WorldWideScience

Sample records for brain integrating models

  1. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor. PMID:18450536

  2. Allostasis and the Human Brain: Integrating Models of Stress from the Social and Life Sciences

    Science.gov (United States)

    Ganzel, Barbara L.; Morris, Pamela A.; Wethington, Elaine

    2010-01-01

    We draw on the theory of allostasis to develop an integrative model of the current stress process that highlights the brain as a dynamically adapting interface between the changing environment and the biological self. We review evidence that the core emotional regions of the brain constitute the primary mediator of the well-established association…

  3. Neurocomputational approaches to modelling multisensory integration in the brain: a review.

    Science.gov (United States)

    Ursino, Mauro; Cuppini, Cristiano; Magosso, Elisa

    2014-12-01

    The Brain's ability to integrate information from different modalities (multisensory integration) is fundamental for accurate sensory experience and efficient interaction with the environment: it enhances detection of external stimuli, disambiguates conflict situations, speeds up responsiveness, facilitates processes of memory retrieval and object recognition. Multisensory integration operates at several brain levels: in subcortical structures (especially the Superior Colliculus), in higher-level associative cortices (e.g., posterior parietal regions), and even in early cortical areas (such as primary cortices) traditionally considered to be purely unisensory. Because of complex non-linear mechanisms of brain integrative phenomena, a key tool for their understanding is represented by neurocomputational models. This review examines different modelling principles and architectures, distinguishing the models on the basis of their aims: (i) Bayesian models based on probabilities and realizing optimal estimator of external cues; (ii) biologically inspired models of multisensory integration in the Superior Colliculus and in the Cortex, both at level of single neuron and network of neurons, with emphasis on physiological mechanisms and architectural schemes; among the latter, some models exhibit synaptic plasticity and reproduce development of integrative capabilities via Hebbian-learning rules or self-organizing maps; (iii) models of semantic memory that implement object meaning as a fusion between sensory-motor features (embodied cognition). This overview paves the way to future challenges, such as reconciling neurophysiological and Bayesian models into a unifying theory, and stimulates upcoming research in both theoretical and applicative domains. PMID:25218929

  4. Integrated modeling of PET and DTI information based on conformal brain mapping

    Science.gov (United States)

    Zou, Guangyu; Xi, Yongjian; Heckenburg, Greg; Duan, Ye; Hua, Jing; Gu, Xiangfeng

    2006-03-01

    Recent advances in imaging technologies, such as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and Diffusion Tensor Imaging (DTI) have accelerated brain research in many aspects. In order to better understand the synergy of the many processes involved in normal brain function, integrated modeling and analysis of MRI, PET, and DTI is highly desirable. Unfortunately, the current state-of-art computational tools fall short in offering a comprehensive computational framework that is accurate and mathematically rigorous. In this paper we present a framework which is based on conformal parameterization of a brain from high-resolution structural MRI data to a canonical spherical domain. This model allows natural integration of information from co-registered PET as well as DTI data and lays the foundation for a quantitative analysis of the relationship between diverse data sets. Consequently, the system can be designed to provide a software environment able to facilitate statistical detection of abnormal functional brain patterns in patients with a large number of neurological disorders.

  5. The effects of ultrasound on BBB integration in ischemic brain injury model

    Directory of Open Access Journals (Sweden)

    Shuaib A.

    2008-06-01

    Full Text Available Background: Ultrasound (US has been used in neuroprotection after cerebral ischemia, however the mechanism of action remains unclearly. We have previously shown the protective effect of ultrasound on infarction volume and brain edema in ischemic brain injured at normothermic condition. Ultrasound may also amplify the effect of fibrinolytic medications in thrombolysis process .We have also shown that hyperthermia can exacerbate cerebral ischemic injury and that the efficacy of tissue plasminogen activator (tPA is reduced in the presence of hyperthermia. In this study, the effects of US alone or in combination with tPA on brain ischemic injury were evaluated.Methods: Focal ischemic brain injury was induced by emblazing a pre-formed clot into the middle cerebral artery in rats. Principally, we examined whether US can reduce the perfusion deficits and, the damage of blood- brain barrier (BBB in the ischemic injured brain. There are two series of experiments at this study .in the first series, animals were randomly assigned to four groups (n=7 per group as follows: 1-control (saline, 2-US (1W/cm2, 10 duty cycle , 3- US+high- tPA (1W/cm2, 10 duty cycle +20 mg/kg and 4- high -tPA (20 mg/kg. We also examined the effects of US and tPA on BBB integrity after ischemic injury. The animals were assigned into four groups (n=7 per group, treatment is the same as above. BBB permeability was assessed by the Evans blue (EB extravasations method at 8 h after MCA occlusion. BBB permeability was evaluated by fluorescent detection of extravagated Evans blue dye and Perfusion deficits were analyzed using an Evans blue staining procedure. The perfused microvessels in the brain were visualized using fluorescent microscopy. Areas of perfusion deficits in the brain were traced, calculated and expressed in mm2.Results: The results showed that US improved neurological deficits significantly (p<0.05. The administration of US significantly decreased perfusion deficits and BBB

  6. Modeling community integration in workers with delayed recovery from mild traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, T.; Shapiro, C. M.; Mollayeva, S.;

    2015-01-01

    assessments, and insurers' referral files. Community Integration Questionnaire (CIQ) scores were compared using analysis of variance or Spearman's correlation tests. Stepwise multivariable linear regression models were used to evaluate the associations with CI. Results: Ninety-four workers with mTBI (45......Background: Delayed recovery in persons after mild traumatic brain injury (mTBI) is poorly understood. Community integration (CI) is endorsed by persons with neurological disorders as an important outcome. We aimed to describe CI and its associated factors in insured Ontario workers with delayed...... recovery following mTBI. Methods: A cross-sectional study of insured workers in the chronic phase following mTBI was performed at a rehabilitation hospital in Ontario, Canada. Sociodemographic, occupational, injury-related, clinical, and claim-related data were collected from self-reports, medical...

  7. MRI confirms loss of blood-brain barrier integrity in a mouse model of disseminated candidiasis.

    Science.gov (United States)

    Navarathna, Dhammika H M L P; Munasinghe, Jeeva; Lizak, Martin J; Nayak, Debasis; McGavern, Dorian B; Roberts, David D

    2013-09-01

    Disseminated candidiasis primarily targets the kidneys and brain in mice and humans. Damage to these critical organs leads to the high mortality associated with such infections, and invasion across the blood-brain barrier can result in fungal meningoencephalitis. Candida albicans can penetrate a brain endothelial cell barrier in vitro through transcellular migration, but this mechanism has not been confirmed in vivo. MRI using the extracellular vascular contrast agent gadolinium diethylenetriaminepentaacetic acid demonstrated that integrity of the blood-brain barrier is lost during C. albicans invasion. Intravital two-photon laser scanning microscopy was used to provide the first real-time demonstration of C. albicans colonizing the living brain, where both yeast and filamentous forms of the pathogen were found. Furthermore, we adapted a previously described method utilizing MRI to monitor inflammatory cell recruitment into infected tissues in mice. Macrophages and other phagocytes were visualized in kidney and brain by the administration of ultrasmall iron oxide particles. In addition to obtaining new insights into the passage of C. albicans across the brain microvasculature, these imaging methods provide useful tools to study further the pathogenesis of C. albicans infections, to define the roles of Candida virulence genes in kidney versus brain infection and to assess new therapeutic measures for drug development.

  8. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS).

  9. Community-integrated brain injury rehabilitation: Treatment models and challenges for civilian, military, and veteran populations.

    Science.gov (United States)

    Trudel, Tina M; Nidiffer, F Don; Barth, Jeffrey T

    2007-01-01

    Traumatic brain injury (TBI) is a major health problem in civilian, military, and veteran populations. Individuals experiencing moderate to severe TBI require a continuum of care involving acute hospitalization and postacute rehabilitation, including community reintegration and, one would hope, a return home to function as a productive member of the community. In the military, the goal is to help individuals with TBI return to active duty or make an optimal return to civilian life if the extent of their injuries necessitates a "medical board" discharge. Whether civilian, military, or veteran with TBI, individuals who move beyond the need to live in a facility must be reintegrated back into the community. This article discusses four treatment models for community reintegration, reviews treatment standardization and outcome issues, and describes a manualized rehabilitation pilot program designed to provide community reintegration and return to duty/work for civilians, veterans, and military personnel with TBI.

  10. Markers for blood-brain barrier integrity

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld;

    2015-01-01

    In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain...... known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction....... There is no single marker suitable for all purposes. A combination of different sized, visualizable dextrans and radiolabeled molecules currently seems to be the most appropriate approach for qualitative and quantitative assessment of barrier integrity....

  11. Bayesian Models of Brain and Behaviour

    OpenAIRE

    Penny, William

    2012-01-01

    This paper presents a review of Bayesian models of brain and behaviour. We first review the basic principles of Bayesian inference. This is followed by descriptions of sampling and variational methods for approximate inference, and forward and backward recursions in time for inference in dynamical models. The review of behavioural models covers work in visual processing, sensory integration, sensorimotor integration, and collective decision making. The review of brain models covers a range of...

  12. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  13. Integrating Retinoic Acid Signaling with Brain Function

    Science.gov (United States)

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  14. The modular and integrative functional architecture of the human brain.

    Science.gov (United States)

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions.

  15. The modular and integrative functional architecture of the human brain.

    Science.gov (United States)

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  16. Apolipoprotein E Regulates the Integrity of Tight Junctions in an Isoform-dependent Manner in an in Vitro Blood-Brain Barrier Model*

    OpenAIRE

    Nishitsuji, Kazuchika; Hosono, Takashi; Nakamura, Toshiyuki; Bu, Guojun; Michikawa, Makoto

    2011-01-01

    Apolipoprotein E (apoE) is a major apolipoprotein in the brain. The ϵ4 allele of apoE is a major risk factor for Alzheimer disease, and apoE deficiency in mice leads to blood-brain barrier (BBB) leakage. However, the effect of apoE isoforms on BBB properties are as yet unknown. Here, using an in vitro BBB model consisting of brain endothelial cells and pericytes prepared from wild-type (WT) mice, and primary astrocytes prepared from human apoE3- and apoE4-knock-in mice, we show that the barri...

  17. Integrating neuroinformatics tools in TheVirtualBrain

    Directory of Open Access Journals (Sweden)

    M Marmaduke Woodman

    2014-04-01

    Full Text Available TheVirtualBrain (TVB is a neuroinformatics Python package representing theconvergence of clinical, systems, and theoretical neuroscience in the analysis,visualization and modeling of neural and neuroimaging dynamics. TVB iscomposed of a flexible simulator for neural dynamics measured across scalesfrom local populations to large-scale dynamics measured byelectroencephalography (EEG, magnetoencephalography (MEG and functionalmagnetic resonance imaging (fMRI, and core analytic and visualizationfunctions, all accessible through a web browser user interface. A datatypesystem modeling neuroscientific data ties together these pieces with persistentdata storage, based on a combination of SQL & HDF5. These datatypes combinewith adapters allowing TVB to integrate other algorithms or computationalsystems. TVB provides infrastructure for multiple projects and multiple users,possibly participating under multiple roles. For example, a clinician mightimport patient data to identify several potential lesion points in thepatient's connectome. A modeler, working on the same project, tests thesepoints for viability through whole brain simulation, based on the patient'sconnectome, and subsequent analysis of dynamical features. TVB also drivesresearch forward: the simulator itself represents the culmination of severalsimulation frameworks in the modeling literature. The availability of thenumerical methods, set of neural mass models and forward solutions allows forthe construction of a wide range of brain-scale simulation scenarios. Thispaper briefly outlines the history and motivation for TVB, describing theframework and simulator, giving usage examples in the web UI and Pythonscripting.

  18. Integrating neuroinformatics tools in TheVirtualBrain.

    Science.gov (United States)

    Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617

  19. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model.

  20. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    Directory of Open Access Journals (Sweden)

    Ilya eZaslavsky

    2014-09-01

    Full Text Available Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today’s data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI. A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS, a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML: XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POIs, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas

  1. Integrable Bogoliubov Transform and Integrable Model

    Institute of Scientific and Technical Information of China (English)

    王宁

    2003-01-01

    By defining Bogoliubov transform as a function of parameters, the integrability of the Bogoliubov transform in parameter space is investigated. It is shown that integrable Bogoliubov transform is closely related to the known integrable model. The relation between the integrable Bogoliubov transform and geometric phase of vacuum induced by the Bogoliubov transform is also discussed.

  2. Integrated Modeling of Telescopes

    CERN Document Server

    Andersen, Torben

    2011-01-01

    With increasingly complex and costly opto-mechanical systems, there is a growing need for reliable computer modeling and simulation. The field of integrated modeling, combining optics, mechanics, control engineering, and other disciplines, is the subject of this book. Although the book primarily focuses on ground-based optical telescopes, the techniques introduced are applicable also to other wavelengths and to other opto-mechanical applications on the ground or in space. Basic tools of integrated modeling are introduced together with concepts of ground-based telescopes. Modeling of optical systems, structures, wavefront control systems with emphasis on segmented mirror control, and active and adaptive optics are described together with a variety of noise sources; many examples are included in this book. Integrated Modeling of Telescopes is a text for physicists and engineers working in the field of opto-mechanical design and wavefront control, but it will also be valuable as a textbook for PhD students.

  3. Work-up times in an integrated brain cancer pathway

    DEFF Research Database (Denmark)

    Lund Laursen, Emilie; Rasmussen, Birthe Krogh

    2012-01-01

    The integrated brain cancer pathway (IBCP) aims to ensure fast-track diagnostics and treatment for brain cancers in Denmark. This paper focuses on the referral pattern and the time frame of key pathway elements during the first two years following implementation of the IBCP in a regional neurolog...

  4. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David;

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions...

  5. Searching for the one and many emotional brains. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Armony, Jorge L.

    2015-06-01

    Over the past hundred years or so, several neurally-based, or at least neurally-inspired, models of emotion have been proposed, with varying degrees of acceptance and success. Early ones were mostly based on data obtained from experiments conducted in non-human animals using classical conditioning paradigms, thus focusing on defensive (threat) and appetitive (reward) behaviors. Some features of the models were sometimes confirmed as being also applicable to humans, usually in experiments with patients suffering from focal brain lesions - although inconsistent, or even contradictory findings were often reported.

  6. Hierarchical models in the brain.

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2008-11-01

    Full Text Available This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.

  7. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  8. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    International Nuclear Information System (INIS)

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm2, 54 gradient directions) and low angular resolution (b = 1000 s/mm2, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  9. An Embodied Brain Model of the Human Foetus

    OpenAIRE

    Yasunori Yamada; Hoshinori Kanazawa; Sho Iwasaki; Yuki Tsukahara; Osuke Iwata; Shigehito Yamada; Yasuo Kuniyoshi

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences rela...

  10. New Ideas for Brain Modelling

    Directory of Open Access Journals (Sweden)

    Kieran Greer

    2016-01-01

    Full Text Available This paper describes some biologically-inspired processes that could be used to build the sort of networks that we associate with the human brain. New to this paper, a ‘refined’ neuron will be proposed. This is a group of neurons that by joining together can produce a more analogue system, but with the same level of control and reliability that a binary neuron would have. With this new structure, it will be possible to think of an essentially binary system in terms of a more variable set of values. The paper also shows how recent research can be combined with established theories, to produce a more complete picture.The propositions are largely in line with conventional thinking, but possibly with one or two more radical suggestions. An earlier cognitive model can be filled in with more specific details, based on the new research results, where the components appear to fit together almost seamlessly. The intention of the research has been to describe plausible ‘mechanical’ processes that can produce the appropriate brain structures and mechanisms, but that could be used without the magical ‘intelligence’ part that is still not fully understood.There are also some important updates from an earlier version of this paper.Keywords: neuron, neural network, cognitive model, self-organise, analogue, resonance.

  11. Neurocomputational models of brain disorders

    NARCIS (Netherlands)

    Cutsuridis, Vassilis; Heida, Tjitske; Duch, Wlodek; Doya, Kenji

    2011-01-01

    Recent decades have witnessed dramatic accumulation of knowledge about the genetic, molecular, pharmacological, neurophysiological, anatomical, imaging and psychological characteristics of brain disorders. Despite these advances, however, experimental brain science has offered very little insight in

  12. Bayesian network models in brain functional connectivity analysis

    OpenAIRE

    Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li

    2013-01-01

    Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...

  13. Integrated Assessment Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

    2012-10-31

    This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

  14. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten;

    Functional and structural magnetic resonance imaging have become the most important noninvasive windows to the human brain. A major challenge in the analysis of brain networks is to establish the similarities and dissimilarities between functional and structural connectivity. We formulate a non......-parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...... significant structures that are consistently shared across subjects and data splits. This provides an unsupervised approach for modeling of structure-function relations in the brain and provides a general framework for multimodal integration....

  15. Integrated Environmental Assessment Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guardanz, R.; Gimeno, B. S.; Bermejo, V.; Elvira, S.; Martin, F.; Palacios, M.; Rodriguez, E.; Donaire, I. [Ciemat, Madrid (Spain)

    2000-07-01

    This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.

  16. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    Science.gov (United States)

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  17. Business and technology integrated model

    OpenAIRE

    Noce, Irapuan; Carvalho, João Álvaro

    2011-01-01

    There is a growing interest in business modeling and architecture in the areas of management and information systems. One of the issues in the area is the lack of integration between the modeling techniques that are employed to support business development and those used for technology modeling. This paper proposes a modeling approach that is capable of integrating the modeling of the business and of the technology. By depicting the business model, the organization structure and the technolog...

  18. Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: Estimating time varying CSF drug concentrations and their variability using in vitro data.

    Science.gov (United States)

    Gaohua, Lu; Neuhoff, Sibylle; Johnson, Trevor N; Rostami-Hodjegan, Amin; Jamei, Masoud

    2016-06-01

    A 4-compartment permeability-limited brain (4Brain) model consisting of brain blood, brain mass, cranial and spinal cerebrospinal fluid (CSF) compartments has been developed and incorporated into a whole body physiologically-based pharmacokinetic (PBPK) model within the Simcyp Simulator. The model assumptions, structure, governing equations and system parameters are described. The model in particular considers the anatomy and physiology of the brain and CSF, including CSF secretion, circulation and absorption, as well as the function of various efflux and uptake transporters existing on the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB), together with the known parameter variability. The model performance was verified using in vitro data and clinical observations for paracetamol and phenytoin. The simulated paracetamol spinal CSF concentration is comparable with clinical lumbar CSF data for both intravenous and oral doses. Phenytoin CSF concentration-time profiles in epileptic patients were simulated after accounting for disease-induced over-expression of efflux transporters within the BBB. Various 'what-if' scenarios, involving variation of specific drug and system parameters of the model, demonstrated that the 4Brain model is able to simulate the possible impact of transporter-mediated drug-drug interactions, the lumbar puncture process and the age-dependent change in the CSF turnover rate on the local PK within the brain. PMID:27236639

  19. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  20. Simple models of human brain functional networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  1. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine.

    Science.gov (United States)

    Kircher, David A; Silvis, Mark R; Cho, Joseph H; Holmen, Sheri L

    2016-01-01

    The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases. PMID:27598148

  2. An integrated network model of psychotic symptoms.

    Science.gov (United States)

    Looijestijn, Jasper; Blom, Jan Dirk; Aleman, André; Hoek, Hans W; Goekoop, Rutger

    2015-12-01

    The full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to impaired cognitive functioning and social factors. We aimed to integrate these factors in a single mathematical model based on network theory. At the microscopic level this model explains positive symptoms of psychosis in terms of experiential equivalents of robust, high-frequency attractor states of neural networks. At the mesoscopic level it explains them in relation to global brain states, and at the macroscopic level in relation to social-network structures and dynamics. Due to the scale-free nature of biological networks, all three levels are governed by the same general laws, thereby allowing for an integrated model of biological, psychological, and social phenomena involved in the mediation of positive symptoms of psychosis. This integrated network model of psychotic symptoms (INMOPS) is described together with various possibilities for application in clinical practice. PMID:26432501

  3. An integrated network model of psychotic symptoms.

    Science.gov (United States)

    Looijestijn, Jasper; Blom, Jan Dirk; Aleman, André; Hoek, Hans W; Goekoop, Rutger

    2015-12-01

    The full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to impaired cognitive functioning and social factors. We aimed to integrate these factors in a single mathematical model based on network theory. At the microscopic level this model explains positive symptoms of psychosis in terms of experiential equivalents of robust, high-frequency attractor states of neural networks. At the mesoscopic level it explains them in relation to global brain states, and at the macroscopic level in relation to social-network structures and dynamics. Due to the scale-free nature of biological networks, all three levels are governed by the same general laws, thereby allowing for an integrated model of biological, psychological, and social phenomena involved in the mediation of positive symptoms of psychosis. This integrated network model of psychotic symptoms (INMOPS) is described together with various possibilities for application in clinical practice.

  4. Branes and integrable lattice models

    CERN Document Server

    Yagi, Junya

    2016-01-01

    This is a brief review of my work on the correspondence between four-dimensional $\\mathcal{N} = 1$ supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.

  5. Whole Brain Radiotherapy With Hippocampal Avoidance and Simultaneously Integrated Brain Metastases Boost: A Planning Study

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility of using tomotherapy to deliver whole brain radiotherapy with hippocampal avoidance, hypothesized to reduce the risk of memory function decline, and simultaneously integrated boost to brain metastases to improve intracranial tumor control. Methods and Materials: Ten patients treated with radiosurgery and whole brain radiotherapy underwent repeat planning using tomotherapy with the original computed tomography scans and magnetic resonance imaging-computed tomography fusion-defined target and normal structure contours. The individually contoured hippocampus was used as a dose-limiting structure (2 and 5.8 ± 1.9 Gy2 for 2.5- and 1.0-cm FW, respectively. The mean treatment delivery time for the 2.5- and 1.0-cm FW plans was 10.2 ± 1.0 and 21.8 ± 1.8 min, respectively. Conclusion: Composite tomotherapy plans achieved three objectives: homogeneous whole brain dose distribution equivalent to conventional whole brain radiotherapy; conformal hippocampal avoidance; and radiosurgically equivalent dose distributions to individual metastases

  6. Human emotion in the brain and the body: Why language matters. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Herbert, Cornelia

    2015-06-01

    What is an Emotion? This question has fascinated scientific research since William James. Despite the fact that a consensus has been reached about the biological origin of emotions, uniquely human aspects of emotions are still poorly understood. One of these blind spots concerns the relationship between emotion and human language. Historically, many theories imply a duality between emotions on the one hand and cognitive functions such as language on the other hand. Especially for symbolic forms of written language and word processing, it has been assumed that semantic information would bear no relation to bodily, affective, or sensorimotor processing (for an overview see Ref. [1]). The Quartet Theory proposed by Koelsch and colleagues [2] could provide a solution to this problem. It offers a novel, integrative neurofunctional model of human emotions which considers language and emotion as closely related. Crucially, language - be it spoken or written - is assumed to "regulate, modulate, and partly initiate" activity in core affective brain systems in accord with physical needs and individual concerns [cf. page 34, line 995]. In this regard, the Quartet Theory combines assumptions from earlier bioinformational theories of emotions [3], contemporary theories of embodied cognition [4], and appraisal theories such as the Component Process Model [5] into one framework, thereby providing a holistic model for the neuroscientific investigation of human emotion processing at the interface of emotion and cognition, mind and body.

  7. IMMIGRANTS’ INTEGRATION MODELS

    Directory of Open Access Journals (Sweden)

    CARMEN UZLĂU

    2012-05-01

    Full Text Available In the context of the European population aging trend, and while the birth rate is still at a low level, the immigrants may contribute to the support of the EU economy and to finance the national social protection systems. But this would be possible only if they have been fully integrated in the host countries, the integration policies being a task of the national governments. The European Union may still offer support and stimulation through financing, policies coordination and good practices exchange facilitation. The new measures should encourage local level actions, including cooperation between local authorities, employers, migrants’ organizations, service providers and local population. Within the EU, there live 20.1 million immigrants (approximately 4% of the entire population coming from outside European area. An important element of the common EU policy on immigration is the one regarding the development of a policy on immigrants’ integration, which should provide a fair treatment within the member states, and guarantee rights and obligations comparable with the ones of the Union citizens.

  8. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... be used. Within a two year period, no statistical inter- or intra-brain difference in the diffusion coefficient was found in perfusion fixated minipig brains. However, a decreasing tendency in the diffusion coefficient was found at the last time points about 24 months post mortem and might be explained...... experiment. This includes the selection of independent anatomical data to be used to derive a gold standard, the selection of a gyrated animal model in place of the human brain, objective selection of the seed region to initiate, and a waypoint region to constrain the tractography results....

  9. Whole brain helical Tomotherapy with integrated boost for brain metastases in patients with malignant melanoma–a randomized trial

    International Nuclear Information System (INIS)

    Patients with malignant melanoma may develop brain metastases during the course of the disease, requiring radiotherapeutic treatment. In patients with 1–3 brain metastases, radiosurgery has been established as a treatment option besides surgery. For patients with 4 or more brain metastases, whole brain radiotherapy is considered the standard treatment. In certain patients with brain metastases, radiation treatment using whole brain helical Tomotherapy with integrated boost and hippocampal-sparing may improve prognosis of these patients. The present prospective, randomized two-armed trial aims to exploratory investigate the treatment response to conventional whole brain radiotherapy applying 30 Gy in 10 fractions versus whole brain helical Tomotherapy applying 30 Gy in 10 fractions with an integrated boost of 50 Gy to the brain metastases as well as hippocampal-sparing in patients with brain metastases from malignant melanoma. The main inclusion criteria include magnetic resonance imaging confirmed brain metastases from a histopathologically confirmed malignant melanoma in patients with a minimum age of 18 years. The main exclusion criteria include a previous radiotherapy of the brain and not having recovered from acute high-grade toxicities of prior therapies. The primary endpoint is treatment-related toxicity. Secondary endpoints include imaging response, local and loco-regional progression-free survival, overall survival and quality of life

  10. Nano-Modeling and Computation in Bio and Brain Dynamics

    Directory of Open Access Journals (Sweden)

    Paolo Di Sia

    2016-04-01

    Full Text Available The study of brain dynamics currently utilizes the new features of nanobiotechnology and bioengineering. New geometric and analytical approaches appear very promising in all scientific areas, particularly in the study of brain processes. Efforts to engage in deep comprehension lead to a change in the inner brain parameters, in order to mimic the external transformation by the proper use of sensors and effectors. This paper highlights some crossing research areas of natural computing, nanotechnology, and brain modeling and considers two interesting theoretical approaches related to brain dynamics: (a the memory in neural network, not as a passive element for storing information, but integrated in the neural parameters as synaptic conductances; and (b a new transport model based on analytical expressions of the most important transport parameters, which works from sub-pico-level to macro-level, able both to understand existing data and to give new predictions. Complex biological systems are highly dependent on the context, which suggests a “more nature-oriented” computational philosophy.

  11. Integrated Debugging of Modelica Models

    Directory of Open Access Journals (Sweden)

    Adrian Pop

    2014-04-01

    Full Text Available The high abstraction level of equation-based object-oriented (EOO languages such as Modelica has the drawback that programming and modeling errors are often hard to find. In this paper we present integrated static and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those problems. The goal is an integrated debugging framework that combines classical debugging techniques with special techniques for equation-based languages partly based on graph visualization and interaction. To our knowledge, this is the first Modelica debugger that supports both equation-based transformational and algorithmic code debugging in an integrated fashion.

  12. Dyslipidemia and Blood-Brain Barrier Integrity in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Gene L. Bowman

    2012-01-01

    Full Text Available Background. Blood-brain barrier (BBB dysfunction may have a significant role in the pathogenesis of Alzheimer's disease (AD. Modifiable factors associated with BBB function may have therapeutic implication. This study tested the hypothesis that dyslipidemia is associated with BBB impairment in mild-to-moderate AD. Methods. Thirty-six subjects with AD were followed for 1 year. Fasting CSF and plasma were collected with clinical assessments at baseline and 12 months. BBB impairment was defined as CSF albumin index ≥9. Independent t-tests and linear regression assessed the relationship between plasma lipoproteins and BBB integrity. Results. Dyslipidemia was prevalent in 47% of the population, and in 75% of those with BBB impairment. Subjects with BBB impairment had significantly higher mean plasma triglyceride and lower HDL cholesterol (TG, P=0.007; HDL, P=0.043. Plasma triglycerides explained 22% of the variance in BBB integrity and remained significant after controlling for age, gender, ApoE-4 genotype, blood pressure, and statin use. Conclusion. Dyslipidemia is more prevalent in AD subjects with BBB impairment. Plasma triglyceride and HDL cholesterol may have a role in maintaining BBB integrity in mild-to-moderate Alzheimer's disease.

  13. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  14. Developing Integrated Care: Towards a development model for integrated care

    OpenAIRE

    Minkman, Mirella M.N

    2012-01-01

    textabstractThe thesis adresses the phenomenon of integrated care. The implementation of integrated care for patients with a stroke or dementia is studied. Because a generic quality management model for integrated care is lacking, the study works towards building a development model for integrated care. Based on a systematic approach in which a literature study, a delphi study, a concept mapping study and questionnaire research are combined, a development model for integrated care is created....

  15. Developing Integrated Care: Towards a development model for integrated care

    NARCIS (Netherlands)

    M.M.N. Minkman (Mirella)

    2012-01-01

    textabstractThe thesis adresses the phenomenon of integrated care. The implementation of integrated care for patients with a stroke or dementia is studied. Because a generic quality management model for integrated care is lacking, the study works towards building a development model for integrated c

  16. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  17. Enabling model customization and integration

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2003-09-01

    Until fairly recently, the idea of dynamic model content and presentation were treated synonymously. For example, if one was to take a data flow network, which captures the dynamics of a target system in terms of the flow of data through nodal operators, then one would often standardize on rectangles and arrows for the model display. The increasing web emphasis on XML, however, suggests that the network model can have its content specified in an XML language, and then the model can be represented in a number of ways depending on the chosen style. We have developed a formal method, based on styles, that permits a model to be specified in XML and presented in 1D (text), 2D, and 3D. This method allows for customization and personalization to exert their benefits beyond e-commerce, to the area of model structures used in computer simulation. This customization leads naturally to solving the bigger problem of model integration - the act of taking models of a scene and integrating them with that scene so that there is only one unified modeling interface. This work focuses mostly on customization, but we address the integration issue in the future work section.

  18. An architecture for integration of multidisciplinary models

    DEFF Research Database (Denmark)

    Belete, Getachew F.; Voinov, Alexey; Holst, Niels

    2014-01-01

    , Enterprise Application Integration, and Integration Design Patterns. We developed an architecture of a multidisciplinary model integration framework that brings these three aspects of integration together. Service-oriented-based platform independent architecture that enables to establish loosely coupled...

  19. Research on Perfusion CT in Rabbit Brain Tumor Model

    International Nuclear Information System (INIS)

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 107 cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316±181 mm3, and the biggest and smallest volumes of tumor were 497 mm3 and 195 mm3, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40±9.63, 16.8±0.64, 15.24±3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p≤0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p≤0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91±75.96 vs. 357.82±12.82 vs. 323.19±83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p≤0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37±0.19 vs. 3.02±0.41 vs. 2.86±0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23±25.44 vs. 14.54±1.60 vs. 6.81±4.20 ml/100g/min)(p≤0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and contralateral brains (61.56±16.07 vs. 12.58±2.61 vs. 8.26±5

  20. Research on Perfusion CT in Rabbit Brain Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bon Chul; Kwak, Byung Kook; Jung, Ji Sung [Dept. of Diagnostic Radiology, Chung Ang University Hospital, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 10{sup 7} cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316{+-}181 mm{sup 3}, and the biggest and smallest volumes of tumor were 497 mm{sup 3} and 195 mm{sup 3}, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40{+-}9.63, 16.8{+-}0.64, 15.24{+-}3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p{<=}0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91{+-}75.96 vs. 357.82{+-}12.82 vs. 323.19{+-}83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37{+-}0.19 vs. 3.02{+-}0.41 vs. 2.86{+-}0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23{+-}25.44 vs. 14.54{+-}1.60 vs. 6.81{+-}4.20 ml/100g/min)(p{<=}0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and

  1. Multiscale modeling of brain blow flow

    Science.gov (United States)

    Karniadakis, George

    2014-11-01

    Cardiovascular pathologies, such as brain aneurysms, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum, 3D or 1D) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We will present a physical model of the brain vasculature consisting at the macro level of all major arteries (about 200 down to 0.5 mm), at the mesoscale the fractal arteriolar tree (more than 10 millions down to 20 nm) and at the microscale the capillary bed. Correspondingly, we employ three different methods to model the total brain vasculature by developing proper interface conditions at each level. We will present examples from aneurysms and other hematological diseases, where red blood cell rheology is modeled explicitly.

  2. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition.

    Directory of Open Access Journals (Sweden)

    Himakarnika Alluri

    Full Text Available Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI. At a cellular level, tight junction proteins (TJPs between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1 that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9 are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour, GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour, MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour or MMP-9 siRNA transfection (48 hours in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  3. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim;

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...... modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general....

  4. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  5. Mouse Genetic Models of Human Brain Disorders

    OpenAIRE

    Celeste eLeung; Zhengping eJia

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectua...

  6. Exiting prostitution: an integrated model.

    Science.gov (United States)

    Baker, Lynda M; Dalla, Rochelle L; Williamson, Celia

    2010-05-01

    Exiting street-level prostitution is a complex, convoluted process. Few studies have described this process within any formal conceptual framework. This article reviews two general models and two prostitution-specific models and their applicability to the exiting process. Barriers encountered as women attempt to leave the streets are identified. Based on the four models, the barriers, the prostitution literature, and the authors' experience with prostituted women, a new integrated six-stage model that is comprehensive in scope and sensitive to women's attempts to exit prostitution is offered as a foundation for continued research on the process of women leaving the streets.

  7. Virtual Heterogeneous Model Integration Layer

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Memon

    2016-05-01

    Full Text Available The classic way of building a software today sim-plistically consists in connecting a piece of code calling a method with the piece of code implementing that method. We consider these piece of code (software systems not calling anything, behaving in a non deterministic way and providing complex sets of services in different domains. In software engineering reusability is the holly grail, and specially the reusability of code from autonomus tools requires powerful compostion/integration mechanisms. These systems are developed by different developers and being modified inceremently. Integrating these autonomous tools generate various conflicts. To deal with these conflicts, current integration mechanisms defines specific set of rules to resolve these conflicts and accompalish integration. Indeed still there is a big chance that changes made by other developers, or they update their changes in order to make them compliant with other developers cancel the updates done by others. The approach presented here claims three contributions in the field of Hetrogeneous Software Integration. First, this approach eliminate the need of conflicts resolving mechanism. Secondly, it provides the mechanism to work in the presence of conflicts without resolving them. Finally, contribution is that the integration mechanism does not affect if either of the system evolves. We do this by introducing an intermediate virtual layer between two systems that introduce a delta models which consist of three parts; viability that share required elements, hiding that hide conflicting elements and aliasing that aliases same concepts in both systems.

  8. The BRAIN Initiative Provides a Unifying Context for Integrating Core STEM Competencies into a Neurobiology Course

    OpenAIRE

    Schaefer, Jennifer E.

    2016-01-01

    The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative introduced by the Obama Administration in 2013 presents a context for integrating many STEM competencies into undergraduate neuroscience coursework. The BRAIN Initiative core principles overlap with core STEM competencies identified by the AAAS Vision and Change report and other entities. This neurobiology course utilizes the BRAIN Initiative to serve as the unifying theme that facilitates a primary emphasis ...

  9. Integrated modeling: a look back

    Science.gov (United States)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  10. Brain-on-a-chip integrated neuronal networks

    NARCIS (Netherlands)

    Xie, Sijia

    2016-01-01

    The brain-on-a-chip technology aims to provide an efficient and economic in vitro platform for brain disease study. In the well-known literature on brain-on-a-chip systems, nonstructured surfaces were conventionally used for the cell attachment in a culture chamber, therefore the neuronal networks g

  11. Automatic integration of confidence in the brain valuation signal.

    Science.gov (United States)

    Lebreton, Maël; Abitbol, Raphaëlle; Daunizeau, Jean; Pessiglione, Mathias

    2015-08-01

    A key process in decision-making is estimating the value of possible outcomes. Growing evidence suggests that different types of values are automatically encoded in the ventromedial prefrontal cortex (VMPFC). Here we extend this idea by suggesting that any overt judgment is accompanied by a second-order valuation (a confidence estimate), which is also automatically incorporated in VMPFC activity. In accordance with the predictions of our normative model of rating tasks, two behavioral experiments showed that confidence levels were quadratically related to first-order judgments (age, value or probability ratings). The analysis of three functional magnetic resonance imaging data sets using similar rating tasks confirmed that the quadratic extension of first-order ratings (our proxy for confidence) was encoded in VMPFC activity, even if no confidence judgment was required of the participants. Such an automatic aggregation of value and confidence in a same brain region might provide insight into many distortions of judgment and choice. PMID:26192748

  12. The Center for Integrated Molecular Brain Imaging (Cimbi) database.

    Science.gov (United States)

    Knudsen, Gitte M; Jensen, Peter S; Erritzoe, David; Baaré, William F C; Ettrup, Anders; Fisher, Patrick M; Gillings, Nic; Hansen, Hanne D; Hansen, Lars Kai; Hasselbalch, Steen G; Henningsson, Susanne; Herth, Matthias M; Holst, Klaus K; Iversen, Pernille; Kessing, Lars V; Macoveanu, Julian; Madsen, Kathrine Skak; Mortensen, Erik L; Nielsen, Finn Årup; Paulson, Olaf B; Siebner, Hartwig R; Stenbæk, Dea S; Svarer, Claus; Jernigan, Terry L; Strother, Stephen C; Frokjaer, Vibe G

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes. The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies. The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank. PMID:25891375

  13. Impaired Visual Integration in Children with Traumatic Brain Injury: An Observational Study.

    Directory of Open Access Journals (Sweden)

    Marsh Königs

    Full Text Available Axonal injury after traumatic brain injury (TBI may cause impaired sensory integration. We aim to determine the effects of childhood TBI on visual integration in relation to general neurocognitive functioning.We compared children aged 6-13 diagnosed with TBI (n = 103; M = 1.7 years post-injury to children with traumatic control (TC injury (n = 44. Three TBI severity groups were distinguished: mild TBI without risk factors for complicated TBI (mildRF- TBI, n = 22, mild TBI with ≥1 risk factor (mildRF+ TBI, n = 46 or moderate/severe TBI (n = 35. An experimental paradigm measured speed and accuracy of goal-directed behavior depending on: (1 visual identification; (2 visual localization; or (3 both, measuring visual integration. Group-differences on reaction time (RT or accuracy were tracked down to task strategy, visual processing efficiency and extra-decisional processes (e.g. response execution using diffusion model analysis. General neurocognitive functioning was measured by a Wechsler Intelligence Scale short form.The TBI group had poorer accuracy of visual identification and visual integration than the TC group (Ps ≤ .03; ds ≤ -0.40. Analyses differentiating TBI severity revealed that visual identification accuracy was impaired in the moderate/severe TBI group (P = .05, d = -0.50 and that visual integration accuracy was impaired in the mildRF+ TBI group and moderate/severe TBI group (Ps < .02, ds ≤ -0.56. Diffusion model analyses tracked impaired visual integration accuracy down to lower visual integration efficiency in the mildRF+ TBI group and moderate/severe TBI group (Ps < .001, ds ≤ -0.73. Importantly, intelligence impairments observed in the TBI group (P = .009, d = -0.48 were statistically explained by visual integration efficiency (P = .002.Children with mildRF+ TBI or moderate/severe TBI have impaired visual integration efficiency, which may contribute to poorer general neurocognitive functioning.

  14. Modelling the anesthetized brain with ensembles of neuronal and astrocytic oscillators

    Science.gov (United States)

    Hansard, T.; Hale, A. C.; Stefanovska, A.

    2013-01-01

    We propose a minimalistic model of the anesthetized brain in order to study the generation of rhythms observed in electroencephalograms (EEGs) recorded from anesthetized humans. We propose that non-neuronal brain cells-astrocytes-play an important role in brain dynamics and that oscillation-based models may provide a simple way to study such dynamics. The model is capable of replicating the main features (i.e. slow and alpha oscillations) observed in EEGs. In addition, this model suggests that astrocytes are integral to the generation of slow EEG (˜0.7 Hz) rhythms. By including astrocytes in the model we take a first step towards investigating the interaction of the brain and cardiovasular system which are primarily connected via astrocytes. The model also illustrates that rich nonlinear dynamics can arise from basic oscillatory "building blocks" and therefore complex systems may be modelled in an uncomplicated way.

  15. Phenotypic integration of brain size and head morphology in Lake Tanganyika Cichlids

    OpenAIRE

    Tsuboi, Masahito; González-Voyer, Alejandro; Kolm, N.

    2014-01-01

    Abstract Background Phenotypic integration among different anatomical parts of the head is a common phenomenon across vertebrates. Interestingly, despite centuries of research into the factors that contribute to the existing variation in brain size among vertebrates, little is known about the role of phenotypic integration in brain size diversification. Here we used geometric morphometrics on the morphologically diverse Tanganyikan cichlids to investigate phenotypic integration across key mor...

  16. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  17. On a Quantum Model of Brain Activities

    Science.gov (United States)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  18. Diffusion Based Modeling of Human Brain Response to External Stimuli

    CERN Document Server

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  19. An integrative view on sex differences in brain tumors

    OpenAIRE

    Sun, Tao; Plutynski, Anya; Ward, Stacey; Rubin, Joshua B.

    2015-01-01

    Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biol...

  20. Integral canonical models for Spin Shimura varieties

    OpenAIRE

    Pera, Keerthi Madapusi

    2012-01-01

    We construct regular integral canonical models for Shimura varieties attached to Spin groups at (possibly ramified) odd primes. We exhibit these models as schemes of 'relative PEL type' over integral canonical models of larger Spin Shimura varieties with good reduction. Work of Vasiu-Zink then shows that the classical Kuga-Satake construction extends over the integral model and that the integral models we construct are canonical in a very precise sense. We also construct good compactification...

  1. Brain Dynamics An Introduction to Models and Simualtions

    CERN Document Server

    Haken, Hermann

    2008-01-01

    Brain Dynamics serves to introduce graduate students and nonspecialists from various backgrounds to the field of mathematical and computational neurosciences. Some of the advanced chapters will also be of interest to the specialists. The book approaches the subject through pulse-coupled neural networks, with at their core the lighthouse and integrate-and-fire models, which allow for the highly flexible modelling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. Topics also include pulse-averaged equations and their application to movement coordination. The book closes with a short analysis of models versus the real neurophysiological system. The second edition has been thoroughly updated and augmented by two extensive chapters that discuss the interplay between pattern recognition and synchronization. Further, to enhance the usefulness as textbook and for self-study, the detailed solutions for all 34 exercises throughout the text have been added.

  2. DIRECT INTEGRATION METHODS WITH INTEGRAL MODEL FOR DYNAMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    吕和祥; 于洪洁; 裘春航

    2001-01-01

    A new approach which is a direct integration method with integral model ( DIM IM) to solve dynamic governing equations is presented. The governing equations are integrated into the integral equations. An algorithm with explicit and predict-correct and selfstarting and fourth-order accuracy to integrate the integral equations is given.Theoretical analysis and numerical examples show that DIM-IM discribed in this paper suitable for strong nonlinear and non-conservative system have higher accuracy than central difference, Houbolt , Newmark and Wilson- Theta methods.

  3. AN INTEGRABLE HIERARCHY AND ITS EXPANDING LAX INTEGRABLE MODEL

    Institute of Scientific and Technical Information of China (English)

    张玉峰; 闫庆友; 许曰才

    2004-01-01

    In general, Liouville integrable hierarchies of evolution equations were obtained by choosing proper U in zero curvature frame Ut - Vx + [U, V] = 0 first. But in the present paper, a new Liouville integrable hierarchy possessing bi-Hamiltonian structure is obtained by choosing V with derivatives in x and spectral potentials. Then integrable coupling, i.e. expanding Lax integrable model of the hierarchy obtained is presented by constructing a subalgebra of loop algebra A2.

  4. Inferring brain-computational mechanisms with models of activity measurements

    OpenAIRE

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-01-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer, which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each...

  5. Multiscale modeling and simulation of brain blood flow

    Science.gov (United States)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  6. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  7. A STUDY ON FORMAL MODEL INTEGRATION

    Institute of Scientific and Technical Information of China (English)

    Wang Jiayang; Chen Songqiao; Luo An

    2006-01-01

    Model integration is an important section of the model management research area. The paper puts forward a formalization representation of model, and presents some concepts, such as the compound model relation, the composite model and so on. Additionally, the existence of model integration is also analyzed in detail and several sufficient conditions are proved.

  8. Qualitative Analysis of Integration Adapter Modeling

    OpenAIRE

    Ritter, Daniel; Holzleitner, Manuel

    2015-01-01

    Integration Adapters are a fundamental part of an integration system, since they provide (business) applications access to its messaging channel. However, their modeling and configuration remain under-represented. In previous work, the integration control and data flow syntax and semantics have been expressed in the Business Process Model and Notation (BPMN) as a semantic model for message-based integration, while adapter and the related quality of service modeling were left for further studi...

  9. The BRAIN Initiative Provides a Unifying Context for Integrating Core STEM Competencies into a Neurobiology Course.

    Science.gov (United States)

    Schaefer, Jennifer E

    2016-01-01

    The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative introduced by the Obama Administration in 2013 presents a context for integrating many STEM competencies into undergraduate neuroscience coursework. The BRAIN Initiative core principles overlap with core STEM competencies identified by the AAAS Vision and Change report and other entities. This neurobiology course utilizes the BRAIN Initiative to serve as the unifying theme that facilitates a primary emphasis on student competencies such as scientific process, scientific communication, and societal relevance while teaching foundational neurobiological content such as brain anatomy, cellular neurophysiology, and activity modulation. Student feedback indicates that the BRAIN Initiative is an engaging and instructional context for this course. Course module organization, suitable BRAIN Initiative commentary literature, sample primary literature, and important assignments are presented.

  10. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  11. Brain systems for probabilistic and dynamic prediction: computational specificity and integration.

    Directory of Open Access Journals (Sweden)

    Jill X O'Reilly

    2013-09-01

    Full Text Available A computational approach to functional specialization suggests that brain systems can be characterized in terms of the types of computations they perform, rather than their sensory or behavioral domains. We contrasted the neural systems associated with two computationally distinct forms of predictive model: a reinforcement-learning model of the environment obtained through experience with discrete events, and continuous dynamic forward modeling. By manipulating the precision with which each type of prediction could be used, we caused participants to shift computational strategies within a single spatial prediction task. Hence (using fMRI we showed that activity in two brain systems (typically associated with reward learning and motor control could be dissociated in terms of the forms of computations that were performed there, even when both systems were used to make parallel predictions of the same event. A region in parietal cortex, which was sensitive to the divergence between the predictions of the models and anatomically connected to both computational networks, is proposed to mediate integration of the two predictive modes to produce a single behavioral output.

  12. Model human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are also considered (in Appendix). In the biological applications, several elements (cells or tissues) in an organ are taken as various entries in a representative lattice (mesh) where the entries are connected to each other in terms of some molecular diffusions or electrical potential differences. The biological elements evolve in time (with the given tissue or organ) in terms of the mentioned connections (interactions) besides some individual feedings. The anatomical diversity of the species (or organs) is handled in terms o...

  13. Modeling brain resonance phenomena using a neural mass model.

    Directory of Open Access Journals (Sweden)

    Andreas Spiegler

    2011-12-01

    Full Text Available Stimulation with rhythmic light flicker (photic driving plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect.

  14. 21B. A Horizontal Integration Business Model for Integrative Medicine: Sustainability through Integration

    OpenAIRE

    Cotton, Sian; Stevenson, Stefanie; Luberto, Christina

    2013-01-01

    Focus Area: Sustainable Business Models In 2012, with solely institutional support, the University of Cincinnati officially launched its Center for Integrative Health and Wellness, focused on developing integrative medicine clinical, research, and education initiatives horizontally across the academic health center. Given that Integrative Medicine (IM) is intrinsically interdisciplinary, the UC Center purposively functions according to a horizontal integration business and clinical model, rat...

  15. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Science.gov (United States)

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  16. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    Directory of Open Access Journals (Sweden)

    Abimbola A. Akintola

    2015-05-01

    Full Text Available Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated the association between parameters of glucose metabolism and microstructural brain integrity in offspring of long-lived families (offspring and controls; and age categories thereof. From the Leiden Longevity Study, 132 participants underwent oral glucose tolerance test to assess glycemia (fasted glucose and glucose area-under-the-curve (AUC, insulin resistance (fasted insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR, and pancreatic Beta cell secretory capacity (insulinogenic index. 3Tesla MRI and Magnetization Transfer (MT imaging MT-ratio peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age.In the full offspring group only, reduced peak-height in grey and white matter was inversely associated with AUCinsulin, fasted insulin, HOMA-IR and insulinogenic-index (all p65 years: in younger controls, significantly stronger inverse associations were observed between peak-height and fasted glucose, AUCglucose, fasted insulin, AUCinsulin and HOMA-IR in grey matter; and for AUCglucose, fasted insulin and HOMA-IR in white matter (all P-interaction<0.05. Although the strength of the associations tended to attenuate with age in the offspring group, the difference between age groups was not statistically significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age.

  17. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  18. PLATO: data-oriented approach to collaborative large-scale brain system modeling.

    Science.gov (United States)

    Kannon, Takayuki; Inagaki, Keiichiro; Kamiji, Nilton L; Makimura, Kouji; Usui, Shiro

    2011-11-01

    The brain is a complex information processing system, which can be divided into sub-systems, such as the sensory organs, functional areas in the cortex, and motor control systems. In this sense, most of the mathematical models developed in the field of neuroscience have mainly targeted a specific sub-system. In order to understand the details of the brain as a whole, such sub-system models need to be integrated toward the development of a neurophysiologically plausible large-scale system model. In the present work, we propose a model integration library where models can be connected by means of a common data format. Here, the common data format should be portable so that models written in any programming language, computer architecture, and operating system can be connected. Moreover, the library should be simple so that models can be adapted to use the common data format without requiring any detailed knowledge on its use. Using this library, we have successfully connected existing models reproducing certain features of the visual system, toward the development of a large-scale visual system model. This library will enable users to reuse and integrate existing and newly developed models toward the development and simulation of a large-scale brain system model. The resulting model can also be executed on high performance computers using Message Passing Interface (MPI). PMID:21767932

  19. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    Science.gov (United States)

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  20. Brain Wave Biofeedback: Benefits of Integrating Neurofeedback in Counseling

    Science.gov (United States)

    Myers, Jane E.; Young, J. Scott

    2012-01-01

    Consistent with the "2009 Standards" of the Council for Accreditation of Counseling and Related Educational Programs, counselors must understand neurobiological behavior in individuals of all developmental levels. This requires understanding the brain and strategies for applying neurobiological concepts in counseling practice, training, and…

  1. Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics

    DEFF Research Database (Denmark)

    Arbib, Michael A.; Bonaiuto, James J.; Bornkessel-Schlesewsky, Ina;

    2014-01-01

    We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding - separately or together - neurocomputational models and empirical ...

  2. Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics

    OpenAIRE

    Arbib, Michael A.; Bonaiuto, James J.; Bornkessel-Schlesewsky, Ina; Kemmerer, David; MacWhinney, Brian; Nielsen, Finn Årup; Oztop, Erhan

    2014-01-01

    We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience.

  3. Action and language mechanisms in the brain: data, models and neuroinformatics.

    Science.gov (United States)

    Arbib, Michael A; Bonaiuto, James J; Bornkessel-Schlesewsky, Ina; Kemmerer, David; MacWhinney, Brian; Nielsen, Finn Årup; Oztop, Erhan

    2014-01-01

    We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience. PMID:24234916

  4. A Neurocomputational Model of an Imitation Deficit following Brain Lesion

    OpenAIRE

    Petreska, B.; Billard, A.

    2006-01-01

    This paper investigates the neural mechanisms of visuo-motor imitation in humans through convergent evidence from neuroscience. In particular, we consider a deficit in imitation following callosal brain lesion, based on the rational that looking at how imitation is impaired can unveil its underlying neural principles. We ground the functional architecture and information flow of our model in brain imaging studies and use findings from monkey brain neurophysiological studies to drive the choic...

  5. An Adaptive Complex Network Model for Brain Functional Networks

    OpenAIRE

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show diffe...

  6. LinkRbrain: Multi-scale data integrator of the brain

    OpenAIRE

    Mesmoudi, Salma; Rodic, Mathieu; Cioli, Claudia; Cointet, Jean-Philippe; Yarkoni, Tal; Burnod, Yves

    2015-01-01

    International audience BackgroundLinkRbrain is an open-access web platform for multi-scale data integration and visualization of human brain data. This platform integrates anatomical, functional, and genetic knowledge produced by the scientific community.New methodThe linkRbrain platform has two major components: (1) a data aggregation component that integrates multiple open databases into a single platform with a unified representation; and (2) a website that provides fast multi-scale int...

  7. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  8. Modeling Brain Circuitry over a Wide Range of Scales

    Directory of Open Access Journals (Sweden)

    Pascal eFua

    2015-04-01

    Full Text Available If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important.In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation.

  9. Architectural view model for an integration platform

    Directory of Open Access Journals (Sweden)

    Tomasz Górski

    2012-03-01

    Full Text Available The most common architectural view model is "4+1" by Philipe Kruchten. This model presents the views required for a full description of computer system architecture. By contrast, this model seems to be insufficient to describe architecture of integration platform. Definitely lacks the view of integrated business processes. In the serviceoriented approach, one of the basic elements is a contract. It should also be included in the description of the architecture. Moreover, very important are integration mechanisms and mediation flows that should be presented in the description of architecture. Hence the need for integrated services view, and manner of their integration on the enterprise service bus. Use case view should also be extended by stereotypes required for presenting functionality exposed for other computer systems. It is therefore proposed architectural view model “1+5” for an integration platform. This model has following architectural views: Integrated processes, Use Cases, Logical, Integrated Services, Contracts, Deployment. Furthermore, in article was presented new UML profile "UML Profile for Integration Flows". In the profile were placed stereotypes corresponding to integration patterns and mediation mechanisms. It is important, that UML activity diagram was extended and its special form was obtained to model mediation flows on integration platform. Thus was proposed a new UML diagram: mediation flows diagram.

  10. Ontogenetic ritualization of primate gesture as a case study in dyadic brain modeling.

    Science.gov (United States)

    Gasser, Brad; Cartmill, Erica A; Arbib, Michael A

    2014-01-01

    This paper introduces dyadic brain modeling - the simultaneous, computational modeling of the brains of two interacting agents - to explore ways in which our understanding of macaque brain circuitry can ground new models of brain mechanisms involved in ape interaction. Specifically, we assess a range of data on gestural communication of great apes as the basis for developing an account of the interactions of two primates engaged in ontogenetic ritualization, a proposed learning mechanism through which a functional action may become a communicative gesture over repeated interactions between two individuals (the 'dyad'). The integration of behavioral, neural, and computational data in dyadic (or, more generally, social) brain modeling has broad application to comparative and evolutionary questions, particularly for the evolutionary origins of cognition and language in the human lineage. We relate this work to the neuroinformatics challenges of integrating and sharing data to support collaboration between primatologists, neuroscientists and modelers that will help speed the emergence of what may be called comparative neuro-primatology. PMID:23608958

  11. Animal models of brain dysfunction in phenylketonuria

    NARCIS (Netherlands)

    Martynyuk, A. E.; van Spronsen, F. J.; Van der Zee, E. A.

    2010-01-01

    Phenylketonuria (PKU) is a metabolic disorder that results in significant brain dysfunction if untreated. Although phenylalanine restricted diets instituted at birth have clearly improved PKU outcomes, neuropsychological deficits and neurological changes still represent substantial problems. The spe

  12. The History and Evolution of Experimental Traumatic Brain Injury Models.

    Science.gov (United States)

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  13. Modeling human brain development with cerebral organoids

    OpenAIRE

    Muzio, Luca; Consalez, G. Giacomo

    2013-01-01

    The recent discovery of a new three-dimensional culture system for the derivation of cerebral organoids from human induced pluripotent stem cells provides developmental neurobiologists with the first example of a three-dimensional framework for the study of human brain development. This innovative approach permits the in vitro assembly of a human embryonic brain rudiment that recapitulates the developing human cerebrum. Organoids contain progenitor populations that develop to yield mature cor...

  14. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    Science.gov (United States)

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance.

  15. Brain white matter integrity and cortisol in older men:the Lothian Birth Cohort 1936

    OpenAIRE

    Cox, Simon R.; Bastin, Mark E; Ferguson, Karen J.; Munoz-Maniega, Susana; MacPherson, Sarah E.; Deary, Ian J; Wardlaw, Joanna M.; MacLullich, Alasdair M. J.

    2015-01-01

    Elevated glucocorticoid (GC) levels are hypothesized to be deleterious to some brain regions, including white matter (WM). Older age is accompanied by increased between-participant variation in GC levels, yet relationships between WM integrity and cortisol levels in older humans are underexplored. Moreover, it is unclear whether GC-WM associations might be general or pathway specific. We analyzed relationships between salivary cortisol (diurnal and reactive) and general measures of brain WM h...

  16. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  17. Animal models of traumatic brain injury : a critical evaluation

    OpenAIRE

    O'Connor, William; Smyth, Aoife; Gilchrist, M. D.

    2011-01-01

    Animal models are necessary to elucidate changes occurring after brain injury and to establish new therapeutic strategies towards a stage where drug efficacy in brain injured patients (against all classes of symptoms) can be predicted. In this review, six established animal models of head trauma, namely fluid percussion, rigid indentation, inertial acceleration, impact acceleration, weight-drop and dynamic cortical deformation are evaluated. While no single animal model is entirely successful...

  18. No need to talk, I know you: familiarity influences early multisensory integration in a songbird's brain

    Directory of Open Access Journals (Sweden)

    Isabelle GEORGE

    2011-01-01

    Full Text Available It is well known that visual information can affect auditory perception, as in the famous McGurk effect, but little is known concerning the processes involved. To address this issue, we used the best-developed animal model to study language-related processes in the brain: songbirds. European starlings were exposed to audiovisual compared to auditory-only playback of conspecific songs, while electrophysiological recordings were made in their primary auditory area (Field L. The results show that the audiovisual condition modulated the auditory responses. Enhancement and suppression were both observed, depending on the stimulus familiarity. Seeing a familiar bird led to suppressed auditory responses while seeing an unfamiliar bird led to response enhancement, suggesting that unisensory perception may be enough if the stimulus is familiar while redundancy may be required for unfamiliar items. This is to our knowledge the first evidence that multisensory integration may occur in a low-level, putatively unisensory area of a non-mammalian vertebrate brain, and also that familiarity of the stimuli may influence modulation of auditory responses by vision.

  19. Integrated spatial sampling modeling of geospatial data

    Institute of Scientific and Technical Information of China (English)

    LI Lianfa; WANG Jinfeng

    2004-01-01

    Spatial sampling is a necessary and important method for extracting geospatial data and its methodology directly affects the geo-analysis results. Counter to the deficiency of separate models of spatial sampling, this article analyzes three crucial elements of spatial sampling (frame, correlation and decision diagram) and induces its general integrated model. The program of Spatial Sampling Integration (SSI) has been developed with Component Object Model (COM) to realize the general integrated model. In two practical applications, i.e. design of the monitoring network of natural disasters and sampling survey of the areas of non-cultivated land, SSI has produced accurate results at less cost, better realizing the cost-effective goal of sampling toward the geo-objects with spatial correlation. The two cases exemplify expanded application and convenient implementation of the general integrated model with inset components in an integrated environment, which can also be extended to other modeling of spatial analysis.

  20. Performance modeling of a wearable brain PET (BET) camera

    Science.gov (United States)

    Schmidtlein, C. R.; Turner, J. N.; Thompson, M. O.; Mandal, K. C.; Häggström, I.; Zhang, J.; Humm, J. L.; Feiglin, D. H.; Krol, A.

    2016-03-01

    Purpose: To explore, by means of analytical and Monte Carlo modeling, performance of a novel lightweight and low-cost wearable helmet-shaped Brain PET (BET) camera based on thin-film digital Geiger Avalanche Photo Diode (dGAPD) with LSO and LaBr3 scintillators for imaging in vivo human brain processes for freely moving and acting subjects responding to various stimuli in any environment. Methods: We performed analytical and Monte Carlo modeling PET performance of a spherical cap BET device and cylindrical brain PET (CYL) device, both with 25 cm diameter and the same total mass of LSO scintillator. Total mass of LSO in both the BET and CYL systems is about 32 kg for a 25 mm thick scintillator, and 13 kg for 10 mm thick scintillator (assuming an LSO density of 7.3 g/ml). We also investigated a similar system using an LaBr3 scintillator corresponding to 22 kg and 9 kg for the 25 mm and 10 mm thick systems (assuming an LaBr3 density of 5.08 g/ml). In addition, we considered a clinical whole body (WB) LSO PET/CT scanner with 82 cm ring diameter and 15.8 cm axial length to represent a reference system. BET consisted of distributed Autonomous Detector Arrays (ADAs) integrated into Intelligent Autonomous Detector Blocks (IADBs). The ADA comprised of an array of small LYSO scintillator volumes (voxels with base a×a: 1.0 energy resolution was 10.8% and 3.3% for LSO and LaBr3 respectively and the coincidence window was set at 2 ns. The brain was simulated as a sphere of uniform F-18 activity with diameter of 10 cm embedded in a center of water sphere with diameter of 10 cm. Results: Analytical and Monte Carlo models showed similar results for lower energy window values (458 keV versus 445 keV for LSO, and 492 keV versus 485 keV for LaBr3), and for the relative performance of system sensitivity. Monte Carlo results further showed that the BET geometry had >50% better noise equivalent count (NEC) performance relative to the CYL geometry, and >1100% better performance than a WB

  1. Modeling the brain morphology distribution in the general aging population

    Science.gov (United States)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  2. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  3. Controlling ferrofluid permeability across the blood–brain barrier model

    International Nuclear Information System (INIS)

    In the present study, an in vitro blood–brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood–brain barrier model was completed by examining the permeability of FITC-Dextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood–brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood–brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood–brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood–brain barrier (e.g. CPB). (paper)

  4. Controlling ferrofluid permeability across the blood–brain barrier model.

    Science.gov (United States)

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2014-02-21

    In the present study, an in vitro blood–brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood–brain barrier model was completed by examining the permeability of FITCDextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood–brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood–brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood–brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood–brain barrier (e.g. CPB). PMID:24457539

  5. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    Science.gov (United States)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  6. Comparing Bayesian models for multisensory cue combination without mandatory integration

    OpenAIRE

    Beierholm, Ulrik R.; Shams, Ladan; Kording, Konrad P; Ma, Wei Ji

    2009-01-01

    Bayesian models of multisensory perception traditionally address the problem of estimating an underlying variable that is assumed to be the cause of the two sensory signals. The brain, however, has to solve a more general problem: it also has to establish which signals come from the same source and should be integrated, and which ones do not and should be segregated. In the last couple of years, a few models have been proposed to solve this problem in a Bayesian fashion. One of these ha...

  7. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system.

    Science.gov (United States)

    Sunkin, Susan M; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L; Thompson, Carol L; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.

  8. Brain activity related to integrative processes in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian; Aaside, C T; Humphreys, G W;

    2002-01-01

    We report evidence from a PET activation study that the inferior occipital gyri (likely to include area V2) and the posterior parts of the fusiform and inferior temporal gyri are involved in the integration of visual elements into perceptual wholes (single objects). Of these areas, the fusiform a...

  9. Modelling the current distribution across the depth electrode-brain interface in deep brain stimulation

    OpenAIRE

    Yousif, Nada; Liu, Xuguang

    2007-01-01

    The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms, is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. Here we present a brief review of the recent computational models which simulate the electric current and field distribution in the three-dimensional space, and consequently make es...

  10. MEASURING INFORMATION INTEGR-ATION MODEL FOR CAD/CMM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A CAD/CMM workpiece modeling system based on IGES file is proposed. The modeling system is implemented by using a new method for labelling the tolerance items of 3D workpiece. The concept-"feature face" is used in the method. First the CAD data of workpiece are extracted and recognized automatically. Then a workpiece model is generated, which is the integration of pure 3D geometry form with its corresponding inspection items. The principle of workpiece modeling is also presented. At last, the experiment results are shown and correctness of the model is certified.

  11. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...... of premature rupture of a stellite weld on a P91 valve used in a power plant. For all four examples, the focus is put on modelling results rather than describing the models in detail. Proper comparison with experimental work is given in all examples for model validation as well as relevant references...

  12. Acquisition Integration Models: How Large Companies Successfully Integrate Startups

    Directory of Open Access Journals (Sweden)

    Peter Carbone

    2011-10-01

    Full Text Available Mergers and acquisitions (M&A have been popular means for many companies to address the increasing pace and level of competition that they face. Large companies have pursued acquisitions to more quickly access technology, markets, and customers, and this approach has always been a viable exit strategy for startups. However, not all deals deliver the anticipated benefits, in large part due to poor integration of the acquired assets into the acquiring company. Integration can greatly impact the success of the acquisition and, indeed, the combined company’s overall market success. In this article, I explore the implementation of several integration models that have been put into place by a large company and extract principles that may assist negotiating parties with maximizing success. This perspective may also be of interest to smaller companies as they explore exit options while trying to ensure continued market success after acquisition. I assert that business success with acquisitions is dependent on an appropriate integration model, but that asset integration is not formulaic. Any integration effort must consider the specific market context and personnel involved.

  13. MODELING DATA INTEGRITY UNDER STOCHASTIC LINEAR CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Lee-Pin Shing

    2015-06-01

    Full Text Available The most commonly used data integrity models today are Bibba, Wilson-Clark and Chinese models. These models are designed for both data integrity protection and confidentiality. Many optimization problems are related to linear programming. In practice, these variables involved are probabilistic. This paper proposes a data integrity model based on data anomalies assuming data are under stochastic linear constraints. An algorithm is constructed using the simplex method to find confidence intervals for the problem solutions. In the end the results from Monte Carlo simulation are compared with those from simplex method.

  14. Integral models for buoyant plume calculations

    International Nuclear Information System (INIS)

    Integral models have been proven to be successful and inexpensive tools for the solution of a variety of jet-type environmental flow problems. In the Sonderforschungsbereich 80, a family of integral models has been developed for several applications as, e.g., the mixing of waste water and cooling water plumes discharged into lakes and coastal waters for the dispersion of pollutants and heat emitted by chimneys, cooling towers and urban heat islands into the atmosphere. The common features of these integral models are discussed. Finally, the quality of model results is demonstrated by comparing predictions with experimental data. (orig.)

  15. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  16. Finite element modeling of human brain response to football helmet impacts.

    Science.gov (United States)

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions. PMID:26867124

  17. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    Reliable service life models for load carrying structures are significant elements in the evaluation of the performance and sustainability of existing and new structures. Furthermore, reliable service life models are prerequisites for the evaluation of the sustainability of maintenance strategies...

  18. Integrative Model of Drosophila Flight

    OpenAIRE

    Dickson, William B.; Andrew D Straw; Dickinson, Michael H

    2008-01-01

    This paper presents a framework for simulating the flight dynamics and control strategies of the fruit fly Drosophila melanogaster. The framework consists of five main components: an articulated rigid-body simulation, a model of the aerodynamic forces and moments, a sensory systems model, a control model, and an environment model. In the rigid-body simulation the fly is represented by a system of three rigid bodies connected by a pair of actuated ball joints. At each instant of th...

  19. Effects of Yishendaluo decoction on blood-brain barrier integrity in mice with experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Yanqing Wu; Ying Gao; Lingqun Zhu; Yonghong Gao; Dongmei Zhang; Lixia Lou; Yanfang Yan

    2011-01-01

    This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantitative PCR to measure the levels of mRNAs specific to the T cell markers CD4 and CD8,and the monocyte marker CD11b.In addition,we used Evans blue dye extravasation in the spinal cord and brain tissues to assess blood-brain barrier permeability.The results indicated that an increase in blood-brain barrier permeability was associated with an increase in CD4,CD8 and CD11b mRNA expression in experimental autoimmune encephalomyelitis mice.Yishendaluo decoction administration significantly reversed inflammatory cell accumulation in cerebral tissues of experimental autoimmune encephalomyelitis mice.

  20. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  1. A Bayesian model of category-specific emotional brain responses.

    Science.gov (United States)

    Wager, Tor D; Kang, Jian; Johnson, Timothy D; Nichols, Thomas E; Satpute, Ajay B; Barrett, Lisa Feldman

    2015-04-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories--fear, anger, disgust, sadness, or happiness--is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  2. Integrating language models into classifiers for BCI communication: a review

    Science.gov (United States)

    Speier, W.; Arnold, C.; Pouratian, N.

    2016-06-01

    Objective. The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication systems. Approach. The domain of natural language has been studied extensively in linguistics and has been used in the natural language processing field in applications including information extraction, machine translation, and speech recognition. While these methods have been used for years in traditional augmentative and assistive communication devices, information about the output domain has largely been ignored in BCI communication systems. Over the last few years, BCI communication systems have started to leverage this information through the inclusion of language models. Main results. Although this movement began only recently, studies have already shown the potential of language integration in BCI communication and it has become a growing field in BCI research. BCI communication systems using language models in their classifiers have progressed down several parallel paths, including: word completion; signal classification; integration of process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Significance. Each of these methods have shown significant progress, but have largely been addressed separately. Combining these methods could use the full potential of language model, yielding further performance improvements. This integration should be a priority as the field works to create a BCI system that meets the needs of the amyotrophic lateral sclerosis population.

  3. Development of a Model for Whole Brain Learning of Physiology

    Science.gov (United States)

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  4. Alteration of blood-brain barrier integrity by retroviral infection.

    Directory of Open Access Journals (Sweden)

    Philippe V Afonso

    2008-11-01

    Full Text Available The blood-brain barrier (BBB, which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans, both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies.

  5. Challenges in horizontal model integration

    OpenAIRE

    Kolczyk, K.; Conradi, C.

    2016-01-01

    Background Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling...

  6. An integrated communications demand model

    Science.gov (United States)

    Doubleday, C. F.

    1980-11-01

    A computer model of communications demand is being developed to permit dynamic simulations of the long-term evolution of demand for communications media in the U.K. to be made under alternative assumptions about social, economic and technological trends in British Telecom's business environment. The context and objectives of the project and the potential uses of the model are reviewed, and four key concepts in the demand for communications media, around which the model is being structured are discussed: (1) the generation of communications demand; (2) substitution between media; (3) technological convergence; and (4) competition. Two outline perspectives on the model itself are given.

  7. Adolescent Emotional Maturation through Divergent Models of Brain Organization

    Science.gov (United States)

    Oron Semper, Jose V.; Murillo, Jose I.; Bernacer, Javier

    2016-01-01

    In this article we introduce the hypothesis that neuropsychological adolescent maturation, and in particular emotional management, may have opposing explanations depending on the interpretation of the assumed brain architecture, that is, whether a componential computational account (CCA) or a dynamic systems perspective (DSP) is used. According to CCA, cognitive functions are associated with the action of restricted brain regions, and this association is temporally stable; by contrast, DSP argues that cognitive functions are better explained by interactions between several brain areas, whose engagement in specific functions is temporal and context-dependent and based on neural reuse. We outline the main neurobiological facts about adolescent maturation, focusing on the neuroanatomical and neurofunctional processes associated with adolescence. We then explain the importance of emotional management in adolescent maturation. We explain the interplay between emotion and cognition under the scope of CCA and DSP, both at neural and behavioral levels. Finally, we justify why, according to CCA, emotional management is understood as regulation, specifically because the cognitive aspects of the brain are in charge of regulating emotion-related modules. However, the key word in DSP is integration, since neural information from different brain areas is integrated from the beginning of the process. Consequently, although the terms should not be conceptually confused, there is no cognition without emotion, and vice versa. Thus, emotional integration is not an independent process that just happens to the subject, but a crucial part of personal growth. Considering the importance of neuropsychological research in the development of educational and legal policies concerning adolescents, we intend to expose that the holistic view of adolescents is dependent on whether one holds the implicit or explicit interpretation of brain functioning. PMID:27602012

  8. Adolescent Emotional Maturation through Divergent Models of Brain Organization.

    Science.gov (United States)

    Oron Semper, Jose V; Murillo, Jose I; Bernacer, Javier

    2016-01-01

    In this article we introduce the hypothesis that neuropsychological adolescent maturation, and in particular emotional management, may have opposing explanations depending on the interpretation of the assumed brain architecture, that is, whether a componential computational account (CCA) or a dynamic systems perspective (DSP) is used. According to CCA, cognitive functions are associated with the action of restricted brain regions, and this association is temporally stable; by contrast, DSP argues that cognitive functions are better explained by interactions between several brain areas, whose engagement in specific functions is temporal and context-dependent and based on neural reuse. We outline the main neurobiological facts about adolescent maturation, focusing on the neuroanatomical and neurofunctional processes associated with adolescence. We then explain the importance of emotional management in adolescent maturation. We explain the interplay between emotion and cognition under the scope of CCA and DSP, both at neural and behavioral levels. Finally, we justify why, according to CCA, emotional management is understood as regulation, specifically because the cognitive aspects of the brain are in charge of regulating emotion-related modules. However, the key word in DSP is integration, since neural information from different brain areas is integrated from the beginning of the process. Consequently, although the terms should not be conceptually confused, there is no cognition without emotion, and vice versa. Thus, emotional integration is not an independent process that just happens to the subject, but a crucial part of personal growth. Considering the importance of neuropsychological research in the development of educational and legal policies concerning adolescents, we intend to expose that the holistic view of adolescents is dependent on whether one holds the implicit or explicit interpretation of brain functioning. PMID:27602012

  9. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... using both synthetic data and real observations. Groundwater head and stream discharge observations are assimilated in an integrated hydrological model, with the aim of updating the groundwater head, stream discharge and water level, and model parameters. When synthetically generated observations...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...

  10. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice

    OpenAIRE

    Janet eGuo; Vikas eBakshi; Ai-Ling eLin

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with eithe...

  11. Social Ecological Model Analysis for ICT Integration

    Science.gov (United States)

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  12. Model Identification of Integrated ARMA Processes

    Science.gov (United States)

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  13. Model of local temperature changes in brain upon functional activation.

    Science.gov (United States)

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  14. Generalized Cauchy's Models and Generalized Integrals

    OpenAIRE

    Sabra Ramadan

    2007-01-01

    The space of generalized complex numbers C* has been constructed. The Cachy's model in the space of new generalized functions is well defined. The generalized integral of new generalized function over the compact K has been defined.

  15. Generalized Cauchy's Models and Generalized Integrals

    Directory of Open Access Journals (Sweden)

    Sabra Ramadan

    2007-01-01

    Full Text Available The space of generalized complex numbers C* has been constructed. The Cachy's model in the space of new generalized functions is well defined. The generalized integral of new generalized function over the compact K has been defined.

  16. The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    Science.gov (United States)

    Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris; Holden, Tina; Rudisill, Marianne

    1993-01-01

    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry.

  17. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Filipa L Cardoso

    Full Text Available BACKGROUND: Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS is known to alter the integrity of the blood-brain barrier (BBB, little is known on the effects of unconjugated bilirubin (UCB and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC. METHODOLOGY/PRINCIPAL FINDINGS: Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. CONCLUSIONS: LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.

  18. Drosophila melanogaster as a Model Organism of Brain Diseases

    OpenAIRE

    Werner Paulus; Astrid Jeibmann

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases...

  19. The Gold Coast Integrated Care Model

    OpenAIRE

    Connor, Martin; Cooper, Helen; McMurray, Anne

    2016-01-01

    This article outlines the development of the Australian Gold Coast Integrated Care Model based on the elements identified in contemporary research literature as essential for successful integration of care between primary care, and acute hospital services. The objectives of the model are to proactively manage high risk patients with complex and chronic conditions in collaboration with General Practitioners to ultimately reduce presentations to the health service emergency department, improve ...

  20. Social Outcomes in Childhood Brain Disorder: A Heuristic Integration of Social Neuroscience and Developmental Psychology

    Science.gov (United States)

    Yeates, Keith Owen; Bigler, Erin D.; Dennis, Maureen; Gerhardt, Cynthia A.; Rubin, Kenneth H.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn

    2007-01-01

    The authors propose a heuristic model of the social outcomes of childhood brain disorder that draws on models and methods from both the emerging field of social cognitive neuroscience and the study of social competence in developmental psychology/psychopathology. The heuristic model characterizes the relationships between social adjustment, peer…

  1. New Experimental Model of Brain Tumors in Brains of Adult Immunocompetent Rats

    OpenAIRE

    Baklaushev, Vladimir P.; Kavsan, Vadym M.; Balynska, Olena V; Yusubalieva, Gaukhar M.; Abakumov, Maxim A.; Chekhonin, Vladimir P.

    2012-01-01

    Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration of Study: Laboratory o...

  2. Efficient numerical integrators for stochastic models

    CERN Document Server

    De Fabritiis, G; Español, P; Coveney, P V

    2006-01-01

    The efficient simulation of models defined in terms of stochastic differential equations (SDEs) depends critically on an efficient integration scheme. In this article, we investigate under which conditions the integration schemes for general SDEs can be derived using the Trotter expansion. It follows that, in the stochastic case, some care is required in splitting the stochastic generator. We test the Trotter integrators on an energy-conserving Brownian model and derive a new numerical scheme for dissipative particle dynamics. We find that the stochastic Trotter scheme provides a mathematically correct and easy-to-use method which should find wide applicability.

  3. Dynamic causal modelling of brain-behaviour relationships.

    Science.gov (United States)

    Rigoux, L; Daunizeau, J

    2015-08-15

    In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients).

  4. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  5. Quantification of Brain Access of Exendin-4 in the C57BL Mouse Model by SPIM Fluorescence Imaging and the Allen Mouse Brain Reference Model

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Secher, Anna; Hecksher-Sørensen, Jacob;

    2015-01-01

    construct a SPIM brain atlas based on the Allen mouse brain 3D reference model and use it to analyze the access of peripherally injected Exendin-4 into the brain compared to a negative control group. The constructed atlas consists of an average SPIM volume obtained from eight C57BL mouse brains using group...

  6. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette;

    2016-01-01

    The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of the present study......-culture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane...... proteins was analysed using RT-qPCR, mass spectrometry, and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the mono-culture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major...

  7. Music plus Music Integration: A Model for Music Education Policy Reform That Reflects the Evolution and Success of Arts Integration Practices in 21st Century American Public Schools

    Science.gov (United States)

    Scripp, Lawrence; Gilbert, Josh

    2016-01-01

    This article explores the special case of integrative teaching and learning in music as a model for 21st century music education policy reform based on the principles that have evolved out of arts integration research and practices over the past century and informed by the recent rising tide of evidence of music's impact on brain capacity and…

  8. Creating physical 3D stereolithograph models of brain and skull.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  9. Dynamic description logic model for data integration

    Institute of Scientific and Technical Information of China (English)

    Guoshun HAO; Shilong MA; Yuefei SUI; Jianghua LV

    2008-01-01

    Data integration is the issue of retrieving and combining data residing at distributed and heterogeneous sources,and of providing users with transparent access without being aware of the details of the sources.Data integration is a very important issue because it deals with data infrastructure issues of coordinated computing systems.Despite its importance,the following key challenges make data integration one of the longest standing problems around:1) how to solve the system heterogeneity;2) how to build a global model;3) how to process queries automatically and correctly;and 4) how to solve semantic heterogeneity. This paper presents an extended dynamic description logic language to describe systems with dynamic actions.By this language,a-universal and unified model for relational database systems and a model for data integration are presented.This paper presents a universal and unified description logic model for relational databases.The model is universal because any relational database system can be automatically transformed to the model;it is unified because it integrates three essential components of relational databases together:description logic knowledge bases modeling the relational data,atomic modalities modeling the atomic relational operations,and combined modalities modeling the combined relational operations-queries. Furthermore,a description logic model for data integration is proposed which contains four layers of ontologies.Based on the model,a solution for each key challenge is proposed:a universal model eliminates system heterogeneity;a novel global model including three ontologies is proposed with some important benefits;a query process mechanism is provided by which user queries can be decomposed to queries over the sources;and for solving the semantic heterogeneity,this paper provides a framework under which semantic relations can be expressed and inferred. In summary,this paper presents a dynamic knowledge base framework by an extended

  10. Classical Wave Model of Quantum-Like Processing in Brain

    Science.gov (United States)

    Khrennikov, A.

    2011-01-01

    We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.

  11. A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System

    Science.gov (United States)

    Tononi, Giulio; Sporns, Olaf; Edelman, Gerald M.

    1994-05-01

    In brains of higher vertebrates, the functional segregation of local areas that differ in their anatomy and physiology contrasts sharply with their global integration during perception and behavior. In this paper, we introduce a measure, called neural complexity (C_N), that captures the interplay between these two fundamental aspects of brain organization. We express functional segregation within a neural system in terms of the relative statistical independence of small subsets of the system and functional integration in terms of significant deviations from independence of large subsets. C_N is then obtained from estimates of the average deviation from statistical independence for subsets of increasing size. C_N is shown to be high when functional segregation coexists with integration and to be low when the components of a system are either completely independent (segregated) or completely dependent (integrated). We apply this complexity measure in computer simulations of cortical areas to examine how some basic principles of neuroanatomical organization constrain brain dynamics. We show that the connectivity patterns of the cerebral cortex, such as a high density of connections, strong local connectivity organizing cells into neuronal groups, patchiness in the connectivity among neuronal groups, and prevalent reciprocal connections, are associated with high values of C_N. The approach outlined here may prove useful in analyzing complexity in other biological domains such as gene regulation and embryogenesis.

  12. Integrating systems biology models and biomedical ontologies

    Directory of Open Access Journals (Sweden)

    de Bono Bernard

    2011-08-01

    Full Text Available Abstract Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  13. A mechanical model predicts morphological abnormalities in the developing human brain

    Science.gov (United States)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  14. Research on an Integrated Enterprise Workflow Model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An integrated enterprise workflow model called PPROCE is presented firstly. Then, an enterprise's ontology established by TOVE and Process Specification Language (PSL) is studied. Combined with TOVE's partition idea, PSL is extended and new PSL Extensions is created to define the ontology of process, organization, resource and product in the PPROCE model. As a result, PPROCE model can be defined by a set of corresponding formal language. It facilitates the future work not only in the model verification, model optimization and model simulation, but also in the model translation.

  15. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lim, S. M [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner.

  16. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lim, Sang Moo [Korea Institite of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-12-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 {mu}l was injected using 30 G needle for 5 minutes to establish the infarction model. {sup 18}F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, {sup 18}F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using {sup 18}F-FDG microPET scanner.

  17. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 μl was injected using 30 G needle for 5 minutes to establish the infarction model. 18F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, 18F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using 18F-FDG microPET scanner

  18. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  19. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  20. New challenges in integrated water quality modelling

    NARCIS (Netherlands)

    Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Griensven, A.; Zee, van der S.E.A.T.M.

    2010-01-01

    There is an increasing pressure for development of integrated water quality models that effectively couple catchment and in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related to contemporary climate and land use changes. Modelling w

  1. Modeling "Soft" Errors in Bipolar Integrated Circuits

    Science.gov (United States)

    Zoutendyk, J.; Benumof, R.; Vonroos, O.

    1985-01-01

    Mathematical models represent single-event upset in bipolar memory chips. Physics of single-event upset in integrated circuits discussed in theoretical paper. Pair of companion reports present mathematical models to predict critical charges for producing single-event upset in bipolar randomaccess memory (RAM) chips.

  2. Misconceptions and Misattributions About Traumatic Brain Injury: An Integrated Conceptual Framework.

    Science.gov (United States)

    Block, Cady K; West, Sarah E; Goldin, Yelena

    2016-01-01

    The objective of the present narrative review was to provide a conceptual framework to address common misconceptions in the field of traumatic brain injury (TBI) and enhance clinical and research practices. This framework is based on review of the literature on TBI knowledge and beliefs. The comprehensive search of the literature included seminal and current texts as well as relevant articles on TBI knowledge and education, misconceptions, and misattributions. Reviewed materials ranged from 1970 to 2013 and were obtained from PubMed and PubMed Central online research databases. Research findings from the reviewed literature were integrated with existing social and cognitive psychological concepts to develop a framework that includes: (1) the identification antecedents of TBI-related misconceptions and misattribution; (2) understanding of how inaccurate beliefs form and persist as the result of pre- and postinjury cognitive operations such as informational cascades and attribution biases; and (3) a discussion of ways in which these beliefs can result in consequences in all domains of a survivor's life, including physical and mental health, stigma, and discrimination. This framework is intended to serve as a first stage of development of a model that will improve treatment endeavors and service delivery to individuals with TBI and their families. PMID:26054960

  3. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  4. Causation model of autism: Audiovisual brain specialization in infancy competes with social brain networks.

    Science.gov (United States)

    Heffler, Karen Frankel; Oestreicher, Leonard M

    2016-06-01

    Earliest identifiable findings in autism indicate that the autistic brain develops differently from the typical brain in the first year of life, after a period of typical development. Twin studies suggest that autism has an environmental component contributing to causation. Increased availability of audiovisual (AV) materials and viewing practices of infants parallel the time frame of the rise in prevalence of autism spectrum disorder (ASD). Studies have shown an association between ASD and increased TV/cable screen exposure in infancy, suggesting AV exposure in infancy as a possible contributing cause of ASD. Infants are attracted to the saliency of AV materials, yet do not have the experience to recognize these stimuli as socially relevant. The authors present a developmental model of autism in which exposure to screen-based AV input in genetically susceptible infants stimulates specialization of non-social sensory processing in the brain. Through a process of neuroplasticity, the autistic infant develops the skills that are driven by the AV viewing. The AV developed neuronal pathways compete with preference for social processing, negatively affecting development of social brain pathways and causing global developmental delay. This model explains atypical face and speech processing, as well as preference for AV synchrony over biological motion in ASD. Neural hyper-connectivity, enlarged brain size and special abilities in visual, auditory and motion processing in ASD are also explained by the model. Positive effects of early intervention are predicted by the model. Researchers studying causation of autism have largely overlooked AV exposure in infancy as a potential contributing factor. The authors call for increased public awareness of the association between early screen viewing and ASD, and a concerted research effort to determine the extent of causal relationship. PMID:26146132

  5. EEG-fMRI integration for the study of human brain function.

    Science.gov (United States)

    Jorge, João; van der Zwaag, Wietske; Figueiredo, Patrícia

    2014-11-15

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have proved to be extremely valuable tools for the non-invasive study of human brain function. Moreover, due to a notable degree of complementarity between the two modalities, the combination of EEG and fMRI data has been actively sought in the last two decades. Although initially focused on epilepsy, EEG-fMRI applications were rapidly extended to the study of healthy brain function, yielding new insights into its underlying mechanisms and pathways. Nevertheless, EEG and fMRI have markedly different spatial and temporal resolutions, and probe neuronal activity through distinct biophysical processes, many aspects of which are still poorly understood. The remarkable conceptual and methodological challenges associated with EEG-fMRI integration have motivated the development of a wide range of analysis approaches over the years, each relying on more or less restrictive assumptions, and aiming to shed further light on the mechanisms of brain function along with those of the EEG-fMRI coupling itself. Here, we present a review of the most relevant EEG-fMRI integration approaches yet proposed for the study of brain function, supported by a general overview of our current understanding of the biophysical mechanisms coupling the signals obtained from the two modalities.

  6. Typological and Integrative Models of Sexual Abuse

    OpenAIRE

    Demidova L.Y.,; Dvorjanchikov N.V.,

    2014-01-01

    We discuss the basic typological and integrative theoretical models that explain the occurrence of child sexual abuse and the differences detected among the perpetrators of crimes against sexual integrity of minors. A comprehensive review of the theoretical concepts of sexual abuse in our country, in fact has not been carried out, and in this paper for the first time we made such an attempt. It is shown that the existing notions of sexual abuse largely overlap each other, but each of the mode...

  7. Global fractional anisotropy and mean diffusivity together with segmented brain volumes assemble a predictive discriminant model for young and elderly healthy brains: a pilot study at 3T

    Science.gov (United States)

    Garcia-Lazaro, Haydee Guadalupe; Becerra-Laparra, Ivonne; Cortez-Conradis, David; Roldan-Valadez, Ernesto

    2016-01-01

    Summary Several parameters of brain integrity can be derived from diffusion tensor imaging. These include fractional anisotropy (FA) and mean diffusivity (MD). Combination of these variables using multivariate analysis might result in a predictive model able to detect the structural changes of human brain aging. Our aim was to discriminate between young and older healthy brains by combining structural and volumetric variables from brain MRI: FA, MD, and white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) volumes. This was a cross-sectional study in 21 young (mean age, 25.71±3.04 years; range, 21–34 years) and 10 elderly (mean age, 70.20±4.02 years; range, 66–80 years) healthy volunteers. Multivariate discriminant analysis, with age as the dependent variable and WM, GM and CSF volumes, global FA and MD, and gender as the independent variables, was used to assemble a predictive model. The resulting model was able to differentiate between young and older brains: Wilks’ λ = 0.235, χ2 (6) = 37.603, p = .000001. Only global FA, WM volume and CSF volume significantly discriminated between groups. The total accuracy was 93.5%; the sensitivity, specificity and positive and negative predictive values were 91.30%, 100%, 100% and 80%, respectively. Global FA, WM volume and CSF volume are parameters that, when combined, reliably discriminate between young and older brains. A decrease in FA is the strongest predictor of membership of the older brain group, followed by an increase in WM and CSF volumes. Brain assessment using a predictive model might allow the follow-up of selected cases that deviate from normal aging. PMID:27027893

  8. Inferring brain-computational mechanisms with models of activity measurements.

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  9. Inferring brain-computational mechanisms with models of activity measurements.

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574316

  10. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    Science.gov (United States)

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks.

  11. Animal models of focal brain ischemia

    OpenAIRE

    Sicard Kenneth M; Fisher Marc

    2009-01-01

    Abstract Stroke is a leading cause of disability and death in many countries. Understanding the pathophysiology of ischemic injury and developing therapies is an important endeavor that requires much additional research. Animal stroke models provide an important mechanism for these activities. A large number of stroke models have been developed and are currently used in laboratories around the world. These models are overviewed as are approaches for measuring infarct size and functional outcome.

  12. Integrated assessment modeling: Modules for cooperation

    OpenAIRE

    Jaeger, Carlo C.; Leimbach, Marian; Carraro, Carlo; HASSELMANN, KLAUS; Hourcade, Jean-Charles

    2002-01-01

    An integrated assessment (IA) model combines knowledge from very different disciplines in view of a practical problem. Most models developed so far are rather monolithic in the sense that it is difficult to combine components from different models for purposes of new assessments. We propose to develop a modular approach to IA based on advances in knowledge management as well as in object oriented software engineering. The incentive structure of modular IA is based on turning the knowledge pro...

  13. Integrated modelling of the Belgian coastal zone

    OpenAIRE

    Delhez, E. J. M.; Carabin, G.

    2001-01-01

    The management of the water resources in coastal or delta plains asks for an integrated modelling of the water system at a regional scale. In the SALMON project, detailed descriptions of the groundwater, river and marine domains are provided by coupling appropriate numerical models of these different sub-systems.The application of this three-fold model to the Scheldt and Belgian Coastal Zone reveals a marked river plume extending along the Belgian Coast with strong offshore gradients. This pl...

  14. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    . Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging......Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain...... imaging device. The quality of the source reconstruction depends on the forward model which details head geometry and conductivities of different head compartments. These person-specific factors are complex to determine, requiring detailed knowledge of the subject’s anatomy and physiology. In this proof...

  15. A porcine model of haematogenous brain infectionwith staphylococcus aureus

    DEFF Research Database (Denmark)

    Astrup, Lærke Boye; Agerholm, Jørgen Steen; Nielsen, Ole Lerberg;

    2012-01-01

    A PORCINE MODEL OF HAEMATOGENOUS BRAIN INFECTION WITH STAPHYLOCOCCUS AUREUS Astrup Lærke1, Agerholm Jørgen1, Nielsen Ole1, Jensen Henrik1, Leifsson Páll1, Iburg Tine2. 1: Faculty of Health and Medical Sciences, University of Copenhagen, Denmark boye@life.ku.dk 2: National Veterinary Institute......, Uppsala, Sweden Introduction Staphylococcus aureus (S.aureus) is a common cause of sepsis and brain abscesses in man and a frequent cause of porcine pyaemia. Here we present a porcine model of haematogenous S. aureus-induced brain infection. Materials and Methods Four pigs had two intravenous catheters...... inserted surgically, one in a. carotis communis and one in v. jugularis externa. All pigs received 106 CFU/kg body weight S. aureus through the arterial catheter. Bacteria were either suspended in isotonic saline infused at constant flow for 60 minutes (two pigs) or given as a bolus injection of autologoue...

  16. Postnatal experiences influence how the brain integrates information from different senses

    Directory of Open Access Journals (Sweden)

    Barry E Stein

    2009-09-01

    Full Text Available Sensory Processing Disorder (SPD is characterized by anomalous reactions to, and integration of, sensory cues. Although the underlying etiology of SPD is unknown, one brain region likely to reflect these sensory and behavioral anomalies is the Superior Colliculus (SC; a structure involved in the synthesis of information from multiple sensory modalities and the control of overt orientation responses. In this review we describe normal functional properties of this structure, the manner in which its individual neurons integrate cues from different senses, and the overt SC-mediated behaviors that are believed to manifest this “multisensory integration.” Of particular interest here is how SC neurons develop their capacity to engage in multisensory integration during early postnatal life as a consequence of early sensory experience, and that it is the intimate communication between cortex and the midbrain makes this developmental process possible.

  17. Integrated Modelling - the next steps (Invited)

    Science.gov (United States)

    Moore, R. V.

    2010-12-01

    Integrated modelling (IM) has made considerable advances over the past decade but it has not yet been taken up as an operational tool in the way that its proponents had hoped. The reasons why will be discussed in Session U17. This talk will propose topics for a research and development programme and suggest an institutional structure which, together, could overcome the present obstacles. Their combined aim would be first to make IM into an operational tool useable by competent public authorities and commercial companies and, in time, to see it evolve into the modelling equivalent of Google Maps, something accessible and useable by anyone with a PC or an iphone and an internet connection. In a recent study, a number of government agencies, water authorities and utilities applied integrated modelling to operational problems. While the project demonstrated that IM could be used in an operational setting and had benefit, it also highlighted the advances that would be required for its widespread uptake. These were: greatly improving the ease with which models could be a) made linkable, b) linked and c) run; developing a methodology for applying integrated modelling; developing practical options for calibrating and validating linked models; addressing the science issues that arise when models are linked; extending the range of modelling concepts that can be linked; enabling interface standards to pass uncertainty information; making the interface standards platform independent; extending the range of platforms to include those for high performance computing; developing the concept of modelling components as web services; separating simulation code from the model’s GUI, so that all the results from the linked models can be viewed through a single GUI; developing scenario management systems so that that there is an audit trail of the version of each model and dataset used in each linked model run. In addition to the above, there is a need to build a set of integrated

  18. A neurovascular blood-brain barrier in vitro model.

    Science.gov (United States)

    Zehendner, Christoph M; White, Robin; Hedrich, Jana; Luhmann, Heiko J

    2014-01-01

    The cerebral microvasculature possesses certain cellular features that constitute the blood-brain barrier (BBB) (Abbott et al., Neurobiol Dis 37:13-25, 2010). This dynamic barrier separates the brain parenchyma from peripheral blood flow and is of tremendous clinical importance: for example, BBB breakdown as in stroke is associated with the development of brain edema (Rosenberg and Yang, Neurosurg Focus 22:E4, 2007), inflammation (Kuhlmann et al., Neurosci Lett 449:168-172, 2009; Coisne and Engelhardt, Antioxid Redox Signal 15:1285-1303, 2011), and increased mortality. In vivo, the BBB consists of brain endothelial cells (BEC) that are embedded within a precisely regulated environment containing astrocytes, pericytes, smooth muscle cells, and glial cells. These cells experience modulation by various pathways of intercellular communication and by pathophysiological processes, e.g., through neurovascular coupling (Attwell et al., Nature 468:232-243, 2010), cortical spreading depression (Gursoy-Ozdemir et al., J Clin Invest 113:1447-1455, 2004), or formation of oxidative stress (Yemisci et al., Nat Med 15:1031-1037, 2009). Hence, this interdependent assembly of cells is referred to as the neurovascular unit (NVU) (Zlokovic, Nat Med 16:1370-1371, 2010; Zlokovic, Neuron 57:178-201, 2008). Experimental approaches to investigate the BBB in vitro are highly desirable to study the cerebral endothelium in health and disease. However, due to the complex interactions taking place within the NVU in vivo, it is difficult to mimic this interplay in vitro.Here, we describe a murine blood-brain barrier coculture model consisting of cortical organotypic slice cultures and brain endothelial cells that includes most of the cellular components of the NVU including neurons, astrocytes, and brain endothelial cells. This model allows the experimental analysis of several crucial BBB parameters such as transendothelial electrical resistance or tight junction protein localization by

  19. Brain network analysis: separating cost from topology using cost-integration.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    Full Text Available A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i differences in weighted costs and (ii differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration.

  20. Read My Lips: Brain Dynamics Associated with Audiovisual Integration and Deviance Detection.

    Science.gov (United States)

    Tse, Chun-Yu; Gratton, Gabriele; Garnsey, Susan M; Novak, Michael A; Fabiani, Monica

    2015-09-01

    Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.

  1. Strings, Integrable Systems, Geometry and Statistical Models

    CERN Document Server

    Marshakov, A

    2004-01-01

    The role of integrable systems in string theory is discussed. We remind old examples of the correspondence between stringy partition functions or effective actions and integrable equations, based on effective application of the matrix model technique. Then we turn to a new example, coming from the Nekrasov deformation of the Seiberg-Witten prepotential. In the last case the deformed theory is described by a different statistical model, which becomes equivalent to a partition function of a topological string. The full partition function of string theory arises therefore always as a certain "quantization" of its quasiclassical geometry.

  2. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yunjie Chen

    2016-01-01

    Full Text Available We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.

  3. Experimental model for civilian ballistic brain injury biomechanics quantification.

    Science.gov (United States)

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A; Guan, Yabo; Gennarelli, Thomas A

    2007-01-01

    Biomechanical quantification of projectile penetration using experimental head models can enhance the understanding of civilian ballistic brain injury and advance treatment. Two of the most commonly used handgun projectiles (25-cal, 275 m/s and 9 mm, 395 m/s) were discharged to spherical head models with gelatin and Sylgard simulants. Four ballistic pressure transducers recorded temporal pressure distributions at 308kHz, and temporal cavity dynamics were captured at 20,000 frames/second (fps) using high-speed digital video images. Pressures ranged from 644.6 to -92.8 kPa. Entry pressures in gelatin models were higher than exit pressures, whereas in Sylgard models entry pressures were lower or equivalent to exit pressures. Gelatin responded with brittle-type failure, while Sylgard demonstrated a ductile pattern through formation of micro-bubbles along projectile path. Temporary cavities in Sylgard models were 1.5-2x larger than gelatin models. Pressures in Sylgard models were more sensitive to projectile velocity and diameter increase, indicating Sylgard was more rate sensitive than gelatin. Based on failure patterns and brain tissue rate-sensitive characteristics, Sylgard was found to be an appropriate simulant. Compared with spherical projectile data, full-metal jacket (FMJ) projectiles produced different temporary cavity and pressures, demonstrating shape effects. Models using Sylgard gel and FMJ projectiles are appropriate to enhance understanding and mechanisms of ballistic brain injury.

  4. Stochastic model of Tsc1 lesions in mouse brain.

    Directory of Open Access Journals (Sweden)

    Shilpa Prabhakar

    Full Text Available Tuberous sclerosis complex (TSC is an autosomal dominant disorder due to mutations in either TSC1 or TSC2 that affects many organs with hamartomas and tumors. TSC-associated brain lesions include subependymal nodules, subependymal giant cell astrocytomas and tubers. Neurologic manifestations in TSC comprise a high frequency of mental retardation and developmental disorders including autism, as well as epilepsy. Here, we describe a new mouse model of TSC brain lesions in which complete loss of Tsc1 is achieved in multiple brain cell types in a stochastic pattern. Injection of an adeno-associated virus vector encoding Cre recombinase into the cerebral ventricles of mice homozygous for a Tsc1 conditional allele on the day of birth led to reduced survival, and pathologic findings of enlarged neurons, cortical heterotopias, subependymal nodules, and hydrocephalus. The severity of clinical and pathologic findings as well as survival was shown to be dependent upon the dose and serotype of Cre virus injected. Although several other models of TSC brain disease exist, this model is unique in that the pathology reflects a variety of TSC-associated lesions involving different numbers and types of cells. This model provides a valuable and unique addition for therapeutic assessment.

  5. Directions for Mind, Brain, and Education: Methods, Models, and Morality

    Science.gov (United States)

    Stein, Zachary; Fischer, Kurt W.

    2011-01-01

    In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis…

  6. CTBT integrated verification system evaluation model supplement

    International Nuclear Information System (INIS)

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0

  7. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  8. Data and Model Integration Promoting Interdisciplinarity

    Science.gov (United States)

    Koike, T.

    2014-12-01

    It is very difficult to reflect accumulated subsystem knowledge into holistic knowledge. Knowledge about a whole system can rarely be introduced into a targeted subsystem. In many cases, knowledge in one discipline is inapplicable to other disciplines. We are far from resolving cross-disciplinary issues. It is critically important to establish interdisciplinarity so that scientific knowledge can transcend disciplines. We need to share information and develop knowledge interlinkages by building models and exchanging tools. We need to tackle a large increase in the volume and diversity of data from observing the Earth. The volume of data stored has exponentially increased. Previously, almost all of the large-volume data came from satellites, but model outputs occupy the largest volume in general. To address the large diversity of data, we should develop an ontology system for technical and geographical terms in coupling with a metadata design according to international standards. In collaboration between Earth environment scientists and IT group, we should accelerate data archiving by including data loading, quality checking and metadata registration, and enrich data-searching capability. DIAS also enables us to perform integrated research and realize interdisciplinarity. For example, climate change should be addressed in collaboration between the climate models, integrated assessment models including energy, economy, agriculture, health, and the models of adaptation, vulnerability, and human settlement and infrastructure. These models identify water as central to these systems. If a water expert can develop an interrelated system including each component, the integrated crisis can be addressed by collaboration with various disciplines. To realize this purpose, we are developing a water-related data- and model-integration system called a water cycle integrator (WCI).

  9. Do Different Models of Integration Affect Actual Integration? The Cases of France and Great Britain Revisited

    OpenAIRE

    Haque, Md. Asirul

    2008-01-01

    Britain and France adapted two different integration models, namely assimilationist and multiculturalism to integrate their immigrants. These two big models of integration have distinctive characteristics to integrate immigrants. There is a general claim that multiculturalism model is the best for integrating immigrants in terms of actual integration, however, some argue the opposite, that French assimilationist model is ‘better off.’ This study examines these controversial claims by looking ...

  10. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes

    OpenAIRE

    King, Tricia Z.; Liya Wang; Hui Mao

    2015-01-01

    Background Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Methods Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an in...

  11. Renewed mer model of integral management

    Directory of Open Access Journals (Sweden)

    Janko Belak

    2015-12-01

    Full Text Available Background: The research work on entrepreneurship, enterprise's policy and management, which started in 1992, successfully continued in the following years. Between 1992 and 2011, more than 400 academics and other researchers have participated in research work (MER research program whose main orientation has been the creation of their own model of integral management. Results: In past years, academics (researchers and authors of published papers from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Byelorussia, Canada, the Czech Republic, Croatia, Estonia, France, Germany, Hungary, Italy, Poland, Romania, Russia, the Slovak Republic, Slovenia, Switzerland, Ukraine, and the US have cooperated in MER programs, coming from more than fifty institutions. Thus, scientific doctrines of different universities influenced the development of the MER model which is based on both horizontal and vertical integration of the enterprises' governance and management processes, instruments and institutions into a consistently operating unit. Conclusions: The presented MER model is based on the multi-layer integration of governance and management with an enterprise and its environment, considering the fundamental desires for the enterprises' existence and, thus, their quantitative as well as qualitative changes. The process, instrumental, and institutional integrity of the governance and management is also the initial condition for the implementation of all other integration factors.

  12. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm;

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke....... Transthyretin (TTR) is normally responsible for the transport of thyroid hormones and retinol in the blood and CSF. We found that TTR null mice (TTR(-/-) ) did not show significant differences in cortical infarction 24 h after permanent middle cerebral artery occlusion compared with TTR(+/+) control littermates...

  13. How Anatomy Shapes Dynamics: A Semi-Analytical Study of the Brain at Rest by a Simple Spin Model

    Directory of Open Access Journals (Sweden)

    Gustavo eDeco

    2012-09-01

    Full Text Available Resting state networks show a surprisingly coherent and robust spatiotemporal organization. Previous theoretical studies demonstrated that these patterns can be understood as emergent on the basis of the underlying neuroanatomical connectivity skeleton. Integrating the biologically realistic DTI/DSI based neuroanatomical connectivity into a brain model of Ising spin dynamics, we found the presence of latent ghost multi-stable attractors, which can be studied analytically. The multistable attractor landscape defines a functionally meaningful dynamic repertoire of the brain network that is inherently present in the neuroanatomical connectivity. We demonstrate that the more entropy of attractors exists, the richer is the dynamical repertoire and consequently the brain network displays more capabilities of computation. We hypothesize therefore that human brain connectivity developed a scale free type of architecture in order to be able to store a large number of different and flexibly accessible brain functions

  14. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens;

    2006-01-01

    rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...

  15. Rethinking School Bullying: Towards an Integrated Model

    Science.gov (United States)

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  16. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on t

  17. Psychotherapy and pharmacotherapy: toward an integrative model.

    Science.gov (United States)

    Karasu, T B

    1982-09-01

    The author reviews historical trends, hypotheses, and problems in the application of pharmacotherapy and psychotherapy and uses research findings to develop an integrative model. He portrays a chronology of models over three decades; an "additive" relationship represents the decade of 1970 to 1980. He presents factors that must be considered in determining the effects of pharmacotherapy plus psychotherapy and recommends refinement of these variables in future research.

  18. Models to Tailor Brain Stimulation Therapies in Stroke

    Directory of Open Access Journals (Sweden)

    E. B. Plow

    2016-01-01

    Full Text Available A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.

  19. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    Science.gov (United States)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  20. Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury.

    Science.gov (United States)

    Van, Ken C; Lyeth, Bruce G

    2016-01-01

    Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI. PMID:27604722

  1. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  2. Self-Organized Criticality model for Brain Plasticity

    OpenAIRE

    De Arcangelis, Lucilla; Perrone-Capano, Carla; Herrmann, Hans J.

    2006-01-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model based on self-organized criticality and taking into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists in an electrical network with threshold firing and activity-dependent synapse strenghts. The system exhibits an avalanche activity power law distributed. The analysis of the power spectra of t...

  3. Integrable extended van der Waals model

    Science.gov (United States)

    Giglio, Francesco; Landolfi, Giulio; Moro, Antonio

    2016-10-01

    Inspired by the recent developments in the study of the thermodynamics of van der Waals fluids via the theory of nonlinear conservation laws and the description of phase transitions in terms of classical (dissipative) shock waves, we propose a novel approach to the construction of multi-parameter generalisations of the van der Waals model. The theory of integrable nonlinear conservation laws still represents the inspiring framework. Starting from a macroscopic approach, a four parameter family of integrable extended van der Waals models is indeed constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation law linearisable by a Cole-Hopf transformation. This family is further specified by the request that, in regime of high temperature, far from the critical region, the extended model reproduces asymptotically the standard van der Waals equation of state. We provide a detailed comparison of our extended model with two notable empirical models such as Peng-Robinson and Soave's modification of the Redlich-Kwong equations of state. We show that our extended van der Waals equation of state is compatible with both empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive nonlinear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive shock waves.

  4. Neuroteratology and Animal Modeling of Brain Disorders.

    Science.gov (United States)

    Archer, Trevor; Kostrzewa, Richard M

    2016-01-01

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents. PMID:26857462

  5. General solutions to poroviscoelastic model of hydrocephalic human brain tissue.

    Science.gov (United States)

    Mehrabian, Amin; Abousleiman, Younane

    2011-12-21

    Hydrocephalus is a well-known disorder of brain fluidic system. It is commonly associated with complexities in cerebrospinal fluid (CSF) circulation in brain. In this paper, hydrocephalus and shunting surgery which is used in its treatment are modeled. Brain tissues are considered to follow a poroviscoelastic constitutive model in order to address the effects of time dependence of mechanical properties of soft tissues and fluid flow hydraulics. Our solution draws from Biot's theory of poroelasticity, generalized to account for viscoelastic effects through the correspondence principle. Geometrically, the brain is conceived to be spherically symmetric, where the ventricles are assumed to be a hollow concentric space filled with cerebrospinal fluid. A generalized Kelvin model is considered for the rheological properties of brain tissues. The solution presented is useful in the analysis of the disorder of hydrocephalus as well as the treatment associated with it, namely, ventriclostomy surgery. The sensitivity of the solution to various factors such as aqueduct blockage level and trabeculae stiffness is thoroughly analyzed using numerical examples. Results indicate that partial aqueduct stenosis may be a cause of hydrocephalus. However, only severe occlusion of the aqueduct can cause a significant increase in the ventricle and brain's extracellular fluid pressure. Ventriculostomy shunts are commonly used as a remedy to hydrocephalus. They serve to reduce the ventricular pressure to the normal level. However, sensitivity analysis on the shunt's fluid deliverability parameter has shown that inappropriate design or selection of design shunt may cause under-drainage or over-drainage of the ventricles. Excessive drainage of CSF may increase the normal tensile stress on trabeculae. It can cause rupture of superior cerebral veins or damage to trabeculae or even brain tissues which in turn may lead to subdural hematoma, a common side-effect of the surgery. These Post

  6. Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model

    Science.gov (United States)

    Garbuzova-Davis, Svitlana; Rodrigues, Maria C. O.; Hernandez-Ontiveros, Diana G.; Tajiri, Naoki; Frisina-Deyo, Aric; Boffeli, Sean M.; Abraham, Jerry V.; Pabon, Mibel; Wagner, Andrew; Ishikawa, Hiroto; Shinozuka, Kazutaka; Haller, Edward; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesario V.

    2013-01-01

    Background Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB) competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. Methodology/Principal Findings In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO), significant BBB alterations characterized by large Evans Blue (EB) parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. Conclusions/Significance These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke. PMID:23675488

  7. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    Full Text Available BACKGROUND: Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. METHODOLOGY/PRINCIPAL FINDINGS: In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO, significant BBB alterations characterized by large Evans Blue (EB parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. CONCLUSIONS/SIGNIFICANCE: These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke.

  8. Misaligned Image Integration With Local Linear Model.

    Science.gov (United States)

    Baba, Tatsuya; Matsuoka, Ryo; Shirai, Keiichiro; Okuda, Masahiro

    2016-05-01

    We present a new image integration technique for a flash and long-exposure image pair to capture a dark scene without incurring blurring or noisy artifacts. Most existing methods require well-aligned images for the integration, which is often a burdensome restriction in practical use. We address this issue by locally transferring the colors of the flash images using a small fraction of the corresponding pixels in the long-exposure images. We formulate the image integration as a convex optimization problem with the local linear model. The proposed method makes it possible to integrate the color of the long-exposure image with the detail of the flash image without causing any harmful effects to its contrast, where we do not need perfect alignment between the images by virtue of our new integration principle. We show that our method successfully outperforms the state of the art in the image integration and reference-based color transfer for challenging misaligned data sets.

  9. Comparative Evaluation for Brain Structural Connectivity Approaches: Towards Integrative Neuroinformatics Tool for Epilepsy Clinical Research.

    Science.gov (United States)

    Yang, Sheng; Tatsuoka, Curtis; Ghosh, Kaushik; Lacuey-Lecumberri, Nuria; Lhatoo, Samden D; Sahoo, Satya S

    2016-01-01

    Recent advances in brain fiber tractography algorithms and diffusion Magnetic Resonance Imaging (MRI) data collection techniques are providing new approaches to study brain white matter connectivity, which play an important role in complex neurological disorders such as epilepsy. Epilepsy affects approximately 50 million persons worldwide and it is often described as a disorder of the cortical network organization. There is growing recognition of the need to better understand the role of brain structural networks in the onset and propagation of seizures in epilepsy using high resolution non-invasive imaging technologies. In this paper, we perform a comparative evaluation of two techniques to compute structural connectivity, namely probabilistic fiber tractography and statistics derived from fractional anisotropy (FA), using diffusion MRI data from a patient with rare case of medically intractable insular epilepsy. The results of our evaluation demonstrate that probabilistic fiber tractography provides a more accurate map of structural connectivity and may help address inherent complexities of neural fiber layout in the brain, such as fiber crossings. This work provides an initial result towards building an integrative informatics tool for neuroscience that can be used to accurately characterize the role of fiber tract connectivity in neurological disorders such as epilepsy. PMID:27570685

  10. Adaptive integration of local region information to detect fine-scale brain activity patterns

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This pro- vides us the possibility to detect the fine-scale patterns of brain activities. The es- tablished univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale pat- terns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are com- bined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local ho- mogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity pat- terns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions.

  11. Paradox of integration -- a computational model

    CERN Document Server

    Krawczyk, Malgorzata J

    2016-01-01

    The paradoxical aspect of integration of a social group has been highlighted by Peter Blau (Exchange and Power in Social Life, Wiley and Sons, 1964). During the integration process, the group members simultaneously compete for social status and play the role of the audience. Here we show that when the competition prevails over the desire of approval, a sharp transition breaks all friendly relations. However, as was described by Blau, people with high status are inclined to bother more with acceptance of others; this is achieved by praising others and revealing her/his own weak points. In our model, this action smooths the transition and improves interpersonal relations.

  12. A prospective study to evaluate a new residential community reintegration programme for severe chronic brain injury: the Brain Integration Programme.

    NARCIS (Netherlands)

    Geurtsen, G.J.; Martina, J.D.; Heugten, C.M. van; Geurts, A.C.H.

    2008-01-01

    PURPOSE: To assess the effectiveness of a residential community reintegration programme for participants with chronic sequelae of severe acquired brain injury that hamper community functioning. DESIGN: Prospective cohort study. SUBJECTS: Twenty-four participants with acquired brain injury (traumatic

  13. Self-Organized Criticality Model for Brain Plasticity

    Science.gov (United States)

    de Arcangelis, Lucilla; Perrone-Capano, Carla; Herrmann, Hans J.

    2006-01-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model that is based on self-organized criticality and takes into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists of an electrical network with threshold firing and activity-dependent synapse strengths. The system exhibits an avalanche activity in a power-law distribution. The analysis of the power spectra of the electrical signal reproduces very robustly the power-law behavior with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.

  14. Novel Hybrid Model: Integrating Scrum and XP

    Directory of Open Access Journals (Sweden)

    Zaigham Mushtaq

    2012-06-01

    Full Text Available Scrum does not provide any direction about how to engineer a software product. The project team has to adopt suitable agile process model for the engineering of software. XP process model is mainly focused on engineering practices rather than management practices. The design of XP process makes it suitable for simple and small size projects and not appropriate for medium and large projects. A fine integration of management and engineering practices is desperately required to build quality product to make it valuable for customers. In this research a novel framework hybrid model is proposed to achieve this integration. The proposed hybrid model is actually an express version of Scrum model. It possesses features of engineering practices that are necessary to develop quality software as per customer requirements and company objectives. A case study is conducted to validate the proposal of hybrid model. The results of the case study reveal that proposed model is an improved version of XP and Scrum model.

  15. Modelling blood flow and metabolism in the piglet brain during hypoxia-ischaemia: simulating brain energetics.

    Science.gov (United States)

    Moroz, Tracy; Hapuarachchi, Tharindi; Bainbridge, Alan; Price, David; Cady, Ernest; Baer, Ether; Tachtsidis, Ilias; Broad, Kevin; Ezzati, Mojgan; Robertson, Nicola J; Thomas, David; Golay, Xavier; Cooper, Chris E

    2013-01-01

    We have developed a computational model to simulate hypoxia-ischaemia (HI) in the neonatal piglet brain. It has been extended from a previous model by adding the simulation of carotid artery occlusion and including pH changes in the cytoplasm. Here, simulations from the model are compared with near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy (MRS) measurements from two piglets during HI and short-term recovery. One of these piglets showed incomplete recovery after HI, and this is modelled by considering some of the cells to be dead. This is consistent with the results from MRS and the redox state of cytochrome-c-oxidase as measured by NIRS. However, the simulations do not match the NIRS haemoglobin measurements. The model therefore predicts that further physiological changes must also be taking place if the hypothesis of dead cells is correct.

  16. Lateral fluid percussion: model of traumatic brain injury in mice.

    Science.gov (United States)

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  17. 77 FR 34363 - Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model...

    Science.gov (United States)

    2012-06-11

    ... Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model Systems... Program--Disability Rehabilitation Research Project (DRRP)-- Traumatic Brain Injury Model Systems Centers... for the Disability and Rehabilitation Research Projects and Centers Program administered by...

  18. Modeling the impact of COPD on the brain

    Directory of Open Access Journals (Sweden)

    Soo Borson

    2008-10-01

    Full Text Available Soo Borson1, James Scanlan1, Seth Friedman2, Elizabeth Zuhr1, Julie Fields3, Elizabeth Aylward1,2, Rodney Mahurin2, Todd Richards2, Yoshimi Anzai2, Michi Yukawa4, Shingshing Yeh51Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; 2Radiology Department, University of Washington, Seattle, Washington, USA; 3Department of Psychology (Neuropsychology, University of Texas Southwestern Medical Center, Texas, USA; 4Department of Medicine (Geriatrics, University of Washington, Seattle, WA, USA; 5Department of Medicine (Geriatrics, Veterans Affairs Medical Center, Northport, New York, USAAbstract: Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9], and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated

  19. Associations between brain white matter integrity and disease severity in obstructive sleep apnea.

    Science.gov (United States)

    Tummala, Sudhakar; Roy, Bhaswati; Park, Bumhee; Kang, Daniel W; Woo, Mary A; Harper, Ronald M; Kumar, Rajesh

    2016-10-01

    Obstructive sleep apnea (OSA) is characterized by recurrent upper airway blockage, with continued diaphragmatic efforts to breathe during sleep. Brain structural changes in OSA appear in various regions, including white matter sites that mediate autonomic, mood, cognitive, and respiratory control. However, the relationships between brain white matter changes and disease severity in OSA are unclear. This study examines associations between an index of tissue integrity, magnetization transfer (MT) ratio values (which show MT between free and proton pools associated with tissue membranes and macromolecules), and disease severity (apnea-hypopnea index [AHI]) in OSA subjects. We collected whole-brain MT imaging data from 19 newly diagnosed, treatment-naïve OSA subjects (50.4 ± 8.6 years of age, 13 males, AHI 39.7 ± 24.3 events/hr], using a 3.0-Tesla MRI scanner. With these data, whole-brain MT ratio maps were calculated, normalized to common space, smoothed, and correlated with AHI scores by using partial correlation analyses (covariates, age and gender; P brain sites in OSA subjects, including superior and inferior frontal regions, ventral medial prefrontal cortex and nearby white matter, midfrontal white matter, insula, cingulate and cingulum bundle, internal and external capsules, caudate nuclei and putamen, basal forebrain, hypothalamus, corpus callosum, and temporal regions, showed principally lateralized negative correlations (P < 0.005). These regions showed significant correlations even with correction for multiple comparisons (cluster-level, family-wise error, P < 0.05), except for a few superior frontal areas. Predominantly negative correlations emerged between local MT values and OSA disease severity, indicating potential usefulness of MT imaging for examining the OSA condition. These findings indicate that OSA severity plays a significant role in white matter injury. © 2016 Wiley Periodicals, Inc. PMID:27315771

  20. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  1. Avoiding Boltzmann Brain domination in holographic dark energy models

    Directory of Open Access Journals (Sweden)

    R. Horvat

    2015-11-01

    Full Text Available In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB. It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c=1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.

  2. Visualization and modelling of STLmax topographic brain activity maps.

    Science.gov (United States)

    Mammone, Nadia; Principe, José C; Morabito, Francesco C; Shiau, Deng S; Sackellares, J Chris

    2010-06-15

    This paper evaluates the descriptive power of brain topography based on a dynamical parameter, the Short-Term Maximum Lyapunov Exponent (STLmax), estimated from EEG, for finding out a relationship of STLmax spatial distribution with the onset zone and with the mechanisms leading to epileptic seizures. Our preliminary work showed that visual assessment of STLmax topography exhibited a link with the location of seizure onset zone. The objective of the present work is to model the spatial distribution of STLmax in order to automatically extract these features from the maps. One-hour preictal segments from four long-term continuous EEG recordings (two scalp and two intracranial) were processed and the corresponding STLmax profiles were estimated. The spatial STLmax maps were modelled by a combination of two Gaussians functions. The parameters of the fitted model allow automatic extraction of quantitative information about the spatial distribution of STLmax: the EEG signal recorded from the brain region where seizures originate exhibited low-STLmax levels, long before the seizure onset, in 3 out of 4 patients (1 out of 2 of scalp patients and 2 out of 2 in intracranial patients). Topographic maps extracted directly from the EEG power did not provide useful information about the location, therefore we conclude that the analysis so far carried out suggests the possibility of using a model of STLmax topography as a tool for monitoring the evolution of epileptic brain dynamics. In the future, a more elaborate approach will be investigated in order to improve the specificity of the method.

  3. Avoiding Boltzmann Brain domination in holographic dark energy models

    Science.gov (United States)

    Horvat, R.

    2015-11-01

    In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c = 1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.

  4. Developing better and more valid animal models of brain disorders.

    Science.gov (United States)

    Stewart, Adam Michael; Kalueff, Allan V

    2015-01-01

    Valid sensitive animal models are crucial for understanding the pathobiology of complex human disorders, such as anxiety, autism, depression and schizophrenia, which all have the 'spectrum' nature. Discussing new important strategic directions of research in this field, here we focus i) on cross-species validation of animal models, ii) ensuring their population (external) validity, and iii) the need to target the interplay between multiple disordered domains. We note that optimal animal models of brain disorders should target evolutionary conserved 'core' traits/domains and specifically mimic the clinically relevant inter-relationships between these domains. PMID:24384129

  5. Search of novel model for integrative medicine.

    Science.gov (United States)

    Patwardhan, Bhushan; Mutalik, Gururaj

    2014-03-01

    This article provides global and Indian scenario with strengths and limitations of present health care system. Affordability, accessibility and availability of health care coupled with disproportionate growth and double burden of diseases have become major concerns in India. This article emphasizes need for mindset change from illness-disease-drug centric curative to person-health-wellness centric preventive and promotive approaches. It highlights innovation deficit faced pharmaceutical industry and drugs being withdrawn from market for safety reasons. Medical pluralism is a growing trend and people are exploring various options including modern, traditional, complementary and alternative medicine. In such a situation, knowledge from Ayurveda, yoga, Chinese medicine and acupuncture may play an important role. We can evolve a suitable model by integrating modern and traditional systems of medicine for affordable health care. In the larger interest of global community, Indian and Chinese systems should share knowledge and experiences for mutual intellectual enrichments and work together to evolve a novel model of integrative medicine.

  6. Self-organization in a simple brain model

    Energy Technology Data Exchange (ETDEWEB)

    Stassinopoulos, D.; Bak, P. [Brookhaven National Lab., Upton, NY (United States). Dept. of Physics; Alstroem, P. [Niels Bohr Inst., Copenhagen (Denmark). Dept. of Physics

    1994-03-10

    Simulations on a simple model of the brain are presented. The model consists of a set of randomly connected neurons. Inputs and outputs are also connected randomly to a subset of neurons. For each input there is a set of output neurons which must fire in order to achieve success. A signal giving information as to whether or not the action was successful is fed back to the brain from the environment. The connections between firing neurons are strengthened or weakened according to whether or not the action was successful. The system learns, through a self-organization process, to react intelligently to input signals, i.e. it learns to quickly select the correct output for each input. If part of the network is damaged, the system relearns the correct response after a training period.

  7. Neurocomputational models of the remote effects of focal brain damage.

    Science.gov (United States)

    Reggia, James A

    2004-11-01

    Sudden localized brain damage, such as occurs in stroke, produces neurological deficits directly attributable to the damaged site. In addition, other clinical deficits occur due to secondary "remote" effects that functionally impair the remaining intact brain regions (e.g., due to their sudden disconnection from the damaged area), a phenomenon known as diaschisis. The underlying mechanisms of these remote effects, particularly those involving interactions between the left and right cerebral hemispheres, have proven somewhat difficult to understand in the context of current theories of hemispheric specialization. This article describes some recent neurocomputational models done in the author's research group that try to explain diaschisis qualitatively. These studies show that both specialization and diaschisis can be accounted for with a single model of hemispheric interactions. Further, the results suggest that left-right subcortical influences may be much more important in influencing hemispheric specialization than is generally recognized. PMID:15564108

  8. Site descriptive modelling - strategy for integrated evaluation

    International Nuclear Information System (INIS)

    The current document establishes the strategy to be used for achieving sufficient integration between disciplines in producing Site Descriptive Models during the Site Investigation stage. The Site Descriptive Model should be a multidisciplinary interpretation of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and ecosystems using site investigation data from deep bore holes and from the surface as input. The modelling comprise the following iterative steps, evaluation of primary data, descriptive and quantitative modelling (in 3D), overall confidence evaluation. Data are first evaluated within each discipline and then the evaluations are checked between the disciplines. Three-dimensional modelling (i.e. estimating the distribution of parameter values in space and its uncertainty) is made in a sequence, where the geometrical framework is taken from the geological model and in turn used by the rock mechanics, thermal and hydrogeological modelling etc. The three-dimensional description should present the parameters with their spatial variability over a relevant and specified scale, with the uncertainty included in this description. Different alternative descriptions may be required. After the individual discipline modelling and uncertainty assessment a phase of overall confidence evaluation follows. Relevant parts of the different modelling teams assess the suggested uncertainties and evaluate the feedback. These discussions should assess overall confidence by, checking that all relevant data are used, checking that information in past model versions is considered, checking that the different kinds of uncertainty are addressed, checking if suggested alternatives make sense and if there is potential for additional alternatives, and by discussing, if appropriate, how additional measurements (i.e. more data) would affect confidence. The findings as well as the modelling results are to be documented in a Site Description

  9. Ontological Modeling for Integrated Spacecraft Analysis

    Science.gov (United States)

    Wicks, Erica

    2011-01-01

    Current spacecraft work as a cooperative group of a number of subsystems. Each of these requiresmodeling software for development, testing, and prediction. It is the goal of my team to create anoverarching software architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the discrete subsystems' models. Such a plan has been attempted in the past, and has failed due to the excessive scope of the project. Our goal in this version of ISCA is to use new resources to reduce the scope of the project, including using ontological models to help link the internal interfaces of subsystems' models with the ISCA architecture.I have created an ontology of functions specific to the modeling system of the navigation system of a spacecraft. The resulting ontology not only links, at an architectural level, language specificinstantiations of the modeling system's code, but also is web-viewable and can act as a documentation standard. This ontology is proof of the concept that ontological modeling can aid in the integration necessary for ISCA to work, and can act as the prototype for future ISCA ontologies.

  10. Theoretical Compartment Modeling of DCE-MRI Data Based on the Transport across Physiological Barriers in the Brain

    Directory of Open Access Journals (Sweden)

    Laura Fanea

    2012-01-01

    Full Text Available Neurological disorders represent major causes of lost years of healthy life and mortality worldwide. Development of their quantitative interdisciplinary in vivo evaluation is required. Compartment modeling (CM of brain data acquired in vivo using magnetic resonance imaging techniques with clinically available contrast agents can be performed to quantitatively assess brain perfusion. Transport of 1H spins in water molecules across physiological compartmental brain barriers in three different pools was mathematically modeled and theoretically evaluated in this paper and the corresponding theoretical compartment modeling of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI data was analyzed. The pools considered were blood, tissue, and cerebrospinal fluid (CSF. The blood and CSF data were mathematically modeled assuming continuous flow of the 1H spins in these pools. Tissue data was modeled using three CMs. Results in this paper show that transport across physiological brain barriers such as the blood to brain barrier, the extracellular space to the intracellular space barrier, or the blood to CSF barrier can be evaluated quantitatively. Statistical evaluations of this quantitative information may be performed to assess tissue perfusion, barriers' integrity, and CSF flow in vivo in the normal or disease-affected brain or to assess response to therapy.

  11. INTEGRATING CORPORATE SOCIAL RESPONSIBILITY IN BUSINESS MODELS

    OpenAIRE

    N. A. DENTCHEV

    2005-01-01

    The literature on strategic integration of corporate social responsibility (CSR) in business models is still underdeveloped. We therefore borrow from the theory on strategic management to organize this contribution according to the process of strategic management. After a review of the few strategic CSR approaches, an explorative case-study methodology is adopted to study the management of a CSR proxy, viz. Health Safety and Environment (HSE), in a multinational company in the petrochemicals....

  12. Integrable Lattice Models From Gauge Theory

    CERN Document Server

    Witten, Edward

    2016-01-01

    These notes provide an introduction to recent work by Kevin Costello in which integrable lattice models of classical statistical mechanics in two dimensions are understood in terms of quantum gauge theory in four dimensions. This construction will be compared to the more familiar relationship between quantum knot invariants in three dimensions and Chern-Simons gauge theory. (Based on a Whittaker Colloquium at the University of Edinburgh and a lecture at Strings 2016 in Beijing.)

  13. Brain Arteriovenous Malformation Modeling, Pathogenesis and Novel Therapeutic Targets

    OpenAIRE

    Chen, Wanqiu; Choi, Eun-Jung; McDougall, Cameron M.; Su, Hua

    2014-01-01

    Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive and ≈ 20% of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and test...

  14. Globalization and Migration: A “Unified Brain Drain” Model

    OpenAIRE

    Elise S. Brezis; Soueri, Ariel

    2012-01-01

    Globalization has led to a vast flow of migration of workers but also of students. The purpose of this paper is to analyze the migration of individuals encompassing decisions already at the level of education. We develop a unified brain drain model that incorporates the decisions of an individual vis - à - vis both education and migration. In the empirical part, this paper addresses international flows of migration within the EU and presents strong evidence of concentration of students in cou...

  15. Integrated modeling of advanced optical systems

    Science.gov (United States)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  16. Avoiding Boltzmann Brain domination in holographic dark energy models

    CERN Document Server

    Horvat, R

    2015-01-01

    In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a parameter $c$, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural $c = 1$ line, the theory is rendered BB-safe. In the later case, the bound on $c$ is exponentially stronger, and seemingly at odds with those bounds on $c$ obtained from various observational tests.

  17. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  18. Social competence in pediatric brain tumor survivors: application of a model from social neuroscience and developmental psychology.

    Science.gov (United States)

    Hocking, Matthew C; McCurdy, Mark; Turner, Elise; Kazak, Anne E; Noll, Robert B; Phillips, Peter; Barakat, Lamia P

    2015-03-01

    Pediatric brain tumor (BT) survivors are at risk for psychosocial late effects across many domains of functioning, including neurocognitive and social. The literature on the social competence of pediatric BT survivors is still developing and future research is needed that integrates developmental and cognitive neuroscience research methodologies to identify predictors of survivor social adjustment and interventions to ameliorate problems. This review discusses the current literature on survivor social functioning through a model of social competence in childhood brain disorder and suggests future directions based on this model. Interventions pursuing change in survivor social adjustment should consider targeting social ecological factors.

  19. Androgen modulation of social decision making mechanisms in the brain: an integrative and embodied perspective

    Directory of Open Access Journals (Sweden)

    Rui F Oliveira

    2014-07-01

    Full Text Available Apart from their role in reproduction androgens also respond to social challenges and this response has been seen as a way to regulate the expression of behaviour according to the perceived social environment (Challenge hypothesis, Wingfield et al. 1990. This hypothesis implies that social decision-making mechanisms localized in the central nervous system (CNS are open to the influence of peripheral hormones that ultimately are under the control of the CNS through the hypothalamic-pituitary-gonadal axis. Therefore, two puzzling questions emerge at two different levels of biological analysis: (1 Why does the brain, which perceives the social environment and regulates androgen production in the gonad, need feedback information from the gonad to adjust its social decision-making processes? (2 How does the brain regulate gonadal androgen responses to social challenges and how do these feedback into the brain? In this paper, we will address these two questions using the integrative approach proposed by Niko Tinbergen, who proposed that a full understanding of behaviour requires its analysis at both proximate (physiology, ontogeny and ultimate (ecology, evolution levels.

  20. Completely integrable models of nonlinear optics

    Indian Academy of Sciences (India)

    Andrey I Maimistov

    2001-11-01

    The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modified Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.

  1. MODELS OF TECHNOLOGY ADOPTION: AN INTEGRATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    Andrei OGREZEANU

    2015-06-01

    Full Text Available The interdisciplinary study of information technology adoption has developed rapidly over the last 30 years. Various theoretical models have been developed and applied such as: the Technology Acceptance Model (TAM, Innovation Diffusion Theory (IDT, Theory of Planned Behavior (TPB, etc. The result of these many years of research is thousands of contributions to the field, which, however, remain highly fragmented. This paper develops a theoretical model of technology adoption by integrating major theories in the field: primarily IDT, TAM, and TPB. To do so while avoiding mess, an approach that goes back to basics in independent variable type’s development is proposed; emphasizing: 1 the logic of classification, and 2 psychological mechanisms behind variable types. Once developed these types are then populated with variables originating in empirical research. Conclusions are developed on which types are underpopulated and present potential for future research. I end with a set of methodological recommendations for future application of the model.

  2. Integrated Model for E-Learning Acceptance

    Science.gov (United States)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  3. Integrated modeling of submillimeter radio telescopes

    Science.gov (United States)

    Moraru, Dan; Andersen, Torben

    2002-07-01

    Integrated models are inherently complex and often obscure to any but those who write them. Their usefulness can be greatly enhanced through well-structured, object-oriented design. A robust and computationally efficient Simulink/C++ library of optics, control, finite-element, and visualization routines for modeling radio telescope performance under various operating conditions is being developed and is described. The library is being developed in conjunction with an end-to-end model of the Atacama Large Millimeter Array (ALMA) antennas. The model includes the mechanical structure, optics, servos, and potential laser gyros, and can be used to investigate such issues as tracking performance, compliance with error budgets, wind sensitivity, and effectiveness of an internal metrology system. It will also be a good tool for comparison of different antenna designs.

  4. Integrated statistical modelling of spatial landslide probability

    Science.gov (United States)

    Mergili, M.; Chu, H.-J.

    2015-09-01

    Statistical methods are commonly employed to estimate spatial probabilities of landslide release at the catchment or regional scale. Travel distances and impact areas are often computed by means of conceptual mass point models. The present work introduces a fully automated procedure extending and combining both concepts to compute an integrated spatial landslide probability: (i) the landslide inventory is subset into release and deposition zones. (ii) We employ a simple statistical approach to estimate the pixel-based landslide release probability. (iii) We use the cumulative probability density function of the angle of reach of the observed landslide pixels to assign an impact probability to each pixel. (iv) We introduce the zonal probability i.e. the spatial probability that at least one landslide pixel occurs within a zone of defined size. We quantify this relationship by a set of empirical curves. (v) The integrated spatial landslide probability is defined as the maximum of the release probability and the product of the impact probability and the zonal release probability relevant for each pixel. We demonstrate the approach with a 637 km2 study area in southern Taiwan, using an inventory of 1399 landslides triggered by the typhoon Morakot in 2009. We observe that (i) the average integrated spatial landslide probability over the entire study area corresponds reasonably well to the fraction of the observed landside area; (ii) the model performs moderately well in predicting the observed spatial landslide distribution; (iii) the size of the release zone (or any other zone of spatial aggregation) influences the integrated spatial landslide probability to a much higher degree than the pixel-based release probability; (iv) removing the largest landslides from the analysis leads to an enhanced model performance.

  5. Predictive models for pressure-driven fluid infusions into brain parenchyma

    OpenAIRE

    Raghavan, Raghu; Brady, Martin

    2011-01-01

    Direct infusions into brain parenchyma of biological therapeutics for serious brain diseases have been, and are being, considered. However, individual brains, as well as distinct cytoarchitectural regions within brains, vary in their response to fluid flow and pressure. Further, the tissue responds dynamically to these stimuli, requiring a nonlinear treatment of equations that would describe fluid flow and drug transport in brain. We here report in detail on an individual–specific model and a...

  6. Statistical shape model-based segmentation of brain MRI images.

    Science.gov (United States)

    Bailleul, Jonathan; Ruan, Su; Constans, Jean-Marc

    2007-01-01

    We propose a segmentation method that automatically delineates structures contours from 3D brain MRI images using a statistical shape model. We automatically build this 3D Point Distribution Model (PDM) in applying a Minimum Description Length (MDL) annotation to a training set of shapes, obtained by registration of a 3D anatomical atlas over a set of patients brain MRIs. Delineation of any structure from a new MRI image is first initialized by such registration. Then, delineation is achieved in iterating two consecutive steps until the 3D contour reaches idempotence. The first step consists in applying an intensity model to the latest shape position so as to formulate a closer guess: our model requires far less priors than standard model in aiming at direct interpretation rather than compliance to learned contexts. The second step consists in enforcing shape constraints onto previous guess so as to remove all bias induced by artifacts or low contrast on current MRI. For this, we infer the closest shape instance from the PDM shape space using a new estimation method which accuracy is significantly improved by a huge increase in the model resolution and by a depth-search in the parameter space. The delineation results we obtained are very encouraging and show the interest of the proposed framework. PMID:18003193

  7. Functional gradients through the cortex, multisensory integration and scaling laws in brain dynamics

    OpenAIRE

    Gonzalo-Fonrodona, Isabel

    2008-01-01

    In the context of the increasing number of works on multisensory and cross-modal effects in cerebral processing, a review is made on the functional model of human brain proposed by Justo Gonzalo (1910-1986), in relation to what he called central syndrome (caused by unilateral lesion in the parieto-occipital cortex, equidistant from the visual, tactile and auditory projection areas). The syndrome is featured by a bilateral, symmetric and multisensory involvement, and by a functional depression...

  8. Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

    International Nuclear Information System (INIS)

    Purpose: Previously, we described our implementation of a brain-image database (braid), based on the proprietary object-relational database-management system (ORDBMS). In conjunction with our collaborators, we have used this database to manage and analyze image and clinical data from what we call image-based clinical trials (IBCTs). Herein we describe the results of redesigning braid using open-source components, and integrating support for mining image and clinical data from braids user interface. Material and Methods: We re-designed and re-implemented BRAID using open-source components, including PostgreSQL, gcc, and PHP. We integrated data-mining algorithms into braid, based on PL/R, a PostgreSQL package to support efficient communication between R and PostgreSQL. Results: We present a sample clinical study to demonstrate how clinicians can perform queries for visualization, statistical analysis, and data mining, using a web-based interface. Conclusion: We have developed a database system with data-mining capabilities for managing, querying, analyzing and visualizing brain-MR images. We implemented this system using open-source components, with the express goal of wide dissemination throughout the neuroimaging research community. (authors)

  9. Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling.

    Directory of Open Access Journals (Sweden)

    Ji Hae Seo

    Full Text Available Trophic coupling between cerebral endothelium and their neighboring cells is required for the development and maintenance of blood-brain barrier (BBB function. Here we report that oligodendrocyte precursor cells (OPCs secrete soluble factor TGF-β1 to support BBB integrity. Firstly, we prepared conditioned media from OPC cultures and added them to cerebral endothelial cultures. Our pharmacological experiments showed that OPC-conditioned media increased expressions of tight-junction proteins and decreased in vitro BBB permeability by activating TGB-β-receptor-MEK/ERK signaling pathway. Secondly, our immuno-electron microscopic observation revealed that in neonatal mouse brains, OPCs attach to cerebral endothelial cells via basal lamina. And finally, we developed a novel transgenic mouse line that TGF-β1 is knocked down specifically in OPCs. Neonates of these OPC-specific TGF-β1 deficient mice (OPC-specific TGF-β1 partial KO mice: PdgfraCre/Tgfb1flox/wt mice or OPC-specific TGF-β1 total KO mice: PdgfraCre/Tgfb1flox/flox mice exhibited cerebral hemorrhage and loss of BBB function. Taken together, our current study demonstrates that OPCs increase BBB tightness by upregulating tight junction proteins via TGF-β signaling. Although astrocytes and pericytes are well-known regulators of BBB maturation and maintenance, these findings indicate that OPCs also play a pivotal role in promoting BBB integrity.

  10. The role of right frontal brain regions in integration of spatial relation.

    Science.gov (United States)

    Han, Jiahui; Cao, Bihua; Cao, Yunfei; Gao, Heming; Li, Fuhong

    2016-06-01

    Previous studies have explored the neural mechanisms of spatial reasoning on a two-dimensional (2D) plane; however, it remains unclear how spatial reasoning is conducted in a three-dimensional (3D) condition. In the present study, we presented 3D geometric objects to 16 adult participants, and asked them to process the spatial relationship between different corners of the geometric objects. In premise-1, the first two corners of a geometric shape (e.g., A vs. B) were displayed. In premise-2, the second and third corners (e.g., B vs. C) were displayed. After integrating the two premises, participants were required to infer the spatial relationship between the first and the third corners (e.g., A and C). Finally, the participants were presented with a conclusion object, and they were required to judge whether the conclusion was true or false based on their inference. The event-related potential evoked by premise-2 revealed that (1) compared with 2D spatial reasoning, 3D reasoning elicited a smaller P3b component, and (2) in the right frontal areas, increased negativities were found in the 3D condition during the N400 and late negative components (LNC). These findings imply that higher brain activity in the right frontal brain regions were related with the integration and maintenance of spatial information in working memory for reasoning.

  11. The Gold Coast Integrated Care Model

    Directory of Open Access Journals (Sweden)

    Martin Connor

    2016-07-01

    Full Text Available This article outlines the development of the Australian Gold Coast Integrated Care Model based on the elements identified in contemporary research literature as essential for successful integration of care between primary care, and acute hospital services. The objectives of the model are to proactively manage high risk patients with complex and chronic conditions in collaboration with General Practitioners to ultimately reduce presentations to the health service emergency department, improve the capacity of specialist outpatients, and decrease planned and unplanned admission rates. Central to the model is a shared care record which is maintained and accessed by staff in the Coordination Centre. We provide a process map outlining the care protocols from initial assessment to care of the patient presenting for emergency care. The model is being evaluated over a pilot three year proof of concept phase to determine economic and process perspectives. If found to be cost-effective, acceptable to patients and professionals and as good as or better than usual care in terms of outcomes, the strategic intent is to scale the programme beyond the local health service.

  12. Typological and Integrative Models of Sexual Abuse

    Directory of Open Access Journals (Sweden)

    Demidova L.Y.,

    2014-11-01

    Full Text Available We discuss the basic typological and integrative theoretical models that explain the occurrence of child sexual abuse and the differences detected among the perpetrators of crimes against sexual integrity of minors. A comprehensive review of the theoretical concepts of sexual abuse in our country, in fact has not been carried out, and in this paper for the first time we made such an attempt. It is shown that the existing notions of sexual abuse largely overlap each other, but each of the models somehow takes into account the factors not explicitly addressed in other concepts. Systematic consideration of the theoretical models of sexual abuse can generalize and systematize the available data on the mechanisms of pedophile behavior. This review provides an opportunity to develop a new benchmark in the study of sexual abuse, get closer to building the most accurate and comprehensive model. In turn, this may contribute to solving the questions about the factors, dynamics, and the prevention of criminal sexual conduct against children

  13. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models

    DEFF Research Database (Denmark)

    Puonti, Oula; Iglesias, Juan Eugenio; Van Leemput, Koen

    2013-01-01

    In this paper we propose a method for whole brain parcellation using the type of generative parametric models typically used in tissue classification. Compared to the non-parametric, multi-atlas segmentation techniques that have become popular in recent years, our method obtains state-of-the-art...... segmentation performance in both cortical and subcortical structures, while retaining all the benefits of generative parametric models, including high computational speed, automatic adaptiveness to changes in image contrast when different scanner platforms and pulse sequences are used, and the ability...

  14. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  15. Drosophila melanogaster as a Model Organism of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Werner Paulus

    2009-02-01

    Full Text Available Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.

  16. MEG inversion using spherical head model combined with brain-shaped head model

    Institute of Scientific and Technical Information of China (English)

    LI Jun

    2001-01-01

    The spherical head model has been widely used in magnetoen cephalography (MEG) as a simple forward model for calculating the external mag netic field producing by neural currents in a human brain. But this model may lead to an inaccurate result, even if the computation speed is fast. For more precise computation, realistic brain-shaped head model is used with the boundary element method (BME), but at greatly increased computational cost. When solving MEG inverse problem by using optimization methods, the forward problem must often be solved for thousands of possible source configurations. So if the brain-shaped head model is used in all iterative steps of optimization, it may be computationally infeasible for practical application. In this paper, we present a method about using compound head model in MEG inverse solution. In this method, first spherical head model is used for a rough estimation, then brain-shaped head model is adopted for more precise solution. Numerical simulation indicates that under the condition of same accuracy, the computation speed for the present method is about three times faster than a method using the brain-shaped head model at all iterations.

  17. Systematic Review of Traumatic Brain Injury Animal Models.

    Science.gov (United States)

    Phipps, Helen W

    2016-01-01

    The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope). PMID:27604713

  18. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Shushi Kabu

    Full Text Available Blast-associated shock wave-induced traumatic brain injury (bTBI remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB integrity following blast exposure. Reactive oxygen species (ROS levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective

  19. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Kabu, Shushi; Jaffer, Hayder; Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies

  20. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    Science.gov (United States)

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. PMID:27340949

  1. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety

    DEFF Research Database (Denmark)

    Yeh, P.H.; Gazdzinski, S.; Durazzo, T.C.;

    2007-01-01

    )-derived brain volume changes and cognitive changes in abstinent alcohol-dependent individuals as a function of smoking status, smoking severity, and drinking quantities. Methods: Twenty non-smoking recovering alcoholics (nsALC) and 30 age-matched smoking recovering alcoholics (sALC) underwent quantitative MRI...... and cognitive assessments at 1 week, 1 month, and 7 months of sobriety. Eight non-smoking light drinking controls were studied at baseline and 7 months later. Brain and ventricle volumes at each time point were quantified using MRI masks, while the boundary shift integral method measured volume changes between...... time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Results: Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict...

  2. A reaction-diffusion model of human brain development.

    Directory of Open Access Journals (Sweden)

    Julien Lefèvre

    2010-04-01

    Full Text Available Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds and gyri (top of folds. We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding.

  3. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  4. A population model of integrative cardiovascular physiology.

    Science.gov (United States)

    Pruett, William A; Husband, Leland D; Husband, Graham; Dakhlalla, Muhammad; Bellamy, Kyle; Coleman, Thomas G; Hester, Robert L

    2013-01-01

    We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters most associated with model sensitivity. The population is built by sampling from these distributions to create the model coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost less than 15 mmHg arterial pressure (compensators), and those that lost more (decompensators). The populations were parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis included single variable correlation, graphical time series analysis, and support vector machine (SVM) classification. Most variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any deterministic mathematical model.

  5. A population model of integrative cardiovascular physiology.

    Directory of Open Access Journals (Sweden)

    William A Pruett

    Full Text Available We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters most associated with model sensitivity. The population is built by sampling from these distributions to create the model coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost less than 15 mmHg arterial pressure (compensators, and those that lost more (decompensators. The populations were parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis included single variable correlation, graphical time series analysis, and support vector machine (SVM classification. Most variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any deterministic mathematical model.

  6. Treatment of pathological gambling - integrative systemic model.

    Science.gov (United States)

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan

    2015-03-01

    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  7. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  8. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing

    Directory of Open Access Journals (Sweden)

    Liao Chun-Chih

    2011-08-01

    Full Text Available Abstract Background In recent years, magnetic resonance imaging (MRI has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images. This paper uses an algorithm integrating fuzzy-c-mean (FCM and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. Methods The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT on a pixel level. Overall data were then evaluated using a quantified system. Results The quantified parameters, including the "percent match" (PM and "correlation ratio" (CR, suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain. Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Conclusions Results indicated

  9. Using data-driven model-brain mappings to constrain formal models of cognition.

    Directory of Open Access Journals (Sweden)

    Jelmer P Borst

    Full Text Available In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-based biases. In this paper we used model-based fMRI analysis to create a data-driven model-brain mapping for five modules of the ACT-R cognitive architecture. We then validated this mapping by applying it to two new datasets with associated models. The new mapping was at least as powerful as an existing mapping that was based on the literature, and indicated where the models were supported by the data and where they have to be improved. We conclude that data-driven model-brain mappings can provide strong constraints on cognitive models, and that model-based fMRI is a suitable way to create such mappings.

  10. Coastal Ecosystem Integrated Compartment Model (ICM): Modeling Framework

    Science.gov (United States)

    Meselhe, E. A.; White, E. D.; Reed, D.

    2015-12-01

    The Integrated Compartment Model (ICM) was developed as part of the 2017 Coastal Master Plan modeling effort. It is a comprehensive and numerical hydrodynamic model coupled to various geophysical process models. Simplifying assumptions related to some of the flow dynamics are applied to increase the computational efficiency of the model. The model can be used to provide insights about coastal ecosystems and evaluate restoration strategies. It builds on existing tools where possible and incorporates newly developed tools where necessary. It can perform decadal simulations (~ 50 years) across the entire Louisiana coast. It includes several improvements over the approach used to support the 2012 Master Plan, such as: additional processes in the hydrology, vegetation, wetland and barrier island morphology subroutines, increased spatial resolution, and integration of previously disparate models into a single modeling framework. The ICM includes habitat suitability indices (HSIs) to predict broad spatial patterns of habitat change, and it provides an additional integration to a dynamic fish and shellfish community model which quantitatively predicts potential changes in important fishery resources. It can be used to estimate the individual and cumulative effects of restoration and protection projects on the landscape, including a general estimate of water levels associated with flooding. The ICM is also used to examine possible impacts of climate change and future environmental scenarios (e.g. precipitation, Eustatic sea level rise, subsidence, tropical storms, etc.) on the landscape and on the effectiveness of restoration projects. The ICM code is publically accessible, and coastal restoration and protection groups interested in planning-level modeling are encouraged to explore its utility as a computationally efficient tool to examine ecosystem response to future physical or ecological changes, including the implementation of restoration and protection strategies.

  11. Performance of an integrated network model

    Science.gov (United States)

    Lehmann, François; Dunn, David; Beaulieu, Marie-Dominique; Brophy, James

    2016-01-01

    Objective To evaluate the changes in accessibility, patients’ care experiences, and quality-of-care indicators following a clinic’s transformation into a fully integrated network clinic. Design Mixed-methods study. Setting Verdun, Que. Participants Data on all patient visits were used, in addition to 2 distinct patient cohorts: 134 patients with chronic illness (ie, diabetes, arteriosclerotic heart disease, or both); and 450 women between the ages of 20 and 70 years. Main outcome measures Accessibility was measured by the number of walk-in visits, scheduled visits, and new patient enrolments. With the first cohort, patients’ care experiences were measured using validated serial questionnaires; and quality-of-care indicators were measured using biologic data. With the second cohort, quality of preventive care was measured using the number of Papanicolaou tests performed as a surrogate marker. Results Despite a negligible increase in the number of physicians, there was an increase in accessibility after the clinic’s transition to an integrated network model. During the first 4 years of operation, the number of scheduled visits more than doubled, nonscheduled visits (walk-in visits) increased by 29%, and enrolment of vulnerable patients (those with chronic illnesses) at the clinic remained high. Patient satisfaction with doctors was rated very highly at all points of time that were evaluated. While the number of Pap tests done did not increase with time, the proportion of patients meeting hemoglobin A1c and low-density lipoprotein guideline target levels increased, as did the number of patients tested for microalbuminuria. Conclusion Transformation to an integrated network model of care led to increased efficiency and enhanced accessibility with no negative effects on the doctor-patient relationship. Improvements in biologic data also suggested better quality of care. PMID:27521410

  12. Describing Ecosystem Complexity through Integrated Catchment Modeling

    Science.gov (United States)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  13. High-Dimensional Schwarzian Derivatives and Painleve Integrable Models

    Institute of Scientific and Technical Information of China (English)

    ZHANGShun-Li; LOUSen-Yue; 等

    2002-01-01

    Because all the known integrable models possess Schwarzian forms with Moebious transformation invariance,it may be one of the best ways to find new integrable models stating from some suitable Moebious transformation invariant equations.In this paper,we study the Painleve integrability of some special(3+1)-dimensional Schwarzian models.

  14. Modelling Human Cortical Network in Real Brain Space

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; FENG Hong-Bo; TANG Yi-Yuan

    2007-01-01

    Highly specific structural organization is of great significance in the topology of cortical networks.We introduce a human cortical network model.taking the specific cortical structure into account,in which nodes are brain sites placed in the actual positions of cerebral cortex and the establishment of edges depends on the spatial path length rather than the linear distance.The resulting network exhibits the essential features of cortical connectivity,properties of small-world networks and multiple clusters structure.Additionally.assortative mixing is also found in this roodel.All of these findings may be attributed to the spedtic cortical architecture.

  15. A simulation model for analysing brain structure deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Sergio Di [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy); Lutzemberger, Ludovico [Department of Neuroscience, Institute of Neurosurgery, University of Pisa, Via Roma, 67-56100 Pisa (Italy); Salvetti, Ovidio [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy)

    2003-12-21

    Recent developments of medical software applications from the simulation to the planning of surgical operations have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  16. Characterizing functional integrity: intraindividual brain signal variability predicts memory performance in patients with medial temporal lobe epilepsy.

    Science.gov (United States)

    Protzner, Andrea B; Kovacevic, Natasa; Cohn, Melanie; McAndrews, Mary Pat

    2013-06-01

    Computational modeling suggests that variability in brain signals provides important information regarding the system's capacity to adopt different network configurations that may promote optimal responding to stimuli. Although there is limited empirical work on this construct, a recent study indicates that age-related decreases in variability across the adult lifespan correlate with less efficient and less accurate performance. Here, we extend this construct to the assessment of cerebral integrity by comparing fMRI BOLD variability and fMRI BOLD amplitude in their ability to account for differences in functional capacity in patients with focal unilateral medial temporal dysfunction. We were specifically interested in whether either of these BOLD measures could identify a link between the affected medial temporal region and memory performance (as measured by a clinical test of verbal memory retention). Using partial least-squares analyses, we found that variability in a set of regions including the left hippocampus predicted verbal retention and, furthermore, this relationship was similar across a range of cognitive tasks measured during scanning (i.e., the same pattern was seen in fixation, autobiographical recall, and word generation). In contrast, signal amplitude in the hippocampus did not predict memory performance, even for a task that reliably activates the medial temporal lobes (i.e., autobiographical recall). These findings provide a powerful validation of the concept that variability in brain signals reflects functional integrity. Furthermore, this measure can be characterized as a robust biomarker in this clinical setting because it reveals the same pattern regardless of cognitive challenge or task engagement during scanning.

  17. Integrating the EFQM Model with EADS-CASA Business Model

    International Nuclear Information System (INIS)

    Business Models can be used to assess and to evaluate the management system of an organization. In this paper, it will be described the EADS-CASA experience of integrating the EFQM Model with the organization business model, how areas for improvement have been identified and managed from 1994 up to now. It will also be described the implementation process of selected improvement actions, describing among others, how Environment Health and Safety Management of facilities and employees and how Safety and Reliability Management of our products is implemented within the organization

  18. Assessment of traumatic brain injury degree in animal model

    Institute of Scientific and Technical Information of China (English)

    Jian-Qiang Chen; Cheng-Cheng Zhang; Hong Lu; Wei Wang

    2014-01-01

    Objective:To establish stable and controllable brain injury with accurate degree and good repeatability in rat model.Methods:Controlled cortical impact(CCI) device was used to prepare for the rat brain injury model by the impact head of different model(GroupANo.4,GroupBNo.5, GroupCNo.6) and the impact depth(GroupA:1.5-2.0 mm,GroupB:2.5-3.0 mm,GroupC:3.5-4.0 mm) with impact time of0.1 s and impact velocity of2.5 m/s.Twelve rats with three months of age were used in each group(the impact depth of every two rats was added1 mm respectively).After modeling for1 h, magnetic resonance imaging(MRI) was received and brain histopathology was observed to assess degree of injury by model parameters of three groups.Results:After modeling ofGroupA,MRI showed that the cortex structure was damaged with a small amount of bleeding in center and mild edema around, and the total volume of injury was(28.69±4.94) mm3.Pathology revealed the injury was confined to the superficial cortical with mild edema of nerve cell, which was assessed as mild cerebral contusion.While after modeling,MRI ofGroupB showed that the structure of cortex and medulla were damaged simultaneously and extended to cerebral nuclei zone, with4 cases of hematoma in the center and larger edema range around, and the total volume of injury was(78.38±9.28) mm3.Pathology revealed the injury range was reached nuclei zone, with swell of nerve cell and mitochondria, which was assessed to moderate cerebral contusion. After modeling ofGroupC,MRI showed that extensive tissue injury was appeared in cortex and medulla and deep nuclei, with9 cases of hematoma and large edema signal of surrounding tissue T2WI, while in5 cases, lateral nucleus of injury signal was increased, and the total volume of injury was(135.89±24.80) mm3.Pathology revealed the deep cerebral nuclei was damaged, with the disappearance of neuronal structure and vacuolization of mitochondria, which was assessed as severe cerebral contusion.MRI changes were

  19. Advances in NLTE Modeling for Integrated Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  20. Integrative understanding of emergent brain properties, quantum brain hypotheses and connectome alterations in dementia are key challenges to conquer Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Rodrigo O Kuljiš

    2010-08-01

    Full Text Available The biological substrate for cognition remains a challenge as much as defining this function of living beings. Here, we examine some of the challenges to understand normal and disordered cognition in humans. We use aspects of Alzheimer’s disease and related disorders to illustrate how the wealth of information at many conceptually separate, even decoupled, physical scales — in particular at the Molecular Neuroscience versus Systems Neuroscience/Neuropsychology levels — presents a challenge in terms of true interdisciplinary integration towards a coherent understanding. These unresolved dilemmas include critically the as yet untested Quantum Brain hypothesis, and the embryonic attempts to develop and define the so-called Connectome in humans and in non-human models of disease. To mitigate these challenges, we propose a scheme incorporating the vast array of scales of the space and time (space-time manifold from at least the subatomic through cognitive-behavioral dimensions of inquiry, to achieve a new understanding of both normal and disordered cognition, that is essential for a new era of progress in the Generative Sciences and its application to translational efforts for disease prevention and treatment.

  1. Selectionist models of perceptual and motor systems and implications for functionalist theories of brain function

    Science.gov (United States)

    Reeke, George N.; Sporns, Olaf

    1990-06-01

    Functionalism is at present widely accepted as a working basis for cognitive science and artificial intelligence. This view holds that psychological phenomena can be adequately described in terms of functional processes carried out in the brain, and that these processes can be understood independently of the detailed structure and mode of development of the brain. In the functionalist view, the brain is analogous to a computer; both can properly be described at the level of symbolic representations and algorithms. However, an analysis of the structure, development, and evolution of the brain makes it highly unlikely that it could be a Turing machine or that brain algorithms could be either acquired by experience in the world or transmitted between generations. An alternative view is that the brain is a selective system in which two different domains of stochastic variation, the world and neural repertoires, become mapped onto each other in an individual, historical manner. Neural systems capable of such mapping can generalize and can deal with novelty in an open-ended environment. Several models have been constructed to test these ideas, including automata of a new kind that can recognize and associate patterns of sensory input by selective mechanisms. In an approach called synthetic neural modelling, the environment, the phenotype, and the nervous system of such an automaton are integrated into a single computer model. One example is Darwin III, a sessile “creature” with an eye and a multi-jointed arm having a sense of touch; its environment consists of simple shapes moving on a featureless background; its nervous system consists of some 50 000 cells of 50 different kinds connected by about 620 000 synaptic junctions. Darwin III can be trained to track moving objects with its eye, to reach out and touch objects with its arm, to categorize objects according to combinations of visual and tactile cues, and to respond in a positive or negative way to such objects

  2. Brain Death and Human Organismal Integration: A Symposium on the Definition of Death.

    Science.gov (United States)

    Moschella, Melissa

    2016-06-01

    Does the ability of some brain dead bodies to maintain homeostasis with the help of artificial life support actually imply that those bodies are living human organisms? Or might it be possible that a brain dead body on life support is a mere collection of still-living cells, organs and tissues which can coordinate with one another, but which lack the genuine integration that is the hallmark of a unified human organism as a whole? To foster further study of these difficult and timely questions, a Symposium on the Definition of Death was held at The Catholic University of America in June 2014. The Symposium brought together scholars from a variety of disciplines-law, medicine, biology, philosophy and theology-who all share a commitment to the dead donor rule and to a biological definition of death, but who have differing opinions regarding the validity of neurological criteria for human death. The papers found in this special issue are among the fruits of this Symposium.

  3. Brain Death and Human Organismal Integration: A Symposium on the Definition of Death.

    Science.gov (United States)

    Moschella, Melissa

    2016-06-01

    Does the ability of some brain dead bodies to maintain homeostasis with the help of artificial life support actually imply that those bodies are living human organisms? Or might it be possible that a brain dead body on life support is a mere collection of still-living cells, organs and tissues which can coordinate with one another, but which lack the genuine integration that is the hallmark of a unified human organism as a whole? To foster further study of these difficult and timely questions, a Symposium on the Definition of Death was held at The Catholic University of America in June 2014. The Symposium brought together scholars from a variety of disciplines-law, medicine, biology, philosophy and theology-who all share a commitment to the dead donor rule and to a biological definition of death, but who have differing opinions regarding the validity of neurological criteria for human death. The papers found in this special issue are among the fruits of this Symposium. PMID:27107428

  4. Sixty minutes of what? A developing brain perspective for activating children with an integrative exercise approach.

    Science.gov (United States)

    Myer, Gregory D; Faigenbaum, Avery D; Edwards, Nicholas M; Clark, Joseph F; Best, Thomas M; Sallis, Robert E

    2015-12-01

    Current recommendations for physical activity in children overlook the critical importance of motor skill acquisition early in life. Instead, they focus on the quantitative aspects of physical activity (eg, accumulate 60 min of daily moderate to vigorous physical activity) and selected health-related components of physical fitness (eg, aerobic fitness, muscular strength, muscular endurance, flexibility and body composition). This focus on exercise quantity in youth may limit considerations of qualitative aspects of programme design which include (1) skill development, (2) socialisation and (3) enjoyment of exercise. The timing of brain development and associated neuroplasticity for motor skill learning makes the preadolescence period a critical time to develop and reinforce fundamental movement skills in boys and girls. Children who do not participate regularly in structured motor skill-enriched activities during physical education classes or diverse youth sports programmes may never reach their genetic potential for motor skill control which underlies sustainable physical fitness later in life. The goals of this review are twofold: (1) challenge current dogma that is currently focused on the quantitative rather than qualitative aspects of physical activity recommendations for youth and (2) synthesise the latest evidence regarding the brain and motor control that will provide the foundation for integrative exercise programming that provide a framework sustainable activity for life. PMID:25617423

  5. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  6. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.

    Science.gov (United States)

    Merolla, Paul A; Arthur, John V; Alvarez-Icaza, Rodrigo; Cassidy, Andrew S; Sawada, Jun; Akopyan, Filipp; Jackson, Bryan L; Imam, Nabil; Guo, Chen; Nakamura, Yutaka; Brezzo, Bernard; Vo, Ivan; Esser, Steven K; Appuswamy, Rathinakumar; Taba, Brian; Amir, Arnon; Flickner, Myron D; Risk, William P; Manohar, Rajit; Modha, Dharmendra S

    2014-08-01

    Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.

  7. Foundational model of neuroanatomy: implications for the Human Brain Project.

    OpenAIRE

    Martin, R F; Mejino, J. L.; Bowden, D. M.; Brinkley, J. F.; Rosse, C.

    2001-01-01

    In order to meet the need for a controlled terminology in neuroinformatics, we have integrated the extensive terminology of NeuroNames into the Foundational Model of anatomy. We illustrate the application of foundational principles for the establishment of an inheritance hierarchy, which accommodates anatomical attributes of neuroanatomical concepts and provides the foundation to which other information may be linked.

  8. Integrated Safety Culture Model and Application

    Institute of Scientific and Technical Information of China (English)

    汪磊; 孙瑞山; 刘汉辉

    2009-01-01

    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  9. Integrating Visualizations into Modeling NEST Simulations.

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  10. Integrating Visualizations into Modeling NEST Simulations

    Directory of Open Access Journals (Sweden)

    Christian eNowke

    2015-12-01

    Full Text Available Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  11. A Study on Integrated Model of Decision Support Systems

    Institute of Scientific and Technical Information of China (English)

    MO Zan; FENG Shan; TANG Chao

    2002-01-01

    This paper discusses two kinds of systems integrated models available to DSS: Multi-AgentBased Model and Application-Framework-Oriented Model. Both of them are application-oriented integration so it is possible to combine them at the level of application. Based on this theory, this paper presents a new model, MAAFUM, which combines two models and applies them synthetically in DSS.

  12. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    Science.gov (United States)

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction. PMID:25678360

  13. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MUXiao-lan; SONGZhi-jian

    2004-01-01

    The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.

  14. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  15. A better mild traumatic brain injury model in the rat.

    Science.gov (United States)

    Takeuchi, Satoru; Nawashiro, Hiroshi; Sato, Shunichi; Kawauchi, Satoko; Nagatani, Kimihiro; Kobayashi, Hiroaki; Otani, Naoki; Osada, Hideo; Wada, Kojiro; Shima, Katsuji

    2013-01-01

    The primary pathology associated with mild -traumatic brain injury (TBI) is selective axonal injury, which may characterize the vast majority of blast-induced TBIs. Axonal injuries in cases of mild TBI have been considered to be the main factors responsible for the long-lasting memory or attentional impairment in affected subjects. Among these axonal injuries, recent attention has been focused on the cingulum bundle (CB). Furthermore, recent studies with diffusion tensor MR imaging have shown the presence of injuries of the CB in cases of mild TBI in humans. This study aimed to provide a better laboratory model of mild TBI.Sprague-Dawley rats were subjected to mild TBI using laser-induced shock waves (LISW) (sham, 0.5 J/cm(2), or 1.0 J/cm(2); n = 4 per group). Bodian-stained brain sections 14 days after LISW at 0.5 J/cm(2) or 1.0 J/cm(2) showed a decrease in the CB axonal density compared with the sham group, whereas there were no differences in the axonal density of the corpus callosum.The present study shows that this model is capable of reproducing the histological changes associated with mild TBI. PMID:23564112

  16. Focal brain trauma in the cryogenic lesion model in mice

    Directory of Open Access Journals (Sweden)

    Raslan Furat

    2012-04-01

    Full Text Available Abstract The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral. The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location.

  17. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  18. Using data-driven model-brain mappings to constrain formal models of cognition

    NARCIS (Netherlands)

    Borst, Jelmer P; Nijboer, Menno; Taatgen, Niels A; van Rijn, Hedderik; Anderson, John R

    2015-01-01

    In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping f

  19. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W;

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model. In this ...

  20. Stroke and Drug Delivery—In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood...

  1. Employment Enhancing Integrative Graduate Education Model

    Directory of Open Access Journals (Sweden)

    Ismail H. Genc

    2014-06-01

    Full Text Available There is a strong call to look for approaches to integrate business and engineering education across disciplines to provide a more coherent system for students with the job market. As graduates fail to find satisfying employment, the value of college education is questioned. The unemployment of the highly educated has economic, social and political ramifications. Worst is when the highly educated unemployed takes up lower status jobs, ever reducing the quality of the job market with future consequences. In this study, we concentrate on ways to enhance students’ competitiveness in the post-graduate environment by proposing a curriculum to yield viable business proposals. Our model is for business or engineering students willing to pursue a master’s degree without PhD. We go beyond the compartmentalization of the current educational system to increase employability, particularly self-employment. Rise in productivity is a side benefit since there is a strong correlation between productivity and welfare

  2. Modeling DNA Dynamics by Path Integrals

    CERN Document Server

    Zoli, Marco

    2013-01-01

    Complementary strands in DNA double helix show temporary fluctuational openings which are essential to biological functions such as transcription and replication of the genetic information. Such large amplitude fluctuations, known as the breathing of DNA, are generally localized and, microscopically, are due to the breaking of the hydrogen bonds linking the base pairs (\\emph{bps}). I apply imaginary time path integral techniques to a mesoscopic Hamiltonian which accounts for the helicoidal geometry of a short circular DNA molecule. The \\emph{bps} displacements with respect to the ground state are interpreted as time dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds. The portion of the paths configuration space contributing to the partition function is determined by selecting the ensemble of paths which fulfill the second law of thermodynamics. Computations of the thermodynamics in the denaturation range show the energetic advantage for the equilibrium helicoidal g...

  3. Towards an Integrative Model of Knowledge Transfer

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call...... business and academia, and implementing the respective legislature are enduring. The research objectives were to explore (i) the process of knowledge transfer in universities, including the nature of tensions, obstacles and incentives, (ii) the relationships between key stakeholders in the KT market...... and (iii) the meaning/reality that is construed as a result of these relationships. To address the above research objectives, grounded theory research was undertaken in four universities in the UK and one in Australia. Coding of the data revealed thirteen constructs, which became the building blocks...

  4. Integrated Semantic Similarity Model Based on Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-Jun; ZHAO Yun

    2004-01-01

    To solve the problem of the inadequacy of semantic processing in the intelligent question answering system, an integrated semantic similarity model which calculates the semantic similarity using the geometric distance and information content is presented in this paper.With the help of interrelationship between concepts, the information content of concepts and the strength of the edges in the ontology network, we can calculate the semantic similarity between two concepts and provide information for the further calculation of the semantic similarity between user's question and answers in knowlegdge base.The results of the experiments on the prototype have shown that the semantic problem in natural language processing can also be solved with the help of the knowledge and the abundant semantic information in ontology.More than 90% accuracy with less than 50 ms average searching time in the intelligent question answering prototype system based on ontology has been reached.The result is very satisfied.

  5. Full feature data model for spatial information network integration

    Institute of Scientific and Technical Information of China (English)

    DENG Ji-qiu; BAO Guang-shu

    2006-01-01

    In allusion to the difficulty of integrating data with different models in integrating spatial information,the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vectorraster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid,were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration.

  6. Multistability in Large Scale Models of Brain Activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Golos

    2015-12-01

    Full Text Available Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i a uniform activation threshold or (ii a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors.

  7. Language Model Applications to Spelling with Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Anderson Mora-Cortes

    2014-03-01

    Full Text Available Within the Ambient Assisted Living (AAL community, Brain-Computer Interfaces (BCIs have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies.

  8. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I;

    2014-01-01

    infusion speed increment NS (n¿=¿7). Hemodynamic variables over a 6-hour observation phase were recorded. Following euthanasia, brains were harvested and lesion size as well as brain swelling was measured.ResultsBolus FFP resuscitation resulted in greater brain swelling (22.36¿±¿1.03% vs. 15.58¿±¿2.52%, p...

  9. Hearing facial identities: brain correlates of face--voice integration in person identification.

    Science.gov (United States)

    Schweinberger, Stefan R; Kloth, Nadine; Robertson, David M C

    2011-10-01

    Audiovisual integration (AVI) is a well-known aspect of speech perception, but integration of facial and vocal information is also important for speaker recognition. We recently demonstrated AVI in the recognition of familiar (but not unfamiliar) speakers. Specifically, systematic behavioural benefits and costs in recognizing a familiar voice occur when the voice is combined with a time-synchronised articulating face of corresponding or noncorresponding speaker identity, respectively (Schweinberger et al., 2007; Robertson and Schweinberger, 2010). Here we report an experiment assessing event-related brain potentials (ERPs) in this novel paradigm, while participants recognized familiar speakers presented in (1) Voice only, (2) voice with identity-corresponding and (3) noncorresponding time-synchronised speaking faces, as well as (4) Face only conditions. Audiovisual speaker identity correspondence influenced only later ERPs around 250-600 msec, with increased negativity for noncorresponding identities at central electrodes. Strikingly, when compared with the ERPs from both unimodal conditions, both audiovisual conditions led to a much earlier onset of frontocentral negativity, with maximal differences around 50-80 msec. Moreover, audiovisual stimuli elicited larger N170 responses than Face only stimuli. These findings suggest that the perception of a voice and a time-synchronised articulating face triggers remarkably early and mandatory mechanisms of audiovisual processing, although the correspondence or discrepancy in audiovisual speaker identity may only be computed ∼200msec later. PMID:21208611

  10. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ=7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS uc= 2.664, P=0.008; Zubrod -ECOG -WHO uc=2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate positioning

  11. Integrated But Not Whole? Applying an Ontological Account of Human Organismal Unity to the Brain Death Debate.

    Science.gov (United States)

    Moschella, Melissa

    2016-10-01

    As is clear in the 2008 report of the President's Council on Bioethics, the brain death debate is plagued by ambiguity in the use of such key terms as 'integration' and 'wholeness'. Addressing this problem, I offer a plausible ontological account of organismal unity drawing on the work of Hoffman and Rosenkrantz, and then apply that account to the case of brain death, concluding that a brain dead body lacks the unity proper to a human organism, and has therefore undergone a substantial change. I also show how my view can explain hard cases better than one in which biological integration (as understood by Alan Shewmon and the President's Council) is taken to imply ontological wholeness or unity.

  12. The Bee as a Model to Investigate Brain and Behavioural Asymmetries

    Directory of Open Access Journals (Sweden)

    Elisa Frasnelli

    2014-01-01

    Full Text Available The honeybee Apis mellifera, with a brain of only 960,000 neurons and the ability to perform sophisticated cognitive tasks, has become an excellent model in life sciences and in particular in cognitive neurosciences. It has been used in our laboratories to investigate brain and behavioural asymmetries, i.e., the different functional specializations of the right and the left sides of the brain. It is well known that bees can learn to associate an odour stimulus with a sugar reward, as demonstrated by extension of the proboscis when presented with the trained odour in the so-called Proboscis Extension Reflex (PER paradigm. Bees recall this association better when trained using their right antenna than they do when using their left antenna. They also retrieve short-term memory of this task better when using the right antenna. On the other hand, when tested for long-term memory recall, bees respond better when using their left antenna. Here we review a series of behavioural studies investigating bees’ lateralization, integrated with electrophysiological measurements to study asymmetries of olfactory sensitivity, and discuss the possible evolutionary origins of these asymmetries. We also present morphological data obtained by scanning electron microscopy and two-photon microscopy. Finally, a behavioural study conducted in a social context is summarised, showing that honeybees control context-appropriate social interactions using their right antenna, rather than the left, thus suggesting that lateral biases in behaviour might be associated with requirements of social life.

  13. How Anatomy Shapes Dynamics: A Semi-Analytical Study of the Brain at Rest by a Simple Spin Model

    OpenAIRE

    Gustavo eDeco; Mario eSenden; Viktor eJirsa

    2012-01-01

    Resting state networks (RSNs) show a surprisingly coherent and robust spatiotemporal organization. Previous theoretical studies demonstrated that these patterns can be understood as emergent on the basis of the underlying neuroanatomical connectivity skeleton. Integrating the biologically realistic DTI/DSI-(Diffusion Tensor Imaging/Diffusion Spectrum Imaging)based neuroanatomical connectivity into a brain model of Ising spin dynamics, we found a system with multiple attractors,...

  14. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes.

    Directory of Open Access Journals (Sweden)

    Tricia Z King

    Full Text Available Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood.Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ. Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors.The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors.Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white

  15. An Integrated Design-Object Modeling Environment -- Pluggable Metamodel Mechanism --

    OpenAIRE

    Yoshioka, Masaharu

    2001-01-01

    We propose a new integrated computational environment to support design object modeling, during engineering design process that requires a variety of design object models, such as a geometric model, a control model, and a finite element model. To integrate multiple design object models, we have developed a mechanism called a metamodel mechanism that maintains consistency among various models. The metamodel mechanism represents relationships among concepts used in these mo...

  16. Integrated Modeling for Flood Hazard Mapping Using Watershed Modeling System

    Directory of Open Access Journals (Sweden)

    Seyedeh S. Sadrolashrafi

    2008-01-01

    Full Text Available In this stduy, a new framework which integrates the Geographic Information System (GIS with the Watershed Modeling System (WMS for flood modeling is developed. It also interconnects the terrain models and the GIS software, with commercial standard hydrological and hydraulic models, including HEC-1, HEC-RAS, etc. The Dez River Basin (about 16213 km2 in Khuzestan province, IRAN, is domain of study because of occuring frequent severe flash flooding. As a case of study, a major flood in autumn of 2001 is chosen to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-1 that converts excess precipitation to overland flow and channel runoff and a hydraulic model (HEC-RAS that simulates steady state flow through the river channel network based on the HEC-1, peak hydrographs. In addition, it delineates the maps of potential flood zonation for the Dez River Basin. These are achieved based on the state of the art GIS with using WMS software. Watershed parameters are calibrated manually to perform a good simulation of discharge at three sub-basins. With the calibrated discharge, WMS is capable of producing flood hazard map. The modeling framework presented in this study demonstrates the accuracy and usefulness of the WMS software for flash flooding control. The results of this research will benefit future modeling efforts by providing validate hydrological software to forecast flooding on a regional scale. This model designed for the Dez River Basin, while this regional scale model may be used as a prototype for model applications in other areas.

  17. Modeling of a segmented electrode for desynchronizing deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Julia eBuhlmann

    2011-12-01

    Full Text Available Deep brain stimulation (DBS is an effective therapy for medically refrac- tory movement disorders like Parkinson’s disease. The electrodes, implanted in the target area within the human brain, generate an electric field which activates nerve fibers and cell bodies in the proximate vicinity. Even though the different target nuclei display considerable differences in their anatomical structure, only few types of electrodes are currently commercially available. It is desirable to adjust the electric field and in particular the volume of tissue activated around the electrode with respect to the corresponding target nucleus in a such way that side effects can be reduced. Furthermore, a more selective and partial activation of the target structure is desirable for an optimal application of novel stimulation strate- gies, e.g. coordinated reset neuromodulation. Hence we designed a DBS electrode with a segmented design allowing a more selective activation of the target struc- ture. We created a finite element model (FEM of the electrode and analyzed the volume of tissue activated for this electrode design. The segmented electrode ac- tivated an area in a targeted manner, of which the dimension and position relative to the electrode could be controlled by adjusting the stimulation parameters for each contact. According to our computational analysis, this directed stimulation might be superior with respect to the occurrence of side effects and it enables the application of coordinated reset neuromodulation under optimal conditions.

  18. Integrated Environmental Modelling: human decisions, human challenges

    Science.gov (United States)

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  19. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  20. Computational modeling of pedunculopontine nucleus deep brain stimulation

    Science.gov (United States)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  1. A model for traumatic brain injury using laser induced shockwaves

    Science.gov (United States)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  2. Developing engineering processes through integrated modelling of product and process

    OpenAIRE

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The ...

  3. Chapter 3 animal models of traumatic brain injury: is there an optimal model that parallels human brain injury?

    Science.gov (United States)

    Briones, Teresita L

    2015-01-01

    Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in the younger population worldwide. Survivors of TBI often experience long-term disability in the form of cognitive, sensorimotor, and affective impairments. Despite the high prevalence in, and cost of TBI to, both individuals and society, some of its underlying pathophysiology is not completely understood. Animal models have been developed over the past few decades to closely replicate the different facets of TBI in humans to better understand the underlying pathophysiology and behavioral impairments and assess potential therapies that can promote neuroprotection. However, no effective treatment for TBI has been established to date in the clinical setting, despite promising results generated in preclinical studies in the use of neuroprotective strategies. The failure to translate results from preclinical studies to the clinical setting underscores a compelling need to revisit the current state of knowledge in the use of animal models in TBI. PMID:25946383

  4. Phase lagging model of brain response to external stimuli - modeling of single action potential

    CERN Document Server

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  5. On the appropriateness of modelling brain parenchyma as a biphasic continuum.

    Science.gov (United States)

    Tavner, A C R; Roy, T Dutta; Hor, K W W; Majimbi, M; Joldes, G R; Wittek, A; Bunt, S; Miller, K

    2016-08-01

    Computational methods originally developed for analysis in engineering have been applied to the analysis of biological materials for many years. One particular application of these engineering tools is the brain, allowing researchers to predict the behaviour of brain tissue in various traumatic, surgical and medical scenarios. Typically two different approaches have been used to model deformation of brain tissue: single-phase models which treat the brain as a viscoelastic material, and biphasic models which treat the brain as a porous deformable medium through which liquid can move. In order to model the brain as a biphasic continuum, the hydraulic conductivity of the solid phase is required; there are many theoretical values for this conductivity in the literature, with variations of up to three orders of magnitude. We carried out a series of simple experiments using lamb and sheep brain tissue to establish the rate at which cerebrospinal fluid moves through the brain parenchyma. Mindful of possible variations in hydraulic conductivity with tissue deformation, our intention was to carry out our experiments on brain tissue subjected to minimal deformation. This has enabled us to compare the rate of flow with values predicted by some of the theoretical values of hydraulic conductivity from the literature. Our results indicate that the hydraulic conductivity of the brain parenchyma is consistent with the lowest theoretical published values. These extremely low hydraulic conductivities lead to such low rates of CSF flow through the brain tissue that in effect the material behaves as a single-phase deformable solid. PMID:27136087

  6. Integrated Human Futures Modeling in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fellner, Karen Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silver, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelke, Peter [Atlantic Council, Washington, D.C. (United States); Burrow, Mat [Atlantic Council, Washington, D.C. (United States); Keith, Bruce [United States Military Academy, West Point, NY (United States)

    2016-01-01

    The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on

  7. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  8. Integrated Free Energy Model (IFEM) for microemulsions.

    Science.gov (United States)

    Boza Troncoso, Américo; Acosta, Edgar

    2016-03-15

    The Integrated Free Energy Model (IFEM) is a platform used to predict the solubilization of nonpolar oils in nonionic alkyl-polyethylene oxide (C(X)EO(Y)) micelles starting from a free energy balance of costs and gains when surfactants from empty micelles and oil from a continuous oil phase assemble to form an oil-swollen micelle. IFEM considers lipophilic interactions between surfactant tails and oil solubilized in the core of micelles, and the interaction between surfactant tails and the oil solubilized in the surfactant tail domain, as well as oil-oil and surfactant-surfactant tail interactions. Expressions to calculate these lipophilic interactions from van der Waals (VDW) interaction potential were introduced in a previous publication. In this article, two new surfactant-water interactions are considered, surfactant headgroup dehydration during solubilization, and surfactant tail group dehydration. These six interaction terms, in addition to two entropy of mixing contributions (in the lipophilic and in the hydrophilic domains) make up the eight terms of the IFEM platform. Of these terms, only the headgroup dehydration requires a calibrated parameter. After calibrating this parameter, the model is capable of predicting experimental solubilization data, and the experimental trends reflected by a semi-empirical model, the Hydrophilic-Lipophilic-Difference+Net-Average-Curvature (HLD-NAC). Although there are numerous approaches to predict the surfactant-oil-water (SOW) phase behavior, the IFEM platform is the only one, to the knowledge of the authors that produces an explicit connection between molecular interactions and experimental data for real SOW systems. The IFEM platform can be programmed in a personal computer using relatively inexpensive software and its explicit nature opens the possibility to introduce additional interaction terms for more complex SOW systems. PMID:26759991

  9. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    Directory of Open Access Journals (Sweden)

    Shan eYang

    2013-09-01

    Full Text Available Ultra-high field magnetic resonance imaging (MRI became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods seem to be ideally merged at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time the feasibility and quality of ultra-high spatial resolution (150 µm isotopic imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information.

  10. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity.

    Science.gov (United States)

    Niso, Guiomar; Bruña, Ricardo; Pereda, Ernesto; Gutiérrez, Ricardo; Bajo, Ricardo; Maestú, Fernando; del-Pozo, Francisco

    2013-10-01

    The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the 'traditional' set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality.This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox.Here we present HERMES ( http://hermes.ctb.upm.es ), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis. PMID:23812847

  11. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability.

    Science.gov (United States)

    Heye, Anna K; Thrippleton, Michael J; Armitage, Paul A; Valdés Hernández, Maria del C; Makin, Stephen D; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M

    2016-01-15

    There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low

  12. Consistent multi-time-point brain atrophy estimation from the boundary shift integral.

    Science.gov (United States)

    Leung, Kelvin K; Ridgway, Gerard R; Ourselin, Sébastien; Fox, Nick C

    2012-02-15

    Brain atrophy measurement is increasingly important in studies of neurodegenerative diseases such as Alzheimer's disease (AD), with particular relevance to trials of potential disease-modifying drugs. Automated registration-based methods such as the boundary shift integral (BSI) have been developed to provide more precise measures of change from a pair of serial MR scans. However, when a method treats one image of the pair (typically the baseline) as the reference to which the other is compared, this systematic asymmetry risks introducing bias into the measurement. Recent concern about potential biases in longitudinal studies has led to several suggestions to use symmetric image registration, though some of these methods are limited to two time-points per subject. Therapeutic trials and natural history studies increasingly involve several serial scans, it would therefore be useful to have a method that can consistently estimate brain atrophy over multiple time-points. Here, we use the log-Euclidean concept of a within-subject average to develop affine registration and differential bias correction methods suitable for any number of time-points, yielding a longitudinally consistent multi-time-point BSI technique. Baseline, 12-month and 24-month MR scans of healthy controls, subjects with mild cognitive impairment and AD patients from the Alzheimer's Disease Neuroimaging Initiative are used for testing the bias in processing scans with different amounts of atrophy. Four tests are used to assess bias in brain volume loss from BSI: (a) inverse consistency with respect to ordering of pairs of scans 12 months apart; (b) transitivity consistency over three time-points; (c) randomly ordered back-to-back scans, expected to show no consistent change over subjects; and (d) linear regression of the atrophy rates calculated from the baseline and 12-month scans and the baseline and 24-month scans, where any additive bias should be indicated by a non-zero intercept. Results

  13. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data

    OpenAIRE

    Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2015-01-01

    Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significa...

  14. An integrated network model of psychotic symptoms

    NARCIS (Netherlands)

    Looijestijn, Jasper; Blom, Jan Dirk; Aleman, Andre; Hoek, Hans W.; Goekoop, Rutger

    2015-01-01

    The full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to

  15. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. PMID:25972167

  16. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible.

  17. Modeling the dynamics of human brain activity with recurrent neural networks

    OpenAIRE

    Güçlü, Umut; Marcel A J van Gerven

    2016-01-01

    Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear transformation of features to responses (response model). While there has been extensive work on developing better feature models, the work on developing better response models has been rather limited. Here, we...

  18. Atomic data for integrated tokamak modelling

    International Nuclear Information System (INIS)

    The Integrated Tokamak Modeling Task Force (ITM-TF) was set up in 2004. The main target is to coordinate the European fusion modeling effort and providing a complete European modeling structure for International Thermonuclear Experimental Reactor (ITER), with the highest degree of flexibility. For the accurate simulation of the processes in the active fusion reactor in the ITM-TF, numerous atomic, molecular, nuclear and surface related data are required. In this work we present total-, single- and multiple-ionization and charge exchange cross sections in close connection to the ITM-TF. Interpretation of these cross sections in multi-electron ion-atom collisions is a challenging task for theories. The main difficulty is caused by the many-body feature of the collision, involving the projectile, projectile electron(s), target nucleus, and target electron(s). The classical trajectory Monte Carlo (CTMC) method has been quite successful in dealing with the atomic processes in ion-atom collisions. One of the advantages of the CTMC method is that many-body interactions are exactly taken into account related CTMC simulations for a various collision systems are presented. To highlight the efficiency of the method we present electron emission cross sections in collision between dressed Alq+ ions with He target. The theory delivers separate spectra for electrons emitted from the target and the projectile. By summing these two components in the rest frame of the target we may make a comparison with available experimental data. For the collision system in question, a significant contribution from Fermi-shuttle ionization has to be expected in the spectra at energies higher than E=0.5 me (nV)2, where me is the mass of the electron, V the projectile velocity and n an integer greater than 1. We found enhanced electron yields compared to first order theory in this region of CTMC spectra, which can be directly attributed to the contribution of Fermi-shuttle type multiple scattering

  19. Integrated outburst detector sensor-model tests

    Institute of Scientific and Technical Information of China (English)

    DZIURZY(N)SKI Wac(I)aw; WASILEWSKI Stanis(I)aw

    2011-01-01

    Outbursts of methane and rocks are,similarly to rock bursts,the biggest hazards in deep mines and are equally difficult to predict.The violent process of the outburst itself,along with the scale and range of hazards following the rapid discharge of gas and rocks,requires solutions which would enable quick and unambiguous detection of the hazard,immediate power supply cut-off and evacuation of personnel from potentially hazardous areas.For this purpose,an integrated outburst detector was developed.Assumed functions of the sensor which was equipped with three measuring and detection elements:a chamber for constant measurement of methane concentration,pressure sensor and microphone.Tests of the sensor model were carried out to estimate the parameters which characterize the dynamic properties of the sensor.Given the impossibility of carrying out the full scale experimental outburst,the sensor was tested during the methane and coal dust explosions in the testing gallery at KD Barbara.The obtained results proved that the applied solutions have been appropriate.

  20. Radiolysis Model Formulation for Integration with the Mixed Potential Model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Wittman, Richard S.

    2014-07-10

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This report is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) “Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation,” FCRD-UFD-2013-000290, M3FT-PN0806058

  1. A reproducible brain tumour model established from human glioblastoma biopsies

    Directory of Open Access Journals (Sweden)

    Li Xingang

    2009-12-01

    Full Text Available Abstract Background Establishing clinically relevant animal models of glioblastoma multiforme (GBM remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.

  2. Integral Canonical Models for Automorphic Vector Bundles of Abelian Type

    OpenAIRE

    Lovering, Tom

    2016-01-01

    We define and construct integral canonical models for automorphic vector bundles over Shimura varieties of abelian type. More precisely, we first build on Kisin's work to construct integral canonical models over rings of integers of number fields with finitely many primes inverted for Shimura varieties of abelian type with hyperspecial level at all primes we do not invert, compatible with Kisin's construction. We then define a notion of an integral canonical model for the standard principal b...

  3. [Pathogenic variants of brain injuries and pharmalogic cerebroprotection performed on the model of brain condition during cardiovascular bypass surgery].

    Science.gov (United States)

    Tsygan, N V; Trashkov, A P

    2014-10-01

    Developed and approved a pathogenic grounded experimental model of brain condition during cardiovascular bypass surgery. Undertaken in Wistar rats research allowed to evaluate in detail effectiveness and safety of protracted cerebroprotective treatment. Advantages of this model are researches in laboratory animals with the aim to research condition of nerve tissue, not intensive procedures and consequently high reproducibility and possibility of complex evaluation of changes at every stage of research. Results of neurons, neuroglia and activation of neurotrophic mechanisms prove that simulation of brain condition during cardiovascular bypass surgery is accompanied with acute and delayed brain injuries. Use of Cytoflavin under pharmalogic cerebroprotection had prolonged multimodal and neuroprotactive effect, leading to improvement of neurotrophic protection from the first days.

  4. Traumatic brain injury–Modeling neuropsychiatric symptoms in rodents

    Directory of Open Access Journals (Sweden)

    Oz eMalkesman

    2013-10-01

    Full Text Available Each year in the United States, approximately 1.5 million people sustain a traumatic brain injury (TBI. Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms—and why some patients experience differing assortments of persistent maladies—are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential.

  5. Integrated modelling requires mass collaboration (Invited)

    Science.gov (United States)

    Moore, R. V.

    2009-12-01

    add, “and are the plans sustainable?” To return to the present, although, it is now possible to ask the first question and obtain an answer through linked modelling; we are still at a very early stage and the associated uncertainties are large. The process of linking and running linked systems is not yet the simple, reliable process needed for widespread uptake. At this point, it is useful to look back over the development process which has taken us from paper maps to GIS and Google Maps; it was the result of tens of thousands of PhD and MSc projects over forty years. During the development of the OpenMI, it was quickly appreciated that to transform integrated modelling from something possible in a research lab to something that had the ease of use and reliability of Google Maps would require a similar process but on a far greater scale; one far larger than any single organisation or state could support. A dramatic change to the research and development process would be needed. Using the OpenMI Association’s strategy as an example, the presentation will describe how through openness, sharing and mass collaboration made possible by inexpensive communications and computing power and adoption of a minimum set of standards, the innovation and enterprise of thousands of individuals across the world can be brought to bear upon the problems.

  6. Modelling of the human brain with detailed anatomy for numerical simulation of surgical interventions

    International Nuclear Information System (INIS)

    During the design and simulation process of MEMS medical devices used in neurosurgery, there is a need to build a brain model with detailed anatomy and physical properties incorporated as a platform to conduct numerical analysis. This paper presents a study on constructing a brain model for simulation of medical device interventions during neurosurgery. A brain atlas was utilized to develop a detailed model consisting of multiple structures. Two types of atlas model were generated employing different mesh types and biomechanical properties suited for various applications. The developed model was able to capture the detailed anatomy of the brain and reflect the application-dependant biomechanical behaviour based on material modelling of brain tissue under surgical intervention

  7. "Neuro-semeiotics" and "free-energy minimization" suggest a unified perspective for integrative brain actions: focus on receptor heteromers and Roamer type of volume transmission.

    Science.gov (United States)

    Agnati, Luigi F; Guidolin, Diego; Marcoli, Manuela; Genedani, Susanna; Borroto-Escuela, Dasiel; Maura, Guido; Fuxe, Kjell

    2014-01-01

    Two far-reaching theoretical approaches, namely "Neuro-semeiotics" (NS) and "Free-energy Minimization" (FEM), have been recently proposed as frames within which to put forward heuristic hypotheses on integrative brain actions. In the present paper these two theoretical approaches are briefly discussed in the perspective of a recent model of brain architecture and information handling based on what we suggest calling Jacob's tinkering principle, whereby "to create is to recombine!". The NS and FEM theoretical approaches will be discussed from the perspective both of the Roamer-Type Volume Transmission (especially exosome-mediated) of intercellular communication and of the impact of receptor oligomers and Receptor-Receptor Interactions (RRIs) on signal recognition/decoding processes. In particular, the Bio-semeiotics concept of "adaptor" will be used to analyze RRIs as an important feature of NS. Furthermore, the concept of phenotypic plasticity of cells will be introduced in view of the demonstration of the possible transfer of receptors (i.e., adaptors) into a computational network via exosomes (see also Appendix). Thus, Jacob's tinkering principle will be proposed as a theoretical basis for some learning processes both at the network level (Turing-like type of machine) and at the molecular level as a consequence of both the plastic changes in the adaptors caused by the allosteric interactions in the receptor oligomers and the intercellular transfer of receptors. Finally, on the basis of NS and FEM theories, a unified perspective for integrative brain actions will be proposed. PMID:25175453

  8. "Neuro-semeiotics" and "free-energy minimization" suggest a unified perspective for integrative brain actions: focus on receptor heteromers and Roamer type of volume transmission.

    Science.gov (United States)

    Agnati, Luigi F; Guidolin, Diego; Marcoli, Manuela; Genedani, Susanna; Borroto-Escuela, Dasiel; Maura, Guido; Fuxe, Kjell

    2014-01-01

    Two far-reaching theoretical approaches, namely "Neuro-semeiotics" (NS) and "Free-energy Minimization" (FEM), have been recently proposed as frames within which to put forward heuristic hypotheses on integrative brain actions. In the present paper these two theoretical approaches are briefly discussed in the perspective of a recent model of brain architecture and information handling based on what we suggest calling Jacob's tinkering principle, whereby "to create is to recombine!". The NS and FEM theoretical approaches will be discussed from the perspective both of the Roamer-Type Volume Transmission (especially exosome-mediated) of intercellular communication and of the impact of receptor oligomers and Receptor-Receptor Interactions (RRIs) on signal recognition/decoding processes. In particular, the Bio-semeiotics concept of "adaptor" will be used to analyze RRIs as an important feature of NS. Furthermore, the concept of phenotypic plasticity of cells will be introduced in view of the demonstration of the possible transfer of receptors (i.e., adaptors) into a computational network via exosomes (see also Appendix). Thus, Jacob's tinkering principle will be proposed as a theoretical basis for some learning processes both at the network level (Turing-like type of machine) and at the molecular level as a consequence of both the plastic changes in the adaptors caused by the allosteric interactions in the receptor oligomers and the intercellular transfer of receptors. Finally, on the basis of NS and FEM theories, a unified perspective for integrative brain actions will be proposed.

  9. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Francesco Cavrini

    2016-01-01

    Full Text Available We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  10. A Pilot Project of Early Integrated Traumatic Brain Injury Rehabilitation in Singapore

    Directory of Open Access Journals (Sweden)

    Siew Kwaon Lui

    2014-01-01

    Full Text Available Objective. Document acute neurosurgical and rehabilitation parameters of patients of all traumatic brain injury (TBI severities and determine whether early screening along with very early integrated TBI rehabilitation changes functional outcomes. Methods. Prospective study involving all patients with TBI admitted to a neurosurgical department of a tertiary hospital. They were assessed within 72 hours of admission by the rehabilitation team and received twice weekly rehabilitation reviews. Patients with further rehabilitation needs were then transferred to the attached acute inpatient TBI rehabilitation unit (TREATS and their functional outcomes were compared against a historical group of patients. Demographic variables, acute neurosurgical characteristics, medical complications, and rehabilitation outcomes were recorded. Results. There were 298 patients screened with an average age of 61.8±19.1 years. The most common etiology was falls (77.5%. Most patients were discharged home directly (67.4% and 22.8% of patients were in TREATS. The TREATS group functionally improved (P<0.001. Regression analysis showed by the intervention of TREATS, that there was a statistically significant FIM functional gain of 18.445 points (95% CI −30.388 to −0.6502, P=0.03. Conclusion. Our study demonstrated important epidemiological data on an unselected cohort of patients with TBI in Singapore and functional improvement in patients who further received inpatient rehabilitation.

  11. Reactive actuators and sensors integrated in one device: mimicking brain-muscles feedback communication

    Science.gov (United States)

    Otero, Toribio F.; Martinez, Jose G.

    2013-04-01

    Artificial muscles based on carbon derivative molecular structures are chemical (electro-chemo-mechanical) actuators. The electrochemical reaction drives the film volume variation and the actuation. The applied current controls the movement rate and the charge controls the amplitude of the displacement (Faraday' motors). Any working or surrounding variable influencing the reaction rate will be sensed by the muscle potential, or by the consumed electrical energy, evolution during actuation. Experimental results and full theoretical description of the basic reactive material and of any dual electrochemical sensing-actuator will be presented. During current flow the muscle potential and the consumed electrical energy evolution are influenced by the working variables: temperature, electrolyte concentration, driving current, film volume variation (external pressure, applied strain, hanged masses, obstacles in its way). The working muscle becomes an electrochemical sensor. Only two connecting wires contain actuating (current) and sensing (potential) signals read and controlled, at any time from the computer-generator. One device integrates several sensing and actuating tools working simultaneously mimicking muscles/brain feedback communication.

  12. Loss of Microstructural Integrity in the Limbic-Subcortical Networks for Acute Symptomatic Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    2014-01-01

    Full Text Available Previous studies reported discrepant white matter diffusivity in mild traumatic brain injury (mTBI on the base of Glasgow Coma Scale, which are unreliable for some TBI severity indicators and the frequency of missing documentation in the medical record. In the present study, we adopted the Mayo classification system for TBI severity. In this system, the mTBI is also divided into two groups as “probable and symptomatic” TBI. We aimed to investigate altered microstructural integrity in symptomatic acute TBI (<1 week by using tract-based spatial statics (TBSS approach. A total of 12 patients and 13 healthy volunteers were involved and underwent MRI scans including conventional scan, and SWI and DTI. All the patients had no visible lesions by using conventional and SWI neuroimaging techniques, while showing widespread declines in the fractional anisotropy (FA of gray matter and white matter throughout the TBSS skeleton, particularly in the limbic-subcortical structures. By contrast, symptomatic TBI patients showed no significant enhanced changes in FA compared to the healthy controls. A better understanding of the acute changes occurring following symptomatic TBI may increase our understanding of neuroplasticity and continuing degenerative change, which, in turn, may facilitate advances in management and intervention.

  13. Assessment of Cognitive Function in the Water Maze Task: Maximizing Data Collection and Analysis in Animal Models of Brain Injury.

    Science.gov (United States)

    Whiting, Mark D; Kokiko-Cochran, Olga N

    2016-01-01

    Animal models play a critical role in understanding the biomechanical, pathophysiological, and behavioral consequences of traumatic brain injury (TBI). In preclinical studies, cognitive impairment induced by TBI is often assessed using the Morris water maze (MWM). Frequently described as a hippocampally dependent spatial navigation task, the MWM is a highly integrative behavioral task that requires intact functioning in numerous brain regions and involves an interdependent set of mnemonic and non-mnemonic processes. In this chapter, we review the special considerations involved in using the MWM in animal models of TBI, with an emphasis on maximizing the degree of information extracted from performance data. We include a theoretical framework for examining deficits in discrete stages of cognitive function and offer suggestions for how to make inferences regarding the specific nature of TBI-induced cognitive impairment. The ultimate goal is more precise modeling of the animal equivalents of the cognitive deficits seen in human TBI. PMID:27604738

  14. Data Assimilation in Integrated and Distributed Hydrological Models

    DEFF Research Database (Denmark)

    Zhang, Donghua

    Integrated hydrological models are frequently used in water-related environmental resource management. With our better understanding of the hydrological processes and the improved computational power, hydrological models are becoming increasingly more complex as they integrate multiple hydrological...... to efficient use of traditional and new observational data in integrated hydrological models, as this technique can improve model prediction and reduce model uncertainty. The thesis investigates several challenges within the scope of data assimilation in integrated hydrological models. From the methodological...... assimilation. First, a systematic analysis was carried out for the case where groundwater hydraulic heads are assimilated in an integrated hydrological model. A data assimilation framework was developed and tested on synthetic data, and proved to be robust. It improved state estimation and was able to handle...

  15. CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    D. V. Koliesnikov

    2011-01-01

    Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.

  16. Integrated Enterprise Modeling Method Based on Workflow Model and Multiviews%Integrated Enterprise Modeling Method Based on Workflow Model and Multiviews

    Institute of Scientific and Technical Information of China (English)

    林慧苹; 范玉顺; 吴澄

    2001-01-01

    Many enterprise modeling methods are proposed to model thebusiness process of enterprises and to implement CIM systems. But difficulties are still encountered when these methods are applied to the CIM system design and implementation. This paper proposes a new integrated enterprise modeling methodology based on the workflow model. The system architecture and the integrated modeling environment are described with a new simulation strategy. The modeling process and the relationship between the workflow model and the views are discussed.

  17. Effects of tetrahydroxystilbene - glucoside on Animal Models of Dementia or Brain Aging

    Institute of Scientific and Technical Information of China (English)

    LinLi; JinChu; LiLiu; LingZhao; LanZhang

    2004-01-01

    Aim: To investigate the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside(TSG) from a Chinese Medicinal Herb polygonum multiflorum on dementia or brain aging. Methods. The brain aging model of mice was developed by s. c. injection of D-galactose (50mg/kg/day) for 60 days. The Alzheimer disease (AD) model of mice

  18. Integrated Human Futures Modeling in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fellner, Karen Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silver, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelke, Peter [Atlantic Council, Washington, D.C. (United States); Burrow, Mat [Atlantic Council, Washington, D.C. (United States); Keith, Bruce [United States Military Academy, West Point, NY (United States)

    2016-01-01

    The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on

  19. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Jumnongprakhon, Pichaya; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2016-09-01

    Melatonin is a neurohormone and has high potent of antioxidant that is widely reported to be active against methamphetamine (METH)-induced toxicity to neuron, glial cells, and brain endothelial cells. However, the role of melatonin on the inflammatory responses which are mostly caused by blood-brain barrier (BBB) impairment by METH administration has not been investigated. This study used the primary rat brain microvascular endothelial cells (BMVECs) to determine the protective mechanism of melatonin on METH-induced inflammatory responses in the BBB via nuclear factor-ĸB (NF-κB) and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Herein, we demonstrated that melatonin reduced the level of the inflammatory mediators, including intercellular adhesion molecules (ICAM)-1, vascular cell adhesion molecules (VCAM)-1, matrix metallopeptidase (MMP)-9, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) caused by METH. These responses were related to the decrease of the expression and translocation of the NF-κB p65 subunit and the activity of NADPH oxidase (NOX)-2. In addition, melatonin promoted the antioxidant processes, modulated the expression and translocation of Nrf2, and also increased the level of heme oxygenase (HO)-1, NAD (P) H: quinone oxidoreductase (NQO)-1, γ-glutamylcysteine synthase (γ-GCLC), and the activity of superoxide dismutase (SOD) through NOX2 mechanism. In addition, we found that the protective role of melatonin in METH-induced inflammatory responses in the BBB was mediated through melatonin receptors (MT1/2). We concluded that the interaction of melatonin with its receptor prevented METH-induced inflammatory responses by suppressing the NF-κB signaling and promoting the Nrf2 signaling before BBB impairment. PMID:27268413

  20. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain...

  1. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy.

  2. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  3. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management.

    Science.gov (United States)

    Kidd, Parris M

    2005-12-01

    Degenerative brain disorders (neurodegeneration) can be frustrating for both conventional and alternative practitioners. A more comprehensive, integrative approach is urgently needed. One emerging focus for intervention is brain energetics. Specifically, mitochondrial insufficiency contributes to the etiopathology of many such disorders. Electron leakages inherent to mitochondrial energetics generate reactive oxygen free radical species that may place the ultimate limit on lifespan. Exogenous toxins, such as mercury and other environmental contaminants, exacerbate mitochondrial electron leakage, hastening their demise and that of their host cells. Studies of the brain in Alzheimer's and other dementias, Down syndrome, stroke, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, Friedreich's ataxia, aging, and constitutive disorders demonstrate impairments of the mitochondrial citric acid cycle and oxidative phosphorylation (OXPHOS) enzymes. Imaging or metabolic assays frequently reveal energetic insufficiency and depleted energy reserve in brain tissue in situ. Orthomolecular nutrients involved in mitochondrial metabolism provide clinical benefit. Among these are the essential minerals and the B vitamin group; vitamins E and K; and the antioxidant and energetic cofactors alpha-lipoic acid (ALA), ubiquinone (coenzyme Q10; CoQ10), and nicotinamide adenine dinucleotide, reduced (NADH). Recent advances in the area of stem cells and growth factors encourage optimism regarding brain regeneration. The trophic nutrients acetyl L-carnitine (ALCAR), glycerophosphocholine (GPC), and phosphatidylserine (PS) provide mitochondrial support and conserve growth factor receptors; all three improved cognition in double-blind trials. The omega-3 fatty acid docosahexaenoic acid (DHA) is enzymatically combined with GPC and PS to form membrane phospholipids for nerve cell expansion. Practical recommendations are presented for integrating these

  4. Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-09-01

    Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.

  5. Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children's Numerical Abilities

    OpenAIRE

    Evans, Tanya M.; Kochalka, John; Ngoon, Tricia J.; Wu, Sarah S.; Qin, Shaozheng; Battista, Christian; Menon, Vinod

    2015-01-01

    Early numerical proficiency lays the foundation for acquiring quantitative skills essential in today's technological society. Identification of cognitive and brain markers associated with long-term growth of children's basic numerical computation abilities is therefore of utmost importance. Previous attempts to relate brain structure and function to numerical competency have focused on behavioral measures from a single time point. Thus, little is known about the brain predictors of individual...

  6. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...

  7. Effects of exogenous ganglioside-1 on learning and memory in a neonatal rat model of hypoxia-ischemia brain injury

    Institute of Scientific and Technical Information of China (English)

    Shizhi Li; Nong Xiao; Xiaoping Zhang; Ling Liu; Liyun Lin; Siyuan Chen; Yuxia Chen; Bei Xu

    2008-01-01

    greater in the hippocampal CA3 region compared to the model group I week after surgery (P < 0.05). In all three groups, brain weight of the right hemisphere was significantly less than the left hemisphere, in particular in the model group (P < 0.05). In the GMI group, the weight difference between two hemispheres, as well as the extent of damage in the right hemisphere, was less than the model group (P < 0.01). In the sham operation group, brain tissue consisted of integrated structures and ordered cells. In the model group, the cerebral cortex layers of the right hemisphere were not defined, neurons were damaged, and neurons were disarranged in the hippocampal area. In the GMI group, neurons were dense in the right cerebral cortex and hippocampal area, with no significant change in glial prolitferation. (2) The average time of escape latency in the GM1 group was shortened 4 weeks after surgery, and significantly less than the model group (P < 0.05), In addition, the frequency platform passing in the GM1 group was significantly greater than the model group (P < 0.01). CONCLUSION: Exogenous GMI may reduce brain injury and improve learning and memory in hypoxia-ischemia-induced brain damage rats. This protection may be associated with increased growth-associated protein-43 expression, which is involved in neuronal remodeling processes.

  8. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    Gagliano, L.; MacLeod, T.; Mason, S.; Percy, T.; Prescott, J.

    The Space Asset Management Database (SAM-D) was implemented in order to effectively track known objects in space by ingesting information from a variety of databases and performing calculations to determine the expected position of the object at a specified time. While SAM-D performs this task very well, it is limited by technology and is not available outside of the local user base. Modeling and simulation can be powerful tools to exploit the information contained in SAM-D. However, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. A more capable data management infrastructure would extend SAM-D to support the larger data sets to be generated by the COI. A service-oriented architecture model will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for visualizations. Based on a web-centric approach, the entire COI will be able to access the data and related analytics. In addition, tight control of information sharing policy will increase confidence in the system, which would encourage industry partners to provide commercial data. SIMON is a Government off the Shelf information sharing platform in use throughout DoD and DHS information sharing and situation awareness communities. SIMON providing fine grained control to data owners allowing them to determine exactly how and when their data is shared. SIMON supports a micro-service approach to system development, meaning M&S and analytic services can be easily built or adapted. It is uniquely positioned to fill this need as an information-sharing platform with a proven track record of successful situational awareness system deployments. Combined with the integration of new and legacy M&S tools, a SIMON-based architecture will provide a robust SA environment for the NASA SA COI that can be extended and expanded indefinitely. First Results of Coherent Uplink from a

  9. Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer

    OpenAIRE

    H Billur Engin; Emre Guney; Ozlem Keskin; Baldo Oliva; Attila Gursoy

    2013-01-01

    Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer H. Billur Engin1, Emre Guney2, Ozlem Keskin1, Baldo Oliva2, Attila Gursoy1* 1 Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey, 2 Structural Bioinformatics Group (GRIB), Universitat Pompeu Fabra Abstract Blocking specific protein interactions can lead to human diseases. Accordingly, protein i...

  10. Authentic Integration: a model for integrating mathematics and science in the classroom

    Science.gov (United States)

    Treacy, Páraic; O'Donoghue, John

    2014-07-01

    Attempts at integrating mathematics and science have been made previously but no definitive, widely adopted teaching model has been developed to date. Research suggests that hands-on, practical, student-centred tasks should form a central element when designing an effective model for the integration of mathematics and science. Aided by this research, the author created a new model entitled 'Authentic Integration' which caters for the specific needs of integration of mathematics and science. This model requires that each lesson be based around a rich task which relates to the real world and ensures that hands-on group work, inquiry, and discussion are central to the lesson. It was found that Authentic Integration, when applied in four Irish post-primary schools, positively affected pupil understanding. The teachers who completed the intervention displayed a very positive attitude towards the approach, intimating that they would continue to implement the practice in their classrooms.

  11. Low propensity to return: A model of permanent Italian brain drain

    OpenAIRE

    Alessio Emanuele Biondo; Simona Monteleone

    2010-01-01

    The paper analyzes permanent aspects of brain drain phenomenon referred to Italian highly skilled workers. The analysis regards a sample of post-doctoral graduates, medical specialists, and academic researchers. Results suggest that brain drain in Italy is not temporary, as demonstrated by Dustmann-Weiss (2007) for UK case. A modified version of their model allows us to explain why Italy performs a peculiar characterization of brain drain with no return. Reasons for this diversity are shown t...

  12. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks

    OpenAIRE

    Vértes, Petra E.; Alexander-Bloch, Aaron; Bullmore, Edward T

    2014-01-01

    Rich clubs arise when nodes that are ‘rich’ in connections also form an elite, densely connected ‘club’. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be...

  13. Bridging animal and human models of exercise-induced brain plasticity

    OpenAIRE

    Voss, Michelle W.; Vivar, Carmen; Arthur F Kramer; Van Praag, Henriette

    2013-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity...

  14. 脑控:基于脑-机接口的人机融合控制%Brain Control: Human-computer Integration Control Based on Brain-computer Interface

    Institute of Scientific and Technical Information of China (English)

    王行愚; 金晶; 张宇; 王蓓

    2013-01-01

    近年来,一类被称之为脑控的新型控制系统发展迅速,这是一种基于脑-机接口(Brain-computer interface,BCI)的人机融合控制系统,也是一种基于人的意念和思维的控制系统.脑控系统己被成功应用于残疾人的生活辅助、中风病人和损伤肢体的康复训练、操作员状态的实时监控、游戏娱乐和智能家居等广泛的领域.本文在简要介绍了脑控的研究背景、基本原理、系统结构和发展概况的基础上,着重对脑电信号(Electroencephalogram,EEG)模式、控制信号转换算法和应用系统研究等主要问题的研究现状,进行了较为详细的论述和分析,并探讨了进一步研究的方向和思路.最后对脑控的未来发展方向和应用前景进行了分析和展望.%Recently, a new system called brain control system has been developed rapidly. Brain control system is a human-computer integration control system based on brain-computer interface (BCI), which relies on human's ideas and thinking. Brain control system has been successfully applied in wide fields, assisting disabled patients daily life, training patients with stroke or limb injury, monitoring the status of human operator, as well as entertainment and smart house etc. In this paper, the background, basic principle, system structure and developments are firstly introduced briefly. The current research status focusing on the problems of electroencephalogram (EEG) signal pattern, control signal transfer algorithm and system application is summarized and analyzed in detail. The further research direction and thoughts are discussed. Finally, the future development of brain control is analyzed and prospects are given.

  15. Quantitative profiling of brain lipid raft proteome in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Magdalena Kalinowska

    Full Text Available Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP. FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders.

  16. The Traumatic Brain Injury Model Systems: a longitudinal database, research, collaboration and knowledge translation.

    Science.gov (United States)

    Hammond, F M; Malec, J F

    2010-12-01

    In 1988, the National Institute on Disability and Rehabilitation Research (NIDRR) launched the Traumatic Brain Injury Model Systems (TBIMS) program, creating the longest and largest longitudinal database on individuals with moderate-to-severe traumatic brain injury (TBI) available today. In addition to sustaining the longitudinal database, centers that successfully compete to be part of the TBIMS centers are also expected to complete local and collaborative research projects to further scientific knowledge about TBI. The research has focused on areas of the NIDRR Long Range Plan which emphasizes employment, health and function, technology for access and function, independent living and community integration, and other associated disability research areas. Centers compete for funded participation in the TBIMS on a 5-year cycle. Dissemination of scientific knowledge gained through the TBIMS is the responsibility of both individual centers and the TBIMS as a whole. This is accomplished through multiple venues that target a broad audience of those who need to receive the information and learn how to best apply it to practice. The sites produce many useful websites, manuals, publications and other materials to accomplish this translation of knowledge to practice.

  17. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    Science.gov (United States)

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  18. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    International Nuclear Information System (INIS)

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01–0.03 min−1. Finally, the model suggests that infusion over a short duration (20–60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. (paper)

  19. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    Science.gov (United States)

    Nhan, Tam; Burgess, Alison; Lilge, Lothar; Hynynen, Kullervo

    2014-10-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min-1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.

  20. The establishment of brain radiation injury experimental model of SD rats with whole brain irradiation in wakefulness

    International Nuclear Information System (INIS)

    Objective: To establish the brain radiation injury experimental model of Sprague-Dawley (SD) rat being irradiated in wakefulness so that the side effects from the anesthetics can be eliminated. Methods: Experiment animals were divided into 4 groups randomly according to the difference of radiation dose. Each group involved 25 rats. 'Thermoplastic material fixing cage' was used to keep rats in wakefulness during irradiation. The whole brains of SD rats were irradiated by 4 MeV electron beam at a single dose of 0 Gy, 2 Gy, 15 Gy and 30 Gy, which was measured by therapy beam analyser and dosimeter. The scores of gross neurological symptoms and changes in body weight were sequentially evaluated twice every week after irradiation. The examination of the head skin inside the field was performed as well. The changes of the nerve cell in the hippocampus region of rats with the Hematoxylin-eosin (HE) staining were observed at the time of 6 hours, 1 day, 1 week and 1 month after irradiation. Results: The peak dosage depth of 4 MeV electron beam was 14.3 mm, and the dosimetry homogeneity of the radiation field was within 5%. The dose attenuation rate was less than 2.57% because of the thermoplastic material fixing cage. Intra-portal alopecia was observed in all the rats exposed to radiation at the dose of 30 Gy and in some of the rats exposed to radiation at the dose of 15 Gy. There was no significant difference in increasing trend of body weight and the score changes of the gross neurological symptoms in all groups. The obvious lesion was observed in the hippocampus region of rats after 30 Gy irradiated. Conclusion: The brain radiation injury experimental model of SD rat in wakefulness with whole brain radiation eliminates the side effects from the anesthetic. It appears to be an excellent model for studying on the brain radiation injury in the early stage

  1. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    Science.gov (United States)

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  2. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    Directory of Open Access Journals (Sweden)

    Adrián Ponce-Alvarez

    2015-08-01

    Full Text Available How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  3. A Graph Based Framework to Model Virus Integration Sites.

    Science.gov (United States)

    Fronza, Raffaele; Vasciaveo, Alessandro; Benso, Alfredo; Schmidt, Manfred

    2016-01-01

    With next generation sequencing thousands of virus and viral vector integration genome targets are now under investigation to uncover specific integration preferences and to define clusters of integration, termed common integration sites (CIS), that may allow to assess gene therapy safety or to detect disease related genomic features such as oncogenes. Here, we addressed the challenge to: 1) define the notion of CIS on graph models, 2) demonstrate that the structure of CIS enters in the category of scale-free networks and 3) show that our network approach analyzes CIS dynamically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene Database (RTCGD) as a testing dataset. PMID:27257470

  4. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2012-01-01

    in their analyses. We argue that regulatory focus theory can unify the managerial choice of internationalization between internalization and networking. In addition, host country institutions affect this managerial choice with regard to internationalization. Thus, we suggest that the inclusion of concepts...... such as corporate entrepreneurship, institutional environment, and regulatory focus in an integrated framework helps to explain firm internationalization....

  5. Development of Multisensory Integration Approach Model

    Science.gov (United States)

    Kumar, S. Prasanna; Nathan, B. Sami

    2016-01-01

    Every teacher expects optimum level of processing in mind of them students. The level of processing is mainly depends upon memory process. Most of the students have retrieval difficulties on past learning. Memory difficulties directly related to sensory integration. In these circumstances the investigator made an attempt to construct Multisensory…

  6. Integration of chemotherapy into current treatment strategies for brain metastases from solid tumors

    International Nuclear Information System (INIS)

    Patients with brain metastases represent a heterogeneous group where selection of the most appropriate treatment depends on many patient- and disease-related factors. Eventually, a considerable proportion of patients are treated with palliative approaches such as whole-brain radiotherapy. Whole-brain radiotherapy in combination with chemotherapy has recently gained increasing attention and is hoped to augment the palliative effect of whole-brain radiotherapy alone and to extend survival in certain subsets of patients with controlled extracranial disease and good performance status. The randomized trials of whole-brain radiotherapy vs. whole-brain radiotherapy plus chemotherapy suggest that this concept deserves further study, although they failed to improve survival. However, survival might not be the most relevant endpoint in a condition, where most patients die from extracranial progression. Sometimes, the question arises whether patients with newly detected brain metastases and the indication for systemic treatment of extracranial disease can undergo standard systemic chemotherapy with the option of deferred rather than immediate radiotherapy to the brain. The literature contains numerous small reports on this issue, mainly in malignant melanoma, breast cancer, lung cancer and ovarian cancer, but very few sufficiently powered randomized trials. With chemotherapy alone, response rates were mostly in the order of 20–40%. The choice of chemotherapy regimen is often complicated by previous systemic treatment and takes into account the activity of the drugs in extracranial metastatic disease. Because the blood-brain barrier is partially disrupted in most macroscopic metastases, systemically administered agents can gain access to such tumor sites. Our systematic literature review suggests that both chemotherapy and radiochemotherapy for newly diagnosed brain metastases need further critical evaluation before standard clinical implementation. A potential chemotherapy

  7. Integration of chemotherapy into current treatment strategies for brain metastases from solid tumors

    Directory of Open Access Journals (Sweden)

    Thamm Reinhard

    2006-06-01

    Full Text Available Abstract Patients with brain metastases represent a heterogeneous group where selection of the most appropriate treatment depends on many patient- and disease-related factors. Eventually, a considerable proportion of patients are treated with palliative approaches such as whole-brain radiotherapy. Whole-brain radiotherapy in combination with chemotherapy has recently gained increasing attention and is hoped to augment the palliative effect of whole-brain radiotherapy alone and to extend survival in certain subsets of patients with controlled extracranial disease and good performance status. The randomized trials of whole-brain radiotherapy vs. whole-brain radiotherapy plus chemotherapy suggest that this concept deserves further study, although they failed to improve survival. However, survival might not be the most relevant endpoint in a condition, where most patients die from extracranial progression. Sometimes, the question arises whether patients with newly detected brain metastases and the indication for systemic treatment of extracranial disease can undergo standard systemic chemotherapy with the option of deferred rather than immediate radiotherapy to the brain. The literature contains numerous small reports on this issue, mainly in malignant melanoma, breast cancer, lung cancer and ovarian cancer, but very few sufficiently powered randomized trials. With chemotherapy alone, response rates were mostly in the order of 20–40%. The choice of chemotherapy regimen is often complicated by previous systemic treatment and takes into account the activity of the drugs in extracranial metastatic disease. Because the blood-brain barrier is partially disrupted in most macroscopic metastases, systemically administered agents can gain access to such tumor sites. Our systematic literature review suggests that both chemotherapy and radiochemotherapy for newly diagnosed brain metastases need further critical evaluation before standard clinical

  8. The implementation of integrated care: the empirical validation of the Development Model for Integrated Care

    OpenAIRE

    Ahaus Kees TB; Vermeulen Robbert P; Minkman Mirella MN; Huijsman Robbert

    2011-01-01

    Abstract Background Integrated care is considered as a strategy to improve the delivery, efficiency, client outcomes and satisfaction rates of health care. To integrate the care from multiple providers into a coherent client-focused service, a large number of activities and agreements have to be implemented like streamlining information flows and patient transfers. The Development Model for Integrated care (DMIC) describes nine clusters containing in total 89 elements that contribute to the i...

  9. Revisiting hydrocephalus as a model to study brain resilience.

    Directory of Open Access Journals (Sweden)

    Matheus Fernandes De Oliveira

    2012-01-01

    Full Text Available Hydrocephalus is an entity which embraces a variety of diseases whose final result is the enlarged size of cerebral ventricular system, partially or completely. The physiopathology of hydrocephalus lies in the dynamics of circulation of cerebrospinal fluid (CSF. The consequent CSF stasis in hydrocephalus interferes with cerebral and ventricular system development. Children and adults who sustain congenital or acquired brain injury typically experience a diffuse insult that impacts many areas of the brain. Development and recovery after such injuries reflects both restoration and reorganization of cognitive functions. Classic examples were already reported in literature. This suggests the presence of biological mechanisms associated with resilient adaptation of brain networks. We will settle a link between the notable modifications to neurophysiology secondary to hydrocephalus and the ability of neuronal tissue to reassume and reorganize its functions.Key words: hydrocephalus; resilience; brain; neural networks; plasticity.

  10. Integrable Marginal Points in the N-Cosine Model

    CERN Document Server

    Gerganov, B E

    2000-01-01

    The integrability of the N-cosine model, a N-field generalization of the sine-Gordon model, is investigated. We establish to first order in conformal perturbation theory that, for arbitrary N, the model possesses a quantum conserved current of Lorentz spin 3 on a submanifold of the parameter space where the interaction becomes marginal. The integrability of the model on this submanifold is further studied using renormalization techniques. It is shown that for N = 2, 3, and 4 there exist special points on the marginal manifold at which the N-cosine model is equivalent to models of Gross-Neveu type and therefore is integrable. In the 2-field case we further argue that the points mentioned above exhaust all integrable cases on the marginal submanifold.

  11. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration.

    Science.gov (United States)

    Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo

    2015-05-01

    The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception.

  12. Integrating decision management with UML modeling concepts and tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    2009-01-01

    . In this paper, we propose an integration of a decision management and a UML-based modeling tool, based on use cases we distill from an example: the UML modeling tool shall show all decisions related to a model and allow extending or updating them; the decision management tool shall trigger the modeling tool...

  13. Multiplicative integrable models from Poisson-Nijenhuis structures

    CERN Document Server

    Bonechi, Francesco

    2015-01-01

    We discuss the role of Poisson-Nijenhuis geometry in the definition of multiplicative integrable models on symplectic groupoids. These are integrable models that are compatible with the groupoid structure in such a way that the set of contour levels of the hamiltonians in involution inherits a topological groupoid structure. We show that every maximal rank PN structure defines such a model. We consider the examples defined on compact hermitian symmetric spaces and studied in [arXiv:1503.07339].

  14. Bethe vectors in GL(3)-based quantum integrable models

    CERN Document Server

    Pakuliak, S; Slavnov, N A

    2015-01-01

    We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik--Zamolodchokov equation.

  15. On the Integrability of the Bukhvostov-Lipatov Model

    CERN Document Server

    Ameduri, M; Gerganov, B E; Ameduri, Marco; Efthimiou, Costas J.; Gerganov, Bogomil

    1999-01-01

    The integrability of the Bukhvostov-Lipatov four-fermion model is investigated. It is shown that the classical model possesses a current of Lorentz spin 3, conserved both in the bulk and on the half-line for specific types of boundary actions. It is then established that the conservation law is spoiled at the quantum level -- a fact that might indicate that the quantum Bukhvostov-Lipatov model is not integrable, contrary to what was previously believed.

  16. Academic Support through Information System : Srinivas Integrated Model

    OpenAIRE

    Aithal, Sreeramana; Kumar, Suresh

    2016-01-01

    As part of imparting quality higher education for undergraduate and postgraduate students, Srinivas Institute of Management Studies (SIMS) developed an education service model for integrated academic support known as Srinivas Integrated Model. Backed by the presumption that knowledge is power and information is fundamental to knowledge building and knowledge sharing, this model is aimed to provide information support to students for improved academic performance. Information on the college...

  17. Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies.

    NARCIS (Netherlands)

    Kemper, E.M.; Leenders, W.P.J.; Kusters, B.; Lyons, S.; Buckle, T.; Heerschap, A.; Boogerd, W.; Beijnen, J.H.; Tellingen, O.

    2006-01-01

    The blood-brain barrier (BBB) is considered one of the major causes for the low efficacy of cytotoxic compounds against primary brain tumours. The aim of this study was to develop intracranial tumour models in mice featuring intact or locally disrupted BBB properties, which can be used in testing ch

  18. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    DEFF Research Database (Denmark)

    Andersson, O.; Badisco, L.; Hansen, A. H.;

    2014-01-01

    locust brains demonstrated differences in permeation of high and low permeability compounds. The vertebrate Pgp inhibitor verapamil did not affect the uptake of passively diffusing compounds but significantly increased the brain uptake of Pgp substrates in the ex vivo model. In addition, studies at 2°C...

  19. A Model for Information Integration Using Service Oriented Architectur

    Directory of Open Access Journals (Sweden)

    C. Punitha Devi

    2014-06-01

    Full Text Available Business agility remains to be the keyword that drives the business into different directions and enabling a 360 degree shift in the business process. To achieve agility the organization should work on real time information and data. The need to have instant access to information appears to be ever shine requirement of all organizations or enterprise. Access to information does not come directly with a single query but a complex process termed Information integration. Information integration has been in existence for the past two decades and has been progressive up to now. The challenges and issues keep on persisting as information integration problem evolves by itself. This paper addresses the issues in the approaches, techniques and models pertaining to information integration and identifies the problem for a need for a complete model. As SOA is the architectural style that is changing the business patterns today, this paper proposes a service oriented model for information integration. The model mainly focuses on giving a complete structure for information integration that is adaptable to any environment and open in nature. Here information is converted into service and then the information services are integrated through service oriented integration to provide the integrated information also as service.

  20. QMU in Integrated Spacecraft System Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ACTA and Sandia National Laboratories propose to quantify and propagate substructure modeling uncertainty for reduced-order substructure models to higher levels of...

  1. Microwave and magnetic (M2 proteomics of a mouse model of mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Teresa M. Evans

    2014-06-01

    Full Text Available Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI. However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave and magnetic (M2 proteomics of ipsilateral brain tissue, as previously described. Isoprostane measurements were performed to confirm a primary oxidative stress response. Decoding the relative expression of 476 ± 56 top-ranked proteins for each specimen revealed statistically significant changes in the expression of two well-known CSPs at 1, 7 and 30 days post-injury: P < 0.001 for myelin basic protein (MBP and p < 0.05 for myelin associated glycoprotein (MAG. This was confirmed by Western blot. Moreover, MAG, αII-spectrin (SPNA2 and neurofilament light (NEFL expression at 30 days post-injury were directly related to grip strength (p < 0.05. While higher-powered studies of larger cohorts merit further investigation, this study supports the proof-of-concept that M2 proteomics is a rapid method to quantify putative protein biomarkers and therapeutic targets of mTBI and suggests the feasibility of CSP expression correlations to long-term effects on motor impairment.

  2. Mathematical Models of Visual Information Processing in the Human Brain and Applications to Image Processing

    OpenAIRE

    Arai, Hitoshi

    2013-01-01

    In this lecture I give a survey of joint works of Hitoshi Arai and Shinobu Arai. The main purpose of our study is to construct mathematical models of visual information processing in the brain, and to give applications to image processing. On the past few decades, several studies have been made on mathematical models of visual information processing in the human brain. Our new models are constructed by using simple pinwheel framelets ([4]) and pinwheel framelets ([6]), which are a new class o...

  3. Integration models: multicultural and liberal approaches confronted

    Science.gov (United States)

    Janicki, Wojciech

    2012-01-01

    European societies have been shaped by their Christian past, upsurge of international migration, democratic rule and liberal tradition rooted in religious tolerance. Boosting globalization processes impose new challenges on European societies, striving to protect their diversity. This struggle is especially clearly visible in case of minorities trying to resist melting into mainstream culture. European countries' legal systems and cultural policies respond to these efforts in many ways. Respecting identity politics-driven group rights seems to be the most common approach, resulting in creation of a multicultural society. However, the outcome of respecting group rights may be remarkably contradictory to both individual rights growing out from liberal tradition, and to reinforced concept of integration of immigrants into host societies. The hereby paper discusses identity politics upturn in the context of both individual rights and integration of European societies.

  4. Employment Enhancing Integrative Graduate Education Model

    OpenAIRE

    Ismail H. Genc; Mustafa Copoglu

    2014-01-01

    There is a strong call to look for approaches to integrate business and engineering education across disciplines to provide a more coherent system for students with the job market. As graduates fail to find satisfying employment, the value of college education is questioned. The unemployment of the highly educated has economic, social and political ramifications. Worst is when the highly educated unemployed takes up lower status jobs, ever reducing the quality of the job market with future co...

  5. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  6. Building an Integrative Model for Managing Exploratory Innovation

    DEFF Research Database (Denmark)

    Zarmeen, Parisha; Turri, Vanessa Gina; Sanchez, Ron

    2014-01-01

    Purpose: In this paper we develop an integrated model identifying the key factors involved in managing exploratory innovation processes while also maintaining current business models and processes. Methodology/approach: We first characterize the problem of innovation as consisting of “the four...... central problems” organizations face when trying to manage innovation processes (Van de Ven, 1986). We develop an enhanced version of O’Connor’s (2008) Discovery, Incubation and Acceleration (DIA) model by integrating elements of Sanchez’ (2012) theory of architectural isomorphism as well as Markides......’ (2008) framework for strategically assessing the benefits of segregation versus integration of innovation processes. We develop and apply our model working with managers in two company contexts to assure the ability of our Integrated Model to identify key organizational and strategic variables that need...

  7. Model-Based Integration and Interpretation of Data

    DEFF Research Database (Denmark)

    Petersen, Johannes

    2004-01-01

    Data integration and interpretation plays a crucial role in supervisory control. The paper defines a set of generic inference steps for the data integration and interpretation process based on a three-layer model of system representations. The three-layer model is used to clarify the combination...... of constraint and object-centered representations of the work domain throwing new light on the basic principles underlying the data integration and interpretation process of Rasmussen's abstraction hierarchy as well as other model-based approaches combining constraint and object-centered representations. Based...

  8. Computational model of an infant brain subjected to periodic motion simplified modelling and Bayesian sensitivity analysis.

    Science.gov (United States)

    Batterbee, D C; Sims, N D; Becker, W; Worden, K; Rowson, J

    2011-11-01

    Non-accidental head injury in infants, or shaken baby syndrome, is a highly controversial and disputed topic. Biomechanical studies often suggest that shaking alone cannot cause the classical symptoms, yet many medical experts believe the contrary. Researchers have turned to finite element modelling for a more detailed understanding of the interactions between the brain, skull, cerebrospinal fluid (CSF), and surrounding tissues. However, the uncertainties in such models are significant; these can arise from theoretical approximations, lack of information, and inherent variability. Consequently, this study presents an uncertainty analysis of a finite element model of a human head subject to shaking. Although the model geometry was greatly simplified, fluid-structure-interaction techniques were used to model the brain, skull, and CSF using a Eulerian mesh formulation with penalty-based coupling. Uncertainty and sensitivity measurements were obtained using Bayesian sensitivity analysis, which is a technique that is relatively new to the engineering community. Uncertainty in nine different model parameters was investigated for two different shaking excitations: sinusoidal translation only, and sinusoidal translation plus rotation about the base of the head. The level and type of sensitivity in the results was found to be highly dependent on the excitation type.

  9. 13A. Integrative Cancer Care: The Life Over Cancer Model

    OpenAIRE

    Block, Keith; Block, Penny; Gyllenhaal, Charlotte; Shoham, Jacob

    2013-01-01

    Focus Areas: Integrative Algorithms of Care Integrative cancer treatment fully blends conventional cancer treatment with integrative therapies such as diet, supplements, exercise and biobehavioral approaches. The Life Over Cancer model comprises three spheres of intervention: improving lifestyle, improving biochemical environment (terrain), and improving tolerance of conventional treatment. These levels are applied within the context of a life-affirming approach to cancer patients and treatme...

  10. From animal model to human brain networking: dynamic causal modeling of motivational systems.

    Science.gov (United States)

    Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma

    2012-05-23

    An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST.

  11. From animal model to human brain networking: dynamic causal modeling of motivational systems.

    Science.gov (United States)

    Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma

    2012-05-23

    An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST. PMID:22623666

  12. The mathematics of cancer: integrating quantitative models.

    Science.gov (United States)

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  13. Combined motor disturbances following severe traumatic brain injury: an integrative long-term treatment approach.

    Science.gov (United States)

    Keren, O; Reznik, J; Groswasser, Z

    2001-07-01

    Patients surviving severe traumatic brain injury (TBI) often suffer from residual impairments in motor control, communication skills, cognition and social behaviour. These distinctly hamper their capability to return to their 'pre-trauma' activity. Comprehensive and integrated rehabilitation programmes initiate, during the acute phase, a prolonged treatment process which starts at the most sophisticated medical systems. There is no clear end point for the treatment of these patients, since the recovery process and the rehabilitation activity may continue for years, even after patients return home to live with their families. The inherent inability to make a firm early prediction regarding outcome of patients and the late appearance of additional symptoms stress the need for a comprehensive close long-term follow-up. The following presentation concerns the description of the treatment strategy and long-term improvement of a 22-year-old male who suffered from very severe TBI. On admission to the emergency room, he was in the decerebrated position and his Glasgow Coma Scale (GCS) was at the lowest (3). The focus of this presentation is on the recovery of motor function. The initial motor disabilities included weakness in all four limbs, in particular left hemiplegia, and right hemiparesis with severe bilateral ataxic elements and a marked tremor of the right arm. Range of motion was limited in hips, and he suffered from stiff trunk and neck. Goals of physiotherapy were directed towards improving range of motion (ROM) and active movement. Casting, use of orthoses, biofeedback, hydrotherapy, hippotherapy, medication and nerve blocks for reducing spasticity were timely applied during the process. The motor improvement in this very severe TBI patient who is now over 3 years post-injury still continues and has a functional meaning. He has succeeded in being able to stand up by himself from a chair and is able to walk unaided and without orthoses for very short distances

  14. Brain Based Teaching Model as Transformation of Learning Paradigm in Higher Education

    Directory of Open Access Journals (Sweden)

    Zulfani Sesmiarni

    2015-12-01

    Full Text Available Brain -based teaching model is a new paradigm that can facilitate students in optimizing student learning by the functioning the brain as a whole. Lessons are held today assume that all students equally so that learning provide the same services to each student in the class. With this model, the students are given different stimulation according to their abilities and needs. Base on brain learning theory -based teaching, the learning should pay attention to the five needs of the brain in general. The fifth factor is the need for a sense of comfort, the need for interaction, the need for knowledge, the need for the activity and the need for self-reflection. All these needs will be connected if the lecturers able to present emotional learning, social learning, cognitive learning, physical learning and teaching reflection. Key Word : Instrucetional, Brain Based teaching, Learning.Copyright © 2015 by Al-Ta'lim All right reserved

  15. THE HAMILTONIAN STRUCTURE OF TWO INTEGRABLE EXPANDING MODELS

    Institute of Scientific and Technical Information of China (English)

    Liu Bin; Dong Huanhe; Li Zhu

    2007-01-01

    In this paper,an extended loop algebra is constructed from which an isospectral problem established.It follows that the integrable couplings of the Tu hierarchy and M-AKNS-KN hierarchy are obtained.and their Hamilton structures are presented by the quadratic-form identity.Moreover,we guarantee that the expanding model we obtained are also Liouville integrable.

  16. Integration of Management Systems: A Process Based Model

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The paper discusses the barriers of integration of management systems (IMS). A model based on process is explored. It is indicated that integrating management systems should not ignore the characteristics of the management systems, especially scope issues. IMS needs to take into the continuous improvement.

  17. A Model for Curricula Integration Using the Australian Curriculum

    Science.gov (United States)

    Peter Hudson

    2012-01-01

    Curricula integration presents possibilities for broadening and deepening students' learning, yet more models are required for teachers to engage effectively in curricula integration. Utilising other subject areas to enhance science learning can extend the science curriculum, particularly in primary schools. Linking standards from subject areas…

  18. PT-symmetry in quasi-integrable models

    CERN Document Server

    Assis, P E G

    2015-01-01

    We reinforce the observations of almost stable scattering in nonintegrable models and show that $\\mathcal{PT}$-symmetry can be used as a guiding principle to select relevant systems also when it comes to integrability properties. We show that the presence of unbroken $\\mathcal{PT}$-symmetry in classical field theories produces quasi-integrable excitations with asymptotically conserved charges.

  19. System Dynamics Model for VMI&TPL Integrated Supply Chains

    OpenAIRE

    Guo Li; Xiaojing Wang; Zhaohua Wang

    2013-01-01

    This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods co...

  20. Integrating Behaviour in Software Models: An Event Coordination Notation

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2011-01-01

    One of the main problems in model-based software engineering is modelling behaviour in such a way that the behaviour models can be easily integrated with each other, with the structural software models and with pre-existing software. In this paper, we propose an event coordination notation (ECNO......) that deals with this problem. We present the main concepts and rationales behind this notation and discuss a prototype and run-time environment that executes these models, and provides an API so that other parts of the software can be easily integrated. The core concepts of the ECNO seem to be stabilizing...

  1. Development of the Integrated Communication Model

    Science.gov (United States)

    Ho, Hua-Kuo

    2008-01-01

    Human communication is a critical issue in personal life. It also should be the indispensable core element of general education curriculum in universities and colleges. Based on literature analysis and the author's clinical observation, the importance of human communication, functions of model, and often seen human communication models were…

  2. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...

  3. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model.

    Science.gov (United States)

    Slyepchenko, Anastasiya; Maes, Michael; Köhler, Cristiano A; Anderson, George; Quevedo, João; Alves, Gilberto S; Berk, Michael; Fernandes, Brisa S; Carvalho, André F

    2016-05-01

    The exact pathophysiology of major depressive disorder (MDD) remains elusive. The monoamine theory, which hypothesizes that MDD emerges as a result of dysfunctional serotonergic, dopaminergic and noradrenergic pathways, has guided the therapy of this illness for several decades. More recently, the involvement of activated immune, oxidative and nitrosative stress pathways and of decreased levels of neurotrophic factors has provided emerging insights regarding the pathophysiology of MDD, leading to integrated theories emphasizing the complex interplay of these mechanisms that could lead to neuroprogression. In this review, we propose an integrative model suggesting that T helper 17 (Th17) cells play a pivotal role in the pathophysiology of MDD through (i) microglial activation, (ii) interactions with oxidative and nitrosative stress, (iii) increases of autoantibody production and the propensity for autoimmunity, (iv) disruption of the blood-brain barrier, and (v) dysregulation of the gut mucosa and microbiota. The clinical and research implications of this model are discussed. PMID:26898639

  4. P-glycoprotein Mediated Efflux Limits Substrate and Drug Uptake in a Preclinical Brain Metastases of Breast Cancer Model

    Directory of Open Access Journals (Sweden)

    Chris E Adkins

    2013-11-01

    Full Text Available The blood-brain barrier (BBB is a specialized vascular interface that restricts the entry of many compounds into brain. This is accomplished through the sealing of vascular endothelial cells together with tight junction proteins to prevent paracellular diffusion. In addition, the BBB has a high degree of expression of numerous efflux transporters which actively extrude compounds back into blood. However, when a metastatic lesion develops in brain the vasculature is typically compromised with increases in passive permeability (blood-tumor barrier; BTB. What is not well documented is to what degree active efflux retains function at the BTB despite the changes observed in passive permeability. In addition, there have been previous reports documenting both increased and decreased expression of P-gp in lesion vasculature. Herein, we simultaneously administer a passive diffusion marker (14C-AIB and a tracer subject to P-gp efflux (rhodamine 123 into a murine preclinical model of brain metastases of breast cancer. We observed that the metastatic lesions had similar expression (p>0.05; n=756-1214 vessels evaluated at the BBB and the BTB. Moreover, tissue distribution of R123 was not significantly (p>0.05 different between normal brain and the metastatic lesion. It is possible that the similar expression of P-gp on the BBB and the BTB contribute to this phenomenon. Additionally we observed P-gp expression at the metastatic cancer cells adjacent to the vasculature which may also contribute to reduced R123 uptake into the lesion. The data suggest that despite the disrupted integrity of the BTB, efflux mechanisms appear to be intact, and may be functionally comparable to the normal BBB. The BTB is a significant hurdle to delivering drugs to brain metastasis.

  5. Early treatment with lyophilized plasma protects the brain in a large animal model of combined traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Sillesen, Martin;

    2013-01-01

    Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well as the assoc......Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well...

  6. Assessing multifunctional innovation adoption via an integrative model

    NARCIS (Netherlands)

    Sääksjärvi, M.; Samiee, S.

    2010-01-01

    This study proposes and tests an integrative model that incorporates the mental resources framework (MOA: motivation, opportunity, and ability) alongside traditional innovation adoption predictors for assessing the adoption of dual-functionality innovations (DFI), a special case of multifunctional i

  7. An Integrated Approach to Flexible Modelling and Animated Simulation

    Institute of Scientific and Technical Information of China (English)

    Li Shuliang; Wu Zhenye

    1994-01-01

    Based on the software support of SIMAN/CINEMA, this paper presents an integrated approach to flexible modelling and simulation with animation. The methodology provides a structured way of integrating mathematical and logical model, statistical experinentation, and statistical analysis with computer animation. Within this methodology, an animated simulation study is separated into six different activities: simulation objectives identification , system model development, simulation experiment specification, animation layout construction, real-time simulation and animation run, and output data analysis. These six activities are objectives driven, relatively independent, and integrate through software organization and simulation files. The key ideas behind this methodology are objectives orientation, modelling flexibility,simulation and animation integration, and application tailorability. Though the methodology is closely related to SIMAN/CINEMA, it can be extended to other software environments.

  8. Integrability and Quantum Phase Transitions in Interacting Boson Models

    CERN Document Server

    Dukelsky, J; García-Ramos, J E; Pittel, S

    2003-01-01

    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.

  9. On the Behavioral Modeling of Integrated Circuit Output Buffers

    OpenAIRE

    Canavero, Flavio; Stievano, Igor Simone; Maio, Ivano Adolfo

    2003-01-01

    The properties of common behavioral macromodels for single ended CMOS integrated circuits output buffers are discussed with the aim of providing criteria for an effective use of possible modeling options

  10. Integrated Visualization Environment for Science Mission Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is emphasizing the use of larger, more integrated models in conjunction with systems engineering tools and decision support systems. These tools place a...

  11. Integrated Krill Model WG-SAM-14/20

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The integrated modeling framework for Antarctic krill (Euphausia superba) has been extended to include estimates of krill growth consistent with survey data and to...

  12. On the integrability of pure Skyrme models in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Leznov, A.N. [Institute for High Energy Physics, Protvino (Russia); Piette, B.; Zakrzewski, W.J. [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)

    1997-06-01

    We point out that some recently studied pure skyrme models in (2+0) dimensions are completely integrable. We discuss some implications of this fact. {copyright} {ital 1997 American Institute of Physics.}

  13. Comment on "Integrability of the Rabi model"

    CERN Document Server

    Moroz, Alexander

    2012-01-01

    In his recent letter, Braak suggested that a regular spectrum of the Rabi model was given by the zeroes of a transcendental function $G_\\pm(x)$ (cf Eqs. (3)-(5) of Ref. [1]) and highlighted the role of the discrete $\\mathbb{Z}_2$-symmetry, or parity, in determining $G_\\pm(x)$. We show here to the contrary that one can define a transcendental function $F_0(x)$ and obtain the regular spectrum of the Rabi model as the zeroes of $F_0(x)$ (see Fig. 1) without ever making use of the underlying $\\mathbb{Z}_2$-symmetry of the model.

  14. Modeling of Amperometric Immunosensor for CMOS Integration

    Institute of Scientific and Technical Information of China (English)

    Ce Li; Haigang Yang; Shanhong Xia; Chao Bian

    2006-01-01

    A circuit model of the Amperometric immunosensor for use in the biosensor system-on-chip simulation is proposed in this paper. The model parameters are extracted with several methods and verified by MATLAB and SPICE simulation. A CMOS potentiostat circuit required for conditioning the Amperometric immunosensor is also included in the circuit model. The mean square error norm of the simulated curve against the measured one is 8.65 × 10-17. The whole circuit has been fabricated in a 0.35am CMOS process.

  15. Integrating a Decision Management Tool with UML Modeling Tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    the development process. In this report, we propose an integration of a decision management and a UML-based modeling tool, based on use cases we distill from a case study: the modeling tool shall show all decisions related to a model and allow its users to extend or update them; the decision management tool shall...

  16. An Integrated Model of Information Literacy, Based upon Domain Learning

    Science.gov (United States)

    Thompson, Gary B.; Lathey, Johnathan W.

    2013-01-01

    Introduction. Grounded in Alexander's model of domain learning, this study presents an integrated micro-model of information literacy. It is predicated upon the central importance of domain learning for the development of the requisite research skills by students. Method. The authors reviewed previous models of information literacy and…

  17. EnergyPlus Air Source Integrated Heat Pump Model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  18. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study

    Directory of Open Access Journals (Sweden)

    Dina Lelic

    2016-01-01

    Full Text Available Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP peak amplitudes following spinal manipulation (SM of dysfunctional segments in subclinical pain (SCP populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9±31.3% (P=0.02, while no differences were seen following the control intervention (P=0.4. Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2±12.2% (P=0.03 following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex.

  19. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study.

    Science.gov (United States)

    Lelic, Dina; Niazi, Imran Khan; Holt, Kelly; Jochumsen, Mads; Dremstrup, Kim; Yielder, Paul; Murphy, Bernadette; Drewes, Asbjørn Mohr; Haavik, Heidi

    2016-01-01

    Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex. PMID:27047694

  20. On conceptual differentiation and integration of strategy and business model

    OpenAIRE

    Ivan Stefanovic; Dragan Milosevic

    2012-01-01

    The objective of this paper is to develop the conceptual integration of strategy and business model. Theoretical method is used in order to achieve this objective. The theory building leads to the construction of conceptual model of strategy and business model, and provides its underlying logic. The main finding is that strategy is a pattern within which a business model changes. Only one strategy may exist for a firm in a concrete time frame, while there may be countless business models in t...

  1. Integrated thermodynamic model for ignition target performance

    Directory of Open Access Journals (Sweden)

    Springer P.T.

    2013-11-01

    Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.

  2. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...... in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding...

  3. An integrated model for the study of teacher motivation

    OpenAIRE

    Jesus, Saul Neves de; Lens, Willy

    2005-01-01

    Recent studies show that teachers suffer more than other professional groups from the occupational lack of motivation. A global understanding of teacher motivation requires an adequate framework for its study. The main goal of the current research was to propose and test a model of teacher motivation that integrates constructs from several cognitive-motivational theories. This integrative model starts from the perspectives of Expectancy-Value and Learned Helplessness but ove...

  4. An integral representation of functions in gas-kinetic models

    Science.gov (United States)

    Perepelitsa, Misha

    2016-08-01

    Motivated by the theory of kinetic models in gas dynamics, we obtain an integral representation of lower semicontinuous functions on {{{R}}^d,} {d≥1}. We use the representation to study the problem of compactness of a family of the solutions of the discrete time BGK model for the compressible Euler equations. We determine sufficient conditions for strong compactness of moments of kinetic densities, in terms of the measures from their integral representations.

  5. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    Science.gov (United States)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  6. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption

    Directory of Open Access Journals (Sweden)

    Sharabi Shirley

    2016-03-01

    Full Text Available Electroporation-based therapies such as electrochemotherapy (ECT and irreversible electroporation (IRE are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning.

  7. Localized dose delivering by ion beam irradiation for experimental trial of establishing brain necrosis model.

    Science.gov (United States)

    Takata, Takushi; Kondo, Natsuko; Sakurai, Yoshinori; Tanaka, Hiroki; Hasegawa, Takashi; Kume, Kyo; Suzuki, Minoru

    2015-11-01

    Localized dose delivery techniques to establish a brain radiation necrosis model are described. An irradiation field was designed by using accelerated protons or helium ions with a spread-out Bragg peak. Measurement of the designed field confirmed that a high dose can be confined to a local volume of an animal brain. The irradiation techniques described here are very useful for establishing a necrosis model without existence of extraneous complications. PMID:26454176

  8. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive Level

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc;

    2015-01-01

    these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable...... predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can...

  9. { P }{ T } symmetry in quasi-integrable models

    Science.gov (United States)

    Assis, P. E. G.

    2016-06-01

    Observations of almost stable scattering in nonintegrable models have been reinforced and a framework is proposed to describe quasi-integrability in terms of { P }{ T } symmetry. This new mechanism can be used to regard { P }{ T } symmetry in classical field theories as a guiding principle to also select relevant systems when it comes to integrability properties. It turns out that the if a deformed Lax pair is invariant under this symmetry, corresponding to the unbroken { P }{ T }-symmetric regime, quasi-integrable excitations are produced with asymptotically conserved charges. A generic nonlinear field equation is used in order to verify the validity of the assumptions but results for a specific non-integrable class of models are also presented. A set of quasi-integrable excitations is investigated and shown to have spectral functions with appropriate properties, which might lead to the determination of the almost conserved charges.

  10. Housekeeping while brain's storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Escriou Virginie

    2008-07-01

    Full Text Available Abstract Background Traumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the suitability of reference genes needed for quantitative RT-PCR experiments is missing for these models. Results We have compared five potential reference genes as well as total cDNA level monitored using Oligreen reagent in order to determine the best normalizing factors for quantitative RT-PCR expression studies in the early phase (0–48 h post-trauma (PT of a murine model of diffuse brain injury. The levels of 18S rRNA, and of transcripts of β-actin, glyceraldehyde-3P-dehydrogenase (GAPDH, β-microtubulin and S100β were determined in the injured brain region of traumatized mice sacrificed at 30 min, 3 h, 6 h, 12 h, 24 h and 48 h post-trauma. The stability of the reference genes candidates and of total cDNA was evaluated by three different methods, leading to the following rankings as normalization factors, from the most suitable to the less: by using geNorm VBA applet, we obtained the following sequence: cDNA(Oligreen; GAPDH > 18S rRNA > S100β > β-microtubulin > β-actin; by using NormFinder Excel Spreadsheet, we obtained the following sequence: GAPDH > cDNA(Oligreen > S100β > 18S rRNA > β-actin > β-microtubulin; by using a Confidence-Interval calculation, we obtained the following sequence: cDNA(Oligreen > 18S rRNA; GAPDH > S100β > β-microtubulin > β-actin. Conclusion This work suggests that Oligreen cDNA measurements, 18S rRNA and GAPDH or a combination of them may be used to efficiently normalize qRT-PCR gene expression in mouse brain trauma injury, and that β-actin and β-microtubulin should be avoided. The potential of total cDNA as measured by Oligreen as a

  11. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the power output from PV and solar thermal collector systems. The first approach is based on a developed statistical clear-sky model, which is used for estimating the clear-sky output solely based on observations of the output. This enables local effects such as shading from trees to be taken into account...... the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast....... The second approach to solar power forecasting is based on conditional parametric modelling. It is well suited for forecasting of solar thermal power, since is it can be make non-linear in the inputs. The approach is also extended to a probabilistic solar power forecasting model. The statistical clear...

  12. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2014-01-01

    – The OLI and the UIP models fail to include corporate entrepreneurship and managerial psychology in their analyses. We suggest that regulatory focus theory unifies the managerial strategic choice between position logic and opportunity logic. In addition, host country institutions affect this managerial...... choice with regard to internationalization. Practical implications – Regulatory focus theory originates from managerial psychology. The model is, therefore, relevant for managers, and it shows how the outcomes and processes of corporate entrepreneurial activity should manifest themselves in managerial......Purpose – This paper aims to critically review the ownership, location and internalization (OLI) model and the Uppsala internationalization process (UIP) framework. We suggest that the inclusion of concepts such as corporate entrepreneurship, host country institutions and regulatory focus...

  13. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  14. Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models

    Directory of Open Access Journals (Sweden)

    Sh. Khachatryan

    2015-10-01

    Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.

  15. Integration of Design and Control Through Model Analysis

    DEFF Research Database (Denmark)

    Russel, Boris Mariboe; Henriksen, Jens Peter; Jørgensen, Sten Bay;

    2000-01-01

    A systematic analysis of the process model is proposed as a pre-solution step for integration of design and control problems. It is shown that the same set of process (control) variables and design (manipulative) variables is employed with different objectives in design and control. Analysis...... of the phenomena models representing the process model identify the relationships between the important process and design variables, which help to understand, define and address some of the issues related to integration of design and control issues. The model analysis is highlighted through examples involving...... processes with mass and/or energy recycle. (C) 2000 Elsevier Science Ltd. All rights reserved....

  16. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  17. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  18. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  19. A depth integrated model for suspended transport

    NARCIS (Netherlands)

    Galappatti, R.

    1983-01-01

    A new depth averaged model for suspended sediment transport in open channels has been developed based on an asymptotic solution to the two dimensional convection-diffusion equation in the vertical plane. The solution for the depth averaged concentration is derived from the bed boundary condition and

  20. Integration of Heterogenous Digital Surface Models

    Science.gov (United States)

    Boesch, R.; Ginzler, C.

    2011-08-01

    The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI), two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM) with 1m resolution covering whole switzerland (approx. 41000 km2). The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM). Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET) generates the image based surface model (ADS-DSM) and delivers also a map with figures of merit (FOM) of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point distribution can

  1. Experimental study on the establishment and maintenance of brain death model with pigs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuijun; SHI Jihua; ZHAI Wenlong; SONG Yan; CHEN Shi

    2007-01-01

    It remains controversial that after the transplantation of using grafts from brain-dead donors,organs injury and rejection can influence the effects of transplantation.This study sought to explore methods of establishing a stable brain death(BD)model using Bama mini pigs and to maintain the brain-dead state for a comparatively long period to provide a model for investigating changes in brain death.Sixteen anesthetized Bama mini pigs were randomized into a control group(n=5)and a BD group(n=11).Intracranial pressure (ICP)was increased in a modified,slow,and intermittent way to establish BD.Respiration and circulation were sustained during the brain-dead state.Hemodynamic changes were monitored during the experiment.In the BD group,10 pigs met the requirements for brain death and 1 died of cardiopulmonary complications following an increase in ICP.Brain death was maintained for more than 48 hours with artificial life support.During the experiment,the heart rate and blood pressure showed characteristic changes due to increased ICP.Prior to BD being established,a"tic reaction"inevitably occurred.We used an improved method of increasing ICP to establish a stable BD model.The BD state could be maintained for more than 48 hours with effective respiratory and circulatory support.Disappearance of the tic reaction was considered to be one of the verified indexes for BD via encephalic pressure increase.

  2. System Dynamics Model for VMI&TPL Integrated Supply Chains

    Directory of Open Access Journals (Sweden)

    Guo Li

    2013-01-01

    Full Text Available This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods consolidation and risk sharing in VMI&TPL integrated supply chain is analyzed in detail from the aspects of bullwhip effect, inventory level, service level, and so on.

  3. Climbing the ladder: capability maturity model integration level 3

    Science.gov (United States)

    Day, Bryce; Lutteroth, Christof

    2011-02-01

    This article details the attempt to form a complete workflow model for an information and communication technologies (ICT) company in order to achieve a capability maturity model integration (CMMI) maturity rating of 3. During this project, business processes across the company's core and auxiliary sectors were documented and extended using modern enterprise modelling tools and a The Open Group Architectural Framework (TOGAF) methodology. Different challenges were encountered with regard to process customisation and tool support for enterprise modelling. In particular, there were problems with the reuse of process models, the integration of different project management methodologies and the integration of the Rational Unified Process development process framework that had to be solved. We report on these challenges and the perceived effects of the project on the company. Finally, we point out research directions that could help to improve the situation in the future.

  4. Collaborative multi organ segmentation by integrating deformable and graphical models.

    Science.gov (United States)

    Uzunbaş, Mustafa Gökhan; Chen, Chao; Zhang, Shaoting; Poh, Kilian M; Li, Kang; Metaxas, Dimitris

    2013-01-01

    Organ segmentation is a challenging problem on which significant progress has been made. Deformable models (DM) and graphical models (GM) are two important categories of optimization based image segmentation methods. Efforts have been made on integrating two types of models into one framework. However, previous methods are not designed for segmenting multiple organs simultaneously and accurately. In this paper, we propose a hybrid multi organ segmentation approach by integrating DM and GM in a coupled optimization framework. Specifically, we show that region-based deformable models can be integrated with Markov Random Fields (MRF), such that multiple models' evolutions are driven by a maximum a posteriori (MAP) inference. It brings global and local deformation constraints into a unified framework for simultaneous segmentation of multiple objects in an image. We validate this proposed method on two challenging problems of multi organ segmentation, and the results are promising. PMID:24579136

  5. In vivo whole brain, cellular and molecular imaging in nonhuman primate models of neuropathology.

    Science.gov (United States)

    Huang, Lieven; Merson, Tobias D; Bourne, James A

    2016-07-01

    Rodents have been the principal model to study brain anatomy and function due to their well-mapped brain architecture, rapid reproduction and amenability to genetic modification. However, there are clear limitations, for example their simpler neocortex, necessitating the need to adopt a model that is closer to humans in order to understand human cognition and brain conditions. Nonhuman primates (NHPs) are ideally suited as they are our closest relatives in the animal kingdom but in vivo imaging technologies to study brain structure and function in these species can be challenging. With the surge in NHP research in recent years, scientists have begun adapting imaging technologies, such as two-photon microscopy, for these species. Here we review the various NHP models that exist as well as their use in advanced microscopic and mesoscopic studies. We discuss the challenges in the field and investigate the opportunities that lie ahead. PMID:27151822

  6. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  7. Hidden geometrical structures in integrable models

    OpenAIRE

    Dorey, Patrick

    1992-01-01

    The bootstrap equations for the ADE series of purely elastic scattering theories have turned out to be intimately connected with the geometry of root systems and the Coxeter element. An informal review of some of this material is given, mentioning also a couple of other contexts -- the Pasquier models, and the simply-laced affine Toda field theories -- where similar structures are encountered. The relevance of twisted Coxeter elements is indicated, and a construction of these elements inspire...

  8. Integrating concast and multicast communication models

    Science.gov (United States)

    Wen, Su; Griffioen, James; Yavatkar, Rajendra

    1998-12-01

    This paper defines a new group communication model called concast communication. Being the counterpart to multicast, concast involves multiple senders transmitting to a single receiver. Concast communication is used in a wide range of applications including collaborative applications, report-in style applications, or just end-to-end acknowledgements in a reliable multicast protocol. This paper explores the issues involved in designing concast communication services. We examine various message combination methods including concatenation, compression, and reduction to reduce the traffic loads imposed on the network and packet implosion at the receiver. Group management operations such as group creation/deletion, joining/leaving, and concast routing are discussed. We also address transmission issues such as reliable delivery, flow control, congestion control, and QoS. We conclude the paper by presenting a concast communication model that we have been developing in the context of TMTP5. The model uses concast communication to implement reliable multicast and it shares concast trees with the multicast group whenever possible to reduce overhead costs.

  9. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    International Nuclear Information System (INIS)

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions

  10. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, D; Peeler, C; Grosshans, D; Titt, U; Taleei, R; Mohan, R [UT M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions.

  11. A Multi-Actor Dynamic Integrated Assessment Model (MADIAM)

    OpenAIRE

    M. Weber

    2004-01-01

    The interactions between climate and the socio-economic system are investigated with a Multi-Actor Dynamic Integrated Assessment Model (MADIAM) obtained by coupling a nonlinear impulse response model of the climate sub-system (NICCS) to a multi-actor dynamic economic model (MADEM). The main goal is to initiate a model development that is able to treat the dynamics of the coupled climate socio-economic system, including endogenous technological change, in a non-equilibrium situation, thereby o...

  12. MRI as a tool to study brain structure from mouse models for mental retardation

    Science.gov (United States)

    Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie

    1998-07-01

    Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.

  13. A Neurobiological Model of Borderline Personality Disorder: Systematic and Integrative Review.

    Science.gov (United States)

    Ruocco, Anthony C; Carcone, Dean

    2016-01-01

    Borderline personality disorder (BPD) is a severe mental disorder with a multifactorial etiology. The development and maintenance of BPD is sustained by diverse neurobiological factors that contribute to the disorder's complex clinical phenotype. These factors may be identified using a range of techniques to probe alterations in brain systems that underlie BPD. We systematically searched the scientific literature for empirical studies on the neurobiology of BPD, identifying 146 articles in three broad research areas: neuroendocrinology and biological specimens; structural neuroimaging; and functional neuroimaging. We consolidate the results of these studies and provide an integrative model that attempts to incorporate the heterogeneous findings. The model specifies interactions among endogenous stress hormones, neurometabolism, and brain structures and circuits involved in emotion and cognition. The role of the amygdala in BPD is expanded to consider its functions in coordinating the brain's dynamic evaluation of the relevance of emotional stimuli in the context of an individual's goals and motivations. Future directions for neurobiological research on BPD are discussed, including implications for the Research Domain Criteria framework, accelerating genetics research by incorporating endophenotypes and gene × environment interactions, and exploring novel applications of neuroscience findings to treatment research. PMID:27603741

  14. A Neurobiological Model of Borderline Personality Disorder: Systematic and Integrative Review.

    Science.gov (United States)

    Ruocco, Anthony C; Carcone, Dean

    2016-01-01

    Borderline personality disorder (BPD) is a severe mental disorder with a multifactorial etiology. The development and maintenance of BPD is sustained by diverse neurobiological factors that contribute to the disorder's complex clinical phenotype. These factors may be identified using a range of techniques to probe alterations in brain systems that underlie BPD. We systematically searched the scientific literature for empirical studies on the neurobiology of BPD, identifying 146 articles in three broad research areas: neuroendocrinology and biological specimens; structural neuroimaging; and functional neuroimaging. We consolidate the results of these studies and provide an integrative model that attempts to incorporate the heterogeneous findings. The model specifies interactions among endogenous stress hormones, neurometabolism, and brain structures and circuits involved in emotion and cognition. The role of the amygdala in BPD is expanded to consider its functions in coordinating the brain's dynamic evaluation of the relevance of emotional stimuli in the context of an individual's goals and motivations. Future directions for neurobiological research on BPD are discussed, including implications for the Research Domain Criteria framework, accelerating genetics research by incorporating endophenotypes and gene × environment interactions, and exploring novel applications of neuroscience findings to treatment research.

  15. Integrating robotic action with biologic perception: A brain-machine symbiosis theory

    Science.gov (United States)

    Mahmoudi, Babak

    In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and

  16. Using models in Integrated Ecosystem Assessment of coastal areas

    Science.gov (United States)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  17. LDA-SVM-Based EGFR Mutation Model for NSCLC Brain Metastases

    Science.gov (United States)

    Hu, Nan; Wang, Ge; Wu, Yu-Hao; Chen, Shi-Feng; Liu, Guo-Dong; Chen, Chuan; Wang, Dong; He, Zhong-Shi; Yang, Xue-Qin; He, Yong; Xiao, Hua-Liang; Huang, Ding-De; Xiong, Kun-Lin; Wu, Yan; Huang, Ming; Yang, Zhen-Zhou

    2015-01-01

    Abstract Epidermal growth factor receptor (EGFR) activating mutations are a predictor of tyrosine kinase inhibitor effectiveness in the treatment of non–small-cell lung cancer (NSCLC). The objective of this study is to build a model for predicting the EGFR mutation status of brain metastasis in patients with NSCLC. Observation and model set-up. This study was conducted between January 2003 and December 2011 in 6 medical centers in Southwest China. The study included 31 NSCLC patients with brain metastases. Eligibility requirements were histological proof of NSCLC, as well as sufficient quantity of paraffin-embedded lung and brain metastases specimens for EGFR mutation detection. The linear discriminant analysis (LDA) method was used for analyzing the dimensional reduction of clinical features, and a support vector machine (SVM) algorithm was employed to generate an EGFR mutation model for NSCLC brain metastases. Training-testing-validation (3 : 1 : 1) processes were applied to find the best fit in 12 patients (validation test set) with NSCLC and brain metastases treated with a tyrosine kinase inhibitor and whole-brain radiotherapy. Primary and secondary outcome measures: EGFR mutation analysis in patients with NSCLC and brain metastases and the development of a LDA-SVM-based EGFR mutation model for NSCLC brain metastases patients. EGFR mutation discordance between the primary lung tumor and brain metastases was found in 5 patients. Using LDA, 13 clinical features were transformed into 9 characteristics, and 3 were selected as primary vectors. The EGFR mutation model constructed with SVM algorithms had an accuracy, sensitivity, and specificity for determining the mutation status of brain metastases of 0.879, 0.886, and 0.875, respectively. Furthermore, the replicability of our model was confirmed by testing 100 random combinations of input values. The LDA-SVM-based model developed in this study could predict the EGFR status of brain metastases in this

  18. LDA-SVM-based EGFR mutation model for NSCLC brain metastases: an observational study.

    Science.gov (United States)

    Hu, Nan; Wang, Ge; Wu, Yu-Hao; Chen, Shi-Feng; Liu, Guo-Dong; Chen, Chuan; Wang, Dong; He, Zhong-Shi; Yang, Xue-Qin; He, Yong; Xiao, Hua-Liang; Huang, Ding-De; Xiong, Kun-Lin; Wu, Yan; Huang, Ming; Yang, Zhen-Zhou

    2015-02-01

    Epidermal growth factor receptor (EGFR) activating mutations are a predictor of tyrosine kinase inhibitor effectiveness in the treatment of non-small-cell lung cancer (NSCLC). The objective of this study is to build a model for predicting the EGFR mutation status of brain metastasis in patients with NSCLC. Observation and model set-up. This study was conducted between January 2003 and December 2011 in 6 medical centers in Southwest China. The study included 31 NSCLC patients with brain metastases. Eligibility requirements were histological proof of NSCLC, as well as sufficient quantity of paraffin-embedded lung and brain metastases specimens for EGFR mutation detection. The linear discriminant analysis (LDA) method was used for analyzing the dimensional reduction of clinical features, and a support vector machine (SVM) algorithm was employed to generate an EGFR mutation model for NSCLC brain metastases. Training-testing-validation (3 : 1 : 1) processes were applied to find the best fit in 12 patients (validation test set) with NSCLC and brain metastases treated with a tyrosine kinase inhibitor and whole-brain radiotherapy. Primary and secondary outcome measures: EGFR mutation analysis in patients with NSCLC and brain metastases and the development of a LDA-SVM-based EGFR mutation model for NSCLC brain metastases patients. EGFR mutation discordance between the primary lung tumor and brain metastases was found in 5 patients. Using LDA, 13 clinical features were transformed into 9 characteristics, and 3 were selected as primary vectors. The EGFR mutation model constructed with SVM algorithms had an accuracy, sensitivity, and specificity for determining the mutation status of brain metastases of 0.879, 0.886, and 0.875, respectively. Furthermore, the replicability of our model was confirmed by testing 100 random combinations of input values. The LDA-SVM-based model developed in this study could predict the EGFR status of brain metastases in this small cohort of

  19. Multi-study integration of brain cancer transcriptomes reveals organ-level molecular signatures.

    Directory of Open Access Journals (Sweden)

    Jaeyun Sung

    Full Text Available We utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported herein--Identification of Structured Signatures and Classifiers (ISSAC--that resulted in a brain cancer marker panel of 44 unique genes. Many of these genes have established relevance to the brain cancers examined herein, with others having known roles in cancer biology. Analyses on large-scale data from multiple sources must deal with significant challenges associated with heterogeneity between different published studies, for it was observed that the variation among individual studies often had a larger effect on the transcriptome than did phenotype differences, as is typical. For this reason, we restricted ourselves to studying only cases where we had at least two independent studies performed for each phenotype, and also reprocessed all the raw data from the studies using a unified pre-processing pipeline. We found that learning signatures across multiple datasets greatly enhanced reproducibility and accuracy in predictive performance on truly independent validation sets, even when keeping the size of the training set the same. This was most likely due to the meta-signature encompassing more of the heterogeneity across different sources and conditions, while amplifying signal from the repeated global characteristics of the phenotype. When molecular signatures of brain cancers were constructed from all currently available microarray data, 90% phenotype prediction accuracy, or the accuracy of identifying a particular brain cancer from the background of all phenotypes, was found. Looking forward, we discuss our approach in the context of the eventual development of organ-specific molecular signatures from peripheral fluids such as the blood.

  20. Neurochemostat: A Neural Interface SoC With Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine.

    Science.gov (United States)

    Bozorgzadeh, Bardia; Schuweiler, Douglas R; Bobak, Martin J; Garris, Paul A; Mohseni, Pedram

    2016-06-01

    This paper presents a 3.3×3.2 mm(2) system-on-chip (SoC) fabricated in AMS 0.35 μm 2P/4M CMOS for closed-loop regulation of brain dopamine. The SoC uniquely integrates neurochemical sensing, on-the-fly chemometrics, and feedback-controlled electrical stimulation to realize a "neurochemostat" by maintaining brain levels of electrically evoked dopamine between two user-set thresholds. The SoC incorporates a 90 μW, custom-designed, digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by 400 V/s fast-scan cyclic voltammetry (FSCV) with a carbon-fiber microelectrode (CFM). Specifically, the DSP unit executes a chemometrics algorithm based upon principal component regression (PCR) to resolve in real time electrically evoked brain dopamine levels from pH change and CFM background-current drift, two common interferents encountered using FSCV with a CFM in vivo. Further, the DSP unit directly links the chemically resolved dopamine levels to the activation of the electrical microstimulator in on-off-keying (OOK) fashion. Measured results from benchtop testing, flow injection analysis (FIA), and biological experiments with an anesthetized rat are presented. PMID:26390501