WorldWideScience

Sample records for brain magnetic resonance

  1. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  2. Magnetic resonance imaging of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.H.; Nathanson, J.A.; Fox, A.J.; Pelz, D.M.; Lownie, S.P.

    1995-06-01

    In order to demonstrate the magnetic resonance imaging (MRI) appearance of the brain in patients with clinical brain death, high-field MRI was performed on 5 patients using conventional T1-weighted and T2-weighted imaging. The study showed MRI exhibited similar features for all of the patients, features which were not found in MRI of comatose patients who were not clinically brain dead. It was stated that up to now the most important limitation in MRI of patients with suspected brain death has been the extreme difficulty of moving them out of the intensive care setting. If this problem can be overcome, and it appears possible with with the advent of MRI-compatible ventilators and noninvasive monitoring, MRI could become an excellent alternative for confirming clinical diagnosis of brain death for such patients. 15 refs., 3 figs.

  3. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Science.gov (United States)

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING THESIS Presented to the Faculty Department of Operational Sciences Graduate School of...available data includes raw fMRI as well as processed MP RAGE1 images . All data within the ABIDE database was compiled through studies on autism. All

  4. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition

    OpenAIRE

    2010-01-01

    OBJECTIVE We explored cognitive impairment in metabolic syndrome in relation to brain magnetic resonance imaging (MRI) findings. RESEARCH DESIGN AND METHODS We studied 819 participants free of clinical stroke and dementia of the population-based Austrian Stroke Prevention Study who had undergone brain MRI, neuropsychological testing, and a risk factor assessment relevant to National Cholesterol Education Program Adult Treatment Panel III criteria–defined metabolic syndrome. High-sensitivity C...

  5. Magnetic Resonance, Functional (fMRI) -- Brain

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  6. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  7. Magnetic resonance imaging safety of deep brain stimulator devices.

    Science.gov (United States)

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  8. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  9. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  10. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... tractography. Although probabilistic tractography currently holds great promise as a powerful non-invasive connectivity-measurement tool, its accuracy and limitations remain to be evaluated. Probabilistic tractography was assessed post mortem in an in vitro environment. Postmortem DWI benefits from...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  11. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  12. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    Science.gov (United States)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  13. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  14. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates : A review

    NARCIS (Netherlands)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen; Petersen, Esben T; Benders, Manon Jnl

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new met

  15. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2012-07-01

    properties of human blood at 1.5 Tesla : magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 2001;45:533–542. 32...Reichenbach, J.R., Rombouts, S.A., Haacke, E.M., 1999. Sub-millimeter fMRI at 1.5 Tesla : correlation of high resolution with low resolution measurements...noninvasively following severe traumatic brain injury. Acta Neurochir (Wien) 152(6):965–972 Catherine R, Sophie L, Nicolas B, Bernard V (2007) Transcranial

  16. Functional magnetic resonance imaging of the brain: A quick review

    Directory of Open Access Journals (Sweden)

    Vaghela Viratsinh

    2010-01-01

    Full Text Available Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  17. Gadolinium-enhanced magnetic resonance angiography in brain death

    Science.gov (United States)

    Luchtmann, M.; Beuing, O.; Skalej, M.; Kohl, J.; Serowy, S.; Bernarding, J.; Firsching, R.

    2014-01-01

    Confirmatory tests for the diagnosis of brain death in addition to clinical findings may shorten observation time required in some countries and may add certainty to the diagnosis under specific circumstances. The practicability of Gadolinium-enhanced magnetic resonance angiography to confirm cerebral circulatory arrest was assessed after the diagnosis of brain death in 15 patients using a 1.5 Tesla MRI scanner. In all 15 patients extracranial blood flow distal to the external carotid arteries was undisturbed. In 14 patients no contrast medium was noted within intracerebral vessels above the proximal level of the intracerebral arteries. In one patient more distal segments of the anterior and middle cerebral arteries (A3 and M3) were filled with contrast medium. Gadolinium-enhanced MRA may be considered conclusive evidence of cerebral circulatory arrest, when major intracranial vessels fail to fill with contrast medium while extracranial vessels show normal blood flow.

  18. Functional magnetic resonance imaging and the brain: A brief review

    Science.gov (United States)

    Chow, Maggie S M; Wu, Sharon L; Webb, Sarah E; Gluskin, Katie; Yew, D T

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is employed in many behavior analysis studies, with blood oxygen level dependent- (BOLD-) contrast imaging being the main method used to generate images. The use of BOLD-contrast imaging in fMRI has been refined over the years, for example, the inclusion of a spin echo pulse and increased magnetic strength were shown to produce better recorded images. Taking careful precautions to control variables during measurement, comparisons between different specimen groups can be illustrated by fMRI imaging using both quantitative and qualitative methods. Differences have been observed in comparisons of active and resting, developing and aging, and defective and damaged brains in various studies. However, cognitive studies using fMRI still face a number of challenges in interpretation that can only be overcome by imaging large numbers of samples. Furthermore, fMRI studies of brain cancer, lesions and other brain pathologies of both humans and animals are still to be explored. PMID:28144401

  19. Brain proton magnetic resonance spectroscopy of alcohol use disorders.

    Science.gov (United States)

    Meyerhoff, Dieter J

    2014-01-01

    This chapter critically reviews brain proton magnetic resonance spectroscopy ((1)H MRS) studies performed since 1994 in individuals with alcohol use disorders (AUD). We describe the neurochemicals that can be measured in vivo at the most common magnetic field strengths, summarize our knowledge about their general brain functions, and briefly explain some basic human (1)H MRS methods. Both cross-sectional and longitudinal research of individuals in treatment and of treatment-naïve individuals with AUD are discussed and interpreted on the basis of reported neuropathology. As AUDs are highly comorbid with chronic cigarette smoking and illicit substance abuse, we also summarize reports on their respective influences on regional proton metabolite levels. After reviewing research on neurobiologic correlates of relapse and genetic influences on brain metabolite levels, we finish with suggestions on future directions for (1)H MRS studies in AUDs. The review demonstrates that brain metabolic alterations associated with AUDs as well as their cognitive correlates are not simply a consequence of chronic alcohol consumption. Future MR research of AUDs in general has to be better prepared - and supported - to study clinically complex relationships between personality characteristics, comorbidities, neurogenetics, lifestyle, and living environment, as all these factors critically affect an individual's neurometabolic profile. (1)H MRS is uniquely positioned to tackle these complexities by contributing to a comprehensive biopsychosocial profile of individuals with AUD: it can provide non-invasive biochemical information on select regions of the brain at comparatively low overall cost for the ultimate purpose of informing more efficient treatments of AUDs.

  20. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  1. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  2. Brain proton magnetic resonance spectroscopy for hepatic encephalopathy

    Science.gov (United States)

    Ong, Chin-Sing; McConnell, James R.; Chu, Wei-Kom

    1993-08-01

    Liver failure can induce gradations of encephalopathy from mild to stupor to deep coma. The objective of this study is to investigate and quantify the variation of biochemical compounds in the brain in patients with liver failure and encephalopathy, through the use of water- suppressed, localized in-vivo Proton Magnetic Resonance Spectroscopy (HMRS). The spectral parameters of the compounds quantitated are: N-Acetyl Aspartate (NAA) to Creatine (Cr) ratio, Choline (Cho) to Creatine ratio, Inositol (Ins) to Creatine ratio and Glutamine-Glutamate Amino Acid (AA) to Creatine ratio. The study group consisted of twelve patients with proven advanced chronic liver failure and symptoms of encephalopathy. Comparison has been done with results obtained from five normal subjects without any evidence of encephalopathy or liver diseases.

  3. Unsupervised fuzzy segmentation of 3D magnetic resonance brain images

    Science.gov (United States)

    Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.

    1993-07-01

    Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.

  4. Robust Intensity Standardization in Brain Magnetic Resonance Images.

    Science.gov (United States)

    De Nunzio, Giorgio; Cataldo, Rosella; Carlà, Alessandra

    2015-12-01

    The paper is focused on a tiSsue-Based Standardization Technique (SBST) of magnetic resonance (MR) brain images. Magnetic Resonance Imaging intensities have no fixed tissue-specific numeric meaning, even within the same MRI protocol, for the same body region, or even for images of the same patient obtained on the same scanner in different moments. This affects postprocessing tasks such as automatic segmentation or unsupervised/supervised classification methods, which strictly depend on the observed image intensities, compromising the accuracy and efficiency of many image analyses algorithms. A large number of MR images from public databases, belonging to healthy people and to patients with different degrees of neurodegenerative pathology, were employed together with synthetic MRIs. Combining both histogram and tissue-specific intensity information, a correspondence is obtained for each tissue across images. The novelty consists of computing three standardizing transformations for the three main brain tissues, for each tissue class separately. In order to create a continuous intensity mapping, spline smoothing of the overall slightly discontinuous piecewise-linear intensity transformation is performed. The robustness of the technique is assessed in a post hoc manner, by verifying that automatic segmentation of images before and after standardization gives a high overlapping (Dice index >0.9) for each tissue class, even across images coming from different sources. Furthermore, SBST efficacy is tested by evaluating if and how much it increases intertissue discrimination and by assessing gaussianity of tissue gray-level distributions before and after standardization. Some quantitative comparisons to already existing different approaches available in the literature are performed.

  5. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  6. Magnetic resonance imaging of the brain in patients with migraine

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.; Sakai, F.; Kan, S.; Okada, J.; Tazaki, Y. (Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine)

    1991-05-01

    Magnetic resonance imaging (MRI) was studied in 91 patients with migraine and in 98 controls. Risk factors known to cause MRI lesions were carefully examined. In 36 patients with migraine (39.6%), small foci of high intensity on T{sub 2}-weighted and proton-density-weighted images were seen in the white matter. Of patients with migraine who were less than 40 years old and without any risk factor, 29.4% showed lesions on MRI; this was singificantly higher than the 11.2% for the group of age-matched controls (n=98). The lesions were distributed predominantly in the centrum semiovale and frontal white matter in young patients, but extended to the deeper white matter at the level of basal ganglia in the older age group. The side of the MRI lesions did not always correspond to the side of usual aura or headache. Migraine-related variables such as type of migraine, frequency, duration or intensity of headache or consumption of ergotamine showed no significant correlation with the incidence om MRI abnormalities. The data indicated that migraine may be associated with early pathologic changes in the brain. 26 refs., 4 figs., 3 tabs.

  7. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  8. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...... methods to noninvasively assess brain hemodynamics. More recently these methods have made their transition to the neonatal population. The aim of this review is twofold. Firstly, to describe these newly available noninvasive methods to investigate brain hemodynamics in neonates. Secondly, to discuss...

  9. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  10. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  11. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  12. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  13. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J;

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty...

  14. Magnetic resonance imaging of the brain in congenital cytomegalovirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, C.; Issakainen, J.; Kewitz, G.; Kikinis, R.; Martin, E.; Boltshauser, E.

    1989-01-01

    The children (age 2 months to 8 years) with a congenital cytomegalovirus (CMV) infection were studied by magnetic resonance imaging (MRI) using a 2.35 Tesla magnet. CMV infection was confirmed by serological investigations and virus culture in the neonatal period. Nine children had severe mental retardation and cerebral palsy, 1 patient suffered from microcephaly, ataxia and deafness. The cranial MRI examination showed the following abnormalities (N): Dilated lateral ventricles (10) and subarachnoid space (8), oligo/pacgyria (8), delayed/pathological myelination (7), paraventricular cysts (6), intra-cerebral calcification (1). This lack of sensitivity for calcification is explainable by the basic principles of MRI. The paraventricular cystic lesions were adjacent ot the occipital horns of the lateral ventricles and separated only by a thin membrane. This finding might represent a 'new sign' for congenital CMV infection in MRI examinations, being characteristic but nevertheless nonspecific, like calcification in CT.

  15. Prevalence of abnormal findings on brain magnetic resonance (MR examinations in adult participants of brain docking

    Directory of Open Access Journals (Sweden)

    Taketomi-Takahashi Ayako

    2005-10-01

    Full Text Available Abstract Background To determine the prevalence of abnormal findings on brain magnetic resonance (MR examinations in adult participants of brain docking in order to assess its usefulness. Methods We analyzed screening brain MR examinations for 1113 adults (age, 52.6+/-8.5 years; range, 22–84; 761 male and 352 female performed during 6-year period from April 1998 to March 2004. All participants voluntarily sought a brain MR examination at their own expense. All subjects were studied using the same 1.0-T MR scanner, on axial T1-weighted spin echo (SE images, proton-density-weighted and T2-weighted fast SE images, and intracranial MR angiography (MRA. All abnormal findings were classified into three basic categories: (1 findings with no referral necessary; (2 findings not requiring further evaluation, but which needed to be reported to the referring physician; (3 findings requiring further evaluation. Results Participants with abnormal MR findings requiring further evaluation accounted for 1.3 %, but five of seven suspected intracranial aneurysms were not confirmed by other imaging modalities (false positive. No malignant tumors or other life-threatening pathology was detected, and only three participants (0.27 % with abnormalities underwent surgical treatment. No participant groups were identified from our data as being high risk for MR abnormal findings requiring further evaluation. Conclusion Brain-docking participants had a variety of abnormalities on brain MR examinations, but only a small percentage of these findings required further evaluation. The usefulness of the brain docking with MRI and MRA has yet to be proven, and at this time we cannot approve this screening procedure.

  16. High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging.

    Science.gov (United States)

    Harris, Janna L; Yeh, Hung-Wen; Swerdlow, Russell H; Choi, In-Young; Lee, Phil; Brooks, William M

    2014-07-01

    Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging.

  17. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  18. Admission criteria to the Danish Brain Cancer Program are moderately associated with magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Hill, Thomas Winther; Nielsen, Mie Kiszka; Nepper-Rasmussen, Jørgen

    2013-01-01

    The objective of this study was to evaluate the Danish Brain Cancer Program by examining the criteria for admission to the program and the results of magnetic resonance imaging (MRI) of the brain in 359 patients referred to the program at the Odense University Hospital during one year. The admiss......The objective of this study was to evaluate the Danish Brain Cancer Program by examining the criteria for admission to the program and the results of magnetic resonance imaging (MRI) of the brain in 359 patients referred to the program at the Odense University Hospital during one year....... The admission criteria given by the Danish Health and Medicines Authority are as follows: 1. Prior computed tomography or MRI indicating tumour. 2. Progressive focal neurological deficits. 3. Epileptic seizure in adults. 4. Change in behaviour or cognition showing progression. 5. Headache with progression over...

  19. High-field (9.4 T) ~1H magnetic resonance microscopy of mouse brain

    Institute of Scientific and Technical Information of China (English)

    丁广良; 胡红兵; 李丽云; 叶朝辉

    1997-01-01

    The FLASH and STEAM pulse sequences were used to perform the microimaging and localized spectroscopy of brain of living and dead mice, respectively. The phase-shift presaturation approach was used to sup-press water NMR signal. The experimental results show that the differences in localized spectra and MR images of brain between live and dead mice can be observed by means of magnetic resonance microscopy.

  20. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hérbene; José; Milani; Edward; Araujo; Júnior; Sérgio; Cavalheiro; Patrícia; Soares; Oliveira; Wagner; Jou; Hisaba; Enoch; Quinderé; Sá; Barreto; Maurício; Mendes; Barbosa; Luciano; Marcondes; Nardozza; Antonio; Fernandes; Moron

    2015-01-01

    Congenital central nervous system tumors diagnosed during pregnancy are rare, and often have a poor prognosis. The most frequent type is the teratoma. Use of ultrasound and magnetic resonance image allows the suspicion of brain tumors during pregnancy. However, the definitive diagnosis is only confirmed after birth by histology. The purpose of this mini-review article is to describe the general clinical aspects of intracranial tumors and describe the main fetal brain tumors.

  1. Diffusion tensor magnetic resonance imaging of glial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: ferda@fnplzen. [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Kastner, Jan [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Mukensnabl, Petr [Sikl' s Institute of Pathological Anatomy, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Choc, Milan [Department of Neurosurgery, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Horemuzova, Jana; Ferdova, Eva; Kreuzberg, Boris [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic)

    2010-06-15

    Aim: To evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors. Methods: A retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed. Results: A uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%. Conclusion: Although the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the

  2. Quantitative assessment of brain perfusion with magnetic resonance imaging

    NARCIS (Netherlands)

    Bleeker, Egbert Jan Willem

    2011-01-01

    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tis

  3. Atlas of the developing brain of the marmoset monkey constructed using magnetic resonance histology.

    Science.gov (United States)

    Hikishima, K; Sawada, K; Murayama, A Y; Komaki, Y; Kawai, K; Sato, N; Inoue, T; Itoh, T; Momoshima, S; Iriki, A; Okano, H J; Sasaki, E; Okano, H

    2013-01-29

    The developmental anatomy of the brain is largely directed by neural-based cues. Despite this knowledge, the developmental trajectory of the primate brain has not yet been fully characterized. To realize this goal, the advance in noninvasive imaging methods and new brain atlases are essential. The common marmoset (Callithrix jacchus), a small New World primate, is widely used in neuroscience research. The recent introduction of transgenic techniques has enabled the marmoset to be used as a genetically modifiable primate model for brain development. Here, a magnetic resonance histology technique involving the use of ultra-high-resolution ex vivo magnetic resonance imaging (MRI) was performed to identify the developmental anatomy of the marmoset brain at different time points from gestational week 8 through to birth. The data allowed the generation of a multidimensional atlas of brain structures at different developmental stages. Furthermore, in utero MRI techniques were developed to noninvasively monitor brain development during the embryonic and fetal stages. The multidimensional atlas and the MRI tools developed herein are anticipated to further our understanding of the developing primate brain.

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  5. Web based brain volume calculation for magnetic resonance images.

    Science.gov (United States)

    Karsch, Kevin; Grinstead, Brian; He, Qing; Duan, Ye

    2008-01-01

    Brain volume calculations are crucial in modern medical research, especially in the study of neurodevelopmental disorders. In this paper, we present an algorithm for calculating two classifications of brain volume, total brain volume (TBV) and intracranial volume (ICV). Our algorithm takes MRI data as input, performs several preprocessing and intermediate steps, and then returns each of the two calculated volumes. To simplify this process and make our algorithm publicly accessible to anyone, we have created a web-based interface that allows users to upload their own MRI data and calculate the TBV and ICV for the given data. This interface provides a simple and efficient method for calculating these two classifications of brain volume, and it also removes the need for the user to download or install any applications.

  6. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  7. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging

    NARCIS (Netherlands)

    Anbeek, Petronella; Vincken, Koen L.; Groenendaal, Floris; Koeman, Annemieke; Van Osch, Matthias J. P.; Van der Grond, Jeroen

    2008-01-01

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and i

  8. STUDY OF BRAIN TUMOURS BY NOVE L MAGNETIC RESONANCE TECHNIQUE

    OpenAIRE

    Mohammad Shamim; Reyaz; Anju; Dinesh Kumar; Paricharak

    2015-01-01

    In the present study , thirty patients in the age range of 22 to 63 years of age were included after being diagnosed to be having brain tumour on CT scan or conventional MRI. In addition DWI , MRS , and PWI were carried out i n these patients. All the patients with suspicious malignant lesions were then subjected to FDG - PET examination . Histopathological correlation was obtained in all the patients to serve as gold standard against which other m...

  9. Proton magnetic resonance spectroscopy in brain tumours: clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Burtscher, I.M.; Holtaas, S. [Lund Univ. (Sweden). Dept. of Diagnostic Radiology

    2001-05-01

    Parallel to the rapid development of clinical MRI, MR spectroscopy (MRS) has, after starting as an analytical tool used in chemistry and physics, evolved to a noninvasive clinical examination. Most common neuroradiological diagnostic indications for MRS are functional inborn errors, neonatal hypoxia, ischaemia, metabolic diseases, white matter and degenerative diseases, epilepsy, inflammation, infections and intracranial neoplasm. Compared to CT and MRI, well-established morphological diagnostic tools, MRS provides information on the metabolic state of brain tissue. We review the clinical impact of MRS in diagnosis of tumours and their differentiation from non-neoplastic lesions. (orig.)

  10. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S.; Harada, M.; Nishitani, H. [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K. [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  11. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases.

  12. Magnetic resonance brain tissue segmentation based on sparse representations

    Science.gov (United States)

    Rueda, Andrea

    2015-12-01

    Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).

  13. ROLE OF MAGNETIC RESONANCE IMAGING BRAIN IN EVALUATION OF SEIZURES

    Directory of Open Access Journals (Sweden)

    Athira

    2015-09-01

    Full Text Available BACKGROUND AND OBJECTIVES: In patients with seizures a dedicated MRI protocol is a useful tool in the detection of an epileptogenic focus, including congenital, neoplastic and degenerative. Resection of these lesions can lead to seizure freedom in most patients. In this context, a prospective study was conducted to evaluate the etiology of seizures using MRI brain. METHODOLOGY: 120 patients presenting with seizures, above the age of 2years, referred to the Department of Radio - diagnosis were included in this study. RESULTS: In this study, the MR examination revealed pathological findi ngs i n 32.50% (39 out of 120 patients which includes: mesial temporal sclerosis - 14.2% (17, cerebral infarct with gliosis - 6.6% (8, meningioma - 2.5% (3, hypoxic ischemic encephalopathy - 1.6% (2, cortical dysplasia - 1.6% (2, tuberous sclerosis - 11.6% (2, nodula r heterotopias - 0.83% (1, neurocysticercosis - 0.83% (1%, metastasis - 0.83% (1, Dyke Davidoff Maison syndrome - 0.83% (1 and Arnold Chiari Malformation 0.83% (1. CONCLUSION: This study concludes that MR imaging plays a pivotal role in the evaluation of pati ents with seizures using a dedicated MRI seizure protocol to confirm or rule out any organic or developmental lesions. The most common abnormality seen in this study was mesial temporal sclerosis.

  14. A study of the comparative anatomy of the brain of domestic ruminants using magnetic resonance imaging.

    Science.gov (United States)

    Schmidt, M J; Langen, N; Klumpp, S; Nasirimanesh, F; Shirvanchi, P; Ondreka, N; Kramer, M

    2012-01-01

    Although magnetic resonance imaging has been used to examine the brain of domestic ruminants, detailed information relating the precise anatomical features in these species is lacking. In this study the brain structures of calves (Bos taurus domesticus), sheep (Ovis aries), goats (Capra hircus) and a mesaticephalic dog (Canis lupis familiaris) were examined using T2-weighed Turbo Spin Echo sequences; three-dimensional models based on high-resolution gradient echo scans were used to identify brain sulci and gyri in two-dimensional images. The ruminant brains examined were similar in structure and organisation to those of other mammals but particular features included the deep depression of the insula and the pronounced gyri of the cortices, the dominant position of the visual (optic nerve, optic chiasm and rostral colliculus) and olfactory (olfactory bulb, olfactory tracts and piriform lobe) systems, and the relatively large size of the diencephalon.

  15. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    Science.gov (United States)

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  16. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review.

    Science.gov (United States)

    Tohka, Jussi

    2014-11-28

    Quantitative analysis of magnetic resonance (MR) brain images are facilitated by the development of automated segmentation algorithms. A single image voxel may contain of several types of tissues due to the finite spatial resolution of the imaging device. This phenomenon, termed partial volume effect (PVE), complicates the segmentation process, and, due to the complexity of human brain anatomy, the PVE is an important factor for accurate brain structure quantification. Partial volume estimation refers to a generalized segmentation task where the amount of each tissue type within each voxel is solved. This review aims to provide a systematic, tutorial-like overview and categorization of methods for partial volume estimation in brain MRI. The review concentrates on the statistically based approaches for partial volume estimation and also explains differences to other, similar image segmentation approaches.

  17. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  18. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  19. Current and future applications of magnetic resonance imaging and spectroscopy of the brain in hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    VP Bob Grover; M Alex Dresner; Daniel M Forton; Serena Counsell; David J Larkman; Nayna Patel; Howard C Thomas; Simon D Taylor-Robinson

    2006-01-01

    Hepatic encephalopathy (HE) is a common neuropsychiatric abnormality, which complicates the course of patients with liver disease and results from hepatocellular failure and/or portosystemic shunting.The manifestations of HE are widely variable and involve a spectrum from mild subclinical disturbance to deep coma. Research interest has focused on the role of circulating gut-derived toxins, particularly ammonia, the development of brain swelling and changes in cerebral neurotransmitter systems that lead to global CNS depression and disordered function. Until recently the direct investigation of cerebral function has been difficult in man. However, new magnetic resonance imaging (MRI) techniques provide a non-invasive means of assessment of changes in brain volume (coregistered MRI) and impaired brain function (fMRI), while proton magnetic resonance spectroscopy (1H MRS) detects changes in brain biochemistry, including direct measurement of cerebral osmolytes, such as myoinositol, glutamate and glutamine which govern processes intrinsic to cellular homeostasis, including the accumulation of intracellular water. The concentrations of these intracellular osmolytes alter with hyperammonaemia. MRS-detected metabolite abnormalities correlate with the severity of neuropsychiatric impairment and since MR spectra return towards normal after treatment, the technique may be of use in objective patient monitoring and in assessing the effectiveness of various treatment regimens.

  20. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  1. Exploring altered consciousness states by magnetic resonance imaging in brain injury.

    Science.gov (United States)

    Lescot, Thomas; Galanaud, Damien; Puybasset, Louis

    2009-03-01

    Traumatic brain injury (TBI) occurs abruptly, involves multiple specialized teams, calls on the health-care system in its emergency dimension, and engages the well-being of the patient and his relatives for a lifetime period. Clinicians in charge of these patients are faced with issues of uppermost importance: medical issues such as predicting the long-term neurological outcome of the comatose patient; ethical issues because of the influence of intensive care on the long-term survival of patients in a vegetative and minimally conscious state; legal issues because of the law that has set the concept of proportionality of care as the legal rule; and social issues as the result of the very high cost of these pathologies. Today's larger availability of magnetic resonance imaging (MRI) in ventilated patients and the recent improvements in hardware and in imaging techniques that have made the last-developed imaging techniques such as diffusion tensor imaging and magnetic resonance spectroscopy available in brain-trauma patients, are changing the paradigm in neurointensive care regarding outcome prediction. The old paradigm that no individual prognosis could be made at the subacute phase in TBI patients does not hold true anymore. This major change opens new challenging ethical questions. This review focuses on the brain explorations that are required, such as MRI, magnetic resonance spectroscopy, and diffusion tensor imaging, to provide the clinician with a multimodal assessment of the brain state to predict outcome of coma. Such an assessment will become mandatory in the near future to answer the crucial question of proportionality of care in these patients.

  2. Quantitative magnetic resonance imaging of the fetal brain in utero: Methods and applications

    Institute of Scientific and Technical Information of China (English)

    Anat; Biegon; Chen; Hoffmann

    2014-01-01

    Application of modern magnetic resonance imaging(MRI) techniques to the live fetus in utero is a relatively recent endeavor. The relative advantages and disadvantages of clinical MRI relative to the widely used and accepted ultrasonographic approach are the subject of a continuing debate; however the focus of this review is on the even younger field of quantitative MRI as applied to non-invasive studies of fetal brain development. The techniques covered under this header include structural MRI when followed by quan-titative(e.g., volumetric) analysis, as well as quantita-tive analyses of diffusion weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI. The majority of the published work re-viewed here reflects information gathered from normal fetuses scanned during the 3rd trimester, with relatively smaller number of studies of pathological samples including common congenital pathologies such as ven-triculomegaly and viral infection.

  3. Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism.

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R; Oz, Gülin

    2011-12-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors, including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen noninvasively, but, in the past several years, the development of a noninvasive localized (13) C nuclear magnetic resonance (NMR) spectroscopy method has allowed the study of glycogen metabolism in the conscious human. With this technique, (13) C-glucose is administered intravenously, and its incorporation into and washout from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia, and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest that glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, (13) C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions.

  4. Detection of Brain Tumor and Extraction of Texture Features using Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Prof. Dilip Kumar Gandhi

    2012-10-01

    Full Text Available Brain Cancer Detection system is designed. Aim of this paper is to locate the tumor and determine the texture features from a Brain Cancer affected MRI. A computer based diagnosis is performed in order to detect the tumors from given Magnetic Resonance Image. Basic image processing techniques are used to locate the tumor region. Basic techniques consist of image enhancement, image bianarization, and image morphological operations. Texture features are computed using the Gray Level Co-occurrence Matrix. Texture features consists of five distinct features. Selective features or the combination of selective features will be used in the future to determine the class of the query image. Astrocytoma type of Brain Cancer affected images are used only for simplicity

  5. Magnetic resonance imaging based volumetry: a primary approach to unravelling the brain

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaoqi; Lü Su; Li Dongming; Gong Qiyong

    2007-01-01

    Magnetic resonance (MR) imaging based volumetry is recognized as an important technique for studying the brain. In this review, two principle volumetric methods using high resolution MR images were introduced, namely the Cavalieri method and the voxel based morphometry (VBM). The Cavalieri method represents a manual technique that allows the volume of brain structures to be estimated efficiently with no systematic error or sampling bias, whereby the VBM represents an automated image analysis which involves the use of statistical parametric mapping of the MR imaging data. Both methods have been refined and applied extensively in recent neuroscience research. The present paper aims to describe the development of methodologies and also to update the knowledge of their applications in studying the normal and diseased brain.

  6. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  7. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    Science.gov (United States)

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management.

  8. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    Science.gov (United States)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  9. Functional magnetic resonance imaging and diffusion tensor tractography of the corticopontocerebellar tract in the human brain

    Institute of Scientific and Technical Information of China (English)

    Ji Heon Hong; Sung Ho Jang

    2011-01-01

    The anatomical organization of the corticopontocerebellar tract (CPCT) in the human brain remains poorly understood.The present study investigated probabilistic tractography of the CPCT in the human brain using diffusion tensor tractography with functional magnetic resonance imaging.CPCT data was obtained from 14 healthy subjects.CPCT images were obtained from functional magnetic resonance imaging and diffusion tensor tractography,revealing that the CPCT originated from the primary sensorimotor cortex and descended to the pontine nucleus through the corona radiata,the posterior limb of the internal capsule,and the cerebral peduncle.After crossing the pons through the transverse pontine fibers,the CPCT entered the cerebellum via the middle cerebral peduncle.However,some variation was detected in the midbrain (middle cerebral peduncle and/or medial lemniscus) and pons (ventral and/or dorsal transverse pontine fibers).The CPCT was analyzed in 3 dimensions from the cerebral cortex to the cerebellum.These results could be informative for future studies of motor control in the human brain.

  10. Effect of Isotropic Assumption on Material Property Reconstructions of the Human Brain using Magnetic Resonance Elastography

    Science.gov (United States)

    Anderson, Aaron; Johnson, Curtis; Holtrop, Joseph; McGarry, Mathew; Paulsen, Keith; Sutton, Bradley; van Houten, Elijah; Georgiadis, John

    2015-03-01

    Neurodegenerative diseases affect the microstructure of the brain and thus have a significant effect on the tissue mechanical properties. In vivo techniques, like magnetic resonance elastography (MRE), have shown promise as a contrast technique for disease detection. MRE is a non-invasive technique for measuring the viscoelastic mechanical properties of biological tissue by applying a low-amplitude shear wave, capturing the wave patterns with specialized magnetic resonance imaging techniques, and employing an isotropic nonlinear inversion (NLI) material property reconstruction. When distinctly different shear wave patterns are applied, NLI reconstructs differences in the real component of the shear modulus of ~ 2 [ kPa ] within well ordered white matter (WM). The difference is significant due to the human brain only having a range of real shear modulus from 0 [ kPa ] (cerebral spinal fluid) to ~ 5 [ kPa ] (white matter). The focus of this investigation is to quantify the effect of propagation direction on the reconstructed material properties and examine their relationship to the underlying microstructure in a well ordered, WM regions of the brain (corpus callosum).

  11. A Multidimensional Magnetic Resonance Histology Atlas of the Wistar Rat Brain

    OpenAIRE

    Johnson, G. Allan; Calabrese, Evan; Badea, Alexandra; PAXINOS, GEORGE; Watson, Charles

    2012-01-01

    We have produced a multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). This MR atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data th...

  12. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy.

    Science.gov (United States)

    Wang, Li; Chen, Yunjie; Pan, Xiaohua; Hong, Xunning; Xia, Deshen

    2010-05-15

    This paper presents a variational level set approach in a multi-phase formulation to segmentation of brain magnetic resonance (MR) images with intensity inhomogeneity. In our model, the local image intensities are characterized by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with level set functions and local means and variances as variables. The means and variances of local intensities are considered as spatially varying functions. Therefore, our method is able to deal with intensity inhomogeneity without inhomogeneity correction. Our method has been applied to 3T and 7T MR images with promising results.

  13. Magnetic-resonance imaging of the human brain with an atomic magnetometer.

    Science.gov (United States)

    Savukov, I; Karaulanov, T

    2013-07-22

    Magnetic resonance imaging (MRI) is conventionally performed in very high fields, and this leads to some restrictions in applications. To remove such restrictions, the ultra-low field MRI approach has been proposed. Because of the loss of sensitivity, the detection methods based on superconducting quantum interference devices (SQUIDs) in a shielded room were used. Atomic magnetometers have similar sensitivity as SQUIDs and can also be used for MRI, but there are some technical difficulties to overcome. We demonstrate that MRI of the human brain can be obtained with an atomic magnetometer with in-plane resolution of 3 mm in 13 min.

  14. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E;

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  15. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  16. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  17. Volumetric T1 and T2 magnetic resonance brain toolkit for relaxometry mapping simulation

    Directory of Open Access Journals (Sweden)

    Antonio Carlos da Silva Senra Filho

    Full Text Available Abstract Introduction Relaxometry images are an important magnetic resonance imaging (MRI technique in the clinical routine. Many diagnoses are based on the relaxometry maps to infer abnormal state in the tissue characteristic relaxation constant. In order to study the performance of these image processing approaches, a controlled simulated environment is necessary. However, a simulated relaxometry image tool is still lacking. This study proposes a computational anatomical brain phantom for MRI relaxometry images, which aims to offer an easy and flexible toolkit to test different image processing techniques, applied to MRI relaxometry maps in a controlled simulated environment. Methods A pipeline of image processing techniques such as brain extraction, image segmentation, normalization to a common space and signal relaxation decay simulation, were applied to a brain structural ICBM brain template, on both T1 and T2 weighted images, in order to simulate a volumetric brain relaxometry phantom. The FMRIB Software Library (FSL toolkits were used here as the base image processing needed to all the relaxometry reconstruction. Results All the image processing procedures are performed using automatic algorithms. In addition, different artefact levels can be set from different sources such as Rician noise and radio-frequency inhomogeneity noises. Conclusion The main goal of this project is to help researchers in their future image processing analysis involving MRI relaxometry images, offering reliable and robust brain relaxometry simulation modelling. Furthermore, the entire pipeline is open-source, which provides a wide collaboration between researchers who may want to improve the software and its functionality.

  18. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  19. USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPIC IMAGING DATA IN PLANNING FOCAL RADIATION THERAPIES FOR BRAIN TUMORS

    Directory of Open Access Journals (Sweden)

    Edward E Graves

    2011-05-01

    Full Text Available Advances in radiation therapy for malignant neoplasms have produced techniques such as Gamma Knife radiosurgery, capable of delivering an ablative dose to a specific, irregular volume of tissue. However, efficient use of these techniques requires the identification of a target volume that will produce the best therapeutic response while sparing surrounding normal brain tissue. Accomplishing this task using conventional computed tomography (CT and contrast-enhanced magnetic resonance imaging (MRI techniques has proven difficult because of the difficulties in identifying the effective tumor margin. Magnetic resonance spectroscopic imaging (MRSI has been shown to offer a clinically-feasible metabolic assessment of the presence and extent of neoplasm that can complement conventional anatomic imaging. This paper reviews current Gamma Knife protocols and MRSI acquisition, reconstruction, and interpretation techniques, and discusses the motivation for including magnetic resonance spectroscopy findings while planning focal radiation therapies. A treatment selection and planning strategy incorporating MRSI is then proposed, which can be used in the future to assess the efficacy of spectroscopy-based therapy planning.

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to ...

  1. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...... intracranial hypertension. The results indicate that brain water self diffusion can be measured in vivo with reasonable accuracy. The clinical examples suggest that diffusion measurements may be clinically useful adding further information about in vivo MR tissue characterization....

  2. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    Energy Technology Data Exchange (ETDEWEB)

    Caviness, V.S. Jr. (Massachusetts General Hospital, Boston, MA (United States)); Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-05-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author).

  3. Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

    Directory of Open Access Journals (Sweden)

    Yen-Chun Chou

    2010-01-01

    Full Text Available Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV, relative cerebral blood flow (rCBF, and mean transit time (MTT. The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature.

  4. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

    Science.gov (United States)

    Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C

    2010-06-01

    We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation.

  5. Development of identification of the central sulcus in brain magnetic resonance imaging.

    Science.gov (United States)

    Hayashi, Norio; Sakuta, Keita; Minehiro, Kaori; Takanaga, Masako; Sanada, Shigeru; Suzuki, Masayuki; Miyati, Tosiaki; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    Magnetic resonance imaging (MRI) is useful in the quantitative evaluation of brain atrophy, because the superior contrast resolution facilitates separation of the gray and white matter. Quantitative assessment of brain atrophy has mainly been performed by manual measurement, which requires considerable time and effort to determine the brain volume. Therefore, computer-aided quantitative measurement methods for the diagnosis of brain atrophy are required. We have developed a method of segmenting the cerebrum, cerebellum-brainstem, and temporal lobe simultaneously on MR images obtained in a single sequence. It is important to measure the volume of not only these regions but also the frontal lobe in clinical use. However, for segmenting the frontal lobe, it is necessary to identify the Sylvian fissure and the central sulcus, which represent boundaries. Here, we developed a method of identifying the central sulcus from MR images obtained with a 1.5 T MRI scanner. The brain and the cerebrospinal fluid (CSF) regions were segmented using semiautomated segmentation method on MR images. The central sulcus shows an oblique line from the inside to the outside on the convexity view. The almost straight appearance of the central sulcus was used for segmentation of the central sulcus from the segmented CSF images. The central sulcus was identified with this technique in 77% of the images obtained by all sequences. This technique for identifying the central sulcus is very important not only for volumetry, but also for clinical diagnosis.

  6. Magnetic resonance imaging in multiple sclerosis. Investigation of brain and spinal cord lesions

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Shigeyuki; Hirayama, Keizo (Chiba Univ. (Japan). School of Medicine)

    1989-02-01

    Magnetic resonance imaging (MRI) of the brain was performed in a total of 45 patients with multiple sclerosis (MS), comprising 27 with brain symptoms and 18 without it. The results were compared with X-ray computed tomography (CT). Some of the 45 MS patients were also examined by neurophysiological studies for comparison. MRI showed demyelinating plaques of the brain in a total of 31 patients - 20 symptomatic and 11 asymptomatic patients. For symptomatic patients, MRI was capable of detecting brain lesions in 6 of 7 acute stage patients and 14 of 20 non-acute stage patients. It was also capable of detecting brain lesions in 21 of 30 clinically definite MR patients and 10 of 15 clinically probable MS patients. Concurrently available X-ray CT revealed brain lesions in 9 symptomatic patients and one asymptomatic patient. Visual evoked potentials examined in 31 patients showed abnormality in one of 9 patients without symptoms of optic neuritis and all of the other 22 patients with symptoms. In 19 evaluable patients, auditory brainstem responses were abnormal in one of 9 patients without brainstem symptoms and 3 of 10 patients with symptoms. MRI of the brain was far superior to X-ray CT, visual evoked potentials and auditory brainstem responses in detecting clinically unsuspected lesions. We proposed new diagnostic criteria including MRI findings of the brain in the Japanese MS diagnostic criteria. MRI of the spinal cord was performed in 12 MS patients with spinal cord symptoms by sagittal and coronal images. It demonstrated demyelinating lesions within the cervical and superior thoracic cord in 8 MS acute stage patients. Spinal cord lesions were longitudinally continuous as long as many spinal segments, with swelling in 6 patients and atrophy in 2 patients. MRI of spinal cord was useful in deciding superior and inferior limits of cord lesions and in visualizing cord swelling or atrophy.

  7. Self-Trained Supervised Segmentation of Subcortical Brain Structures Using Multispectral Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Michele Larobina

    2015-01-01

    Full Text Available The aim of this paper is investigate the feasibility of automatically training supervised methods, such as k-nearest neighbor (kNN and principal component discriminant analysis (PCDA, and to segment the four subcortical brain structures: caudate, thalamus, pallidum, and putamen. The adoption of supervised classification methods so far has been limited by the need to define a representative training dataset, operation that usually requires the intervention of an operator. In this work the selection of the training data was performed on the subject to be segmented in a fully automated manner by registering probabilistic atlases. Evaluation of automatically trained kNN and PCDA classifiers that combine voxel intensities and spatial coordinates was performed on 20 real datasets selected from two publicly available sources of multispectral magnetic resonance studies. The results demonstrate that atlas-guided training is an effective way to automatically define a representative and reliable training dataset, thus giving supervised methods the chance to successfully segment magnetic resonance brain images without the need for user interaction.

  8. Self-Trained Supervised Segmentation of Subcortical Brain Structures Using Multispectral Magnetic Resonance Images

    Science.gov (United States)

    Larobina, Michele; Murino, Loredana; Cervo, Amedeo; Alfano, Bruno

    2015-01-01

    The aim of this paper is investigate the feasibility of automatically training supervised methods, such as k-nearest neighbor (kNN) and principal component discriminant analysis (PCDA), and to segment the four subcortical brain structures: caudate, thalamus, pallidum, and putamen. The adoption of supervised classification methods so far has been limited by the need to define a representative training dataset, operation that usually requires the intervention of an operator. In this work the selection of the training data was performed on the subject to be segmented in a fully automated manner by registering probabilistic atlases. Evaluation of automatically trained kNN and PCDA classifiers that combine voxel intensities and spatial coordinates was performed on 20 real datasets selected from two publicly available sources of multispectral magnetic resonance studies. The results demonstrate that atlas-guided training is an effective way to automatically define a representative and reliable training dataset, thus giving supervised methods the chance to successfully segment magnetic resonance brain images without the need for user interaction. PMID:26583131

  9. Lesion localization of global aphasia without hemiparesis by overlapping of the brain magnetic resonance images

    Institute of Scientific and Technical Information of China (English)

    Woo Jin Kim; Nam-Jong Paik

    2014-01-01

    Global aphasia without hemiparesis is a striking stroke syndrome involving language impairment without the typically manifested contralateral hemiparesis, which is usually seen in patients with global aphasia following large left perisylvian lesions. The objective of this study is to elucidate the speciifc areas for lesion localization of global aphasia without hemiparesis by retrospectively studying the brain magnetic resonance images of six patients with global aphasia without hemi-paresis to deifne global aphasia without hemiparesis-related stroke lesions before overlapping the images to visualize the most overlapped area. Talairach coordinates for the most overlapped areas were converted to corresponding anatomical regions. Lesions where the images of more than three patients overlapped were considered significant. The overlapped global aphasia without hemiparesis related stroke lesions of six patients revealed that the signiifcantly involved anatomi-cal lesions were as follows:frontal lobe, sub-gyral, sub-lobar, extra-nuclear, corpus callosum, and inferior frontal gyrus, while caudate, claustrum, middle frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus, uncus, anterior cingulate, parahippocampal, amygdala, and subcallosal gyrus were seen less signiifcantly involved. This study is the ifrst to demonstrate the heteroge-neous anatomical involvement in global aphasia without hemiparesis by overlapping of the brain magnetic resonance images.

  10. The action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Hui; Wang, Wei; Zhao, Zhijing; Ge, Yali; Zhang, Jinsong; Yu, Daihua; Chai, Wei; Wu, Shengxi; Xu, Lixian

    2010-12-01

    Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessions. In session 1, the Observer's Assessment of Alertness/Sedation Scale was performed to evaluate asleep to awake/alert status. In session 2, images with blood oxygen level dependence contrast were obtained with echo-planar imaging on a 1.5-T Philips Gyroscan Magnetic Resonance System and analyzed. In both sessions, subjects were intravenously administered with saline (for 3 min) and then propofol (for 1.5 min) and saline again (for 10.5 min) with a constant speed infusion pump. Observer's Assessment of Alertness/Sedation Scale scoring showed that the subjects experienced conscious–sedative–unconscious–analepsia, which correlated well with the signal decreases in the anesthesia states. Propofol induced significant signal decreases in hypothalamus (18.2%±3.6%), frontal lobe (68.5%±11.2%), and temporal lobe (34.7%±6.1%). Additionally, the signals at these three sites were fulminant and changed synchronously. While in the thalamus, the signal decrease was observed in 5 of 10 of the subjects and the magnitude of decrease was 3.9%±1.6%. These results suggest that there is most significant inhibition in hypothalamus, frontal lobe, and temporal in propofol anesthesia and moderate inhibition in thalamus. These brain regions might be the targets of propofol anesthesia in human brain.

  11. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    Science.gov (United States)

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in other intracerebral haemorrhage types. Ischaemic brain lesions are

  12. Brain Phosphorus Magnetic Resonance Spectroscopy Imaging of Sleep Homeostasis and Restoration in Drug Dependence

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2007-01-01

    Full Text Available Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness. A report from our laboratory demonstrated that following recovery sleep from sleep deprivation, brain high-energy phosphates particularly beta–nucleoside triphosphate (beta-NTP are markedly increased as measured with phosphorus magnetic resonance spectroscopy (MRS. A more recent study examined the effects of sleep deprivation in opiate-dependent methadone-maintained (MM subjects. The study demonstrated increases in brain beta-NTP following recovery sleep. Interestingly, these increases were of a markedly greater magnitude in MM subjects compared to control subjects. A similar study examined sleep deprivation in cocaine-dependent subjects demonstrating that cocaine-dependent subjects exhibit greater increases in brain beta-NTP following recovery sleep when compared to control subjects. The studies suggest that sleep deprivation in both MM subjects and cocaine-dependent subjects is characterized by greater changes in brain ATP levels than control subjects. Greater enhancements in brain ATP following recovery sleep may reflect a greater disruption to or impact of sleep deprivation in drug dependent subjects, whereby sleep restoration processes may be unable to properly regulate brain ATP and maintain brain high-energy equilibrium. These studies support the notion of a greater susceptibility to sleep loss in drug dependent populations. Additional sleep studies in drug abusing

  13. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi (Kyoto Prefectural Univ. of Medicine (Japan))

    1994-11-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author).

  14. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    Science.gov (United States)

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  15. Multivariate Analysis of Magnetic Resonance Imaging Signals of the Human Brain.

    Science.gov (United States)

    Miyawaki, Yoichi

    2016-01-01

    Magnetic resonance imaging (MRI) of the human brain plays an important role in the field of medical imaging as well as basic neuroscience. It measures proton spin relaxation, the time constant of which depends on tissue type, and allows us to visualize anatomical structures in the brain. It can also measure functional signals that depend on the local ratio of oxyhemoglobin to deoxyhemoglobin in the blood, which is believed to reflect the degree of neural activity in the corresponding area. MRI thus provides anatomical and functional information about the human brain with high spatial resolution. Conventionally, MRI signals are measured and analyzed for each individual voxel. However, these signals are essentially multivariate because they are measured from multiple voxels simultaneously, and the pattern of activity might carry more useful information than each individual voxel does. This paper reviews recent trends in multivariate analysis of MRI signals in the human brain, and discusses applications of this technique in the fields of medical imaging and neuroscience.

  16. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images.

    Science.gov (United States)

    Chen, Yunjie; Zhan, Tianming; Zhang, Ji; Wang, Hongyuan

    2016-01-01

    We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.

  17. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  18. Implementation of magnetic resonance elastography for the investigation of traumatic brain injuries

    Science.gov (United States)

    Boulet, Thomas

    Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on a direct algebraic inversion of the differential equation of motion, which decouples under certain simplifying assumptions, and featured a spatio-temporal multi-directional filter. The second one relies on a finite element discretization of the governing equations to perform a direct inversion. Several applications of this technique have also been investigated, including the estimation of mechanical parameters in various gel phantoms and polymers, as well as the use of MRE as a diagnostic tools for brain disorders. In this respect, the particular interest was to investigate traumatic brain injury (TBI), a complex and diverse injury affecting 1.7 million Americans annually. The sensitivity of MRE to TBI was first assessed on excised rat brains subjected to a controlled cortical impact (CCI) injury, before execution of in vivo experiments in mice. MRE was also applied in vivo on mouse models of medulloblastoma tumors and multiple sclerosis. These studies showed the potential of MRE in mapping the brain mechanically and providing non-invasive in vivo imaging markers for neuropathology and pathogenesis of brain diseases. Furthermore, MRE can easily be translatable to clinical settings; thus, while this technique may not be used directly to diagnose different abnormalities in

  19. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose Roberto Lopes; Santana-Netto, Pedro Vieira; Sgnolf, Aline [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Image Dept.], e-mail: jrl.ferraz@terra.com.br; Rocha-Filho, Jose Alves; Mauad, Fernando [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Radiology Dept.; Sanches, Rafael Angelo [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Imaging Dept.

    2009-06-15

    This study aims at evaluating the application of magnetic resonance spectroscopy (MRS) in the differential diagnosis of brain tumors and inflammatory brain lesions. The examinations of 81 individuals, who performed brain MRS and were retrospectively analyzed. The patients with ages between 10 and 80 years old, were divided into two groups. Group A consisted of 42 individuals with diagnoses of cerebral toxoplasmosis and Group B was formed of 39 individuals with diagnosis of glial neoplasms. On analyzing the ROC curve, the discriminatory boundary for the Cho/Cr ratio between inflammatory lesions and tumors was 1.97 and for the NAA/Cr ratio it was 1.12. RMS is an important method useful in the distinction of inflammatory brain lesions and high-degree tumors when the Cho/Cr ratio is greater than 1.97 and the NAA/Cr ratio is less than 1.12. And so this method is important in the planning of treatment and monitoring of the therapeutic efficiency. (author)

  20. Classification of brain disease in magnetic resonance images using two-stage local feature fusion

    Science.gov (United States)

    Li, Tao; Li, Wu; Yang, Yehui

    2017-01-01

    Background Many classification methods have been proposed based on magnetic resonance images. Most methods rely on measures such as volume, the cerebral cortical thickness and grey matter density. These measures are susceptible to the performance of registration and limited in representation of anatomical structure. This paper proposes a two-stage local feature fusion method, in which deformable registration is not desired and anatomical information is represented from moderate scale. Methods Keypoints are firstly extracted from scale-space to represent anatomical structure. Then, two kinds of local features are calculated around the keypoints, one for correspondence and the other for representation. Scores are assigned for keypoints to quantify their effect in classification. The sum of scores for all effective keypoints is used to determine which group the test subject belongs to. Results We apply this method to magnetic resonance images of Alzheimer's disease and Parkinson's disease. The advantage of local feature in correspondence and representation contributes to the final classification. With the help of local feature (Scale Invariant Feature Transform, SIFT) in correspondence, the performance becomes better. Local feature (Histogram of Oriented Gradient, HOG) extracted from 16×16 cell block obtains better results compared with 4×4 and 8×8 cell block. Discussion This paper presents a method which combines the effect of SIFT descriptor in correspondence and the representation ability of HOG descriptor in anatomical structure. This method has the potential in distinguishing patients with brain disease from controls. PMID:28207873

  1. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Mehrabian Shima

    2012-09-01

    Full Text Available Abstract Background This article reports a rare case of active neurosyphilis in a man with mild to moderate dementia and marked hippocampal atrophy, mimicking early onset Alzheimer’s disease. Few cases have so far described bilateral hippocampal atrophy mimicking Alzheimer’s disease in neurosyphilis. Case presentation The patient presented here is a 33 year old Bulgarian male, whose clinical features include progressive cognitive decline and behavioral changes over the last 18 months. Neuropsychological examination revealed mild to moderate dementia (Mini Mental State Examination score was 16/30 with impaired memory and attention, and executive dysfunction. Pyramidal, and extrapyramidal signs, as well as dysarthria and impairment in coordination, were documented. Brain magnetic resonance imaging showed cortical atrophy with noticeable bilateral hippocampal atrophy. The diagnosis of active neurosyphilis was based on positive results of the Venereal Disease Research Laboratory test/Treponema pallidum hemagglutination reactions in blood and cerebrospinal fluid samples. In addition, cerebrospinal fluid analysis showed pleocytosis and elevated protein levels. High-dose intravenous penicillin therapy was administered. At 6 month follow up, improvements were noted clinically, on neuropsychological examinations, and in cerebrospinal fluid samples. Conclusion This case underlines the importance of early diagnosis of neurosyphilis. The results suggest that neurosyphilis should be considered when magnetic resonance imaging results indicate mesiotemporal abnormalities and hippocampal atrophy. Neurosyphilis is a treatable condition which requires early aggressive antibiotic therapy.

  2. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.

    Directory of Open Access Journals (Sweden)

    Julian Maclaren

    Full Text Available Magnetic resonance imaging (MRI is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain. The accuracy and precision of current MR-compatible tracking systems and navigator methods allows the quantification and correction of large-scale motion, but not the correction of very small involuntary movements in six degrees of freedom. In this work, we present an MR-compatible tracking system comprising a single camera and a single 15 mm marker that provides tracking precision in the order of 10 m and 0.01 degrees. We show preliminary results, which indicate that when used for prospective motion correction, the system enables improvement in image quality at both 3 T and 7 T, even in experienced and cooperative subjects trained to remain motionless during imaging. We also report direct observation and quantification of the mechanical ballistocardiogram (BCG during simultaneous MR imaging. This is particularly apparent in the head-feet direction, with a peak-to-peak displacement of 140 m.

  3. The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging.

    Science.gov (United States)

    Vergara, Victor M; Damaraju, Eswar; Mayer, Andrew B; Miller, Robyn; Cetin, Mustafa S; Calhoun, Vince

    2015-01-01

    Traumatic brain injury (TBI) can adversely affect a person's thinking, memory, personality and behavior. For this reason new and better biomarkers are being investigated. Resting state functional network connectivity (rsFNC) derived from functional magnetic resonance (fMRI) imaging is emerging as a possible biomarker. One of the main concerns with this technique is the appropriateness of methods used to correct for subject movement. In this work we used 50 mild TBI patients and matched healthy controls to explore the outcomes obtained from different fMRI data preprocessing. Results suggest that correction for motion variance before spatial smoothing is the best alternative. Following this preprocessing option a significant group difference was found between cerebellum and supplementary motor area/paracentral lobule. In this case the mTBI group exhibits an increase in rsFNC.

  4. Activation of brain areas following ankle dorsiflexion versus plantar flexion Functional magnetic resonance imaging verification

    Institute of Scientific and Technical Information of China (English)

    Tianyu Jiang; Weiping Wu; Xinglin Wang; Changshui Weng; Qiuhua Wang; Yanmei Guo

    2012-01-01

    Changes in activated areas of the brain during ankle active dorsiflexion and ankle active plantar flexion were observed in six healthy subjects using functional magnetic resonance imaging.Excited areas of ankle active dorsiflexion involved the bilateral primary motor area and the primary somatosensory area, as well as the bilateral supplementary sensory area, the primary visual area, the right second visual area, and the vermis of cerebellum.Excited areas of ankle active plantar flexion included the ipsilateral supplementary motor area, the limbic system, and the contralateral corpus striatum.Fine movements of the cerebral cortex control the function of the ankle dorsiflexion to a larger extent than ankle plate flexion, and the function of ankle plate flexion is more controlled by the subcortical area.

  5. Subacute sclerosing panencephalitis with bilateral inferior collicular hyperintensity on magnetic resonance imaging brain

    Directory of Open Access Journals (Sweden)

    Maya Thomas

    2012-01-01

    Full Text Available Subacute sclerosing panencephalitis (SSPE is chronic encephalitis occurring after infection with measles virus. An 8-year-old boy presented with progressive behavioral changes, cognitive decline and myoclonic jerks, progressing to a bed bound state over 2 months. Magnetic resonance imaging (MRI brain showed T2-weighted hyperintensities in the subcortical areas of the left occipital lobe and brachium of the inferior colliculus on both sides. EEG showed bilateral, synchronous periodic discharges. Serum/cerebrospinal fluid measles IgG titer was significantly positive. The overall features were suggestive of SSPE. MRI finding of bilateral inferior colliculus changes on MRI without significant involvement of other commonly involved areas suggests an uncommon/rare imaging pattern of SSPE.

  6. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    Science.gov (United States)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  7. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gredal, O; Rosenbaum, S; Topp, S;

    1997-01-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in patients with motor neuron disease (MND) to determine the absolute in vivo concentrations in the brain of the metabolites N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr/PCr). We examined the spectra acquired from a 20 x 20 x...... with both upper and lower motor neuron signs had a significantly decreased concentration of NAA (9.13 +/- 0.28 mM, mean +/- SEM) in the primary motor cortex when compared with healthy controls (10.03 +/- 0.22 mM). In conclusion, the slightly decreased concentration of NAA in the primary motor cortex from...... 20-mm3 voxel placed in the motor cortex and in the cerebellum from seven patients with clinically probable or definite amyotrophic lateral sclerosis (ALS) according to the El Escorial criteria, from three patients with suspected ALS (progressive muscular atrophy), and from eight normal control...

  8. A water-fat separation imaging method for the brain on low field magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hong-jun Tian; Si-ping Chen; Tian-fu Wang; Xian-fen Diao; Chong-xun Zheng

    2009-01-01

    Water-fat separation is a particularly important problem for magnetic resonance imaging. Although many methods have been proposed, the reliability is still challenging. In this work, we have presented a method based on the combination of the branch-cut method and multigrid algorithm to get a more robust performance of water-fat separation. First, the branch-cut method is applied to identify residues, which violates the requirement that the interacting phase gradient around a closed path be zero. Residues and branches are marked to be zeros and filled to the weighting factor array. Then, the unwrapped phase array can be given by the multigrid algorithm. Finally, the Dixon method for water-fat separation is applied to the unwrapped phase array. Experiments for brain scanning on the 0.3T low field MRI system demonstrate the successful application of the proposed method.

  9. Detectability of Neuronal Currents in Human Brain with Magnetic Resonance Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Howland D. T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayer, Andrew R. [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Caprihan, Arvind [Mind Research Network, Albuquerque, NM (United States); Gasparovic, Charles [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Blagoev, Krastan B. [Mind Research Network, Albuquerque, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haaland, David M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    Magnetic resonance spectroscopy has been used in a high-risk, high-payoff search for neuronal current (NC) signals in the free induction decay (FID) data from the visual cortex of human subjects during visual stimulation. If successful, this approach could make possible the detection of neuronal currents in the brain at high spatial and temporal resolution. Our initial experiments indicated the presence of a statistically significant change in the FID containing the NC relative to FIDs with the NC absent, and this signal was consistent with the presence of NC. Unfortunately, two follow-on experiments were not able to confirm or replicate the positive findings of the first experiment. However, even if the result from the first experiment were evidence of NC in the FID, it is clear that its effect is so small, that a true NC imaging experiment would not be possible with the current instrumentation and experimental protocol used here.

  10. Identification of cellular infiltrates during early stages of brain inflammation with magnetic resonance microscopy.

    Directory of Open Access Journals (Sweden)

    Helmar Waiczies

    Full Text Available A comprehensive view of brain inflammation during the pathogenesis of autoimmune encephalomyelitis can be achieved with the aid of high resolution non-invasive imaging techniques such as microscopic magnetic resonance imaging (μMRI. In this study we demonstrate the benefits of cryogenically-cooled RF coils to produce μMRI in vivo, with sufficient detail to reveal brain pathology in the experimental autoimmune encephalomyelitis (EAE model. We could visualize inflammatory infiltrates in detail within various regions of the brain, already at an early phase of EAE. Importantly, this pathology could be seen clearly even without the use of contrast agents, and showed excellent correspondence with conventional histology. The cryogenically-cooled coil enabled the acquisition of high resolution images within short scan times: an important practical consideration in conducting animal experiments. The detail of the cellular infiltrates visualized by in vivo μMRI allows the opportunity to follow neuroinflammatory processes even during the early stages of disease progression. Thus μMRI will not only complement conventional histological examination but will also enable longitudinal studies on the kinetics and dynamics of immune cell infiltration.

  11. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  12. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    Science.gov (United States)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  13. Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation

    Directory of Open Access Journals (Sweden)

    Snehashis Roy

    2016-01-01

    Full Text Available Longitudinal analysis of magnetic resonance images of the human brain provides knowledge of brain changes during both normal aging as well as the progression of many diseases. Previous longitudinal segmentation methods have either ignored temporal information or have incorporated temporal consistency constraints within the algorithm. In this work, we assume that some anatomical brain changes can be explained by temporal transitions in image intensities. Once the images are aligned in the same space, the intensities of each scan at the same voxel constitute a temporal (or 4D intensity trend at that voxel. Temporal intensity variations due to noise or other artifacts are corrected by a 4D intensity-based filter that smooths the intensity values where appropriate, while preserving real anatomical changes such as atrophy. Here smoothing refers to removal of sudden changes or discontinuities in intensities. Images processed with the 4D filter can be used as a pre-processing step to any segmentation method. We show that such a longitudinal pre-processing step produces robust and consistent longitudinal segmentation results, even when applying 3D segmentation algorithms. We compare with state-of-the-art 4D segmentation algorithms. Specifically, we experimented on three longitudinal datasets containing 4–12 time-points, and showed that the 4D temporal filter is more robust and has more power in distinguishing between healthy subjects and those with dementia, mild cognitive impairment, as well as different phenotypes of multiple sclerosis.

  14. A multidimensional magnetic resonance histology atlas of the Wistar rat brain.

    Science.gov (United States)

    Johnson, G Allan; Calabrese, Evan; Badea, Alexandra; Paxinos, George; Watson, Charles

    2012-09-01

    We have produced a multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). This MR atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies.

  15. Regional age-related effects in the monkey brain measured with 1H magnetic resonance spectroscopy.

    Science.gov (United States)

    Ronen, Itamar; Fan, Xiaoying; Schettler, Steve; Jain, Sahil; Murray, Donna; Kim, Dae-Shik; Killiany, Ronald; Rosene, Douglas

    2011-06-01

    The rhesus monkey is a useful model for examining age-related effects on the brain, because of the extensive neuroanatomical homology between the monkey and the human brain, the tight control for neurological diseases as well as the possibility of obtaining relevant behavioral data and post-mortem tissue for histological analyses. Here, proton magnetic resonance spectroscopy ((1)H-MRS) was used together with high-resolution anatomical MRI images to carefully assess regional concentrations of brain metabolites in a group of 20 rhesus monkeys. In an anterior volume of interest (VOI) that covered frontal and prefrontal areas, significant positive correlations of myo-inositol and of total creatine concentrations with age were detected, whereas N-acetyl aspartate (NAA) and choline compounds (Cho) were not significantly correlated with age. In an occipito-parietal VOI, all metabolites showed no statistically significant age-dependent trend. Strong correlations were found between NAA concentration and gray matter fraction in the VOIs as well as between choline compounds and white matter fraction.

  16. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  17. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Maruishi, Masaharu; Tanaka, Yoshiyuki; Muranaka, Hiroyuki; Tsuji, Toshio; Ozawa, Yoshiaki; Imaizumi, Satoshi; Miyatani, Makoto; Kawahara, Junichiro

    2004-04-01

    Neuroimaging data, particularly functional magnetic resonance imaging (fMRI) findings, have not been reported in users of the myoelectric or electromyographic (EMG) prosthetic hand. We developed a virtual EMG prosthetic hand system to eliminate mutual signal noise interference between fMRI imaging and the EMG prosthesis. We used fMRI to localize activation in the human brain during manipulation of the virtual EMG prosthetic hand. Fourteen right-handed normal subjects were instructed to perform repetitive grasping with the right hand with eyes closed (CEG); repetitive grasping with the right hand with eyes open to obtain visual feedback of their own hand movement (OEG); and repetitive grasping with the virtual EMG prosthetic hand with the eyes open to obtain visual feedback of the prosthetic hand movement (VRG). The specific site activated during manipulation of the EMG prosthetic hand was the right ventral premotor cortex. Both paradigms with visual feedback also (OEG and VRG) demonstrated activation in the right posterior parietal cortex. The center of activation of the right posterior parietal cortex shifted laterally for visual feedback with the virtual EMG prosthetic hand compared to a subject's own hand. The results suggest that the EMG prosthetic hand might be recognized in the brain as a high-performance alternative to a real hand, being controlled through a "mirror system" in the brain.

  18. Investigation of brain injury using in vivo multinuclear magnetic resonance imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chew, W.M.

    1989-01-01

    Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) are becoming increasingly important tools to the fields of biochemistry, physiology, and medicine. MRI and MRS studies offer one the opportunity to obtain anatomic images and biochemical information non-invasively and non-destructively, thus making serial repeated measurements possible on the same experimental subject. To investigate brain injury, the non-invasiveness finally allows one to follow the time course of evolution of injury and its effects on the brains metabolism. Although MRI and MRS offer exciting opportunities, much work is needed to overcome the initial problems of signal localization from a specified region of interest. Also, the potential utility of multinuclear (i.e. {sup 13}C, {sup 19}F, {sup 23}Na...) MRI and MRS studies, in assessing brain injury, is yet to be determined. This thesis attacks the aforementioned problems with a series of studies both on phantoms and in vivo. Experiments were performed to determine optimal localization schemes for use in MRS of the brain to overcome the initial problems encountered with MRS studies. The feasibility and utility of multinuclear MRI and MRS was determined in vivo involving {sup 13}C, {sup 19}F, and {sup 23}Na nuclei. The results of these studies have proven that acceptable signal localization for MRS studies is achievable and is not a hindrance for future MRS studies. Also, multinuclear studies have shown that it is feasible to obtain MRI or MRS data from less abundant nuclei and that the information obtained does or can provide useful insights into brain metabolism in pathologic states.

  19. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  20. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  1. The use of magnetic resonance imaging to study the brain size of young children with autism

    Directory of Open Access Journals (Sweden)

    Farah Ashrafzadeh

    2016-07-01

    Full Text Available Introduction: Autism spectrum disorder (ASD is a syndrome of social communication deficits and repetitive behaviors or restricted interests. While the impairments associated with ASD tend to deteriorate from childhood into adulthood, it is of critical importance that the syndrome is diagnosed at an early age. One means of facilitating this is through understanding how the brain of people with ASD develops from early childhood. Magnetic resonance imaging (MRI is the method of choice for in vivo and non-invasive investigations of the morphology of the human brain, especially when the subjects are children. In this study, we conducted a systematic review of existing structural MRI studies that have investigated brain size in ASD children of up to 5 years old. Methods: In this study, we systematically reviewed published papers that describe research studies in which the brain size of ASD children has been examined. PubMed and Scopus databases were searched for all relevant original articles that described the use of MRI techniques to study ASD patients who were between 1 and 5 years old. To be included in the review, all studies needed to be cohort and case series that involved at least 10 patients. No time limitations were placed on the searched articles within the inclusion criteria. The exclusion criteria were non-English articles, case reports, and articles that described research involving subjects that were not within the qualifying age range of 1-5 years old.Result: After an initial screening process through which the title, abstracts, and full text of the articles were reviewed to confirm they met the inclusion criteria, a total of 10 relevant articles were studied in depth. All studies found that children with ASD who were within the selected age range had a larger brain size than children without ASD.Discussion: The findings of recent studies indicate that the vast majority of ASD patients exhibit an enlarged brain; however, the extent of

  2. Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years.

    Science.gov (United States)

    Ostby, Ylva; Tamnes, Christian K; Fjell, Anders M; Westlye, Lars T; Due-Tønnessen, Paulina; Walhovd, Kristine B

    2009-09-23

    Brain development during late childhood and adolescence is characterized by decreases in gray matter (GM) and increases in white matter (WM) and ventricular volume. The dynamic nature of development across different structures is, however, not well understood, and the present magnetic resonance imaging study took advantage of a whole-brain segmentation approach to describe the developmental trajectories of 16 neuroanatomical volumes in the same sample of children, adolescents, and young adults (n = 171; range, 8-30 years). The cerebral cortex, cerebral WM, caudate, putamen, pallidum, accumbens area, hippocampus, amygdala, thalamus, brainstem, cerebellar GM, cerebellar WM, lateral ventricles, inferior lateral ventricles, third ventricle, and fourth ventricle were studied. The cerebral cortex was further analyzed in terms of lobar thickness and surface area. The results revealed substantial heterogeneity in developmental trajectories. GM decreased nonlinearly in the cerebral cortex and linearly in the caudate, putamen, pallidum, accumbens, and cerebellar GM, whereas the amygdala and hippocampus showed slight, nonlinear increases in GM volume. WM increased nonlinearly in both the cerebrum and cerebellum, with an earlier maturation in cerebellar WM. In addition to similarities in developmental trajectories within subcortical regions, our results also point to differences between structures within the same regions: among the basal ganglia, the caudate showed a weaker relationship with age than the putamen and pallidum, and in the cerebellum, differences were found between GM and WM development. These results emphasize the importance of studying a wide range of structural variables in the same sample, for a broader understanding of brain developmental principles.

  3. Does Magnetic Resonance Brain Scanning at 3.0 Tesla Pose a Hyperthermic Challenge to Term Neonates?

    Science.gov (United States)

    Cawley, Paul; Few, Karen; Greenwood, Richard; Malcolm, Paul; Johnson, Glyn; Lally, Pete; Thayyil, Sudhin; Clarke, Paul

    2016-08-01

    Next-generation 3-Tesla magnetic resonance (MR) scanners offer improved neonatal neuroimaging, but the greater associated radiofrequency radiation may increase the risk of hyperthermia. Safety data for neonatal 3-T MR scanning are lacking. We measured rectal temperatures continuously in 25 neonates undergoing 3-T brain MR imaging and observed no significant hyperthermic threat.

  4. Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database.

    NARCIS (Netherlands)

    Julia-Sape, M.; Acosta, D.M.; Majos, C.; Moreno-Torres, A.; Wesseling, P.; Acebes, J.J.; Griffiths, J.R.; Arus, C.

    2006-01-01

    OBJECT: The aim of this study was to estimate the accuracy of routine magnetic resonance (MR) imaging studies in the classification of brain tumors in terms of both cell type and grade of malignancy. METHODS: The authors retrospectively assessed the correlation between neuroimaging classifications a

  5. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ramenghi, Luca A.; Fumagalli, Monica; Bassi, Laura; Groppo, Michela; Mosca, Fabio [University of Milan, Neonatal Intensive Care Unit - Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, IRCCS, Milan (Italy); Righini, Andrea; Parazzini, Cecilia; Bianchini, Elena; Triulzi, Fabio [Ospedale Pediatrico ' ' Buzzi' ' -ICP, Department of Radiology and Neuroradiology, Milan (Italy)

    2007-02-15

    Early white matter (WM) injury affects brain maturation in preterm infants as revealed by diffusion tensor imaging and volumetric magnetic resonance (MR) imaging at term postmenstrual age (PMA). The aim of the study was to assess quantitatively brain maturation in preterm infants with and without milder forms of WM damage (punctate WM lesions, PWML) using conventional MRI. Brain development was quantitatively assessed using a previously validated scoring system (total maturation score, TMS) which utilizes four parameters (progressive myelination and cortical infolding, progressive involution of glial cell migration bands and germinal matrix tissue). PWML were defined as foci of increased signal on T1-weighted images and decreased signal on T2-weighted images with no evidence of cystic degeneration. A group of 22 preterm infants with PWML at term PMA (PWML group) were compared with 22 matched controls with a normal MR appearance. The two groups were comparable concerning gestational age, birth weight and PMA. TMS was significantly lower in the PWML group than in the control group (mean TMS 12.44 {+-} 2.31 vs 14.00 {+-} 1.44; P = 0.011). Myelination (mean 2.76 {+-} 0.42 PWML group vs 3.32 {+-} 0.55 control group, P = 0.003) and cortical folding (3.64 {+-} 0.79 vs 4.09 {+-} 0.43, P = 0.027) appeared to be significantly delayed in babies with PWML. Conventional MRI appears able to quantify morphological changes in brain maturation of preterm babies with PWML; delayed myelination and reduced cortical infolding seem to be the most significant aspects. (orig.)

  6. Genetic dissection of the mouse brain using high-field magnetic resonance microscopy.

    Science.gov (United States)

    Badea, A; Johnson, G A; Williams, R W

    2009-05-01

    Magnetic resonance (MR) imaging has demonstrated that variation in brain structure is associated with differences in behavior and disease state. However, it has rarely been practical to prospectively test causal models that link anatomical and functional differences in humans. In the present study we have combined classical mouse genetics with high-field MR to systematically explore and test such structure-functional relations across multiple brain regions. We segmented 33 regions in two parental strains-C57BL/6J (B) and DBA/2J (D)-and in nine BXD recombinant inbred strains. All strains have been studied extensively for more than 20 years using a battery of genetic, functional, anatomical, and behavioral assays. We compared levels of variation within and between strains and sexes, by region, and by system. Average within-strain variation had a coefficient of variation (CV) of 1.6% for the whole brain; while the CV ranged from 2.3 to 3.6% for olfactory bulbs, cortex and cerebellum, and up to approximately 18% for septum and laterodorsal thalamic nucleus. Variation among strain averages ranged from 6.7% for cerebellum, 7.6% for whole brain, 9.0% for cortex, up to approximately 26% for the ventricles, laterodorsal thalamic nucleus, and the interpeduncular nucleus. Heritabilities averaged 0.60+/-0.18. Sex differences were not significant with the possible (and unexpected) exception of the pons ( approximately 20% larger in males). A correlation matrix of regional volumes revealed high correlations among functionally related parts of the CNS (e.g., components of the limbic system), and several high correlations between regions that are not anatomically connected, but that may nonetheless be functionally or genetically coupled.

  7. Laterality of brain areas associated with arithmetic calculations revealed by functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Quan; ZHANG Jing; LI Wei

    2005-01-01

    Background Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions: arithmetic calculation may be one of these phenomena. In this study, first, laterality of brain areas associated with arithmetic calculations was revealed by functional magnetic resonance imaging (fMRI). Second, the relationship among laterality, handedness, and types of arithmetic task was assessed. Third, we postulate possible reasons for laterality.Methods Using a block-designed experiment, twenty-five right-handed and seven left-handed healthy volunteers carried out simple calculations, complex calculations and proximity judgments. T1WI and GRE-EPI fMRI were performed with a GE 1.5T whole body MRI scanner. Statistical parametric mapping (SPM99) was used to process data and localize functional areas. Numbers of activated voxels were recorded to calculate laterality index for evaluating the laterality of functional brain areas.Results For both groups, the activation of functional areas in the frontal lobe showed a tendency towards the nonpredominant hand side, but the functional areas in the inferior parietal lobule had left laterality. During simple and complex calculations, the laterality indices of the prefrontal cortex and premotor area were higher in the right-handed group than that in the left-handed group, whereas the laterality of the inferior parietal lobule had no such significant difference. In both groups, when the difficulty of the task increased, the laterality of the prefrontal cortex, premotor area, and inferior parietal lobule decreased, but the laterality of posterior part of the inferior frontal gyrus increased.Conclusions The laterality of the functional brain areas associated with arithmetic calculations can be detected with fMRI. The laterality of the functional areas was related to handedness and task difficulty.

  8. Magnetic Resonance Imaging Profile of Blood–Brain Barrier Injury in Patients With Acute Intracerebral Hemorrhage

    Science.gov (United States)

    Aksoy, Didem; Bammer, Roland; Mlynash, Michael; Venkatasubramanian, Chitra; Eyngorn, Irina; Snider, Ryan W.; Gupta, Sandeep N.; Narayana, Rashmi; Fischbein, Nancy; Wijman, Christine A. C.

    2013-01-01

    Background Spontaneous intracerebral hemorrhage (ICH) is associated with blood–brain barrier (BBB) injury, which is a poorly understood factor in ICH pathogenesis, potentially contributing to edema formation and perihematomal tissue injury. We aimed to assess and quantify BBB permeability following human spontaneous ICH using dynamic contrast‐enhanced magnetic resonance imaging (DCE MRI). We also investigated whether hematoma size or location affected the amount of BBB leakage. Methods and Results Twenty‐five prospectively enrolled patients from the Diagnostic Accuracy of MRI in Spontaneous intracerebral Hemorrhage (DASH) study were examined using DCE MRI at 1 week after symptom onset. Contrast agent dynamics in the brain tissue and general tracer kinetic modeling were used to estimate the forward leakage rate (Ktrans) in regions of interest (ROI) in and surrounding the hematoma and in contralateral mirror–image locations (control ROI). In all patients BBB permeability was significantly increased in the brain tissue immediately adjacent to the hematoma, that is, the hematoma rim, compared to the contralateral mirror ROI (P30 mL) had higher Ktrans values than small hematomas (P<0.005). Ktrans values of lobar hemorrhages were significantly higher than the Ktrans values of deep hemorrhages (P<0.005), independent of hematoma volume. Higher Ktrans values were associated with larger edema volumes. Conclusions BBB leakage in the brain tissue immediately bordering the hematoma can be measured and quantified by DCE MRI in human ICH. BBB leakage at 1 week is greater in larger hematomas as well as in hematomas in lobar locations and is associated with larger edema volumes. PMID:23709564

  9. Brain magnetic resonance imaging findings in cryptogenic stroke patients under 60 years with patent foramen ovale

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Claire, E-mail: claire.boutet@chu-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Rouffiange-Leclair, Laure, E-mail: laurerouffiange@hotmail.com [Department of Radiology, University Hospital of Saint-Etienne (France); Garnier, Pierre, E-mail: pierre.garnier@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Quenet, Sara, E-mail: sara.quenet@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Delsart, Daphné, E-mail: daphne.delsart@hotmail.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Therapeutic Medicine, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne (France); Inserm, CIE3, F-42055 Saint-Etienne (France); Varvat, Jérôme, E-mail: jvarvat@9online.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Epinat, Magali, E-mail: magali.epinat@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Schneider, Fabien, E-mail: fabien.schneider@univ-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Antoine, Jean-Christophe, E-mail: j.christophe.antoine@chu-st-etienne.fr [Department of Neurology, University Hospital of Saint-Etienne (France); Lyon Neuroscience Research Center, INSERM U1028 – CNRS UMR5292 (France); EA 4338, Jean Monnet University, Saint-Etienne (France); and others

    2014-05-15

    Purpose: To compare magnetic resonance imaging (MRI) brain feature in cryptogenic stroke patients with patent foramen ovale (PFO), cryptogenic stroke patients without PFO and patients with cardioembolic stroke. Materials and methods: The ethics committee required neither institutional review board approval nor informed patient consent for retrospective analyses of the patients’ medical records and imaging data. The patients’ medical files were retrospectively reviewed in accordance with human subject research protocols. Ninety-two patients under 60 years of age were included: 15 with cardioembolic stroke, 32 with cryptogenic stroke with PFO and 45 with cryptogenic stroke without PFO. Diffusion-weighted imaging of brain MRI was performed by a radiologist blinded to clinical data. Univariate, Fischer's exact test for qualitative data and non-parametric Wilcoxon test for quantitative data were used. Results: There was no statistically significant difference found between MRI features of patients with PFO and those with cardioembolic stroke (p < .05). Patients without PFO present more corticosubcortical single lesions (p < .05) than patients with PFO. Patients with PFO have more often subcortical single lesions larger than 15 mm, involvement of posterior cerebral arterial territory and intracranial occlusion (p < .05) than patients with cryptogenic stroke without PFO. Conclusion: Our study suggests a cardioembolic mechanism in ischemic stroke with PFO.

  10. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    Science.gov (United States)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  11. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  12. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Science.gov (United States)

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  13. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  14. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  15. Brain activation and inhibition after acupuncture at Taichong andTaixi:resting-state functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Shao-qun Zhang; Chun-zhi Tang; Yan-jie Wang; Ji-ping Zhang; Jun-qi Chen; Chun-xiao Wu; Zhi-peng Li; Jia-rong Chen; Huai-liang Ouyang; Yong Huang

    2015-01-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture atTaichong (LR3) andTaixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture atTaichong andTaixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic res-onance imaging, which revealed that the amplitude of low-frequency lfuctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferi-or frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present ifndings indicate that acupuncture atTaichong andTaixi speciifcally promote blood lfow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  16. 1H magnetic resonance spectroscopy of the brain in paediatrics: The diagnosis of creatine deficiencies

    NARCIS (Netherlands)

    Sijens, P.E.; Oudkerk, M.

    2005-01-01

    The diagnosis of creatine deficiencies, a paediatric application of magnetic resonance spectroscopy that has already become a diagnostic tool in clinical practice, is reviewed and illustrated with results from recent examinations

  17. Effects of hormone replacement therapy on magnetic resonance imaging of brain parenchyma hyperintensities in postmenopausal women

    Institute of Scientific and Technical Information of China (English)

    Yan-yong LIU; Qin-sheng GE; Ping-ping ZUO; Ling HU; Chao JI; Dong-wen CHEN; Xi SHEN; Nan YANG; Yun YUE; Jing-mei JIANG; Xia HONG

    2009-01-01

    Aim:To apply 3.0 magnetic resonance imaging (MRI) to study the effects of long-term,low dose hormone replacement therapy (HRT) on the brain parenchyma of postmenopausal women.Methods:A total of 155 postmenopausal healthy female medical staff members from Peking Union Medical College Hospital were enrolled.The HRT group was composed of 71 subjects who had been given a low dose of HRT for over 4 years,while 84 women who had never been given HRT were enrolled in the control group.The Mini-Mental State Examination (MMSE) was used to evaluate mental state,and an Enzyme-Linked ImmunoSorbent Assay (ELISA) was used to detect plasma levels of sex hormones.In addition,all participants were subjected to an MRI,including axial T2 weighted imaging (T2WI),fluid-attenuated inversion recovery (FLAIR),T1 weighted imaging (TIWI,oblique coronal,vertical to the hippocampus,slice thickness 3 mm without gaps),and a 3D image of the whole brain.Results:The ELISA showed that the plasma level of estradiol in the HRT group was significantly higher than that in the control group (Pbrain parenchyma.

  18. {sup 1}H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orphanidou-Vlachou, E., E-mail: eleni.orphanidou@googlemail.com [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Auer, D., E-mail: dorothee.auer@nottingham.ac.uk [Division of Academic Radiology, School of Medical and Surgical Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); Brundler, M.A., E-mail: marie-anne.brundler@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Davies, N.P., E-mail: nigel.davies@nhs.net [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Jaspan, T., E-mail: tim.jaspan@nuh.nhs.uk [Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); MacPherson, L., E-mail: Lesley.MacPherson@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Natarajan, K., E-mail: Kal.Natarajan@uhb.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); and others

    2013-06-15

    Introduction: Low grade gliomas are the commonest brain tumours in children but present in a myriad of ways, each with its own treatment challenges. Conventional MRI scans play an important role in their management but have limited ability to identify likely clinical behaviour. The aim of this study is to investigate {sup 1}H magnetic resonance spectroscopy (MRS) as a method for detecting differences between the various low grade gliomas and related tumours in children. Patients and methods: Short echo time single voxel {sup 1}H MRS at 1.5 or 3.0 T was performed prior to treatment on children with low grade brain tumours at two centres and five MR scanners, 69 cases had data which passed quality control. MRS data was processed using LCModel to give mean spectra and metabolite concentrations which were compared using T-tests, ANOVA, Receiver Operator Characteristic curves and logistic regression in SPSS. Results: Significant differences were found in concentrations of key metabolites between glioneuronal and glial tumours (T-test p < 0.05) and between most of the individual histological subtypes of low grade gliomas. The discriminatory metabolites identified, such as choline and myoinositol, are known tumour biomarkers. In the set of pilocytic astrocytomas and unbiopsied optic pathway gliomas, significant differences (p < 0.05, ANOVA) were found in metabolite profiles of tumours depending on location and patient neurofibromatosis type 1 status. Logistic regression analyses yielded equations which could be used to assess the probability of a tumour being of a specific type. Conclusions: MRS can detect subtle differences between low grade brain tumours in children and should form part of the clinical assessment of these tumours.

  19. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Directory of Open Access Journals (Sweden)

    Napapon Sailasuta

    Full Text Available OBJECTIVE: Single voxel proton magnetic resonance spectroscopy (MRS can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART. METHODS: Brain metabolite levels of N-acetyl aspartate (NAA, choline (tCHO, creatine (CR, myoinositol (MI, and glutamate and glutamine (GLX were measured in acute HIV subjects (n = 31 and compared to chronic HIV+individuals (n = 26 and HIV negative control subjects (n = 10 from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM, frontal white matter (FWM, occipital gray matter (OGM, and basal ganglia (BG. Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. RESULTS: After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection compared to control (p = 0.0014, as well as chronic subjects (p = 0.0023. A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022 with tCHO/CR similar to control subjects at 6 months. INTERPRETATION: We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  20. Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain

    OpenAIRE

    Williams, G.; Fabrizi, L.; Meek, J; Jackson, D.; Tracey, I.; Robertson, N; Slater, R; Fitzgerald, M.

    2014-01-01

    Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate ...

  1. Spectroscopic magnetic resonance imaging of the brain: voxel localisation and tissue segmentation in the follow up of brain tumour.

    Science.gov (United States)

    Poloni, Guy; Bastianello, S; Vultaggio, Angela; Pozzi, S; Maccabelli, Gloria; Germani, Giancarlo; Chiarati, Patrizia; Pichiecchio, Anna

    2008-01-01

    The field of application of magnetic resonance spectroscopy (MRS) in biomedical research is expanding all the time and providing opportunities to investigate tissue metabolism and function. The data derived can be integrated with the information on tissue structure gained from conventional and non-conventional magnetic resonance imaging (MRI) techniques. Clinical MRS is also strongly expected to play an important role as a diagnostic tool. Essential for the future success of MRS as a clinical and research tool in biomedical sciences, both in vivo and in vitro, is the development of an accurate, biochemically relevant and physically consistent and reliable data analysis standard. Stable and well established analysis algorithms, in both the time and the frequency domain, are already available, as is free commercial software for implementing them. In this study, we propose an automatic algorithm that takes into account anatomical localisation, relative concentrations of white matter, grey matter, cerebrospinal fluid and signal abnormalities and inter-scan patient movement. The endpoint is the collection of a series of covariates that could be implemented in a multivariate analysis of covariance (MANCOVA) of the MRS data, as a tool for dealing with differences that may be ascribed to the anatomical variability of the subjects, to inaccuracies in the localisation of the voxel or slab, or to movement, rather than to the pathology under investigation. The aim was to develop an analysis procedure that can be consistently and reliably applied in the follow up of brain tumour. In this study, we demonstrate that the inclusion of such variables in the data analysis of quantitative MRS is fundamentally important (especially in view of the reduced accuracy typical of MRS measures compared to other MRI techniques), reducing the occurrence of false positives.

  2. Proton magnetic resonance spectroscopy of normal human brain and glioma:a quantitive in vivo study

    Institute of Scientific and Technical Information of China (English)

    TONG Zhi-yong; YAMAKI Toshiaki; WANG Yun-jie

    2005-01-01

    Background In vivo proton magnetic resonance spectroscopy (MRS) provides a noninvasive method of examining a wide variety of cerebral metabolites in both healthy subjects and patients with various brain diseases.Absolute metabolite concentrations have been determined using external and internal standards with known concentrations.When an external standard is placed beside the head, variations in signal amplitudes due to B1 field inhomogeneity and static field inhomogeneity may occur.Hence an internal standard is preferable.The purpose of this study was to quantitatively analyze the metabolite concentrations in normal adult brains and gliomas by in vivo proton MRS using the fully relaxed water signal as an internal standard.Methods Between January 1998 and October 2001, 28 healthy volunteers and 16 patients with gliomas were examined by in vivo proton MRS.Single-voxel spectra were acquired using the point-resolved spectroscopic pulse sequence with a 1.5 T scanner (TR/TE/Ave=3000 ms/30 ms/64).Results The calculated concentrations of N-acetyl-asparatate (NAA), creatine (Cre), choline (Cho), and water (H2O) in the normal hemispheric white matter were (23.59±2.62) mmol/L, (13.06±1.8) mmol/L, (4.28±0.8) mmol/L, and (47 280.96±5414.85) mmol/L, respectively.The metabolite concentrations were not necessarily uniform in different parts of the brain.The concentrations of NAA and Cre decreased in all gliomas (P<0.001).The ratios of NAA/Cho and NAA/H2O showed a significant difference between the normal brain and gliomas, and also between the high and low grades (P<0.001).Conclusions Quantitative analysis of in vivo proton MR spectra using the fully relaxed water signal as an internal standard is useful.The concentrations of NAA and the ratios of NAA/H2O and NAA/Cho conduce to discriminating between the glioma and normal brain, and also between the low-grade glioma and high-grade glioma.

  3. Three-dimensional brain magnetic resonance imaging segmentation via knowledge-driven decision theory.

    Science.gov (United States)

    Verma, Nishant; Muralidhar, Gautam S; Bovik, Alan C; Cowperthwaite, Matthew C; Burnett, Mark G; Markey, Mia K

    2014-10-01

    Brain tissue segmentation on magnetic resonance (MR) imaging is a difficult task because of significant intensity overlap between the tissue classes. We present a new knowledge-driven decision theory (KDT) approach that incorporates prior information of the relative extents of intensity overlap between tissue class pairs for volumetric MR tissue segmentation. The proposed approach better handles intensity overlap between tissues without explicitly employing methods for removal of MR image corruptions (such as bias field). Adaptive tissue class priors are employed that combine probabilistic atlas maps with spatial contextual information obtained from Markov random fields to guide tissue segmentation. The energy function is minimized using a variational level-set-based framework, which has shown great promise for MR image analysis. We evaluate the proposed method on two well-established real MR datasets with expert ground-truth segmentations and compare our approach against existing segmentation methods. KDT has low-computational complexity and shows better segmentation performance than other segmentation methods evaluated using these MR datasets.

  4. 4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm

    Science.gov (United States)

    Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo

    2016-11-01

    Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.

  5. Brain Magnetic Resonance Imaging Does Not Contribute to the Diagnosis of Chronic Neuroborreliosis

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, A.; Sjoewall, J.; Davidsson, L.; Forsberg, P.; Smedby, Oe. [Div. of Radiology, Dept. of Medicine and Care, and Div. of Infectious Diseases, Dept. of Molecular and Clinical Medicine, Linkoeping Univ., Linkoeping (Sweden)

    2007-09-15

    Background: Borrelia infections, especially chronic neuroborreliosis (NB), may cause considerable diagnostic problems. This diagnosis is based on symptoms and findings in the cerebrospinal fluid but is not always conclusive. Purpose: To evaluate brain magnetic resonance imaging (MRI) in chronic NB, to compare the findings with healthy controls, and to correlate MRI findings with disease duration. Material and Methods: Sixteen well-characterized patients with chronic NB and 16 matched controls were examined in a 1.5T scanner with a standard head coil. T1- (with and without gadolinium), T2-, and diffusion-weighted imaging plus fluid-attenuated inversion recovery (FLAIR) imaging were used. Results: White matter lesions and lesions in the basal ganglia were seen in 12 patients and 10 controls (no significant difference). Subependymal lesions were detected in patients down to the age of 25 and in the controls down to the age of 43. The number of lesions was correlated to age both in patients ( = 0.83, P<0.01) and in controls ( = 0.61, P<0.05), but not to the duration of disease. Most lesions were detected with FLAIR, but many also with T2-weighted imaging. Conclusion: A number of MRI findings were detected in patients with chronic NB, although the findings were unspecific when compared with matched controls and did not correlate with disease duration. However, subependymal lesions may constitute a potential finding in chronic NB.

  6. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy

    Science.gov (United States)

    Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.

    2016-08-01

    An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.

  7. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  8. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Ricardo Andres Pizarro

    2016-12-01

    Full Text Available High-resolution three-dimensional magnetic resonance imaging (3D-MRI is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM algorithm in the quality assessment of structural brain images, using global and region of interest (ROI automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  9. Longitudinal follow-up of patients with mild traumatic brain injury by magnetic resonance spectroscopic technique

    Institute of Scientific and Technical Information of China (English)

    Jing Chen; Xiang-Jun Han; Zi-Yi Guo; Yin Zhang; Qi-Zhou Liang; Hai-Yan Liao; Wen-Rui Su; Qian-Yu Tang; Shui-Xi Fu; Cai-Xiang Chen

    2013-01-01

    Objective: To explore the changes in the concentrations of neural markers immediately or several months after mild traumatic brain injury (mTBI). Methods: The metabolic markers of neurons in white matter tissues above the lateral ventricle were semi-quantitatively determined by employing 1H magnetic resonance spectroscopic technique (1-H-MRS) in 30 clinically diagnosed cases of mTBI. At the same time, the neurological functions of the subjects, including ability to pay attention, memory, working memory and operational capacity etc were also assessed.Results:The patients were followed up for, on average, 13 days after mTBI and the results showed that Cre, PCre and Glx in the white matter tissues were significantly elevated in mTBI patients. 17 patients (57%) recovered from the injury during the follow-up (median was defined as the 40th post-trauma day). Comparison in terms of intelligence among groups revealed that the levels of neural markers of intelligence development was positively related with intelligence scores). Conclusions: Change in Glx concentrations is most sensitive during trauma or in ensuing repairing processes, and might be different from normal status in the following months and Glx level tends to be accompanied with change in Cre, another energy-related marker.

  10. Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Chen, Ya-Fang; Yang, Shun-Chung; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)

    2015-08-15

    To numerically and experimentally investigate the robustness of intravoxel incoherent motion (IVIM) magnetic resonance imaging in measuring perfusion indexes in the human brain. Eighteen healthy volunteers were imaged on a 3 T clinical system. Data of IVIM imaging (12 b-values ranging from 0 to 1000 s/mm{sup 2}, 12 repetitions) were fitted with a bi-exponential model to extract blood volume fraction (f) and pseudo-diffusion coefficient (D*). The robustness of measurement was assessed by bootstrapping. Dynamic susceptibility contrast (DSC) imaging and arterial spin-labelling (ASL) imaging were performed for cross-modal comparison. Numerical simulations were performed to assess the accuracy and precision of f and D* estimates at varied signal-to-noise ratio (SNR{sub b1000}). Based on our experimental setting (SNR{sub b1000} ∝ 30), the average error/variability is ∝ 5 %/25 % for f and ∝ 100 %/30 % for D* in gray matter, and ∝ 10 %/50 % for f and ∝ 300 %/60 % for D* in white matter. Correlation was found between f and DSC-derived cerebral blood volume in gray matter (r = 0.29 - 0.48 across subjects, p < 10{sup -5}), but not in white matter. No correlation was found between f-D* product and ASL-derived cerebral blood flow. f may provide noninvasive measurement of cerebral blood volume, particularly in gray matter. D* has limited robustness and should be interpreted with caution. (orig.)

  11. Longitudinal noninvasive magnetic resonance imaging of brain microhemorrhages in BACE inhibitor-treated APP transgenic mice.

    Science.gov (United States)

    Beckmann, Nicolau; Doelemeyer, Arno; Zurbruegg, Stefan; Bigot, Karine; Theil, Diethilde; Frieauff, Wilfried; Kolly, Carine; Moulin, Pierre; Neddermann, Daniel; Kreutzer, Robert; Perrot, Ludovic; Brzak, Irena; Jacobson, Laura H; Staufenbiel, Matthias; Neumann, Ulf; Shimshek, Derya R

    2016-09-01

    Currently, several immunotherapies and BACE (Beta Site APP Cleaving Enzyme) inhibitor approaches are being tested in the clinic for the treatment of Alzheimer's disease. A crucial mechanism-related safety concern is the exacerbation of microhemorrhages, which are already present in the majority of Alzheimer patients. To investigate potential safety liabilities of long-term BACE inhibitor therapy, we used aged amyloid precursor protein (APP) transgenic mice (APP23), which robustly develop cerebral amyloid angiopathy. T2*-weighted magnetic resonance imaging (MRI), a translational method applicable in preclinical and clinical studies, was used for the detection of microhemorrhages throughout the entire brain, with subsequent histological validation. Three-dimensional reconstruction based on in vivo MRI and serial Perls' stained sections demonstrated a one-to-one matching of the lesions thus allowing for their histopathological characterization. MRI detected small Perls' positive areas with a high spatial resolution. Our data demonstrate that volumetric assessment by noninvasive MRI is well suited to monitor cerebral microhemorrhages in vivo. Furthermore, 3 months treatment of aged APP23 with the potent BACE-inhibitor NB-360 did not exacerbate microhemorrhages in contrast to Aβ-antibody β1. These results substantiate the safe use of BACE inhibitors regarding microhemorrhages in long-term clinical studies for the treatment of Alzheimer's disease.

  12. The value of multimodal magnetic resonance imaging in the differential diagnosis of glioma recurrence and radiation brain injury

    Directory of Open Access Journals (Sweden)

    Guang-zhi GE

    2015-11-01

    Full Text Available Objective  To explore the application of a combination of diFFusion weighted imaging (DWI, perfusion weighted imaging (PWI and magnetic resonance spectroscopy (MRS in the differential diagnosis of glioma recurrence and radiation brain injury. Methods The clinical and imaging data of 32 patients were retrospectively analyzed, including 15 cases of glioma recurrence and 17 cases of radiation brain injury, admitted from Jan. 2011 to Dec. 2013 in General Hospital of Beijing Command. The DWI, PWI and MRS data of the 32 patients were retrospectively analyzed. The following values were compared between abnormal enhancement area and contralateral normal area: magnetic resonance apparent diFFusion coeFFcient (ADC, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, relative mean transit time (rMTT, choline/creatine (Cho/Cr and choline/N-acetyl aspartate (Cho/ NAA ratio. Results No statistical significance of ADC and rMTT values was found between glioma recurrence group and radiation brain injury group (P>0.05; The maximum and average rCBF and rCBV values were significantly higher in glioma recurrence group than in radiation brain injury group (P0.05. The ratios of Cho/Cr and Cho/NAA were higher in glioma recurrence group than in radiation brain injury group (P<0.05. The diagnostic sensitivity of PWI to glioma recurrence was 80.0%, of MRS was 73.3%, and of PWI combined with MRS was 93.3%. The diagnostic sensitivity of PWI to radiation brain injury was 82.4%, of MRS was 70.6%, and of PWI combined with MRS was 88.2%. Conclusion Combined application of multimodal magnetic resonance imaging technology may improve the diagnostic accuracy to glioma recurrence and radiation brain injury, thus provide a good guidance for clinical treatment. DOI: 10.11855/j.issn.0577-7402.2015.11.13

  13. Late-Onset Neurodegeneration with Brain Iron Accumulation with Diffusion Tensor Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Syed Omar Shah

    2012-12-01

    Full Text Available Introduction: Neuroferritinopathy is an autosomal dominant neurodegenerative disorder that includes a movement disorder, cognitive decline, and characteristic findings on brain magnetic resonance imaging (MRI due to abnormal iron deposition. Here, we present a late-onset case, along with diffusion tensor imaging (DTI. Case Presentation: We report the case of a 74-year-old Caucasian female with no significant past medical history who presented for evaluation of orofacial dyskinesia, suspected to be edentulous dyskinesia given her history of ill-fitting dentures. She had also developed slowly progressive dysarthria, dysphagia, visual hallucinations as well as stereotypic movements of her hands and feet. Results: The eye-of-the-tiger sign was demonstrated on T2 MRI. Increased fractional anisotropy and T2 hypointensity were observed in the periphery of the globus pallidus, putamen, substantia nigra, and dentate nucleus. T2 hyperintensity was present in the medial dentate nucleus and central globus pallidus. Discussion: The pallidal MRI findings were more typical of pantothenate kinase-associated neurodegeneration (PKAN, but given additional dentate and putamenal involvement, lack of retinopathy, and advanced age of onset, PKAN was less likely. Although the patient’s ferritin levels were within low normal range, her clinical and imaging features led to a diagnosis of neuroferritinopathy. Conclusion: Neurodegeneration with brain iron accumulation (NBIA is a rare cause of orofacial dyskinesia. DTI MRI can confirm abnormal iron deposition. The location of abnormal iron deposits helps in differentiating NBIA subtypes. Degeneration of the dentate and globus pallidus may occur via an analogous process given their similar T2 and DTI MRI appearance.

  14. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    CERN Document Server

    Khosravie, H R

    2000-01-01

    During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T imager. Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effe...

  15. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain.

    Science.gov (United States)

    Kozić, Duško B; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S

    2014-11-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  16. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  17. Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats

    OpenAIRE

    2010-01-01

    Hemodynamic and cerebrovascular factors are crucially involved in secondary damage after traumatic brain injury (TBI). With magnetic resonance imaging, this study aimed to quantify regional cerebral blood flow (CBF) by arterial spin labeling and cerebral blood volume by using an intravascular contrast agent, during 14 days after lateral fluid-percussion injury (LFPI) in rats. Immunohistochemical analysis of vessel density was used to evaluate the contribution of vascular damage. Results show ...

  18. Brain magnetic resonance imaging, aerobic power, and metabolic parameters among 30 asymptomatic scuba divers.

    Science.gov (United States)

    Tripodi, D; Dupas, B; Potiron, M; Louvet, S; Geraut, C

    2004-11-01

    The aim of the study was to evaluate the presence of cerebral lesions in asymptomatic scuba divers and explain the causes of them: potential risk factors associating cardiovascular risk factors, low aerobic capacity, or characteristics of diving (maximum depth, ascent rate). Experienced scuba divers, over 40 years of age, without any decompression sickness (DCS) history were included. We studied 30 scuba divers (instructors) without any clinical symptoms. For all of them, we carried out a clinical examination with fatty body mass determination and we questioned them about their diving habits. A brain Magnetic Resonance imaging (MRI), an assessment of maximal oxygen uptake, glycemia, triglyceridemia, and cholesterolemia were systematically carried out. Cerebral spots of high intensity were found at 33 % in the scuba diving group and 30 % in the control group. In the diving group, abnormalities were related to unsafe scuba-diving or metabolic abnormalities. In our study, we did not find a significant relationship between the lesions of the central nervous system, and the age, depth of the dives, number of dives, and ergometric performances (maximal oxygen uptake, V.O (2max), serum level of blood lactate). Nevertheless, we found a significant relationship between the lesions of the central nervous system and ascent rate faster than 10 meters per minute (r = 0.57; p = 0.003) or presence of high level of cholesterolemia (r = 0.6; p = 0.001). We found concordant results using the Cochran's Test: meaningful link between the number of brain lesions and the speed of decompression (Uexp = 14 < Utable = 43; alpha = 0.05, p < 0.01). We concluded that hyperintensities can be explained by preformed nitrogen gas microbubbles and particularly in presence of cholesterol, when the ascent rate is up to 10 meters per minute. So, it was remarkable to note that asymptomatic patients practicing scuba diving either professionally or recreationally, presented lesions of the central nervous

  19. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Soares, D.P. [Section of Radiology, Department of Surgery, Radiology, Anaesthetics, and Intensive Care, University Hospital of the West Indies, Mona, Kingston (Jamaica)], E-mail: dpsoares@cwjamaica.com; Law, M. [Department of Radiology and Neurosurgery, Mount Sinai Medical Centre, New York, New York (United States)

    2009-01-15

    Magnetic resonance imaging (MRI) provides anatomic images and morphometric characterization of disease, whereas magnetic resonance spectroscopy (MRS) provides metabolite/biochemical information about tissues non-invasively in vivo. MRS has been used clinically for more than two decades. The major applications of this advanced MRI tool are in the investigation of neurological and neurosurgical disorders. MRS has also been used in the evaluation of the prostate gland and muscle tissue, but these applications will not be addressed in this review. The aim of this review is to attempt to introduce the technique, review the metabolites and literature, as well as briefly describe our clinical experience.

  20. Maintenance of high-energy brain phosphorous compounds during insulin-induced hypoglycemia in men. 31P nuclear magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Hilsted, Jannik; Jensen, K E; Thomsen, C;

    1988-01-01

    31P nuclear magnetic resonance (NMR) spectroscopy allows noninvasive studies of cerebral energy-rich phosphorous compounds in humans. In an attempt to characterize the relationship between peripheral blood glucose concentrations and whole-brain phosphate metabolism during insulin...

  1. Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis

    DEFF Research Database (Denmark)

    Park, June-Hee; Lee, Hedok; Makaryus, Rany

    2014-01-01

    RATIONALE: Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive......-PDGF mice, when compared to normal brain tissue in the control mice. CONCLUSIONS: Metabolic profiling using 1HMRS in combination with LCModel analysis did not reveal correlation between Lip13a+Lip13b spectral signatures and an increase in neurogenesis in adult rat hippocampus after ECS. However, increases...

  2. The etiology of cirrhosis is a strong determinant of brain reserve: A multimodal magnetic resonance imaging study.

    Science.gov (United States)

    Ahluwalia, Vishwadeep; Wade, James B; Moeller, F Gerard; White, Melanie B; Unser, Ariel B; Gavis, Edith A; Sterling, Richard K; Stravitz, R Todd; Sanyal, Arun J; Siddiqui, Mohammad S; Puri, Puneet; Luketic, Velimir; Heuman, Douglas M; Fuchs, Michael; Matherly, Scott; Bajaj, Jasmohan S

    2015-09-01

    Poor brain reserve in alcoholic cirrhosis could worsen insight regarding disease severity and increase the patients' vulnerability toward further deterioration. The aim of this study was to analyze brain reserve in abstinent alcoholic cirrhotic (Alc) patients compared to nonalcoholic cirrhotic (Nalc) patients in the context of hepatic encephalopathy (HE) and to evaluate relative change in brain reserve between groups over time and before and after elective transjugular intrahepatic portosystemic shunt (TIPS) placement. The cross-sectional study included 46 Alc and 102 Nalc outpatients with or without HE. Cognitive tests were followed by magnetic resonance imaging (MRI), including proton magnetic resonance spectroscopy (1 H-MRS), diffusion tensor imaging, and T1-weighted imaging. The prospective study included 1H-MRS on a subset of 10 patients before and after TIPS placement. Another subset of 26 patients underwent (1) H-MRS at least 1 year apart. For the cross-sectional study, Alc patients were worse on cognitive tests than Nalc patients. MRI results suggest a greater effect of hyperammonemia, brain edema, and significantly higher cortical damage in Alc as compared to Nalc patients. The effect of HE status on cognitive tests and brain reserve was more marked in the Nalc than in the Alc group. For the TIPS study, Nalc patients showed a greater adverse relative change after TIPS compared to the Alc group. At 1-year follow-up, both groups remained stable between the 2 visits. However, Alc patients continued to show poor brain reserve compared to Nalc patients over time. In conclusion, Alc patients, despite abstinence, have a poor brain reserve, whereas Nalc patients have a greater potential for brain reserve deterioration after HE and TIPS. Information regarding the brain reserve in cirrhosis could assist medical teams to refine their communication and monitoring strategies for different etiologies.

  3. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging.

    Science.gov (United States)

    Wehrl, Hans F; Bezrukov, Ilja; Wiehr, Stefan; Lehnhoff, Mareike; Fuchs, Kerstin; Mannheim, Julia G; Quintanilla-Martinez, Leticia; Kohlhofer, Ursula; Kneilling, Manfred; Pichler, Bernd J; Sauter, Alexander W

    2015-05-01

    Especially for neuroscience and the development of new biomarkers, a direct correlation between in vivo imaging and histology is essential. However, this comparison is hampered by deformation and shrinkage of tissue samples caused by fixation, dehydration and paraffin embedding. We used magnetic resonance (MR) imaging and computed tomography (CT) imaging to analyze the degree of shrinkage on murine brains for various fixatives. After in vivo imaging using 7 T MRI, animals were sacrificed and the brains were dissected and immediately placed in different fixatives, respectively: zinc-based fixative, neutral buffered formalin (NBF), paraformaldehyde (PFA), Bouin-Holland fixative and paraformaldehyde-lysine-periodate (PLP). The degree of shrinkage based on mouse brain volumes, radiodensity in Hounsfield units (HU), as well as non-linear deformations were obtained. The highest degree of shrinkage was observed for PLP (68.1%, P brain shrinkage and only small deformations and is therefore recommended for in vivo ex vivo comparison studies.

  4. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    Science.gov (United States)

    2013-02-01

    receive-only phased-array head coil with soccer -ball element geometry,” Magnet- ic Resonance in Medicine, vol. 56, no. 1, pp. 216–223, 2006. [13] M...relationship with energy metabolism,” in link.springer.com, vol. 102, no. 41, Vi- enna: Springer Vienna, 2009, pp. 207–213. [33] C. Iadecola, “Bright and dark

  5. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.;

    2010-01-01

    detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87...

  6. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities

    NARCIS (Netherlands)

    vanderKnaap, MS; Smit, LME; Barth, PG; CatsmanBerrevoets, CE; Brouwer, OF; Begeer, JH; deCoo, IFM; Valk, J.

    1997-01-01

    A survey was performed of magnetic resonance imaging (MRI) findings in 21 patients with congenital muscular dystrophy (QID) with cerebral abnormalities to evaluate the contribution of MRI to the classification of CMD patients. In 5 patients with Walker-Warburg syndrome (WWS), MRI showed hydrocephalu

  7. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies

    Science.gov (United States)

    Xu, Heng; Springett, Roger; Dehghani, Hamid; Pogue, Brian W.; Paulsen, Keith D.; Dunn, Jeff F.

    2005-04-01

    A novel magnetic-resonance-coupled broadband near-infrared (NIR) tomography system for small animal brain studies is described. Several features of the image formation approach are new in NIR tomography and represent major advances in the path to recovering high-resolution hemoglobin and oxygen saturation images of tissue. The NIR data were broadband and continuous wave and were used along with a second-derivative-based estimation of the path length from water absorption. The path length estimation from water was then used along with the attenuation spectrum to recover absorption and reduced scattering coefficient images at multiple wavelengths and then to recover images of total hemoglobin and oxygen saturation. Going beyond these basics of NIR tomography, software has been developed to allow inclusion of structures derived from MR imaging (MRI) for the external and internal tissue boundaries, thereby improving the accuracy and spatial resolution of the properties in each tissue type. The system has been validated in both tissue-simulating phantoms, with 10% accuracy observed, and in a rat cranium imaging experiment. The latter experiment used variation in inspired oxygen (FiO2) to vary the observed hemoglobin and oxygen saturation images. Quantitative agreement was observed between the changes in deoxyhemoglobin values derived from NIR and the changes predicted with blood-oxygen-level-dependent (BOLD) MRI. This system represents the initial stage in what will likely be a larger role for NIR tomography, coupled to MRI, and illustrates that the technological challenges of using continuous-wave broadband data and inclusion of a priori structural information can be met with careful phantom studies.

  8. FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY OF THE BRAIN IN PATIENTS WITH AMYOTROPHIC LATERAL SCLEROSIS

    Institute of Scientific and Technical Information of China (English)

    Jing Han; Lin Ma

    2006-01-01

    Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI).Methods Fifteen patients with definite or probable ALS and fifteen age and gender matched normal controls were enrolled.MRI was performed on a 3.0 Tesla scanner with standard headcoil.The functional images were acquired using a gradient echo single shot echo planar imaging (EPI) sequence.All patients and normal subjects executed sequential finger tapping movement at the frequency of 1-2 Hz during a block-design motor task.Structural MRI was acquired using a three-dimensional fast spoiled gradient echo (3D-FSPGR) sequence.The fMRI data were analyzed by statistical parametric mapping(SPM).Results Bilateral primary sensorimotor cortex (PSM),bilateral premotor area (PA),bilateral supplementary motor area (SMA),bilateral parietal region (PAR),contralateral inferior lateral premotor area (ILPA),and ipsilateral cerebellum showed activation in both ALS patients and normal controls when executing the same motor task.The activation areas in bilateral PSM,bilateral PA,bilateral SMA,and ipsilateral cerebellum were significantly larger in ALS patients than those in normal controls (P<0.05).Extra activation areas including ipsilateral ILPA,bilateral posterior limb of internal capsule,and contralateral cerebellum were only detected in ALS patients.Conclusions Similar activation areas are activated in ALS patients and normal subjects while executing the same motor task.The increased activation areas in ALS patients may represent neural reorganization,while the extra activation areas in ALS patients may indicate functional compensation.

  9. Writing affects the brain network of reading in Chinese: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Cao, Fan; Vu, Marianne; Chan, Derek Ho Lung; Lawrence, Jason M; Harris, Lindsay N; Guan, Qun; Xu, Yi; Perfetti, Charles A

    2013-07-01

    We examined the hypothesis that learning to write Chinese characters influences the brain's reading network for characters. Students from a college Chinese class learned 30 characters in a character-writing condition and 30 characters in a pinyin-writing condition. After learning, functional magnetic resonance imaging collected during passive viewing showed different networks for reading Chinese characters and English words, suggesting accommodation to the demands of the new writing system through short-term learning. Beyond these expected differences, we found specific effects of character writing in greater activation (relative to pinyin writing) in bilateral superior parietal lobules and bilateral lingual gyri in both a lexical decision and an implicit writing task. These findings suggest that character writing establishes a higher quality representation of the visual-spatial structure of the character and its orthography. We found a greater involvement of bilateral sensori-motor cortex (SMC) for character-writing trained characters than pinyin-writing trained characters in the lexical decision task, suggesting that learning by doing invokes greater interaction with sensori-motor information during character recognition. Furthermore, we found a correlation of recognition accuracy with activation in right superior parietal lobule, right lingual gyrus, and left SMC, suggesting that these areas support the facilitative effect character writing has on reading. Finally, consistent with previous behavioral studies, we found character-writing training facilitates connections with semantics by producing greater activation in bilateral middle temporal gyri, whereas pinyin-writing training facilitates connections with phonology by producing greater activation in right inferior frontal gyrus.

  10. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery.

    Science.gov (United States)

    Aggarwal, M; Zhang, J; Miller, M I; Sidman, R L; Mori, S

    2009-09-15

    Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: postnatal day (P) 7, P14, P21, P28, P63 and in adults (P140-P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.

  11. Magnetic resonance imaging features of brain and spinal cord injury in a fatal case of isopropanol intoxication

    Directory of Open Access Journals (Sweden)

    Mahajan PS

    2014-03-01

    Full Text Available Parag Suresh Mahajan,1 Joyal Jacob Mathew,2 Abhilash Pulincherry Jayaram,1 Vidya Chander Negi,1 Mohamed Milad Abu Hmaira21Department of Radiology, 2Department of Medicine, Al-Khor Hospital, Hamad Medical Corporation, Doha, QatarAbstract: A 60-year-old man presented with headache, dizziness, and disorientation one day after consumption of isopropanol along with ethanol. Computed tomography (CT of the brain performed immediately was unremarkable. The patient collapsed within the hospital 30 minutes after the CT scan was done, and remained comatose until death, showing no improvement with symptomatic treatment. Magnetic resonance imaging of the brain and spine done 6 days after admission revealed bilaterally symmetrical hyperintensities involving the cerebral and cerebellar cortex and white matter, basal ganglia, thalami, and brainstem on T2-weighted, fluid attenuated inversion recovery and diffusion weighted images; similar hyperintensities were seen involving the swollen and edematous cervical spinal cord and cerebellar tonsillar herniation compressing the proximal cervical cord. Petechial hemorrhages were also noted within the brainstem. These features are compatible with toxic injury to the brain and cervical spinal cord. To our knowledge, the magnetic resonance imaging features of brain and spinal cord injury and cerebellar tonsillar herniation, secondary to isopropanol intoxication have not been reported in the published literature before.Keywords: alcohol intoxication, computed tomography, isopropyl alcohol, ethyl alcohol, toxicity

  12. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  13. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering.

    Science.gov (United States)

    Elazab, Ahmed; Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-01-01

    An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  14. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ahmed Elazab

    2015-01-01

    Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  15. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    Science.gov (United States)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  16. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease.

  17. An in vivo three-dimensional magnetic resonance imaging-based averaged brain collection of the neonatal piglet (Sus scrofa).

    Science.gov (United States)

    Conrad, Matthew S; Sutton, Bradley P; Dilger, Ryan N; Johnson, Rodney W

    2014-01-01

    Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI) can be a powerful tool to study neurodevelopment in piglets, but many of the MRI resources have been produced for adult humans. Here, we present an average in vivo MRI-based atlas specific for the 4-week-old piglet. In addition, we have developed probabilistic tissue classification maps. These tools can be used with brain mapping software packages (e.g. SPM and FSL) to aid in voxel-based morphometry and image analysis techniques. The atlas enables efficient study of neurodevelopment in a highly tractable translational animal with brain growth and development similar to humans.

  18. Is it Possible to Extract Brain Metabolic Pathways Information from In Vivo H Nuclear Magnetic Resonance Spectroscopy Data?

    CERN Document Server

    de Lara, Alejandro Chinea Manrique

    2010-01-01

    In vivo H nuclear magnetic resonance (NMR) spectroscopy is an important tool for performing non-invasive quantitative assessments of brain tumour glucose metabolism. Brain tumours are considered as fast-growth tumours because of their high rate of proliferation. In addition, tumour cells exhibit profound genetic, biochemical and histological differences with respect to the original non-transformed cellular types. Therefore, there is a strong interest from the clinical investigator point of view in understanding the role of brain metabolites in normal and pathological conditions and especially on the development of early tumour detection techniques. Unfortunately, current diagnosis techniques ignore the dynamic aspects of these signals. It is largely believed that temporal variations of NMR Spectra are noisy or just simply do not carry enough information to be exploited by any reliable diagnosis procedure. Thus, current diagnosis procedures are mainly based on empirical observations extracted from single avera...

  19. An in vivo three-dimensional magnetic resonance imaging-based averaged brain collection of the neonatal piglet (Sus scrofa.

    Directory of Open Access Journals (Sweden)

    Matthew S Conrad

    Full Text Available Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI can be a powerful tool to study neurodevelopment in piglets, but many of the MRI resources have been produced for adult humans. Here, we present an average in vivo MRI-based atlas specific for the 4-week-old piglet. In addition, we have developed probabilistic tissue classification maps. These tools can be used with brain mapping software packages (e.g. SPM and FSL to aid in voxel-based morphometry and image analysis techniques. The atlas enables efficient study of neurodevelopment in a highly tractable translational animal with brain growth and development similar to humans.

  20. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  1. SEGMENTATION OF MAGNETIC RESONANCE BRAIN TUMOR USING INTEGRATED FUZZY K-MEANS CLUSTERING

    OpenAIRE

    P.Pedda Sadhu Naik; T.Venu Gopal

    2016-01-01

    Segmentation is a process of partitioning the image into several objects. It plays a vital role in many fields such as satellite, remote sensing, object identification, face tracking and most importantly in medical field. In radiology, magnetic resonance imaging (MRI) is used to investigate the human body processes and functions of organisms. In hospitals, this technique has been using widely for medical diagnosis, to find the disease stage and follow-up without exposure to ionizi...

  2. Zebrafish brain lipid characterization and quantification by ¹H nuclear magnetic resonance spectroscopy and MALDI-TOF mass spectrometry.

    Science.gov (United States)

    van Amerongen, Yvonne F; Roy, Upasana; Spaink, Herman P; de Groot, Huub J M; Huster, Daniel; Schiller, Jürgen; Alia, A

    2014-06-01

    Lipids play an important role in many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Zebrafish models for these diseases have been recently developed. The detailed brain lipid composition of the adult zebrafish is not known, and therefore, the representativeness of these models cannot be properly evaluated. In this study, we characterized the total lipid composition of healthy adult zebrafish using (1)H nuclear magnetic resonance spectroscopy. A close resemblance of the zebrafish brain composition is shown in comparison to the human brain. Moreover, several lipids involved in the pathogenesis of neurodegenerative diseases (i.e., cholesterol, phosphatidylcholine, docosahexaenoic acid, and further, polyunsaturated fatty acids) are detected and quantified. These lipids might represent useful biomarkers in future research toward human therapies. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry coupled with high-performance thin-layer chromatography was used for further characterization of zebrafish brain lipids. Our results show that the lipid composition of the zebrafish brain is rather similar to the human brain and thus confirms that zebrafish represents a good model for studying various brain diseases.

  3. Tracing Activity across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging (ofMRI

    Directory of Open Access Journals (Sweden)

    Jin Hyung eLee

    2011-10-01

    Full Text Available Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand a specific set of neuron’s activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI provides a new impetus for the study of the brain circuit by enabling causal tracing of the brain circuit activity across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism.

  4. Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or isoflurane.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawaguchi

    Full Text Available BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group. Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia.

  5. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  6. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale.

    Science.gov (United States)

    Budinger, Thomas F; Bird, Mark D; Frydman, Lucio; Long, Joanna R; Mareci, Thomas H; Rooney, William D; Rosen, Bruce; Schenck, John F; Schepkin, Victor D; Sherry, A Dean; Sodickson, Daniel K; Springer, Charles S; Thulborn, Keith R; Uğurbil, Kamil; Wald, Lawrence L

    2016-06-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.

  7. A tumefactive multiple sclerosis lesion in the brain: An uncommon site with atypical magnetic resonance image findings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Sun; Kim, Hyun Sook; Kim, Jae Hoon; Kim, Eun Kyung; Choi, Yun Sun [Eulji Hospital, Eulji University, Seoul (Korea, Republic of)

    2013-11-15

    Tumefactive multiple sclerosis (MS) is a rare type of demyelinating disease. Typical magnetic resonance (MR) image findings show incomplete ring enhancement with a mild mass effect. This lesion is otherwise indistinguishable from other mass-like lesions in the brain. Knowledge of the MR imaging findings for tumefactive MS is thus helpful for correct diagnosis and appropriate therapy. In this report we describe the MR image findings for pathology-confirmed tumefactive MS in an uncommon location, alongside a discussion of its aggressive features.

  8. Enhanced adult neurogenesis increases brain stiffness: in vivo magnetic resonance elastography in a mouse model of dopamine depletion.

    Directory of Open Access Journals (Sweden)

    Charlotte Klein

    Full Text Available The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP mouse model for dopaminergic neurodegeneration as observed in Parkinson's disease (PD to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration.

  9. Automatic segmentation of white matter lesions on magnetic resonance images of the brain by using an outlier detection strategy.

    Science.gov (United States)

    Wang, Rui; Li, Chao; Wang, Jie; Wei, Xiaoer; Li, Yuehua; Hui, Chun; Zhu, Yuemin; Zhang, Su

    2014-12-01

    White matter lesions (WMLs) are commonly observed on the magnetic resonance (MR) images of normal elderly in association with vascular risk factors, such as hypertension or stroke. An accurate WML detection provides significant information for disease tracking, therapy evaluation, and normal aging research. In this article, we present an unsupervised WML segmentation method that uses Gaussian mixture model to describe the intensity distribution of the normal brain tissues and detects the WMLs as outliers to the normal brain tissue model based on extreme value theory. The detection of WMLs is performed by comparing the probability distribution function of a one-sided normal distribution and a Gumbel distribution, which is a specific extreme value distribution. The performance of the automatic segmentation is validated on synthetic and clinical MR images with regard to different imaging sequences and lesion loads. Results indicate that the segmentation method has a favorable accuracy competitive with other state-of-the-art WML segmentation methods.

  10. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    Science.gov (United States)

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  11. Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain.

    Science.gov (United States)

    Fernando, M S; O'Brien, J T; Perry, R H; English, P; Forster, G; McMeekin, W; Slade, J Y; Golkhar, A; Matthews, F E; Barber, R; Kalaria, R N; Ince, P G

    2004-08-01

    White matter lesions (WML) on magnetic resonance imaging (MRI) brain scans are associated with ageing. They are unrelated to specific disorders, and their impact on cognitive and other brain functions is poorly characterized. Pathological studies often omit systematic survey of WML because of the need to study multiple full coronal tissue blocks, and uncertainty over the significance of lesions identified in periventricular and deep subcortical regions. Post-mortem MRI provides a means of mapping WML but the sensitivity and specificity of the method are unresolved. In this study post-mortem MRI of WML in fixed brain slices was compared with pathology in 33 brains donated to the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). This study shows that MRI detection of WML was less sensitive than pathology: periventricaular lesions (PVL) sensitivity = 95% (87-99%), specificity = 71% (44-90%); deep subcortical lesions (DSCL) sensitivity = 86% (79-93%), specificity = 80% (72-88%). False negative MRI was associated with milder pathology, but lesions detected by myelin attenuation alone showed both microglial and endothelial activation. Therefore post-mortem MRI of formalin-fixed brain slices is a reliable method to obtain systematic data on the severity and distribution of cerebral white matter disease, and appears to detect those WML most likely to have clinical impact.

  12. Three-dimensional reconstruction of brain structures of the rodent Octodon degus: a brain atlas constructed by combining histological and magnetic resonance images.

    Science.gov (United States)

    Kumazawa-Manita, Noriko; Katayama, Mariko; Hashikawa, Tsutomu; Iriki, Atsushi

    2013-11-01

    Degus (Octodon degus) are rodents that are becoming more widely used in the neuroscience field. Degus display several more complex behaviors than rats and mice, including complicated social behaviors, vocal communications, and tool usage with superb manual dexterity. However, relatively little information is known about the anatomy of degu brains. Therefore, for these complex behaviors to be correlated with specific brain regions, a contemporary atlas of the degu brain is required. This manuscript describes the construction of a three-dimensional (3D) volume rendered model of the degu brain that combines histological and magnetic resonance images. This atlas provides several advantages, including the ability to visualize the surface of the brain from any angle. The atlas also permits virtual cutting of brain sections in any plane and provides stereotaxic coordinates for all sections, to be beneficial for both experimental surgeries and radiological studies. The reconstructed 3D atlas is freely available online at: http://brainatlas.brain.riken.jp/degu/modules/xoonips/listitem.php?index_id=24 .

  13. Revisiting a historic human brain with magnetic resonance imaging – the first description of a divided central sulcus

    Science.gov (United States)

    Schweizer, Renate; Helms, Gunther; Frahm, Jens

    2014-01-01

    In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation – bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI). On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the post-central sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the post-central sulcus, represents the very common case of a segmented post-central sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus. PMID:24904304

  14. Revisiting a historic human brain with magnetic resonance imaging - the first description of a divided central sulcus.

    Science.gov (United States)

    Schweizer, Renate; Helms, Gunther; Frahm, Jens

    2014-01-01

    In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation - bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI). On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the post-central sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the post-central sulcus, represents the very common case of a segmented post-central sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus.

  15. Intraoperative magnetic resonance imaging.

    Science.gov (United States)

    Hall, Walter A; Truwit, Charles L

    2011-01-01

    Neurosurgeons have become reliant on image-guidance to perform safe and successful surgery both time-efficiently and cost-effectively. Neuronavigation typically involves either rigid (frame-based) or skull-mounted (frameless) stereotactic guidance derived from computed tomography (CT) or magnetic resonance imaging (MRI) that is obtained days or immediately before the planned surgical procedure. These systems do not accommodate for brain shift that is unavoidable once the cranium is opened and cerebrospinal fluid is lost. Intraoperative MRI (ioMRI) systems ranging in strength from 0.12 to 3 Tesla (T) have been developed in part because they afford neurosurgeons the opportunity to accommodate for brain shift during surgery. Other distinct advantages of ioMRI include the excellent soft tissue discrimination, the ability to view the surgical site in three dimensions, and the ability to "see" tumor beyond the surface visualization of the surgeon's eye, either with or without a surgical microscope. The enhanced ability to view the tumor being biopsied or resected allows the surgeon to choose a safe surgical corridor that avoids critical structures, maximizes the extent of the tumor resection, and confirms that an intraoperative hemorrhage has not resulted from surgery. Although all ioMRI systems allow for basic T1- and T2-weighted imaging, only high-field (>1.5 T) MRI systems are capable of MR spectroscopy (MRS), MR angiography (MRA), MR venography (MRV), diffusion-weighted imaging (DWI), and brain activation studies. By identifying vascular structures with MRA and MRV, it may be possible to prevent their inadvertent injury during surgery. Biopsying those areas of elevated phosphocholine on MRS may improve the diagnostic yield for brain biopsy. Mapping out eloquent brain function may influence the surgical path to a tumor being resected or biopsied. The optimal field strength for an ioMRI-guided surgical system and the best configuration for that system are as yet

  16. Adults with attention-deficit/hyperactivity disorder – a brain magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Margaretha eDramsdahl

    2011-11-01

    Full Text Available BackgroundImpaired cognitive control in individuals with Attention-Deficit/Hyperactivity Disorder (ADHD may be related to a prefrontal cortical glutamatergic deficit. We assessed the glutamate level in the left and the right midfrontal region including the anterior cingulate cortex (ACC in adults with ADHD and healthy controls. MethodsTwenty-nine adults with ADHD and 38 healthy controls were included. We used Proton Magnetic Resonance Imaging with single-voxel point-resolved spectroscopy to measure the ratio of glutamate to creatine (Glu/Cre in the left and the right midfrontal region in the two groups. ResultsThe ADHD group showed a significant reduction of Glu/Cre in the left midfrontal region compared to the controls. ConclusionsThe reduction of Glu/Cre in the left midfrontal region in the ADHD group may reflect a glutamatergic deficit in prefrontal neuronal circuitry in adults with ADHD, resulting in problems with cognitive control.

  17. Adults with attention-deficit/hyperactivity disorder - a brain magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Dramsdahl, Margaretha; Ersland, Lars; Plessen, Kerstin J;

    2011-01-01

    with ADHD and healthy controls. Methods: Twenty-nine adults with ADHD and 38 healthy controls were included. We used Proton Magnetic Resonance Imaging with single voxel point-resolved spectroscopy to measure the ratio of glutamate to creatine (Glu/Cre) in the left and the right midfrontal region in the two...... groups. Results: The ADHD group showed a significant reduction of Glu/Cre in the left midfrontal region compared to the controls. Conclusion: The reduction of Glu/Cre in the left midfrontal region in the ADHD group may reflect a glutamatergic deficit in prefrontal neuronal circuitry in adults with ADHD......Background: Impaired cognitive control in individuals with attention-deficit/hyperactivity disorder (ADHD) may be related to a prefrontal cortical glutamatergic deficit. We assessed the glutamate level in the left and the right midfrontal region including the anterior cingulate cortex in adults...

  18. Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia.

    Science.gov (United States)

    Song, Tianbin; Nie, Binbin; Ma, Ensen; Che, Jing; Sun, Shilong; Wang, Yuli; Shan, Baoci; Liu, Yawu; Luo, Senlin; Ma, Guolin; Li, Kefeng

    2015-05-01

    Schizophrenia is characterized by the disorder of "social brain". However, the alternation of connectivity density in brain areas of schizophrenia patients remains largely unknown. In this study, we successfully created a rat model of schizophrenia by the transfection of EGR3 gene into rat brain. We then investigated the connectivity density of schizophrenia susceptible regions in rat brain using functional magnetic resonance imaging (fMRI) in combination with multivariate Granger causality (GC) model. We found that the average signal strength in prefrontal lobe and hippocampus of schizophrenia model group was significantly higher than the control group. Bidirectional Granger causality connection was observed between hippocampus and thalamic in schizophrenia model group. Both connectivity density and Granger causality connection were changed in prefrontal lobe, hippocampus and thalamus after risperidone treatment. Our results indicated that fMRI in combination with GC connection analysis may be used as an important method in diagnosis of schizophrenia and evaluation the effect of antipsychotic treatment. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia.

  19. the Diagnostic Value of Brain Magnetic Resonance imaging in Detecting CNS Diseases Among Advanced AiDS Patients

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective To investigate the diagnostic value of brain magnetic resonance imaging in detecting central nervous system diseases among AIDS patients of different levels of T cells. Methods Total of 164 AIDS patients who did not receive antiviral treatment were divided into 2 groups according to their baseline CD4+T cell counts. Group A had CD4+T cell below or equal to 50 cells/μl (n=81) and group B had CD4+T cells over 50 cells/μl (n=83). All patients underwent brain MRI scan. Imaging analysis and the prevalence of the central nervous system disorders were compared between two groups. Results Among them 48 cases were found of abnormal brain MRI, group A was higher than group B (35.8%vs. 22.9%) although without statistical significance (P = 0.065). Altogether 48 cases were diagnosed as AIDS related central nervous system disorders based on clinical symptoms, signs and laboratory findings. The prevalence of CNS disorders was higher in group A than in group B (41.9%vs. 16.8%) with statistical significance (P<0.01). Conclusions The patients with CD4+T cell count less than or equal to 50 cells/μl had high prevalence of CNS diseases. Brain MRI plays an important role in the diagnosis and differentiation of CNS diseases in advanced AIDS patients. This study suggests patients with low CD4+T cell count (≤ 50/μl) should routinely undergo MRI examination.

  20. Exploring the biomechanical properties of brain malignancies and their pathologic determinants in vivo with magnetic resonance elastography.

    Science.gov (United States)

    Jamin, Yann; Boult, Jessica K R; Li, Jin; Popov, Sergey; Garteiser, Philippe; Ulloa, Jose L; Cummings, Craig; Box, Gary; Eccles, Suzanne A; Jones, Chris; Waterton, John C; Bamber, Jeffrey C; Sinkus, Ralph; Robinson, Simon P

    2015-04-01

    Malignant tumors are typically associated with altered rigidity relative to normal host tissue. Magnetic resonance elastography (MRE) enables the noninvasive quantitation of the mechanical properties of deep-seated tissue following application of an external vibrational mechanical stress to that tissue. In this preclinical study, we used MRE to quantify (kPa) the elasticity modulus Gd and viscosity modulus Gl of three intracranially implanted glioma and breast metastatic tumor models. In all these brain tumors, we found a notable softness characterized by lower elasticity and viscosity than normal brain parenchyma, enabling their detection on Gd and Gl parametric maps. The most circumscribed tumor (U-87 MG glioma) was the stiffest, whereas the most infiltrative tumor (MDA-MB-231 metastatic breast carcinoma) was the softest. Tumor cell density and microvessel density correlated significantly and positively with elasticity and viscosity, whereas there was no association with the extent of collagen deposition or myelin fiber entrapment. In conclusion, although malignant tumors tend to exhibit increased rigidity, intracranial tumors presented as remarkably softer than normal brain parenchyma. Our findings reinforce the case for MRE use in diagnosing and staging brain malignancies, based on the association of different tumor phenotypes with different mechanical properties.

  1. Sleep deprivation disturbed regional brain activity in healthy subjects: evidence from a functional magnetic resonance-imaging study

    Directory of Open Access Journals (Sweden)

    Wang L

    2016-04-01

    Full Text Available Li Wang, Yin Chen, Ying Yao, Yu Pan, Yi Sun Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China Objective: The aim of this study was to use amplitude of low-frequency fluctuation (ALFF to explore regional brain activities in healthy subjects after sleep deprivation (SD.Materials and methods: A total of 16 healthy subjects (eight females, eight males underwent the session twice: once was after normal sleep (NS, and the other was after SD. ALFF was used to assess local brain features. The mean ALFF-signal values of the different brain areas were evaluated to investigate relationships with clinical features and were analyzed with a receiver-operating characteristic curve.Results: Compared with NS subjects, SD subjects showed a lower response-accuracy rate, longer response time, and higher lapse rate. Compared with NS subjects, SD subjects showed higher ALFF area in the right cuneus and lower ALFF area in the right lentiform nucleus, right claustrum, left dorsolateral prefrontal cortex, and left inferior parietal cortex. ALFF differences in regional brain areas showed high sensitivity and specificity. In the SD group, mean ALFF of the right claustrum showed a significant positive correlation with accuracy rate (r=0.687, P=0.013 and a negative correlation with lapse rate (r=-0.706, P=0.01. Mean ALFF of the dorsolateral prefrontal cortex showed a significant positive correlation with response time (r=0.675, P=0.016.Conclusion: SD disturbed the regional brain activity of the default-mode network, its anticorrelated “task-positive” network, and the advanced cognitive function brain areas. Keywords: sleep deprivation, amplitude of low-frequency fluctuation, default-mode network, functional magnetic resonance imaging

  2. Magnetic Resonance Imaging and Computed Tomography of the Brain-50 Years of Innovation, With a Focus on the Future.

    Science.gov (United States)

    Runge, Val M; Aoki, Shigeki; Bradley, William G; Chang, Kee-Hyun; Essig, Marco; Ma, Lin; Ross, Jeffrey S; Valavanis, Anton

    2015-09-01

    This review focuses specifically on the developments in brain imaging, as opposed to the spine, and specifically conventional, clinical, cross-sectional imaging, looking primarily at advances in magnetic resonance imaging (MRI) and computed tomography (CT). These fields are viewed from a perspective of landmark publications in the last 50 years and subsequently more in depth using sentinel publications from the last 5 years. It is also written from a personal perspective, with the authors having witnessed the evolution of both fields from their initial clinical introduction to their current state. Both CT and MRI have made tremendous advances during this time, regarding not only sensitivity and spatial resolution, but also in terms of the speed of image acquisition. Advances in CT in recent years have focused in part on reduced radiation dose, an important topic for the years to come. Magnetic resonance imaging has seen the development of a plethora of scan techniques, with marked superiority to CT in terms of tissue contrast due to the many parameters that can be assessed, and their intrinsic sensitivity. Future advances in MRI for clinical practice will likely focus both on new acquisition techniques that offer advances in speed and resolution, for example, simultaneous multislice imaging and data sparsity, and on standardization and further automation of image acquisition and analysis. Functional imaging techniques including specifically perfusion and functional magnetic resonance imaging will be further integrated into the workflow to provide pathophysiologic information that influence differential diagnosis, assist treatment decision and planning, and identify and follow treatment-related changes.

  3. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  4. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    Science.gov (United States)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  5. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, David G.; Jackson, Alan [Department of Neuroradiology, Hope Hospital, M6 8HD, Salford (United Kingdom); Mason, Damon L.; Berry, Elizabeth [Department of Behavioural Medicine, Hope Hospital, M6 8HD, Salford (United Kingdom); Hollis, Sally [Medical Statistics Unit, Lancaster University, Lancaster (United Kingdom); Yates, David W. [Department of Emergency Medicine, Hope Hospital, M6 8HD, Salford (United Kingdom)

    2004-07-01

    Mild traumatic brain injury (MTBI) is a common reason for hospital attendance and is associated with significant delayed morbidity. We studied a series of 80 persons with MTBI. Magnetic resonance imaging (MRI) and neuropsychological testing were used in the acute phase and a questionnaire for post-concussion syndrome (PCS) and return to work status at 6 months. In 26 subjects abnormalities were seen on MRI, of which 5 were definitely traumatic. There was weak correlation with abnormal neuropsychological tests for attention in the acute period. There was no significant correlation with a questionnaire for PCS and return to work status. Although non-specific abnormalities are frequently seen, standard MRI techniques are not helpful in identifying patients with MTBI who are likely to have delayed recovery. (orig.)

  6. Central pontine myelinolysis in a chronic alcoholic: A clinical and brain magnetic resonance imaging follow-up

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2013-01-01

    Full Text Available Introduction. Central pontine myelinolysis (CPM is a noninflammatory, demyelinating lesion usually localised in the basis pontis. Chronic alcoholism is frequently associated with this condition which may have a variable clinical outcome. Until now, brain magnetic resonance imaging (MRI follow-up in alcoholic CPM cases after alcohol withdrawal has been rarely described. Case report. We reported a 30- year-old male with a 12-year history of alcohol abuse, who presented with inability to stand and walk, nausea, vomiting and somnolence. Neurological examination revealed: impared fixation on lateral gaze, dysarthria, mild spastic quadriparesis, truncal and extremity ataxia, sock-like hypesthesia and moderate decrease in vibration sense in legs. Brain MRI showed a trident-shaped non-enhancing pontine lesion highly suggestive of CPM. After an eight-month alcoholfree follow-up period, the patient’s clinical status significantly improved, while the extent of MRI pontine lesion was merely slightly reduced. Conclusion. The presented case demonstrates that CPM in chronic alcoholics may have a benign clinical course after alcohol withdrawal, which is not necessarily associated with the reduction of lesions on brain MRI. [Projekat Ministarstva nauke Republike Srbije, br. 175031

  7. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    Science.gov (United States)

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions.

  8. Detection of neural stem cells function in rats with traumatic brain injury by manganese-enhanced magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    TANG Hai-liang; SUN Hua-ping; WU Xing; SHA Hong-ying; FENG Xiao-yuan; ZHU Jian-hong

    2011-01-01

    Background Previously we had successfully tracked adult human neural stem cells (NSCs) labeled with superparamagnetic iron oxide particles (SPIOs) in host human brain after transplantation In vivo non-invasively by magnetic resonance imaging (MRI). However, the function of the transplanted NSCs could not be evaluated by the method. In the study, we applied manganese-enhanced MRI (ME-MRI) to detect NSCs function after implantation in brain of rats with traumatic brain injury (TBI) In vivo.Methods Totally 40 TBI rats were randomly divided into 4 groups with 10 rats in each group. In group 1, the TBI rats did not receive NSCs transplantation. MnCl2-4H2O was intravenously injected, hyperosmolar mannitol was delivered to disrupt rightside blood brain barrier, and its contralateral forepaw was electrically stimulated. In group 2, the TBI rats received NSCs (labeled with SPIO) transplantation, and the ME-MRI procedure was same to group 1. In group 3, the TBI rats received NSCs (labeled with SPIO) transplantation, and the ME-MRI procedure was same to group 1, but diltiazem was introduced during the electrical stimulation period. In group 4, the TBI rats received phosphate buffered saline (PBS) injection, and the ME-MRI procedure was same to group 1.Results Hyperintense signals were detected by ME-MRI in the cortex areas associated with somatosensory in TBI rats of group 2. These signals, which could not be induced in TBI rats of groups 1 and 4, disappeared when diltiazem was introduced in TBI rats of group 3.Conclusion In this initial study, we mapped implanted NSCs activity and its functional participation within local brain area in TBI rats by ME-MRI technique, paving the way for further pre-clinical research.

  9. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  10. Brain temperature measured by {sup 1}H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Shunrou; Nishimoto, Hideaki; Murakami, Toshiyuki; Ogawa, Akira; Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Yoshioka, Yoshichika [Osaka University, Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka (Japan); Matsuda, Tsuyoshi [MR Applications and Workflow Asia Pacific, GE Healthcare Japan, Tokyo (Japan); Beppu, Takaaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Iwate Medical University, Department of Hyperbaric Medicine, Iwate (Japan)

    2016-01-15

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using {sup 1}H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  11. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study.

    Directory of Open Access Journals (Sweden)

    Nicolás Fayed

    Full Text Available INTRODUCTION: This work aimed to determine whether (1H magnetic resonance imaging (MRI, magnetic resonance spectroscopy (MRS, diffusion-weighted imaging (DWI and diffusion tensor imaging (DTI are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. MATERIALS AND METHODS: Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. (1H-MRS (1.5 T of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC and fractional anisotropy (FA by MR-DTI. RESULTS: Myo-inositol (mI was increased in the posterior cingulate gyrus and Glutamate (Glu, N-acetyl-aspartate (NAA and N-acetyl-aspartate/Creatine (NAA/Cr was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019. We also found significant negative correlations between Glu (r = -0.452; p = .045, NAA (r = -0.617; p = .003 and NAA/Cr (r = -0.448; P = .047 in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = -0.4850, p = .0066. CONCLUSIONS: The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators.

  12. Dynamic Susceptibility Contrast Magnetic Resonance Imaging Protocol of the Normal Canine Brain

    Science.gov (United States)

    Stadler, Krystina L.; Pease, Anthony P.; Ballegeer, Elizabeth A.

    2017-01-01

    Perfusion magnetic resonance imaging (MRI), specifically dynamic susceptibility MRI (DSC-MRI) is routinely performed as a supplement to conventional MRI in human medicine for patients with intracranial neoplasia and cerebrovascular events. There is minimal data on the use of DSC-MRI in veterinary patients and a DSC-MRI protocol in the veterinary patient has not been described. Sixteen normal dogs, 6 years or older were recruited for this study. The sample population included 11 large dogs (>11 kg) and 5 small dogs (11 kg, a useable AIF and perfusion map was generated. One dog less than 11 kg received the same contrast dose and rate. In this patient, the protocol did not generate a useable AIF. The remainder of the dogs less than 11 kg followed a protocol of 0.2 mmol/kg gadolinium-based contrast media at 1.5 ml/s with a 10 ml saline flush at 1.5 ml/s. A useable AIF and perfusion map was generated in the remaining dogs <11 kg using the higher contrast dose and slower rate protocol. This study establishes a contrast dose and administration rate for canine DSC-MRI imaging that is different in dogs greater than 11 kg compared to dogs less than 11 kg. These protocols may be used for future applications to evaluate hemodynamic disturbances in canine intracranial pathology.

  13. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  14. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    NARCIS (Netherlands)

    van Doormaal, Pieter Jan; Meiners, Linda C.; ter Horst, Hendrik J.; van der Veere, Christa N.; Sijens, Paul E.

    2012-01-01

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and

  15. Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Chateil, J.F. [Service de Radiologie A, Hopital Pellegrin, Bordeaux (France)]|[Unite de Radiopediatrie, Hopital Pellegrin, Bordeaux (France); Quesson, B.; Thiaudiere, E.; Delalande, C.; Canioni, P. [Resonance Magnetique des Systemes Biologiques, CNRS, Bordeaux (France); Brun, M.; Diard, F. [Service de Radiologie A, Hopital Pellegrin, Bordeaux (France); Sarlangue, J.; Billeaud, C. [Service de Neonatalogie, Hopital Pellegrin, Bordeaux (France)

    1999-03-01

    Objectives. Perinatal hypoxic ischaemic injury is a significant cause of neurodevelopmental impairment. The aim of this study was to evaluate localised proton magnetic resonance spectroscopy ({sup 1}H-MRS) after birth asphyxia. Materials and methods. Thirty newborn infants suspected of having perinatal asphyxia (Apgar score < 3) were studied. The mean gestational age was 37 weeks, mean age at the MR examination was 18 days and mean weight was 2.9 kg. A 1.5-T unit was used for imaging and spectroscopy. None of the babies had mechanically assisted ventilation. No sedation was used. Axial T1-weighted and T2-weighted images were obtained. {sup 1}H-MRS was recorded in a single voxel, localised in white matter, using a STEAM sequence. Results. Image quality was good in 25 of 30 babies. {sup 1}H-MRS was performed in 19 of 30 subjects, with adequate quality in 16. Choline, creatine/phosphocreatine and N-acetylaspartate peaks and peak-area ratios were analysed. Lactate was detected in four infants. The N-acetylaspartate/choline ratio was lower in infants with an impaired neurological outcome, but the difference was not statistically significant. Conclusions. This study suggests that {sup 1}H-MRS may be useful for assessing cerebral metabolism in the neonate. A raised lactate level and decreased N-acetylaspartate/choline ratio may be predictive of a poor outcome. However, in our experience this method is limited by the difficulty in performing the examination during the first hours after birth in critically ill babies, the problems related to use of a monovoxel sequence, the dispersion of the ratios and the lack of determination of the absolute concentration of the metabolites. (orig.) With 3 figs., 2 tabs., 20 refs.

  16. Magnetic resonance imaging and pathologic studies on lateral fluid percussion injury as a model of focal brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Liang; Nagaoka, Tsukasa; Ohno, Kikuo; Tominaga, Ben; Nariai, Tadashi; Hirakawa, Kimiyoshi [Tokyo Medical and Dental Univ. (Japan). Faculty of Medicine; Kuroiwa, Toshihiko; Takakuda, Kazuo; Miyairi, Hiroo

    1996-09-01

    In this study, morphologic changes in brain lesions initiated by moderate lateral fluid percussion injury in rats were investigated chronologically using high-resolution magnetic resonance imaging (MRI) and histopathologic methods. Rats were subjected to moderate fluid percussion injury (average 2.80{+-}0.48 atmospheres) over the exposed dura overlying the right parietal cortex. MRI obtained in vivo were compared with corresponding pathologic findings at 1, 6, and 24 h and at 3, 6, 14 and 80 days after injury. T2-weighted images showed scattered low-signal intensity in the injured cortex within a few hours after injury, whereas histologic findings revealed intraparenchymal hemorrhages. T2-weighted images of the ipsilateral cerebral cortex and/or corpus callosum showed a high-signal-intensity area 4 h after injury. The high-signal-intensity area became largest in size between 6 and 24 h, then declined gradually, and almost disappeared 14 days after injury. Histologic examination revealed pyknosis, retraction of the cell body of neurons with vacuolated neuropile in the corresponding regions 6 and 24 h after injury, and cystic necrosis 14 days after injury. The location and extent of these pathologic changes were depicted accurately by MRI in vivo. In the hippocampus, pyknosis and retraction of the cell body of pyramidal neurons were observed on the injured side 24 h after injury, and the number of neurons in the CA1 and CA2-CA3 regions decreased significantly on the same side by 14 days after injury. It is concluded that morphologic changes in the brain following experimental traumatic brain injury in rats are detectable in vivo by high-resolution MRI, and that MRI may be useful for the evaluation of treatment effects in experimental brain injury. (author)

  17. 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation.

    Directory of Open Access Journals (Sweden)

    Paulo A Garcia

    Full Text Available The blood-brain-barrier (BBB presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IRE-induced zone of ablation and that this transient response can be measured using gadolinium (Gd uptake as a surrogate marker for BBB disruption. The study was performed in a Good Laboratory Practices (GLP compliant facility and had Institutional Animal Care and Use Committee (IACUC approval. IRE ablations were performed in vivo in normal rat brain (n = 21 with 1-mm electrodes (0.45 mm diameter separated by an edge-to-edge distance of 4 mm. We used an ECM830 pulse generator to deliver ninety 50-μs pulse treatments (0, 200, 400, 600, 800, and 1000 V/cm at 1 Hz. The effects of applied electric fields and timing of Gd administration (-5, +5, +15, and +30 min was assessed by systematically characterizing IRE-induced regions of cell death and BBB disruption with 7.0-T magnetic resonance imaging (MRI and histopathologic evaluations. Statistical analysis on the effect of applied electric field and Gd timing was conducted via Fit of Least Squares with α = 0.05 and linear regression analysis. The focal nature of IRE treatment was confirmed with 3D MRI reconstructions with linear correlations between volume of ablation and electric field. Our results also demonstrated that IRE is an ablation technique that kills brain tissue in a focal manner depicted by MRI (n = 16 and transiently disrupts the BBB adjacent to the ablated area in a voltage-dependent manner as seen with Evan's Blue (n = 5 and Gd administration.

  18. Clinical and Brain Magnetic Resonance Imaging Features in a Cohort of Chinese Patients with Kearns-Sayre Syndrome

    Institute of Scientific and Technical Information of China (English)

    Meng Yu; Zhe Zhang; Qing-Qing Wang; Jing Liu; Yue-Huan Zuo; Lei Yu; Jiang-Xi Xiao

    2016-01-01

    Background:Keams-Sayre syndrome (KSS) is a mitochondrial DNA (mtDNA) deletion disorder characterized by a triad of onset before 20 years of age,ophthalmoplegia,and pigmentary retinopathy.The heart and central nervous system are commonly involved.We summarized clinical and brain magnetic resonance imaging (MRI) features of a cohort of Chinese KSS patients.Methods:Nineteen patients confirmed by muscle biopsy and mtDNA analysis were enrolled.We examined clinical profiles,mainly focusing on changes in electrocardiogram (ECG) and brain MRI.The correlation between genotype and phenotype was statistically analyzed.Results:The mean age of onset was 9.6 ± 4.3 years,with all developing the classic triad at the time of diagnosis.Heart conduction block was detected in 63.2%,with four initially presenting as bundle branch block and developing into complete atrioventricular block over 3-72 months.Brain MRI showed symmetric high-T2 signals in 100% of cerebral and cerebellar white matter,as well as brainstem,46.7% of basal ganglia,and 53.3% of thalamus.There were two patterns of cerebral white matter involvements,one with selective subcortical U-fibers and the other with periventricular white matter.The size of mtDNA deletion did not significantly correlate with age of onset or percentage of ragged blue fibers on muscle pathology.Conclusions:The clinical features of KSS evolve dynamically,affecting the cardiac conduction system predominantly,highlighting the significance of ECG monitoring.Brain MRI showed changes involving both the white matter and deep gray nuclei.Clinical presentation or severity of muscle pathological changes is not related to the size of mtDNA deletions.

  19. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  20. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Changlian [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Gao, Jianfeng [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Department of Physiology, Henan Traditional Medical University (China); Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Kuhn, Hans-Georg [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Blomgren, Klas, E-mail: klas.blomgren@neuro.gu.se [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatric Oncology, The Queen Silvia Children' s Hospital, Gothenburg (Sweden)

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  1. Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats.

    Science.gov (United States)

    Hayward, Nick Mark Edward Alexander; Tuunanen, Pasi I; Immonen, Riikka; Ndode-Ekane, Xavier Ekolle; Pitkänen, Asla; Gröhn, Olli

    2011-01-01

    Hemodynamic and cerebrovascular factors are crucially involved in secondary damage after traumatic brain injury (TBI). With magnetic resonance imaging, this study aimed to quantify regional cerebral blood flow (CBF) by arterial spin labeling and cerebral blood volume by using an intravascular contrast agent, during 14 days after lateral fluid-percussion injury (LFPI) in rats. Immunohistochemical analysis of vessel density was used to evaluate the contribution of vascular damage. Results show widespread ipsilateral and contralateral hypoperfusion, including both the cortex and the hippocampus bilaterally, as well as the ipsilateral thalamus. Hemodynamic unrest may partly be explained by an increase in blood vessel density over a period of 2 weeks in the ipsilateral hippocampus and perilesional cortex. Furthermore, three phases of perilesional alterations in CBF, progressing from hypoperfusion to normal and back to hypoperfusion within 2 weeks were shown for the first time in a rat TBI model. These three phases were similar to hemodynamic fluctuations reported in TBI patients. This makes it feasible to use LFPI in rats to study mechanisms behind hemodynamic changes and to explore novel therapeutic approaches for secondary brain damage after TBI.

  2. Rapid and Progressive Regional Brain Atrophy in CLN6 Batten Disease Affected Sheep Measured with Longitudinal Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Stephen J Sawiak

    Full Text Available Variant late-infantile Batten disease is a neuronal ceroid lipofuscinosis caused by mutations in CLN6. It is a recessive genetic lysosomal storage disease characterised by progressive neurodegeneration. It starts insidiously and leads to blindness, epilepsy and dementia in affected children. Sheep that are homozygous for a natural mutation in CLN6 have an ovine form of Batten disease Here, we used in vivo magnetic resonance imaging to track brain changes in 4 unaffected carriers and 6 affected Batten disease sheep. We scanned each sheep 4 times, between 17 and 22 months of age. Cortical atrophy in all sheep was pronounced at the baseline scan in all affected Batten disease sheep. Significant atrophy was also present in other brain regions (caudate, putamen and amygdala. Atrophy continued measurably in all of these regions during the study. Longitudinal MRI in sheep was sensitive enough to measure significant volume changes over the relatively short study period, even in the cortex, where nearly 40% of volume was already lost at the start of the study. Thus longitudinal MRI could be used to study the dynamics of progression of neurodegenerative changes in sheep models of Batten disease, as well as to assess therapeutic efficacy.

  3. Rapid and Progressive Regional Brain Atrophy in CLN6 Batten Disease Affected Sheep Measured with Longitudinal Magnetic Resonance Imaging.

    Science.gov (United States)

    Sawiak, Stephen J; Perumal, Sunthara Rajan; Rudiger, Skye R; Matthews, Loren; Mitchell, Nadia L; McLaughlan, Clive J; Bawden, C Simon; Palmer, David N; Kuchel, Timothy; Morton, A Jennifer

    2015-01-01

    Variant late-infantile Batten disease is a neuronal ceroid lipofuscinosis caused by mutations in CLN6. It is a recessive genetic lysosomal storage disease characterised by progressive neurodegeneration. It starts insidiously and leads to blindness, epilepsy and dementia in affected children. Sheep that are homozygous for a natural mutation in CLN6 have an ovine form of Batten disease Here, we used in vivo magnetic resonance imaging to track brain changes in 4 unaffected carriers and 6 affected Batten disease sheep. We scanned each sheep 4 times, between 17 and 22 months of age. Cortical atrophy in all sheep was pronounced at the baseline scan in all affected Batten disease sheep. Significant atrophy was also present in other brain regions (caudate, putamen and amygdala). Atrophy continued measurably in all of these regions during the study. Longitudinal MRI in sheep was sensitive enough to measure significant volume changes over the relatively short study period, even in the cortex, where nearly 40% of volume was already lost at the start of the study. Thus longitudinal MRI could be used to study the dynamics of progression of neurodegenerative changes in sheep models of Batten disease, as well as to assess therapeutic efficacy.

  4. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance

    OpenAIRE

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-01-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undet...

  5. Magnetic Resonance Imaging Brain Size/IQ Relations in Turkish University Students.

    Science.gov (United States)

    Tan, Uner; Tan, Meliha; Polat, Pinar; Ceylan, Yasar; Suma, Selami; Okur, Adnan

    1999-01-01

    Studied the relation of intelligence quotient (IQ) to brain size on 103 right-handed and left-handed male and female college students in Turkey. Measured cerebral areas and found an overall correlation between brain area and IQ. Discusses some sex differences. (SLD)

  6. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as

  7. Antibodies to the α1-adrenergic receptor cause vascular impairments in rat brain as demonstrated by magnetic resonance angiography.

    Directory of Open Access Journals (Sweden)

    Peter Karczewski

    Full Text Available BACKGROUND: Circulating agonistic autoantibodies acting at G protein-coupled receptors have been associated with numerous sever pathologies in humans. Antibodies directed predominantly against the α(1-adrenergig receptor were detected in patients suffering from widespread diseases such as hypertension and type 2 diabetes. Their deleterious action has been demonstrated for peripheral organs. We postulate that antibodies to the α(1-adrenergig receptor are relevant pathomolecules in diseases of the central nervous system associated with vascular impairments. METHODOLOGY/PRINCIPAL FINDINGS: Using a rat model we studied the long-term action of antibodies against the α(1-adrenergig receptor either induced by immunization with a receptor peptide or applied by intravenous injection. The vasculature in the rat brains was investigated by time-of-flight magnetic resonance angiography using a 9.4 Tesla small animal MR imaging system. Visual examination of maximum-intensity-projections (MIPs of brain angiographs revealed the development of vascular defects in antibody- exposed animals between three and eight months of treatment. Relative vascular areas were derived from representative MIP image sections by grayscale analysis and used to form an index of vascular circulation. Animals exposed to the action of α(1-adrenergig receptor antibodies showed significantly reduced vascular areas (p<0.05. Calculated index values indicated attenuated blood flow in both antibody-treated cohorts compared to their respective controls reaching with (relative units ± standard error, n = 10 0.839 ± 0.026 versus 0.919 ± 0.026 statistical significance (p<0.05 for peptide-immunized rats. CONCLUSION/SIGNIFICANCE: We present evidence that antibodies to the α(1-adrenergig receptor cause cerebrovascular impairments in the rat. Our findings suggest the pathological significance of these antibodies in pathologies of the human central nervous system linked to impairments of

  8. Incidental findings are frequent in young healthy individuals undergoing magnetic resonance imaging in brain research imaging studies

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Siebner, Hartwig R; Deuschl, Günther;

    2010-01-01

    There is an ongoing debate about how to handle incidental findings (IF) detected in healthy individuals who participate in research-driven magnetic resonance imaging (MRI) studies. There are currently no established guidelines regarding their management.......There is an ongoing debate about how to handle incidental findings (IF) detected in healthy individuals who participate in research-driven magnetic resonance imaging (MRI) studies. There are currently no established guidelines regarding their management....

  9. Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Segmentation

    Directory of Open Access Journals (Sweden)

    Bouchaib Cherradi

    2011-05-01

    Full Text Available Accurate segmentation of brain MR images is of interest for many brain disorders. However, dueto several factors such noise, imaging artefacts, intrinsic tissue variation and partial volumeeffects, brain extraction and tissue segmentation remains a challenging task. So, in this paper, afull automatic method for segmentation of anatomical 3D brain MR images is proposed. Themethod consists of many steps. First, noise reduction by median filtering is done; secondsegmentation of brain/non-brain tissue is performed by using a Threshold Morphologic BrainExtraction method (TMBE. Then initial centroids estimation by gray level histogram analysis isexecuted, this stage yield to a Modified version of Fuzzy C-means Algorithm (MFCM that is usedfor MRI tissue segmentation. Finally 3D visualisation of the three clusters (CSF, GM and WM isperformed. The efficiency of the proposed method is demonstrated by extensive segmentationexperiments using simulated and real MR images. A confrontation of the method with similarmethods of the literature has been undertaken trough different performance measures. TheMFCM for tissue segmentation introduce a gain in rapidity of convergence of about 70%.

  10. Advantages of cluster analysis for multifunctional and intercrossing brain area distribution Evaluation by functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hongchang Zhai; Xudong Xu; Shengyong Xiao

    2008-01-01

    BACKGROUND: Multiple linear regression, general linear test and calculation of correlation values are commonly used in studies of brain function using functional magnetic resonance imaging (fMRI). However, there are some limitations in their applications. In non-signal data statistics, cluster analysis functions as a very mature method, but it is not reliable in signal data statistics. OBJECTIVE: To investigate the spatial distribution of complex function in brain areas during motor tasks by cluster analysis, and to compare this with multiple linear regression. DESIGN, TIME AND SETTING: Block design, performed at the MR laboratory of Guangzhou University of Chinese Medicine. PARTICIPANTS: Fifteen right-handed, healthy university students (10 males and 5 females, aged 19-21 years).METHODS: fMRI was performed while the subjects performed a finger movement task with the right hand. The screen showed a gray hand, with red spots presented in a random order on one of the index, middle, ring and little fingers. The subjects were required to remember the sequence of the red spots on the display. After a delay of 14 seconds, the subjects tapped their fingers according to the order of the red spots, as soon as the red spots turned green. After an interval of 14 seconds, another sequence appeared. Every sequence lasted for 28 seconds, including preparation and execution phases. A total of nine sequences per subject were performed. The data were analyzed using deconvolution and cluster methods, and program "cluster" was used to statistically analyze the coordinate positions of deconvolution and cluster data. MAIN OUTCOME MEASURES: Brain activation maps by deconvolution and brain function maps by clustering of the maximum peak values; blood oxygenation level dependent curves by deconvolution; coordinates of peak values and activation volumes by the two methods. RESULTS: The deconvolution method could not integrate the brain activation maps during different tasks into one

  11. Magnetic resonance diffusion tensor imaging with fluorescein sodium dyeing for surgery of gliomas in brain motor functional areas

    Institute of Scientific and Technical Information of China (English)

    LIU Jia-gang; YANG Shuai-feng; LIU Yan-hui; WANG Xiang; MAO Qing

    2013-01-01

    Background Tumor surgery in brain motor functional areas remains challenging.Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery.Herein,we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas.Methods Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group,27 patients in control group).In the experimental group,the surgical approach was designed by DTI imaging,which showed the relationship between the tumor and motor tract.The range of resection in the operation was determined using the FLS-stained area,which recognized the tumor and its infiltrated tissue.The traditional routine method was used in the control group.Postoperatively,all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection.Patients were followed in our outpatient clinic over 6-24 months.Neurological deficits and Karnofsky scoring (KPS) were evaluated.Results There were no significant differences in balance test indexes of preoperative data (sex,age,lesion location and volume,and neurological deficits before operation) and diagnosis of histopathology between the two groups.There was a trend in the experimental group for greater rates of gross total resection (80.4% vs.40.7%),and the paralysis rate caused by surgery was lower in experimental (25.0%) vs.control (66.7%) groups (P <0.05).The 6-month KPS in the low-grade and high-grade gliomas was 91±11 and 73±26,respectively,in the experimental group vs.82±9 and 43±27,respectively,in the control group (P <0.05 for both).Conclusions MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate,decrease the paralysis rate caused by surgery,and improve patient quality of life compared with traditional

  12. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  13. High-field magnetic resonance imaging of brain iron: birth of a biomarker?

    Science.gov (United States)

    Schenck, John F; Zimmerman, Earl A

    2004-11-01

    The brain has an unusually high concentration of iron, which is distributed in an unusual pattern unlike that in any other organ. The physiological role of this iron and the reasons for this pattern of distribution are not yet understood. There is increasing evidence that several neurodegenerative diseases are associated with altered brain iron metabolism. Understanding these dysmetabolic conditions may provide important information for their diagnosis and treatment. For many years the iron distribution in the human brain could be studied effectively only under postmortem conditions. This situation was changed dramatically by the finding that T2-weighted MR imaging at high field strength (initially 1.5 T) appears to demonstrate the pattern of iron distribution in normal brains and that this imaging technique can detect changes in brain iron concentrations associated with disease states. Up to the present time this imaging capability has been utilized in many research applications but it has not yet been widely applied in the routine diagnosis and management of neurodegenerative disorders. However, recent advances in the basic science of brain iron metabolism, the clinical understanding of neurodegenerative diseases and in MRI technology, particularly in the availability of clinical scanners operating at the higher field strength of 3 T, suggest that iron-dependent MR imaging may soon provide biomarkers capable of characterizing the presence and progression of important neurological disorders. Such biomarkers may be of crucial assistance in the development and utilization of effective new therapies for Alzheimer's and Parkinson's diseases, multiple sclerosis and other iron-related CNS disorders which are difficult to diagnose and treat.

  14. Initial study of magnetic resonance diffusion tensor imaging in brain white matter of early AIDS patients

    Institute of Scientific and Technical Information of China (English)

    XUAN Ang; WANG Guang-bin; SHI Da-peng; XU Jun-ling; LI Yong-li

    2013-01-01

    Background HIV is a neurotropic virus which can cause brain white matter demyelination,gliosis,and other pathological changes that appear as H IV encephalitis or AIDS dementia.The purpose of this study was to investigate the change of the diffused condition of water molecules in brain white matter in early acquired immune deficiency syndrome (AIDS) patients using MR diffusion tensor imaging (DTI).Methods DTI examinations were performed on a Siemens 3.0T MR scanner in 23 AIDS patients with normal brain appearance by conventional MRI and 20 healthy volunteers as the control group.Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured in nine regions; corpus callosum (CC) knee,CC body,CC splenium,periventricular white matter,frontal lobe white matter,parietal lobe white matter,occipital lobe white matter,and the anterior and posterior limbs of the internal capsule.The mean FA and ADC values from each region were compared in three groups:the symptomatic,asymptomatic and the control.Results The mean FA values were significantly lower and the mean ADC values were significantly higher in all nine regions in patients in the symptomatic group than in the asymptomatic and control group patients.In the asymptomatic group,the mean FA values were significantly lower and the mean ADC values were significantly higher at the CC knee,CC body,CC splenium,periventricular white matter,frontal lobe white matter and parietal lobe white matter,than in the control group.There were no significant differences at other regions between the two groups.Conclusions The diffused changes of water molecules in brain white matter in AIDS patients are related to brain white matter regions.DTI examination can detect the brain white matter lesions early in AIDS patients.

  15. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    Science.gov (United States)

    2011-10-01

    Neuroinformatics Research Group ‐  Washington University School of Medicine  Inspecting and modifying  DICOM files  ImageJ   Tool  NIH  Image processing and...Hong Gao1 Brain Research Imaging Center and Department of Radiology , The University of Chicago, Chicago, IL Department of Radiology , Xuhui Central...Michael Vannier1, Jia-Hong Gao1 1Brain Research Imaging Center and Department of Radiology , The University of Chicago, Chicago, IL 2Department of

  16. Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Schellhorn, Till; Haakonsen, Monika; Nakstad, Per H. (Section of Neuroradiology, Dept. of Medical Imaging and Intervention, Oslo Univ. Hospital, Ullevaal, Univ. of Oslo, Oslo (Norway)), e-mail: a.s.alonso@medisin.uio.no; Josefsen, Roger (Dept. of Neurosurgery, Oslo Univ. Hospital, Ullevaal, Univ. of Oslo, Oslo (Norway)); Kulle, Bettina (Epi-Gen Faculty Division, Akershus Univ. Hospital, and Dept. of Biostatistics, Univ. of Oslo, Oslo (Norway)); Maehlen, Jan; Kumar, Theresa (Dept. of Pathology, Oslo Univ. Hospital, Ullevaal, Univ. of Oslo, Oslo (Norway)); Gadmar, Oeystein (Dept. of Diagnostic Physics, Oslo Univ. Hospital, Ullevaal, Univ. of Oslo, Oslo (Norway)); Langberg, Carl W. (Cancer Center, Oslo Univ. Hospital, Ullevaal, Univ. of Oslo, Oslo (Norway))

    2010-04-15

    Background: Brain metastases and primary high-grade gliomas, including glioblastomas multiforme (GBM) and anaplastic astrocytomas (AA), may be indistinguishable by conventional magnetic resonance (MR) imaging. Identification of these tumors may have therapeutic consequences. Purpose: To assess the value of MR spectroscopy (MRS) using short and intermediate echo time (TE) in differentiating solitary brain metastases and high-grade gliomas on the basis of differences in metabolite ratios in the intratumoral and peritumoral region. Material and Methods: We performed MR imaging and MRS in 73 patients with histologically verified intraaxial brain tumors: 53 patients with high-grade gliomas (34 GBM and 19 AA) and 20 patients with metastatic brain tumors. The metabolite ratios of Cho/Cr, Cho/NAA, and NAA/Cr at intermediate TE and the presence of lipids at short TE were assessed from spectral maps in the tumoral core, peritumoral edema, and contralateral normal-appearing white matter. The differences in the metabolite ratios between high-grade gliomas/GBM/AA and metastases were analyzed statistically. Cutoff values of Cho/Cr, Cho/NAA, and NAA/Cr ratios in the peritumoral edema, as well as Cho/Cr and NAA/Cr ratios in the tumoral core for distinguishing high-grade gliomas/GBM/AA from metastases were determined by receiver operating characteristic (ROC) curve analysis. Results: Significant differences were noted in the peritumoral Cho/Cr, Cho/NAA, and NAA/ Cr ratios between high-grade gliomas/GBM/AA and metastases. ROC analysis demonstrated a cutoff value of 1.24 for peritumoral Cho/Cr ratio to provide sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 100%, 88.9%, 80.0%, and 100%, respectively, for discrimination between high-grade gliomas and metastases. By using a cutoff value of 1.11 for peritumoral Cho/NAA ratio, the sensitivity was 100%, the specificity was 91.1%, the PPV was 83.3%, and the NPV was 100%. Conclusion: The results of this

  17. Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning.

    Science.gov (United States)

    Carey, Daniel; McGettigan, Carolyn

    2016-06-07

    The human vocal system is highly plastic, allowing for the flexible expression of language, mood and intentions. However, this plasticity is not stable throughout the life span, and it is well documented that adult learners encounter greater difficulty than children in acquiring the sounds of foreign languages. Researchers have used magnetic resonance imaging (MRI) to interrogate the neural substrates of vocal imitation and learning, and the correlates of individual differences in phonetic "talent". In parallel, a growing body of work using MR technology to directly image the vocal tract in real time during speech has offered primarily descriptive accounts of phonetic variation within and across languages. In this paper, we review the contribution of neural MRI to our understanding of vocal learning, and give an overview of vocal tract imaging and its potential to inform the field. We propose methods by which our understanding of speech production and learning could be advanced through the combined measurement of articulation and brain activity using MRI - specifically, we describe a novel paradigm, developed in our laboratory, that uses both MRI techniques to for the first time map directly between neural, articulatory and acoustic data in the investigation of vocalisation. This non-invasive, multimodal imaging method could be used to track central and peripheral correlates of spoken language learning, and speech recovery in clinical settings, as well as provide insights into potential sites for targeted neural interventions.

  18. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant?

    Directory of Open Access Journals (Sweden)

    Gesa eWeise

    2012-12-01

    Full Text Available Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain (BBB or blood nerve barrier (BNB preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd-DTPA-enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO and perfluorocarbons (PFC enable assessment of leukocyte (mainly macrophage infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis (MS, cerebral ischemia and traumatic nerve injury and review corresponding findings in patients.

  19. Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant?

    Science.gov (United States)

    Weise, Gesa; Stoll, Guido

    2012-01-01

    Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain barrier (BBB) or blood nerve barrier (BNB) preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI) as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf) allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd)-DTPA enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO) and perfluorocarbons enable assessment of leukocyte (mainly macrophage) infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis, cerebral ischemia, and traumatic nerve injury and review corresponding findings in patients.

  20. Use of virtual reality distraction to reduce claustrophobia symptoms during a mock magnetic resonance imaging brain scan: a case report.

    Science.gov (United States)

    Garcia-Palacios, Azucena; Hoffman, Hunter G; Richards, Todd R; Seibel, Eric J; Sharar, Sam R

    2007-06-01

    The present case series with two patients explored whether virtual reality (VR) distraction could reduce claustrophobia symptoms during a mock magnetic resonance imaging (MRI) brain scan. Two patients who met DSM-IV criteria for specific phobia, situational type (i.e., claustrophobia) reported high levels of anxiety during a mock 10-min MRI procedure with no VR, and asked to terminate the scan early. The patients were randomly assigned to receive either VR or music distraction for their second scan attempt. When immersed in an illusory three-dimensional (3D) virtual world named SnowWorld, patient 1 was able to complete a 10-min mock scan with low anxiety and reported an increase in self-efficacy afterwards. Patient 2 received "music only" distraction during her second scan but was still not able to complete a 10-min scan and asked to terminate her second scan early. These results suggest that immersive VR may prove effective at temporarily reducing claustrophobia symptoms during MRI scans and music may prove less effective.

  1. Diffusion tensor imaging and proton magnetic resonance spectroscopy in brain tumorCorrelation between structure and metabolism

    Institute of Scientific and Technical Information of China (English)

    Zhigang Min; Chen Niu; Netra Rana; Huanmei Ji; Ming Zhang

    2013-01-01

    Proton magnetic resonance spectroscopy and diffusion tensor imaging are non-invasive techniques used to detect metabolites and water diffusion in vivo. Previous studies have confirmed a positive correlation of individual fractional anisotropy values with N-acetylaspartate/creatine and N-acetylaspartate/choline ratios in tumors, edema, and normal white matter. This study divided the brain parenchyma into tumor, peritumoral edema, and normal-appearing white matter according to MRI data, and analyzed the correlation of metabolites with water molecular diffusion. Results demonstrated that in normal-appearing white matter, N-acetylaspartate/creatine ratios were positively correlated with fractional anisotropy values, negatively correlated with radial diffusivities, and positively correlated with maximum eigenvalues. Maximum eigenvalues and radial diffusivities in peritumoral edema showed a negative correlation with choline, N-acetylaspartate, and creatine. Radial diffusivities in tumor demonstrated a negative correlation with choline. These data suggest that the relationship between metabolism and structure is markedly changed from normal white matter to peritumoral edema and tumor. Neural metabolism in the peritumoral edema area decreased with expanding extracellular space. The normal relationship of neural function and microstructure disappeared in the tumor region.

  2. Magnetic resonance angiography of the brain: review of 100 cases; Angiorresonancia magnetica do cranio: revisao de 100 casos

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Leonardo Portugal Guimaraes [Hospital da Benficencia Portuguesa de Niteroi, RJ (Brazil). Scan Diagnosticos por Imagem; Santos, Alair Augusto S.M. D. dos; Marchiori, Edson [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia]. E-mail: lpgamaral@yahoo.com.br

    2004-06-01

    In this study we reviewed the scans of 100 patients submitted to magnetic resonance angiography (MR angiography) of the brain for different clinical indications. The objectives of the study were to discuss the advantages and disadvantages of the 3D TOF in cerebral MR angiography, to review the main indications of MR angiography in the evaluation of intracranial vascular lesions, and to assess the frequency of the most important findings. The main indications for MR angiography were headache (n = 29), stroke (n = 14), transient ischemic attack (n = 11) and other causes (n = 35). In 11 patients the clinical indication could not be recovered from the patients records. Fifty two percent of the exams showed abnormalities. The main findings were vascular stenosis (n = 30), aneurysm (n = 10), anatomical variants (n = 6), vascular malformations (n = 4) and dural sinuses thrombosis (n = 2). The 3D TOF technique, the only technique applied in this study, proved to be efficient in most of the cases, requiring a relatively short acquisition time. One of the disadvantages was the lack of efficiency in covering large volume areas. (author)

  3. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging and investigational cell-based therapies

    Directory of Open Access Journals (Sweden)

    Alessandra eCanazza

    2014-02-01

    Full Text Available Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies.

  4. Single spin magnetic resonance

    Science.gov (United States)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  5. Fast and robust multi-atlas segmentation of brain magnetic resonance images

    DEFF Research Database (Denmark)

    Lötjönen, Jyrki Mp; Wolz, Robin; Koikkalainen, Juha R

    2010-01-01

    We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead of stand......We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead...... of standard normalised mutual information in registration without compromising the accuracy but leading to threefold decrease in the computation time. We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity...

  6. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik;

    2015-01-01

    risk of cerebrovascular disease at a young age in addition to heart and kidney failure. OBJECTIVE: The objective of this study was to assess brain function and structure in the Danish cohort of patients with Fabry disease in a prospective way using 18-fluoro-deoxyglucose (F-18 FDG) positron emission....... CONCLUSION: Our data indicated that, in patients with Fabry disease, MRI is the preferable clinical modality--if applicable--when monitoring cerebral status, as no additional major brain-pathology was detected with FDG-PET.......BACKGROUND: Fabry disease is a rare metabolic glycosphingolipid storage disease caused by deficiency of the lysosomal enzyme α-galactosidase A--leading to cellular accumulation of globotriasylceramide in different organs, vessels, tissues, and nerves. The disease is associated with an increased...

  7. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does it ... and MRI Breast-feeding and MRI What is MRI and how does it work? Magnetic resonance imaging, ...

  8. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  9. Brain injury due to acute organophosphate poisoning Magnetic resonance imaging manifestation and pathological characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Acute organophosphate poisoning can cause injuries of multiple visceras; especially,central nervous system injury can increase risk factors of patients with severe acute organophosphate poisoning. An application of modem image may increase diagnostic rate of brain injury in an earlier period and provide evidences for clinical treatment.OBJECTIVE: To reveal imaging manifestations, pathological characteristics and multi-ways injured mechanism of brain injury due to acute organophosphate poisoning.DESIGN: Contrast observational study.SETTING: Department of Medical Image, the Second Hospital of Hebei Medical University.MATERIALS: The experiment was carried out in the Department of Nerve Molecule Imaging Medicine and Laboratory of Neurology, the Second Hospital of Hebei Medical University from August 2003 to February 2004. A total of 30 healthy cats weighing 2.8 - 3.5 g and of both genders were selected from Animal Experimental Center of Hebei Medical University.METHODS: Thirty healthy cats were randomly divided into control group (n =5) and intoxication group (n=25). Cats in the control group were subcutaneously injected with 0.3 mL/kg saline at four points; while, cats in the intoxication group were subcutaneously injected with 400 g/L 0.3 mL/kg O,O-dimethyl-S-(methoxycarbonylmethyl) thiophosphate at four points. Two minutes after intoxication, cats received muscular injection with 0.5 mg/kg atropine sulfate, and then, brain tissues were collected from parietal lobe, basal ganglia, hippocampus, cerebellum and brain stem were observed at 3, 6, 24 hours, 3 and 7 days after intoxication respectively under optic microscope and electron microscope and expressions of acetylcholinesterase (AChE), choline acetyltransferase (ChAT), glial fibrillary acidic protein (GFAP),glutamic acid (Glu) and γ-amino butyric acid after immunohistochemical staining.MAIN OUTCOME MEASURES: Results of MRI examinations; histological changes under optic microscope and electron

  10. Multimodal magnetic resonance imaging increases the overall diagnostic accuracy in brain tumours: Correlation with histopathology

    Directory of Open Access Journals (Sweden)

    Kasim Abul-Kasim

    2013-03-01

    Full Text Available Background: The aim of this retrospective study was to assess the contribution of multimodal MRI techniques, specifically perfusion-weighted imaging (PWI, and/or MR spectroscopy (MRS, in increasing the diagnostic accuracy of MRI in brain tumours.Methods: Forty-four patients with suspected brain tumours (27 (61% patients male, mean age 58±17 (mean±SD years were included in this retrospective analysis. Patients were examined with conventional MR sequences, DWI, and with PWI and/or MRS. The concordance between the diagnoses obtained with multimodal MRI and with the conventional MR sequences, and the final diagnosis obtained by biopsy, was estimated. Fisher’s exact test and/or chi-square test was performed to estimate the added utility of multimodal MRI. Statistical significance was set at p<0.05.Results: With multimodal MRI, the diagnosis in 41 (93% patients was the same as that obtained by biopsy, compared with 39% (17/44 patients when the readers were allowed to give one diagnostic possibility during the evaluation of the conventional MR sequences alone (p<0.001. The concordance between the diagnoses provided by evaluating the multimodal MRIs and the final diagnoses was almost perfect (κ value 0.92, 95% CI 0.82 - 1. PWI primarily helped to differentiate lymphomas from other solid tumours, whereas MRS helped to differentiate malignant glioma from metastasis. Both PWI and MRS helped in grading astrocytomas.Conclusion: Multimodal MRI increases diagnostic accuracy and should, wherever available, be performed in the work-up of brain tumours, although this entails increased examination cost and time.

  11. Robust Skull-Stripping Segmentation Based on Irrational Mask for Magnetic Resonance Brain Images.

    Science.gov (United States)

    Moldovanu, Simona; Moraru, Luminița; Biswas, Anjan

    2015-12-01

    This paper proposes a new method for simple, efficient, and robust removal of the non-brain tissues in MR images based on an irrational mask for filtration within a binary morphological operation framework. The proposed skull-stripping segmentation is based on two irrational 3 × 3 and 5 × 5 masks, having the sum of its weights equal to the transcendental number π value provided by the Gregory-Leibniz infinite series. It allows maintaining a lower rate of useful pixel loss. The proposed method has been tested in two ways. First, it has been validated as a binary method by comparing and contrasting with Otsu's, Sauvola's, Niblack's, and Bernsen's binary methods. Secondly, its accuracy has been verified against three state-of-the-art skull-stripping methods: the graph cuts method, the method based on Chan-Vese active contour model, and the simplex mesh and histogram analysis skull stripping. The performance of the proposed method has been assessed using the Dice scores, overlap and extra fractions, and sensitivity and specificity as statistical methods. The gold standard has been provided by two neurologist experts. The proposed method has been tested and validated on 26 image series which contain 216 images from two publicly available databases: the Whole Brain Atlas and the Internet Brain Segmentation Repository that include a highly variable sample population (with reference to age, sex, healthy/diseased). The approach performs accurately on both standardized databases. The main advantage of the proposed method is its robustness and speed.

  12. Brain metabolite changes in alcoholism: Localized proton magnetic resonance spectroscopy study of the occipital lobe

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Shilpi; Bhattacharya, Manisha; Kumar, Pawan [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India); Deshpande, Smita N. [Department of Psychiatry, Dr. Ram Manohar Lohia Hospital, New Delhi (India); Tripathi, Rajendra Prasad [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India); Khushu, Subash, E-mail: skhushu@yahoo.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India)

    2011-07-15

    Chronic alcoholism is associated with altered brain metabolism, morphology and cognitive abilities. Besides deficits in higher order cognitive functions, alcoholics also show a deficit in the processing of basic sensory information viz. visual stimulation. To assess the metabolic changes associated with this deficit, {sup 1}H MRS was carried out in the occipital lobe of alcohol dependents. A significant increase in Cho/Cr ratio (p < 0.015) was observed in occipital lobe in the alcoholic group indicating altered cell membrane metabolism, which may probably be associated with the alterations in the cognitive abilities associated with vision.

  13. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    R. Rajesh Sharma

    2015-01-01

    algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.

  14. Diffusion tensor imaging using a high-temperature superconducting resonator in a 3 T magnetic resonance imaging for a spontaneous rat brain tumor

    Science.gov (United States)

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2013-02-01

    This study investigates the peri-tumor signal abnormalities of a spontaneous brain tumor in a rat by using a 4 cm high-temperature superconducting (HTS) surface resonator. Fractional anisotropy (FA) values derived from diffusion tensor imaging reflect the interstitial characteristic of the peri-lesional tissues of brain tumors. Low FA indicates interstitial tumor infiltration and tissue injury, while high FA indicates better tissue integrity. Better delineation of tissue contents obtained by the HTS surface resonator at 77 K may facilitate therapeutic strategy and improve clinical outcomes.

  15. Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia.

    Science.gov (United States)

    Aoki, Ichio; Naruse, Shoji; Tanaka, Chuzo

    2004-12-01

    Divalent manganese ion (Mn2+) has been reported to be a useful contrast agent for functional MRI, through a technique named activity-induced manganese-dependent MRI (AIM). In AIM, signal enhancement is related to functional increases in calcium influx, and therefore AIM is, thus far, the only MRI method able to map brain activation in vivo independently of the surrogate hemodynamic changes used in functional MRI. Because of its high signal-to-noise ratio (SNR) and high sensitivity, AIM allows the use of multi-slice or three-dimensional MRI techniques to map functional activity at high spatial resolution. In the present review, we define AIM as a functional MRI tool based on the administration of divalent ionized manganese through an open or disrupted blood-brain barrier (BBB). The adequacy and efficacy of AIM in detecting neural activation is described in light of supporting experiments on inhibition of calcium channels, FOS expression, and on direct comparison to BOLD- and perfusion-based functional MRI. Two main applications of AIM, mapping brain activation in rat somatosensory cortex, as well stroke research based on the well-established middle cerebral artery occlusion model, are described in detail. Methodological problems associated with a strong dependence on anesthetic conditions, potential corruption due to disruption of the BBB, and unspecific increase of the baseline signal due to acoustical noise are discussed. Finally, recommended preparation methods and experimental protocols for AIM are introduced.

  16. Signal intensity in T2' magnetic resonance imaging is related to brain glioma grade

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Laura; Castellan, Lucio [San Martino Hospital, Department of Diagnostic and Interventional Neuroradiology, Genoa (Italy); Heese, Oliver; Westphal, Manfred [UKE, Department of Neurosurgery, Hamburg (Germany); Foerster, Ann-Freya; Siemonsen, Susanne; Fiehler, Jens; Goebell, Einar [University Medical Center Hamburg-Eppendorf (UKE), Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); Matschke, Jakob [UKE, Department of Neuropathology, Hamburg (Germany)

    2011-05-15

    T2' values reflect the presence of deoxyhaemoglobin related to high local oxygen extraction. We assessed the feasibility of T2' imaging to display regions with high metabolic activity in brain gliomas. MRI was performed in 25 patients (12 female; median age 46 years; range 2-69) with brain gliomas with additional T2 and T2* sequences. T2' maps were derived from T2 and T2*. Dynamic susceptibility weighted contrast (DSC) perfusion was performed in 12/25 patients. Images were visually assessed by two readers and five ROIs were evaluated for each patient. Pearson correlation, Mann-Whitney and Kruskal-Wallis tests were applied for statistical analysis. Three patients were not further evaluated because of artefacts. Mean values of high-grade (III-IV) gliomas showed significantly lower T2' values than low-grade (II) gliomas (p < 0.001). An inverse relationship was observed between rCBV and sqr (T2') (r = -0.463, p < 0.001). No correlation was observed between T2' and rCBV for grade II tumours (r = 0.038; p = 0.875). High-grade tumours revealed lower T2' values, presumably because of higher oxygen consumption in proliferating tissue. Our results indicate that T2' imaging can be used as an alternative to DSC perfusion in the detection of subtle deviations in tumour metabolism. (orig.)

  17. Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Ward, Phil; Allsop, Joanna; Counsell, Serena [Imperial College London, Hammersmith Hospital, Robert Steiner MR Unit, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom); Srinivasan, Latha; Dyet, Leigh; Cowan, Frances [Imperial College, Hammersmith Hospital, Department of Paediatrics, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom)

    2006-07-15

    Neonatal MR imaging is invaluable in assessing the term born neonate who presents with an encephalopathy. Successful imaging requires adaptations to both the hardware and the sequences used for adults. The perinatal and postnatal details often predict the pattern of lesions sustained and are essential for correct interpretation of the imaging findings, but additional or alternative diagnoses in infants with apparent hypoxic ischaemic encephalopathy should always be considered. Perinatally acquired lesions are usually at their most obvious between 1 and 2 weeks of age. Very early imaging (<3 days) may be useful to make management decisions in ventilated neonates, but abnormalities may be subtle at that stage. Diffusion-weighted imaging is clinically useful for the early identification of ischaemic white matter in the neonatal brain but is less reliable in detecting lesions within the basal ganglia and thalami. The pattern of lesions seen on MRI can predict neurodevelopmental outcome. Additional useful information may be obtained by advanced techniques such as MR angiography, venography and perfusion-weighted imaging. Serial imaging with quantification of both structure size and tissue damage provides invaluable insights into perinatal brain injury. (orig.)

  18. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Agata; Stefanczyk, Ludomir; Goraj, Bozena [Medical University of Lodz, Department of Radiology, Lodz (Poland); Tybor, Krzysztof [Medical University of Lodz, Department of Neurosurgery, Lodz (Poland)

    2005-06-01

    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  19. In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Carles; Aguilera, Carles [Hospital Universitari de Bellvitge, Institut de Diagnostic per la Imatge (IDI). Centre Bellvitge, L' Hospitalet de Llobregat, Barcelona (Spain); Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigacion Biomedica en Red en Bioingenieria, Cerdanyola del Valles (Spain); Cos, Monica; Camins, Angels; Samitier, Alex; Castaner, Sara; Sanchez, Juan J. [Hospital Universitari de Bellvitge, Institut de Diagnostic per la Imatge (IDI). Centre Bellvitge, L' Hospitalet de Llobregat, Barcelona (Spain); Candiota, Ana P.; Delgado-Goni, Teresa [Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigacion Biomedica en Red en Bioingenieria, Cerdanyola del Valles (Spain); Unitat de Bioquimica de Biociencies, Department de Bioquimica i Biologia Molecular, Cerdanyola del Valles (Spain); Mato, David [Hospital Universitari de Bellvitge, Department of Neurosurgery, L' Hospitalet de Llobregat, Barcelona (Spain); Acebes, Juan J. [Hospital Universitari de Bellvitge, Department of Neurosurgery, L' Hospitalet de Llobregat, Barcelona (Spain); Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigacion Biomedica en Red en Bioingenieria, Cerdanyola del Valles (Spain); Arus, Carles [Unitat de Bioquimica de Biociencies, Department de Bioquimica i Biologia Molecular, Cerdanyola del Valles (Spain); Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigacion Biomedica en Red en Bioingenieria, Cerdanyola del Valles (Spain)

    2009-08-15

    The aim of this study was to assess the usefulness of proton MR spectroscopy in the diagnosis of intraventricular tumours. Fifty-two intraventricular tumours pertaining to 16 different tumour types were derived from our database. All cases had single-voxel proton MR spectroscopy performed at TE at both 30 and 136 ms at 1.5 T. The Mann-Whitney U test was used to search for the most discriminative datapoints each tumour type. Characteristic trends were found for some groups: high Glx and Ala in meningiomas (p<0.001 and p<0.01, respectively), high mobile lipids in metastasis (p<0.001), high Cho in PNET (p<0.001), high mI+Gly in ependymoma (p<0.001), high NAC (p<0.01) in the absence of the normal brain parenchyma pattern in colloid cysts, and high mI/Gly and Ala in central neurocytoma. Proton MR spectroscopy provides additional metabolic information that could be useful in the diagnosis of intraventricular brain tumors. (orig.)

  20. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive medical ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  2. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Shao Y

    2015-12-01

    Full Text Available Yi Shao,1,* Feng-Qin Cai,2,* Yu-Lin Zhong,1 Xin Huang,1,3 Ying Zhang,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Fu-Qing Zhou,2 Xian-Jun Zeng2 1Department of Ophthalmology, 2Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 3Department of Ophthalmology, First People’s Hospital of Jiujiang, Jiujiang, People’s Republic of China *These authors contributed equally to this work Objective: To investigate the underlying regional homogeneity (ReHo in brain-activity deficit in patients with optic neuritis (ON and its relationship with behavioral performance.Materials and methods: In total, twelve patients with ON (four males and eight females and twelve (four males and eight females age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. The ReHo method was used to assess the local features of spontaneous brain activity. Correlation analysis was used to explore the relationship between the observed mean ReHo values of the different brain areas and the visual evoked potential (VEP in patients with ON.Results: Compared with the healthy controls, patients with ON showed lower ReHo in the left cerebellum, posterior lobe, left middle temporal gyrus, right insula, right superior temporal gyrus, left middle frontal gyrus, bilateral anterior cingulate cortex, left superior frontal gyrus, right superior frontal gyrus, and right precentral gyrus, and higher ReHo in the cluster of the left fusiform gyrus and right inferior parietal lobule. Meanwhile, we found that the VEP amplitude of the right eye in patients with ON showed a positive correlation with the ReHo signal value of the left cerebellum posterior lobe (r=0.701, P=0.011, the right superior frontal gyrus (r=0.731, P=0.007, and the left fusiform gyrus (r=0.644, P=0.024. We also found that the VEP latency of the right eye in ON showed a positive correlation with the ReHo signal value of the right insula (r=0.595, P=0

  3. Retrospective case-analysis of the magnetic resonance imaging characteristics in the brain of patients with Wilson disease

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Kun You; Baoming He; Jiagui Su; Jian Hong; Changbin quan; Hin Zhao

    2006-01-01

    BACKGROUND:Wilson disease (WD)damages liver,brain,kidney,cornea and nervous system severely.It is manifested in four ways:brain,liver,kidney and bone muscle.Whether or not magnetic resonance imagling (MRI)can clearly display the diseased region and range in brain of patient with WD,which provides imageological evidence for clinical practice,is unclear.OBJECTIVE:To observe the charactedstics of MRI of brain in patient with SD,and analyze the correlation of diseased region with clinical symptoms.DESIGN:Retrospective case-analysis.SETTING:Department of Radiology,Second Hospital Affiliated to the General Hospital of Chinese PLA.PARTICIPANTS:Thirty-one patients,including 18 males and 13 females,with WD admitted to the Department of Neurology,Second Hospital Affiliated to the General Hospital of Chinese PLA between January 1999and December 2005 were retrieved.The involved patients presented serum copper oxidase (sCP) activity decreasling and/or caruloplasmin Ievel decreasling and/or urinary copper content increasling;typical extrapyramidal symptoms and/or physical sign;abnormality showed by slit-lamp examination,Kayser-Fleischer rling positive.METHODS:①All the involved patients underwent MRI examination.A GE 1.5T imagling equipment was used.Spin-echo sequence was adopted to perform T2 and T1-weighed image at transverse axis level.Partial cases subjected to head scannling at coronal and/or sagittal level.Gd-DTPA With dosage of 0.1 mmol/kg was the strongest in 4 cases.②MRI characteristics of patients with dliferent clinical symptoms were observed.MAIN OUTCOME MEASURES:MRI detection results of patients with WD and MRI characteristics of patients with different clinical symptoms.RESULTS:Thirty-one patients with WD participated in the result analysis.①Imageological examination results:WD lnvolved many regions in the brain:dorsal caudate putamen(n=28),thalamencephalon(n=25),mesencaphalon(n=25),globus pallidus(n=23),pons(n=21),posterlor limb of intemal capsule(n=16

  4. Ritual and ceremony in intraoperative magnetic resonance imaging-assisted brain surgery.

    Science.gov (United States)

    Gellert, Vance

    2012-01-01

    Previous photographic research into traditional and shamanic healing practices in Peru and Bolivia and a review of the literature suggested that all medical practices have cultural determined nonmedical activities as integral parts of the healing encounter. These include costume, ritual, ceremony, environment factors that were looked for in a western clinical encounter for this paper. A patient was followed through pre-op preparation and iMRI assisted brain surgery. All activities were photographed extensively and evaluated in a broader healing context. A number of activities were visually and metaphorically comparable with those seen in other practices. These are discussed as rituals of intention on the part of the caregivers to focus their skills on healing and also to mindfully engage the patient in the healing process. Artistic observation and analysis may be an effective way to identify these non quantifiable elements of the healing encounter and suggest directions for further research into the emotional components of the healing process.

  5. Reversible brain damage following acute organic solvents' poisoning determined by magnetic resonance

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2005-01-01

    Full Text Available Introduction. Acute exposure to the effects of volatile solvents is characterized by the abrupt onset of symptoms and signs of poisoning, and relatively fast recovery in the majority of cases. Case report. We report a 24-year-old patient with an acute, accidental poisoning with a mixture of volatile organic solvents (most probably toluene, styrene and xylene, which led to the development of upward gaze paresis, diplopia, hemiparesis, ataxic gate, and the late onset truncal ataxia episodes. After 6 weeks, he recovered completely, while his extensive brain MRI lesions in the caudate nuclei, laterobasal putaminal regions, bilateral anterior insular cortex, central midbrain tegmental area withdrew completely after 4 months. Conclusion. Acute toxic encephalopathy should be a part of the differential diagnosis in any patient with acute neurobehavioral and neurological deficit.

  6. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Roth, Noam; Roth, Amir [Robin Medical Inc., Baltimore, MD (United States)

    2016-11-15

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  7. De novo development of gliomas in a child with neurofibromatosis type 1, fragile X and previously normal brain magnetic resonance imaging

    Science.gov (United States)

    Zafar, Rabia; Hsiao, Esther Y.; Botteron, Kelly N.; McKinstry, Robert C.; Gutmann, David H.

    2016-01-01

    Fifteen to 20% of children with neurofibromatosis type 1 develop low-grade glial neoplasms. However, since neuroimaging is not routinely obtained until a child is clinically symptomatic, little is known about presymptomatic radiographic characteristics of gliomas in this at-risk population. Herein, we describe a child with neurofibromatosis type 1 who initially had normal brain imaging before the development of multifocal gliomas. Comparison of these serial images demonstrated that brain tumors can arise de novo in children with this cancer predisposition syndrome, further underscoring the limited prognostic value of normal baseline magnetic resonance imaging. PMID:26973730

  8. Study of complex hemodynamic fluctuations in the human brain by simultaneous near-infrared spectro-imaging and functional magnetic resonance imaging

    Science.gov (United States)

    Toronov, Vladislav Y.; Franceschini, Maria-Angela; Fantini, Sergio; Webb, Andrew G.; Gratton, Enrico

    2004-05-01

    In this paper we discuss temporal and spatial patterns of brain hemodynamics under rest and motor stimulation conditions obtained by functional magnetic resonance imaging and simultaneous fast multi-channel near-infrared spectro-imaging in the human motor cortex. Our data indicate that the main difference between the brain hemodynamics under the repetitive stimulation and the rest conditions is not in the appearance of hemoglobin concentration changes during the stimulations (since fluctuations occur at rest as well), but in their more regular, i.e. phase-synchronous with the stimulation behavior.

  9. De novo development of gliomas in a child with neurofibromatosis type 1, fragile X and previously normal brain magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Rabia Zafar, MD, PhD

    2016-03-01

    Full Text Available Fifteen to 20% of children with neurofibromatosis type 1 develop low-grade glial neoplasms. However, since neuroimaging is not routinely obtained until a child is clinically symptomatic, little is known about presymptomatic radiographic characteristics of gliomas in this at-risk population. Herein, we describe a child with neurofibromatosis type 1 who initially had normal brain imaging before the development of multifocal gliomas. Comparison of these serial images demonstrated that brain tumors can arise de novo in children with this cancer predisposition syndrome, further underscoring the limited prognostic value of normal baseline magnetic resonance imaging.

  10. De novo development of gliomas in a child with neurofibromatosis type 1, fragile X and previously normal brain magnetic resonance imaging.

    Science.gov (United States)

    Zafar, Rabia; Hsiao, Esther Y; Botteron, Kelly N; McKinstry, Robert C; Gutmann, David H

    2016-03-01

    Fifteen to 20% of children with neurofibromatosis type 1 develop low-grade glial neoplasms. However, since neuroimaging is not routinely obtained until a child is clinically symptomatic, little is known about presymptomatic radiographic characteristics of gliomas in this at-risk population. Herein, we describe a child with neurofibromatosis type 1 who initially had normal brain imaging before the development of multifocal gliomas. Comparison of these serial images demonstrated that brain tumors can arise de novo in children with this cancer predisposition syndrome, further underscoring the limited prognostic value of normal baseline magnetic resonance imaging.

  11. Magnetic-resonance imaging for kinetic analysis of permeability changes during focused ultrasound-induced blood-brain barrier opening and brain drug delivery.

    Science.gov (United States)

    Chai, Wen-Yen; Chu, Po-Chun; Tsai, Meng-Yen; Lin, Yu-Chun; Wang, Jiun-Jie; Wei, Kuo-Chen; Wai, Yau-Yau; Liu, Hao-Li

    2014-10-28

    Focused ultrasound (FUS) with the presence of microbubbles has been shown to induce transient and local opening of the blood-brain barrier (BBB) for the delivery of therapeutic molecules which normally cannot penetrate into the brain. The success of FUS brain-drug delivery relies on its integration with in-vivo imaging to monitor kinetic change of therapeutic molecules into the brain. In this study, we developed a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique for kinetic analysis of delivered molecules during FUS-BBB opening. Three kinetic parameters (Ktrans, Ve, Kep) were characterized dynamically to describe BBB-permeability at two FUS exposure conditions (0.4 or 0.8MPa) over 24h. Ktrans, defined as the influx volume transfer constant from plasma to EES, and Ve, the EES volume fraction, were both found to be pressure-dependent. Ktrans and Ve showed a peak increase of 0.0086-0.0131min(-1) (for 0.4-0.8MPa pressure), and 0.0431-0.0692, respectively, immediately after FUS exposure. Both parameters subsequently decreased exponentially as a function of time, with estimated half-lives of decay of 2.89-5.3 and 2.2-4.93h, respectively. The kinetics of Kep, defined as the efflux rate constant from the extracellular extravascular space (EES) to the plasma, were complementary to Ktrans, with an initial decrease from 0.2010 to 0.1901min(-1) followed by a significantly longer recovery time (half-life of 17.39-99.92h). Our observations strongly supported the existence of imbalanced and mismatched kinetics of influx (Ktrans) and efflux (Kep) between the plasma and EES, indicating the existence of directional permeability during FUS-BBB opening. We further showed that kinetic change determined by DCE-MRI correlated well with the concentration of Evans Blue (EB)-albumin (coefficient of 0.74-0.89). These findings suggest that MRI kinetic monitoring may serve as an alternative method for in-vivo monitoring of pharmacokinetics and pharmacodynamics (PK

  12. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa [Hiroshima Posts and Telecommunications Hospital (Japan); Higashi, Toshihiro; Tsuji, Takao

    1996-03-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer`s ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author).

  13. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Science.gov (United States)

    Albaugh, Daniel L.; Salzwedel, Andrew; van den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-09-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action.

  14. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Science.gov (United States)

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  15. Parallel Magnetic Resonance Imaging

    CERN Document Server

    Uecker, Martin

    2015-01-01

    The main disadvantage of Magnetic Resonance Imaging (MRI) are its long scan times and, in consequence, its sensitivity to motion. Exploiting the complementary information from multiple receive coils, parallel imaging is able to recover images from under-sampled k-space data and to accelerate the measurement. Because parallel magnetic resonance imaging can be used to accelerate basically any imaging sequence it has many important applications. Parallel imaging brought a fundamental shift in image reconstruction: Image reconstruction changed from a simple direct Fourier transform to the solution of an ill-conditioned inverse problem. This work gives an overview of image reconstruction from the perspective of inverse problems. After introducing basic concepts such as regularization, discretization, and iterative reconstruction, advanced topics are discussed including algorithms for auto-calibration, the connection to approximation theory, and the combination with compressed sensing.

  16. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas.

    Science.gov (United States)

    Sajja, Balasrinivasa R; Bade, Aditya N; Zhou, Biyun; Uberti, Mariano G; Gorantla, Santhi; Gendelman, Howard E; Boska, Michael D; Liu, Yutong

    2016-03-01

    Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas.

  17. White Matter Brain Lesions in Midlife Familial Hypercholesterolemic Patients at 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, S.A.; O' Regan, D.P.; Fitzpatrick, J.; Neuwirth, C.; Potter, E.; Tosi, I.; Hajnal, J.V.; Naoumova, R.P. (Imaging Sciences Dept. and Clinical Research Facility, MRC Clinical Sciences Centre, London (GB))

    2008-03-15

    Background: Patients with hypercholesterolemia of 60 years and older have an increased risk for white matter brain lesions and dementia. Purpose: To investigate whether patients with familial hypercholesterolemia (FH) develop white matter lesions at 3-Tesla (T) MRI as early as in midlife. Material and Methods: Non-diabetic, non-smoking, and non-hypertensive heterozygous FH patients on treatment with maximally tolerated dose of a statin for more than 5 years (n = 14) and matched controls (n = 22) aged 25 to 60 years of age were studied. Imaging was performed at 3T with a fluid-attenuated T2-weighted MR pulse sequence and a T1-weighted spin-echo pulse sequence following 10 ml of i.v. gadopentetate dimeglumine. Images were evaluated by two independent readers. Fasting blood samples were taken. Student's t test was employed at P<0.05. Results: Three volunteers and one FH patient had white matter lesions (P<0.53). No other evidence of past ischemic stroke was observed. Mean total serum cholesterol and low-density lipoprotein (LDL) cholesterol were significantly higher in the FH group (6.0+-1.1 vs. 5.1+-0.9 mmol/l, P<0.02 and 4.1+-0.9 vs. 3.1+-0.8 mmol/l, P<0.004, respectively). Conclusion: Heterozygous FH patients on statin treatment in the age range of 25 to 60 years are not at increased risk of white matter lesions at 3T MRI

  18. Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: a case study of three patients.

    Science.gov (United States)

    Zanatta, Paolo; Messerotti Benvenuti, Simone; Baldanzi, Fabrizio; Bendini, Matteo; Saccavini, Marsilio; Tamari, Wadih; Palomba, Daniela; Bosco, Enrico

    2012-03-31

    This case series investigates whether painful electrical stimulation increases the early prognostic value of both somatosensory-evoked potentials and functional magnetic resonance imaging in comatose patients after cardiac arrest. Three single cases with hypoxic-ischemic encephalopathy were considered. A neurophysiological evaluation with an electroencephalogram and somatosensory-evoked potentials during increased electrical stimulation in both median nerves was performed within five days of cardiac arrest. Each patient also underwent a functional magnetic resonance imaging evaluation with the same neurophysiological protocol one month after cardiac arrest. One patient, who completely recovered, showed a middle latency component at a high intensity of stimulation and the activation of all brain areas involved in cerebral pain processing. One patient in a minimally conscious state only showed the cortical somatosensory response and the activation of the primary somatosensory cortex. The last patient, who was in a vegetative state, did not show primary somatosensory evoked potentials; only the activation of subcortical brain areas occurred. These preliminary findings suggest that the pain-related somatosensory evoked potentials performed to increase the prognosis of comatose patients after cardiac arrest are associated with regional brain activity showed by functional magnetic resonance imaging during median nerves electrical stimulation. More importantly, this cases report also suggests that somatosensory evoked potentials and functional magnetic resonance imaging during painful electrical stimulation may be sensitive and complementary methods to predict the neurological outcome in the acute phase of coma. Thus, pain-related somatosensory-evoked potentials may be a reliable and a cost-effective tool for planning the early diagnostic evaluation of comatose patients.

  19. [Possibilities in the differential diagnosis of brain neoplasms using the long and short time sequences of proton magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Gajewicz, W.; Goraj, B.M.

    2004-01-01

    Currently to perform proton magnetic resonance spectroscopy (1H MRS) with single voxel spectroscopy (SVS) technique long and/or short echo time sequences are used in order to provide complementary information. PURPOSE: The aim of the study was to compare the usefulness of STEAM (time echo, TE, 20 ms

  20. Persistent differences in patterns of brain activation after sports-related concussion: a longitudinal functional magnetic resonance imaging study.

    Science.gov (United States)

    Dettwiler, Annegret; Murugavel, Murali; Putukian, Margot; Cubon, Valerie; Furtado, John; Osherson, Daniel

    2014-01-15

    Avoiding recurrent injury in sports-related concussion (SRC) requires understanding the neural mechanisms involved during the time of recovery after injury. The decision for return-to-play is one of the most difficult responsibilities facing the physician, and so far this decision has been based primarily on neurological examination, symptom checklists, and neuropsychological (NP) testing. Functional magnetic resonance imaging (fMRI) may be an additional, more objective tool to assess the severity and recovery of function after concussion. The purpose of this study was to define neural correlates of SRC during the 2 months after injury in varsity contact sport athletes who suffered a SRC. All athletes were scanned as they performed an n-back task, for n=1, 2, 3. Subjects were scanned within 72 hours (session one), at 2 weeks (session two), and 2 months (session three) post-injury. Compared with age and sex matched normal controls, concussed subjects demonstrated persistent, significantly increased activation for the 2 minus 1 n-back contrast in bilateral dorsolateral prefrontal cortex (DLPFC) in all three sessions and in the inferior parietal lobe in session one and two (α≤0.01 corrected). Measures of task performance revealed no significant differences between concussed versus control groups at any of the three time points with respect to any of the three n-back tasks. These findings suggest that functional brain activation differences persist at 2 months after injury in concussed athletes, despite the fact that their performance on a standard working memory task is comparable to normal controls and normalization of clinical and NP test results. These results might indicate a delay between neural and behaviorally assessed recovery after SRC.

  1. Magnetic resonance imaging in the assessment of brain involvement in alcoholic and nonalcoholic Wernicke’s encephalopathy

    Science.gov (United States)

    Sparacia, Gianvincenzo; Anastasi, Andrea; Speciale, Claudia; Agnello, Francesco; Banco, Aurelia

    2017-01-01

    AIM To present the typical and atypical magnetic resonance (MR) imaging findings of alcoholic and non-alcoholic Wernicke’s encephalopathy. METHODS This study included 7 patients with Wernicke’s encephalopathy (2 men, 5 women; mean age, 52.3 years) that underwent brain MR examination between January 2012 and March 2016 in a single institution. Three patients were alcoholics and 4 patients were non-alcoholics. MR protocol included a T2-weighted sequence, a fluid attenuation inversion recovery (FLAIR) sequence, a diffusion-weighted sequence (b = 0 and 1000 s/mm2), and a contrast-enhanced MR sequence. All MR images were retrospectively reviewed at baseline and follow-up by two radiologists. RESULTS All patients with Wernicke’s encephalopathy had bilateral areas showing high signal intensity on both T2-weighted and FLAIR MR images in the typical sites (i.e., the periaqueductal region and the tectal plate). Signal intensity abnormalities in the atypical sites (i.e., the cerebellum and the cerebellar vermis) were seen in 4 patients, all of which had no history of alcohol abuse. Six patients had areas with restricted diffusion in the typical and atypical sites. Four patients had areas showing contrast-enhancement in the typical and atypical sites. Follow-up MR imaging within 6 mo after therapy (intravenous administration of thiamine) was performed in 4 patients, and demonstrated a complete resolution of all the signal intensities abnormalities previously seen in all patients. CONCLUSION MR imaging is valuable in the diagnosis of Wernicke’s encephalopathy particularly in patients presenting with atypical clinical symptoms, or with no history of alcohol abuse.

  2. Longitudinal metabolic changes in the hippocampus and thalamus of the maternal brain revealed by proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Zhou, Iris Y; Chan, Russell W; Ho, Leon C; Wu, Ed X

    2013-10-11

    Pregnancy is accompanied by dramatic hormonal changes, which are essential for the display of maternal behaviors. Reproductive hormones have been shown to remodel the neuronal structure and function of the female brain. However, most previous studies have examined the structural and functional changes elicited by transient fluctuations in reproductive hormones. The impact of naturally elevated and more sustained hormonal alterations during pregnancy and lactation are not fully understood. Further alterations in neurochemistry, which may result in substantial changes in the structure and function of neurons that are associated with behavioral modifications in the maternal female, are difficult to capture in a longitudinal and non-invasive manner. In this study, neurobiological alterations during pregnancy and motherhood were investigated longitudinally using non-invasive proton magnetic resonance spectroscopy ((1)H MRS) at 7T in regions related to learning and memory, such as the hippocampus, and in structures involved in alertness and attention, such as the thalamus. Pregnant primiparous rats (N=15) were studied at three days before mating, gestational day 17, lactation day 7 and post-weaning day 7. Age-matched nulliparous female rats (N=9) served as non-pregnant controls. Significantly higher N-acetylaspartate (NAA) levels were observed in the hippocampus and thalamus of rats at gestational day 17. These increases may be associated with increased dendritic sprouting, synaptogenesis or neurogenesis, thereby facilitating supporting behaviors that involve spatial learning and memory and alleviating fear and stress. The (1)H MRS detection of ongoing neurochemical changes induced by pregnancy, especially in the hippocampus, can shed light on the neurochemical underpinnings of behavioral modifications, including the improvement in spatial learning and memory, during pregnancy.

  3. Functional Magnetic Resonance Imaging of Different Genders in the Activation of Brain Emotional Centers

    Directory of Open Access Journals (Sweden)

    L. Podsiadło

    2011-05-01

    Full Text Available Background/Objective: The main aim of this study"nwas to reveal gender differences in the localization"nof brain emotional centers for positive and negative"nstimuli."nPatients and Methods: Forty right-handed young"nvolunteers (age range, 18-36 years, 21 men and 19"nwomen were examined using MR 1.5 T Signa Horizon"n(GEMS. Functional images were acquired using a"nspin-echo echoplanar sequence sensitive to blood"noxygenation level dependent (BOLD contrast, with"nthe following parameters: TR=3000 ms, TE= 60 ms,"nFOV=2821 cm, matrix 9696,1 NEX. For emotion induction, affectively negative, positive and neutral"npictures were used. Positive and negative cues were"ntaken from the International Affecive Picture System"n(IAPS. There were two runs, in the first run subjects"nsaw only negatively valenced pictures, during the"nsecond run only positive pictures were shown."nResults: For positive stimuli, the greatest differences"nin activation in women compared to men were"ndetected in the right superior temporal gyrus. For"nnegative stimuli, the greatest differences in activation"nin women compared to men were detected in the left"nthalamus. For positive stimuli, the greatest differences"nin activation in men compared to women were"ndetected in the bilateral occipital lobes as well as the"nbilateral fusiform gyrus. For negative stimuli, the"ngreatest differences in activation in men compared to"nwomen were detected in the left insula."nConclusion: There are statistically significant"ndifferences in activation of the emotional centers"nbetween females and males for the positive and"ndenoised, extracted and visualized. Follow-up CT"nexam and/or clinical pictures confirmed or excluded"nthe diagnosis. Based on preliminary results and"nconcluded efficiency limitations additional postprocessing"nbased on curvelets decomposition and"nimproved segmentation of stroke susceptible regions"nhas been designed and performed later on for selected"nexaminations regarded as

  4. Reversible lesions in the brain parenchyma in Wilson’s disease conifrmed by magnetic resonance imaging:earlier administration of chelating therapy can reduce the damage to the brain

    Institute of Scientific and Technical Information of China (English)

    Duko B Kozi; Igor Petrovi; Marina Svetel; Tatjana Pekmezovi; Aleksandar Ragaji; Vladimir S Kosti

    2014-01-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson’s disease during the long-term chelating therapy using magnetic resonance imaging and a possible signiifcance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson’s disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the ifrst symp-toms and group B, where the therapy started≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a signiifcant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P= 0.005 andP=0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be ex-pected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  5. Assessment of irradiated brain metastases using dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almeida-Freitas, Daniela B. [University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil); University of California, Department of Radiology, San Diego, CA (United States); Pinho, Marco C. [University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX (United States); Otaduy, Maria C.G.; Costa Leite, Claudia da [University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil); Braga, Henrique F. [University of Sao Paulo, Department of Radiotherapy, Sao Paulo (Brazil); Meira-Freitas, Daniel [Federal University of Sao Paulo, Sao Paulo (Brazil)

    2014-06-15

    The purpose of this study was to evaluate the effect of stereotactic radiosurgery (SRS) on cerebral metastases using the transfer constant (K{sub trans}) assessed by dynamic contrast-enhanced (DCE) MRI. Furthermore, we aimed to evaluate the ability of K{sub trans} measurements to predict midterm tumor outcomes after SRS. The study received institutional review board approval, and informed consent was obtained from all subjects. Twenty-six adult patients with a total of 34 cerebral metastases underwent T1-weighted DCE MRI in a 1.5-T magnet at baseline (prior to SRS) and 4-8 weeks after treatment. Quantitative analysis of DCE MRI was performed by generating K{sub trans} parametric maps, and region-of-interest-based measurements were acquired for each metastasis. Conventional MRI was performed at least 16 weeks after SRS to assess midterm tumor outcome using volume variation. The mean (±SD) K{sub trans} value was 0.13 ± 0.11 min{sup -1} at baseline and 0.08 ± 0.07 min{sup -1} after 4-8 weeks post-treatment (p < 0.001). The mean (±SD) total follow-up time was 7.9 ± 4.7 months. Seventeen patients (22 lesions) underwent midterm MRI. Of those, nine (41 %) lesions had progressed at the midterm follow-up. An increase in K{sub trans} after SRS was predictive of tumor progression (hazard ratio = 1.50; 95 % CI = 1.16-1.70, p < 0.001). An increase of 15 % in K{sub trans} showed a sensitivity of 78 % and a specificity of 85 % for the prediction of progression at midterm follow-up. SRS was associated with a reduction of K{sub trans} values of the cerebral metastases in the early post-treatment period. Furthermore, K{sub trans} variation as assessed using DCE MRI may be helpful to predict midterm outcomes after SRS. (orig.)

  6. Nuclear Magnetic Resonance Gyroscope

    Science.gov (United States)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  7. MRI (Magnetic Resonance Imager)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshinori [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1995-05-01

    MRI is a widely used diagnostic imaging modality because it has excellent diagnostic capabilities, is safe to use and generates images not affected by bone artifacts. Images are obtained by utilizing the phenomenon of Nuclear Magnetic Resonance (NMR) by which protons located in a static magnetic field absorb radio frequency (RF) pulses with a specific frequency and release a part of the energy as a NMR signal. Potentially MRI has the ability to provide functional and metabolic information (such as flow, temperature, diffusion, neuron activity) in addition to morphological information. This paper describes the imaging principles and provides a general outline of some applications: flow imaging, metabolite imaging and temperature imaging. (J.P.N.).

  8. Cardiovascular Magnetic Resonance Imaging

    Science.gov (United States)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  9. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  10. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Li C

    2016-06-01

    Full Text Available Chao Li,1 Xiaofen Ma,2 Mengshi Dong,2 Yi Yin,1 Kelei Hua,1 Meng Li,2 Changhong Li,2 Wenfeng Zhan,2 Cheng Li,2,3 Guihua Jiang2 1Department of Medical Imaging, The Affiliated Guangdong No 2 Provincial People’s Hospital of Southern Medical University, The Third Clinical Medical College of Southern Medical University, 2Department of Medical Imaging, 3Department of Renal Transplantation, The Affiliated Guangdong No 2 Provincial People’s Hospital of Southern Medical University, Guangzhou, People’s Republic of China Objective: Investigating functional specialization is crucial for a complete understanding of the neural mechanisms of primary insomnia (PI. Resting-state functional magnetic resonance imaging (fMRI is a useful tool to explore the functional specialization of PI. However, only a few studies have focused on the functional specialization of PI using resting-state fMRI and results of these studies were far from consistent. Thus, the current study aimed to investigate functional specialization of PI using resting-state fMRI with amplitude of low frequency fluctuations (ALFFs algorithm. Methods: In this study, 55 PI patients and 44 healthy controls were included. ALFF values were compared between the two groups using two-sample t-test. The relationship of abnormal ALFF values with clinical characteristics and duration of insomnia was investigated using Pearson’s correlation analysis. Results: PI patients showed lower ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral cerebellum posterior lobes, while higher ALFF values in the right middle/inferior temporal that extended to the right occipital lobe. In addition, we found that the duration of PI negatively correlated with ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, and the Pittsburgh Sleep Quality Index score negatively correlated with ALFF values in the left

  11. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  12. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging.

    Science.gov (United States)

    Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He

    2017-03-01

    To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

  13. In Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy.

    Science.gov (United States)

    Ma, Yu; Smith, David; Hof, Patrick R; Foerster, Bernd; Hamilton, Scott; Blackband, Stephen J; Yu, Mei; Benveniste, Helene

    2008-01-01

    In this study, a 3D digital atlas of the live mouse brain based on magnetic resonance microscopy (MRM) is presented. C57BL/6J adult mouse brains were imaged in vivo on a 9.4 Tesla MR instrument at an isotropic spatial resolution of 100 mum. With sufficient signal-to-noise (SNR) and contrast-to-noise ratio (CNR), 20 brain regions were identified. Several atlases were constructed including 12 individual brain atlases, an average atlas, a probabilistic atlas and average geometrical deformation maps. We also investigated the feasibility of using lower spatial resolution images to improve time efficiency for future morphological phenotyping. All of the new in vivo data were compared to previous published in vitro C57BL/6J mouse brain atlases and the morphological differences were characterized. Our analyses revealed significant volumetric as well as unexpected geometrical differences between the in vivo and in vitro brain groups which in some instances were predictable (e.g. collapsed and smaller ventricles in vitro) but not in other instances. Based on these findings we conclude that although in vitro datasets, compared to in vivo images, offer higher spatial resolutions, superior SNR and CNR, leading to improved image segmentation, in vivo atlases are likely to be an overall better geometric match for in vivo studies, which are necessary for longitudinal examinations of the same animals and for functional brain activation studies. Thus the new in vivo mouse brain atlas dataset presented here is a valuable complement to the current mouse brain atlas collection and will be accessible to the neuroscience community on our public domain mouse brain atlas website.

  14. In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy

    Directory of Open Access Journals (Sweden)

    Yu Ma

    2008-04-01

    Full Text Available In this study, a 3D digital atlas of the live mouse brain based on magnetic resonance microscopy (MRM is presented. C57BL/6J adult mouse brains were imaged in vivo on a 9.4 Tesla MR instrument at an isotropic spatial resolution of 100 μm. With sufficient signal-to-noise (SNR and contrast-to-noise ratio (CNR, 20 brain regions were identified. Several atlases were constructed including 12 individual brain atlases, an average atlas, a probabilistic atlas and average geometrical deformation maps. We also investigated the feasibility of using lower spatial resolution images to improve time efficiency for future morphological phenotyping. All of the new in vivo data were compared to previous published in vitro C57BL/6J mouse brain atlases and the morphological differences were characterized. Our analyses revealed significant volumetric as well as unexpected geometrical differences between the in vivo and in vitro brain groups which in some instances were predictable (e.g. collapsed and smaller ventricles in vitro but not in other instances. Based on these findings we conclude that although in vitro datasets, compared to in vivo images, offer higher spatial resolutions, superior SNR and CNR, leading to improved image segmentation, in vivo atlases are likely to be an overall better geometric match for in vivo studies, which are necessary for longitudinal examinations of the same animals and for functional brain activation studies. Thus the new in vivo mouse brain atlas dataset presented here is a valuable complement to the current mouse brain atlas collection and will be accessible to the neuroscience community on our public domain mouse brain atlas website.

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...

  16. Waxholm Space atlas of the rat brain hippocampal region: three-dimensional delineations based on magnetic resonance and diffusion tensor imaging.

    Science.gov (United States)

    Kjonigsen, Lisa J; Lillehaug, Sveinung; Bjaalie, Jan G; Witter, Menno P; Leergaard, Trygve B

    2015-03-01

    Atlases of the rat brain are widely used as reference for orientation, planning of experiments, and as tools for assigning location to experimental data. Improved quality and use of magnetic resonance imaging (MRI) and other tomographical imaging techniques in rats have allowed the development of new three-dimensional (3-D) volumetric brain atlas templates. The rat hippocampal region is a commonly used model for basic research on memory and learning, and for preclinical investigations of brain disease. The region features a complex anatomical organization with multiple subdivisions that can be identified on the basis of specific cytoarchitectonic or chemoarchitectonic criteria. We here investigate the extent to which it is possible to identify boundaries of divisions of the hippocampal region on the basis of high-resolution MRI contrast. We present the boundaries of 13 divisions, identified and delineated based on multiple types of image contrast observed in the recently published Waxholm Space MRI/DTI template for the Sprague Dawley rat brain (Papp et al., Neuroimage 97:374-386, 2014). The new detailed delineations of the hippocampal formation and parahippocampal region (Waxholm Space atlas of the Sprague Dawley rat brain, v2.0) are shared via the INCF Software Center (http://software.incf.org/), where also the MRI/DTI reference template is available. The present update of the Waxholm Space atlas of the rat brain is intended to facilitate interpretation, analysis, and integration of experimental data from this anatomically complex region.

  17. Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging.

    Science.gov (United States)

    Kaufman, Jason A; Ahrens, Eric T; Laidlaw, David H; Zhang, Song; Allman, John M

    2005-11-01

    This report presents initial results of a multimodal analysis of tissue volume and microstructure in the brain of an aye-aye (Daubentonia madagascariensis). The left hemisphere of an aye-aye brain was scanned using T2-weighted structural magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) prior to histological processing and staining for Nissl substance and myelinated fibers. The objectives of the experiment were to estimate the volume of gross brain regions for comparison with published data on other prosimians and to validate DTI data on fiber anisotropy with histological measurements of fiber spread. Measurements of brain structure volumes in the specimen are consistent with those reported in the literature: the aye-aye has a very large brain for its body size, a reduced volume of visual structures (V1 and LGN), and an increased volume of the olfactory lobe. This trade-off between visual and olfactory reliance is likely a reflection of the nocturnal extractive foraging behavior practiced by Daubentonia. Additionally, frontal cortex volume is large in the aye-aye, a feature that may also be related to its complex foraging behavior and sensorimotor demands. Analysis of DTI data in the anterior cingulum bundle demonstrates a strong correlation between fiber spread as measured from histological sections and fiber spread as measured from DTI. These results represent the first quantitative comparison of DTI data and fiber-stained histology in the brain.

  18. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.

    Science.gov (United States)

    Thévenot, Emmanuel; Jordão, Jessica F; O'Reilly, Meaghan A; Markham, Kelly; Weng, Ying-Qi; Foust, Kevin D; Kaspar, Brian K; Hynynen, Kullervo; Aubert, Isabelle

    2012-11-01

    Noninvasive drug delivery to the brain remains a major challenge for the treatment of neurological disorders. Transcranial focused ultrasound combined with lipid-coated gas microspheres injected into the bloodstream has been shown to increase the permeability of the blood-brain barrier locally and transiently. Coupled with magnetic resonance imaging, ultrasound can be guided to allow therapeutics administered in the blood to reach brain regions of interest. Using this approach, we perform gene transfer from the blood to specific regions of the mouse brain. Focused ultrasound was targeted to the right hemisphere, at multiple foci, or restricted to one focal point of the hippocampus or the striatum. Doses from 5 × 10(8) to 1.25 × 10(10) vector genomes per gram (VG/g) of self-complementary adeno-associated virus serotype 9 carrying the green fluorescent protein were injected into the tail vein. A dose of 2.5 × 10(9) VG/g was optimal to express the transgene, 12 days later, in neurons, astrocytes, and oligodendrocytes in brain regions targeted with ultrasound, while minimizing the infection of peripheral organs. In the hippocampus and striatum, predominantly neurons and astrocytes were infected, respectively. Transcranial focused ultrasound applications could fulfill a long-term goal of gene therapy: delivering vectors to diseased brain areas directly from the circulation, in a noninvasive manner.

  19. Hunter syndrome in an 11-year old girl on enzyme replacement therapy with idursulfase: brain magnetic resonance imaging features and evolution.

    Science.gov (United States)

    Manara, Renzo; Rampazzo, Angelica; Cananzi, Mara; Salviati, Leonardo; Mardari, Rodica; Drigo, Paola; Tomanin, Rosella; Gasparotto, Nicoletta; Priante, Elena; Scarpa, Maurizio

    2010-12-01

    Mucopolysaccharidosis type II (MPS-II, Hunter disease) is a X-linked recessive disorder. Affected females are extremely rare, mostly due to skewed X chromosome inactivation. A few papers outline MPS-II brain magnetic resonance imaging (MRI) "gestalt" in males, but neuroradiological reports on females are still lacking. We present an 11-year-old girl affected by the severe form of MPS-II who was followed up over a time span of 8 years, focusing on clinical and brain MRI evolution. In the last 2.5 years, the patient has been treated with enzyme replacement therapy (ERT) with idursulfase (Elaprase™, Shire Human Genetic Therapies AB, Sweden). On brain and cervical MRI examination, abnormalities in our patient did not differ from those detected in male patients: J-shaped pituitary sella, enlargement of perivascular spaces, brain atrophy, mild T2-hyperintensity in the paratrigonal white matter, diffuse platyspondylia, and mild odontoid dysplasia with odontoid cup. Brain atrophy progressed despite ERT introduction, whereas perivascular space enlargement did not change significantly before and after ERT. Cognitive impairment worsened independently from the course of white matter abnormality. Despite a profound knowledge of genetic and biochemical aspects in MPS-II, neuroradiology is still poorly characterized, especially in female patients. Spinal and brain involvement and its natural course and evolution after ERT introduction still need to be clarified.

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the brain and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  1. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Peter J [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA (United States); Broaddus, William C; Chen Zhijian; Gillies, George T [Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA (United States); Fatouros, Panos P; Corwin, Frank D, E-mail: wbroaddus@mcvh-vcu.ed [Department of Radiology, Virginia Commonwealth University, Richmond, VA (United States)

    2010-06-21

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s){sup -1} in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  2. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Science.gov (United States)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  3. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Saurav Z. K. Sajib

    2016-06-01

    Full Text Available Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  4. Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers.

    Science.gov (United States)

    Weiss, E; Siedentopf, C M; Hofer, A; Deisenhammer, E A; Hoptman, M J; Kremser, C; Golaszewski, S; Felber, S; Fleischhacker, W W; Delazer, M

    2003-07-03

    Sex differences in mental rotation tasks, favoring men, have been noted in behavioral studies and functional imaging studies. In the present study ten female and ten male volunteers underwent functional magnetic resonance imaging in a conventional block design. Regions of activation were detected after performance of a mental rotation task inside the scanner. In contrast to previous studies, confounding factors such as performance differences between genders or high error rates were excluded. Men showed significantly stronger parietal activation, while women showed significantly greater right frontal activation. Our results point to gender specific differences in the neuropsychological processes involved in mental rotation tasks.

  5. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  6. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, A G; Quistorff, B

    1992-01-01

    Early effects of irradiation were evaluated by non-invasive in vivo 31P-magnetic resonance spectroscopy (31P-MRS) of two small cell lung cancer (SCLC) tumor lines CPH SCCL 54A and 54B, in nude mice. The tumors were originally derived from the same patient and have similar morphology and growth...... characteristics, but a different radiosensitivity. The 54A tumors are twice as radiosensitive as the 54B's. In the present study the tumors were treated with 2.5, 10, and 40 Gy. For comparison, nude mice were given cranial irradiation at the same three doses, and the effect was evaluated by in vivo 31P-MRS...... in ATP/Pi. The differential effect on tumors and brain might be relevant for monitoring irradiation effects by in vivo 31P-MRS in patients with brain metastases....

  7. A Functional Magnetic Resonance Imaging Study of the Long-term Influences of Early Indomethacin Exposure on Language Processing in the Brains of Prematurely Born Children

    Science.gov (United States)

    Ment, Laura R.; Peterson, Bradley S.; Meltzer, Jed A.; Vohr, Betty; Allan, Walter; Katz, Karol H.; Lacadie, Cheryl; Schneider, Karen C.; Duncan, Charles C.; Makuch, Robert W.; Constable, R. Todd

    2008-01-01

    Background Previous studies have demonstrated that indomethacin lowers the incidence and decreases the severity of intraventricular hemorrhage, as well as improves the cognitive outcome, in prematurely born male infants. Objective The purpose of this work was to use functional magnetic resonance imaging to test the hypothesis that neonatal indomethacin treatment would differentially affect brain activation across genders in school-aged, prematurely born children during performance of a language task. Methods Forty-seven prematurely born children (600–1250-g birth weight) and 24 matched term control subjects were evaluated using a functional magnetic resonance imaging passive language task and neurodevelopmental assessments that included the Wechsler Intelligence Scale for Children-III and the Peabody Picture Vocabulary Test-Revised. Neural activity was assessed during both phonologic and semantic processing in the functional magnetic resonance imaging protocol. Results Neurodevelopmental assessments demonstrated significant differences in full-scale, verbal, and performance intelligence quotient, as well as Peabody Picture Vocabulary Test scores, between the preterm and term control subjects. Rates of perinatal complications did not differ significantly across preterm treatment groups, but male preterm subjects randomly assigned to saline tended to have lower Peabody Picture Vocabulary Test-Revised scores than did all of the other preterm groups. During phonological processing, a significant treatment-by-gender effect was demonstrated in 3 brain regions: the left inferior parietal lobule, the left inferior frontal gyrus (Broca's area), and the right dorsolateral prefrontal cortex. Conclusions These data demonstrate a differential effect of indomethacin administration early in postnatal life on the subsequent development of neural systems that subserve language functioning in these male and female preterm infants. PMID:16950986

  8. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  9. Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid toxicosis.

    Science.gov (United States)

    Montie, Eric W; Wheeler, Elizabeth; Pussini, Nicola; Battey, Thomas W K; Barakos, Jerome; Dennison, Sophie; Colegrove, Kathleen; Gulland, Frances

    2010-09-17

    Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.

  10. Brain magnetic resonance imaging findings in adult patients with congenital adrenal hyperplasia: Increased frequency of white matter impairment and temporal lobe structures dysgenesis

    Directory of Open Access Journals (Sweden)

    Mouna Feki Mnif

    2013-01-01

    Full Text Available Background: Congenital adrenal hyperplasia (CAH is an inherited recessive disorder of adrenal steroidogenesis. The enzymes most commonly affected are 21-hydroxylase. Past reports suggested brain magnetic resonance imaging (MRI abnormalities in CAH patients, affecting white matter signal, temporal lobe and amygdala structure and function. Aims: In the present study, we aimed to investigate the frequency of white matter changes and temporal lobes structures dysgenesis in a population of patients having CAH due to 21-hydroxylase deficiency. Materials and Methods: Neurological examination and brain MRI were performed in 26 patients. Results: Neurological examination revealed mental retardation in three patients, tremor in two patients, tendon reflexes asymmetry in one patient, and cerebellar syndrome in one patient. Eleven patients (42.3% showed MRI abnormalities: Eight of them had white matter hyperintensities, one patient had moderate atrophy in the right temporal, and hippocampal dysgenesis was found in the remaining two patients. Conclusions: Brain MRI abnormalities in CAH patients include white matter hyperintensities and temporal lobe structures dysgenesis. The mechanisms involved seem related to hormonal imbalances during brain development and exposure to excess exogenous glucocorticoids. Clinical implications of such lesions remain unclear. More extensive studies are required to define better the relationships between brain involvement and different CAH phenotypes and treatment regimens.

  11. Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2015-06-01

    Full Text Available OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB, which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2+ breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2 were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105 across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05; interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001. Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05 in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2+ breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.

  12. Functional magnetic resonance imaging evaluation of brain function reorganization in cerebral stroke patients after constraint-induced movement therapy

    Institute of Scientific and Technical Information of China (English)

    Jun Zhao; Tong Zhang; Jianmin Xu; Mingli Wang; Shengjie Zhao

    2012-01-01

    In this study, stroke patients received constraint-induced movement therapy for 3 weeks. Before and after constraint-induced movement therapy, the flexibility of their upper limbs on the affected side was assessed using the Wolf motor function test, and daily use of their affected limbs was assessed using the movement activities log, and cerebral functional reorganization was assessed by functional magnetic resonance imaging. The Wolf motor function test score and the movement activities log quantity and quality scores were significantly increased, while action performance time in the Wolf motor function test was significantly decreased after constraint-induced movement therapy. By functional magnetic resonance imaging examination, only scattered activation points were visible on the affected side before therapy. In contrast, the volume of the activated area was increased after therapy. The activation volume in the sensorimotor area was significantly different before and after therapy, and the activation area increased and appeared adjusted. In addition to the activated area around the lesions being decreased, there were also some new activated areas, including the supplementary movement area, premotor area and the ipsilateral sensorimotor area. Our findings indicate that constraint-induced movement therapy significantly improves the movement ability and daily use of the affected upper limbs in stroke patients and promotes cerebral functional reorganization.

  13. Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain

    Directory of Open Access Journals (Sweden)

    Shaode Yu

    2013-01-01

    Full Text Available Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM and the other depicts fluctuation magnitude (FMM. Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

  14. High-field magnetic resonance imaging of the developing human brain from the 10th to the 16th week of gestational Age.

    Science.gov (United States)

    Sbarbati, A; Marzola, P; Simonati, A; Nicolato, E; Osculati, F

    1998-01-01

    In the present work, high-field magnetic resonance imaging (HF-MRI) was applied to study the developing human brain paying particular attention to the structures of interest in pathology of malformation. The aim of the work was to evaluate the possible application of HF-MRI to the analysis of brain development in the absence of some limits of conventional histological technique. Seven formalin-fixed human fetuses of 50, 65, 70, 85, 110, 116 and 125 mm crown/ rump length (corresponding to a gestational age ranging from 10 to 16 weeks) were examined in an imager-spectrometer equipped with a 4. 7-tesla horizontal magnet with a 33-cm bore. In the brain of all the fetuses the telencephalic, mesencephalic and rhombencephalic vesicles were recognizable and an easy quantitative evaluation of the brain curvatures in the absence of distortion due to dissection was possible. Comparing fetuses at different gestational ages, the spatial modification of the different vesicles was evident. In fetuses at 16 weeks of gestational age, stratified compartments of the telencephalic wall were evident. The germinal zone and the cortical plate were visible: the germinal layer was identifiable as a hypointensity in the periventricular area. The subplate zone and the intermediate zone emitted a strong intensity signal. Our study demonstrates that HF-MRI can contribute to the study of the complex developmental events in the human brain from the 10th to 16th week of gestational age in a submillimetric scale of resolution. This technique can provide information about the morphology of the encephalic vesicles and their relations with the bone cavity that cannot be obtained with conventional methods and may be a useful adjunct to histological techniques.

  15. Advances in magnetic resonance 1

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  16. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  17. Magnetic resonance energy and topological resonance energy.

    Science.gov (United States)

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.

  18. Region-specific effects on brain metabolites of hypoxia and hyperoxia overlaid on cerebral ischemia in young and old rats: a quantitative proton magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Giuliani Patricia

    2010-02-01

    Full Text Available Abstract Background Both hypoxia and hyperoxia, deregulating the oxidative balance, may play a role in the pathology of neurodegenerative disorders underlain by cerebral ischemia. In the present study, quantitative proton magnetic resonance spectroscopy was used to evaluate regional metabolic alterations, following a 24-hour hypoxic or hyperoxic exposure on the background of ischemic brain insult, in two contrasting age-groups of rats: young - 3 months old and aged - 24 months old. Methods Cerebral ischemia was induced by ligation of the right common carotid artery. Concentrations of eight metabolites (alanine, choline-containing compounds, total creatine, γ-aminobutyric acid, glutamate, lactate, myo-inositol and N-acetylaspartate were quantified from extracts in three different brain regions (fronto-parietal and occipital cortices and the hippocampus from both hemispheres. Results In the control normoxic condition, there were significant increases in lactate and myo-inositol concentrations in the hippocampus of the aged rats, compared with the respective values in the young ones. In the ischemia-hypoxia condition, the most prevalent changes in the brain metabolites were found in the hippocampal regions of both young and aged rats; but the effects were more evident in the aged animals. The ischemia-hyperoxia procedure caused less dedicated changes in the brain metabolites, which may reflect more limited tissue damage. Conclusions We conclude that the hippocampus turns out to be particularly susceptible to hypoxia overlaid on cerebral ischemia and that old age further increases this susceptibility.

  19. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Doormaal, Pieter Jan van [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands); Meander Medical Center Amersfoort, Department of Radiology, PO Box 1502, Amersfoort (Netherlands); Meiners, Linda C.; Sijens, Paul E. [University Medical Center Groningen and University of Groningen, Department of Radiology, Groningen (Netherlands); Horst, Hendrik J. ter; Veere, Christa N. van der [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands)

    2012-04-15

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  20. Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

    Directory of Open Access Journals (Sweden)

    David O. Kamson

    2013-07-01

    Full Text Available Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI; molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT–positron emission tomography (PET to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs. Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD] from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74% and the tumor/cortex VD ratio had the highest positive predictive value (82%. The combined accuracy of MRI (size of contrast-enhancing lesion and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.

  1. Magnetic Resonance Imaging

    Science.gov (United States)

    ... metallic objects from being attracted by the powerful magnet of the MR system, you will typically receive ... teeth with magnetic keepers Other implants that involve magnets Medication patch (i.e., transdermal patch) that contains ...

  2. Enhanced Long-Term Brain Magnetic Resonance Imaging Evaluation of Children with Sickle Cell Disease after Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Green, Nancy S; Bhatia, Monica; Griffith, Erica Y; Qureshi, Mahvish; Briamonte, Courtney; Savone, Mirko; Sands, Stephen; Lee, Margaret T; Lignelli, Angela; Brickman, Adam M

    2017-04-01

    Progressive neurovasculopathy in children with sickle cell disease (SCD) results in decreased cognitive function and quality of life (QoL). Hematopoietic cell transplantation (HCT) is believed to halt progression of neurovasculopathy. Quantitative analysis of T2-weighted fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) for white matter hyperintensity (WMH) burden provides a meaningful estimate of small vessel cerebrovascular disease. We asked if quantitative analysis of WMH could complement standardized clinical assessment of MRI/magnetic resonance angiography (MRA) for assessing SCD central nervous system vasculopathy before and after HCT. Retrospective longitudinal clinical examination of scheduled annual MRI/MRA and quantitative analysis of WMH were performed before and 1 to 7 years after HCT at scheduled annual intervals, along with QoL measurements, in children who had engrafted after HCT. Of 18 patients alive and persistently engrafted (median age, 9.1 years), pretransplantation MRI demonstrated that 9 and 5 had sickle-related stroke and/or small infarcts, respectively. Patients were divided into WMH severity tertiles based on pretransplantation WMH volumes. MRI and WMH were assessed 1 to 7 years after HCT. MRI/MRA and WMH volume were stable or slightly better in 17 of 18 patients. By parent- and self-report, post-HCT QoL improved for children in the lowest WMH tertile significantly more than in the other groups. Based on this single-institution retrospective sample, we report that WMH appears to quantitatively support MRI-based findings that HCT stabilizes long-term small and large vessel cerebrovascular changes and is associated with the degree of improved QoL. While confirmation in larger prospective studies and evaluation by neurocognitive testing are needed, these findings suggest that WMH is a useful biomarker of neurovasculopathy after transplantation for SCD.

  3. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  7. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    Science.gov (United States)

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.

  8. Advances in magnetic resonance 4

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 4 deals with the relaxation, irradiation, and other dynamical effects that is specific to systems having resolved structure in their magnetic resonance spectra. This book discusses the anisotropic rotation of molecules in liquids by NMR quadrupolar relaxation; rotational diffusion constants; alternating linewidth effect; and theoretical formulations of the problem. The line shapes in high-resolution NMR; matrix representations of the equations of motion; matrix representations of the equations of motion; and intramolecular hydrogen bonds are also delibera

  9. Advances in magnetic resonance 2

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  10. Magnetic resonance imaging; Imagerie par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Fontanel, F. [Centre Hospitalier, 40 - Mont-de -Marsan (France); Clerc, T. [Centre Hospitalier Universitaire, 76 - Rouen (France); Theolier, S. [Hospice Civils de Lyon, 69 - Lyon (France); Verdenet, J. [Centre Hospitalier Universitaire, 25 - Besancon (France)

    1997-04-01

    The last improvements in nuclear magnetic resonance imaging are detailed here, society by society with an expose of their different devices. In the future the different technological evolutions will be on a faster acquisition, allowing to reduce the examination time, on the development of a more acute cardiac imaging, of a functional neuro-imaging and an interactive imaging for intervention. With the contrast products, staying a longer time in the vascular area, the angiography will find its place. Finally, the studies on magnetic fields should allow to increase the volume to examine. (N.C.).

  11. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N. [University College London, Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom); Imperial College of Science, Technology and Medicine, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, London (United Kingdom); MacManus, D.G. [University College London, NMR Research Unit, Department of Clinical Neurology, Institute of Neurology, London (United Kingdom); Collinge, J. [University College London, MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom)

    2006-06-15

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  12. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Jie Gao; Qin-Li Sun; Yu-Miao Zhang; Yan-Yan Li; Huan Li; Xin Hou; Bo-Lang Yu

    2015-01-01

    Background:Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases.The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI).Methods:Totally,45 neonates with clinically mild HIE and 45 matched control neonates were enrolled.Gestated age,birth weight,age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups.According to MR findings,mild HIE neonates were divided into three subgroups:Pattern Ⅰ,neonates with normal MR appearance; Pattern Ⅱ,preterm neonates with abnormal MR appearance; Pattern Ⅲ,full-term neonates with abnormal MR appearance.TMS and its parameters,progressive myelination (M),cortical infolding (C),involution of germinal matrix tissue (G),and glial cell migration bands (B),were employed to assess brain maturation and compare difference between HIE and control groups.Results:The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs.12.36 ± 1.26,P < 0.001).In four parameters of TMS scores,the M and C scores were significantly lower in mild HIE group.Of the three patterns of mild HIE,Pattern Ⅰ (10 cases) showed no significant difference of TMS compared with control neonates,while Pattern Ⅱ (22 cases),Ⅲ (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs.11.48 ± 0.55,P < 0.05; 12.59 ± 1.28 vs.13.25 ± 1.29,P < 0.05).It was M,C,and GM scores that significantly decreased in Pattern Ⅱ,while for Pattern Ⅲ,only C score significantly decreased.Conclusions:The TMS system,based on conventional MRI,is an effective method to detect delayed brain maturation in clinically mild HIE.The conventional MRI can reveal the different retardations in subtle structures and development processes among the different patterns of

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... pregnant. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most ... number of abrupt onset or long-standing symptoms. It can help diagnose conditions such as: brain tumors ...

  14. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  15. Advances in magnetic resonance 5

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 5 deals with the interpretation of ESR spectra and provides descriptions of experimental apparatus. This book discusses the halogen hyperfine interactions; organic radicals in single crystals; pulsed-Fourier-transform nuclear magnetic resonance spectrometer; and inhomogenizer and decoupler. The spectrometers for multiple-pulse NMR; weak collision theory of relaxation in the rotating frame; and spin Hamiltonian for the electron spin resonance of irradiated organic single crystals are also deliberated. This text likewise covers the NMR in helium three and m

  16. A clinico-radiological study on 254 cases of pontine high signals on magnetic resonance imaging in relation to brain stem semiology

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-11-01

    A total of 254 patients who were proved to have pontine high intensity areas on T[sub 2]-weighted magnetic resonance imaging (MRI) were analyzed in relation to brain stem semiology. A comparative study on MRI and MR angiography was made between 254 patients with pontine high signals and 276 control cases showing no abnormality either on T[sub 1] or T[sub 2]-weighted images. Of the 254 patients, 62 had transient subjective complaints such as vertigo-dizziness. Supratentorial high signals, basilar artery tortuousness and vertebral artery asymmetry on MR angiography were seen more frequently in patients with pontine high signals than in the controls. In conclusion, pontine high signals may result from diffuse arteriosclerosis and MR angiography is considered to be a useful screening method. (author).

  17. Brain functional changes in facial expression recognition in patients with major depressive disorder before and after antidepressant treatment A functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Wenyan Jiang; Zhongmin Yin; Yixin Pang; Feng Wu; Lingtao Kong; Ke Xu

    2012-01-01

    Functional magnetic resonance imaging was used during emotion recognition to identify changes in functional brain activation in 21 first-episode, treatment-naive major depressive disorder patients before and after antidepressant treatment. Following escitalopram oxalate treatment, patients exhibited decreased activation in bilateral precentral gyrus, bilateral middle frontal gyrus, left middle temporal gyrus, bilateral postcentral gyrus, left cingulate and right parahippocampal gyrus, and increased activation in right superior frontal gyrus, bilateral superior parietal lobule and left occipital gyrus during sad facial expression recognition. After antidepressant treatment, patients also exhibited decreased activation in the bilateral middle frontal gyrus, bilateral cingulate and right parahippocampal gyrus, and increased activation in the right inferior frontal gyrus, left fusiform gyrus and right precuneus during happy facial expression recognition. Our experimental findings indicate that the limbic-cortical network might be a key target region for antidepressant treatment in major depressive disorder.

  18. Specific proof of various stages of Osler's disease of the brain via high field magnetic resonance tomography (1. 5 Tesla)

    Energy Technology Data Exchange (ETDEWEB)

    Billet, F.; Bluemm, R.G.; Beyer, H.K.

    1988-08-01

    MR is a sensitive noninvasive examination method for diagnosing parenchymatous cryptic arteriovenous malformations and sequels of cerebral haemorrhage. In a patient with recurring nosebleed and brain stem syndrome eleven so-called cryptic arteriovenous malformations or their haemorrhage sequels were diagnosed via magnetic resonance tomography. Basing on these specific findings, nosebleeding, and a positive family anamnesis, the findings could be classified as belonging to manifestations of Osler's disease (hereditary haemorrhagic telangiectasia). This rare disease is characterised by a triad of signs: telangiectasias, recurring bleeding, and heredity. In this article the specific MR image is compared with the CT pattern and the results are discussed against the background of literature on Osler's disease which is also known as Rendu-Osler-Weber disease.

  19. Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas.

    Science.gov (United States)

    Chen, Ning; Shao, Chen; Qu, Yanming; Li, Shuai; Gu, Wei; Zheng, Tingting; Ye, Ling; Yu, Chunjiang

    2014-11-26

    Detection of brain gliomas at the earliest stage is of great importance to improve outcomes, but it remains a most challenging task. In this study, oleic acid capped manganese oxide (MnO) nanoparticles (NPs) were prepared by the thermal decomposition of manganese oleate precursors and then transformed to water-dispersible MnO NPs by replacing oleic acid with N-(trimethoxysilylpropyl) ethylene diamine triacetic acid (TETT) silane. The covalently bonded TETT silane offers MnO NPs colloidal stability and abundant carboxylic functional groups allowing the further conjugation of the glioma-specific moiety, folic acid (FA). Moreover, the thin layer of TETT silane ensures a short distance between external Mn ion and water proton, which endows the FA-conjugated, TETT modified MnO (MnO-TETT-FA) NPs a longitudinal relaxivity as high as 4.83 mM(-1) s(-1). Accordingly, the in vivo magnetic resonance (MR) images demonstrated that MnO-TETT-FA NPs could efficiently enhance the MRI contrast for tiny brain gliomas. More importantly, due to the specificity of FA, MnO-TETT-FA NPs led to a clearer margin of the tiny glioma. This together with the good biocompatibility discloses the great potential of MnO-TETT-FA NPs as effective MRI contrast agents for the early diagnosis of brain gliomas.

  20. Combining magnetic resonance spectroscopy and molecular genomics offers better accuracy in brain tumor typing and prediction of survival than either methodology alone.

    Science.gov (United States)

    Astrakas, Loukas; Blekas, Konstantinos D; Constantinou, Caterina; Andronesi, Ovidiu C; Mindrinos, Michael N; Likas, Aristidis C; Rahme, Laurence G; Black, Peter M; Marcus, Karen J; Tzika, A Aria

    2011-04-01

    Recent advents in magnetic resonance spectroscopy (MRS) techniques permit subsequent microarray analysis over the entire human transcriptome in the same tissue biopsies. However, extracting information from such immense quantities of data is limited by difficulties in recognizing and evaluating the relevant patterns of apparent gene expression in the context of the existing knowledge of phenotypes by histopathology. Using a quantitative approach derived from a knowledge base of pathology findings, we present a novel methodology used to process genome-wide transcription and MRS data. This methodology was tested to examine metabolite and genome-wide profiles in MRS and RNA in 55 biopsies from human subjects with brain tumors with ~100% certainty. With the guidance of histopathology and clinical outcome, 15 genes with the assistance of 15 MRS metabolites were able to be distinguished by tumor categories and the prediction of survival was better than when either method was used alone. This new method, combining MRS, genomics, statistics and biological content, improves the typing and understanding of the complexity of human brain tumors, and assists in the search for novel tumor biomarkers. It is an important step for novel drug development, it generates testable hypotheses regarding neoplasia and promises to guide human brain tumor therapy provided improved in vivo methods for monitoring response to therapy are developed.

  1. Analyzing the effects of a single episode of neonatal maternal deprivation on metabolite profiles in rat brain: a proton nuclear magnetic resonance spectroscopy study.

    Science.gov (United States)

    Llorente, R; Villa, P; Marco, E M; Viveros, M P

    2012-01-10

    Animal models have greatly contributed to the understanding of neuropsychiatric disorders and have provided extensive evidence for the "neurodevelopmental hypothesis." In this regard, a single and prolonged episode (24 h) of early maternal deprivation early in life, on postnatal day 9, has been proposed as an animal model for the investigation of certain neuropsychiatric disorders, including schizophrenia. Since metabolic changes in hippocampus (HIP) and prefrontal cortex (PFC) have been described among schizophrenic patients by using ex vivo high-resolution magic angle spinning (HR-MAS) proton ((1)H) nuclear magnetic resonance spectroscopy, in the present study we aimed to investigate the effects of maternal deprivation (MD) on the metabolite profiles of the developing brain by using the HR-MAS technique. MD significantly altered the hippocampal and cortical metabolic profile of neonatal rats (PND 13) in a sex-dependent manner. Glutamine and glutamate (Glx) and taurine of male and female rat pups were altered in both brain areas analyzed. Differences in hippocampal phosphorylethanolamine have also been found as a function of the MD protocol. In addition, MD induced some other region- and sex-dependent effects, including changes in N-acetyl aspartate and total choline signals in the hippocampi of male pups. Present findings indicate a different brain metabolic profile in our animal model of early life stress suggesting its potential utility in the implementation of translational neuropsychiatric research.

  2. Abnormalities of regional brain function in Parkinson’s disease: a meta-analysis of resting state functional magnetic resonance imaging studies

    Science.gov (United States)

    Pan, PingLei; Zhang, Yang; Liu, Yi; Zhang, He; Guan, DeNing; Xu, Yun

    2017-01-01

    There is convincing evidence that abnormalities of regional brain function exist in Parkinson’s disease (PD). However, many resting-state functional magnetic resonance imaging (rs-fMRI) studies using amplitude of low-frequency fluctuations (ALFF) have reported inconsistent results about regional spontaneous neuronal activity in PD. Therefore, we conducted a comprehensive meta-analysis using the Seed-based d Mapping and several complementary analyses. We searched PubMed, Embase, and Web of Science databases for eligible whole-brain rs-fMRI studies that measured ALFF differences between patients with PD and healthy controls published from January 1st, 2000 until June 24, 2016. Eleven studies reporting 14 comparisons, comparing 421 patients and 381 healthy controls, were included. The most consistent and replicable findings in patients with PD compared with healthy controls were identified, including the decreased ALFFs in the bilateral supplementary motor areas, left putamen, left premotor cortex, and left inferior parietal gyrus, and increased ALFFs in the right inferior parietal gyrus. The altered ALFFs in these brain regions are related to motor deficits and compensation in PD, which contribute to understanding its neurobiological underpinnings and could serve as specific regions of interest for further studies. PMID:28079169

  3. Sensorineural hearing loss after magnetic resonance imaging

    DEFF Research Database (Denmark)

    Mollasadeghi, Abolfazl; Mehrparvar, Amir Houshang; Atighechi, Saeid

    2013-01-01

    Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus......). In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient's hearing loss was accompanied with tinnitus and was not improved after 3 months of followup....

  4. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging.

    Science.gov (United States)

    Fitsanakis, Vanessa A; Zhang, Na; Anderson, Joel G; Erikson, Keith M; Avison, Malcolm J; Gore, John C; Aschner, Michael

    2008-05-01

    Chronic exposure to manganese (Mn) may lead to a movement disorder due to preferential Mn accumulation in the globus pallidus and other basal ganglia nuclei. Iron (Fe) deficiency also results in increased brain Mn levels, as well as dysregulation of other trace metals. The relationship between Mn and Fe transport has been attributed to the fact that both metals can be transported via the same molecular mechanisms. It is not known, however, whether brain Mn distribution patterns due to increased Mn exposure vs. Fe deficiency are the same, or whether Fe supplementation would reverse or inhibit Mn deposition. To address these questions, we utilized four distinct experimental populations. Three separate groups of male Sprague-Dawley rats on different diets (control diet [MnT], Fe deficient [FeD], or Fe supplemented [FeS]) were given weekly intravenous Mn injections (3 mg Mn/kg body mass) for 14 weeks, whereas control (CN) rats were fed the control diet and received sterile saline injections. At the conclusion of the study, both blood and brain Mn and Fe levels were determined by atomic absorption spectroscopy and magnetic resonance imaging. The data indicate that changes in dietary Fe levels (either increased or decreased) result in regionally specific increases in brain Mn levels compared with CN or MnT animals. Furthermore, there was no difference in either Fe or Mn accumulation between FeS or FeD animals. These data suggest that dietary Fe manipulation, whether increased or decreased, may contribute to brain Mn deposition in populations vulnerable to increased Mn exposure.

  5. Magnetic resonance signal intensity ratio of gray/white matter in children; Quantitative assessment in developing brain

    Energy Technology Data Exchange (ETDEWEB)

    Maezawa, Mariko (Tokyo Saiseikai Central Hospital (Japan)); Seki, Tohru; Imura, Soichi; Akiyama, Kazunori; Takikawa, Itsuro; Yuasa, Yuji

    Magnetic resonance imaging (MRI) findings in 87 children with various clinical entities were used to determine the signal intensity ratio of gray/white matter in T[sub 1]-weighted and T[sub 2]-weighted images using a 1.5 T MR scanner. Signal intensity ratio changes in both T[sub 1]- and T[sub 2]-weighted images correlated well with advancing age (y=0.9349-0.001575, r=0.584, P<0.0001 in T[sub 1]-weighted images; y=0.9798+0.002854, r=0.723, P<0.0001 in T[sub 2]-weighted images), but the correlation was more linear when we included only normally developed (34) children (y=0.9689-0.001967, r=-0.654, P<0.0001 in T[sub 1]-weighted images; y=0.9882+0.002965, r=0.747, P<0.0001 in T[sub 2]-weighted images). Abnormal ratios were observed in patients with congenital hydrocephalus, inherited metabolic diseases and cerebral palsy. Although the gray/white matter differentiation would not delineate the myelination itself, measurement of the signal intensity ratio of gray/white matters is a practical way to evaluate delayed myelination in a busy MR center. (author).

  6. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study

    Science.gov (United States)

    Li, Chao; Ma, Xiaofen; Dong, Mengshi; Yin, Yi; Hua, Kelei; Li, Meng; Li, Changhong; Zhan, Wenfeng; Li, Cheng; Jiang, Guihua

    2016-01-01

    Objective Investigating functional specialization is crucial for a complete understanding of the neural mechanisms of primary insomnia (PI). Resting-state functional magnetic resonance imaging (fMRI) is a useful tool to explore the functional specialization of PI. However, only a few studies have focused on the functional specialization of PI using resting-state fMRI and results of these studies were far from consistent. Thus, the current study aimed to investigate functional specialization of PI using resting-state fMRI with amplitude of low frequency fluctuations (ALFFs) algorithm. Methods In this study, 55 PI patients and 44 healthy controls were included. ALFF values were compared between the two groups using two-sample t-test. The relationship of abnormal ALFF values with clinical characteristics and duration of insomnia was investigated using Pearson’s correlation analysis. Results PI patients showed lower ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral cerebellum posterior lobes, while higher ALFF values in the right middle/inferior temporal that extended to the right occipital lobe. In addition, we found that the duration of PI negatively correlated with ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, and the Pittsburgh Sleep Quality Index score negatively correlated with ALFF values in the left inferior parietal lobule. Conclusion The present study added information to limited studies on functional specialization and provided evidence for hyperarousal hypothesis in PI. PMID:27366068

  7. Long term evaluation of brain perfusion with magnetic resonance in high flow extracranial-intracranial saphenous graft bypass

    Energy Technology Data Exchange (ETDEWEB)

    Bozzao, Alessandro [University of Rome La Sapienza, Department of Neuroradiology, II Faculty of Medicine, Rome (Italy); Sant' Andrea Hospital, Rome (Italy); Fasoli, Fabrizio; Finocchi, Vanina; Romano, Andrea; Fantozzi, Luigi M. [University of Rome La Sapienza, Department of Neuroradiology, II Faculty of Medicine, Rome (Italy); Santoro, Giuseppe [University of Rome La Sapienza, Department of Neurosurgery, I Faculty of Medicine, Rome (Italy)

    2007-01-15

    Assessment was made of the cerebral vascular haemodynamic parameters in patients with a high-flow extra-intracranial (EC-IC) bypass performed for therapeutic occlusion of the internal carotid artery (ICA). Sixteen patients with ICA occlusion and EC-IC bypass (time interval from surgery 1-6 years) underwent MRI. Perfusion-weighted magnetic resonance imaging (PW-MRI) sequences were performed without the use of an arterial input function. The relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF) were evaluated in all patients at the level of the basal ganglia, centrum semiovale and cortex in both hemispheres. Statistically significant differences (P<0.005) were observed in the haemodynamic parameters, indicating increased rCBV in the basal ganglia and decreased rCBF and rCBV in the cortex of the hemisphere supplied by the graft with respect to the contralateral. Patients with occlusion of the ICA and high flow EC-IC bypass do have altered vascular haemodynamic status between the hemispheres. In particular, rCBF is impaired in the surgical hemisphere at the level of the cortex. These patients should be followed-up to rule out chronic ischemia. (orig.)

  8. Disrupted brain functional network in internet addiction disorder: a resting-state functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Chong-Yaw Wee

    Full Text Available Internet addiction disorder (IAD is increasingly recognized as a mental health disorder, particularly among adolescents. The pathogenesis associated with IAD, however, remains unclear. In this study, we aim to explore the encephalic functional characteristics of IAD adolescents at rest using functional magnetic resonance imaging data. We adopted a graph-theoretic approach to investigate possible disruptions of functional connectivity in terms of network properties including small-worldness, efficiency, and nodal centrality on 17 adolescents with IAD and 16 socio-demographically matched healthy controls. False discovery rate-corrected parametric tests were performed to evaluate the statistical significance of group-level network topological differences. In addition, a correlation analysis was performed to assess the relationships between functional connectivity and clinical measures in the IAD group. Our results demonstrate that there is significant disruption in the functional connectome of IAD patients, particularly between regions located in the frontal, occipital, and parietal lobes. The affected connections are long-range and inter-hemispheric connections. Although significant alterations are observed for regional nodal metrics, there is no difference in global network topology between IAD and healthy groups. In addition, correlation analysis demonstrates that the observed regional abnormalities are correlated with the IAD severity and behavioral clinical assessments. Our findings, which are relatively consistent between anatomically and functionally defined atlases, suggest that IAD causes disruptions of functional connectivity and, importantly, that such disruptions might link to behavioral impairments.

  9. Magnetic resonance spectroscopy studies in migraine

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P.; Cortelli, P.; Barbiroli, B. (Inst. of Medical Pathology, Univ. of Bologna (Italy))

    1994-06-01

    The authors describe the method of [sup 31]phosphorus magnetic resonance spectroscopy and review the results when it is applied to the study of brain and muscle energy metabolism in migraine subjects. Brain energy metabolism appears to be abnormal in all major subtypes of migraine when measured both during and between attacks. Impaired energy metabolism is also documented in skeletal muscle. It is suggested that migraine is associated with a generalized disorder of mitochondrial oxidative phosphorylation and that this may constitute a threshold for the triggering of migraine attacks. 47 refs., 10 figs., 3 tabs.

  10. Brain volumetrics, regional cortical thickness and radiographic findings in children with cyanotic congenital heart disease using quantitative magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Alsiagy A. Salama, M.D.

    2016-12-01

    Conclusions: Children with CCHD show MRI evidence of micro- and macro vascular injury, reduced brain volume and cortical thickness. Brain volume loss correlated with hsCRP, oxygen saturation and packed cell volume.

  11. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  12. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Y.H.; Lee, J.D.; Yoon, P.H.; Kim, D.I. [Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, H.B.; Shin, Y.J. [Department of Psychiatry, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1999-03-01

    The neuro-anatomical substrate of autism has been the subject of detailed investigation. Because previous studies have not demonstrated consistent and specific neuro-imaging findings in autism and most such studies have been performed in adults and school-aged children, we performed a retrospective review in young children in search of common functional and anatomical abnormalities with brain single-photon emission tomography (SPET) using technetium-99m ethyl cysteinate dimer (ECD) and correlative magnetic resonance imaging (MRI). The patient population was composed of 23 children aged 28-92 months (mean: 54 months) who met the diagnostic criteria of autism as defined in the DSM-IV and CARS. Brain SPET was performed after intravenous injection of 185-370 MBq of {sup 99m}Tc-ECD using a brain-dedicated annular crystal gamma camera. MRI was performed in all patients, including T1, T2 axial and T1 sagittal sequences. SPET data were assessed visually. Twenty patients had abnormal SPET scans revealing focal areas of decreased perfusion. Decreased perfusion of the cerebellar hemisphere (20/23), thalami (19/23), basal ganglia (5/23) and posterior parietal (10/23) and temporal (7/23) areas were noted on brain SPET. By contrast all patients had normal MRI findings without evidence of abnormalities of the cerebellar vermis, cerebellar hemisphere, thalami, basal ganglia or parietotemporal cortex. In conclusion, extensive perfusion impairments involving the cerebellum, thalami and parietal cortex were found in this study. SPET may be more sensitive in reflecting the pathophysiology of autism than MRI. However, further studies are necessary to determine the significance of thalamic and parietal perfusion impairment in autism. (orig.) With 2 figs., 1 tab., 33 refs.

  13. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  14. Predicting subsequent relapse by drug-related cue-induced brain activation in heroin addiction: an event-related functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Qiang; Li, Wei; Wang, Hanyue; Wang, Yarong; Zhang, Yi; Zhu, Jia; Zheng, Ying; Zhang, Dongsheng; Wang, Lina; Li, Yongbin; Yan, Xuejiao; Chang, Haifeng; Fan, Min; Li, Zhe; Tian, Jie; Gold, Mark S; Wang, Wei; Liu, Yijun

    2015-09-01

    Abnormal salience attribution is implicated in heroin addiction. Previously, combining functional magnetic resonance imaging (fMRI) and a drug cue-reactivity task, we demonstrated abnormal patterns of subjective response and brain reactivity in heroin-dependent individuals. However, whether the changes in cue-induced brain response were related to relapse was unknown. In a prospective study, we recruited 49 heroin-dependent patients under methadone maintenance treatment, a gold standard treatment (average daily dose 41.8 ± 16.0 mg), and 20 healthy subjects to perform the heroin cue-reactivity task during fMRI. The patients' subjective craving was evaluated. They participated in a follow-up assessment for 3 months, during which heroin use was assessed and relapse was confirmed by self-reported relapse or urine toxicology. Differences between relapsers and non-relapsers were analyzed with respect to the results from heroin-cue responses. Compared with healthy subjects, relapsers and non-relapsers commonly demonstrated significantly increased brain responses during the processing of heroin cues in the mesolimbic system, prefrontal regions and visuospatial-attention regions. However, compared with non-relapsers, relapsers demonstrated significantly greater cue-induced craving and the brain response mainly in the bilateral nucleus accumbens/subcallosal cortex and cerebellum. Although the cue-induced heroin craving was low in absolute measures, the change in craving positively correlated with the activation of the nucleus accumbens/subcallosal cortex among the patients. These findings suggest that in treatment-seeking heroin-dependent individuals, greater cue-induced craving and greater specific regional activations might be related to reward/craving and memory retrieval processes. These responses may predict relapse and represent important targets for the development of new treatment for heroin addiction.

  15. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  16. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    Science.gov (United States)

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  17. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Fernando Chico-Ponce de León

    2009-04-01

    Full Text Available The objective of the present qualitative studywas to analyze the morphological aspects of theinner cerebral anatomy of two species of primates,using magnetic resonance images (MRI:spider monkey (A. geoffroyi and human (H.sapiens, on the basis of a comparative study ofthe cerebral structures of the two species, focusingupon the brain of the spider monkey and,primarily, its limbic system. In spite of beingan endemic Western hemisphere species, a factwhich is by its own right interesting for researchdue to this animal’s social organization and motorfunctions, the spider monkey (A. geoffroyihas hardly been studied in regard to its neuroanatomy.MRI was carried out, in one spidermonkey, employing a General Electric Signa1.5 T scanner. This investigation was carried inaccordance to international regulations for theprotection of animals in captivity, taking intoaccount all protective means utilized in experimentalhandling, and not leaving behind any residualeffects, either physiological or behavioral.From a qualitative point of view, the brains ofthe spider monkey and the human were found to have similar structures. In reference to shape,the most similar structures were found in thelimbic system; proportionally, however, cervical curvature, amygdala, hippocampus, anteriorcommissure and the colliculi, were larger in thespider monkey than in the human.

  18. Impact of fluoxetine on the human brain in multiple sclerosis as quantified by proton magnetic resonance spectroscopy and diffusion tensor imaging.

    Science.gov (United States)

    Sijens, Paul E; Mostert, Jop P; Irwan, Roy; Potze, Jan Hendrik; Oudkerk, Matthijs; De Keyser, Jacques

    2008-12-30

    The antidepressant fluoxetine stimulates astrocytic glycogenolysis, which serves as an energy source for axons. In multiple sclerosis patients fluoxetine administration may improve energy supply in neuron cells and thus inhibit axonal degeneration. In a preliminary pilot study, 15 patients with multiple sclerosis (MS) were examined by diffusion tensor imaging (DTI) and (1)H magnetic resonance spectroscopy (MRS) in order to quantify the brain tissue diffusion properties (fractional anisotropy, apparent diffusion coefficient) and metabolite levels (choline, creatine and N-acetylaspartate) in cortical gray matter brain tissue, in normal appearing white matter and in white matter lesions. After oral administration of fluoxetine (20 mg/day) for 1 week, the DTI and MRS measurements were repeated and after treatment with a higher dose (40 mg/day) during the next week, a third series of DTI/MRS examinations was performed in order to assess any changes in diffusion properties and metabolism. One trend was observed in gray matter tissue, a decrease of choline measured at weeks 1 and 2 (significant in a subgroup of 11 relapsing remitting/secondary progressive MS patients). In white matter lesions, the apparent diffusion coefficient was increased at week 1 and N-acetylaspartate was increased at week 2 (both significant). These preliminary results provide evidence of a neuroprotective effect of fluoxetine in MS by the observed partial normalization of the structure-related MRS parameter N-acetylaspartate in white matter lesions.

  19. magnetic resonance imaging,etc.

    Institute of Scientific and Technical Information of China (English)

    张福基

    1998-01-01

    magnetic resonance imaging n.[1984] a noninvasive diagnostic technique that produces computerized images of internal body tissues and is based on nuclear magnetic resonance of atoms within he body induced by the application of radio waves磁共振成像(指一种非侵害 性诊断技术,能生成内部身体组织的计算机化影像,其依据是应用无线电波 感生体内原子并使之产磁共振)

  20. Advances in magnetic resonance 8

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 8 describes the magnetic resonance in spin polarization and saturation transfer. This book discusses the theory of chemically induced dynamic spin polarization; basic results for the radical-pair mechanism; and optical spin polarization in molecular crystals. The theory of optical electronic polarization (OEP); NMR in flowing systems; and applications of NMR in a flowing liquid are also elaborated. This text likewise covers the saturation transfer spectroscopy; studies of spin labels in the intermediate and fast motion regions; and spin-density matrix and

  1. A review of functional magnetic resonance imaging for Brainnetome

    Institute of Scientific and Technical Information of China (English)

    Ming Song; Tianzi Jiang

    2012-01-01

    The functional brain network using blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revealed the potentials for probing brain architecture,as well as for identifying clinical biomarkers for brain diseases.In the general context of Brainnetome,this review focuses on the development of approaches for modeling and analyzing functional brain networks with BOLD fMRI.The prospects for these approaches are also discussed.

  2. In vivo magnetic resonance imaging investigating the development of experimental brain metastases due to triple negative breast cancer.

    Science.gov (United States)

    Hamilton, Amanda M; Foster, Paula J

    2017-02-01

    Triple negative breast cancer (TNBC), when associated with poor outcome, is aggressive in nature with a high incidence of brain metastasis and the shortest median overall patient survival after brain metastasis development compared to all other breast cancer subtypes. As therapies that control primary cancer and extracranial metastatic sites improve, the incidence of brain metastases is increasing and the management of patients with breast cancer brain metastases continues to be a significant clinical challenge. Mouse models have been developed to permit in depth evaluation of breast cancer metastasis to the brain. In this study, we compare the efficiency and metastatic potential of two experimental mouse models of TNBC. Longitudinal MRI analysis and end point histology were used to quantify initial cell arrest as well as the number and volume of metastases that developed in mouse brain over time. We showed significant differences in MRI appearance, tumor progression and model efficiency between the syngeneic 4T1-BR5 model and the xenogeneic 231-BR model. Since TNBC does not respond to many standard breast cancer treatments and TNBC brain metastases lack effective targeted therapies, these preclinical TNBC models represent invaluable tools for the assessment of novel systemic therapeutic approaches. Further pursuits of therapeutics designed to bypass the blood tumor barrier and permit access to the brain parenchyma and metastatic cells within the brain will be paramount in the fight to control and treat lethal metastatic cancer.

  3. 1H-Magnetic resonance spectroscopy study of stimulant medication effect on brain metabolites in French Canadian children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    BenAmor L

    2014-01-01

    Full Text Available Leila BenAmor1,21Department of Psychiatry Sainte-Justine Hospital, Montreal, Quebec, Canada; 2Department of Psychiatry, University of Montreal, Montreal, Quebec, CanadaBackground: Attention deficit hyperactivity disorder (ADHD is a common neurodevelopmental disorder in school aged children. Functional abnormalities have been reported in brain imaging studies in ADHD populations. Psychostimulants are considered as the first line treatment for ADHD. However, little is known of the effect of stimulants on brain metabolites in ADHD patients.Objectives: To compare the brain metabolite concentrations in children with ADHD and on stimulants with those of drug naïve children with ADHD, versus typically developed children, in a homogenous genetic sample of French Canadians.Methods: Children with ADHD on stimulants (n=57 and drug naïve children with ADHD (n=45 were recruited, as well as typically developed children (n=38. The presence or absence of ADHD diagnosis (Diagnostic and Statistical Manual of Mental Disorders IV criteria was based on clinical evaluation and The Diagnostic Interview Schedule for Children IV. All children (n=140 underwent a proton magnetic resonance spectroscopy session to measure the ratio of N-acetyl-aspartate, choline, glutamate, and glutamate–glutamine to creatine, respectively, in the left and right prefrontal and striatal regions of the brain, as well as in the left cerebellum.Results: When compared with drug naïve children with ADHD, children with ADHD on stimulants and children typically developed were found to have higher choline ratios in the left prefrontal region (P=0.04 and lower N-acetyl-aspartate ratios in the left striatum region (P=0.01, as well as lower glutamate–glutamine ratios in the left cerebellum (P=0.05. In these three regions, there was no difference between children with ADHD on stimulants and typically developed children.Conclusion: Therapeutic psychostimulant effects in children with ADHD may be

  4. Diffusion tensor imaging and magnetic resonance spectroscopy of the brain in a patient with Sturge-Weber syndrome

    NARCIS (Netherlands)

    Sijens, P. E.; Gieteling, E. W.; Meiners, L. C.; Sival, D. A.; Potze, J. H.; Irwan, R.; Oudkerk, M.

    2006-01-01

    Quantitative brain MR spectroscopy (MRS) and diffusion tensor imaging (DTI) were used to characterize one patient with Sturge-Weber syndrome. Choline increases and N-acetylaspartate decreases were observed in pathologic frontal gray matter tissue compared to contralateral unaffected brain tissue wit

  5. Magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bushong, S.C.

    1988-01-01

    This book introduces the fundamentals and principles of MRI, its capabilities and various techniques of application. Appropriate background for MRI is provided, including basic nuclear magnetic phenomena, modifications required for imaging, the current state of clinical knowledge and a survey of the future potential for in vivo MRI.

  6. Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging

    Science.gov (United States)

    Dickie, David Alexander; Shenkin, Susan D.; Anblagan, Devasuda; Lee, Juyoung; Blesa Cabez, Manuel; Rodriguez, David; Boardman, James P.; Waldman, Adam; Job, Dominic E.; Wardlaw, Joanna M.

    2017-01-01

    Brain MRI atlases may be used to characterize brain structural changes across the life course. Atlases have important applications in research, e.g., as registration and segmentation targets to underpin image analysis in population imaging studies, and potentially in future in clinical practice, e.g., as templates for identifying brain structural changes out with normal limits, and increasingly for use in surgical planning. However, there are several caveats and limitations which must be considered before successfully applying brain MRI atlases to research and clinical problems. For example, the influential Talairach and Tournoux atlas was derived from a single fixed cadaveric brain from an elderly female with limited clinical information, yet is the basis of many modern atlases and is often used to report locations of functional activation. We systematically review currently available whole brain structural MRI atlases with particular reference to the implications for population imaging through to emerging clinical practice. We found 66 whole brain structural MRI atlases world-wide. The vast majority were based on T1, T2, and/or proton density (PD) structural sequences, had been derived using parametric statistics (inappropriate for brain volume distributions), had limited supporting clinical or cognitive data, and included few younger (>5 and 60 years) subjects. To successfully characterize brain structural features and their changes across different stages of life, we conclude that whole brain structural MRI atlases should include: more subjects at the upper and lower extremes of age; additional structural sequences, including fluid attenuation inversion recovery (FLAIR) and T2* sequences; a range of appropriate statistics, e.g., rank-based or non-parametric; and detailed cognitive and clinical profiles of the included subjects in order to increase the relevance and utility of these atlases. PMID:28154532

  7. A clinical study to identify the possible etiology of complex partial seizures using magnetic resonance imaging brain findings and its implications on treatment

    Directory of Open Access Journals (Sweden)

    V Nancy Jeniffer

    2015-01-01

    Full Text Available Context: Epilepsy is one of the common neurological disorders worldwide. Fundamentally, there are two types of epilepsy—primary generalized epilepsy and localization-related epilepsy. Partial seizures account for about 40% of childhood seizures in some series and can be classified as simple or complex.[1] Partial seizures, more so the complex partial seizures (CPSs, are presumed to have a structural etiology. Aims: (1 To study the magnetic resonance imaging (MRI brain findings in CPSs in children aged 1–18 years. (2 To identify treatable causes of CPSs based on MRI findings and institute appropriate treatment. Statistical Analysis: Statistical analysis was performed using percentages and proportions. Methods: Hospital based prospective study in which MRI brain was done on all newly diagnosed children with complex partial seizures, aged 1 to 18 yrs, during the study period. Final diagnosis was made correlating clinical features, radiological features and other supportive evidences, and appropriate treatment instituted. Follow up of cases was done until the completion of treatment (maximum 6 months. Results: Among the 64 children who were clinically diagnosed to have CPSs and subjected to MRI study of the brain, 40(62.5% children were detected to have structural lesions, of which neurocysticercosis (NCC was noted in 17 (42.5%, tuberculoma in 12 (30%, hippocampal sclerosis (HS in 6 (15%, gliosis in 4 (10%, and tumor in 1 (2.5% patient. Sixty-two (96.8% children were treated medically, and 2 (3.2% children underwent surgery. Conclusions: Etiology of CPS based on MRI findings showed a substantial number of medically- and surgically-treatable pathologies. This study done on South Indian children showed neuro infections to be the most common cause of CPS, followed by HS, with NCC being the most common lesion noted. MRI not only identifies specific epileptogenic substrates, but also determines the specific treatment and predicts prognosis and should

  8. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E

    2015-03-01

    Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.

  9. Brain Magnetic Resonance Imaging of Siblings from Families with Two or More Children with Learning or Intellectual Disabilities and Need for Full-Time Special Education

    Energy Technology Data Exchange (ETDEWEB)

    Mannerkoski, M.; Heiskala, H.; Aaberg, L. (Child Neurology, HUCH Dept. of Pediatric and Adolescent Medicine, Helsinki (Finland)); Raininko, R. (Dept. of Radiology, Uppsala Univ., Uppsala (Sweden)); Sarna, S. (Dept. of Public Health, Univ. of Helsinki, Helsinki (Finland)); Wirtavuori, K. (HUCH Dept. of Pediatric and Adolescent Medicine, Helsinki (Finland)); Autti, T. (HUCH Helsinki Medical Imaging Center, Helsinki (Finland))

    2009-05-15

    Background: Several factors are involved in determining a child's need for special education (Sweden). Thus, the value of brain magnetic resonance imaging (MRI) for subjects with learning and intellectual disabilities is uncertain. Purpose: To evaluate the usefulness of MRI in the diagnostic process of siblings with learning and intellectual disabilities and need for full-time SE. Material and Methods: Altogether, 119 siblings (mean age 11.9 years) from families in which two or more children attended/had previously attended full-time SE underwent prospective brain MRI. SE grouping included three levels, from specific learning disabilities (level 1) to global intellectual disabilities (level 3). Forty-three controls (level 0, mean age 12.0 years) attended mainstream education groups. Signal intensity and structural abnormalities were analyzed, and areas of the cerebrum, posterior fossa, corpus callosum, vermis and brain stem, and diameters of the corpus callosum were measured. In analyses, all area measurements were calculated in proportion to the total inner skull area. Results: Abnormal finding in MRI was more common for siblings (n=62; 52%) in SE (58% for level 3; 49% for level 2; 35% for level 1) than for controls (n=13; 16%). The siblings showed enlarged supra- (P<0.001) and infratentorial (P=0.015) cerebrospinal fluid (CSF) spaces and mild corpus callosum abnormalities (P=0.003) compared to controls. Siblings in SE had smaller inner skull area than controls (P<0.001). Further, the relative area of the mesencephalon (P=0.027) and the diameter of the body of the corpus callosum (P=0.015) were significantly smaller than in controls. In binary logistic regression analysis, enlarged supratentorial CSF spaces increased the probability of SE (odds ratio 4.2; P=0.023). Conclusion: Subjects with learning and intellectual disabilities commonly have more MRI findings than controls. Enlarged supratentorial CSF spaces were a frequent finding in siblings in full

  10. High speed functional magnetic resonance imaging

    CERN Document Server

    Gibson, A M

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated by reference, within the Magnetic Resonance Centre at the University of Nottingham during the period from October 1998 to October 2001. This thesis documents the implementation and application of a novel high-speed imaging technique, the multi-slice, echo shifted, echo planar imaging technique. This was implemented on the Nottingham 3 T imaging system, for functional magnetic resonance imaging. The technique uses echo shifting over the slices in a multi-slice echo planar imaging acquisition scheme, making the echo time longer than the repetition time per slice. This allows for rapid volumar sampling of the blood oxygen level dependent effect in the human brain. The new high-speed technique was used to investigate the variability of measuring the timing differences between haemodynamic responses, at the same cortical location, to simple cued motor tasks. The technique was also used in an investigation into motor cortex functional connect...

  11. Multimodal morphometry and functional magnetic resonance imaging in schizophrenia and auditory hallucinations

    OpenAIRE

    García-Martí, Gracián; Aguilar, Eduardo Jesús; Martí-Bonmatí, Luis; Escartí, M José; Sanjuán, Julio

    2012-01-01

    AIM: To validate a multimodal [structural and functional magnetic resonance (MR)] approach as coincidence brain clusters are hypothesized to correlate with clinical severity of auditory hallucinations.

  12. Magnetic Resonance Image Wavelet Enhancer

    Science.gov (United States)

    2007-11-02

    1Departamento de Ingenieria Electrica, UAM Iztapalapa, Mexico−DF, 09340, Mexico email:arog@xanum.uam.mx. Magnetic Resonance Centre, School of Physics...Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Departamento de Ingenieria Electrica, UAM Iztapalapa, Mexico-DF

  13. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  14. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... E-mail: Area code: Phone no: Thank you! Images × Image Gallery Radiologist prepping patient for magnetic resonance imaging ( ... address): From (your name): Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... E-mail: Area code: Phone no: Thank you! Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View full ... address): From (your name): Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ...

  18. The magnetization transfer effect in brain studies by 1.5 T magnetic resonance system. When the radiographer should apply it?

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. Margarida, E-mail: margarida.ribeiro@estesl.ipl.p [Scientific Area of Radiology, Higher School of Health Technology, Polytechnic Institute of Lisbon (Portugal); Anatomy Department of Medicine Faculty, Medical Sciences University of Lisbon (Portugal); Farinha, Sara [Metelbea - Diagnostic and Therapeutic Centre of Lisbon (Portugal); Costa, Joana [Radiomedica, Lisbon (Portugal); Mauricio, J. Cruz [Anatomy Department of Medicine Faculty, Medical Sciences University of Lisbon (Portugal); Diamecon - Imaging Diagnostic Centre, Tomar (Portugal); O' Neill, J. Goyri [Anatomy Department of Medicine Faculty, Medical Sciences University of Lisbon (Portugal)

    2011-05-15

    Purpose: The Magnetization Transfer (MT) obtained by applying a pre-saturation pulse is, in Magnetic Resonance Imaging (MRI), a technique that allows for additional enhancement of lesions on conventional T1 images after contrast administration. This study aims to assess the effectiveness of the technique measuring how MT could improve image quality and diagnostic values through the enhancement of lesions. Methods: Thirteen T1-weighted spin-echo (SE) sequences, obtained by the 1.5 T system after contrast media injection, were analyzed with and without MT. The contrast-to-noise ratio (CNR), as well as the signal-to-noise ratio (SNR) variables were compared in all sequences, according to the reference structures: lateral ventricles, white matter, gray matter, caudate nucleus and internal capsule. The MT ratio average was calculated using the ANOVA scale in order to assess the CNR and the magnetization transfer effect (MTE) for the different lesions and for both sequences (with and without MT). For the assessment of the flow artifact, clinical experts applied a Likert scale with 5 points. Results: For CNR values, the differences between conventional and MT-pulsed images were significant (Student t testp < 0,05), remaining significant for SNR in all structures except for the lateral ventricles. For the flow artifacts the differences found by the coefficient Kappa agreement were not significant as the differences found for the CNR and the MTE between the two sequences (p > 0,05). Conclusion: In identical conditions of acquisition, the MT does not produce significant differences in the enhancement of lesions, however, it allows a greater capacity to detect the multiple sclerosis plaques, comparing structures around basal nucleus versus gray and white matter.

  19. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    Science.gov (United States)

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  20. Magnetic Resonance Perfusion Imaging in the Study of Language

    Science.gov (United States)

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow…

  1. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    NARCIS (Netherlands)

    Jager, G.; Block, R.I.; Luijten, M.; Ramsey, N.F.

    2010-01-01

    Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitiv

  2. On the characterization of single-event related brain activity from functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2014-08-01

    We propose an efficient numerical technique for calibrating the mathematical model that describes the singleevent related brain response when fMRI measurements are given. This method employs a regularized Newton technique in conjunction with a Kalman filtering procedure. We have applied this method to estimate the biophysiological parameters of the Balloon model that describes the hemodynamic brain responses. Illustrative results obtained with both synthetic and real fMRI measurements are presented. © 2014 IEEE.

  3. EVALUATION OF NEUROPROTECTIVE EFFECTS OF LONG-TERM LOW DOSE HORMONE REPLACEMENT THERAPY ON POSTMENOPAUSAL WOMEN BRAIN HIPPOCAMPUS USING MAGNETIC RESONANCE SCANNER

    Institute of Scientific and Technical Information of China (English)

    Ling Hu; Yun Yue; Ping-ping Zuo; Zheng-yu Jin; Feng Feng; Hui You; Ming-li Li; Qin-sheng Ge

    2006-01-01

    Objective To investigate the effects of long-term low dose hormone replacement therapy (HRT) on postmenopausal women in hormone level,cognition score,hippocampus volume,and magnetic resonance spectroscopy (MRS) parameters.Methods A total of 182 postmenopausal women aged 50-87 years were chosen at Peking Union Medical College Hospital and assigned to HRT group and control group.The volunteers of HRT group had taken low dose hormone [estradiol (E2) 0.5-1.0 mg and progesterone 0.5-2.0 mg,once a day] for 4-33 years.The concentrations of E2,progesterone,and testosterone were measured using enzyme-linked immunosorbent assay (ELISA).The gene types of apolipoprotein E (ApoE) were measured by polymerase chain reaction,and the subjects with susceptible genes (ApoE ε3/ε4) of Alzheimer's disease (AD) were screened.Their hippocampus volumes and MRS parameters were obtained through magnetic resonance imaging (MRI),and results in two groups were analyzed by statistical method.Results Compared with control group,the concentrations of E2 at each age stage in HRT group were significantly higher (P<0.05) except the 80-89 years old subgroup;yet,there were no statistical differences in the concentrations of progesterone and testosterone between the two groups.There was no obvious difference in ApoE subtypes distribution between the two groups.The results of hippocampus MRI for the subjects with susceptible genes ApoE ε3/ε4 (HRT group 14 cases,control group 11 cases) showed that the ratio of bilateral hippocampus volume to whole brain volume in HRT group (0.406±0.028) was significantly higher than control group (0.369±0.031,P<0.05).The results of 1H MRS for the subjects with susceptible genes ApoE ε3/ε4 (HRT group 12 cases,control group 11 cases) showed that the N-acetylaspartate/total creatine at the area of hippocampus in HRT group (1.54±0.08) were significantly higher than control group (1.45±0.13,P<0.05).Conclusions For postmenopausal women,long-term low dose HRT can

  4. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  5. A Quantum Mechanical Review of Magnetic Resonance Imaging

    CERN Document Server

    Odaibo, Stephen G

    2012-01-01

    In this paper, we review the quantum mechanics of magnetic resonance imaging (MRI). We traverse its hierarchy of scales from the spin and orbital angular momentum of subatomic particles to the ensemble magnetization of tissue. And we review a number of modalities used in the assessment of acute ischemic stroke and traumatic brain injury.

  6. Advantages of stereotaxic needle biopsy of brain tumor using interventional magnetic resonance imaging. Report of 12 cases

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Tohru; Hashimoto, Takuo; Koyama, Tsutomu; Takahashi, Koichi; Harada, Junta [Jikei Univ., Chiba (Japan). Kashiwa Hospital; Abe, Toshiaki

    1998-12-01

    Interventional MRI, an advanced neuroimaging system, was used to perform stereotaxic needle biopsy of brain tissue (AIRIS, 0.3 Tesla, Hitachi) in 12 patients (9 males, 3 females) with intraparenchymal abnormal lesions. This system permits accurate and safe biopsy of brain tissue in real time. Patient ages ranged from 31 to 79 years (mean 61.5 years). We evaluated the abnormal lesion and dominant hemisphere of these patients preoperatively by using CT, MRI and cerebral angiography. Lesions were located in the left frontal lobe in 3 cases, the right frontal lobe in 1 case, the left temporal lobe in 1 case, the right temporal lobe in 1 case, the left parietal lobe in 2 cases, the right parietal lobe in 1 case, the left occipital lobe in 1 case, the bilateral basal ganglia in 1 case and the corpus callosum in 1 case. The sampling points were in the dominant hemisphere in 7 cases and in the non-dominant hemisphere in 5 cases. The diagnosis based on stereotaxic needle biopsy using this system were 4 gliomas, 1 brain abscess, 1 metastatic brain tumor, 1 granuloma, 2 cerebral infarctions, 2 malignant lymphomas and 1 normal brain tissue. Success rate of biopsy for our 12 cases using this system was 91.7%. Brain hemorrhage was a complication in 1 case but there was no case of meningitis or convulsion. This method is useful in patients with inoperable lesions, including deep lesion or lesions in the brainstem diencephalon or dominant hemisphere, in patients with serious complications, and in geriatric patients. In the future, this MRI system may be applied to minimally invasive therapies such as tumor ablation, cryosurgery, chemoablation, and ventrolateral thalamotomy for parkinsonism. (author)

  7. Diffusion tensor imaging and magnetic resonance spectroscopy of the brain in a patient with Sturge-Weber syndrome.

    Science.gov (United States)

    Sijens, P E; Gieteling, E W; Meiners, L C; Sival, D A; Potze, J H; Irwan, R; Oudkerk, M

    2006-11-01

    Quantitative brain MR spectroscopy (MRS) and diffusion tensor imaging (DTI) were used to characterize one patient with Sturge-Weber syndrome. Choline increases and N-acetylaspartate decreases were observed in pathologic frontal gray matter tissue compared to contralateral unaffected brain tissue without any change in the diffusion tensor imaging parameters (fractional anisotropy, apparent diffusion coefficient). The N-acetylaspartate decreases and/or choline increases observed here and in eight previously described Sturge-Weber patients probably reflect neuronal loss or dysfunction and demyelination as a result of recurrent seizures.

  8. Diffusion Tensor Imaging and Magnetic Resonance Spectroscopy of the Brain in a Patient with Sturge-Weber Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, P.E.; Gieteling, E.W.; Meiners, L.C.; Sival, D.A.; Potze, J.H.; Irwan, R.; Oudkerk, M. [Univ. Medical Center Groningen (Netherlands). Dept. of Radiology

    2006-11-15

    Quantitative brain MR spectroscopy (MRS) and diffusion tensor imaging (DTI) were used to characterize one patient with Sturge-Weber syndrome. Choline increases and N-acetylaspartate decreases were observed in pathologic frontal gray matter tissue compared to contralateral unaffected brain tissue without any change in the diffusion tensor imaging parameters (fractional anisotropy, apparent diffusion coefficient). The N-acetylaspartate decreases and/or choline increases observed here and in eight previously described Sturge-Weber patients probably reflect neuronal loss or dysfunction and demyelination as a result of recurrent seizures.

  9. Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes.

    NARCIS (Netherlands)

    Brands, A.M.; Kessels, R.P.C.; Hoogma, R.P.L.M.; Henselmans, J.M.L.; Beek-Boter, J.W. van der; Kappelle, L.J.; Haan, E.H.F. de; Biessels, G.J.

    2006-01-01

    Modest cognitive impairment has been reported in young-adult patients with type 1 diabetes. In older patients with type 2 diabetes, cognitive impairments are more pronounced, which might be due to age but also to differential effects of type 1 diabetes and type 2 diabetes on the brain. This study th

  10. Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies.

    Science.gov (United States)

    Tzika, A Aria; Astrakas, Loukas; Cao, Haihui; Mintzopoulos, Dionyssios; Andronesi, Ovidiu C; Mindrinos, Michael; Zhang, Jiangwen; Rahme, Laurence G; Blekas, Konstantinos D; Likas, Aristidis C; Galatsanos, Nikolas P; Carroll, Rona S; Black, Peter M

    2007-08-01

    Advancements in the diagnosis and prognosis of brain tumor patients, and thus in their survival and quality of life, can be achieved using biomarkers that facilitate improved tumor typing. We introduce and implement a combinatorial metabolic and molecular approach that applies state-of-the-art, high-resolution magic angle spinning (HRMAS) proton (1H) MRS and gene transcriptome profiling to intact brain tumor biopsies, to identify unique biomarker profiles of brain tumors. Our results show that samples as small as 2 mg can be successfully processed, the HRMAS 1H MRS procedure does not result in mRNA degradation, and minute mRNA amounts yield high-quality genomic data. The MRS and genomic analyses demonstrate that CNS tumors have altered levels of specific 1H MRS metabolites that directly correspond to altered expression of Kennedy pathway genes; and exhibit rapid phospholipid turnover, which coincides with upregulation of cell proliferation genes. The data also suggest Sonic Hedgehog pathway (SHH) dysregulation may play a role in anaplastic ganglioglioma pathogenesis. That a strong correlation is seen between the HRMAS 1H MRS and genomic data cross-validates and further demonstrates the biological relevance of the MRS results. Our combined metabolic/molecular MRS/genomic approach provides insights into the biology of anaplastic ganglioglioma and a new potential tumor typing methodology that could aid neurologists and neurosurgeons to improve the diagnosis, treatment, and ongoing evaluation of brain tumor patients.

  11. Clinical and Brain Magnetic Resonance Imaging Features in a Cohort of Chinese Patients with Kearns-Sayre Syndrome

    Directory of Open Access Journals (Sweden)

    Meng Yu

    2016-01-01

    Conclusions: The clinical features of KSS evolve dynamically, affecting the cardiac conduction system predominantly, highlighting the significance of ECG monitoring. Brain MRI showed changes involving both the white matter and deep gray nuclei. Clinical presentation or severity of muscle pathological changes is not related to the size of mtDNA deletions.

  12. Functional Magnetic Resonance Imaging of Chronic Dysarthric Speech after Childhood Brain Injury: Reliance on a Left-Hemisphere Compensatory Network

    Science.gov (United States)

    Morgan, Angela T.; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liegeois, Frederique J.

    2013-01-01

    Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize…

  13. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2010-01-01

    Objective: Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and…

  14. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Edmund, Jens M.; Andreasen, Daniel; Mahmood, Faisal;

    2015-01-01

    Background. Radiotherapy based on MRI only (MRI-only RT) shows a promising potential for the brain. Much research focuses on creating a pseudo computed tomography (pCT) from MRI for treatment planning while little attention is often paid to the treatment delivery. Here, we investigate if cone beam...

  15. Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging.

    Science.gov (United States)

    Krauze, Michal T; Mcknight, Tracy R; Yamashita, Yoji; Bringas, John; Noble, Charles O; Saito, Ryuta; Geletneky, Karsten; Forsayeth, John; Berger, Mitchel S; Jackson, Pamela; Park, John W; Bankiewicz, Krystof S

    2005-12-01

    Liposomes loaded with Gadoteridol, in combination with convection-enhanced delivery (CED), offer an excellent option to monitor CNS delivery of therapeutic compounds with MRI. In previous studies, we investigated possible clinical applications of liposomes to the treatment of brain tumors. In this study, up to 700 microl of Gadoteridol/rhodamine-loaded liposomes were distributed in putamen, corona radiata and brainstem of non-human primates. Distribution was monitored by real-time MRI throughout infusion procedures and allowed accurate calculation of volume of distribution within anatomical structures. We found that different regions of the brain gave various volumes of distribution when infused with the same volume of liposome. Based on these findings, distinct distribution pathways within infused structures can be predicted. This work underlines the importance of monitoring drug delivery to CNS and enables accurate delivery of drug-loaded liposomes to specific brain regions with a standard MRI procedure. Findings presented in this manuscript may allow for modeling of parameters used for direct delivery of therapeutics into various regions of the brain.

  16. Resonant magnetic fields from inflation

    CERN Document Server

    Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R

    2012-01-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  17. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    Science.gov (United States)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  18. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    Science.gov (United States)

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  19. 31P nuclear magnetic resonance in vivo spectroscopy of the metabolic changes induced in the awake rat brain during KCN intoxication and its reversal by hydroxocobalamine.

    Science.gov (United States)

    Benabid, A L; Decorps, M; Remy, C; Le Bas, J F; Confort, S; Leviel, J L

    1987-03-01

    Radiofrequency surface coils were chronically implanted in rats, which were subsequently subjected to 31P nuclear magnetic resonance (NMR) investigations at 4.7 T. The implanted coil allowed study of the animals without need for anesthesia, which is a prerequisite for studies of normal brain metabolism. The animals may be kept in the NMR probe for several hours. During subsequent experiments, they may be placed in the same position, therefore allowing follow-up studies for periods as long as 2 months. This method has been used in the study of sublethal KCN intoxication. KCN, a cytochrome c oxidase inhibitor, induces a blockade of cell respiratory processes, which is reflected, in a dose-dependent manner, by a decrease in phosphocreatine content and pH and an increase in inorganic phosphate content, whereas ATP levels remain constant until high doses of KCN (6 mg/kg i.p.) are reached. 31P NMR allows the time course of these metabolic changes to be followed. For high KCN doses, a new peak, termed X, is observed, which is interpreted as being due to a pool of inorganic phosphate at very low pH (5.65), corresponding to a subset of cells that did not survive KCN injury. Hydroxocobalamine, a specific antidote of KCN, suppresses the metabolic changes due to 6 mg/kg of KCN.

  20. Delayed Methylene Blue Improves Lesion Volume, Multi-Parametric Quantitative Magnetic Resonance Imaging Measurements, and Behavioral Outcome after Traumatic Brain Injury.

    Science.gov (United States)

    Talley Watts, Lora; Long, Justin Alexander; Boggs, Robert Cole; Manga, Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2016-01-15

    Traumatic brain injury (TBI) remains a primary cause of death and disability in both civilian and military populations worldwide. There is a critical need for the development of neuroprotective agents that can circumvent damage and provide functional recovery. We previously showed that methylene blue (MB), a U.S. Food and Drug Administration-grandfathered drug with energy-enhancing and antioxidant properties, given 1 and 3 h post-TBI, had neuroprotective effects in rats. This study aimed to further investigate the neuroprotection of delayed MB treatment (24 h postinjury) post-TBI as measured by lesion volume and functional outcomes. Comparisons were made with vehicle and acute MB treatment. Multi-modal magnetic resonance imaging and behavioral studies were performed at 1 and 3 h and 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. We found that delaying MB treatment 24 h postinjury still minimized lesion volume and functional deficits, compared to vehicle-treated animals. The data further support the potential for MB as a neuroprotective treatment, especially when medical teatment is not readily available. MB has an excellent safety profile and is clinically approved for other indications. MB clinical trials on TBI can thus be readily explored.

  1. Routine Magnetic Resonance Imaging at Term-Equivalent Age Detects Brain Injury in 25% of a Contemporary Cohort of Very Preterm Infants

    Science.gov (United States)

    Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula

    2017-01-01

    Introduction In recent years, significant investigation has been undertaken by means of magnetic resonance imaging (MRI) in an attempt to identify preterm infants at risk for adverse outcome. The primary objective is to provide a comprehensive characterization of cerebral injury detected by conventional MRI at term-equivalent age in an unselected, consecutive, contemporary cohort of preterm infants born <32 gestational weeks. Secondly, this study aims to identify risk factors for the different injury types in this population. Methods Data for all preterm infants born <32 gestational weeks and admitted to Innsbruck Medical University Hospital were prospectively collected (October 2010 to December 2015). Cerebral MRI was evaluated retrospectively using a validated scoring system that incorporates intraventricular haemorrhage (IVH), white matter disease (WMD) and cerebellar haemorrhage (CBH). Results 300 infants were included in the study. MRI showed 24.7% of all infants to have some form of brain injury. The most common injury type was IVH (16.0%). WMD and CBH were seen in 10.0% and 8.0%. The prevalence of common neonatal risk factors was greater within the group of infants with CBH. In particular indicators for respiratory disease were observed more often: longer ventilation duration, more frequent need for supplemental oxygen at day 28, higher rates of hydrocortisone treatment. Catecholamine treatment was the only neonatal risk factor that was overrepresented in infants with WMD Discussion Cerebral MRI at term-equivalent age, as addition to cranial ultrasound, detected brain injury in 25% of preterm survivors. The diagnosis of IVH was already made by neonatal ultrasound in most cases. In contrast, only a minority of the CBH and none of the non-cystic WMD have been detected prior to MRI. Decreasing gestational age and neonatal complications involved with immaturity have been identified as risk factors for CBH, whereas WMD was found in relatively mature infants with

  2. Study of Emotional Brain Mechanism Based on Functional Magnetic Resonance Imaging%基于功能磁共振的情绪脑机制研究

    Institute of Scientific and Technical Information of China (English)

    王海玲; 邹凌; 焦竹青; 钱农; 周仁来

    2013-01-01

    为探讨不同效价情绪图片的加工特点,考察被试在对不同效价的情绪图片加工时脑半球上的差异,利用脑功能磁共振成像技术,对情绪加工实验的被试进行数据采集,并对采集的数据用统计参数映射技术进行处理分析.研究发现情绪刺激加工的过程中,脑激活区域明显和前额叶,顶叶相关,而且是情绪功能相关联的主要位置.这表明人类情绪的反应并不仅仅是由边缘系统控制,在情绪刺激作用下,整个丘脑系统,边缘系统都参与其中进而形成一本复杂的情绪中枢机制.%To discuss the emotion processing characteristics of different emotional valance pictures, and study the differences in the cerebral hemisphere under the stimuli of different emotional valance pictures, using the Brain Magnetic Resonance Imaging Technology to collect the data - in Emotion processing experiments, then the collected data is processed and analyzed with Statistical parametric mapping (SPM) technology. It found that in the course of emotional stimulus processing, the brain active region had obvious relationship with prefrontal and parietal lobe, and it's the main position of the emotions associated function. This indicated that the human emotional reaction was not only controlled by the limbic system, under the effects of the emotion stimulus, the whole thalamus system and limbic system were involved, then formed a complex emotion central mechanism.

  3. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2010-01-01

    Full Text Available Background: Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. Aim: This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Materials and Methods: Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. Results: The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII, insula, anterior cingulate cortex (ACC, thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Conclusion: Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  4. Creatine target engagement with brain bioenergetics: a dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression.

    Science.gov (United States)

    Kondo, Douglas G; Forrest, Lauren N; Shi, Xianfeng; Sung, Young-Hoon; Hellem, Tracy L; Huber, Rebekah S; Renshaw, Perry F

    2016-08-01

    Major depressive disorder (MDD) often begins during adolescence and is projected to become the leading cause of global disease burden by the year 2030. Yet, approximately 40 % of depressed adolescents fail to respond to standard antidepressant treatment with a selective serotonin reuptake inhibitor (SSRI). Converging evidence suggests that depression is related to brain mitochondrial dysfunction. Our previous studies of MDD in adult and adolescent females suggest that augmentation of SSRI pharmacotherapy with creatine monohydrate (CM) may improve MDD outcomes. Neuroimaging with phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) can measure the high-energy phosphorus metabolites in vivo that reflect mitochondrial function. These include phosphocreatine (PCr), a substrate for the creatine kinase reaction that produces adenosine triphosphate. As part of the National Institute of Mental Health's experimental medicine initiative, we conducted a placebo-controlled dose-ranging study of adjunctive CM for adolescent females with SSRI-resistant MDD. Participants were randomized to receive placebo or CM 2, 4 or 10 g daily for 8 weeks. Pre- and post-treatment (31)P-MRS scans were used to measure frontal lobe PCr, to assess CM's target engagement with cerebral energy metabolism. Mean frontal lobe PCr increased by 4.6, 4.1 and 9.1 % in the 2, 4 and 10 g groups, respectively; in the placebo group, PCr fell by 0.7 %. There was no group difference in adverse events, weight gain or serum creatinine. Regression analysis of PCr and depression scores across the entire sample showed that frontal lobe PCr was inversely correlated with depression scores (p = 0.02). These results suggest that CM achieves target engagement with brain bioenergetics and that the target is correlated with a clinical signal. Further study of CM as a treatment for adolescent females with SSRI-resistant MDD is warranted.

  5. Developments in boron magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  6. Magnetic resonance imaging of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Kashihara, Kengo; Murata, Hideaki; Ito, Haruhide; Onishi, Hiroaki; Kadoya, Masumi; Suzuki, Masayuki.

    1989-03-01

    Thirteen patients with acoustic neuroma were studied on a 1.5T superconductive magnetic resonance (MR) imager. Acoustic neuromas appeared as lower signal intensity than the surrounding brain stem on T1 weighted image (W.I.), and as higher signal intensity on T2 W.I.. Axial and coronal sections of T1 W.I. were very useful in observing the tumor in the auditory canal and in investigating the anatomical relations of the tumor and the surrounding structures. MR imaging is very excellent examination to make early diagnosis of the acoustic neuroma and preoperative anatomical evaluation.

  7. Sensorineural Hearing Loss after Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Abolfazl Mollasadeghi

    2013-01-01

    Full Text Available Magnetic resonance imaging (MRI devices produce noise, which may affect patient’s or operators’ hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus. In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient’s hearing loss was accompanied with tinnitus and was not improved after 3 months of followup.

  8. Three-dimensional reconstruction of brain structures of the rodent Octodon degus: a brain atlas constructed by combining histological and magnetic resonance images

    OpenAIRE

    Kumazawa-Manita, Noriko; Katayama, Mariko; Hashikawa, Tsutomu; Iriki, Atsushi

    2013-01-01

    Degus (Octodon degus) are rodents that are becoming more widely used in the neuroscience field. Degus display several more complex behaviors than rats and mice, including complicated social behaviors, vocal communications, and tool usage with superb manual dexterity. However, relatively little information is known about the anatomy of degu brains. Therefore, for these complex behaviors to be correlated with specific brain regions, a contemporary atlas of the degu brain is required. This manus...

  9. Magnetic resonance tomography in syringomyelia

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.; Treisch, J.; Hertel, G.; Schoerner, W.; Fiegler, W.

    1985-12-01

    Thirteen patients with a clinical diagnosis of syringomyelia were examined by nuclear tomography (0.35 T magnet) in the spin-echo mode. In all thirteen patients, the T1 images (Se 400/35) showed a longitudinal cavity with a signal intensity of CSF. The shape and extent of the syrinx could be adequately demonstrated in 12 of the 13 examinations. Downward displacement of the cerebellar tonsils was seen in eight cases. The examination took between half and one hour. Advantages of magnetic resonance tomography (nuclear tomography) include the absence of artifacts, images in the line of the lesion and its non-invasiveness.

  10. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review.

    Science.gov (United States)

    Woodfield, Julie; Kealey, Susan

    2015-08-01

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size.

  11. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  12. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Frederiksen, Jette Lautrup Battistini;

    1990-01-01

    In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit...

  13. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging.

    Science.gov (United States)

    Liu, Christina H

    2015-01-01

    MRI and magnetic resonance spectroscopy (MRS) along with computed tomography and PET are the most common imaging modalities used in the clinics to detect structural abnormalities and pathological conditions in the brain. MRI generates superb image resolution/contrast without radiation exposure that is associated with computed tomography and PET; MRS and spectroscopic imaging technologies allow us to measure changes in brain biochemistry. Increasingly, neurobiologists and MRI scientists are collaborating to solve neuroscience problems across sub-cellular through anatomical levels. To achieve successful cross-disciplinary collaborations, neurobiologists must have sufficient knowledge of magnetic resonance principles and applications in order to effectively communicate with their MRI colleagues. This review provides an overview of magnetic resonance techniques and how they can be used to gain insight into the active brain at the anatomical, functional and molecular levels with the goal of encouraging neurobiologists to include MRI/MRS as a research tool in their endeavors.

  14. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  15. Diffusion tensor and volumetric magnetic resonance measures as biomarkers of brain damage in a small animal model of HIV.

    Directory of Open Access Journals (Sweden)

    Margaret R Lentz

    Full Text Available There are currently no widely accepted neuro-HIV small animal models. We wanted to validate the HIV-1 Transgenic rat (Tg as an appropriate neuro-HIV model and then establish in vivo imaging biomarkers of neuropathology, within this model, using MR structural and diffusion tensor imaging (DTI.Young and middle-aged Tg and control rats were imaged using MRI. A subset of middle-aged animals underwent longitudinal repeat imaging six months later. Total brain volume (TBV, ventricular volume (VV and parenchymal volume (PV = TBV-VV were measured. Fractional anisotropy (FA and mean diffusivity (MD values of the corpus callosum (CC were calculated from DTI data.TBV and PV were smaller in Tg compared to control rats in young and middle-aged cohorts (p0.05.We detected brain volume loss in the Tg rat, probably due to astrocytic dysfunction/loss, loss of structural/axonal matrix and striatal neuronal loss as suggested by immunofluorescence. Increased MD and decreased FA in the CC probably reflect microstructural differences between the Tg and Control rats which could include increased extracellular space between white matter tracts, demyelination and axonal degeneration, among other pathologies. We believe that the Tg rat is an adequate model of neuropathology in HIV and that volumetric MR and DTI measures can be potentially used as biomarkers of disease progression.

  16. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  17. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    Science.gov (United States)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  18. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours

    DEFF Research Database (Denmark)

    Kristensen, B.H.; Laursen, F.J.; Logager, V.

    2008-01-01

    distortion within radial distances below 12 cm (2% are observed in low dose areas. Monte Carlo simulations with 4 MV photons show large deviations in dose (>2%) just behind the skull if bone is not segmented. Conclusions: It is feasible to use an MR...... patients with brain tumours are both CT and MR scanned and the defined tumour volumes are compared. Image distortions and dose calculations based on CT density correction, MR unit density and MR bulk density, bone segmentation are performed. Monte Carlo simulations using 4 and 8 MV beams on homogeneous...... and bone segmented mediums are performed. Results: Mean MR and CT tumour volumes of approximately the same size ((V-MR) over bar = 55 +/- 34 cm(3) and (V-CT) over bar = 51 +/- 32 cm(3)) are observed, but for individual patients, small intersection volumes are observed. The MR images show negligible...

  19. Age-related white matter degradation rule of normal human brain: the evidence from diffusion tensor magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiang; Li Baoqing; Shan Baoci

    2014-01-01

    Background Diffusion tensor imaging can evaluate white matter function in human brain.Fractional anisotropy is the most important parameter.This study aimed to find regional reduction of fractional anisotropy (FA) with aging in the whole brain and the changing rules of anisotropy with aging.Methods Fifty volunteers from 20 to 75 years old were divided into five consecutive age groups; a young group and four senior groups.FA values were calculated with diffusion tensor imaging (DTI) studio software.The difference of FA between the young group and the four senior groups were analyzed by analysis of voxel-level height threshold in Statistic Parametric Mapping (SPM),and the regions with decreased FA were obtained.The FA values of these regions were then extracted using an in-house developed program,and a multiple linear regression model was built to assess the influence of age and sex on the FA values of these regions.Results Eight regions,including frontal lobe,postcentral gyrus,optic radiation,hippocampus,cerebella hemisphere,corona radiate,corpus callosum and internal capsule,were found to have decreased FA.There was a strong negative correlation between age and the FA in the frontal lobe,postcentral gyrus,optic radiation,hippocampus,and cerebella hemisphere,while a weaker negative correlation in the corona radiate,corpus callosum,and internal capsule was found.The FA reduction in the frontal lobe,postcentral gyrus,optic radiation,hippocampus and cerebella hemisphere were found earlier than in the corona radiate,corpus callosum and internal capsule.There was no correlation between sex and FA in these regions.Conclusions The FA in the subcortical white matter area reduces earlier than that in deep white matter.The areas with decreased FA continuously enlarge with aqing.The FAs in these regions have a strong negative correlation with age.

  20. Functional magnetic resonance imaging studies of language.

    Science.gov (United States)

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  1. Enhancement of magnetic resonance imaging with metasurfaces

    CERN Document Server

    Slobozhanyuk, A P; Raaijmakers, A J E; Berg, C A T van den; Kozachenko, A V; Dubrovina, I A; Melchakova, I V; Kivshar, Yu S; Belov, P A

    2015-01-01

    Magnetic resonance imaging (MRI) is the cornerstone technique for diagnostic medicine, biology, and neuroscience. This imaging method is highly innovative, noninvasive and its impact continues to grow. It can be used for measuring changes in the brain after enhanced neural activity, detecting early cancerous cells in tissue, as well as for imaging nanoscale biological structures, and controlling fluid dynamics, and it can be beneficial for cardiovascular imaging. The MRI performance is characterized by a signal-to-noise ratio, however the spatial resolution and image contrast depend strongly on the scanner design. Here, we reveal how to exploit effectively the unique properties of metasurfaces for the substantial improvement of MRI efficiency. We employ a metasurface created by an array of wires placed inside the MRI scanner under an object, and demonstrate a giant enhancement of the magnetic field by means of subwavelength near-field manipulation with the metasurface, thus strongly increasing the scanner sen...

  2. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    Science.gov (United States)

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research.

  3. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.

    Science.gov (United States)

    Morris, P G; Feeney, J; Cox, D W; Bachelard, H S

    1985-05-01

    The technique of 31P saturation-transfer n.m.r. was used to determine the forward and the reverse rate constants of creatine phosphotransferase in superfused guinea-pig cerebral tissues in vitro. The calculated forward rate constant of 0.22 +/- 0.03s-1 compared well with a previously reported value for rat brain in vivo [Shoubridge, Briggs & Radda (1982) FEBS Lett. 140, 288-292]. The reverse rate constant was found to be 0.55 +/- 0.10s-1. 3. By using concentrations of ATP and phosphocreatine estimated previously for this superfused preparation [Cox, Morris, Feeney & Bachelard (1983) Biochem. J. 212, 365-370], forward and reverse flux rates were calculated to be 0.68 and 0.72 mumol X s-1 X g-1 respectively. The concordance of forward and reverse fluxes contrasts with the situation observed in vitro in other tissues, and suggests that the creatine phosphotransferase reaction is at equilibrium under the conditions used here. 4. Lowering the concentration of glucose in the superfusing medium from 10mM to 0.5mM had no significant effect on phosphocreatine concentration or on the forward (ATP-generating) flux through creatine phosphotransferase. The results indicate that a normal phosphocreatine content in the presence of lowered glucose availability is reflected by an unchanged turnover rate.

  4. Magnetic Brain Stimulation in ADHD

    OpenAIRE

    2001-01-01

    Transcranial magnetic brain stimulation was performed in 27 children and adolescents, aged 4 to 18 years, with ADHD in the Services of Pediatric Neurology and Clinical Neurophysiology, Miguel Servet Hospital, Zaragoza, Spain.

  5. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    Science.gov (United States)

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  6. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Frederiksen, J L;

    1990-01-01

    In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit......, and the results were comparable to results obtained from similar studies using positron emission tomography. The improved possibility of quantitating the defect of the BBB by MRI may give new information about pathogenesis or etiology, and leads to improved methods in monitoring the efficacy of treatments...

  7. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference?

    Science.gov (United States)

    Toth, Arnold; Kovacs, Noemi; Perlaki, Gabor; Orsi, Gergely; Aradi, Mihaly; Komaromy, Hedvig; Ezer, Erzsebet; Bukovics, Peter; Farkas, Orsolya; Janszky, Jozsef; Doczi, Tamas; Buki, Andras; Schwarcz, Attila

    2013-01-01

    Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected p<0.05) lower, and mean diffusivity (MD) to be higher in the mTBI group in several white matter tracts (FA=40,737; MD=39,078 voxels) compared with controls at 72 hours after injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD over 1 month dominantly in the left hemisphere (FA=3408; MD=7450 voxels). A significant (p<0.05) decrease in cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macrostructural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking microhemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points when performing MRI studies on patients with mTBI.

  8. Evanescent Waves Nuclear Magnetic Resonance.

    Science.gov (United States)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging.

  9. Advances in magnetic resonance 3

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 3, describes a number of important developments which are finding increasing application by chemists. The book contains five chapters and begins with a discussion of how the properties of random molecular rotations reflect themselves in NMR and how they show up, often differently, in other kinds of experiments. This is followed by separate chapters on the Kubo method, showing its equivalence to the Redfield approach in the cases of most general interest; the current state of dynamic nuclear polarization measurements in solutions and what they tell us abou

  10. Introduction to Nuclear Magnetic Resonance

    Science.gov (United States)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  11. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Chu Shuilian; Xiao Dan; Wang Shuangkun; Peng Peng; Xie Teng; He Yong; Wang Chen

    2014-01-01

    Background Nicotine is primarily rsponsible for the highly addictive properties of cigarettes.Similar to other substances,nicotine dependence is related to many important brain regions,particular in mesolimbic reward circuit.This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI),in order to provide the evidence of neurobiological mechanism of smoking.Methods This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement.Sociodemographic,smoking related characteristics and fMRI images were collected and the data analyzed.Results Compared with nonsmokers,smokers showed fALFF increased significantly in the left middle occipital gyrus,left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus,right superior temporal gyrus,right extra nuclear,left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels).Compared with light smokers (pack years ≤20),heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus,right precentral gyrus,and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus,right/left frontal lobe/sub gyral,right/left cerebellum posterior lobe (cluster size >50 voxels).Compared with nonsevere nicotine dependent smokers (Fagerstr(o)m test for nicotine dependence,score ≤6),severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus,right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (duster size >25 voxels).Conclusions In smokers during rest,the activity of addiction related regions were increased and the activity of smoking feeling,memory,related regions were

  12. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    Directory of Open Access Journals (Sweden)

    Qiao J

    2016-09-01

    Full Text Available Jun Qiao,1,2 Guixing Jin,1,2 Licun Lei,3 Lan Wang,1,2 Yaqiang Du,3 Xueyi Wang1,2 1Institute of Mental Health, The First Hospital of Hebei Medical University, 2Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, 3Department of Radiology, The First Hospital of Hebei Medical University, Hebei, People’s Republic of China Objective: To explore the effect of right dorsolateral prefrontal cortex (DLPFC repetitive transcranial magnetic stimulation (rTMS on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS in recently detoxified alcohol-dependent patients. Materials and methods: In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions and the control group (sham stimulation. Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R and Brief Visuospatial Memory Test-Revised (BVMT-R before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA, choline (Cho, and creatine (Cr in bilateral hippocampi before and after treatment. Results: Thirty-eight patients (18 in the experimental group and 20 in the control group were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion: High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. Keywords: alcohol dependence, memory, repetitive transcranial magnetic stimulation, MR spectroscopy

  13. Magnetic resonance imaging tracing of transplanted bone marrow mesenchymal stem cells in a rat model of cardiac arrest-induced global brain ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Fu; Xiangshao Fang; Tong Wang; Jiwen Wang; Jun Jiang; Zhigang Luo; Xiaohui Duan; Jun Shen; Zitong Huang

    2009-01-01

    BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009.MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawley rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n=12 for each group). At 2 hours after resuscitation, 5 x 10 6 Feddex-labeled BMSCs, with protamine sulfate as a carrier, and 5 × 10 6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability

  14. Magnetic Resonance Imaging Features of Neuromyelitis Optica

    Energy Technology Data Exchange (ETDEWEB)

    You, Sun Kyung; Song, Chang June; Park, Woon Ju; Lee, In Ho; Son, Eun Hee [Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2013-03-15

    To report the magnetic resonance (MR) imaging features of the spinal cord and brain in patients of neuromyelitis optica (NMO). Between January 2001 and March 2010, the MR images (spinal cord, brain, and orbit) and the clinical and serologic findings of 11 NMO patients were retrospectively reviewed. The contrast-enhancement of the spinal cord was performed (20/23). The presence and pattern of the contrast-enhancement in the spinal cord were classified into 5 types. Acute myelitis was monophasic in 8 patients (8/11, 72.7%); and optic neuritis preceded acute myelitis in most patients. Longitudinally extensive cord lesion (average, 7.3 vertebral segments) was involved. The most common type was the diffuse and subtle enhancement of the spinal cord with a multifocal nodular, linear or segmental intense enhancement (45%). Most of the brain lesions (5/11, 10 lesions) were located in the brain stem, thalamus and callososeptal interphase. Anti-Ro autoantibody was positive in 2 patients, and they showed a high relapse rate of acute myelitis. Anti-NMO IgG was positive in 4 patients (4/7, 66.7%). The imaging findings of acute myelitis in NMO may helpful in making an early diagnosis of NMO which can result in a severe damage to the spinal cord, and to make a differential diagnosis of multiple sclerosis and inflammatory diseases of the spinal cord such as toxocariasis.

  15. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  16. Magnetic resonance imaging of hemochromatosis arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Eustace, S. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); Buff, B. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); McCarthy, C. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); MacMathuana, P. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); Gilligan, P. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); Ennis, J.T. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland)

    1994-10-01

    This study was undertaken to compare plain film radiography and magnetic resonance imaging in the assessment of hemochromatosis arthropathy of the knees of ten patients with a biopsy-proven diagnosis. Both modalities enabled visualisation of bony degenerative changes; magnetic resonance imaging enabled additional visualization of deformity of both cartilage and menisci. Magnetic resonance imaging failed reliably to confirm the presence of intra-articular iron in the patients studied. No correlation was observed between synovial fluid magnetic resonance signal values, corresponding serum ferritin levels, or the severity of the observed degenerative changes. (orig.)

  17. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    Science.gov (United States)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  18. Analyzing Ph value, energy and phospholipid metabolism of various cerebral tumors and normal brain tissue with 31P magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wei Tan; Guangyao Wu; Junmo Sun

    2006-01-01

    BACKGROUND: 31P magnetic resonance spectroscopy (31P MRS) can be used to non-injuredly and dynamicly detect various metabolites including phosphorus in organis and reflect changes of phospholipid metabolism and energy metabolism in tissue and pH value in cells.OBJECTIVE: To observe changes of pH value, phospholipid metabolism and energy metabolism of various cerebral tumors and normal brain tissue with 31P MRS.DESIGN: Semi-quantitative contrast observation.PARTICIPANTS: A total of 44 patients with cerebral tumor diagnosed with surgery operation were selected from the Department of Magnetic Resonance, Central South Hospital, Wuhan University from September 2004 to June 2006. All the subjects had complete 31P MRS data before steroid and operation. Among them,16 patients had glioma of grade Ⅱ-Ⅲ, 12 spongioblastoma and 16 meningioma. The mean age was (45±6)years. Another 36 subjects without focus on cerebral MRI were regarded as normal group, including 19 males and 18 females, and the mean age was (41±4) years. Included subjects were consent.METHODS: Eclipse1.5T MRS (Philips Company) was used to collect wave spectrum; jMRUI(1.3) was used to analyze experimental data and calculate pH value in voxel and ratios of phosphocreatine (PCr)/inorganic phosphate (Pi), PCr/phosphodiesterase (PDE) and phosphomonoesterase (PME)/β-adenosine triphosphate (β-ATP) of various metabolites. 31P MRS results were compared with t test between tumor patients and normal subjects.MAIN OUTCOME MEASURES: Changes of phospholipid metabolism (PME/PDE), energy metabolism (PCr/ATP) and pH value of various cerebral tumors and normal brain tissues.RESULTS: A total of 44 cases with cerebral tumor and 36 normal subjects were involved in the final analysis. pH value and semi-quantitative measurements of normal brain tissues and various cerebral tumors: ① pH value at top occipital region and temple occipital region of normal brain tissue was 7.04±0.02;PCt/β-ATP was 1.51 ±0.03; PCt/Pi was 2.85

  19. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease.

    Science.gov (United States)

    Jack, Clifford R; Wiste, Heather J; Vemuri, Prashanthi; Weigand, Stephen D; Senjem, Matthew L; Zeng, Guang; Bernstein, Matt A; Gunter, Jeffrey L; Pankratz, Vernon S; Aisen, Paul S; Weiner, Michael W; Petersen, Ronald C; Shaw, Leslie M; Trojanowski, John Q; Knopman, David S

    2010-11-01

    Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer's dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer's Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer's dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were 'amyloid positive' (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were 'amyloid negative' (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan-Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter

  20. Hybrid Method for 3D Segmentation of Magnetic Resonance Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang; ZHANGDazhi; TIANJinwen; LIUJian

    2003-01-01

    Segmentation of some complex images, especially in magnetic resonance brain images, is often difficult to perform satisfactory results using only single approach of image segmentation. An approach towards the integration of several techniques seems to be the best solution. In this paper a new hybrid method for 3-dimension segmentation of the whole brain is introduced, based on fuzzy region growing, edge detection and mathematical morphology, The gray-level threshold, controlling the process of region growing, is determined by fuzzy technique. The image gradient feature is obtained by the 3-dimension sobel operator considering a 3×3×3 data block with the voxel to be evaluated at the center, while the gradient magnitude threshold is defined by the gradient magnitude histogram of brain magnetic resonance volume. By the combined methods of edge detection and region growing, the white matter volume of human brain is segmented perfectly. By the post-processing using mathematical morphological techniques, the whole brain region is obtained. In order to investigate the validity of the hybrid method, two comparative experiments, the region growing method using only gray-level feature and the thresholding method by combining gray-level and gradient features, are carried out. Experimental results indicate that the proposed method provides much better results than the traditional method using a single technique in the 3-dimension segmentation of human brain magnetic resonance data sets.

  1. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Fiorelli

    2015-01-01

    Full Text Available Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression.

  2. Segmentation of neuroanatomy in magnetic resonance images

    Science.gov (United States)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  3. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1988-01-01

    Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....

  4. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1987-01-01

    Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....

  5. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  6. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    Science.gov (United States)

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  7. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.

  8. Malformations of cortical development:3T magnetic resonance imaging features

    Institute of Scientific and Technical Information of China (English)

    Bilal; Battal; Selami; Ince; Veysel; Akgun; Murat; Kocaoglu; Emrah; Ozcan; Mustafa; Tasar

    2015-01-01

    Malformation of cortical development(MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images.

  9. Malformations of cortical development: 3T magnetic resonance imaging features

    Science.gov (United States)

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  10. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    CERN Document Server

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast, perfusion weighted imaging uses tracers to exploit hemodynamic status, which enables researchers and clinicians to consider this imaging modality as an early biomarker of certain brain diseases. In this review, the fundamentals of physics for diffusion and perfusion MR imaging both of which are highly sensitive to microenvironmental alterations at the cellular level as well as their application in the treatment of aging, Alzheimer's disease, brain tumors and cerebral ischemic injury were discussed.

  11. Clinical software VIII for magnetic resonance imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Satoru; Takeo, Kazuhiro [Medical Applications Department, Medical Systems Division, Shimadzu Corporation, Kyoto (Japan)

    2001-02-01

    This report describes the latest techniques of MRA (magnetic resonance angiography) and the brain attack diagnosis protocol which are now effectively utilized in the Shimadzu-Marconi MAGNEX ECLIPSE MRI (magnetic resonance imaging) system (1.5 tesla type) and the MAGNEX POLARIS MRI system (1.0 tesla type). As for the latest techniques for MRA, this report refers to the SLINKY (sliding interleaved ky) technique, which provides high-resolution images over a wide range in the direction of slice, without using contrast agent, and to the iPass technique which enables highly reliable CE-MRA (contrast-enhanced magnetic resonance angiography), through easy and simple operation. Also reported are the techniques of diffusion imaging and perfusion imaging, utilized for stroke assessment. (author)

  12. Magnetic resonance in Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, G.; Scialfa, G.; Biondi, A.; Landoni, L.; Caputo, D.; Cazzullo, C.L.

    1986-07-01

    Magnetic Resonance Imaging was performed in more than 200 patients with clinical suspicion or knowledge of Multiple Sclerosis. One hundred and forty-seven (60 males and 87 females) had MR evidence of multiple sclerosis lesions. The MR signal of demyelinating plaques characteristically has prolonged T1 and T2 relaxation times and the T2-weighted spin-echo sequences are generally superior to the T1-weighted images because the lesions are better visualized as areas of increased signal intensity. MR is also able to detect plaques in the brainstem, cerebellum and within the cervical spinal cord. MR appears to be an important, non-invasive method for the diagnosis of Multiple Sclerosis and has proven to be diagnostically superior to CT, evoked potentials (EP) and CSF examination. In a selected group of 30 patients, with the whole battery of the relevant MS studies, MR was positive in 100%, CT in 33,3%, EP in 56% and CSF examination in 60%. In patients clinically presenting only with signs of spinal cord involvement or optic neuritis or when the clinical presentation is uncertain MR has proven to be a very useful diagnostic tool for diagnosis of MS by demonstrating unsuspected lesions in the cerebral hemispheres.

  13. Aortic dissection: magnetic resonance imaging.

    Science.gov (United States)

    Amparo, E G; Higgins, C B; Hricak, H; Sollitto, R

    1985-05-01

    Fifteen patients with suspected or known aortic dissection were imaged with magnetic resonance (MR). Thirteen of these patients were eventually shown to have dissection. In most instances the diagnosis was established by aortography and/or computed tomography (CT) prior to the MR study. Surgical proof (6/13) and/or aortographic proof (10/13) were available in 11/13 patients with aortic dissection. MR demonstrated the intimal flap and determined whether the dissection was type A or type B. In addition, MR: differentiated between the true and false lumens; determined the origins of the celiac, superior mesenteric, and renal arteries from the true or false lumen in the cases where the dissection extended into the abdominal aorta (8/12); allowed post-surgical surveillance of the dissection; and identified aortoannular ectasia in the three patients who had Marfan syndrome. In addition to the 13 cases with dissection, there were two cases in whom the diagnosis of dissection was excluded by MR. Our early experience suggests that MR can serve as the initial imaging test in clinically suspected cases of aortic dissection and that the information provided by MR is sufficient to manage many cases. Additionally, MR obviates the use of iodinated contrast media.

  14. Magnetic resonance images of hematospermia

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Norio; Miki, Kenta; Kato, Nobuki; Furuta, Nozomu; Ohishi, Yukihiko [Jikei Univ., Tokyo (Japan). School of Medicine; Kondo, Naoya; Tashiro, Kazuya

    1998-12-01

    We performed MRI (magnetic resonance imaging) in the pelvic region of 70 cases with hematospermia and conducted a study on the abnormal MRI findings to which hematospermia could be attributed. We conducted a study on the morphological anomaly and change in the signal intensity in the prostate gland and of the seminal vesicle as well as on the presence or absence of dilation in the plexus venous surrounding the deferent duct or the prostate gland out of the abnormal MRI findings. As for the seminal vesicle, the patients whose seminal vesicle was seen in higher intensity than the prostate gland in T1 weighted images were diagnosed as having hemorrhagic focus and the patients whose seminal vesicle was seen in low intensity both in T1 and T2 weighted images were diagnosed as having fibrosis caused by chronic inflammation. Abnormal MRI findings were seen in 40 out of the 70 cases (57%). Anomaly in the prostate gland was indicated in 6 (9%) cases. Abnormality in the seminal vesicle was indicated in 30 cases (43%) including hemorrhage of seminal vesicle in 25 cases, chronic inflammation in five cases and cyst of seminal vesicle in one case. In conducting an examination of the patients with hematospermia, MRI is the nonivasive and reproducible method and it is possible to identify the hemorrhagic region. Therefore, MRI is thought to be useful to identify the causal organs of hematospermia. (author)

  15. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z.W

    2002-07-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  16. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging

    Science.gov (United States)

    Watanabe, Keita; Kakeda, Shingo; Yoshimura, Reiji; Ide, Satoru; Hayashi, Kenji; Katsuki, Asuka; Umene-Nakano, Wakako; Watanabe, Rieko; Abe, Osamu; Korogi, Yukunori

    2015-01-01

    The effect of the catechol-O-methyltransferase (COMT) Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR)-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects. PMID:26566126

  17. Deep Mining and Analysis for Massive Data of Whole Brain Magnetic Resonance Imaging%海量磁共振全脑影像数据的深度挖掘分析

    Institute of Scientific and Technical Information of China (English)

    王征

    2016-01-01

    Magnetic resonance imaging is one of the most important modern brain imaging methods to carry out biomedicine research. Recently in several national level brain research projects such as the Human Connectome Project and the BRAIN Initiative, magnetic resonance imaging technique has been widely used to acquire whole-brain structure and function maps of network connections. These brain-mapping studies, generally through statistical group comparison between healthy subjects and clinical patients, allow to seek signiifcant pathological differences for providing better guidance for the diagnosis and treatment of mental diseases. However, high-resolution magnetic resonance imaging of the whole brain often produce a large amount of structural and functional connectomics data, demanding effective computing technology to optimize this procedure. We plan first to collect cross-species magnetic resonance imaging data in both human and monkey brains, to develop novel machine learning algorithms for neural information analysis, and to combine evidence of animal models and human clinical trials for better understanding of the pathological mechanisms and for the development of effective therapeutic interventions.%磁共振成像是开展脑科学研究最重要的现代影像方法之一。随着近几年各国脑计划的陆续展开如美国人类连接组计划(Human Connectome Project)和2013年美国奥巴马政府制定的“脑计划”(BRAIN Initiative),磁共振技术已被广泛应用于探索大脑结构和功能网络连接图谱。使用脑网络联接图谱研究情绪障碍类疾病,一般是通过统计性比较正常人和病患的脑网络,寻找有意义的差异特征,为疾病的诊断和治疗提供指导。但是,高分辨的全脑磁共振成像经常产生大量的结构和功能联接图谱数据,因此需要非常有效的计算技术来实现这一过程。我们计划首先建立人-猴相对应的脑疾病影像数据集合,发展适

  18. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Keita Watanabe

    Full Text Available The effect of the catechol-O-methyltransferase (COMT Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects.

  19. Short-term effect of erythropoietin on brain lesions and aquaporin-4 expression in a hypoxic-ischemic neonatal rat model assessed by magnetic resonance diffusion weighted imaging and immunohistochemistry.

    Science.gov (United States)

    Brissaud, Olivier; Villega, Frédéric; Pieter Konsman, Jan; Sanchez, Stéphane; Raffard, Gérard; Franconi, Jean-Michel; Chateil, Jean-François; Bouzier-Sore, Anne-Karine

    2010-08-01

    Erythropoietin (Epo) is an endogenous cytokine that regulates hematopoiesis and is widely used to treat anemia. In addition, it has recently increased interest in the neurosciences since the new concept of Epo as a neuroprotective agent has emerged. The potential protective effect of human recombinant Epo (r-hu-Epo) on a hypoxic-ischemic (HI) pup rat model was studied. Cerebral HI was obtained by permanent left carotid artery ligature of pups followed by a 2-h hypoxia. Three hours after carotid occlusion, brain lesions were assessed by magnetic resonance diffusion weighted imaging. Intraperitoneal administration of r-hu-Epo (30,000 U/kg dose) limited both the HI-induced brain lesion area and the decrease in apparent diffusion coefficient (ADC) in the lesion. To identify potential mechanisms underlying the effects of Epo, immunohistochemical detection of caspase-3 and water channel protein aquaporin-4 (AQP4) were performed. No early apoptosis was detected, but up-regulation of AQP4 expression was observed in HI pups that received r-hu-Epo compared with HI animals without treatment. This study demonstrates an early neuroprotective effect of Epo with regard to brain lesion area and ADC values. One possible mechanism of Epo for decreasing brain edema and cellular swelling could be a better clearance of water excess in brain tissue, a process possibly mediated by AQP4.

  20. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  1. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... in children due to injury, illness or congenital abnormalities. When imaging of a child’s brain and spinal ... to: detect a variety of brain conditions and abnormalities like cysts, tumors, bleeding, swelling, or problems with ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a computer to produce detailed pictures of the brain and other cranial structures that are clearer and ... sensitive imaging test of the head (particularly the brain) in routine clinical practice. top of page What ...

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... treatment for a variety of conditions within the brain, chest, abdomen, pelvis and extremities. Tell your doctor ... or congenital abnormalities. When imaging of a child’s brain and spinal cord is needed, MRI is useful ...

  5. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA is a noninvasive test ... of the major blood vessels throughout your body. It may be performed with or without contrast material ...

  6. Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder

    NARCIS (Netherlands)

    S. Kremer (Stephane); F. Renard (Felix); S. Achard (Sophie); M.A. Lana-Peixoto (Marco A.); J. Palace (Jacqueline); N. Asgari (Nasrin); E.C. Klawiter (Eric C.); S. Tenembaum (Silvia); B. Banwell (Brenda); B.M. Greenberg (Benjamin M.); J.L. Bennett (Jeffrey); M. Levy (Michael); P. Villoslada (Pablo); A. Saiz (Albert Abe); K. Fujihara (Kazuo); K.H. Chan (Koon Ho); S. Schippling (Sven); F. Paul (Friedemann); H.J. Kim (Ho Jin); J. De Seze (Jerome); J.T. Wuerfel (Jens T.); P. Cabre (Philippe); R. Marignier (Romain); T. Tedder (Thomas); E.D. van Pelt - Gravesteijn (Daniëlle); S. Broadley (Simon); T. Chitnis (Tanuja); D. Wingerchuk (Dean); L. Pandit (Lekha); M.I. Leite (M. Isabel); M. Apiwattanakul (Metha); I. Kleiter (Ingo); N. Prayoonwiwat (Naraporn); M. Han (May); K. Hellwig (Kerstin); K. Van Herle (Katja); G. John (Gareth); D.C. Hooper (D. Craig); I. Nakashima (Ichiro); D. Sato (Douglas); M.R. Yeaman (Michael R.); E. Waubant (Emmanuelle); S. Zamvil (Scott); O. Stüve (Olaf); O. Aktas (Orhan); T.J. Smith (Terry J.); A. Jacob (Anu); K. O'Connor (Kevin)

    2015-01-01

    textabstractBrain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other diso

  7. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  8. Enhancement of artificial magnetism via resonant bianisotropy

    CERN Document Server

    Markovich, Dmitry; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2015-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here a new approach for increasing magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer nanoantenna. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of magnetic polarizability, tailoring the later in the dynamical range of 100 % and enhancement up to 36 % relative to performances of standalone spherical particles....

  9. Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  10. Magnetic resonance imaging in the evaluation of cognitive function.

    Science.gov (United States)

    Bigler, Erin D

    2014-10-01

    Image quality of magnetic resonance imaging (MRI) scans of the brain currently approximate gross anatomy as would be viewed at autopsy. During the first decade of the 21st Century incredible advances in image processing and quantification have occurred permitting more refined methods for studying brain-behavior-cognitive functioning. The current presentation overviews the current status of MRI methods for routine clinical assessment of brain pathology, how these techniques identify neuropathology and how pathological findings are quantified. Diffusion tensor imaging (DTI), functional MRI (fMRI), and resting state fMRI are all reviewed, emphasizing how these techniques permit an examination of brain function and connectivity. General regional relationships of brain function associated with cognitive control will be highlighted.

  11. Magnetic Resonance Image Segmentation and its Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Rahul R. Ambalkar

    2013-02-01

    Full Text Available Image processing techniques make it possible to extract meaningful information from medical images. Magnetic resonance (MR imaging has been widely applied in biological research and diagnostics because of its excellent soft tissue contrast, non-invasive character, high spatial resolution and easy slice selection at any orientation. The MRI-based brain volumetric is concerned with the analysis of volumes and shapes of the structural components of the human brain. It also provides a criterion, by which we recognize the presence of degenerative diseases and characterize their rates of progression to make the diagnosis and treatments as a easy task. In this paper we have proposed an automated method for volumetric measurement of Magnetic Resonance Imaging and used Self Organized Map (SOM clustering method for their segmentations. We have used the MRI data set of 61 slices of 256×256 pixels in DICOM standard format

  12. Familial Essential Tremor Studied With Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Hernandez, A.; Salgado, P.; Gil, A.; Barrios, F. A.

    2003-09-01

    Functional Magnetic Resonance Imaging has become an important analytical tool to study neurodegenerative diseases. We applied the EPI-BOLD functional Magnetic Resonance Imaging technique to acquire functional images of patients with familial essential tremor (FET) disorder and healthy control volunteers, during a motor task activity. Functional and anatomic images were used to produce the brain activation maps of the patients and volunteers. These functional maps of the primary somatosensorial and motor cortexes of patients and control subjects were compared for functional differences per subject. The averaged functional brain images of eight of each case were acquired were, it can be clearly observed the differences in active zones. The results presented in this work show that there are differences in the functional maps during motor task activation between control subjects and FET patients suggesting a cerebral functional reorganization that can be mapped with BOLD-fMRI.

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... help detect certain chronic diseases of the nervous system, such as multiple sclerosis diagnose problems with the ... the magnet. Some MRI units, called short-bore systems , are designed so that the magnet does not ...

  14. Magnetic Resonance Imaging (MRI) - Spine

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  17. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T.

    Science.gov (United States)

    Chiu, Pui-Wai; Mak, Henry Ka-Fung; Yau, Kelvin Kai-Wing; Chan, Queenie; Chang, Raymond Chuen-Chung; Chu, Leung-Wing

    2014-02-01

    Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22-82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.

  18. Tuberous sclerosis complex: Diagnostic role of magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Virendra N Sehgal

    2015-01-01

    Full Text Available Tuberous sclerosis complex (TSC is a well-known clinical entity, characterized by facial angio-fibroma, shagreen patch, and hypo-melanotic, and confetti-like skin lesions. An exquisite fresh case is being narrated, emphasizing its microscopic pathology. The role of magnetic resonance imaging of the brain, in particular, is highlighted to define the large variety of neurological abrasions for determining its future progression.

  19. Using magnetic resonance imaging to assess visual deficits

    OpenAIRE

    Brown, Holly Diane; Woodall, Rachel Louise; Kitching, Rebecca Elizabeth; Baseler, Heidi A.; Morland, Antony B.

    2016-01-01

    Abstract PURPOSE: Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post-mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non-invasively examine the effects of eye disease on the whole vi...

  20. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    Neurosurgical resection of brain lesions aims to maximize excision while minimizing the risk of permanent injury to the surrounding intact brain tissue and resulting neurological deficits. While direct electrical cortical stimulation at the time of surgery allows the precise identification...... of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical...... motor as well as higher cognitive functions (i.e. language). Pre-operative fMRI can be used to identify the brain regions that are activated during specific sensorimotor or language tasks. TMS is able to disrupt neuronal processing in the targeted brain area which in turn may affect task performance...

  1. Magnetic resonance spectroscopy may hold promise in studying metabolites, tissues

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-24

    Almost 15 years ago, in a basement at Chicago's University of Illinois Medical Center, Michael Barany, MD, PhD, measured phosphorus metabolites in an intact frog muscle using magnetic resonance spectroscopy (MRS). Prior to that, chemists used spectroscopy solely to analyze the contents of test tubes. Only a British group preceded Barany in proving that it would work in tissue as well. Today, he does spectroscopy clinically, one day a week, at the Greenberg Radiology Institute in Highland Park, IL, north of Chicago. Barany says that he can distinguish malignant from benign tumors in the living brain. The tool he uses is a standard magnetic resonance imaging (MRI) machine. While MRI capabilities have forged ahead, human MRS has been awaiting improvements in magnet and computer technology. Barany is one of a number of researchers who, since the early 1980s, have been developing MRS technology and techniques so that it can be done in the human body.

  2. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  3. Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations

    Directory of Open Access Journals (Sweden)

    van Rossum Albert C

    2009-03-01

    Full Text Available Abstract These reporting guidelines are recommended by the Society for Cardiovascular Magn