a very demanding task. Results With the aim to remove unwanted systematic variation, we present an approach that utilizes variability information from multiple internal standard compounds to find optimal normalization factor for each individual molecular species detected by metabolomics approach (NOMIS. We demonstrate the method on mouse liver lipidomic profiles using Ultra Performance Liquid Chromatography coupled to high resolution mass spectrometry, and compare its performance to two commonly utilized normalization methods: normalization by l2 norm and by retention time region specific standard compound profiles. The NOMIS method proved superior in its ability to reduce the effect of systematic error across the full spectrum of metabolite peaks. We also demonstrate that the method can be used to select best combinations of standard compounds for normalization. Conclusion Depending on experiment design and biological matrix, the NOMIS method is applicable either as a one-step normalization method or as a two-step method where the normalization parameters, influenced by variabilities of internal standard compounds and their correlation to metabolites, are first calculated from a study conducted in repeatability conditions. The method can also be used in analytical development of metabolomics methods by helping to select best combinations of standard compounds for a particular biological matrix and analytical platform.

  16. Serum metabolomic response of myasthenia gravis patients to chronic prednisone treatment.

    Science.gov (United States)

    Sengupta, Manjistha; Cheema, Amrita; Kaminski, Henry J; Kusner, Linda L

    2014-01-01

    Prednisone is often used for the treatment of autoimmune and inflammatory diseases but they suffer from variable therapeutic responses and significant adverse effects. Serum biological markers that are modulated by chronic corticosteroid use have not been identified. Myasthenia gravis is an autoimmune neuromuscular disorder caused by antibodies directed against proteins present at the post-synaptic surface of neuromuscular junction resulting in weakness. The patients with myasthenia gravis are primarily treated with prednisone. We analyzed the metabolomic profile of serum collected from patients prior to and after 12 weeks of prednisone treatment during a clinical trial. Our aim was to identify metabolites that may be treatment responsive and be evaluated in future studies as potential biomarkers of efficacy or adverse effects. Ultra-performance liquid chromatography coupled with electro-spray quadrupole time of flight mass spectrometry was used to obtain comparative metabolomic and lipidomic profile. Untargeted metabolic profiling of serum showed a clear distinction between pre- and post-treatment groups. Chronic prednisone treatment caused upregulation of membrane associated glycerophospholipids: phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, 1, 2-diacyl-sn glycerol 3 phosphate and 1-Acyl-sn-glycero-3-phosphocholine. Arachidonic acid (AA) and AA derived pro-inflammatory eicosanoids such as 18-carboxy dinor leukotriene B4 and 15 hydroxyeicosatetraenoic acids were reduced. Perturbations in amino acid, carbohydrate, vitamin and lipid metabolism were observed. Chronic prednisone treatment caused increase in membrane associated glycerophospholipids, which may be associated with certain adverse effects. Decrease of AA and AA derived pro-inflammatory eicosanoids demonstrate that immunosuppression by corticosteroid is via suppression of pro-inflammatory pathways. The study identified metabolomic fingerprints that can now be validated as prednisone

  17. Redox proteomic profiling of neuroketal-adducted proteins in human brain: Regional vulnerability at middle age increases in the elderly.

    Science.gov (United States)

    Domínguez, Mayelín; de Oliveira, Eliandre; Odena, María Antonia; Portero, Manuel; Pamplona, Reinald; Ferrer, Isidro

    2016-06-01

    Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical manifestations of cognitive impairment, in order to increase understanding of regional brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins were identified in all the three regions although with regional specificities, by using redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number of cases with NKT-adducted proteins was higher in old-aged individuals but most oxidized proteins were already present in middle-aged individuals. Differences in vulnerability to oxidation were dependent on the sub-cellular localization, secondary structure, and external exposition of certain amino acids. Lipoxidized proteins included those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were estimated employing slot-blot, and these were compared between age groups. Oligomers increased with age in PC and FC; NKT significantly increased with age in FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting differences in brain regional vulnerability with age. Oligomers significantly correlated with NKT levels in the three cortical regions, suggesting that protein NKT adduction parallels soluble oligomer formation.

  18. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  19. Error Analysis and Propagation in Metabolomics Data Analysis.

    Science.gov (United States)

    Moseley, Hunter N B

    2013-01-01

    Error analysis plays a fundamental role in describing the uncertainty in experimental results. It has several fundamental uses in metabolomics including experimental design, quality control of experiments, the selection of appropriate statistical methods, and the determination of uncertainty in results. Furthermore, the importance of error analysis has grown with the increasing number, complexity, and heterogeneity of measurements characteristic of 'omics research. The increase in data complexity is particularly problematic for metabolomics, which has more heterogeneity than other omics technologies due to the much wider range of molecular entities detected and measured. This review introduces the fundamental concepts of error analysis as they apply to a wide range of metabolomics experimental designs and it discusses current methodologies for determining the propagation of uncertainty in appropriate metabolomics data analysis. These methodologies include analytical derivation and approximation techniques, Monte Carlo error analysis, and error analysis in metabolic inverse problems. Current limitations of each methodology with respect to metabolomics data analysis are also discussed.

  20. Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study

    Science.gov (United States)

    Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2014-05-01

    Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at

  1. Exo-metabolome of some fungal isolates growing on cork-based medium

    DEFF Research Database (Denmark)

    Barreto, M. C.; Frisvad, Jens Christian; Larsen, Thomas Ostenfeld;

    2011-01-01

    are produced by the studied fungal species, both in cork medium or in cork medium added with C. sitophila extracts. However, the addition of C. sitophila extract to the cork medium enhanced the growth of the other studied fungal isolates and altered the respective exo-metabolome profile, leading...... they can be dependent of the remains of former colonizers. In fact, the production of the exo-metabolites by the studied fungal isolates suggests that, under the used experimental conditions, they appear to play an important role in fungal interactions amongst the cork mycoflora....

  2. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Science.gov (United States)

    Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  3. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Directory of Open Access Journals (Sweden)

    Hyang Yeon Kim

    Full Text Available Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF and submerged fermentation (SmF. Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  4. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells.

    Science.gov (United States)

    Kaneko, Kumi; Suenami, Shota; Kubo, Takeo

    2016-01-01

    In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon

  5. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  6. The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells.

    Science.gov (United States)

    Wenner, Maria I; Maker, Garth L; Dawson, Linda F; Drummond, Peter D; Mullaney, Ian

    2016-08-01

    Several studies of neuropathic pain have linked abnormal adrenergic signalling to the development and maintenance of pain, although the mechanisms underlying this are not yet fully understood. Metabolomic analysis is a technique that can be used to give a snapshot of biochemical status, and can aid in the identification of the mechanisms behind pathological changes identified in cells, tissues and biological fluids. This study aimed to use gas chromatography-mass spectrometry-based metabolomic profiling in combination with reverse transcriptase-polymerase chain reaction and immunocytochemistry to identify functional α1-adrenergic receptors on cultured N1E-115 mouse neuroblastoma cells. The study was able to confirm the presence of mRNA for the α1D subtype, as well as protein expression of the α1-adrenergic receptor. Furthermore, metabolomic data revealed changes to the metabolite profile of cells when exposed to adrenergic pharmacological intervention. Agonist treatment with phenylephrine hydrochloride (10 µM) resulted in altered levels of several metabolites including myo-inositol, glucose, fructose, alanine, leucine, phenylalanine, valine, and n-acetylglutamic acid. Many of the changes observed in N1E-115 cells by agonist treatment were modulated by additional antagonist treatment (prazosin hydrochloride, 100 µM). A number of these changes reflected what is known about the biochemistry of α1-adrenergic receptor activation. This preliminary study therefore demonstrates the potential of metabolomic profiling to confirm the presence of functional receptors on cultured cells.

  7. Characterization of a novel, brain-penetrating CB1 receptor inverse agonist: metabolic profile in diet-induced obese models and aspects of central activity.

    Science.gov (United States)

    Jacobson, Laura H; Commerford, S Renee; Gerber, Sarah P; Chen, Yu Alice; Dardik, Beatriz; Chaperon, Frederique; Schwartzkopf, Chad; Nguyen-Tran, Van; Hollenbeck, Thomas; McNamara, Peter; He, Xiaohui; Liu, Hong; Seidel, H Martin; Jaton, Anne-Liese; Gromada, Jesper; Teixeira, Sandra

    2011-12-01

    Pharmacologic antagonism of cannabinoid 1 receptors (CB1 receptors) in the central nervous system (CNS) suppresses food intake, promotes weight loss, and improves the metabolic profile. Since the CB1 receptor is expressed both in the CNS and in peripheral tissues, therapeutic value may be gained with CB1 receptor inverse agonists acting on receptors in both domains. The present report examines the metabolic and CNS actions of a novel CB1 receptor inverse agonist, compound 64, a 1,5,6-trisubstituted pyrazolopyrimidinone. Compound 64 showed similar or superior binding affinity, in vitro potency, and pharmacokinetic profile compared to rimonabant. Both compounds improved the metabolic profile in diet-induced obese (DIO) rats and obese cynomolgus monkeys. Weight loss tended to be greater in compound 64-treated DIO rats compared to pair-fed counterparts, suggesting that compound 64 may have metabolic effects beyond those elicited by weight loss alone. In the CNS, reversal of agonist-induced hypothermia and hypolocomotion indicated that compound 64 possessed an antagonist activity in vivo. Dosed alone, compound 64 suppressed extinction of conditioned freezing (10 mg/kg) and rapid eye movement (REM) sleep (30 mg/kg), consistent with previous reports for rimonabant, although for REM sleep, compound 64 was greater than threefold less potent than for metabolic effects. Together, these data suggested that (1) impairment of extinction learning and REM sleep suppression are classic, centrally mediated responses to CB1 receptor inverse agonists, and (2) some separation may be achievable between central and peripheral effects with brain-penetrating CB1 receptor inverse agonists while maintaining metabolic efficacy. Furthermore, chronic treatment with compound 64 contributes to evidence that peripheral CB1 receptor blockade may yield beneficial outcomes that exceed those elicited by weight loss alone.

  8. Biomarker differences between cadaveric grafts used in human orthotopic liver transplantation as identified by coulometric electrochemical array detection (CEAD) metabolomics.

    Science.gov (United States)

    Perera, M Thamara P R; Higdon, Roger; Richards, Douglas A; Silva, Michael A; Murphy, Nick; Kolker, Eugene; Mirza, Darius F

    2014-12-01

    Metabolomics in systems biology research unravels intracellular metabolic changes by high throughput methods, but such studies focusing on liver transplantation (LT) are limited. Microdialysate samples of liver grafts from donors after circulatory death (DCD; n=13) and brain death (DBD; n=27) during cold storage and post-reperfusion phase were analyzed through coulometric electrochemical array detection (CEAD) for identification of key metabolomics changes. Metabolite peak differences between the graft types at cold phase, post-reperfusion trends, and in failed allografts, were identified against reference chromatograms. In the cold phase, xanthine, uric acid, and kynurenine were overexpressed in DCD by 3-fold, and 3-nitrotyrosine (3-NT) and 4-hydroxy-3-methoxymandelic acid (HMMA) in DBD by 2-fold (pidentification of overexpression of kynurenine in DCD grafts and in failed allografts is unique. Further studies should examine kynurenine as a potential biomarker predicting graft function, its causation, and actions on subsequent clinical outcomes.

  9. Biological variation of Vanilla planifolia leaf metabolome.

    Science.gov (United States)

    Palama, Tony Lionel; Fock, Isabelle; Choi, Young Hae; Verpoorte, Robert; Kodja, Hippolyte

    2010-04-01

    The metabolomic analysis of Vanilla planifolia leaves collected at different developmental stages was carried out using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis in order to evaluate their variation. Ontogenic changes of the metabolome were considered since leaves of different ages were collected at two different times of the day and in two different seasons. Principal component analysis (PCA) and partial least square modeling discriminate analysis (PLS-DA) of (1)H NMR data provided a clear separation according to leaf age, time of the day and season of collection. Young leaves were found to have higher levels of glucose, bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A) and bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)-tartrate (glucoside B), whereas older leaves had more sucrose, acetic acid, homocitric acid and malic acid. Results obtained from PLS-DA analysis showed that leaves collected in March 2008 had higher levels of glucosides A and B as compared to those collected in August 2007. However, the relative standard deviation (RSD) exhibited by the individual values of glucosides A and B showed that those compounds vary more according to their developmental stage (50%) than to the time of day or the season in which they were collected (19%). Although morphological variations of the V. planifolia accessions were observed, no clear separation of the accessions was determined from the analysis of the NMR spectra. The results obtained in this study, show that this method based on the use of (1)H NMR spectroscopy in combination with multivariate analysis has a great potential for further applications in the study of vanilla leaf metabolome.

  10. Metabolomic analysis of platelets during storage

    DEFF Research Database (Denmark)

    Paglia, Giuseppe; Sigurjónsson, Ólafur E; Rolfsson, Óttar;

    2015-01-01

    BACKGROUND: Platelet concentrates (PCs) can be prepared using three methods: platelet (PLT)-rich plasma, apheresis, and buffy coat. The aim of this study was to obtain a comprehensive data set that describes metabolism of buffy coat-derived PLTs during storage and to compare it with a previously...... measurements. This data set was obtained by combining a series of standard quality control assays to monitor the quality of stored PLTs and a deep coverage metabolomics study using liquid chromatography coupled with mass spectrometry. RESULTS: Stored PLTs showed a distinct metabolic transition occurring 4 days...

  11. Metabolomics of cocaine: implications in toxicity.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge

    2015-01-01

    Cocaine is the most commonly used illicit drug among those seeking care in Emergency Departments or drug detoxification centers. Cocaine, chemically known as benzoylmethylecgonine, is a naturally occurring substance found in the leaves of the Erythroxylum coca plant. The pharmacokinetics of cocaine is dependent on multiple factors, such as physical/chemical form, route of administration, genetics and concurrent consumption of alcohol. This review aims to discuss metabolomics of cocaine, namely by presenting all known metabolites of cocaine and their roles in the cocaine-mediated toxic effects.

  12. Metabolomics and bioactive substances in plants

    DEFF Research Database (Denmark)

    Khakimov, Bekzod

    (Analytical and Bioanalytical Chemistry, In Press, DOI: 10.1007/s00216-013-7341-z) outlines a novel GC-MS derivatization method using TMSCN for trimethylsilylation for improved analysis of complex biological mixtures . A review paper (Journal of Cereal Science, Accepted) written for the special issue...... of the Journal of Cereal Science dedicated to the journal’s 30th anniversary comprises current analytical challenges and perspectives of cereal metabolomics with emphasis on new development in the use of multivariate data nalysis methods for exploitation of the full information level in th