WorldWideScience

Sample records for brain injury chronic

  1. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  2. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  3. Chronic issues related to traumatic brain injury : traumatic brain injury is not an incident

    NARCIS (Netherlands)

    Grauwmeijer, Erik; van der Naalt, Joukje; ribbers, gerard

    2016-01-01

    Despite an increased awareness of the long-term consequences of traumatic brain injury, health care professionals often consider traumatic brain injury as an incident. However, patients with traumatic brain injury may experience long-term neurological, cognitive and behavioural problems. Due to the

  4. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  6. Family needs in the chronic phase after severe brain injury in Denmark

    DEFF Research Database (Denmark)

    Doser, Karoline; Norup, Anne

    2014-01-01

    Abstract Objective: This preliminary study aimed at investigating (1) changes in the status of family members between time of injury and follow-up in the chronic phase and (2) the most important needs within the family in the chronic phase and whether the needs were perceived as met. Participants......: The sample comprised 42 relatives (76% female, mean age = 53 years) of patients with severe brain injury, who had received intensive sub-acute rehabilitation. The relatives were contacted in the chronic phase after brain injury. Outcome measure: A set of questions about demographics and time spent caregiving...... for the patient was completed. The relatives completed the revised version of the Family Needs Questionnaire, a questionnaire consisting of 37 items related to different needs following brain injury. Results: Significant changes in status were found in employment (z = -3.464, p = 0.001) and co-habitation (z = -3...

  7. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    Science.gov (United States)

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Novel Mechanism for Reducing Acute and Chronic Neurodegeneration After Traumatic Brain Injury

    Science.gov (United States)

    2017-07-01

    Award Number: W81XWH-14-1-0195 TITLE: Novel Mechanism for Reducing Acute and Chronic Neurodegeneration after Traumatic Brain Injury...Purpose: The purpose of this project is to develop a radically different strategy to reduce brain glutamate excitotoxicity and treat TBI. We will...objective of reducing blood levels of glutamate. This will produce a brain -to-blood gradient of glutamate which will enhance the removal of excess

  9. Clinical Utility of '99mTc-HMPAO Brain SPECT Findings in Chronic Head Injury

    International Nuclear Information System (INIS)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo

    1992-01-01

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using 99m Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with 99m Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using 99m Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  10. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  11. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies.

    Science.gov (United States)

    Loosemore, Mike; Knowles, Charles H; Whyte, Greg P

    2007-10-20

    To evaluate the risk of chronic traumatic brain injury from amateur boxing. Secondary research performed by combination of sport physicians and clinical academics. DESIGN, DATA SOURCES, AND METHODS: Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. There is no strong evidence to associate chronic traumatic brain injury with amateur boxing.

  12. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  13. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    Science.gov (United States)

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  14. A systematic review and meta-analysis of sleep architecture and chronic traumatic brain injury.

    Science.gov (United States)

    Mantua, Janna; Grillakis, Antigone; Mahfouz, Sanaa H; Taylor, Maura R; Brager, Allison J; Yarnell, Angela M; Balkin, Thomas J; Capaldi, Vincent F; Simonelli, Guido

    2018-02-02

    Sleep quality appears to be altered by traumatic brain injury (TBI). However, whether persistent post-injury changes in sleep architecture are present is unknown and relatively unexplored. We conducted a systematic review and meta-analysis to assess the extent to which chronic TBI (>6 months since injury) is characterized by changes to sleep architecture. We also explored the relationship between sleep architecture and TBI severity. In the fourteen included studies, sleep was assessed with at least one night of polysomnography in both chronic TBI participants and controls. Statistical analyses, performed using Comprehensive Meta-Analysis software, revealed that chronic TBI is characterized by relatively increased slow wave sleep (SWS). A meta-regression showed moderate-severe TBI is associated with elevated SWS, reduced stage 2, and reduced sleep efficiency. In contrast, mild TBI was not associated with any significant alteration of sleep architecture. The present findings are consistent with the hypothesis that increased SWS after moderate-severe TBI reflects post-injury cortical reorganization and restructuring. Suggestions for future research are discussed, including adoption of common data elements in future studies to facilitate cross-study comparability, reliability, and replicability, thereby increasing the likelihood that meaningful sleep (and other) biomarkers of TBI will be identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A prospective study to evaluate a new residential community reintegration programme for severe chronic brain injury: the Brain Integration Programme.

    Science.gov (United States)

    Geurtsen, G J; Martina, J D; Van Heugten, C M; Geurts, A C H

    2008-07-01

    To assess the effectiveness of a residential community reintegration programme for participants with chronic sequelae of severe acquired brain injury that hamper community functioning. Prospective cohort study. Twenty-four participants with acquired brain injury (traumatic n = 18; stroke n = 3, tumour n = 2, encephalitis n = 1). Participants had impaired illness awareness, alcohol and drug problems and/or behavioural problems. A skills-oriented programme with modules related to independent living, work, social and emotional well-being. The Community Integration Questionnaire, CES-Depression, EuroQOL, Employability Rating Scale, living situation and work status were scored at the start (T0), end of treatment (T1) and 1-year follow-up (T2). Significant effects on the majority of outcome measures were present at T1. Employability significantly improved at T2 and living independently rose from 42% to over 70%. Participants working increased from 38% to 58% and the hours of work per week increased from 8 to 15. The Brain Integration Programme led to a sustained reduction in experienced problems and improved community integration. It is concluded that even participants with complex problems due to severe brain injury who got stuck in life could improve their social participation and emotional well-being through a residential community reintegration programme.

  16. Brain injury markers (S100B and NSE) in chronic cocaine dependents

    OpenAIRE

    Kessler, Felix Henrique Paim; Woody, George; Portela, Luís Valmor Cruz; Tort, Adriano Bretanha Lopes; De Boni, Raquel; Peuker, Ana Carolina Wolf Baldino; Genro, Vanessa; Diemen, Lísia von; Souza, Diogo Onofre Gomes de; Pechansky, Flavio

    2007-01-01

    OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls ...

  17. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    John Williamson

    2015-07-01

    Full Text Available The use of a modified Facial Affect Recognition (FAR training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years traumatic brain injury (TBI.  The modified FAR training was administered via telepractice to target social communication skills.  Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and role-play.  Pre- and post-therapy measures included static facial photos to identify emotion and the Prutting and Kirchner Pragmatic Protocol for social communication.  Both participants with chronic TBI showed gains on identifying facial emotions on the static photos.               

  18. Imaging cerebral activity in recovery from chronic traumatic brain injury: a preliminary report.

    Science.gov (United States)

    Lewis, David H; Bluestone, Judith P; Savina, Maryann; Zoller, William H; Meshberg, Emily B; Minoshima, Satoshi

    2006-07-01

    People in chronic phase of traumatic brain injury (TBI) are often told that there will be no further recovery in brain function, that they are in a "static phase." Holistic Approach to NeuroDevelopment and Learning Efficiency (HANDLE), an alternative therapy, aims to improve function by teaching a series of physical and mental activities that clients perform and encouraging changes in lifestyle. Five subjects (3 males) with chronic TBI (at least 3 years since ictus) completed the HANDLE Institute's program and were prospectively evaluated. Each had six regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT) scans over 7 months (scans n= 30). Paired scans were performed with injection of Tc-99m ECD to image rCBF at rest and during the HANDLE "Crossed Arm Bounce" (CAB) exercise before the program, at 3-4 months into the program, and at 6-7 months, after the program had ended. SPECT images were analyzed statistically using Neurostat in which image sets were coregistered and warped into Talaraich atlas for pairwise subtraction between conditions. Group analysis of SPECT showed that CAB activated (increased rCBF) vermis and cerebellar hemispheres in first two paired scans and anterior cingulate and vermis on the final pair. Increased rCBF at rest occurred in cerebellar hemispheres, vermis, and right dorsomedial frontal cortex. These preliminary observations suggest that there may be a role of the hindbrain (vermis and cerebellum) with HANDLE treatment of chronic TBI.

  19. Social skills treatment for people with severe, chronic acquired brain injuries: a multicenter trial.

    Science.gov (United States)

    McDonald, Skye; Tate, Robyn; Togher, Leanne; Bornhofen, Cristina; Long, Esther; Gertler, Paul; Bowen, Rebecca

    2008-09-01

    To determine whether social skills deficits including unskilled, inappropriate behavior, problems reading social cues (social perception), and mood disturbances (such as depression and anxiety) could be remediated after severe traumatic brain injuries. Randomized controlled trial comparing a social skills program with social activity alone or with waitlist control. Several participants were reassigned after randomization. Hospital outpatient and community facilities. Fifty-one outpatients from 3 brain injury units in Sydney, Australia, with severe, chronic acquired brain injuries were recruited. A total of 39 people (13 in skills training, 13 in social activity, 13 in waitlist) completed all phases of the study. Twelve-week social skills treatment program encompassing weekly 3-hour group sessions focused on shaping social behavior and remediating social perception and 1-hour individual sessions to address psychologic issues with mood, self-esteem, etc. Primary outcomes were: (1) social behavior during encounters with a confederate as rated on the Behaviorally Referenced Rating System of Intermediary Social Skills-Revised (BRISS-R), (2) social perception as measured by The Awareness of Social Inference Test, and (3) depression and anxiety as measured by the Depression, Anxiety and Stress Scale. Secondary outcomes were: relative report on social behavior and participation using: the Katz Adjustment Scale-R1; the Social Performance Survey Schedule; the La Trobe Communication Questionnaire; and the Sydney Psychosocial Reintegration Scale (both relative and self-report). Repeated-measures analysis of variance indicated that social activity alone did not lead to improved performance relative to waitlist (placebo effect) on any outcome variable. On the other hand, the skills training group improved differentially on the Partner Directed Behavior Scale of the BRISS-R, specifically the self-centered behavior and partner involvement behavior subscales. No treatment effects

  20. Clinical Utility of '9{sup 9m}Tc-HMPAO Brain SPECT Findings in Chronic Head Injury

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-03-15

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using {sup 99m}Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with {sup 99m}Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using {sup 99m}Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  1. Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: two case reports

    Science.gov (United States)

    Naeser, Margaret A.; Saltmarche, Anita; Krengel, Maxine H.; Hamblin, Michael R.; Knight, Jeffrey A.

    2010-02-01

    Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1" diameter with 61 diodes each - 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

  2. Mild Traumatic Brain Injury Chronically Impairs Sleep- and Wake-Dependent Emotional Processing.

    Science.gov (United States)

    Mantua, Janna; Henry, Owen S; Garskovas, Nolan F; Spencer, Rebecca M C

    2017-06-01

    A single traumatic brain injury (TBI), even when mild (ie, concussion), can cause lasting consequences. Individuals with a history of chronic (>1-year prior) mild TBI have an increased risk of mood disturbances (eg, depression, suicide). This population also has lingering sleep alterations, including poor sleep quality and changes in sleep stage proportions. Given these sleep deficits, we aimed to test whether sleep-dependent emotional memory consolidation is reduced in this population. We utilized a mild TBI group (3.7 ± 2.9 years post injury) and an uninjured (non-TBI) population. Participants viewed negative and neutral images both before and after a 12-hour period containing sleep ("Sleep" group) or an equivalent period of time spent awake ("Wake" group). Participants rated images for valence/arousal at both sessions, and memory recognition was tested at session two. The TBI group had less rapid eye movement (REM), longer REM latency, and more sleep complaints. Sleep-dependent memory consolidation of nonemotional images was present in all participants. However, consolidation of negative images was only present in the non-TBI group. A lack of differentiation between the TBI Sleep and Wake groups was due to poor performance in the sleep group and, unexpectedly, enhanced performance in the wake group. Additionally, although the non-TBI participants habituated to negative images over a waking period, the TBI participants did not. We propose disrupted sleep- and wake-dependent emotional processing contributes to poor emotional outcomes following chronic, mild TBI. This work has broad implications, as roughly one-third of the US population will sustain a mild TBI during their lifetime. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Familiar auditory sensory training in chronic traumatic brain injury: a case study.

    Science.gov (United States)

    Sullivan, Emily Galassi; Guernon, Ann; Blabas, Brett; Herrold, Amy A; Pape, Theresa L-B

    2018-04-01

    The evaluation and treatment for patients with prolonged periods of seriously impaired consciousness following traumatic brain injury (TBI), such as a vegetative or minimally conscious state, poses considerable challenges, particularly in the chronic phases of recovery. This blinded crossover study explored the effects of familiar auditory sensory training (FAST) compared with a sham stimulation in a patient seven years post severe TBI. Baseline data were collected over 4 weeks to account for variability in status with neurobehavioral measures, including the Disorders of Consciousness scale (DOCS), Coma Near Coma scale (CNC), and Consciousness Screening Algorithm. Pre-stimulation neurophysiological assessments were completed as well, namely Brainstem Auditory Evoked Potentials (BAEP) and Somatosensory Evoked Potentials (SSEP). Results revealed that a significant improvement in the DOCS neurobehavioral findings after FAST, which was not maintained during the sham. BAEP findings also improved with maintenance of these improvements following sham stimulation as evidenced by repeat testing. The results emphasize the importance for continued evaluation and treatment of individuals in chronic states of seriously impaired consciousness with a variety of tools. Further study of auditory stimulation as a passive treatment paradigm for this population is warranted. Implications for Rehabilitation Clinicians should be equipped with treatment options to enhance neurobehavioral improvements when traditional treatment methods fail to deliver or maintain functional behavioral changes. Routine assessment is crucial to detect subtle changes in neurobehavioral function even in chronic states of disordered consciousness and determine potential preserved cognitive abilities that may not be evident due to unreliable motor responses given motoric impairments. Familiar Auditory Stimulation Training (FAST) is an ideal passive stimulation that can be supplied by families, allied health

  4. Cognitive Gains from Gist Reasoning Training in Adolescents with Chronic-Stage Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Lori G. Cook

    2014-06-01

    Full Text Available Adolescents with traumatic brain injury (TBI typically demonstrate good recovery of previously acquired skills. However, higher-order and later emergent cognitive functions are often impaired and linked to poor outcomes in academic and social/behavioral domains. Few control trials exist that test cognitive treatment effectiveness at chronic recovery stages. The current pilot study compared the effects of two forms of cognitive training, gist reasoning (top-down versus rote memory learning (bottom-up, on ability to abstract meanings, recall facts, and utilize core executive functions (i.e., working memory, inhibition in 20 adolescents (ages 12-20 who were six months or longer post-TBI. Participants completed eight 45-minute sessions over one month. After training, the gist reasoning group (n = 10 exhibited significant improvement in ability to abstract meanings and increased fact recall. This group also showed significant generalizations to untrained executive functions of working memory and inhibition. The memory training group (n = 10 failed to show significant gains in ability to abstract meaning or on other untrained specialized executive functions, although improved fact recall approached significance. These preliminary results suggest that relatively short-term training (6 hours utilizing a top-down reasoning approach is more effective than a bottom-up rote learning approach in achieving gains in higher-order cognitive abilities in adolescents at chronic stages of TBI. These findings need to be replicated in a larger study; nonetheless, the preliminary data suggest that traditional cognitive intervention schedules need to extend to later-stage training opportunities. Chronic-stage, higher-order cognitive trainings may serve to elevate levels of cognitive performance in adolescents with TBI.

  5. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    So, Young [Nuclear Medicne, Seoul National Univ., Seoul (Korea, Republic of); Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June [College of Medicine, Chungnam National Univ., Taejon (Korea, Republic of)

    2002-08-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 {+-} 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 {approx} 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI.

  6. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    So, Young; Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June

    2002-01-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  7. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco Life Stress Spirituality Anger Physical Injury Stigma Health & Wellness Work Adjustment Community Peer-2-Peer Forum ...

  8. Informant Report of Financial Capacity for Individuals With Chronic Acquired Brain Injury: An Assessment of Informant Accuracy.

    Science.gov (United States)

    Sunderaraman, Preeti; Cosentino, Stephanie; Lindgren, Karen; James, Angela; Schultheis, Maria

    2018-03-29

    Primarily, to investigate the association between informant report and objective performance on specific financial capacity (FC) tasks by adults with chronic, moderate to severe acquired brain injury, and to examine the nature of misestimates by the informants. Cross-sectional design. A postacute, community-based rehabilitation center. Data were obtained from 22 chronic acquired brain injury (CABI) adults, mean age of 46.6 years (SD = 8.67), mean years of education of 13.45 years (SD = 2.15), with moderate to severe acquired brain injury (86% had traumatic brain injury), with a mean postinjury period of 17.14 years (SD = 9.5). Whereas the CABI adults completed the Financial Competence Assessment Inventory interview-a combination of self-report and performance-based assessment, 22 informants completed a specifically designed parallel version of the interview. Pearson correlations and 1-sample t tests based on the discrepancy scores between informant report and CABI group's performance were used. The CABI group's performance was not associated with its informant's perceptions. One-sample t tests revealed that informants both underestimated and overestimated CABI group's performance. Results indicate lack of correspondence between self- and informant ratings. Further investigation revealed that misestimations by informants occurred in contrary directions with CABI adults' performance being inaccurately rated. These findings raise critical issues related to assuming that the informant report can be used as a "gold standard" for collecting functional data related to financial management, and the idea that obtaining objective data on financial tasks may represent a more valid method of assessing financial competency in adults with brain injury.

  9. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  10. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  11. Cerebral perfusion and neuropsychological follow up in mild traumatic brain injury : Acute versus chronic disturbances?

    NARCIS (Netherlands)

    Metting, Zwany; Spikman, Jacoba M.; Rodiger, Lars A.; van der Naalt, Joukje

    In a subgroup of patients with mild traumatic brain injury (TBI) residual symptoms, interfering with outcome and return to work, are found. With neuropsychological assessment cognitive deficits can be demonstrated although the pathological underpinnings of these cognitive deficits are not fully

  12. Long-Term Use and Perceived Benefits of Goal-Oriented Attentional Self-Regulation Training in Chronic Brain Injury

    Directory of Open Access Journals (Sweden)

    Fred Loya

    2017-01-01

    Full Text Available Primary Objective. To investigate the long-term use and perceived benefit(s of strategies included in Goal-Oriented Attentional Self-Regulation (GOALS training (Novakovic-Agopian et al., 2011 by individuals with acquired brain injury (ABI and chronic executive dysfunction. Research Design. Longitudinal follow-up of training. Methods and Procedures. Sixteen participants with chronic ABI participated in structured telephone interviews 20 months (range 11 to 31 months following completion of GOALS training. Participants responded to questions regarding the range of strategies they continued to utilize, perceived benefit(s of strategy use, situations in which strategy use was found helpful, and functional changes attributed to training. Results. Nearly all participants (94% reported continued use of at least one trained strategy in their daily lives, with 75% of participants also reporting improved functioning resulting from training. However, there was considerable variability with respect to the specific strategies individuals found helpful as well as the perceived impact of training on overall functioning. Conclusions. GOALS training shows promising long-term benefits for individuals in the chronic phase of brain injury. Identifying individual- and injury-level factors that account for variability in continued strategy use and the perceived long-term benefits of training will help with ongoing intervention development.

  13. A Clinical Framework for Functional Recovery in a Person With Chronic Traumatic Brain Injury: A Case Study.

    Science.gov (United States)

    McCain, Karen; Shearin, Staci

    2017-07-01

    This case study describes a task-specific training program for gait walking and functional recovery in a young man with severe chronic traumatic brain injury. The individual was a 26-year-old man 4 years post-traumatic brain injury with severe motor impairments who had not walked outside of therapy since his injury. He had received extensive gait training prior to initiation of services. His goal was to recover the ability to walk. The primary focus of the interventions was the restoration of walking. A variety of interventions were used, including locomotor treadmill training, electrical stimulation, orthoses, and specialized assistive devices. A total of 79 treatments were delivered over a period of 62 weeks. At the conclusion of therapy, the client was able to walk independently with a gait trainer for approximately 1km (over 3000 ft) and walked in the community with the assistance of his mother using a rocker bottom crutch for distances of 100m (330 ft). Specific interventions were intentionally selected in the development of the treatment plan. The program emphasized structured practice of the salient task, that is, walking, with adequate intensity and frequency. Given the chronicity of this individual's injury, the magnitude of his functional improvements was unexpected.Video Abstract available for additional insights from the Authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A175).

  14. Chronic alcoholism-mediated impairment in the medulla oblongata: a mechanism of alcohol-related mortality in traumatic brain injury?

    Science.gov (United States)

    Lai, Xiao-ping; Yu, Xiao-jun; Qian, Hong; Wei, Lai; Lv, Jun-yao; Xu, Xiao-hu

    2013-01-01

    Alcohol-related traumatic brain injury (TBI) is a common condition in medical and forensic practice, and results in high prehospital mortality. We investigated the mechanism of chronic alcoholism-related mortality by examining the effects of alcohol on the synapses of the medulla oblongata in a rat model of TBI. Seventy adult male Sprague-Dawley rats were randomly assigned to either ethanol (EtOH) group, EtOH-TBI group, or control groups (water group, water-TBI group). To establish chronic alcoholism model, rats in the EtOH group were given EtOH twice daily (4 g/kg for 2 weeks and 6 g/kg for another 2 weeks). The rats also received a minor strike on the occipital tuberosity with an iron pendulum. Histopathologic and ultrastructure changes and the numerical density of the synapses in the medulla oblongata were examined. Expression of postsynaptic density-95 (PSD-95) in the medulla oblongata was measured by ELISA. Compared with rats in the control group, rats in the chronic alcoholism group showed: (1) minor axonal degeneration; (2) a significant decrease in the numerical density of synapses (p Chronic alcoholism induces significant synapse loss and axonal impairment in the medulla oblongata and renders the brain more susceptible to TBI. The combined effects of chronic alcoholism and TBI induce significant synapse and axon impairment and result in high mortality.

  15. Feasibility and results of a case study of yoga to improve physical functioning in people with chronic traumatic brain injury.

    Science.gov (United States)

    Schmid, Arlene A; Miller, Kristine K; Van Puymbroeck, Marieke; Schalk, Nancy

    2016-01-01

    The purpose of this mixed-methods case study was to investigate whether an 8-week 1:1 yoga program was feasible and beneficial to people with traumatic brain injury (TBI). This was a mixed-methods case study of one-to-one yoga for people with TBI included three people. We completed assessments before and after the 8-week yoga intervention and included measures of balance, balance confidence, pain, range of motion, strength and mobility. Qualitative interviews were included at the post-assessment. We include a percent change calculation and salient quotes that represent the perceived impact of the yoga intervention. All participants completed the yoga intervention and all demonstrated improvements in physical outcome measures. For the group, balance increased by 36%, balance confidence by 39%, lower extremity strength by 100% and endurance by 105%. Qualitative data support the use of yoga to improve multiple aspects of physical functioning, one participant stated: "I mean it's rocked my world. It's changed my life. I mean all the different aspects. I mean physically, emotionally, mentally, it's given me you know my life back…". Yoga, delivered in a one-to-one setting, appears to be feasible and beneficial to people with chronic TBI. Chronic traumatic brain injury (TBI) leads to many aspects of physical functioning impairment. Yoga delivered in a one-to-one setting may be feasible and beneficial for people with chronic TBI.

  16. Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury.

    Science.gov (United States)

    Hattori, Naoya; Swan, Megan; Stobbe, Gary A; Uomoto, Jay M; Minoshima, Satoshi; Djang, David; Krishnananthan, Ruben; Lewis, David H

    2009-07-01

    Patients with mild traumatic brain injury (TBI) often complain of cognitive fatigue during the chronic recovery phase. The Paced Auditory Serial Addition Test (PASAT) is a complex psychologic measure that may demonstrate subtle deficiencies in higher cognitive functions. The purpose of this study was to investigate the brain activation of regional cerebral blood flow (rCBF) with PASAT in patients with mild TBI to explore mechanisms for the cognitive fatigue. Two groups consisting of 15 patients with mild TBI and 15 healthy control subjects underwent (99m)Tc-ethylene cysteine dimer SPECT at rest and during PASAT on a separate day. Cortical rCBF was extracted using a 3-dimensional stereotactic surface projection and statistically analyzed to identify areas of activation, which were compared with PASAT performance scores. Image analysis demonstrated a difference in the pattern of activation between patients with mild TBI and healthy control subjects. Healthy control subjects activated the superior temporal cortex (Brodmann area [BA] 22) bilaterally, the precentral gyrus (BA 9) on the left, and the precentral gyrus (BA 6) and cerebellum bilaterally. Patients with mild TBI demonstrated a larger area of supratentorial activation (BAs 9, 10, 13, and 46) but a smaller area of activation in the cerebellum, indicating frontocerebellar dissociation. Patients with mild TBI and cognitive fatigue demonstrated a different pattern of activation during PASAT. Frontocerebellar dissociation may explain cognitive impairment and cognitive fatigue in the chronic recovery phase of mild traumatic brain injury.

  17. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shenandoah Robinson

    2018-06-01

    Full Text Available Survivors of infant traumatic brain injury (TBI are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12 controlled-cortical impact (CCI model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI. Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.

  18. Neurodegeneration after mild and repetitive traumatic brain injury: Chronic traumatic encepalopathy

    Directory of Open Access Journals (Sweden)

    Stanescu Ioana

    2015-09-01

    Full Text Available Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently under research. CTE can be diagnosed only by post mortem neuropathological examination of the brain. Great efforts are being made to better understand the clinical signs and symptoms of CTE, obtained in most cases retrospectively from families of affected persons.Patients with CTE are described as having behavioral, mood, cognitive and motor impairments, occurring after a long latency from the traumatic events. Recent pathogenetic studies have provided new insights to CTE mechanisms, offering important clues in understanding neurodegenerative process and relations between physical factors and pathologic protein deposition. Further research is needed to better identify the genetic and environmental risk factors for CTE, as well as rehabilitation and treatment strategies.

  19. The Relationship Between Traumatic Brain Injury and Rates of Chronic Symptomatic Illness in 202 Gulf War Veterans.

    Science.gov (United States)

    Chao, Linda L

    2018-05-18

    Although not a "signature injury" of Operation Desert Shield/Desert Storm (i.e., Gulf War, GW), some GW veterans have a history traumatic brain injury (TBI). For example, a previous study found that 12.2% of the GW veterans from the Fort Devens Cohort Study had self-reported TBIs. The present study sought to build upon this finding by examining the relationship between TBI and chronic symptomatic illness in a different sample of GW veterans. Participants were 202 GW veterans recruited from 2014 to 2018 at the San Francisco Veterans Affairs Medical Center as part of a VA-funded study on the effects of predicted exposure to low levels of sarin and cyclosarin on brain structure and function. The Ohio State University TBI identification method was used to determine lifetime history of TBI. The Kansas Gulf War Military History and Health Questionnaire was used to assess symptoms and to determine cases of Kansas Gulf War Illness (GWI) and Centers for Disease Control and Prevention (CDC) Chronic Multisymptom Illness (CMI). Nearly half (47%) the sample had a history of TBI, but only 7% of the TBIs were sustained in injuries that occurred during the GW. Most of the TBIs were sustained in injuries that occurred prior to (73%) or after (34%) the GW. History of TBI was not associated with higher rates of symptomatic illness when it was narrowly defined (i.e., Kansas GWI cases or cases of severe CMI). History of TBI was only associated with higher rates of symptomatic illness when it is broadly defined (i.e., CDC CMI or mild-moderate CMI). There was suggestive evidence that veterans who sustained TBIs during the GW (only seven in the present sample) have poorer functional outcomes compared with GW veterans with non-GW related TBIs. While TBIs were uncommon during the GW, many GW veterans sustained TBIs prior or after the GW. Because TBI and GWI/CMI share some overlapping symptoms, history of TBI may appear to be associated with increased rates of chronic symptomatic illness in

  20. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Clinical Management of a Patient with Chronic Recurrent Vertigo Following a Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Eric G. Johnson

    2009-01-01

    Full Text Available Vertigo, was provoked and right torsional up-beat nystagmus was observed in a 47-year-old patient when she was placed into the right Hallpike-Dix test position using infrared goggle technology. The clinical diagnosis was benign paroxysmal positional vertigo (BPPV, specifically right posterior canalithiasis, resulting from a mild traumatic brain injury (TBI suffered approximately six-months earlier. Previous medical consultations did not include vestibular system examination, and Meclizine was prescribed to suppress her chief complaint of vertigo. Ultimately, the patient was successfully managed by performing two canalith repositioning maneuvers during a single clinical session. The patient reported 100% resolution of symptoms upon reexamination the following day, and the Hallpike-Dix test was negative. Continued symptom resolution was subjectively reported 10 days postintervention via telephone consultation. This case report supports previous publications concerning the presence of BPPV following TBI and the need for inclusion of vestibular system examination during medical consultation.

  2. Chronic endocrine consequences of traumatic brain injury - what is the evidence?

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2018-01-01

    Traumatic brain injury (TBI) is a major public health problem with potentially debilitating consequences for the individual. Hypopituitarism after TBI has received increasing attention over the past decade; development of the condition as a consequence of TBI was previously hardly mentioned...... in textbooks on the subject. Hypopituitarism has been reported in more than 25% of patients with TBI and is now thought to be one of the most important causes of treatable morbidity in TBI survivors. However, most clinicians dealing with neuroendocrine diseases and TBI generally do not see such a high...... incidence of hypopituitarism. This disproportion is not clearly explained, but recent data indicate that diagnostic testing, which is designed for high-risk populations and not for a cohort of patients with, for example, de novo isolated growth hormone deficiency (the predominant finding in TBI), might have...

  3. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Nahla Zaghloul

    Full Text Available Extracellular superoxide dismutase (EC-SOD is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1% for 10 days (H-KI and compared to transgenic animals housed in room air (RA-KI, wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT. Overall brain metabolism evaluated by positron emission tomography (PET showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation.

  4. High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Charles W. Wilkinson

    2012-02-01

    Full Text Available Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least one year after injury, in 25-50% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP to be unrelated to injury severity. Growth hormone deficiency (GHD and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI, an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least one year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and

  5. Right frontal pole cortical thickness and social competence in children with chronic traumatic brain injury: cognitive proficiency as a mediator.

    Science.gov (United States)

    Levan, Ashley; Baxter, Leslie; Kirwan, C Brock; Black, Garrett; Gale, Shawn D

    2015-01-01

    To examine the association between right frontal pole cortical thickness, social competence, and cognitive proficiency in children participants with a history of chronic traumatic brain injury (TBI). Twenty-three children (65% male; M age = 12.8 years, SD = 2.3 years) at least 1 year post-injury (M = 3.3 years, SD = 1.7 years) were evaluated with the Cognitive Proficiency Index (CPI) from the Wechsler Intelligence Scale for Children, 4th Edition, and their caregiver completed the Child Behavior Checklist. Social competence was evaluated with the Social Competence and Social Problems subscales from the Child Behavior Checklist. Right frontal pole cortical thickness was calculated via FreeSurfer from high-resolution 3-dimensional T1 magnetic resonance imaging scans. Direct effect of right frontal pole cortical thickness on social competence was significant (β = 14.09, SE = 4.6, P Right frontal pole cortical thickness significantly predicted CPI (β = 18.44, SE = 4.9, P right frontal lobe cortical integrity and social competence in pediatric participants with chronic TBI may be mediated through cognitive proficiency.

  6. Amygdala activation as a marker for selective attention toward neutral faces in a chronic traumatic brain injury population.

    Science.gov (United States)

    Young, Leanne R; Yu, Weikei; Holloway, Michael; Rodgers, Barry N; Chapman, Sandra B; Krawczyk, Daniel C

    2017-09-01

    There has been great interest in characterizing the response of the amygdala to emotional faces, especially in the context of social cognition. Although amygdala activation is most often associated with fearful or angry stimuli, there is considerable evidence that the response of the amygdala to neutral faces is both robust and reliable. This characteristic of amygdala function is of particular interest in the context of assessing populations with executive function deficits, such as traumatic brain injuries, which can be evaluated using fMRI attention modulation tasks that evaluate prefrontal control over representations, notably faces. The current study tested the hypothesis that the amygdala may serve as a marker of selective attention to neutral faces. Using fMRI, we gathered data within a chronic traumatic brain injury population. Blood Oxygenation Level Dependent (BOLD) signal change within the left and right amygdalae and fusiform face areas was measured while participants viewed neutral faces and scenes, under conditions requiring participants to (1) categorize pictures of faces and scenes, (2) selectively attend to either faces or scenes, or (3) attend to both faces and scenes. Findings revealed that the amygdala is an effective marker for selective attention to neutral faces and, furthermore, it was more face-specific than the fusiform face area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The risk of chronic traumatic brain injury in professional boxing: change in exposure variables over the past century.

    Science.gov (United States)

    Clausen, H; McCrory, P; Anderson, V

    2005-09-01

    To determine if boxing exposure has changed over time and hence if current professional boxers are at the same risk of developing chronic traumatic brain injury (CTBI) as historical controls. Literature review of published studies and analysis of data of active professional boxers. Professional boxers in the United Kingdom and Australia. Boxing history and participation in sparring and professional bouts. Since the 1930s, the average duration of a professional boxer's career has dropped from 19 years to five years, and the mean number of career bouts has reduced from 336 to 13. This is despite no significant decline in participation rates from 1931 until 2002. The incidence of boxing related CTBI will diminish in the current era of professional boxing because of the reduction in exposure to repetitive head trauma and increasing medical monitoring of boxers, with preparticipation medical and neuroimaging assessments resulting in the detection of early and potentially pre-symptomatic cases of CTBI.

  8. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  9. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning

    NARCIS (Netherlands)

    Geurtsen, Gert J.; van Heugten, Caroline M.; Meijer, Ron; Martina, Juan D.; Geurts, Alexander C. H.

    2011-01-01

    Objective: To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. Design: A prospective cohort study with waiting list control and 1-year follow-up.

  10. Alterations of cerebral blood flow and cerebrovascular reserve in patients with chronic traumatic brain injury accompanying deteriorated intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun; Bom, Hee Seung [Chonnam National Univ. Hospital, Kwangju (Korea, Republic of)

    2000-06-01

    The purpose of this study was to evaluate alterations of regional cerbral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunctin in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolaminde brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM '97). CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.

  11. Alterations of cerebral blood flow and cerebrovascular reserve in patients with chronic traumatic brain injury accompanying deteriorated intelligence

    International Nuclear Information System (INIS)

    Song, Ho Chun; Bom, Hee Seung

    2000-01-01

    The purpose of this study was to evaluate alterations of regional cerbral blood flow (CBF) and cerebrovascular reserve (CVR), and correlation between these alternations and cognitive dysfunctin in patients with chronic traumatic brain injury (TBI) and normal brain MRI findings. Thirty TBI patients and 19 healthy volunteers underwent rest/acetazolaminde brain SPECT using Tc-99m HMPAO. Korean-Wechsler Adult Intelligence scale test was also performed in the patient group. Statistical analysis was performed with statistical parametric mapping software (SPM '97). CBF was diminished in the left hemisphere including Wernicke's area in all patients with lower verbal scale scores. In addition, a reduction in CBF in the right frontal, temporal and parietal cortices was related with depressed scores in information, digital span, arithmetic and similarities. In patients with lower performance scale scores, CBF was mainly diminished in the right hemisphere including superior temporal and supramarginal gyri, premotor, primary somatomotor and a part of prefrontal cortices, left frontal lobe and supramarginal gyrus. CVR was diminished in sixty-four Brodmann's areas compared to control. A reduction in CVR was demonstrated bilaterally in the frontal and temporal lobes in patients with lower scores in both verbal and performance tests, and in addition, both inferior parietal and occipital lobes in information subset. Alterations of CBF and CVR were demonstrated in the symptomatic TBI patients with normal MRI finding. These alterations were correlated with the change of intelligence, of which the complex functions are subserved by multiple interconnected cortical structures.=20

  12. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  13. The association between microhaemorrhages and post - traumatic functional outcome in the chronic phase after mild traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Haan, S. de; Groot, J.C. de [University Medical Center Groningen, Department of Radiology, University of Groningen, Groningen (Netherlands); Jacobs, B.; Naalt, J. van der [University Medical Center Groningen, Department of Neurology, University of Groningen, Groningen (Netherlands)

    2017-10-15

    In the chronic phase after mild traumatic brain injury (mTBI), microhaemorrhages are frequently detected on magnetic resonance imaging (MRI). It is however unclear whether microhaemorrhages are associated with functional outcome and which MRI sequence is most appropriate to address this association. We aimed to determine the association between microhaemorrhages and functional outcome in the chronic posttraumatic phase after injury with the most suitable MRI sequence to address this association. One hundred twenty-seven patients classified with mTBI admitted to the outpatient clinic from 2008 to 2015 for persisting posttraumatic complaints were stratified according to the presence of MRI abnormalities (n = 63 (MRI+ group) and n = 64 without abnormalities (MRI- group)). For the detection of microhaemorrhages, susceptibility-weighted imaging (SWI) and T2* gradient recalled echo (T2*GRE) were used. The relation between the functional outcome (dichotomized Glasgow Outcome Scale Extended scores) and the number and localization of microhaemorrhages was analysed using binary logistic regression. SWI detected twice as many microhaemorrhages compared to T2*GRE: 341 vs. 179. Lesions were predominantly present in the frontal and temporal lobes. Unfavourable outcome was present in 67% of the MRI+ group with a significant association of total number of microhaemorrhages in the temporal cortical area on SWI (OR 0.43 (0.21-0.90) p = 0.02), with an explained variance of 44%. The number of microhaemorrhages was not correlated with the number of posttraumatic complaints. An unfavourable outcome in the chronic posttraumatic phase is associated with the presence and number of microhaemorrhages in the temporal cortical area. SWI is preferably used to detect these microhaemorrhages. (orig.)

  14. The association between microhaemorrhages and post - traumatic functional outcome in the chronic phase after mild traumatic brain injury

    International Nuclear Information System (INIS)

    Haan, S. de; Groot, J.C. de; Jacobs, B.; Naalt, J. van der

    2017-01-01

    In the chronic phase after mild traumatic brain injury (mTBI), microhaemorrhages are frequently detected on magnetic resonance imaging (MRI). It is however unclear whether microhaemorrhages are associated with functional outcome and which MRI sequence is most appropriate to address this association. We aimed to determine the association between microhaemorrhages and functional outcome in the chronic posttraumatic phase after injury with the most suitable MRI sequence to address this association. One hundred twenty-seven patients classified with mTBI admitted to the outpatient clinic from 2008 to 2015 for persisting posttraumatic complaints were stratified according to the presence of MRI abnormalities (n = 63 (MRI+ group) and n = 64 without abnormalities (MRI- group)). For the detection of microhaemorrhages, susceptibility-weighted imaging (SWI) and T2* gradient recalled echo (T2*GRE) were used. The relation between the functional outcome (dichotomized Glasgow Outcome Scale Extended scores) and the number and localization of microhaemorrhages was analysed using binary logistic regression. SWI detected twice as many microhaemorrhages compared to T2*GRE: 341 vs. 179. Lesions were predominantly present in the frontal and temporal lobes. Unfavourable outcome was present in 67% of the MRI+ group with a significant association of total number of microhaemorrhages in the temporal cortical area on SWI (OR 0.43 (0.21-0.90) p = 0.02), with an explained variance of 44%. The number of microhaemorrhages was not correlated with the number of posttraumatic complaints. An unfavourable outcome in the chronic posttraumatic phase is associated with the presence and number of microhaemorrhages in the temporal cortical area. SWI is preferably used to detect these microhaemorrhages. (orig.)

  15. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  16. Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy—These Matters Matter

    Directory of Open Access Journals (Sweden)

    Mark W. Wojnarowicz

    2017-06-01

    Full Text Available Animal models of concussion, traumatic brain injury (TBI, and chronic traumatic encephalopathy (CTE are widely available and routinely deployed in laboratories around the world. Effective animal modeling requires careful consideration of four basic principles. First, animal model use must be guided by clarity of definitions regarding the human disease or condition being modeled. Concussion, TBI, and CTE represent distinct clinical entities that require clear differentiation: concussion is a neurological syndrome, TBI is a neurological event, and CTE is a neurological disease. While these conditions are all associated with head injury, the pathophysiology, clinical course, and medical management of each are distinct. Investigators who use animal models of these conditions must take into account these clinical distinctions to avoid misinterpretation of results and category mistakes. Second, model selection must be grounded by clarity of purpose with respect to experimental questions and frame of reference of the investigation. Distinguishing injury context (“inputs” from injury consequences (“outputs” may be helpful during animal model selection, experimental design and execution, and interpretation of results. Vigilance is required to rout out, or rigorously control for, model artifacts with potential to interfere with primary endpoints. The widespread use of anesthetics in many animal models illustrates the many ways that model artifacts can confound preclinical results. Third, concordance between key features of the animal model and the human disease or condition being modeled is required to confirm model biofidelity. Fourth, experimental results observed in animals must be confirmed in human subjects for model validation. Adherence to these principles serves as a bulwark against flawed interpretation of results, study replication failure, and confusion in the field. Implementing these principles will advance basic science discovery and

  17. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  18. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokohama, Kazutoshi

    2012-01-01

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T 2 *-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p<0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment. (author)

  19. Chronic Hypopituitarism Associated with Increased Postconcussive Symptoms Is Prevalent after Blast-Induced Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Arundhati Undurti

    2018-02-01

    Full Text Available The most frequent injury sustained by US service members deployed to Iraq or Afghanistan is mild traumatic brain injuries (mTBI, or concussion, by far most often caused by blast waves from improvised explosive devices or other explosive ordnance. TBI from all causes gives rise to chronic neuroendocrine disorders with an estimated prevalence of 25–50%. The current study expands upon our earlier finding that chronic pituitary gland dysfunction occurs with a similarly high frequency after blast-related concussions. We measured circulating hormone levels and accessed demographic and testing data from two groups of male veterans with hazardous duty experience in Iraq or Afghanistan. Veterans in the mTBI group had experienced one or more blast-related concussion. Members of the deployment control (DC group encountered similar deployment conditions but had no history of blast-related mTBI. 12 of 39 (31% of the mTBI participants and 3 of 20 (15% veterans in the DC group screened positive for one or more neuroendocrine disorders. Positive screens for growth hormone deficiency occurred most often. Analysis of responses on self-report questionnaires revealed main effects of both mTBI and hypopituitarism on postconcussive and posttraumatic stress disorder (PTSD symptoms. Symptoms associated with pituitary dysfunction overlap considerably with those of PTSD. They include cognitive deficiencies, mood and anxiety disorders, sleep problems, diminished quality of life, deleterious changes in metabolism and body composition, and increased cardiovascular mortality. When such symptoms are due to hypopituitarism, they may be alleviated by hormone replacement. These findings suggest consideration of routine post-deployment neuroendocrine screening of service members and veterans who have experienced blast-related mTBI and are reporting postconcussive symptoms.

  20. Chronic Hypopituitarism Associated with Increased Postconcussive Symptoms Is Prevalent after Blast-Induced Mild Traumatic Brain Injury

    Science.gov (United States)

    Undurti, Arundhati; Colasurdo, Elizabeth A.; Sikkema, Carl L.; Schultz, Jaclyn S.; Peskind, Elaine R.; Pagulayan, Kathleen F.; Wilkinson, Charles W.

    2018-01-01

    The most frequent injury sustained by US service members deployed to Iraq or Afghanistan is mild traumatic brain injuries (mTBI), or concussion, by far most often caused by blast waves from improvised explosive devices or other explosive ordnance. TBI from all causes gives rise to chronic neuroendocrine disorders with an estimated prevalence of 25–50%. The current study expands upon our earlier finding that chronic pituitary gland dysfunction occurs with a similarly high frequency after blast-related concussions. We measured circulating hormone levels and accessed demographic and testing data from two groups of male veterans with hazardous duty experience in Iraq or Afghanistan. Veterans in the mTBI group had experienced one or more blast-related concussion. Members of the deployment control (DC) group encountered similar deployment conditions but had no history of blast-related mTBI. 12 of 39 (31%) of the mTBI participants and 3 of 20 (15%) veterans in the DC group screened positive for one or more neuroendocrine disorders. Positive screens for growth hormone deficiency occurred most often. Analysis of responses on self-report questionnaires revealed main effects of both mTBI and hypopituitarism on postconcussive and posttraumatic stress disorder (PTSD) symptoms. Symptoms associated with pituitary dysfunction overlap considerably with those of PTSD. They include cognitive deficiencies, mood and anxiety disorders, sleep problems, diminished quality of life, deleterious changes in metabolism and body composition, and increased cardiovascular mortality. When such symptoms are due to hypopituitarism, they may be alleviated by hormone replacement. These findings suggest consideration of routine post-deployment neuroendocrine screening of service members and veterans who have experienced blast-related mTBI and are reporting postconcussive symptoms. PMID:29515515

  1. Brain injury in sports.

    Science.gov (United States)

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  2. Healthy body, healthy mind: A mixed methods study of outcomes, barriers and supports for exercise by people who have chronic moderate-to-severe acquired brain injury.

    Science.gov (United States)

    Lorenz, Laura S; Charrette, Ann L; O'Neil-Pirozzi, Therese M; Doucett, Julia M; Fong, Jeffrey

    2018-01-01

    Few people with chronic moderate-to-severe brain injury are following recommended physical activity guidelines. Investigate effects of planned, systematic physical activity while cultivating social and emotional well-being of people with chronic moderate-to-severe brain injury. Moderate-to-intensive physical activity would be associated with improvements in impairment and activity limitation measures (endurance, mobility, gait speed) immediately post-intervention and six weeks later (study week 12). The intervention was a single group pre-/post-intervention study with 14 people with chronic moderate-to-severe brain injury who live in brain injury group homes and exercised 60-90 min, 3 days per week for 6 weeks at a maximum heart rate of 50-80%. Pre-post measures (administered weeks 0, 6 and 12) were the 6 Minute Walk Test, High-level Mobility Assessment Tool and 10 Meter Walk Test. The qualitative component used a brief survey and semi-structured interview guide with participants, family members, and staff. Following program completion, post-intervention group changes were noted on all outcome measures and greater than minimal detectable change for people with brain injury. Three transitioned from low to high ambulatory status and maintained this change at 12 weeks. During interviews, participants agreed the program was stimulating. More than eighty percent liked working out in a group and felt better being active. Program impact included physical, cognitive and social/emotional aspects. Social aspects (group format, trainers) were highly motivating and supported by residents, family, and staff. Investments in transportation and recruiting and training interns to assist participants are critical to program sustainability and expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Brain injuries from blast.

    Science.gov (United States)

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  4. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation.

    Science.gov (United States)

    Newsome, Mary R; Scheibel, Randall S; Chu, Zili; Hunter, Jill V; Li, Xiaoqi; Wilde, Elisabeth A; Lu, Hanzhang; Wang, Zhiyue J; Lin, Xiaodi; Steinberg, Joel L; Vasquez, Ana C; Cook, Lori; Levin, Harvey S

    2012-05-01

    Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (pflow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological

  5. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  6. Clinical Comparison of 99mTc Exametazime and 123I Ioflupane SPECT in Patients with Chronic Mild Traumatic Brain Injury

    OpenAIRE

    Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy

    2014-01-01

    BACKGROUND: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. METHODS AND FINDINGS: Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to m...

  7. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  8. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study.

    Science.gov (United States)

    Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol

    2018-02-28

    Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  9. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study

    Directory of Open Access Journals (Sweden)

    Gyu-sik Choi

    2018-01-01

    Full Text Available Objective: Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Design: Prospective randomized feasibility study. Methods: Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1, 10th transcranial magnetic stimulation session (post2, and 1 (post3, 2 (post4, and 4 weeks (post 5 after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36, including physical and mental component scores (PCS, MCS. Results: The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group’s SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. Conclusion: High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  10. Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Wendy A. Morley

    2018-03-01

    Full Text Available Brain injury occurs in two phases: the initial injury itself and a secondary cascade of precise immune-based neurochemical events. The secondary phase is typically functional in nature and characterized by delayed axonal injury with more axonal disconnections occurring than in the initial phase. Axonal injury occurs across the spectrum of disease severity, with subconcussive injury, especially when repetitive, now considered capable of producing significant neurological damage consistent with axonal injury seen in clinically evident concussion, despite no observable symptoms. This review is the first to introduce the concept of environmental subconcussive injury (ESCI and sets out how secondary brain damage from ESCI once past the juncture of microglial activation appears to follow the same neuron-damaging pathway as secondary brain damage from conventional brain injury. The immune response associated with ESCI is strikingly similar to that mounted after conventional concussion. Specifically, microglial activation is followed closely by glutamate and calcium flux, excitotoxicity, reactive oxygen species and reactive nitrogen species (RNS generation, lipid peroxidation, and mitochondrial dysfunction and energy crisis. ESCI damage also occurs in two phases, with the primary damage coming from microbiome injury (due to microbiome-altering events and secondary damage (axonal injury from progressive secondary neurochemical events. The concept of ESCI and the underlying mechanisms have profound implications for the understanding of chronic traumatic encephalopathy (CTE etiology because it has previously been suggested that repetitive axonal injury may be the primary CTE pathogenesis in susceptible individuals and it is best correlated with lifetime brain trauma load. Taken together, it appears that susceptibility to brain injury and downstream neurodegenerative diseases, such as CTE, can be conceptualized as a continuum of brain resilience. At one end

  11. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    Science.gov (United States)

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  12. Virtual Reality for Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Elisa R. Zanier

    2018-05-01

    Full Text Available In this perspective, we discuss the potential of virtual reality (VR in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  13. Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study.

    Science.gov (United States)

    Thom, Maria; Liu, Joan Y W; Thompson, Pam; Phadke, Rahul; Narkiewicz, Marta; Martinian, Lillian; Marsdon, Derek; Koepp, Matthias; Caboclo, Luis; Catarino, Claudia B; Sisodiya, Sanjay M

    2011-10-01

    The long-term pathological effects of chronic epilepsy on normal brain ageing are unknown. Previous clinical and epidemiological studies show progressive cognitive decline in subsets of patients and an increased prevalence of Alzheimer's disease in epilepsy. In a post-mortem series of 138 patients with long-term, mainly drug-resistant epilepsy, we carried out Braak staging for Alzheimer's disease neurofibrillary pathology using tau protein immunohistochemistry. The stages were compared with clinicopathological factors, including seizure history and presence of old traumatic brain injury. Overall, 31% of cases were Braak Stage 0, 36% Stage I/II, 31% Stage III/IV and 2% Stage V/VI. The mean age at death was 56.5 years and correlated with Braak stage (P < 0.001). Analysis of Braak stages within age groups showed a significant increase in mid-Braak stages (III/IV), in middle age (40-65 years) compared with data from an ageing non-epilepsy series (P < 0.01). There was no clear relationship between seizure type (generalized or complex partial), seizure frequency, age of onset and duration of epilepsy with Braak stage although higher Braak stages were noted with focal more than with generalized epilepsy syndromes (P < 0.01). In 30% of patients, there was pathological evidence of traumatic brain injury that was significantly associated with higher Braak stages (P < 0.001). Cerebrovascular disease present in 40.3% and cortical malformations in 11.3% were not significantly associated with Braak stage. Astrocytic-tau protein correlated with the presence of both traumatic brain injury (P < 0.01) and high Braak stage (P < 0.001). Hippocampal sclerosis, identified in 40% (bilateral in 48%), was not associated with higher Braak stages, but asymmetrical patterns of tau protein accumulation within the sclerotic hippocampus were noted. In over half of patients with cognitive decline, the Braak stage was low indicating causes other than Alzheimer's disease pathology. In summary

  14. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  15. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  16. Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes.

    Science.gov (United States)

    Irimia, Andrei; Chambers, Micah C; Alger, Jeffry R; Filippou, Maria; Prastawa, Marcel W; Wang, Bo; Hovda, David A; Gerig, Guido; Toga, Arthur W; Kikinis, Ron; Vespa, Paul M; Van Horn, John D

    2011-11-01

    Although neuroimaging is essential for prompt and proper management of traumatic brain injury (TBI), there is a regrettable and acute lack of robust methods for the visualization and assessment of TBI pathophysiology, especially for of the purpose of improving clinical outcome metrics. Until now, the application of automatic segmentation algorithms to TBI in a clinical setting has remained an elusive goal because existing methods have, for the most part, been insufficiently robust to faithfully capture TBI-related changes in brain anatomy. This article introduces and illustrates the combined use of multimodal TBI segmentation and time point comparison using 3D Slicer, a widely-used software environment whose TBI data processing solutions are openly available. For three representative TBI cases, semi-automatic tissue classification and 3D model generation are performed to perform intra-patient time point comparison of TBI using multimodal volumetrics and clinical atrophy measures. Identification and quantitative assessment of extra- and intra-cortical bleeding, lesions, edema, and diffuse axonal injury are demonstrated. The proposed tools allow cross-correlation of multimodal metrics from structural imaging (e.g., structural volume, atrophy measurements) with clinical outcome variables and other potential factors predictive of recovery. In addition, the workflows described are suitable for TBI clinical practice and patient monitoring, particularly for assessing damage extent and for the measurement of neuroanatomical change over time. With knowledge of general location, extent, and degree of change, such metrics can be associated with clinical measures and subsequently used to suggest viable treatment options.

  17. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury.

    Science.gov (United States)

    Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy

    2014-01-01

    This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (pTBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

  18. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Andrew B Newberg

    Full Text Available BACKGROUND: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI. The goal was to determine how these two different scan might be used and compared to each other in this patient population. METHODS AND FINDINGS: Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99mTc exametazime to measure cerebral blood flow (CBF and (123I ioflupane to measure dopamine transporter (DAT binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001. Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. CONCLUSIONS: Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

  19. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning.

    Science.gov (United States)

    Geurtsen, Gert J; van Heugten, Caroline M; Meijer, Ron; Martina, Juan D; Geurts, Alexander C H

    2011-01-01

    To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. A prospective cohort study with waiting list control and 1-year follow-up. Forty-one caregivers of which 28 female. Mean age was 48 ± 8.3 years and 33 caregivers were parents. A structured residential treatment programme was offered to the patients directed at domestic life, work, leisure time and social interactions. The Involvement Evaluation Questionnaire for Brain Injury (IEQ-BI) for emotional burden, the General Health Questionnaire (GHQ) for psychological health and the Family Assessment Device (FAD) for family functioning were used. There was an overall significant effect of Time for all outcome measures (MANOVA T(2 )= 9.1, F(15,317) = 64.1, p = 0.000). The effect sizes were moderate for three IEQ-BI sub-scales (partial η(2 )= 0.12-0.17) and small for two sub-scales (partial η(2 )= 0.05-0.09). The effect size for GHQ was moderate (partial η(2 )= 0.11). As for FAD no significant time effects were present (partial η(2 )= 0.00-0.04). Emotional burden and psychological health of the caregivers improved significantly when patients with acquired brain injury and psychosocial problems followed a residential community reintegration programme. Family dynamics remained stable.

  20. A pilot study examining the effect of mindfulness-based stress reduction on symptoms of chronic mild traumatic brain injury/postconcussive syndrome.

    Science.gov (United States)

    Azulay, Joanne; Smart, Colette M; Mott, Tasha; Cicerone, Keith D

    2013-01-01

    To evaluate the effectiveness of the mindfulness-based stress reduction (MBSR) program tailored to individuals with mild traumatic brain injury (mTBI). A convenience sample recruited from clinical referrals over a 2-year period completed outcome measures pre- and posttreatment intervention. Post-acute brain injury rehabilitation center within a suburban medical facility. Twenty-two individuals with mTBI and a time postinjury more than 7 months. Eleven participants were men and 11 were women, ranging in age from 18 to 62 years. A 10-week group (with weekly 2-hour sessions) modeled after the MBSR program of Kabat-Zinn, but with modifications designed to facilitate implementation in a population of individuals with brain injury. (The treatment involved enhancement of attentional skills, in addition to increased awareness of internal and external experiences associated with the perspective change of acceptance and nonjudgmental attitude regarding those experiences). Perceived Quality of Life Scale, Perceived Self-Efficacy Scale, and the Neurobehavioral Symptom Inventory. Secondary measures included neuropsychological tests, a self-report problem-solving inventory, and a self-report measure of mindfulness. Clinically meaningful improvements were noted on measures of quality of life (Cohen d = 0.43) and perceived self-efficacy (Cohen d = 0.50) with smaller but still significant effects on measures of central executive aspects of working memory and regulation of attention. The MBSR program can be adapted for participants with mTBI. Improved performance on measures associated with improved quality of life and self-efficacy may be related to treatment directed at improving awareness and acceptance, thereby minimizing the catastrophic assessment of symptoms associated with mTBI and chronic disability. Additional research on the comparative effectiveness of the MBSR program for people with mTBI is warranted.

  1. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  2. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  3. A systematic review of the risk of dementia and chronic cognitive impairment after mild traumatic brain injury. Results of the International Collaboration on MTBI Prognosis (ICoMP)

    DEFF Research Database (Denmark)

    Godbolt, Allison; Cancelliere, Carol; Hincapié, Cesar A

    2014-01-01

    Objective: To synthesize the best available evidence regarding the risk of dementia and chronic cognitive impairment (CCI), following mild traumatic brain injury (MTBI). Data sources: MEDLINE and other databases were searched (2001–2012), using a previously published search strategy and pre...... was acceptable for 101 (33%), of which one considered dementia and seven CCI. The study examining the risk of dementia after MTBI did not find an association. One RCT found that being informed about possible cognitive dysfunction after MTBI was associated with worse cognitive performance on standard tests....... Children with MTBI and intracranial pathology (‘complicated’ MTBI) performed worse than children without intracranial pathology. Children showed higher rates of cognitive symptoms 1 year after MTBI than a control group. Conclusions: There is a lack of evidence of increased risk of dementia after MTBI...

  4. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Radouil Tzekov

    Full Text Available Repetitive mild traumatic brain injury (r-mTBI results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL, tubulin (TUBB2A, TUBA4A, microtubule-associated proteins (MAP1A, MAP1B, collagen (COL6A1, COL6A3 and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1, APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC, including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the

  5. Hypopituitarism after acute brain injury.

    Science.gov (United States)

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  6. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  7. Diffusion tensor tractography-based analysis of the cingulum: clinical utility and findings in traumatic brain injury with chronic sequels

    International Nuclear Information System (INIS)

    Kurki, Timo; Himanen, Leena; Vuorinen, Elina; Myllyniemi, Anna; Saarenketo, Anna-Riitta; Kauko, Tommi; Brandstack, Nina; Tenovuo, Olli

    2014-01-01

    To evaluate the clinical utility of quantitative diffusion tensor tractography (DTT) and tractography-based core analysis (TBCA) of the cingulum by defining the reproducibility, normal values, and findings in traumatic brain injury (TBI). Eighty patients with TBI and normal routine MRI and 78 controls underwent MRI at 3T. To determine reproducibility, 12 subjects were scanned twice. Superior (SC) and inferior (IC) cingulum were analyzed separately by DTT (fractional anisotropy (FA) thresholds 0.15 and 0.30). TBCA was performed from volumes defined by tractography with gradually changed FA thresholds. FA values were correlated with clinical and neuropsychological data. The lowest coefficient of variation was obtained at DTT threshold 0.30 (2.0 and 2.4 % for SC and IC, respectively), but in proportion to standard deviations of normal controls, the reproducibility of TBCA was better in SC and similar to that of DTT in IC. In patients with TBI, volume reduction with loss of peripheral fibers was relatively common; mean FA was mostly normal in these tractograms. The frequency of FA reductions (>2 SD) was in DTT smaller than in TBCA, in which FA decrease was present in 42 (13.1 %) of the 320 measurements. Central FA values in SC predicted visuoperceptual ability, and those in left IC predicted cognitive speed, language, and communication ability (p < 0.05). Tractography-based measurements have sufficient reproducibility for demonstration of severe abnormalities of the cingulum. TBCA is preferential for clinical FA analysis, because it measures corresponding areas in patients and controls without inaccuracies due to trauma-induced structural changes. (orig.)

  8. Diffusion tensor tractography-based analysis of the cingulum: clinical utility and findings in traumatic brain injury with chronic sequels

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Timo [Turku University Hospital, Department of Radiology, Turku (Finland); MRI Unit, Terveystalo Pulssi Medical Centre, Turku (Finland); Himanen, Leena; Vuorinen, Elina; Myllyniemi, Anna; Saarenketo, Anna-Riitta [NeuTera Neuropsychologist Centre, Turku (Finland); Kauko, Tommi [University of Turku, Department of Biostatistics, Turku (Finland); Brandstack, Nina [Turku University Hospital, Department of Radiology, Turku (Finland); Helsinki University Hospital, Department of Radiology, Helsinki (Finland); Tenovuo, Olli [Turku University Hospital and University of Turku, Department of Rehabilitation and Brain Trauma, Turku (Finland)

    2014-10-15

    To evaluate the clinical utility of quantitative diffusion tensor tractography (DTT) and tractography-based core analysis (TBCA) of the cingulum by defining the reproducibility, normal values, and findings in traumatic brain injury (TBI). Eighty patients with TBI and normal routine MRI and 78 controls underwent MRI at 3T. To determine reproducibility, 12 subjects were scanned twice. Superior (SC) and inferior (IC) cingulum were analyzed separately by DTT (fractional anisotropy (FA) thresholds 0.15 and 0.30). TBCA was performed from volumes defined by tractography with gradually changed FA thresholds. FA values were correlated with clinical and neuropsychological data. The lowest coefficient of variation was obtained at DTT threshold 0.30 (2.0 and 2.4 % for SC and IC, respectively), but in proportion to standard deviations of normal controls, the reproducibility of TBCA was better in SC and similar to that of DTT in IC. In patients with TBI, volume reduction with loss of peripheral fibers was relatively common; mean FA was mostly normal in these tractograms. The frequency of FA reductions (>2 SD) was in DTT smaller than in TBCA, in which FA decrease was present in 42 (13.1 %) of the 320 measurements. Central FA values in SC predicted visuoperceptual ability, and those in left IC predicted cognitive speed, language, and communication ability (p < 0.05). Tractography-based measurements have sufficient reproducibility for demonstration of severe abnormalities of the cingulum. TBCA is preferential for clinical FA analysis, because it measures corresponding areas in patients and controls without inaccuracies due to trauma-induced structural changes. (orig.)

  9. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  10. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Kazmi, S.A.M.; Ashraf, A.T.; Qureshi, N.A.

    2001-01-01

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  11. Brain Injury Safety Tips and Prevention

    Science.gov (United States)

    ... submit" name="commit" type="submit" value="Submit" /> Brain Injury Safety Tips and Prevention Recommend on Facebook ... not grass or dirt. More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/ ...

  12. Is non-invasive neuromuscular electrical stimulation effective in severe chronic neurogenic dysphagia? Reporton a post-traumatic brain injury patient.

    Science.gov (United States)

    Calabrò, Rocco Salvatore; Nibali, Valeria Conti; Naro, Antonino; Floridia, Daniela; Pizzimenti, Maria; Salmeri, Lucia; Salviera, Carlo; Bramanti, Placido

    2016-01-01

    Neurogenic dysphagia is a difficulty in swallowing induced by nervous system disease. It often causes serious complications, which are preventable if dysphagia is properly managed. There is growing debate concerning the usefulness of non-invasive neuromuscular electrical stimulation (NMES) in treating swallowing dysfunction. Aim of this study was to assess the effectiveness of Vitalstim© device, and to investigate the neurophysiological mechanisms underlying functional recovery. A 34-year-old man, affected by severe chronic dysphagia following traumatic brain injury, underwent two different intensive rehabilitation trainings, including either conventional rehabilitation alone or coupled to Vitalstim training. We evaluated patient swallowing function in two separate sessions (i.e. before and after the two trainings) by means of ad hoc swallowing function scales and electrophysiological parameters (rapid paired associative stimulation). The overall Vitalstim program was articulated in 6 weekly sessions for 6 weeks. The patient did not report any side-effect either during or following both the intensive rehabilitation trainings. We observed an important improvement in swallowing function only after Vitalstim training. In fact, the patient was eventually able to safely eat even solid food. This is the first report objectively suggesting (by means of rPAS) a correlation between the brain neuroplastic changes induced by Vitalstim and the swallowing function improvement. It is hypothesizable that Vitalstim may have targeted cortical (and maybe subcortical) brain areas that are recruited during the highly coordinated function of swallowing, and it may have thus potentiated the well-known neuroplastic changes induced by repetitive and intensive swallowing exercises, probably thanks to metaplasticity phenomena.

  13. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  14. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  15. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  16. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  17. Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury. A study by the positron emission tomography in twenty subjects with normal MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka [Nagoya City Rehabilitation and Sports Center (Japan)

    2002-06-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerebral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with {sup 15}O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO{sub 2} in all regions. Then we compared rCBF, OEF, and CMRO{sub 2} between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO{sub 2} along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO{sub 2} of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of ''relative luxury perfusion''. Comparison of rCBF, OEF and CMRO{sub 2} between normal group and impaired group revealed that CMRO{sub 2} of the impaired group was significantly lower than that of the

  18. Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury. A study by the positron emission tomography in twenty subjects with normal MRI findings

    International Nuclear Information System (INIS)

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka

    2002-01-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerebral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with 15 O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO 2 in all regions. Then we compared rCBF, OEF, and CMRO 2 between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO 2 along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO 2 of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of ''relative luxury perfusion''. Comparison of rCBF, OEF and CMRO 2 between normal group and impaired group revealed that CMRO 2 of the impaired group was significantly lower than that of the normal group in the bilateral frontal, temporal, and occipital

  19. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  20. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  1. The Evidence for Brain Injury in Whiplash Injuries

    Directory of Open Access Journals (Sweden)

    Michael P. Alexander

    2003-01-01

    Full Text Available The evidence that brain damage can occur in injuries that produce whiplash is reviewed. The clinical phenomena for the two injuries are the same. Pure whiplash injury implies no, or minimal head contact, but many patients also have head contact against a head rest or the steering wheel or windshield. The relative severity of the neck injury and the head injury distinguishes whiplash from mild closed head injury. If there is brain injury is some patients with whiplash, it, by definition, falls at the mildest end of the concussion spectrum. The relationship between these two injuries is examined.

  2. Magnetic resonance imaging and brain injury in the chronic phase after aneurysmal subarachnoid hemorrhage : A systematic review

    NARCIS (Netherlands)

    Stehouwer, Bertine L.; van der Kleij, Lisa A.; Hendrikse, Jeroen; Rinkel, Gabriel J.E.; De Vis, Jill B.

    2018-01-01

    Background: Case-fatality rates after aneurysmal subarachnoid hemorrhage have decreased over the past decades. However, many patients who survive an aneurysmal subarachnoid hemorrhage have long-term functional and cognitive impairments. Aims: We sought to review all data on conventional brain MRI

  3. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD)

    Science.gov (United States)

    2017-10-01

    Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) PRINCIPAL INVESTIGATOR: Paul G. Harch, M.D. CONTRACTING ORGANIZATION...Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...injury (TBI) and post-traumatic stress disorder (PTSD) affect 11-28% and 13-17%, respectively, of U.S. combat troops returning from Iraq and

  4. Examining the Effectiveness of Mindfulness Meditation for Chronic Pain Management in Combat Veterans with Traumatic Brain Injury

    Science.gov (United States)

    2013-01-01

    reported a level of pain that was clinically significant according to VHA pain guidelines (> 4 on a numeric pain rating scale; Gironda et al., 2006...among patients with chronic osteoarthritis compared to no change in the control group (Baird et al., 2004). Plews-Ogan et al. (2005), on the other...important reductions in depressive symptoms as defined by IMMPACT (Dworkin et al., 2008) and BDI-II guidelines (Beck et al., 1996), from moderate depression

  5. Hypopituitarism after traumatic brain injury.

    Science.gov (United States)

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  7. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  8. Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Barnes, M P

    1999-01-01

    Head injury is a common disabling condition but regrettably facilities for rehabilitation are sparse. There is now increasing evidence of the efficacy of a comprehensive multidisciplinary rehabilitation team compared to natural recovery following brain injury. This chapter outlines some basic concepts of rehabilitation and emphasises the importance of valid and reliable outcome measures. The evidence of the efficacy of a rehabilitation programme is discussed in some detail. A number of specific rehabilitation problems are outlined including the management of spasticity, nutrition, pressure sores and urinary continence. The increasingly important role of assistive technology is illustrated, particularly in terms of communication aids and environmental control equipment. However, the major long-term difficulties after head injury focus around the cognitive, intellectual, behavioural and emotional problems. The complex management of these disorders is briefly addressed and the evidence of the efficacy of some techniques discussed. The importance of recognition of the vegetative stage and avoidance of misdiagnosis is emphasised. Finally, the important, but often neglected, area of employment rehabilitation is covered.

  9. Intracranial Monitoring after Severe Traumatic Brain Injury

    OpenAIRE

    Donnelly, Joseph

    2018-01-01

    Intracranial monitoring after severe traumatic brain injury offers the possibility for early detection and amelioration of physiological insults. In this thesis, I explore cerebral insults due raised intracranial pressure, decreased cerebral perfusion pressure and impaired cerebral pressure reactivity after traumatic brain injury. In chapter 2, the importance of intracranial pressure, cerebral perfusion pressure and pressure reactivity in regulating the cerebral circulation is elucidated ...

  10. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  11. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  12. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage

    International Nuclear Information System (INIS)

    Shiga, Tohru; Matsuyama, Tetsuaki; Kageyama, Hiroyuki; Kohno, Tomoya; Tamaki, Nagara; Ikoma, Katsunori; Isoyama, Hirotaka; Katoh, Chietsugu; Kuge, Yuji; Terae, Satoshi

    2006-01-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. However, some patients have severe brain dysfunction but display no abnormalities on magnetic resonance imaging (MRI). There have been some reports of hypometabolism even in such patients. The purpose of this study was to investigate the relationship between metabolic abnormality and loss of neuronal integrity in TBI patients with some symptoms but without MRI abnormalities. The study population comprised ten patients with TBI and ten normal volunteers. All of the patients were examined at least 1 year after the injury. 15 O-labelled gas PET and [ 11 C]flumazenil (FMZ) positron emission tomography (PET) were carried out. The cerebral metabolic rate of oxygen (CMRO 2 ) and binding potential (BP) images of FMZ were calculated. Axial T2WI, T2*WI and FLAIR images were obtained. Coronal images were added in some cases. All of the patients had normal MRI findings, and all showed areas with abnormally low CMRO 2 . Low uptake on BP images was observed in six patients (60%). No lesions that showed low uptake on BP images were without low CMRO 2 . On the other hand, there were 14 lesions with low CMRO 2 but without BP abnormalities. These results indicate that there are metabolic abnormalities in TBI patients with some symptoms after brain injury but without abnormalities on MRI. Some of the hypometabolic lesions showed low BP, indicating a loss of neuronal integrity. Thus, FMZ PET may have potential to distinguish hypometabolism caused by neuronal loss from that caused by other factors. (orig.)

  13. Brain injury markers (S100B and NSE) in chronic cocaine dependents Marcadores de lesão cerebral (S100B e NSE) em dependentes crônicos de cocaína

    OpenAIRE

    Felix Henrique Paim Kessler; George Woody; Luís Valmor Cruz Portela; Adriano Bretanha Lopes Tort; Raquel De Boni; Ana Carolina Wolf Baldino Peuker; Vanessa Genro; Lísia von Diemen; Diogo Onofre Gomes de Souza; Flavio Pechansky

    2007-01-01

    OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls ...

  14. Traumatic Brain Injury in Kenya

    Directory of Open Access Journals (Sweden)

    Benson Kinyanjui

    2016-03-01

    Full Text Available Kenya has a disproportionately high rate of road traffic accidents each year, many of them resulting in traumatic brain injuries (TBIs. A review of articles written on issues pertaining to the medical treatment of people with TBI in the past 15 years in Kenya indicates a significantly high incidence of TBIs and a high mortality rate. This article reviews the available literature as a first step in exploring the status of rehabilitation of Kenyans with cognitive impairments and other disabilities resulting from TBIs. From this preliminary review, it is apparent that despite TBI being a pervasive public health problem in Kenya, it has not received due attention in the public and private sectors as evidenced by a serious lack of post-acute rehabilitation services for people with TBIs. Implications for this lack of services are discussed and recommendations are made for potential approaches to this problem.

  15. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Therapeutic Sleep for Traumatic Brain Injury

    Science.gov (United States)

    2017-06-01

    AWARD NUMBER: W81XWH-16-1-0166 TITLE: Therapeutic Sleep for Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Ravi Allada CONTRACTING...1. REPORT DATE June 2017 2. REPORT TYPE Annual 3. DATES COVERED 1June2016 - 31May2017 4. TITLE AND SUBTITLE Therapeutic Sleep for Traumatic Brain ...proposal will test the hypothesis that correcting sleep disorders can have a therapeutic effect onTraumatic Brain Injury (TBI) The majority of TBI

  17. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  18. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  19. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury

    International Nuclear Information System (INIS)

    Makoroff, Kathi L.; Cecil, Kim M.; Ball, William S.; Care, Marguerite

    2005-01-01

    Patients with inflicted traumatic brain injury and evidence of hypoxic-ischemic injury as indicated by elevated lactate on MRS tend to have worse early neurological status and early outcome scores. Lactate levels as sampled by MRS might predict early clinical outcome in inflicted traumatic brain injury. (orig.)

  20. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  1. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  2. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  3. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  4. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  5. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  6. Reduced heart rate variability in chronic severe traumatic brain injury: Association with impaired emotional and social functioning, and potential for treatment using biofeedback.

    Science.gov (United States)

    Francis, Heather M; Fisher, Alana; Rushby, Jacqueline A; McDonald, Skye

    2016-01-01

    Heart rate variability (HRV) may provide an index of capacity for social functioning and may be remediated by HRV biofeedback. Given reductions in HRV are found following traumatic brain injury (TBI), the present study aimed to determine whether lower HRV in TBI is associated with social function, and whether HRV biofeedback might be a useful remediation technique in this population. Resting state HRV and measures of social and emotional processing were collected in 30 individuals with severe TBI (3-34 years post-injury) and 30 controls. This was followed by a single session of HRV biofeedback. HRV was positively associated with social cognition and empathy, and negatively associated with alexithymia for the TBI group. Both TBI and control groups showed significantly increased HRV on both time-domain (i.e., SDNN, rMSSD) and frequency-domain measures (LF, HF, LF:HF ratio) during biofeedback compared to baseline. These results suggest that decreased HRV is linked to social and emotional function following severe TBI, and may be a novel target for therapy using HRV biofeedback techniques.

  7. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  8. Driving, brain injury and assistive technology.

    Science.gov (United States)

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  9. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  10. Traumatic brain injuries in the construction industry.

    Science.gov (United States)

    Colantonio, Angela; McVittie, Doug; Lewko, John; Yin, Junlang

    2009-10-01

    This study analyses factors associated with work-related traumatic brain injury (TBI), specifically in the construction industry in Ontario, Canada. This cross-sectional study utilized data extracted from the Ontario Workplace Safety and Insurance Board (WSIB) records indicating concussion/intracranial injury that resulted in days off work in 2004-2005. Analyses of 218 TBI cases revealed that falls were the most common cause of injury, followed by being struck by or against an object. Mechanisms of injury and the temporal profile of injury also varied by age. For instance, a significantly higher proportion of injuries occurred in the mornings for young workers compared to older workers. The results of this study provide important information for prevention of TBI which suggest important age-specific strategies for workers in the construction industry.

  11. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  12. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  13. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  14. Brain morphological signatures for chronic pain.

    Directory of Open Access Journals (Sweden)

    Marwan N Baliki

    Full Text Available Chronic pain can be understood not only as an altered functional state, but also as a consequence of neuronal plasticity. Here we use in vivo structural MRI to compare global, local, and architectural changes in gray matter properties in patients suffering from chronic back pain (CBP, complex regional pain syndrome (CRPS and knee osteoarthritis (OA, relative to healthy controls. We find that different chronic pain types exhibit unique anatomical 'brain signatures'. Only the CBP group showed altered whole-brain gray matter volume, while regional gray matter density was distinct for each group. Voxel-wise comparison of gray matter density showed that the impact on the extent of chronicity of pain was localized to a common set of regions across all conditions. When gray matter density was examined for large regions approximating Brodmann areas, it exhibited unique large-scale distributed networks for each group. We derived a barcode, summarized by a single index of within-subject co-variation of gray matter density, which enabled classification of individual brains to their conditions with high accuracy. This index also enabled calculating time constants and asymptotic amplitudes for an exponential increase in brain re-organization with pain chronicity, and showed that brain reorganization with pain chronicity was 6 times slower and twice as large in CBP in comparison to CRPS. The results show an exuberance of brain anatomical reorganization peculiar to each condition and as such reflecting the unique maladaptive physiology of different types of chronic pain.

  15. Chronic injuries of the cruciate ligaments

    International Nuclear Information System (INIS)

    Pricca, P.; Cecchini, A.; Vecchioni, G.; Mariani, P.M.; Tansini, A.; Ferrario, A.

    1988-01-01

    The high incidence of cruciate ligament injuries as a result of acute knee trauma with hemartrosis and abuse of diagnostic arthroscopies call for a suitable radiological imaging of the central pivot. Computed Arthrotomography (CAT) was used to examine the knee joint in 20 cases of clinically suspected chronic cruciate ligament injury. The images were correlated with arthroscopic and/or arthrotomic findings. Thirteen lesions of the anterior cruciate ligament (ACL) (65%) were found, plus 1 lesion of the posterior cruciate ligament (PCL) (5%), 2 associated lesions of ACL + PCL (10%), and 4 normal cases. Confirmation of pathology was available in all cases but one by arthroscopy and/or surgery. The central pivot diseases were classified as follows: absence, detachement, partial or complete tear. CAT findings of cruciate ligament injuries are emphasized and the role of the technique as compared to arthroscopy is discussed. CAT is useful in 3-D evaluation of central pivot and detection of different cruciate ligament injuries, with high sensitivity-specifity for ACL and high specifity-moderate sensitivity for PCL. In the evaluation of the chronic unstable knee, CAT is highly accurate and gives the surgeon useful information towards the planning of therapeutic procedures. CAT is almost non-invasive, well tolerated and easy to perform in out-patients, which make it a first-choice procedure in the screening of chronic ligament injuries

  16. Management of chronic unstable acromioclavicular joint injuries.

    Science.gov (United States)

    Cisneros, Luis Natera; Reiriz, Juan Sarasquete

    2017-12-01

    The acromioclavicular joint represents the link between the clavicle and the scapula, which is responsible for the synchronized dynamic of the shoulder girdle. Chronic acromioclavicular joint instability involves changes in the orientation of the scapula, which provokes cinematic alterations that might result in chronic pain. Several surgical strategies for the management of patients with chronic and symptomatic acromioclavicular joint instability have been described. The range of possibilities includes anatomical and non-anatomical techniques, open and arthroscopy-assisted procedures, and biological and synthetic grafts. Surgical management of chronic acromioclavicular joint instability should involve the reconstruction of the torn ligaments because it is accepted that from three weeks after the injury, these structures may lack healing potential. Here, we provide a review of the literature regarding the management of chronic acromioclavicular joint instability. Expert opinion, Level V.

  17. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  18. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  19. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2012-01-01

    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  20. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  2. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  3. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  4. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  5. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  6. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  7. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  8. Investigating the acute and long-term effects of traumatic brain injury on the immune and fibrinolytic system

    OpenAIRE

    MARIA DAGLAS

    2018-01-01

    Traumatic brain injury is a serious condition that results in long-term disability in most patients. This thesis investigated the early and long-term effects of the immune and fibrinolytic response (blood clot breakdown), and the link between these two systems after brain injury in mice. A unique discovery was that the chronic immune response, over a period of 8 months, directly contributes to a worse outcome after brain injury. We also found gender-specific differences occurring at the early...

  9. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    The spectrum and outcome of paediatric traumatic brain injury in ... to develop a comprehensive overview of traumatic brain injury (TBI) in children ... We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  10. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  11. Therapist-Assisted Rehabilitation of Visual Function and Hemianopia after Brain Injury

    DEFF Research Database (Denmark)

    Rasmussen, Rune Skovgaard; Schaarup, Anne Marie Heltoft; Overgaard, Karsten

    2018-01-01

    to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is limited. One month after brain injury causing visual impairment, patients usually will experience chronically impaired vision and the need for compensatory vision rehabilitation...... is substantial. OBJECTIVE: The purpose of this study is to investigate whether rehabilitation with Neuro Vision Technology will result in a significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both...... physical and mental functioning, thus improving the quality of life. METHODS: This is a prospective open label trial in which participants with chronic visual field impairments are examined before and after the intervention. Participants typically suffer from stroke or traumatic brain injury...

  12. Traumatic Brain Injury and Personality Change

    Science.gov (United States)

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  13. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults fr...

  14. Fitness to drive after traumatic brain injury

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK

    This paper deals with the issue of fitness to drive in patients suffering from traumatic brain injury (TBI). Guidelines for assessment are proposed and three types of studies are reviewed: studies about impairments of attention and information processing, studies of driving competence, and driver

  15. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  16. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)

    Objective: Traumatic brain injury (TBI) is a public health problem and is associated with many complications. However little is known about the psychiatric sequelae of TBI in Nigeria. This study described the pattern and determinants of psychiatric sequelae among subjects with TBI. Materials and Methods: The study is a ...

  17. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  19. Beam diagnostics for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikol`skiy Yu.E.

    2012-06-01

    Full Text Available

    The paper presents aliterature review of domestic and foreign sources of modern methods of diagnostics imaging for traumatic brain injury. Information of the magnetic resonance imaging and computed tomography in the of this disease

  20. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality ... Glasgow coma score was 8/15 (E1V3M4) and he had left ... An emergency right fronto-temporo-parietal decompressive.

  1. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  2. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  3. Divergent long-term consequences of chronic treatment with haloperidol, risperidone, and bromocriptine on traumatic brain injury-induced cognitive deficits.

    Science.gov (United States)

    Phelps, Thomas I; Bondi, Corina O; Ahmed, Rashid H; Olugbade, Yewande T; Kline, Anthony E

    2015-04-15

    Antipsychotic drugs (APDs) are provided in the clinic to manage traumatic brain injury (TBI)-induced agitation and aggression. Experimental TBI studies consistently show that daily administration of the APDs, haloperidol (HAL) and risperidone (RISP), hinder recovery. However, it is unknown how long the adverse effects remain after cessation of treatment. To elucidate this clinically relevant issue, anesthetized male rats were randomly assigned to four TBI (controlled cortical impact) and four sham groups administered HAL (0.5 mg/kg), RISP (0.45 mg/kg), bromocriptine (BRO; 5.0 mg/kg, included as a control for D2 receptor action), or vehicle (VEH; 1 mL/kg) 24 h after surgery and once-daily for 19 days. Motor and cognitive recovery was assessed on days 1-5 and 14-19, respectively, and again at 1 and 3 months after drug withdrawal. No overall group differences were observed for motor function among the TBI groups, although the HAL group showed a greater beam-walk deficit on day 5 versus the VEH and BRO groups. Cognitive recovery was significantly impaired in the HAL and RISP groups during the treatment phase versus VEH and BRO. Further, BRO was superior to VEH (p=0.0042). At 1 month, both groups that received APDs continued to exhibit significant cognitive impairment versus VEH and BRO; at 3 months, only the HAL group was impaired. Moreover, the HAL, RISP, and VEH groups continued to be cognitively deficient versus BRO, which also reduced cortical damage. These data replicate previous reports that HAL and RISP impede cognitive recovery after TBI and expand the literature by revealing that the deleterious effects persist for 3 months after drug discontinuation. BRO conferred cognitive benefits when administered concomitantly with behavioral testing, thus replicating previous findings, and also after cessation demonstrating enduring efficacy.

  4. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level...... should focus not only on specific deficits in the patient, but also on how the emotional state and well-being of the relatives evolve, while trying to adjust and cope with a new life-situation....

  5. Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain

    Directory of Open Access Journals (Sweden)

    Meiyan Xuan

    2015-01-01

    Full Text Available Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK, which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis induced by hypoxia/ischemia (H/I in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o. for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice.

  6. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  7. Multi-scale mechanics of traumatic brain injury

    NARCIS (Netherlands)

    Cloots, R.J.H.

    2011-01-01

    Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a

  8. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...

  9. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  10. Postconcussion Symptoms in Patients with Injury-Related Chronic Pain

    Directory of Open Access Journals (Sweden)

    Britt Marie Stålnacke

    2012-01-01

    Full Text Available Background. Postconcussion symptoms (PCSs—such as fatigue, headache, irritability, dizziness, and impaired memory—are commonly reported in patients who have mild traumatic brain injuries (MTBIs. Evaluation of PCS after MTBI is proposed to have a diagnostic value although it is unclear whether PCS are specific to MTBI. After whiplash injuries, patients most often complain of headaches and neck pain; the other PCS are not as closely evaluated. In patients with chronic pain because of other injuries, the presence of PCS is unclear. This study aimed to describe the frequency of PCS in patients with injury-related pain and to examine the relationships between PCS, pain, and psychological factors. Methods. This study collected data using questionnaires addressing PCS (Rivermead Postconcussion Questionnaire, RPQ, pain intensity (Visual Analogue Scale, depression, anxiety (Hospital, Anxiety, and Depression Scale, and posttraumatic stress (Impact of Event Scale. Results. Fatigue (90.7%, sleep disturbance (84.9%, headache (73.5%, poor concentration (88.2%, and poor memory (67.1% were some of the most commonly reported PCS. Significant relationships were found between PCS and posttraumatic stress, depression, and anxiety. Conclusion. To optimize treatment, it is important to assess each patient’s PCS, the mechanism of injury, and factors such as posttraumatic stress and depression.

  11. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  12. Therapeutic irradiation and brain injury

    International Nuclear Information System (INIS)

    Sheline, G.E.; Wara, W.M.; Smith, V.

    1980-01-01

    This is a review and reanalysis of the literature on adverse effects of therapeutic irradiation on the brain. Reactions have been grouped and considered according to time of appearance. The emphasis of the analysis is on delayed reactions, especially those that occur from a few months to several years after irradiation. All dose specifications were converted into equivalent megavoltage rads. The data were analyzed in terms of total dose, overall treatment time and number of treatment fractions. Also discussed were acute radiation reactions, early delayed radiation reactions, somnolence and leukoencephalopathy post-irradiation/chemotherapy and combined effects of radiation and chemotherapy

  13. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  14. Functional integrity in children with anoxic brain injury from drowning.

    Science.gov (United States)

    Ishaque, Mariam; Manning, Janessa H; Woolsey, Mary D; Franklin, Crystal G; Tullis, Elizabeth W; Beckmann, Christian F; Fox, Peter T

    2017-10-01

    Drowning is a leading cause of accidental injury and death in young children. Anoxic brain injury (ABI) is a common consequence of drowning and can cause severe neurological morbidity in survivors. Assessment of functional status and prognostication in drowning victims can be extremely challenging, both acutely and chronically. Structural neuroimaging modalities (CT and MRI) have been of limited clinical value. Here, we tested the utility of resting-state functional MRI (rs-fMRI) for assessing brain functional integrity in this population. Eleven children with chronic, spastic quadriplegia due to drowning-induced ABI were investigated. All were comatose immediately after the injury and gradually regained consciousness, but with varying ability to communicate their cognitive state. Eleven neurotypical children matched for age and gender formed the control group. Resting-state fMRI and co-registered T1-weighted anatomical MRI were acquired at night during drug-aided sleep. Network integrity was quantified by independent components analysis (ICA), at both group- and per-subject levels. Functional-status assessments based on in-home observations were provided by families and caregivers. Motor ICNs were grossly compromised in ABI patients both group-wise and individually, concordant with their prominent motor deficits. Striking preservations of perceptual and cognitive ICNs were observed, and the degree of network preservation correlated (ρ = 0.74) with the per-subject functional status assessments. Collectively, our findings indicate that rs-fMRI has promise for assessing brain functional integrity in ABI and, potentially, in other disorders. Furthermore, our observations suggest that the severe motor deficits observed in this population can mask relatively intact perceptual and cognitive capabilities. Hum Brain Mapp 38:4813-4831, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    Science.gov (United States)

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  16. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury.

    Science.gov (United States)

    Porter, S; Torres, I J; Panenka, W; Rajwani, Z; Fawcett, D; Hyder, A; Virji-Babul, N

    2017-08-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG) recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.

  17. Monitoring in traumatic brain injury.

    Science.gov (United States)

    Matz, P G; Pitts, L

    1997-01-01

    In the past several years, improvements in technology have advanced the monitoring capabilities for patients with TBI. The primary goal of monitoring the patient with TBI is to prevent secondary insults to the brain, primarily cerebral ischemia. Cerebral ischemia may occur early and without clinical correlation and portends a poor outcome. Measurement of ICP is the cornerstone of monitoring in the patient with TBI. Monitoring of ICP provides a measurement of CPP and a rough estimation of CBF. However, with alterations in pressure autoregulation, measurement of CPP does not always allow for determination of CBF. To circumvent this problem, direct measurements of CBF can be performed using clearance techniques (133Xe, N2O, Xe-CT) or invasive monitoring techniques (LDF, TDF, NIRS). Although direct and quantitative, clearance techniques do not allow for continuous monitoring. Invasive CBF monitoring techniques are new, and artifactual results can be problematic. The techniques of jugular venous saturation monitoring and TCD are well established and are powerful adjuncts to ICP monitoring. They allow the clinician to monitor cerebral oxygen extraction and blood flow velocity, respectively, for any given CPP. Use of TCD may predict posttraumatic vasospasm before clinical sequelae. Jugular venous saturation monitoring may detect clinically occult episodes of cerebral ischemia and increased oxygen extraction. Jugular venous saturation monitoring optimizes the use of hyperventilation in the treatment of intracranial hypertension. Although PET and SPECT scanning allow direct measurement of CMRO2, these techniques have limited application currently. Similarly, microdialysis is in its infancy but has demonstrated great promise for metabolic monitoring. EEG and SEP are excellent adjuncts to the monitoring arsenal and provide immediate information on current brain function. With improvements in electronic telemetry, functional monitoring by EEG or SEP may become an important

  18. Problems in accurately diagnosing and follow-up for a higher brain dysfunction after traumatic brain injury

    International Nuclear Information System (INIS)

    Hayakawa, Mineji; Ikoma, Katsunori; Oshiro, Akiko; Hoshino, Hirokatsu; Gando, Satoshi

    2007-01-01

    Recently, the occurrence of a higher brain dysfunction after brain injury has been socially noticed and epidemiological investigations have thus been performed. However, most of these previous investigations tended to be based on populations in a chronic stage after brain trauma. We hypothesized that some patients with a higher brain dysfunction were socially in extreme distress after being discharged from our hospital due to a lack of any follow-up treatment. We investigated this problem to identify possible problems in diagnosing and follow-up for a higher brain dysfunction after blunt traumatic brain injury at a tertiary emergency center. A questionnaire survey was performed for 204 blunt trauma patients who had been admitted during the period from January 2000 thorough December 2003. Clinical examinations were performed for patients suspected of having a higher brain dysfunction based on this questionnaire survey. Three patients had been already diagnosed to have a higher brain dysfunction while other 3 patients were newly diagnosed in this investigation. The newly diagnosed patients discharged from departments other than the neurosurgery department. Computed tomography (CT) was performed in 82% patients (65 patients) to diagnose major brain injury or bone fracture. No magnetic resonance image was performed to detect any minor brain injury in alert patients. Overlooking the occurrence of a higher brain dysfunction may result from an insufficient recognition of higher brain dysfunction and an insufficient sensitivity of the present diagnostic methods available for minor brain injury. An increased awareness regarding the potential of a higher brain dysfunction existing in such patients is therefore needed by the entire medical staff and the general public. (author)

  19. Advanced magnetic resonance imaging and neuropsychological assessment for detecting brain injury in a prospective cohort of university amateur boxers

    Directory of Open Access Journals (Sweden)

    M.G. Hart

    2017-01-01

    Conclusion: While this neuroimaging and neuropsychological assessment protocol could not detect any evidence of brain injury, one boxer developed seizures and another developed a chronic sub-dural haematoma.

  20. Inflammation, caffeine and adenosine in neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max

    2014-01-01

    Background: Brain injury during the neonatal period has potentially lifelong consequences for a child. Perinatal infections and inflammation can induce preterm birth and unfavorable cognitive development, Thus inflammation has received enthusiastic interest for potential therapeutic approaches seeking to protect the newborn brain. Experimental evidence demonstrates that inflammation induces brain injury succeeding the initial insult. A key cytokine in brain injury is the tumor necrosis factor...

  1. Cooking breakfast after a brain injury

    OpenAIRE

    Tanguay, Annick N.; Davidson, Patrick S. R.; Guerrero Nuñez, Karla V.; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we exam...

  2. Cooking breakfast after a brain injury

    OpenAIRE

    Annick N. Tanguay; Patrick S. R. Davidson; Patrick S. R. Davidson; Patrick S. R. Davidson; K. Vanessa eGuerrero Nuñez; Mark B. Ferland; Mark B. Ferland; Mark B. Ferland

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we exa...

  3. Traumatic Brain Injury: Caregivers’ Problems and Needs

    OpenAIRE

    syed tajjudin syed hassan; WF Khaw; AR Rosna; J Husna

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information,...

  4. Cognitive Rehabilitation for Mild Traumatic Brain Injury

    Science.gov (United States)

    2009-06-08

    Cate Miller, Dr. Maria Mouratidis, Dr. George Prigatano, Dr. Carole Roth, LTC Michael Russell, LT Rick Schobitz, Dr. Joel Scholten, CAPT Edward Simmer...New York: The Guilford Press. Gordon W.A, Zafonte R., Cicerone, K., Cantor , J., Brown, M., Lombard, L., Goldsmith, R, & Chandna, T. (2006...Traumatic brain injury rehabilitation: State of the science. American Journal of Physical Medicine and Rehabilitation, 85, 343–82. Gordon, W.A., Cantor

  5. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  6. Lateral automobile impacts and the risk of traumatic brain injury.

    Science.gov (United States)

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year

  7. Chronic Neuropathic Pain in Spinal Cord Injury: The Patient's Perspective

    Directory of Open Access Journals (Sweden)

    Penelope Henwood

    2004-01-01

    Full Text Available BACKGROUND: Chronic neuropathic pain (CNP in spinal cord injury (SCI is recognized as severely compromising, in both adjustment after injury and quality of life. Studies indicate that chronic pain in SCI is associated with great emotional distress over and above that of the injury itself. Currently, little is known about the SCI patient's perception of the impact of living with chronic neuropathic pain.

  8. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  9. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  10. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  11. Caregiver burden in Danish family members of patients with severe brain injury

    DEFF Research Database (Denmark)

    Doser, Karoline; Norup, Anne

    2016-01-01

    OBJECTIVE: To investigate caregiver burden and factors associated with caregiver burden among family members of patients with severe brain injury in the chronic phase. Additionally, the study aimed at investigating differences in burden between parents and spouses. METHODS: Forty-four Danish...... caregivers of patients with severe brain injury were contacted 3-6 years post-injury and asked to complete a measure of caregiver burden. RESULTS: Medium, high and low levels of burden were observed in 45%, 16% and 39% of family members, respectively. Higher burden was seen in caregivers of patients...... with more severe injuries, who spent more time on caregiving and reported more unmet needs. Overall, spouses spent significantly more time taking care of their family member than parents and reported higher levels of burden. CONCLUSIONS: The findings emphasized the continuing consequences of brain injury...

  12. Hippotherapy in Adult Patients with Chronic Brain Disorders: A Pilot Study

    OpenAIRE

    Sunwoo, Hyuk; Chang, Won Hyuk; Kwon, Jeong-Yi; Kim, Tae-Won; Lee, Ji-Young; Kim, Yun-Hee

    2012-01-01

    Objective To investigate the effects of hippotherapy for adult patients with brain disorders. Method Eight chronic brain disorder patients (7 males, mean age 42.4?16.6 years) were recruited. The mean duration from injury was 7.9?7.7 years. The diagnoses were stroke (n=5), traumatic brain disorder (n=2), and cerebral palsy (n=1). Hippotherapy sessions were conducted twice a week for eight consecutive weeks in an indoor riding arena. Each hippotherapy session lasted 30 minutes. All participants...

  13. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  14. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  15. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  16. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  17. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  18. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  19. Isolated traumatic brain injury and venous thromboembolism.

    Science.gov (United States)

    Van Gent, Jan-Michael; Bandle, Jesse; Calvo, Richard Y; Zander, Ashley L; Olson, Erik J; Shackford, Steven R; Peck, Kimberly A; Sise, C Beth; Sise, Michael J

    2014-08-01

    Traumatic brain injury (TBI) is considered an independent risk factor of venous thromboembolism (VTE). However, the role of TBI severity in VTE risk has not been determined. We hypothesized that increased severity of brain injury in patients with isolated TBI (iTBI) is associated with an increased incidence of VTE. The records of patients admitted from June 2006 to December 2011 were reviewed for injury data, VTE risk factors, results of lower extremity surveillance ultrasound, and severity of TBI. Patients were identified by DRG International Classification of Diseases-9th Rev. codes for TBI, and only those with a nonhead Abbreviated Injury Scale (AIS) score of 1 or lower, indicating minimal associated injury, were included. The association of iTBI and VTE was determined using a case-control design. Among iTBI patients, those diagnosed with VTE (cases) were matched for age, sex, and admission year to those without VTE (controls). Data were analyzed using conditional logistic regression. There were 345 iTBI patients: 41 cases (12%) and 304 controls (88%). A total of 151 controls could not be matched to an appropriate case and were excluded. Of the remaining 153 controls, 1 to 16 controls were matched to each of the 41 VTE cases. Compared with the controls, the cases had a higher mean head-AIS score (4.4 vs. 3.9, p = 0.001) and overall Injury Severity Score (20.4 vs. 16.8, p = 0.001). Following adjustment for all factors found to be associated with VTE (ventilator days, central line placement, operative time > 2 hours, chemoprophylaxis, history of VTE, and history of cancer), the cases were significantly more likely to have a greater head injury severity (head-AIS score ≥ 5; odds ratio, 5.25; 95% confidence interval, 1.59-17.30; p = 0.006). The incidence of VTE in iTBI patients was significantly associated with the severity of TBI. VTE surveillance protocols may be warranted in these high-risk patients, as early detection of VTE could guide subsequent therapy

  20. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  1. Current status of fluid biomarkers in mild traumatic brain injury

    Science.gov (United States)

    Kulbe, Jacqueline R.; Geddes, James W.

    2015-01-01

    Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers. PMID:25981889

  2. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  3. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Traumatic brain injury pharmacological treatment: recommendations

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT This article presents the recommendations on the pharmacological treatment employed in traumatic brain injury (TBI at the outpatient clinic of the Cognitive Rehabilitation after TBI Service of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil. A systematic assessment of the consensus reached in other countries, and of articles on TBI available in the PUBMED and LILACS medical databases, was carried out. We offer recommendations of pharmacological treatments in patients after TBI with different symptoms.

  5. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  6. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  7. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  8. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  9. Behavioral Outcomes Differ Between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Brian D. Stemper

    2016-03-01

    Full Text Available Mild traumatic brain injury (mTBI can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time-course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements.

  10. Traumatic Brain Injury: Caregivers’ Problems and Needs

    Directory of Open Access Journals (Sweden)

    syed tajjudin syed hassan

    2011-03-01

    Full Text Available Traumatic brain injury (TBI is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, fi nancial inadequacy, anxiety, distress, coping defi cits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, fi nancial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders. Keywords: caregivers, rehabilitation, traumatic brain injury

  11. Impaired Pituitary Axes Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert A. Scranton

    2015-07-01

    Full Text Available Pituitary dysfunction following traumatic brain injury (TBI is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed.

  12. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  13. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  14. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  15. Chronic intermittent hypoxia predisposes to liver injury.

    Science.gov (United States)

    Savransky, Vladimir; Nanayakkara, Ashika; Vivero, Angelica; Li, Jianguo; Bevans, Shannon; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-04-01

    Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH). OSA is associated with nonalcoholic steatohepatitis (NASH) in obese subjects. The aim of this study was to investigate the effects of CIH on the liver in the absence of obesity. Lean C57BL/6J mice (n = 15) on a regular chow diet were exposed to CIH for 12 weeks and compared with pair-fed mice exposed to intermittent air (IA, n = 15). CIH caused liver injury with an increase in serum ALT (224 +/- 39 U/l versus 118 +/- 22 U/l in the IA group, P fasting serum insulin levels, and mild elevation of fasting serum total cholesterol and triglycerides (TG). Liver TG content was unchanged, whereas cholesterol content was decreased. Histology showed swelling of hepatocytes, no evidence of hepatic steatosis, and marked accumulation of glycogen in hepatocytes. CIH led to lipid peroxidation of liver tissue with a malondialdehyde (MDA)/free fatty acids (FFA) ratio of 0.54 +/- 0.07 mmol/mol versus 0.30 +/- 0.01 mmol/mol in control animals (P obesity, CIH leads to mild liver injury via oxidative stress and excessive glycogen accumulation in hepatocytes and sensitizes the liver to a second insult, whereas NASH does not develop.

  16. Corporeal illusions in chronic spinal cord injuries.

    Science.gov (United States)

    Scandola, Michele; Aglioti, Salvatore Maria; Avesani, Renato; Bertagnoni, Gianettore; Marangoni, Anna; Moro, Valentina

    2017-03-01

    While several studies have investigated corporeal illusions in patients who have suffered from a stroke or undergone an amputation, only anecdotal or single case reports have explored this phenomenon after spinal cord injury. Here we examine various different types of bodily misperceptions in a comparatively large group of 49 people with spinal cord injury in the post-acute and chronic phases after the traumatic lesion onset. An extensive battery of questionnaires concerning a variety of body related feelings was administered and the results were correlated to the main clinical variables. Six different typologies of Corporeal Illusion emerged: Sensations of Body Loss; Body-Part Misperceptions; Somatoparaphrenia-like sensations; Disownership-like sensations; Illusory motion and Misoplegia. All of these (with the exception of Misoplegia) are modulated by clinical variables such as pain (visceral, neuropathic and musculoskeletal), completeness of the lesion, level of the lesion and the length of time since lesion onset. In contrast, no significant correlations between bodily illusions and personality variables were found. These results support data indicating that at least some cognitive functions (in particular the body, action and space representations) are embodied and that somatosensory input and motor output may be necessary to build and maintain a typical self-body representation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    Science.gov (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  18. Altered network topology in pediatric traumatic brain injury

    Science.gov (United States)

    Dennis, Emily L.; Rashid, Faisal; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2017-11-01

    Outcome after a traumatic brain injury (TBI) is quite variable, and this variability is not solely accounted for by severity or demographics. Identifying sub-groups of patients who recover faster or more fully will help researchers and clinicians understand sources of this variability, and hopefully lead to new therapies for patients with a more prolonged recovery profile. We have previously identified two subgroups within the pediatric TBI patient population with different recovery profiles based on an ERP-derived (event-related potential) measure of interhemispheric transfer time (IHTT). Here we examine structural network topology across both patient groups and healthy controls, focusing on the `rich-club' - the core of the network, marked by high degree nodes. These analyses were done at two points post-injury - 2-5 months (post-acute), and 13-19 months (chronic). In the post-acute time-point, we found that the TBI-slow group, those showing longitudinal degeneration, showed hyperconnectivity within the rich-club nodes relative to the healthy controls, at the expense of local connectivity. There were minimal differences between the healthy controls and the TBI-normal group (those patients who show signs of recovery). At the chronic phase, these disruptions were no longer significant, but closer analysis showed that this was likely due to the loss of power from a smaller sample size at the chronic time-point, rather than a sign of recovery. We have previously shown disruptions to white matter (WM) integrity that persist and progress over time in the TBI-slow group, and here we again find differences in the TBI-slow group that fail to resolve over the first year post-injury.

  19. Evaluating paediatric brain injury services in NSW.

    Science.gov (United States)

    Badge, H; Hancock, J; Waugh, M-C

    2010-01-01

    Rehabilitation professionals strive to provide high-quality evidence-based services for children. Developing systems to measure and monitor the benefits of our services, and health outcomes for children is complex and challenging. The Community Outcome Project aims to introduce systematic outcome measurement across the network of paediatric community-based brain injury services within the New South Wales Brain Injury Rehabilitation Program (BIRP) to support clinical practice and service evaluation. A literature review informed the development of the evaluative framework and identified available paediatric outcome measures which may be appropriate. Extensive consultation with clinicians supported project planning and identified clinical priorities that the outcome measures needed to capture. Outcome measures were shortlisted by matching them to identified clinical priorities, and then trialled in clinical practice. Qualitative feedback regarding clinical utility and feasibility was obtained from clinical staff. The process has utilized change management strategies to ensure the success of the project and keep staff engaged. The process identified the three main clinical priorities for outcome measurement - family functioning, school performance and participation. Three outcome measures were chosen for the pilot project that is currently underway. They are Family Burden of Injury Interview, Academic Competence and Evaluation Scales and Child and Adolescent Scale of Participation. Plans for analyses of outcome data within the paediatric BIRP services are discussed. Extensive preparation is required to optimize staff engagement in a project that systematically introduces outcome measures that are useful to clinicians, clients and service providers. Managing the change required is a key focus of the project. Benefits and costs to clinicians and services will be discussed.

  20. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  1. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  2. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. Method: We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo ...

  3. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  4. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury.

    Science.gov (United States)

    Haneef, Zulfi; Levin, Harvey S; Frost, James D; Mizrahi, Eli M

    2013-04-15

    Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.

  5. Traumatic Brain Injuries during Development: Implications for Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Zachary M. Weil

    2017-07-01

    Full Text Available Traumatic brain injuries are strongly related to alcohol intoxication as by some estimates half or more of all brain injuries involve at least one intoxicated individual. Additionally, there is mounting evidence that traumatic brain injuries can themselves serve as independent risk factors for the development of alcohol use disorders, particularly when injury occurs during juvenile or adolescent development. Here, we will review the epidemiological and experimental evidence for this phenomenon and discuss potential psychosocial mediators including attenuation of negative affect and impaired decision making as well as neurochemical mediators including disruption in the glutamatergic, GABAergic, and dopaminergic signaling pathways and increases in inflammation.

  6. Magnetic susceptibility artifacts in a diffuse brain injury and their pathological significance

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Miyakita, Yasuji; Matsuzawa, Motoshi; Sakakibara, Yohtaro; Takahara, Taro; Yamaguchi, Toshio

    1998-01-01

    In our study, FLAIR images and multishot echo planar imaging T2-weighted images (EPI T2-WI) were used in addition to conventional T1-weighted images, T2-weighted images and T2-weighted sagittal images. In this series we focused our attention on small parenchymatous lesions of a mild or moderate form of diffuse brain injury. These injuries are shown as high intensity areas on T2-weighted images (T2-high intensity lesions) but are not visualized in CT images. This series consisted of 29 patients who were diagnosed with diffuse brain injury and whose CT scans showed a Diffuse Injury I or II. Nineteen patients were studied in an acute or subacute stage. In all but 3 patients, small T2-high intensity lesions were found in the brain parenchyma. In the follow-up study brain edema was suggested because the lesions tended to be absent within 3 months in T2-weighted images and FLAIR. In 10 patients examined during a chronic stage. Small hemorrhages in patients with Diffuse Injury II were shown with variable intensities on the conventional T1- and T2-weighted images, but were visualized with low intensity in an EPI T2-WI. In diffuse brain injuries, small T2-high intensity lesions have been considered to be brain edema or ischemic insults. Our data however, suggested that microhemorrhages associated with brain edema were resent in most of the supratentorial lesions, and in more than a half of the lesions in the corpus callosum and the brain stem. These findings appear similar to contusions, which are defined as traumatic bruises of the neural parenchyma. The use of MRI has increased our understanding of in vivo pathological changes in mild or moderate forms of diffuse brain injury. (K.H.)

  7. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  8. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  9. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  10. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  11. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    changes after blast injury. J. Trauma 56, 393–403. Murthy, J.M., Chopra, J.S., and Gulati, D.R. (1979). Subdural hematoma in an adult following a blast...neuronal damage), diffuse brain injury, and subdural hemorrhage. It is still controversial whether primary blast forces directly damage the brain, and if...emboli, leading to infarction (Guy et al., 2000a; Guy et al., 2000b). The most common types of TBI are diffuse axonal injury, contusion, and subdural

  12. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  13. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    craniotomy was cut with a trephine by hand over the right motor cortex . An injury cannula was fashioned from the hub of a female leur-lock 20g needle...ABSTRACT This project evaluated the effect of a moderate-level brain injury on risk for opioid abuse using preclinical models in rats . We assessed the...effect of brain injury on the rewarding effects of oxycodone in three rat self-administration procedures and found significant differences in the

  14. Autobiographical memory and structural brain changes in chronic phase TBI.

    Science.gov (United States)

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Traumatic brain injury: caregivers' problems and needs.

    Science.gov (United States)

    Hassan, S T S; Khaw, W F; Rosna, A R; Husna, J

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers' problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, financial inadequacy, anxiety, distress, coping deficits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, financial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders.

  16. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2016-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...... behavior was registered with the Agitated Behavior Scale (ABS). The nurse or therapist allocated the individual patient assessed ABS during each shift. Intensity of agitated behavior was tested using exact test. A within-subject shift effect was analyzed with repeated-measure ANOVA. Findings: The onset...... of agitated behavior was at a median of 14 (1–28) days from admission. Seven patients remained agitated beyond 3 weeks from onset. Severe intensity of agitation was observed in 86 of 453 nursing shifts. Differences in agitated behavior between day, evening, and night shifts were found, F(2.20) = 7.90, p...

  17. Destination memory in traumatic brain injuries.

    Science.gov (United States)

    Wili Wilu, Amina; Coello, Yann; El Haj, Mohamad

    2018-06-01

    Destination memory, which is socially driven, refers to the ability to remember to whom one has sent information. Our study investigated destination memory in patients with traumatic brain injuries (TBIs). Patients and control participants were invited to tell proverbs (e.g., "the pen is mightier than the sword") to pictures of celebrities (e.g., Barack Obama). Then they were asked to indicate to which celebrity they had previously told the proverbs. Besides the assessment of destination memory, participants performed a binding task in which they were required to associate letters with their corresponding location. Analysis demonstrated less destination memory and binding in patients with TBIs than in controls. In both populations, significant correlations were observed between destination memory and performances on the binding task. These findings demonstrate difficulty in the ability to attribute information to its appropriate destination in TBI patients, perhaps owing to difficulties in binding separate information together to form a coherent representation of an event in memory.

  18. Brain injury in a forensic psychiatry population.

    Science.gov (United States)

    Colantonio, A; Stamenova, V; Abramowitz, C; Clarke, D; Christensen, B

    2007-12-01

    The prevalence and profile of adults with a history of traumatic brain injury (TBI) has not been studied in large North American forensic mental health populations. This study investigated how adults with a documented history of TBI differed with the non-TBI forensic population with respect to demographics, psychiatric diagnoses and history of offences. A retrospective chart review of all consecutive admissions to a forensic psychiatry programme in Toronto, Canada was conducted. Information on history of TBI, psychiatric diagnoses, living environments and types of criminal offences were obtained from medical records. History of TBI was ascertained in 23% of 394 eligible patient records. Compared to those without a documented history of TBI, persons with this history were less likely to be diagnosed with schizophrenia but more likely to have alcohol/substance abuse disorder. There were also differences observed with respect to offence profiles. This study provides evidence to support routine screening for a history of TBI in forensic psychiatry.

  19. Educational professionals' understanding of childhood traumatic brain injury.

    Science.gov (United States)

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  20. Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Maral Tajerian

    Full Text Available Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC, and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivity in neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and

  1. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    S. Porter

    2017-08-01

    Full Text Available Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI. The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.

  2. Open-label study of donepezil in traumatic brain injury.

    Science.gov (United States)

    Masanic, C A; Bayley, M T; VanReekum, R; Simard, M

    2001-07-01

    To determine preliminarily whether donepezil will improve memory, behavior, and global function after chronic traumatic brain injury (TBI). Sixteen-week open-label study. Outpatient TBI rehabilitation program. Four patients with chronic, severe TBI. Donepezil 5mg daily for 8 weeks followed by 10mg daily for 4 weeks. Memory measures included the Rey Auditory Verbal Learning Test (RAVLT), the Complex Figure Test (CFT), items from the Rivermead Behavioural Memory Test (RBMT), and a semantic fluency task. The Neuropsychiatric Inventory (NPI) evaluated behavior and affect. Function was assessed by using the FIM instrument and a clinical global impression of change. On the RAVLT, the mean scores for learning and short- and long-term recall improved by 0.4, 1.04, and.83 standard deviations (SDs) above baseline, respectively. On the CFT, the mean scores for short-term recall and long-term recall improved by 1.56 and 1.38 SDs above baseline, respectively. A positive trend was observed on the RBMT and on the NPI subscales. Donepezil may improve some aspects of memory and behavior in persons with chronic TBI. Randomized clinical trials are required to support these preliminary findings. Copyright 2001 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  3. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  4. Delayed radiation injury to the brain

    International Nuclear Information System (INIS)

    Takano, Shingo; Yoshii, Yoshihiko; Okazaki, Masao; Nose, Tadao; Aida, Shinsuke

    1989-01-01

    The authors report four cases of delayed radiation injury to the brain. One case was diagnosed histologically, and the other three cases, by means of serial CT scans and clinical symptoms. In all cases, a low-density area was observed 4-15 months after radiotherapy, then the contrast-enhanced area appeared within the low-density area about 4 months later. The enhanced area was distant from the original tumor, but within the field of radiotherapy. In the relationship between CT scans and superimposed dose distributions, the enhanced area and the low-density area were always observed within a zone of more than 80% of the total doses, and, as for the irradiated doses, there was no difference between the two areas. However, a distinct difference between these two areas was noted in the MRI scans and histopathology. The enhanced area was imaged as an area of a high signal by means of Gd-DTPA enhanced T 1 -weighted images in two cases. In the one histologically verified case, the fibrinoid necrosis of the blood vessel and demyelination appeared significantly higher in the enhanced area than in the low-density area. In conclusion, when a low-density area was observed by CT scan within the field of radiotherapy, we also suspected radiation injury and considered steroid or anticoagulant therapy in order to reverse it. However, if an enhanced area appeared within the injured lesion, the area seemed to have become irreversible and surgical therapy might also be needed. (author)

  5. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  6. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    Brain injury represents a major health problem and may result in chronic inflammation and neurodegeneration. Due to antiinflammatory effects of gold, we have investigated the cerebral effects of metallic gold particles following a focal brain injury (freeze-lesion) in mice. Gold particles 20......-45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment...

  7. Visual agnosia and focal brain injury.

    Science.gov (United States)

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Traumatic Brain Injury in Domestic Violence Victims: A Retrospective Study at the Barrow Neurological Institute.

    Science.gov (United States)

    Zieman, Glynnis; Bridwell, Ashley; Cárdenas, Javier F

    2017-02-15

    Domestic violence is a national health crisis, which affects people of all ages, races, and socioeconomic classes. Traumatic brain injury is common in victims because of the high frequency of head and neck injuries inflicted through abuse. These recurrent injuries can lead to chronic symptoms with high morbidity. We conducted a retrospective chart review of 115 patients with a history of head trauma as a result of domestic violence. All patients were seen in a subspecialty traumatic brain injury clinic, at which time information regarding their histories and self-reported symptoms were recorded. In total, 109 females and 6 males were included in our study, with an age range of 4-68 years. Overall, 88% reported more than one injury and 81% reported a history of loss of consciousness associated with their injuries. Only 21% sought medical help at the time of injury. Whereas 85% had a history of abuse in adulthood, 22% had experienced abuse in both childhood and adulthood, and 60% of the patients abused as children went on to be abused as adults. Headache was the most common chief complaint, but on a self-reported symptom severity scale, behavioral symptoms were the most severe. Psychiatric disease was present in 84% of patients. Traumatic brain injury is a frequent sequela of domestic violence, from which many victims sustain multiple injuries without seeking medical care. Brain injuries are often sustained over many years and lead to lasting physical, behavioral, and cognitive consequences. Better understanding of these injuries will lead to improved care for this population.

  9. Common acute and chronic musculoskeletal injuries among female ...

    African Journals Online (AJOL)

    The hip/lower back was the most prevalent anatomical site of chronic musculoskeletal injury. (p<0.001). The intrinsic ..... Musculoskeletal disorders among nursing personnel in Korea. Int J ... Marieb E. Human Anatomy and Physiology. 7th ed.

  10. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  11. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  12. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  14. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  15. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia

    2003-01-01

    significantly increased up to but not including 20 dpl in the GFAP-IL6 mice. Oxidative stress as well as apoptotic cell death was significantly decreased throughout the time period studied in the GFAP-IL6 mice compared to controls. This could be linked to the altered inflammatory response as well......The effect of CNS-targeted IL-6 gene expression has been thoroughly investigated in the otherwise nonperturbed brain but not following brain injury. Here we examined the impact of astrocyte-targeted IL-6 production in a traumatic brain injury (cryolesion) model using GFAP-IL6 transgenic mice...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an acute...

  16. Development of brain injury criteria (BrIC).

    Science.gov (United States)

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  17. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  18. Traumatic Brain Injury: MedlinePlus Health Topic

    Science.gov (United States)

    ... injury - discharge (Medical Encyclopedia) Also in Spanish Chronic subdural hematoma (Medical Encyclopedia) Also in Spanish EEG (Medical Encyclopedia) ... Intracranial pressure monitoring (Medical Encyclopedia) Also in Spanish Subdural hematoma (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus ...

  19. Ginsenoside Rg1 improves ischemic brain injury by balancing ...

    African Journals Online (AJOL)

    Ginsenoside Rg1 improves ischemic brain injury by balancing mitochondrial ... and autophagy-related proteins were determined by reat time-polymerase chain ... Treatment with autophagy inhibitors decreased the mitochondrial protective ...

  20. Loss of Financial Management Independence After Brain Injury: Survivors' Experiences.

    Science.gov (United States)

    Koller, Kathryn; Woods, Lindsay; Engel, Lisa; Bottari, Carolina; Dawson, Deirdre R; Nalder, Emily

    2016-01-01

    This pilot study explored the experiences of brain injury survivors after a change in financial management (FM) independence. Using a qualitative descriptive design, 6 participants with acquired brain injury were recruited from a community brain injury organization and participated in semistructured interviews. Data were analyzed using thematic analysis. Three themes emerged from the interviews: (1) trajectory of FM change, involving family members as key change agents; (2) current FM situation, involving FM strategies such as automatic deposits and restricted budgets; and (3) the struggle for control, in which survivors desired control while also accepting supports for FM. This study identifies some of the challenges brain injury survivors face in managing their finances and the adjustment associated with a loss of FM independence. Occupational therapists should be aware of clients' experiences when supporting them through a change in independence. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  1. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  2. What Can I Do to Help Prevent Traumatic Brain Injury?

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  3. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  4. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  5. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  6. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  7. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    Directory of Open Access Journals (Sweden)

    Geneviève Chaput

    2016-01-01

    Full Text Available Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1 and 8 weeks (Time 2 after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r=.31 to .44, number of postconcussion symptoms reported (r=.35 to .45, psychological distress (r=.57 to .67, and level of functionality (r=-.43 to -.29. Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2. Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms.

  8. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay

    2014-09-01

    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  9. Cognitive functions in drivers with brain injury : Anticipation and adaption

    OpenAIRE

    Lundqvist, Anna

    2001-01-01

    The purpose of this thesis was to improve the understanding of what cognitive functions are important for driving performance, investigate the impact of impaired cognitive functions on drivers with brain injury, and study adaptation strategies relevant for driving performance after brain injury. Finally, the predictive value of a neuropsychological test battery was evaluated for driving performance. Main results can be summarized in the following conclusions: (a) Cognitive functions in terms ...

  10. Oculometric Screening for Traumatic Brain Injury in Veterans

    Science.gov (United States)

    2017-06-01

    intake physicals as a detection method for acute injury and for management of brain health in military and VA hospitals. An immersive evaluation of the...risk of traumatic brain injury following deployment. Journal of Head Trauma Rehabilitation, 31(1), 28–35. xviii THIS PAGE INTENTIONALLY LEFT BLANK...device in operational units, military treatment facilities, or VA hospitals. This question will be answered through an immersive qualitative

  11. [Brain injury knowledge in family members of neurosurgical patients].

    Science.gov (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Traumatic Brain Injury in the Accident and Emergency Department of ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is a major public health problem in Nigeria, as it could be associated with long term and life long deficits. Unlike other parts of the world, in our country, motorcycles are possibly the main cause of this injury. Unfortunately, we do not have a national epidemiological data base yet. This study ...

  13. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    Science.gov (United States)

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  14. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  15. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Acute injury and chronic disability resulting from surfboard riding.

    Science.gov (United States)

    Taylor, D McD; Bennett, D; Carter, M; Garewal, D; Finch, C F

    2004-12-01

    We undertook a cross-sectional survey of surfers at eight Victorian beaches between February and May 2003 and analysed acute injury and chronic disability sustained while surfing during the preceding 12 months. Significant injuries were defined as requiring medical attention or time off surfing/work. 646 surfers were enrolled (90.2% male, median age 27 years, median years of surfing 10). 145 surfers sustained 168 significant acute injuries in the preceding 12 months (0.26 injuries/surfer/year, 95% CI 0.22-0.30). Most were caused by striking a surfboard or another surfer (45.2%, 95% CI 37.6-53.1), "wiping out" (36.3%, 95% CI 29.1-44.1) or striking the seabed (17.9%, 95% CI 12.6-24.7). Injuries included lacerations (46.4%, 95% CI 38.8-54.3), sprains (28.6%, 95% CI 22.0-36.1), dislocations (10.7%, 95% CI 6.7-16.6) and fractures (8.9%, 95% CI 5.3-14.6). Body parts most frequently injured were the lower limb (45.8%, 95% CI 38.2-53.7) and the head/face (26.2%, 95% CI 19.9-33.6). Surfing injuries that were treated in Victorian emergency departments over a six year period revealed a similar pattern, although there was a greater proportion of head/face injuries (42.0%, 95% CI 36.0-48.1, p = 0.001). 20 surfers reported long-term effects from acute injuries, mainly unstable/stiff/painful joints. 136 surfers reported chronic health problems not related to acute injury including chronic/recurrent otitis externa and exostoses, muscle and joint pain/stiffness and pterygium. Significant injury while surfing is not uncommon. Although head injury accounts for a considerable proportion, very few surfers wear protective headgear. Greater use of protective headgear should be considered.

  17. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  18. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    Science.gov (United States)

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  19. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    Science.gov (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  20. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  1. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  2. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  3. Treatment for delayed brain injury after pituitary irradiation

    International Nuclear Information System (INIS)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-01-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors. (author)

  4. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  5. Behavior Management for Children and Adolescents with Acquired Brain Injury

    Science.gov (United States)

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  6. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury

    OpenAIRE

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-01-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand...

  7. Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)

    Science.gov (United States)

    2016-10-01

    after incision and TBI, and the relationship of those changes to CXCR2 expression ST4.1 Establish spinal cord sites and cell types displaying...we plan to use oral preparations of these drugs and establish dose-response relationships as these will be pharmacologically useful and make the...Anesthesiology Annual Awards Dinner . Palo Alto, CA, June, 2016. 4. Epigenetic Regulation of Chronic Pain after Traumatic Brain Injury. De-Yong

  8. Dissecting the Roles of Brain Injury and Combat-Related Stress in Post-Traumatic Headache

    Science.gov (United States)

    2015-10-01

    Dissecting the Roles of Brain Injury and Combat-Related Stress in Post- Traumatic Headache 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0366 5c...consequences of TBI is post-traumatic headache (PTH). Because both TBI and stress could contribute to PTH, we examine them together and separately...significant stress . Both TBI and stress are risk factors for chronic headache . They may contribute separate or overlapping mechanisms, and treatment can be

  9. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    Land, W. G.

    2005-01-01

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of D AMPs , which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  10. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    Science.gov (United States)

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  11. Medical Management of the Severe Traumatic Brain Injury Patient.

    Science.gov (United States)

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  12. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I

    2014-01-01

    as lesion size (3285.44¿±¿130.81 mm3 vs. 2509.41¿±¿297.44 mm3, p¿=¿0.04). This was also associated with decreased cardiac output (NS: 4.37¿±¿0.12 l/min vs. 6.35¿±¿0.10 l/min, p¿brain compared......BackgroundOptimal fluid resuscitation strategy following combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remain controversial and the effect of resuscitation infusion speed on outcome is not well known. We have previously reported that bolus infusion of fresh frozen plasma (FFP......) protects the brain compared with bolus infusion of 0.9% normal saline (NS). We now hypothesize reducing resuscitation infusion speed through a stepwise infusion speed increment protocol using either FFP or NS would provide neuroprotection compared with a high speed resuscitation protocol.Methods23...

  13. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  14. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2018-01-01

    Full Text Available Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right and received the higher inflow (left among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

  15. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer’s Disease

    Science.gov (United States)

    Kokiko-Cochran, Olga N.; Godbout, Jonathan P.

    2018-01-01

    The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered. PMID:29686672

  16. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain.

    Science.gov (United States)

    Semple, Bridgette D; O'Brien, Terence J; Gimlin, Kayleen; Wright, David K; Kim, Shi Eun; Casillas-Espinosa, Pablo M; Webster, Kyria M; Petrou, Steven; Noble-Haeusslein, Linda J

    2017-08-16

    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  17. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Kubas, Bożena; Łebkowski, Wojciech; Łebkowska, Urszula; Kułak, Wojciech; Tarasow, Eugeniusz; Walecki, Jerzy

    2010-01-01

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  18. Post-Inpatient Brain Injury Rehabilitation Outcomes: Report from the National OutcomeInfo Database.

    Science.gov (United States)

    Malec, James F; Kean, Jacob

    2016-07-15

    This study examined outcomes for intensive residential and outpatient/community-based post-inpatient brain injury rehabilitation (PBIR) programs compared with supported living programs. The goal of supported living programs was stable functioning (no change). Data were obtained for a large cohort of adults with acquired brain injury (ABI) from the OutcomeInfo national database, a web-based database system developed through National Institutes of Health (NIH) Small Business Technology Transfer (STTR) funding for monitoring progress and outcomes in PBIR programs primarily with the Mayo-Portland Adaptability Inventory (MPAI-4). Rasch-derived MPAI-4 measures for cases from 2008 to 2014 from 9 provider organizations offering programs in 23 facilities throughout the United States were examined. Controlling for age at injury, time in program, and time since injury on admission (chronicity), both intensive residential (n = 205) and outpatient/community-based (n = 2781) programs resulted in significant (approximately 1 standard deviation [SD]) functional improvement on the MPAI-4 Total Score compared with supported living (n = 101) programs (F = 18.184, p MPAI-4 Ability (F = 14.135, p 1 year post-injury) showed significant, but smaller (approximately 0.5 SD) change on the MPAI-4 relative to supported living programs (F = 17.562, p < 0.001). Results indicate that intensive residential and outpatient/community-based PIBR programs result in substantial positive functional changes moderated by chronicity.

  19. Traumatic Brain Injury Severity, Neuropathophysiology, and Clinical Outcome: Insights from Multimodal Neuroimaging

    Directory of Open Access Journals (Sweden)

    Andrei Irimia

    2017-10-01

    Full Text Available BackgroundThe relationship between the acute clinical presentation of patients with traumatic brain injury (TBI, long-term changes in brain structure prompted by injury and chronic functional outcome is insufficiently understood. In this preliminary study, we investigate how acute Glasgow coma score (GCS and epileptic seizure occurrence after TBIs are statistically related to functional outcome (as quantified using the Glasgow Outcome Score and to the extent of cortical thinning observed 6 months after the traumatic event.MethodsUsing multivariate linear regression, the extent to which the acute GCS and epileptic seizure occurrence (predictor variables correlate with structural brain changes (relative cortical atrophy was examined in a group of 33 TBI patients. The statistical significance of the correlation between relative cortical atrophy and the Glasgow Outcome Score was also investigated.ResultsA statistically significant correlative relationship between cortical thinning and the predictor variables (acute GCS and seizure occurrence was identified in the study sample. Regions where the statistical model was found to have highest statistical reliability in predicting both gray matter atrophy and neurological outcome include the frontopolar, middle frontal, postcentral, paracentral, middle temporal, angular, and lingual gyri. In addition, relative atrophy and GOS were also found to be significantly correlated over large portions of the cortex.ConclusionThis study contributes to our understanding of the relationship between clinical descriptors of acute TBI, the extent of injury-related chronic brain changes and neurological outcome. This is partly because the brain areas where cortical thinning was found to be correlated with GCS and with seizure occurrence are implicated in executive control, sensory function, motor acuity, memory, and language, all of which may be affected by TBI. Thus, our quantification suggests the existence of a

  20. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    Science.gov (United States)

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  1. Extensive cortical rewiring after brain injury.

    Science.gov (United States)

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  2. An overview of strength training injuries: acute and chronic.

    Science.gov (United States)

    Lavallee, Mark E; Balam, Tucker

    2010-01-01

    This article introduces the history of strength training, explains the many different styles of strength training, and discusses common injuries specific to each style. Strength training is broken down into five disciplines: basic strength or resistance training, bodybuilding, power lifting, style-dependant strength sports (e.g., strongman competitions, Highland games, field events such as shot put, discus, hammer throw, and javelin), and Olympic-style weightlifting. Each style has its own principal injuries, both acute and chronic, related to the individual technique. Acute injuries should be further categorized as emergent or nonemergent. Specific age-related populations (i.e., the very young and the aging athlete) carry additional considerations.

  3. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  4. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  5. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  6. Deep venous thrombosis in patients with chronic spinal cord injury.

    Science.gov (United States)

    Mackiewicz-Milewska, Magdalena; Jung, Stanisław; Kroszczyński, Andrzej C; Mackiewicz-Nartowicz, Hanna; Serafin, Zbigniew; Cisowska-Adamiak, Małgorzata; Pyskir, Jerzy; Szymkuć-Bukowska, Iwona; Hagner, Wojciech; Rość, Danuta

    2016-07-01

    Deep venous thrombosis (DVT) is a well-known complication of an acute spinal cord injury (SCI). However, the prevalence of DVT in patients with chronic SCI has only been reported in a limited number of studies. The aim of our study was to examine the prevalence of DVT in patients with SCI beyond three months after injury. Cross-sectional study. Rehabilitation Department at the Bydgoszcz University Hospital in Poland. Sixty-three patients with SCI that were more than 3 months post injury. The patients, ranging in age from 13 to 65 years, consisted of 15 women and 48 men; the mean age of the patients was 32.1 years. The time from injury varied from 4 to 124 months. Clinical assessment, D-dimer and venous duplex scan. The venous duplex scan revealed DVT in 5 of the 63 patients. The post-injury time in four of the patients varied between 4 and 5 months; one patient was 42 months post-injury. DVT occurred in patients with chronic SCI, mainly by the 6th post injury month.

  7. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  8. [Hypopituitarism following traumatic brain injury: diagnostic and therapeutic issues].

    Science.gov (United States)

    Lecoq, A-L; Chanson, P

    2015-10-01

    Traumatic Brain Injury (TBI) is a well-known public health problem worldwide and is a leading cause of death and disability, particularly in young adults. Besides neurological and psychiatric issues, pituitary dysfunction can also occur after TBI, in the acute or chronic phase. The exact prevalence of post-traumatic hypopituitarism is difficult to assess due to the wide heterogeneity of published studies and bias in interpretation of hormonal test results in this specific population. Predictive factors for hypopituitarism have been proposed and are helpful for the screening. The pathophysiology of pituitary dysfunction after TBI is not well understood but the vascular hypothesis is privileged. Activation of pituitary stem/progenitor cells is probably involved in the recovery of pituitary functions. Those cells also play a role in the induction of pituitary tumors, highlighting their crucial place in pituitary conditions. This review updates the current data related to anterior pituitary dysfunction after TBI and discusses the bias and difficulties encountered in its diagnosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Hypothalamic-Pituitary Autoimmunity and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Federica Guaraldi

    2015-05-01

    Full Text Available Background: Traumatic brain injury (TBI is a leading cause of secondary hypopituitarism in children and adults, and is responsible for impaired quality of life, disabilities and compromised development. Alterations of pituitary function can occur at any time after the traumatic event, presenting in various ways and evolving during time, so they require appropriate screening for early detection and treatment. Although the exact pathophysiology is unknown, several mechanisms have been hypothesized, including hypothalamic-pituitary autoimmunity (HP-A. The aim of this study was to systematically review literature on the association between HP-A and TBI-induced hypopituitarism. Major pitfalls related to the HP-A investigation were also discussed. Methods: The PubMed database was searched with a string developed for this purpose, without temporal or language limits, for original articles assessing the association of HP-A and TBI-induced hypopituitarism. Results: Three articles from the same group met the inclusion criteria. Anti-pituitary and anti-hypothalamic antibodies were detected using indirect immunofluorescence in a significant number of patients with acute and chronic TBI. Elevated antibody titer was associated with an increased risk of persistent hypopituitarism, especially somatotroph and gonadotroph deficiency, while no correlations were found with clinical parameters. Conclusion: HPA seems to contribute to TBI-induced pituitary damage, although major methodological issues need to be overcome and larger studies are warranted to confirm these preliminary data.

  10. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2017-10-01

    Full Text Available Background: Complete or incomplete spinal cord injury (SCI results in varying degree of motor, sensory and autonomic impairment. Long-lasting, often irreversible disability results from disconnection of efferent and afferent pathways. How does this disconnection affect brain function is not so clear. Changes in brain organization and structure have been associated with SCI and have been extensively studied and reviewed. Yet, our knowledge regarding brain connectivity changes following SCI is overall lacking.Methods: In this study we conduct a systematic review of articles regarding investigations of functional brain networks following SCI, searching on PubMed, Scopus and ScienceDirect according to PRISMA-P 2015 statement standards.Results: Changes in brain connectivity have been shown even during the early stages of the chronic condition and correlate with the degree of neurological impairment. Connectivity changes appear as dynamic post-injury procedures. Sensorimotor networks of patients and healthy individuals share similar patterns but new functional interactions have been identified as unique to SCI networks.Conclusions: Large-scale, multi-modal, longitudinal studies on SCI patients are needed to understand how brain network reorganization is established and progresses through the course of the condition. The expected insight holds clinical relevance in preventing maladaptive plasticity after SCI through individualized neurorehabilitation, as well as the design of connectivity-based brain-computer interfaces and assistive technologies for SCI patients.

  11. Brain injury markers (S100B and NSE in chronic cocaine dependents Marcadores de lesão cerebral (S100B e NSE em dependentes crônicos de cocaína

    Directory of Open Access Journals (Sweden)

    Felix Henrique Paim Kessler

    2007-06-01

    Full Text Available OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls were recruited. Subjects were selected by consecutive and non-probabilistic sampling. Neuron specific enolase and S100B levels were determined by luminescence assay. RESULTS: Cocaine users had significantly higher scores than controls in all psychiatric dimensions of the SCL-90 and had cognitive deficits in the subtest cubes of WAIS and the word span. Mean serum S100B level was 0.09 ± 0.04 µg/l among cocaine users and 0.08 ± 0.04 µg/l among controls. Mean serum neuron specific enolase level was 9.7 ± 3.5 ng/l among cocaine users and 8.3 ± 2.6 ng/l among controls. CONCLUSIONS: In this first study using these specific brain damage markers in cocaine users, serum levels of S100B and neuron specific enolase were not statistically different between cocaine dependent subjects and controls.OBJETIVO: Estudos têm demonstrado sinais de lesão cerebral causadas por diferentes mecanismos em usuários de cocaína. A enolase sérica neurônio-específica e a proteína S100B são consideradas marcadores bioquímicos específicos de lesão neuronal e glial. Este estudo objetivou comparar os níveis sangüíneos de S100B e enolase sérica neurônio-específica em usuários crônicos de cocaína e em voluntários que não usam cocaína ou outras drogas ilícitas. MÉTODO: Vinte sujeitos dependentes de cocaína, mas não dependentes de álcool, maconha ou outra droga, e 20 sujeitos controles não usuários de drogas foram recrutados. Os sujeitos foram selecionados por

  12. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  13. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Lozano D

    2015-01-01

    Full Text Available Diego Lozano,* Gabriel S Gonzales-Portillo,* Sandra Acosta, Ike de la Pena, Naoki Tajiri, Yuji Kaneko, Cesar V Borlongan Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA *These authors contributed equally to this work Abstract: Traumatic brain injury (TBI is a serious public health problem accounting for 1.4 million emergency room visits by US citizens each year. Although TBI has been traditionally considered an acute injury, chronic symptoms reminiscent of neurodegenerative disorders have now been recognized. These progressive neurodegenerative-like symptoms manifest as impaired motor and cognitive skills, as well as stress, anxiety, and mood affective behavioral alterations. TBI, characterized by external bumps or blows to the head exceeding the brain’s protective capacity, causes physical damage to the central nervous system with accompanying neurological dysfunctions. The primary impact results in direct neural cell loss predominantly exhibiting necrotic death, which is then followed by a wave of secondary injury cascades including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood–brain barrier disruption, and inflammation. All these processes exacerbate the damage, worsen the clinical outcomes, and persist as an evolving pathological hallmark of what we now describe as chronic TBI. Neuroinflammation in the acute stage of TBI mobilizes immune cells, astrocytes, cytokines, and chemokines toward the site of injury to mount an antiinflammatory response against brain damage; however, in the chronic stage, excess activation of these inflammatory elements contributes to an “inflamed” brain microenvironment that principally contributes to secondary cell death in TBI. Modulating these inflammatory cells by changing their phenotype from proinflammatory to antiinflammatory would likely promote therapeutic effects on TBI. Because neuroinflammation occurs at

  14. Acupuncture for central pain affecting the ribcage following traumatic brain injury and rib fractures--a case report.

    Science.gov (United States)

    Donnellan, Clare P

    2006-09-01

    This case report describes the use of acupuncture in the management of chronic central pain in a 51 year old man following severe traumatic brain injury and multiple injuries including rib fractures. The patient reported rapid and significant improvements in pain and mood during a course of acupuncture treatment. Chronic pain following traumatic brain injury is a significant problem. Chronic pain after rib fractures is also commonly reported. Acupuncture is widely used in the management of pain but its use has been reported rarely in the traumatic brain injury literature. This case report suggests that acupuncture may be a useful option to consider in these patients. Outcome was assessed formally using a 0-10 verbal numerical rating scale for pain, and the Hospital Anxiety and Depression Scale (HADS) for psychological status before and after the course of treatment. These scales are widely used in clinical practice as well as in research involving patients with traumatic brain injury, although they have not been validated in this population. The changes in this patient's outcome scores were not consistent with the benefits he reported. Treatment of this patient highlighted the difficulties of using standardised self rating scales for patients with cognitive impairment. The report also discusses the effects of acupuncture on this patient's mood.

  15. Dutch Multifactor Fatigue Scale : A New Scale to Measure the Different Aspects of Fatigue After Acquired Brain Injury

    NARCIS (Netherlands)

    Visser-Keizer, Annemarie C.; Hogenkamp, Antoinette; Westerhof-Evers, Herma J.; Egberink, Iris J. L.; Spikman, Jacoba M.

    Objectives: To develop the Dutch Multifactor Fatigue Scale (DMFS), a new scale to assess the nature and impact of fatigue and coping with fatigue in the chronic phase after acquired brain injury (ABI) and to analyze the psychometric properties of this scale in a mixed group of patients with ABI.

  16. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals with acqui......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...... with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating......-of-life. The preliminary findings provide knowledge regarding the patient perspective of adapting to and developing new strategies for activities related to eating, however, further prospective, longitudinal research in a larger scale and with repeated interviews is needed....

  17. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  19. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.

    2008-01-01

    . Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26......Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity...

  20. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  1. The emergence of artistic ability following traumatic brain injury.

    Science.gov (United States)

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-02-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months.

  2. Making waves in the brain: What are oscillations, and why modulating them makes sense for brain injury

    Directory of Open Access Journals (Sweden)

    Aleksandr ePevzner

    2016-04-01

    Full Text Available Traumatic brain injury (TBI can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following traumatic brain injury. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.

  3. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  4. Music interventions for acquired brain injury.

    Science.gov (United States)

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke

    2017-01-20

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  5. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    Science.gov (United States)

    2011-04-01

    of Theresa Jones for sectioning and staining . To date, the brains have been sectioned and one set stained for Nissl . Using the Nissl stained ...three rehabilitations decreases contusion size compared to CCI-Yoked (#p=0.051). The remaining sets of brain sections have been stained with...optical densitometry, as appropriate, given staining patterns. Sample locations will be the remaining sensorimotor cortex around the injury, in the

  6. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  7. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  8. Chronic brain ischemia in patients with arterial hypertension and hypothyroidism

    Directory of Open Access Journals (Sweden)

    O.Ye. Kovalenko

    2017-02-01

    Full Text Available The questions of the pathogenesis of chronic brain ischemia in patients with hypertension and hypothyroidism are studied. Examples of some results of authors’ research are listed. According to the research, patients with hypertensive dyscirculatory encephalopathy and hypothyroidism have deterioration of blood supply to the brain by reducing the reactivity of the vascular wall, decrease in the functional activity of the brain, impairement of cognitive function and increase in the anxiety and depression.

  9. Traumatic Brain Injury: Hope Through Research

    Science.gov (United States)

    ... fatigue or drowsiness; a lack of energy or motivation changes in sleep patterns (e.g., sleeping a ... nerve cells in the brain causing strange sensations, emotions, and behavior, or sometimes convulsions, muscle spasms, and ...

  10. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  11. Neuroprotection from Brain Injury by Novel Estrogens

    Science.gov (United States)

    2001-08-01

    plate contained approxi- substituted estradlol. J. Steroid Blochem. 1988, 29, 657-664. mately 5000 cells as determined by a Neubauer hemacytometer (13...the brain was removed, and the base of the brain was photographed by a digital camera (Sony Preparation of animals MVC-FD5, Tokyo, Japan) for...chloride (TTC) in physiological saline at 37 0 C, and then fixed in 10% formalin. The stained slices were photographed by a digital camera (Sony MVC-FD5

  12. Chronic pain and evoked responses in the brain: A magnetoencephalographic study in Complex Regional Pain Syndrome I and II

    NARCIS (Netherlands)

    Theuvenet, P.J.

    2012-01-01

    Complex Regional Pain Syndrome (CRPS) type I and II are chronic pain syndromes with comparable symptoms, only in CRPS II a peripheral nerve injury is present. No objective tests are currently available to differentiate the two types which hampers diagnosis and treatment. Non-invasive brain imaging

  13. The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.

    Science.gov (United States)

    Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie

    2016-05-01

    Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.

  14. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment

    Science.gov (United States)

    2017-12-01

    Award Number: W81XWH-11-1-0806 TITLE: Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment...OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved...for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not

  15. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  16. Treating Chronic Pain after Spinal Cord Injury

    Science.gov (United States)

    2016-09-01

    sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12(1):1-21. [7] Bedi SS, Yang Q, Crook RJ, Du J, Wu...reveal novel insights to the pathophysiology of chronic SCI pain and whether NPCs can modify pain outcomes. This proposal will test whether neural...extensive loss of hindlimb function that was associated with a score ɛ on the 21 point BBB locomotor scale (Fig. 1A,B). In rats with T3 severe

  17. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2017-12-01

    Full Text Available Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases

  18. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  19. Reducing Secondary Insults in Traumatic Brain Injury

    Science.gov (United States)

    2015-03-01

    could more reliably document the frequency of these events and help us understand the causes. Understand- ing the causes wi ll allow us to design...hypoperfusion. J Trauma 2003; 54(2): 312-9. 12. Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L: Hypotension , hypoxia, and head injury

  20. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  1. White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging are uniquely sensitive to the white matter (WM damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases. We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD. In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

  2. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  3. A patients perspective on eating difficulties following brain injury

    DEFF Research Database (Denmark)

    Kjaersgaard, Annette; Kristensen, Hanne Kaae; Borg, Tove

    Purpose: The aim of this study is to explore and interpret how persons with acquired brain injury (ABI) experience and adapt to reduced abilities to swallowing and eating - and clinical implications. Method: Explorative multiple-case study with qualitative interviews of six persons following ABI ...

  4. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    Science.gov (United States)

    ... sleep habits Behavior or mood changes Trouble with memory, concentration, attention, or thinking Loss of consciousness lasting a few ... may have caused a TBI should seek medical attention. 4 ... Traumatic brain injury information page . Retrieved May 4, 2018, from https://www. ...

  5. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  6. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Background: The gap junction plays an important role in spreading of apoptotic and necrotic signals from injured and stressed cells to the neighboring viable cells. The present study was performed to investigate the important role of gap junction communication on rabbits' explosive brain injury. Methods: Explosion of paper ...

  7. Adolescents\\' experience of a parental traumatic brain injury | Harris ...

    African Journals Online (AJOL)

    The phenomenon of parental traumatic brain injury was characterised by denial, anger, grief, guilt, anxiety, over-protectiveness, social isolation, and change in many areas of the participants' lives. The adolescents coped using both approaches and avoidance styles of coping. Religion was a theme in the lives of all four ...

  8. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs) harboured by university students. Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered ...

  9. Minor traumatic brain injuries – what is new? | Hollander ...

    African Journals Online (AJOL)

    Minor traumatic brain injuries – what is new? D Hollander, J Coventry, M Du Trevou. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  10. Traumatic Brain Injury: An Overview of School Re-Entry.

    Science.gov (United States)

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  11. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Psychosocial consequences of mild traumatic brain injury in children

    DEFF Research Database (Denmark)

    Keightley, Michelle L; Côté, Pierre; Rumney, Peter

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding psychosocial consequences of mild traumatic brain injury (MTBI) in children. DATA SOURCES: MEDLINE, Embase, CINAHL, PsycINFO, and SPORTDiscus were searched (2001-2012). Inclusion criteria included published peer-reviewed reports...

  13. Investigating nystagmus in patients with traumatic brain injury: A ...

    African Journals Online (AJOL)

    Background. Traumatic brain injury (TBI) is a health and socioeconomic concern worldwide. In patients with TBI, post-traumatic balance problems are often the result of damage to the vestibular system. Nystagmus is common in these patients, and can provide insight into the damage that has resulted from the trauma.

  14. Traumatic Brain Injury and Its Effect on Students

    Science.gov (United States)

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  15. School-Based Traumatic Brain Injury and Concussion Management Program

    Science.gov (United States)

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  16. Traumatic brain injury in children | Coughlan | South African Family ...

    African Journals Online (AJOL)

    South African Family Practice. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 45, No 5 (2003) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Traumatic brain injury in children. M Coughlan, G Fieggen ...

  17. Traumatic brain injury in pediatric age group: Predictors of outcome ...

    African Journals Online (AJOL)

    Objective: To determine predictors for outcomes of traumatic brain injury (TBI) in infants and children younger than twelve years admitted to our pediatric intensive care units (PICU). Methods: This is a retrospective cohort study from 2004-5, done at the PICU of King Fahad Hofuf Hospital, Eastern Province, Saudi Arabia.

  18. Evaluation of a Health Education Programme about Traumatic Brain Injury

    Science.gov (United States)

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  19. Case Report - Severe traumatic brain injury managed with ...

    African Journals Online (AJOL)

    Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality and morbidity. This may be anticipated from the patient's clinical status and imaging findings even where intracranial monitoring is unavailable. Outcome may be improved by early and aggressive control of ICP and ...

  20. Traumatic brain injury, the hidden pandemic: A focused response to ...

    African Journals Online (AJOL)

    Introduction: Traumatic brain injury (TBI) has many potential cognitive, behavioural and psychological consequences, and contributes significantly to the national burden of disease and to ongoing violent behaviour. Few resources are available for the rehabilitation of patients with TBI in South Africa, and access to ...

  1. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    Background. Paediatric traumatic brain injury (PTBI) is a major public health problem. However, recent epidemiological data for PTBI in South Africa (SA) are lacking. Objectives. To establish a demographic profile of severe PTBI admissions to the Red Cross War Memorial Children's Hospital (RCWMCH) over a 5-year ...

  2. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic

  3. Predictors of Outcome following Acquired Brain Injury in Children

    Science.gov (United States)

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  4. Assisting Students with a Traumatic Brain Injury in School Interventions

    Science.gov (United States)

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  5. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  6. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    Science.gov (United States)

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  7. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  8. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  9. Relationship between CT findings and prognosis in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Akihito; Kuwana, Nobumasa; Mochimatsu, Yasuhiko; Fujino, Hideyo; Tokoro, Kazuhiko [Yokohama Minami Kyosai Hospital, Kanagawa (Japan)

    1984-12-01

    Types of diffuse brain injury (DBI) were classified based on a study of fifty patients with acute, severe head injuries. This study focused on findings of computed tomography (CT) and outcomes of the patients. The level of consciousness was estimated by the Glasgow Coma Scale; greater than 8 in 28 cases; 8 or less in 22 cases. The overall mortality rate was 28%, however the rate ranged from 8 to 67%, depending on the type of DBI. CT findings of DBI within 24 hours after head injury were classified into 5 type: diffuse cerebral swelling (DCS), isodense hemispheric swelling (IHS), deep-seated brain injury (DSI), subarachnoid hemorrhage (SAH) and normal findings. DSI demonstrated the highest mortality rate (67%), and IHS was the second (50%). However, there are many pediatric cases with excellent outcomes. Although both DCS and IHS occurred frequently in children, it was considered that these two conditions should be distinguished, because of the existence of some differences in the clinical course of the two. There were only 7 cases of SAH alone, but SAH was the most frequent associated finding in DBI, existing in 50% of 50 cases. SAH per se could not be regarded as a poor prognostic factor. It is the authors' impression that DBI without coup or contre-coup injuries can be readily diagnosed by CT scan and that DBI is an important clinical factor in the closed head injury cases.

  10. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  11. Decompressive craniectomy following brain injury: factors important ...

    African Journals Online (AJOL)

    2010-01-07

    Jan 7, 2010 ... Background: Decompressive craniectomy (DC) is often performed as an empirical lifesaving measure to protect the injured brain from the damaging effects of propagating oedema and intracranial hypertension. However, there are no clearly defined indications or specified guidelines for patient selection for ...

  12. Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Lee, Stephanie W; Gajavelli, Shyam; Spurlock, Markus S; Andreoni, Cody; de Rivero Vaccari, Juan Pablo; Bullock, M Ross; Keane, Robert W; Dietrich, W Dalton

    2018-04-02

    Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1β mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1β, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1β, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.

  13. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  14. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    Science.gov (United States)

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral

  15. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  16. Mechanisms of gender-linked ischemic brain injury

    Science.gov (United States)

    Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.

    2010-01-01

    Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke. PMID:19531872

  17. Evaluation of ultrasound techniques for brain injury detection

    Science.gov (United States)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  18. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  19. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury

    OpenAIRE

    S. Porter; I.J. Torres; W. Panenka; Z. Rajwani; D. Fawcett; A. Hyder; N. Virji-Babul

    2017-01-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to asse...

  20. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  1. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  2. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    Science.gov (United States)

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Pcognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  3. Postinjury personality and outcome in acquired brain injury: the Millon Behavioral Medicine Diagnostic.

    Science.gov (United States)

    Beck, Kelley D; Franks, Susan F; Hall, James R

    2010-03-01

    To examine the relationship between postinjury personality and outcome in individuals with acquired brain injury. It was hypothesized that patients with differing levels of Introversive, Dejected, and Oppositional coping styles as described by Millon's Theory of Personality would show different outcomes after completion of a rehabilitation program. A retrospective chart review and completion of an outcome assessment was undertaken to examine study hypotheses. A postacute brain injury rehabilitation program. Fifty patients who completed the rehabilitation program between 2005 and 2008, who were 18 years of age or older, who possessed at least a sixth-grade reading level, and who completed a valid Millon Behavioral Medicine Diagnostic (MBMD) were selected. Rehabilitation therapists who worked with these patients were also recruited to assess patient outcomes. Charts of patients that met inclusion criteria were reviewed. Rehabilitation therapists completed the outcome measure retrospectively. The MBMD was used to predict outcome. The MBMD is a self-report questionnaire designed to assess psychosocial factors that relate to the course of medical treatment in chronic illness. The Mayo-Portland Adaptability Inventory (MPAI-4) was used to assess patient outcome. It is a 29-item assessment designed to evaluate the common physical, cognitive, emotional, behavioral, and social issues after acquired brain injury. Findings supported our hypotheses that patients with differing levels of Introversive and Oppositional Coping Styles would have significantly different outcomes after rehabilitation. Thus, individuals with mild/moderate to moderate/severe limitations had significantly greater scores on the Introversive and Oppositional coping compared with individuals with more successful outcomes. The results of this study support the idea that postinjury personality is an important factor in understanding outcome after completion of a brain-injury rehabilitation program

  4. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  5. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  6. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in "Endocrine Management in the Intensive Care Unit".

    LENUS (Irish Health Repository)

    Hannon, M J

    2012-02-01

    Traumatic brain injury and subarachnoid haemorrhage are important causes of morbidity and mortality in the developed world. There is a large body of evidence that demonstrates that both conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in both traumatic brain injury and subarachnoid haemorrhage. In this article, we will review the history and pathophysiology of pituitary function in the acute phase following traumatic brain injury and subarachnoid haemorrhage, and we will discuss in detail three key aspects of pituitary dysfunction which occur in the early course of TBI; acute cortisol deficiency, diabetes insipidus and SIAD.

  7. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  8. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities.

    Science.gov (United States)

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2018-04-24

    Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  9. Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury

    Directory of Open Access Journals (Sweden)

    Hai-feng Mao

    2017-01-01

    Full Text Available Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I, a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX-I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration.

  10. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  11. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  12. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius

    2013-08-01

    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  13. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury.

    Science.gov (United States)

    Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A

    2013-12-01

    The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.

  15. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  16. Home environment, brain injury, & school performance in LBW survivors.

    Science.gov (United States)

    Mahoney, Ashley Darcy; Pinto-Martin, Jennifer; Hanlon, Alexandra

    2014-01-01

    There has been substantial research on low birthweight (LBW) as a predictor of adverse educational and cognitive outcomes. LBW infants perform worse on cognitive battery tests compared to children born at normal birthweight; however, children exposed to similar risks do not all share the same experiences. The complex, interrelated factors responsible for poor cognitive and achievement performance vary for different populations, but researchers hypothesize that the home environment may influence the infants' long-term health outcomes. Examine the home environment as a moderator in the causal pathway from neonatal brain injury to school performance in a secondary analysis of a prospectively studied, geographically defined cohort from the Neonatal Brain Hemorrhage Study. The secondary analysis sample included 543 infants with birthweights of 501 to 2,000 g who were born consecutively in three community hospitals in New Jersey between 1984 and 1986. School performance at age 9 was measured by the Woodcock-Johnson Tests of Achievement. The home environment variables were tested and analyzed using multistep hierarchical regression modeling. A moderating effect between the variable neighborhood observations and brain injury was demonstrated for the outcome math score. The moderating relationship was found in the category of children without brain injury (β = 1.76, p = .005). There were statistically significant and potentially clinical meaningful models when looking at the home environmental variables as they relate to reading and math scores. The findings suggest that at least one variable within a LBW child's socio-environmental milieu can moderate the effects of perinatal brain injury on school performance outcomes.

  17. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat

    Directory of Open Access Journals (Sweden)

    Caron AM

    2015-06-01

    Full Text Available Aimee M Caron, Richard Stephenson Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada Abstract: Mild and moderate traumatic brain injuries (TBIs (and concussion occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the “dark neuron” (DN as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours total sleep deprivation (TSD and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons, and this was unaffected by TSD alone (0.1%. Mild TBI caused significantly higher DN densities (0.76%, and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%. Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage. Keywords: sleep deprivation, concussion, traumatic brain injury, dark neuron, neurodegeneration, rat cortex

  18. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury.

    Science.gov (United States)

    Gyoneva, Stefka; Kim, Daniel; Katsumoto, Atsuko; Kokiko-Cochran, O Nicole; Lamb, Bruce T; Ransohoff, Richard M

    2015-12-03

    Millions of people experience traumatic brain injury (TBI) as a result of falls, car accidents, sports injury, and blast. TBI has been associated with the development of neurodegenerative conditions such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). In the initial hours and days, the pathology of TBI comprises neuronal injury, breakdown of the blood-brain barrier, and inflammation. At the cellular level, the inflammatory reaction consists of responses by brain-resident microglia, astrocytes, and vascular elements as well as infiltration of peripheral cells. After TBI, signaling by chemokine (C-C motif) ligand 2 (CCL2) to the chemokine (C-C motif) receptor 2 (CCR2) is a key regulator of brain infiltration by monocytes. We utilized mice with one or both copies of Ccr2 disrupted by red fluorescent protein (RFP, Ccr2 (RFP/+) and Ccr2 (RFP/RFP) ). We subjected these mice to the mild lateral fluid percussion model of TBI and examined several pathological outcomes 3 days later in order to determine the effects of altered monocyte entry into the brain. Ccr2 deletion reduced monocyte infiltration, diminished lesion cavity volume, and lessened axonal damage after mild TBI, but the microglial reaction to the lesion was not affected. We further examined phosphorylation of the microtubule-associated protein tau, which aggregates in brains of people with TBI, AD, and CTE. Surprisingly, Ccr2 deletion was associated with increased tau mislocalization to the cell body in the cortex and hippocampus by tissue staining and increased levels of phosphorylated tau in the hippocampus by Western blot. Disruption of CCR2 enhanced tau pathology and reduced cavity volume in the context of TBI. The data reveal a complex role for CCR2(+) monocytes in TBI, as monitored by cavity volume, axonal damage, and tau phosphorylation.

  19. Neutrophils in traumatic brain injury (TBI): friend or foe?

    Science.gov (United States)

    Liu, Yang-Wuyue; Li, Song; Dai, Shuang-Shuang

    2018-05-17

    Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.

  20. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  1. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J

    2014-01-01

    in the treatment of TBI at 2 academic medical centers to document variations in real-world practice and evaluate the efficacies of different approaches on postsurgical course and long-term outcome. METHODS: Patients 18 years of age or older who required neurosurgical lesion evacuation or decompression for TBI were...... monitoring of spreading depolarizations; injury characteristics, physiological monitoring data, and 6-month outcomes were collected prospectively. CT scans and medical records were reviewed retrospectively to determine lesion characteristics, surgical indications, and procedures performed. RESULTS: Patients......%-52%), signs of mass effect (midline shift ≥ 5 mm: 43%-52%), and preoperative intracranial pressure (ICP). At VCU, however, surgeries were performed earlier (median 0.51 vs 0.83 days posttrauma, p performed...

  2. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  3. MRI and clinical symptoms in chronic cervical cord injury

    International Nuclear Information System (INIS)

    Soeda, Shuichi; Maruiwa, Hirofumi; Yokoi, Masahiro; Saitoh, Seiya; Yamauchi, Kenji.

    1992-01-01

    To assess the ability of magnetic resonance (MR) imaging to determine the prognosis of spinal cord injury in the chronic stage and to detect the injured myelomere, 39 patients were examined with MR images obtained by T1-weighted spin echo method 5 months to 4 years and 8 months (mean, one year and 5 months) after they had sustained spinal cord injury. According to hypointensity area of the ventrodorsad diameter of the spinal cord, MR images were classified as non-hypointensity (I), discrete (II), central (III), large cavity (IV), and transverse (V). The most common type was III (25%), followed by IV (26%), II (18%), V (15%), and I (13%). In 21 patients with bone injury, 14 (67%) had type IV or V, in contrast to 2 (11%) of 18 patients without bone injury. Increased hypointensity on MR images was associated with severer injury of the spinal cord. When hypointensity accounted for less than 1/2 of the ventrodorsad diameter of the spinal cord, walking ability was recovered in more than 80% of the patients. When less than 1/3 of the ventrodorsad diameter of the spinal cord was seen as hypointensity, arm function was well preserved, and the anterior horn of gray matter was found less injured. In 60% of the patients, there was difference in the injured level of myelomere between MR images and the neurological examination; the injured level of myelomere tended to be more cephalad level in the neurological examination than MR appearance.(N.K.)

  4. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    Science.gov (United States)

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  5. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  6. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury.

    Science.gov (United States)

    Liu, Xixia; Qiu, Jianhua; Alcon, Sasha; Hashim, Jumana; Meehan, William P; Mannix, Rebekah

    2017-08-15

    Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.

  7. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  8. Evaluation of the Addenbrooke's Cognitive Examination's validity in a brain injury rehabilitation setting.

    Science.gov (United States)

    Gaber, Tarek A-Z K

    2008-07-01

    Several reports have warned of the Mini Mental State Examination's (MMSE) inability to detect gross memory and high executive impairments. Addenbrooke's Cognitive Examination-Revised (ACE-R) has gained enormous popularity in dementia screening as it addresses the main shortcomings of MMSE. This study aimed at evaluating the use of ACE-R and to establish its sensitivity compared to MMSE in a cohort of brain injury patients. ACE-R was administered to a cohort of chronic brain injury patients. All patients had a cognitive impairment which was severe enough to prevent them working or studying. Patients with significant mental health, sensory, communication or physical impairments were excluded. Thirty-six patients were recruited, 31 males with a mean age of 37 years. For an upper cut-off value of 27/30 for MMSE and 88/100 for ACE-R, their sensitivities were 36% and 72%, respectively. For a lower cut-off value of 24/30 and 82/100 the tests sensitivities were 11% and 56%, respectively. Analysis of the ACE-R sub-tests indicated that memory and verbal fluency sub-tests showed the most dramatic impairment. MMSE is insensitive as a screening test in brain injury patients. The results show ACE-R to be a sensitive, easily administered test.

  9. Treatment of chronic deltoid ligament injury using suture anchors.

    Science.gov (United States)

    Wang, Xu; Ma, Xin; Zhang, Chao; Wang, Chen; Huang, Jia-zhang

    2014-08-01

    To explore the efficacy of overlapping suture-anchor fixation for treatment of chronic deltoid ligament injury. Seventeen patients (11 men, 6 women of mean age 32.1 years [range, 18-58 years]) who had undergone surgery for chronic deltoid ligament injury from January 2007 to December 2011 were retrospectively analyzed. Preoperatively, they had undergone bilateral weight-bearing posterior-anterior radiographs, (MRI) and ultrasound examinations of the ankle. Ankle arthroscopy was performed to confirm the diagnosis, followed by surgery to clear intra-articular proliferating synovial tissues and remove cartilage debris and scar tissue. The deep layer of the deltoid ligament was sutured onto the tip of the medial malleolus and its superficial layer sutured onto its periosteum and fixed with suture anchors. American Orthopedic Foot and Ankle Society (AOFAS) scoring system for the ankle-hindfoot was used to evaluate the ankles pre- and post-operatively. The 17 patients were followed up for 12-34 months (mean 20.1 months). The angle between the long axes of the talus and first metatarsal and the hindfoot angle measured in a hindfoot alignment view (as described by Saltzman) were reduced from 5.4° ± 1.8° and 8.2° ± 2.6° preoperatively to 4.0° ± 0.9° and 5.3° ± 1.3° postoperatively, respectively. The mean AOFAS ankle-hindfoot score was 76.8 ± 7.0 preoperatively and 94.1 ± 3.3 at the last follow-up visit. Ten patients were scored as excellent, six as good, and one as fair. Pain was relieved in all patients and no patients had recurrent deltoid ligament injury. Using suture anchors to treat chronic deltoid ligament injury has relatively satisfactory outcomes. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  10. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    Science.gov (United States)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  11. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    Science.gov (United States)

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  12. Invisible Injuries: The Experiences of College Students with Histories of Mild Traumatic Brain Injury

    Science.gov (United States)

    Childers, Carrie; Hux, Karen

    2016-01-01

    This qualitative study explored the college life phenomenon as experienced by students with mild traumatic brain injury (MTBI). Previous research about such students has focused on topics including study strategy use, access of support services, and insights from caregivers or instructors. However, little attention has been paid to the perceptions…

  13. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  14. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury.

    Science.gov (United States)

    Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome

    2017-12-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Factors contributing to outcome following traumatic brain injury.

    Science.gov (United States)

    Ponsford, Jennie

    2013-01-01

    Traumatic brain injury results in some distinctive patterns of cognitive, behavioural and physical impairment which impact significantly on independent living skills and participation in work or study, social and leisure activities and interpersonal relationships. There is, however, still considerable variability in outcome across individuals in each of the reported domains. This has led to a significant body of research examining factors associated with outcome. A range of injury-related, personal and social factors have been shown to influence survival, as well as cognitive, functional and employment outcome. This paper reviews the factors associated with each of these aspects of outcome specifically injury-related factors, including neuroimaging findings, GCS and PTA, other injuries, and cognitive and behavioural impairments; demographic factors, including age, gender, genetic status, education, pre-injury IQ and employment status; and social factors including family and other social support, cultural factors, pre-injury psychiatric history and coping style. The paper identifies contributions and complex interrelationships of all of these factors to outcome following TBI. It concludes with a brief discussion of the implications of these factors for the rehabilitation process.

  16. Touch-screen computerized education for patients with brain injuries.

    Science.gov (United States)

    Patyk, M; Gaynor, S; Kelly, J; Ott, V

    1998-01-01

    The use of computer technology for patient education has increased in recent years. This article describes a study that measures the attitudes and perceptions of healthcare professionals and laypeople regarding the effectiveness of a multimedia computer, the Brain Injury Resource Center (BIRC), as an educational tool. The study focused on three major themes: (a) usefulness of the information presented, (b) effectiveness of the multimedia touch-screen computer methodology, and (c) the appropriate time for making this resource available. This prospective study, conducted in an acute care medical center, obtained healthcare professionals' evaluations using a written survey and responses from patients with brain injury and their families during interviews. The findings have yielded excellent ratings as to the ease of understanding and usefulness of the BIRC. By using sight, sound, and touch, such a multimedia learning center has the potential to simplify patient and family education.

  17. Prevalence and Predictors of Personality Change After Severe Brain Injury

    DEFF Research Database (Denmark)

    Norup, Anne; Mortensen, Erik Lykke

    2015-01-01

    of the Medical Outcomes Study 36-Item Short-Form Health Survey. Results Of the sample, 59.1% experienced personality change after acquired brain injury, and the most dominant changes were observed in the personality traits of neuroticism, extraversion, and conscientiousness. Changes in neuroticism were most......Objectives To investigate the prevalence of personality change after severe brain injury; to identify predictors of personality change; and to investigate whether personality change is associated with distress in family members. Design A longitudinal study of personality change. Setting...... often observed in patients with frontal or temporal lesions. Generally, personality changes in patients were not associated with more distress and lower HRQOL in family members; however, change in patient agreeableness was associated with lower HRQOL on the role limitations-emotional scale. Conclusions...

  18. Outcomes in nursing home patients with traumatic brain injury.

    Science.gov (United States)

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with

  19. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Directory of Open Access Journals (Sweden)

    Prasad Shirvalkar

    2018-03-01

    Full Text Available Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1 identifying biomarkers of the subjective pain experience and (2 integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment.

  20. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  1. Direct cost associated with acquired brain injury in Ontario

    Directory of Open Access Journals (Sweden)

    Chen Amy

    2012-08-01

    Full Text Available Abstract Background Acquired Brain Injury (ABI from traumatic and non traumatic causes is a leading cause of disability worldwide yet there is limited research summarizing the health system economic burden associated with ABI. The objective of this study was to determine the direct cost of publicly funded health care services from the initial hospitalization to three years post-injury for individuals with traumatic (TBI and non-traumatic brain injury (nTBI in Ontario Canada. Methods A population-based cohort of patients discharged from acute hospital with an ABI code in any diagnosis position in 2004 through 2007 in Ontario was identified from administrative data. Publicly funded health care utilization was obtained from several Ontario administrative healthcare databases. Patients were stratified according to traumatic and non-traumatic causes of brain injury and whether or not they were discharged to an inpatient rehabilitation center. Health system costs were calculated across a continuum of institutional and community settings for up to three years after initial discharge. The continuum of settings included acute care emergency departments inpatient rehabilitation (IR complex continuing care home care services and physician visits. All costs were calculated retrospectively assuming the government payer’s perspective. Results Direct medical costs in an ABI population are substantial with mean cost in the first year post-injury per TBI and nTBI patient being $32132 and $38018 respectively. Among both TBI and nTBI patients those discharged to IR had significantly higher treatment costs than those not discharged to IR across all institutional and community settings. This tendency remained during the entire three-year follow-up period. Annual medical costs of patients hospitalized with a brain injury in Ontario in the first follow-up year were approximately $120.7 million for TBI and $368.7 million for nTBI. Acute care cost accounted for 46

  2. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  3. [International multicenter studies of treatment of severe traumatic brain injury].

    Science.gov (United States)

    Talypov, A E; Kordonsky, A Yu; Krylov, V V

    2016-01-01

    Despite the introduction of new diagnostic and therapeutic methods, traumatic brain injury (TBI) remains one of the leading cause of death and disability worldwide. Standards and recommendations on conservative and surgical treatment of TBI patients should be based on concepts and methods with proven efficacy. The authors present a review of studies of the treatment and surgery of severe TBI: DECRA, RESCUEicp, STITCH(TRAUMA), CRASH, CRASH-2, CAPTAIN, NABIS: H ll, Eurotherm 3235. Important recommendations of the international group IMPACT are considered.

  4. Isolated medulla oblongata function after severe traumatic brain injury

    OpenAIRE

    Wijdicks, E; Atkinson, J; Okazaki, H

    2001-01-01

    The objective was to report the first pathologically confirmed case of partly functionally preserved medulla oblongata in a patient with catastrophic traumatic brain injury.
A patient is described with epidural haematoma with normal breathing and blood pressure and a retained coughing reflex brought on only by catheter suctioning of the carina. Multiple contusions in the thalami and pons were found but the medulla oblongata was spared at necropsy. 
In conclusion, medulla oblong...

  5. Synergistic Mechanisms Between Traumatic Brain Injury and Migraine

    Science.gov (United States)

    2016-08-01

    Departmental seminar series), as well as locally at a Chicago chapter Society for Neuroscience conference. We will also present our studies in a poster to...We have started a collaboration with a MD from the local VA hospital. Dr. Joanne Tobacman is a specialist in brain extracellular matrix and...neurological diseases. She will examine tissue from the site of injury from mTBI mice and determine if there are any changes in extracellular matrix

  6. Socio-emotional behaviour following acquired brain injury

    OpenAIRE

    May, Michelle

    2014-01-01

    Introduction: Socio-emotional behaviour difficulties following acquired brain injury (ABI) have been shown to have a persisting negative effect on quality of life. A systematic review was carried out to look at the efficacy and clinical effectiveness of available psychological treatments for socio-emotional behaviour difficulties following ABI. Research was carried out to further understand socio-emotional behaviour by exploring the possible underlying cognitive aspects (specif...

  7. Neonatal hypoglycemic brain injury is a cause of infantile spasms

    OpenAIRE

    YANG, GUANG; ZOU, LI-PING; WANG, JING; SHI, XIUYU; TIAN, SHUPING; YANG, XIAOFAN; JU, JUN; YAO, HONGXIANG; LIU, YUJIE

    2016-01-01

    Neonatal hypoglycemic brain injury is one of the causes of infantile spasms. In the present study, the clinical history and auxiliary examination results of 18 patients who developed infantile spasms several months after neonatal hypoglycemia were retrospectively analyzed. Among the 666 patients with infantile spasms admitted to two pediatric centers between January 2008 and October 2012, 18 patients developed infantile spasms after being diagnosed with neonatal hypoglycemia, defined as a who...

  8. Clinimetrics and functional outcome one year after traumatic brain injury

    OpenAIRE

    Baalen, Bianca

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic lateral sclerosis (ALS), and TBI. Frequently used measurement instruments were tested at different moments on their reliability and sensitivity to change. At the moment of discharge from hospital a r...

  9. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris

    2006-11-01

    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  10. Acromegaly resolution after traumatic brain injury: a case report

    OpenAIRE

    Cob, Alejandro

    2014-01-01

    Introduction Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likel...

  11. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  12. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  13. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  14. Coping and emotional adjustment following traumatic brain injury.

    Science.gov (United States)

    Anson, Katie; Ponsford, Jennie

    2006-01-01

    To examine the association between coping style and emotional adjustment following traumatic brain injury. Thirty three individuals who had sustained a traumatic brain injury (mean duration of posttraumatic amnesia = 32 days) between 1(1/2) months and almost 7 years previously. Coping Scale for Adults, Hospital Anxiety and Depression Scale, Rosenberg Self-Esteem Scale, State-Trait Anger Expression Inventory, and the Sickness Impact Profile. Approximately 50% of the sample reported clinically significant levels of anxiety and depression. Coping characterized by avoidance, worry, wishful thinking, self-blame, and using drugs and alcohol was associated with higher levels of anxiety, depression, and psychosocial dysfunction and lower levels of self-esteem. Coping characterized by actively working on the problem and using humor and enjoyable activities to manage stress was associated with higher self-esteem. Lower premorbid intelligence (measured via the National Adult Reading Test) and greater self-awareness (measured via the Self-Awareness of Deficits Interview) were associated with an increased rate of maladaptive coping. The strong association between the style of coping used to manage stress and emotional adjustment suggests the possibility that emotional adjustment might be improved by the facilitation of more adaptive coping styles. It is also possible that improving emotional adjustment may increase adaptive coping. The development and evaluation of interventions aimed at facilitating adaptive coping and decreasing emotional distress represent important and potentially fruitful contributions to enhancing long-term outcome following brain injury.

  15. Brain MRI changes in chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Skehan, S. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Norris, S. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Hegarty, J. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Owens, A. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); MacErlaine, D. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland)

    1997-08-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs.

  16. Brain MRI changes in chronic liver disease

    International Nuclear Information System (INIS)

    Skehan, S.; Norris, S.; Hegarty, J.; Owens, A.; MacErlaine, D.

    1997-01-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs

  17. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  19. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  20. Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan: 2001-2006

    Science.gov (United States)

    2010-08-31

    and hemorrhage. Hemorrhage is further divided into epidural hematoma , subdural hematoma , and intracerebral hematoma . Diffuse brain injuries...fiber Brain Injury Focal Injuries Contusion Laceration Hemorrhage Epidural Hematoma Subdural Hematoma Intracerebral Hematoma Diffuse

  1. Comorbidity of Headache and Depression After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Lucas, Sylvia; Smith, Brendon M; Temkin, Nancy; Bell, Kathleen R; Dikmen, Sureyya; Hoffman, Jeanne M

    2016-02-01

    To examine headache and depression over time in individuals who sustained mild traumatic brain injury (mTBI). Prevalence of headache and depression early after mTBI and at 1 year postinjury as well as the relationship between the two are evaluated. Headache is the most common physical symptom and depression is among the most common psychiatric diagnosis after traumatic brain injury regardless of severity. Headache and depression have been found to be two independent factors related to poor outcome after mTBI, yet there appears to be a paucity of research exploring the comorbidity of these two conditions after injury. Longitudinal survey design over 1 year of 212 participants with mTBI who were admitted to a Level 1 trauma center for observation or other system injuries. Depression was based on a score ≥10 on the Patient Health Questionnaire-9. Headache was based on participant report of new or worse-than-preinjury headache since hospitalization (baseline) or within the previous 3 months at 1 year postinjury. The prevalence of headache and depression at baseline was 64% (135/212) and 15% (31/212), respectively. The prevalence of headache and depression at 1 year was 68% (127/187) and 27% (50/187), respectively. The co-occurrence of headache and depression increased from 11% (23/212) at baseline to 25% (46/187) at 1 year. At 1 year, the risk ratio of individuals who had headache to be depressed was 5.43 (95% CI 2.05-14.40) compared to those without headache (P headache is consistently high over the first year after injury, rate of depression increased over the first year for those who were followed. Given the high rate of comorbidity, those with headache may develop depression over time. Evaluation for possible depression in those with headache after mTBI should be conducted to address both conditions over the year following injury. © 2016 American Headache Society.

  2. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury

    OpenAIRE

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-01-01

    Abstract Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET). We consecutively enrolled 11 patients with FOG after HIBI. The patients’ overall brain metabolism was measured by F-18 FDG PET, and we co...

  3. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury - randomized prospective trial.

    Directory of Open Access Journals (Sweden)

    Rahav Boussi-Gross

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments.The trial population included 56 mTBI patients 1-5 years after injury with prolonged post-concussion syndrome (PCS. The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week, 60 minutes each, with 100% oxygen at 1.5 ATA. "Mindstreams" was used for cognitive evaluations, quality of life (QOL was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements.HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage.ClinicalTrials.gov NCT00715052.

  4. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury - randomized prospective trial.

    Science.gov (United States)

    Boussi-Gross, Rahav; Golan, Haim; Fishlev, Gregori; Bechor, Yair; Volkov, Olga; Bergan, Jacob; Friedman, Mony; Hoofien, Dan; Shlamkovitch, Nathan; Ben-Jacob, Eshel; Efrati, Shai

    2013-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. The trial population included 56 mTBI patients 1-5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. "Mindstreams" was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. ClinicalTrials.gov NCT00715052.

  5. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain

    Directory of Open Access Journals (Sweden)

    Sahil Bajaj

    2017-11-01

    Full Text Available Mild traumatic brain injury (mTBI is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion and anisotropic fashion (i.e., quantitative anisotropy, QA for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo on the amount of water diffusion (QA for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

  6. Clinical treatment of traumatic brain injury complicated by cranial nerve injury.

    Science.gov (United States)

    Jin, Hai; Wang, Sumin; Hou, Lijun; Pan, Chengguang; Li, Bo; Wang, Hui; Yu, Mingkun; Lu, Yicheng

    2010-09-01

    To discuss the epidemiology, diagnosis and surgical treatment of cranial nerve injury following traumatic brain injury (TBI) for the sake of raising the clinical treatment of this special category of TBI. A retrospective analysis was made of 312 patients with cranial nerve injury among 3417 TBI patients, who were admitted for treatment in this hospital. A total of 312 patients (9.1%) involving either a single nerve or multiple nerves among the 12 pairs of cranial nerves were observed. The extent of nerve injury varied and involved the olfactory nerve (66 cases), optic nerve (78 cases), oculomotor nerve (56 cases), trochlear nerve (8 cases), trigeminal nerve (4 cases), abducent nerve (12 cases), facial nerve (48 cases), acoustic nerve (10 cases), glossopharyngeal nerve (8 cases), vagus nerve (6 cases), accessory nerve (10 cases) and hypoglossal nerve (6 cases). Imaging examination revealed skull fracture in 217 cases, complicated brain contusion in 232 cases, epidural haematoma in 194 cases, subarachnoid haemorrhage in 32 cases, nasal cerebrospinal fluid (CSF) leakage in 76 cases and ear CSF leakage in 8 cases. Of the 312 patients, 46 patients died; the mortality rate associated with low cranial nerve injury was as high as 73.3%. Among the 266 surviving patients, 199 patients received conservative therapy and 67 patients received surgical therapy; the curative rates among these two groups were 61.3% (122 patients) and 86.6% (58 patients), respectively. TBI-complicated cranial nerve injury is subject to a high incidence rate, a high mortality rate and a high disability rate. Our findings suggest that the chance of recovery may be increased in cases where injuries are amenable to surgical decompression. It is necessary to study all 12 pairs of cranial nerves systematically. Clinically, it is necessary to standardise surgical indications, operation timing, surgical approaches and methods for the treatment of TBI-complicated cranial nerve injury. 2010 Elsevier Ltd. All

  7. ECONOMIC LOSSES CAUSED BY TRAUMATIC BRAIN INJURY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    S. A. Valiulina

    2015-01-01

    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  8. Pattern of brain injury and depressed heart rate variability in newborns with hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N

    2017-09-01

    BackgroundDecreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern using magnetic resonance imaging (MRI) in newborns with HIE undergoing therapeutic hypothermia.MethodsHRV metrics were quantified in the time domain (α S , α L , and root mean square at short (RMS S ) and long (RMS L ) timescales) and frequency domain (relative low-(LF) and high-frequency (HF) power) over 24-27 h of life. The brain injury pattern shown by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal ganglia injury, predominant basal ganglia or global injury, and death. HRV metrics were compared across brain injury pattern groups using a random-effects mixed model.ResultsData from 74 infants were analyzed. Brain injury pattern was significantly associated with the degree of HRV suppression. Specifically, negative associations were observed between the pattern of brain injury and RMS S (estimate -0.224, SE 0.082, P=0.006), RMS L (estimate -0.189, SE 0.082, P=0.021), and LF power (estimate -0.044, SE 0.016, P=0.006).ConclusionDegree of HRV depression is related to the pattern of brain injury. HRV monitoring may provide insights into the pattern of brain injury at the bedside.

  9. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    International Nuclear Information System (INIS)

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-01-01

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull

  10. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  11. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  12. Narrative discourse in children with early focal brain injury.

    Science.gov (United States)

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  13. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  14. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

  15. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  16. Characteristics of Firearm Brain Injury Survivors in the Traumatic Brain Injury Model Systems (TBIMS) National Database: A Comparison of Assault and Self-Inflicted Injury Survivors.

    Science.gov (United States)

    Bertisch, Hilary; Krellman, Jason W; Bergquist, Thomas F; Dreer, Laura E; Ellois, Valerie; Bushnik, Tamara

    2017-11-01

    To characterize and compare subgroups of survivors with assault-related versus self-inflicted traumatic brain injuries (TBIs) via firearms at the time of inpatient rehabilitation and at 1-, 2-, and 5-year follow-up. Secondary analysis of data from the Traumatic Brain Injury Model Systems National Database (TBIMS NDB), a multicenter, longitudinal cohort study. Retrospective analyses of a subset of individuals enrolled in the TBIMS NDB. Individuals 16 years and older (N=399; 310 via assault, 89 via self-inflicted injury) with a primary diagnosis of TBI caused by firearm injury enrolled in the TBIMS NDB. Not applicable. Disability Rating Scale, Glasgow Outcome Scale-Extended, sociodemographic variables (sex, age, race, marital status), injury-related/acute care information (posttraumatic amnesia, loss of consciousness, time from injury to acute hospital discharge), and mental health variables (substance use history, psychiatric hospitalizations, suicide history, incarcerations). Individuals who survived TBI secondary to a firearm injury differed by injury mechanism (assault vs self-inflicted) on critical demographic, injury-related/acute care, and mental health variables at inpatient rehabilitation and across long-term recovery. Groups differed in terms of geographic area, age, ethnicity, education, marital status, admission Glasgow Coma Scale score, and alcohol abuse, suicide attempts, and psychiatric hospitalizations at various time points. These findings have implications for prevention (eg, mental health programming and access to firearms in targeted areas) and for rehabilitation planning (eg, by incorporating training with coping strategies and implementation of addictions-related services) for firearm-related TBI, based on subtype of injury. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid

    2017-01-01

    BACKGROUND: Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [(18)F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. NEW METHOD......: The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering...... from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [(18)F]FDG-PET scan and venous blood sampling. RESULTS: Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI...

  18. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    Science.gov (United States)

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  19. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  20. Caring for a family member with a traumatic brain injury.

    Science.gov (United States)

    Knight, R G; Devereux, R; Godfrey, H P

    1998-06-01

    The responses to a questionnaire on subjective burden are reported for 52 primary caregivers of a group of persons with traumatic brain injuries sustained an average of 6 years previously. The aim of the study was to examine satisfaction with social support, perception of coping skills, and appraisal of symptoms as predictors of strain in the carers. A range of responses, both positive and negative, to the work of caring for a relative with a head injury was reported. A high prevalence rate of emotional and behavioural changes in the persons with head injuries was found and the amount of distress caused by these symptoms was found to be predictive of burden. The other factor important in predicting burden was the carers' ratings of their satisfaction with their ability to cope with the work of caregiving. Social support, injury severity, and the demographic characteristics of the persons with head injury and their carers were not significant predictors. Depression in the carers was also investigated and the variable most predictive of elevated depression scores was coping satisfaction. These findings reinforce the importance of strengthening carers coping resources in rehabilitation work with head injured persons and their families.

  1. Peripheral nervous system involvement in chronic spinal cord injury

    DEFF Research Database (Denmark)

    Tankisi, Hatice; Pugdahl, Kirsten; Rasmussen, Mikkel Mylius

    2015-01-01

    Introduction: Upper motor neuron disorders are believed to leave the peripheral nervous system (PNS) intact. In this study we examined whether there is evidence of PNS involvement in spinal cord injury (SCI). Methods: Twelve subjects with chronic low cervical or thoracic SCI were included......), and the amount of SA correlated inversely with reflex activity and nerve length. Fibular nerve entrapment across the knee was seen in 6 subjects, and sciatic nerve entrapment was seen in 1. Apart from entrapment neuropathies, NCS changes were found predominantly in motor nerves. Conclusion: The presence...

  2. Cost prediction following traumatic brain injury: model development and validation.

    Science.gov (United States)

    Spitz, Gershon; McKenzie, Dean; Attwood, David; Ponsford, Jennie L

    2016-02-01

    The ability to predict costs following a traumatic brain injury (TBI) would assist in planning treatment and support services by healthcare providers, insurers and other agencies. The objective of the current study was to develop predictive models of hospital, medical, paramedical, and long-term care (LTC) costs for the first 10 years following a TBI. The sample comprised 798 participants with TBI, the majority of whom were male and aged between 15 and 34 at time of injury. Costing information was obtained for hospital, medical, paramedical, and LTC costs up to 10 years postinjury. Demographic and injury-severity variables were collected at the time of admission to the rehabilitation hospital. Duration of PTA was the most important single predictor for each cost type. The final models predicted 44% of hospital costs, 26% of medical costs, 23% of paramedical costs, and 34% of LTC costs. Greater costs were incurred, depending on cost type, for individuals with longer PTA duration, obtaining a limb or chest injury, a lower GCS score, older age at injury, not being married or defacto prior to injury, living in metropolitan areas, and those reporting premorbid excessive or problem alcohol use. This study has provided a comprehensive analysis of factors predicting various types of costs following TBI, with the combination of injury-related and demographic variables predicting 23-44% of costs. PTA duration was the strongest predictor across all cost categories. These factors may be used for the planning and case management of individuals following TBI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Biomarkers of brain injury in neonatal encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Chang, Taeun; Kadom, Nadja; Tsuchida, Tammy; Scafidi, Joseph; Glass, Penny; McCarter, Robert; Baumgart, Stephen; Vezina, Gilbert; Nelson, Karin B

    2012-09-01

    To determine if early serum S100B and neuron-specific enolase (NSE) levels are associated with neuroradiographic and clinical evidence of brain injury in newborns with encephalopathy. Patients who received therapeutic whole-body hypothermia were prospectively enrolled in this observational study. Serum specimens were collected at 0, 12, 24, and 72 hours of cooling. S100B and NSE levels were measured by enzyme linked immunosorbent assay. Magnetic resonance imaging was performed in surviving infants at 7-10 days of life. Standardized neurologic examination was performed by a child neurologist at 14 days of life. Multiple linear regression analyses were performed to evaluate the association between S100B and NSE levels and unfavorable outcome (death or severe magnetic resonance imaging injury/significant neurologic deficit). Cutoff values were determined by receiver operating curve analysis. Newborns with moderate to severe encephalopathy were enrolled (n = 75). Median pH at presentation was 6.9 (range, 6.5-7.35), and median Apgar scores of 1 at 1 minute, 3 at 5 minutes, and 5 at 10 minutes. NSE and S100B levels were higher in patients with unfavorable outcomes across all time points. These results remained statistically significant after controlling for covariables, including encephalopathy grade at presentation, Apgar score at 5 minutes of life, initial pH, and clinical seizures. Elevated serum S100B and NSE levels measured during hypothermia were associated with neuroradiographic and clinical evidence of brain injury in encephalopathic newborns. These brain-specific proteins may be useful immediate biomarkers of cerebral injury severity. Copyright © 2012 Mosby, Inc. All rights reserved.

  4. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  5. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  6. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    Science.gov (United States)

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  7. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  8. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.

    Science.gov (United States)

    Barrio, Jorge R; Small, Gary W; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A; Giza, Christopher C; Fitzsimmons, Robert P; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-04-21

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.

  9. Improving outcome after traumatic brain injury--progress and challenges.

    Science.gov (United States)

    Gentleman, D

    1999-01-01

    This article describes the rapid advances in the head injury field which have taken place within the professional lifetime of many doctors in practice today. These have led to a better understanding of what happens in the injured brain and how these events might be manipulated to achieve better outcomes. Clinical tools we now take for granted, like the CT scanner and the Glasgow Coma Scale, were new developments 25 years ago. They provided a foundation on which clinicians and basic scientists could build what we now know: what to assess in the patient, how to respond to certain findings, what imaging to do, how to plan treatment rationally, how to minimise brain damage at different stages after injury, how to predict and measure outcome, what disabled survivors need, and how to organise the service to do the greatest good for the most people. Some of these topics raise as many questions as answers. The head injury field may be broad but it has essential unity. At one extreme, some patients have a life-threatening illness where the acts and omissions of the clinical team can powerfully influence not only survival but its quality. Later the drama of the acute phase gives way to the 'hidden disabilities' of the long-term deficits which so many survivors have. At the other end of the severity spectrum is the relatively vast number of people who suffer an apparently mild head injury, a few of whom deteriorate and need urgent treatment, and many of whom have unspectacular but, nevertheless, disabling problems. The article attempts to address this broad canvas. Clinicians, neuroscientists, policy makers, and service users must work together to address the major scientific, individual, and population challenges posed by head injury. Much has already been achieved, but much remains to be done, especially in translating 'what we know' into 'what we do'.

  10. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  11. MMPI-2 profiles 23 years after paediatric mild traumatic brain injury.

    Science.gov (United States)

    Hessen, Erik; Anderson, Vicki; Nestvold, Knut

    2008-01-01

    Research suggest that post-concussive syndrome after mild traumatic brain injury (mTBI) is more common than chronic cognitive impairment. The aim of this study was to investigate very long-term outcome of subjective complaints after paediatric mTBI. The study was a follow-up 23 years after a prospective head injury study at a general hospital in Norway. Forty-one patients were assessed with the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) 23 years after sustaining mTBI as children. A good overall outcome was found with scores close to the normative mean, average length of education and normal employment rate. However, the children that sustained complicated mTBI showed slightly more pathological scores, typical for mild post-concussive syndrome. The most important predictors of poor outcome were skull fracture and a combination of post-traumatic amnesia > 30 minutes and EEG pathology within 24 hours after TBI. No influence of pre- and post-injury risk factors on current MMPI-2 profiles was evident. The results give support for the notion of potentially differential impact of uncomplicated vs complicated mTBI. The findings suggest that children and adolescents sustaining complicated mTBI may be at risk of developing subtle chronic symptoms typical of post-concussive syndrome.

  12. Corticobulbar tract changes as predictors of dysarthria in childhood brain injury.

    Science.gov (United States)

    Liégeois, Frédérique; Tournier, Jacques-Donald; Pigdon, Lauren; Connelly, Alan; Morgan, Angela T

    2013-03-05

    To identify corticobulbar tract changes that may predict chronic dysarthria in young people who have sustained a traumatic brain injury (TBI) in childhood using diffusion MRI tractography. We collected diffusion-weighted MRI data from 49 participants. We compared 17 young people (mean age 17 years, 10 months; on average 8 years postinjury) with chronic dysarthria who sustained a TBI in childhood (range 3-16 years) with 2 control groups matched for age and sex: 1 group of young people who sustained a traumatic injury but had no subsequent dysarthria (n = 15), and 1 group of typically developing individuals (n = 17). We performed tractography from spherical seed regions within the precentral gyrus white matter to track: 1) the hand-related corticospinal tract; 2) the dorsal corticobulbar tract, thought to correspond to the lips/larynx motor representation; and 3) the ventral corticobulbar tract, corresponding to the tongue representation. Despite widespread white matter damage, radial (perpendicular) diffusivity within the left dorsal corticobulbar tract was the best predictor of the presence of dysarthria after TBI. Diffusion metrics in this tract also predicted speech and oromotor performance across the whole group of TBI participants, with additional significant contributions from ventral speech tract volume in the right hemisphere. An intact left dorsal corticobulbar tract seems crucial to the normal execution of speech long term after acquired injury. Examining the speech-related motor pathways using diffusion-weighted MRI tractography offers a promising prognostic tool for people with acquired, developmental, or degenerative neurologic conditions likely to affect speech.

  13. An overview of attention deficits after paediatric traumatic brain injury.

    Science.gov (United States)

    Ginstfeldt, Tim; Emanuelson, Ingrid

    2010-01-01

    Attention could be categorized into sustained, selective, shifting, divided and attention span. The primary objective was to evaluate the type of attention deficits that occurs after paediatric traumatic brain injury. Keywords were used such as 'attention', 'child', 'traumatic', 'brain' and 'injury' on MEDLINE articles published in 1991-2009. Articles found through MEDLINE were manually cross-referenced. Out of the examined categorizes, divided and sustained attention seem to be the most vulnerably, frequently displaying deficits in the children with TBI. Attention span seemed to be the most resistant and the shifting and selective categories falling somewhere in between. Most of the recovery is expected within the first year post-injury, even if some individuals continue to improve for years, and deficits often persist into adulthood. The attention domains are not affected to the same extent by TBI and this should be taken into consideration when evaluating a child. The commonly used tests also seem to differ in how sensitive they are in detecting deficits. The definition of attention domains and TBI would benefit to be stricter and agreed upon, to further facilitate research and rehabilitation programmes.

  14. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Nikki; Donald, Cortny; Skora, Amanda [Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia); Reed, Warren, E-mail: warren.reed@sydney.edu.au [Medical Image Optimisation and Perception Group, Discipline of Medical Radiation Sciences, The University of Sydney, Lidcombe, New South Wales (Australia)

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  15. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    International Nuclear Information System (INIS)

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-01-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings

  16. Racial differences in employment outcomes after traumatic brain injury.

    Science.gov (United States)

    Arango-Lasprilla, Juan Carlos; Ketchum, Jessica M; Williams, Kelli; Kreutzer, Jeffrey S; Marquez de la Plata, Carlos D; O'Neil-Pirozzi, Therese M; Wehman, Paul

    2008-05-01

    To examine racial differences in employment status and occupational status 1 year after a traumatic brain injury (TBI). Retrospective study. Longitudinal dataset of the Traumatic Brain Injury Model Systems national database. Subjects with primarily moderate to severe TBI (3468 whites vs 1791 minorities) hospitalized between 1989 and 2005. Not applicable. Employment status (competitively employed or unemployed) and occupational status (professional/managerial, skilled, or manual labor) at 1 year postinjury. Race and/or ethnicity has a significant effect on employment status at 1 year postinjury (chi(1)(2)=58.23, Pstatus, sex, Disability Rating Scale at discharge, marital status, cause of injury, age, and education. The adjusted odds of being unemployed versus competitively employed are 2.17 times (95% confidence interval, 1.78-2.65) greater for minorities than for whites. Race and ethnicity does not have a significant effect on occupational status at 1 year postinjury. With this empirical evidence supporting racial differences in employment outcomes between minorities and whites at 1 year postinjury, priority should be given to tailoring interventions to maximize minority survivors' work-related productivity.

  17. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  18. Fatal Hyperammonemic Brain Injury from Valproic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Danny Bega

    2012-12-01

    Full Text Available Background: Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. Case: A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 µmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Conclusion: Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate. Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  19. Hippotherapy in adult patients with chronic brain disorders: a pilot study.

    Science.gov (United States)

    Sunwoo, Hyuk; Chang, Won Hyuk; Kwon, Jeong-Yi; Kim, Tae-Won; Lee, Ji-Young; Kim, Yun-Hee

    2012-12-01

    To investigate the effects of hippotherapy for adult patients with brain disorders. Eight chronic brain disorder patients (7 males, mean age 42.4±16.6 years) were recruited. The mean duration from injury was 7.9±7.7 years. The diagnoses were stroke (n=5), traumatic brain disorder (n=2), and cerebral palsy (n=1). Hippotherapy sessions were conducted twice a week for eight consecutive weeks in an indoor riding arena. Each hippotherapy session lasted 30 minutes. All participants were evaluated by the Berg balance scale, Tinetti Performance-Oriented Mobility Assessment, 10 Meter Walking Test, Functional Ambulatory Category, Korean Beck Depression Inventory, and Hamilton Depression Rating Scale. We performed baseline assessments twice just before starting hippotherapy. We also assessed the participants immediately after hippotherapy and at eight weeks after hippotherapy. All participants showed no difference in balance, gait function, and emotion between the two baseline assessments before hippotherapy. During the eight-week hippotherapy program, all participants showed neither adverse effects nor any accidents; all had good compliance. After hippotherapy, there were significant improvements in balance and gait speed in comparison with the baseline assessment (phippotherapy. However, there was no significant difference in emotion after hippotherapy. We could observe hippotherapy to be a safe and effective alternative therapy for adult patients with brain disorders in improving balance and gait function. Further future studies are warranted to delineate the benefits of hippotherapy on chronic stroke patients.

  20. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy.

    Science.gov (United States)

    Stern, Robert A; Riley, David O; Daneshvar, Daniel H; Nowinski, Christopher J; Cantu, Robert C; McKee, Ann C

    2011-10-01

    Chronic traumatic encephalopathy (CTE) has been linked to participation in contact sports such as boxing and American football. CTE results in a progressive decline of memory and cognition, as well as depression, suicidal behavior, poor impulse control, aggressiveness, parkinsonism, and, eventually, dementia. In some individuals, it is associated with motor neuron disease, referred to as chronic traumatic encephalomyelopathy, which appears clinically similar to amyotrophic lateral sclerosis. Results of neuropathologic research has shown that CTE may be more common in former contact sports athletes than previously believed. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, is responsible for neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and TDP-43 proteins. Given the millions of youth, high school, collegiate, and professional athletes participating in contact sports that involve repetitive brain trauma, as well as military personnel exposed to repeated brain trauma from blast and other injuries in the military, CTE represents an important public health issue. Focused and intensive study of the risk factors and in vivo diagnosis of CTE will potentially allow for methods to prevent and treat these diseases. Research also will provide policy makers with the scientific knowledge to make appropriate guidelines regarding the prevention and treatment of brain trauma in all levels of athletic involvement as well as the military theater. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  1. Are boys and girls that different? An analysis of traumatic brain injury in children.

    LENUS (Irish Health Repository)

    Collins, Niamh C

    2013-08-01

    The Phillips Report on traumatic brain injury (TBI) in Ireland found that injury was more frequent in men and that gender differences were present in childhood. This study determined when gender differences emerge and examined the effect of gender on the mechanism of injury, injury type and severity and outcome.

  2. Experienced emotional burden in caregivers: psychometric properties of the Involvement Evaluation Questionnaire in caregivers of brain injured patients

    NARCIS (Netherlands)

    Geurtsen, Gert J.; Meijer, Ron; van Heugten, Caroline M.; Martina, Juan D.; Geurts, Alexander C. H.

    2010-01-01

    To examine the psychometric properties (internal consistency, discriminant validity, and responsiveness) of the Involvement Evaluation Questionnaire for Brain Injury measuring emotional burden in caregivers of patients with chronic acquired brain injury. Inception cohort study. Caregivers of chronic

  3. Factors affecting radiation injury after interstitial brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Leibel, S.A.; Gutin, P.H.; Davis, R.L.

    1991-01-01

    The effects of brachytherapy on normal brain tissue are not easily delineated in the clinical setting because of the presence of concurrent radiation-induced changes in the coexistent brain tumor. Sequential morphologic studies performed after the implantation of radioactive sources into the brains of experimental animals have provided a better understanding of the character and magnitude of the structural changes produced by interstitial irradiation on normal brain tissue. Furthermore, the clinical experience accumulated thus far provides not only relevant information, but also some guidelines for future treatment policies. In this paper, the authors summarize the experimental findings and review the pathologic and clinical features of brain injury caused by interstitial brachytherapy. A number of studies in the older literature examined the effects of radioisotopes such as radium-226 (38--43), radon-22 (44--46), gold-198 (29,47--50), tantalum-182 (29,51,52) yttrium-9- (50,53,54), and cobalt-60 (29,50,55). This review is restricted to low- and high-activity encapsulated iodine-125 ( 125 I) and iridium-192 ( 192 Ir), the isotopes that are most commonly used in current clinical practice

  4. Diagnostic terminology is not associated with contact-sport players' expectations of outcome from mild traumatic brain injury.

    Science.gov (United States)

    Edmed, Shannon L; Sullivan, Karen A

    2015-01-01

    To investigate the influence of the diagnostic terms 'concussion' and 'mild traumatic brain injury' (mTBI) on contact-sport players' injury perceptions and expected symptoms from a sport-related mTBI. It was hypothesized that contact-sport players would hold more negative injury perceptions and expect greater symptom disturbance from a sport-related injury that was diagnosed as an 'mTBI' compared to 'concussion' or an undiagnosed injury. One hundred and twenty-two contact-sport players were randomly allocated to one of three conditions in which they read a sport-related mTBI vignette that varied only according to whether the person depicted in the vignette was diagnosed with concussion (n = 40), mTBI (n = 41) or received no diagnosis (control condition; n = 41). After reading the vignette, participants rated their injury perceptions (perceived undesirability, chronicity and consequences) and expectations of post-concussion syndrome (PCS) and post-traumatic stress disorder (PTSD) symptoms 6 months post-injury. There were no significant differences in contact-sport players' injury perceptions or symptom expectations from a sport-related mTBI when it was diagnosed as an mTBI, concussion or when no diagnosis was given. Diagnostic terminology does not appear to have a potent influence on symptom expectation and injury perceptions in contact-sport players.

  5. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  6. Sleep disruption and the sequelae associated with traumatic brain injury.

    Science.gov (United States)

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. Published by Elsevier Ltd.

  7. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury...

  8. Mild Traumatic Brain Injury in U.S. Soldiers Returning from Iraq

    National Research Council Canada - National Science Library

    Hoge, Charles W; McGurk, Dennis; Thomas, Jeffrey L; Cox, Anthony L; Engel, Charles C; Castro, Carl A

    2008-01-01

    .... Validated clinical instruments were used to compare soldiers reporting mild traumatic brain injury, defined as an injury with loss of consciousness or altered mental status (e.g., dazed or confused...

  9. Cognitive, emotional and behavioral impairments following traumatic brain injury and the neuro-radiological diagnosis

    International Nuclear Information System (INIS)

    Shinoda, Jun; Asano, Yoshitaka

    2011-01-01

    Definition and diagnostic criteria in Japan of a high order brain functional impairment are explained and recent findings of the useful imaging for the criteria are discussed. The criteria of cognitive, emotional and behavioral impairments following brain injury (BI) defined by Ministry of Health, Labour and Welfare (MHLW) and National Rehabilitation Center for Persons with Disabilities contain 4 items of major symptoms, test findings, exclusion criteria and diagnosis. The criteria contain parts of diseases F04, F06 and F7 in ICD (International Classification of Diseases) 10, and conceivably correspond to such Western terms as the neuropsychological impairment, neurobehavioral impairment, cognitive disability and post-concussion syndrome. Head trauma is the major cause of BI and in the second item (test findings) of the diagnostic criteria above, imaging confirmation of the organic BI (mainly diffuse) is essential. For imaging technology of chronic diffuse injury, discussed are on findings of the structural MRI, diffusion tensor imaging (DTI), functional MRI; 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET); and single photon emission computed tomography (SPECT) with 99m Tc-ethyl-cysteinate dimmer and 123 I-iomazenil. Based on those findings, it is thought that the impairment of the high order brain functions by diffuse injury is caused by the dysfunction of the primarily injured region and by its consequent disorder of cingulated gyrus and frontal anterior medial region through disturbance of cerebral nerve transmission and control. It is also suggested that a part of the blast related mild traumatic BI in US ex-servicemen is caused by the light diffuse BI, which can only be identified by the fractional anisotropy-statistical parametric mapping image in DTI. Number of patients with the high order brain functional impairment is estimated to be about 300,000 in Japan, but only 1/3 of those are actually diagnosed to be of the disease. (T.T.)

  10. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  11. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  12. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    OpenAIRE

    Munakomi, Sunil; Bhattarai, Binod; Mohan Kumar, Bijoy

    2017-01-01

    Purpose: Despite the prevalence and cost of traumatic brain injury related disabilities, there is paucity in the literature on modern approaches to pharmacotherapy. Medications may promote recovery by enhancing some neurological functions without impacting others. Herein we discussed the role of bromocriptine in neurorehabilitation for patients with traumatic brain injury. Methods: A cohort comprising of 36 selective nonsurgical cases of traumatic brain injury in minimally conscious state ...

  13. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    Science.gov (United States)

    2016-02-01

    excised after severe brain injury . Experimental neurology 2004;190:192-203. 24. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative...Brain Injury PRINCIPAL INVESTIGATORs: Marc Diamond, MD CONTRACTING ORGANIZATION: Washington University, St Louis MO 63110 UT Southwestern, Dallas...of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-13-2-0016 5c. PROGRAM ELEMENT NUMBER 6

  14. The Neuropsychology of Traumatic Brain Injury: Looking Back, Peering Ahead.

    Science.gov (United States)

    Yeates, Keith Owen; Levin, Harvey S; Ponsford, Jennie

    2017-10-01

    The past 50 years have been a period of exciting progress in neuropsychological research on traumatic brain injury (TBI). Neuropsychologists and neuropsychological testing have played a critical role in these advances. This study looks back at three major scientific advances in research on TBI that have been critical in pushing the field forward over the past several decades: The advent of modern neuroimaging; the recognition of the importance of non-injury factors in determining recovery from TBI; and the growth of cognitive rehabilitation. Thanks to these advances, we now have a better understanding of the pathophysiology of TBI and how recovery from the injury is also shaped by pre-injury, comorbid, and contextual factors, and we also have increasing evidence that active interventions, including cognitive rehabilitation, can help to promote better outcomes. The study also peers ahead to discern two important directions that seem destined to influence research on TBI over the next 50 years: the development of large, multi-site observational studies and randomized controlled trials, bolstered by international research consortia and the adoption of common data elements; and attempts to translate research into health care and health policy by the application of rigorous methods drawn from implementation science. Future research shaped by these trends should provide critical evidence regarding the outcomes of TBI and its treatment, and should help to disseminate and implement the knowledge gained from research to the betterment of the quality of life of persons with TBI. (JINS, 2017, 23, 806-817).

  15. Neuropsychology of traumatic brain injury: An expert overview.

    Science.gov (United States)

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Cerebral sinus venous thrombosis in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Christina Mueller-Hoecker

    2016-04-01

    Full Text Available A 36-year-old, healthy man was admitted to the emergency department with a traumatic brain injury with an injury severity score of 25 points. The head computed tomography revealed a subarachnoidal, epidural hemorrhage as well as a fracture of the occipital calotte. Intracranial pressure (ICP management was installed according to the LUND concept. In the following scan an angiography revealed a thrombosis of the sinus sigmoideus and transversus. Located next to the fractured skull, the thrombosis was highly likely traumatic, caused by the head trauma. As there was only a little congestion of the blood flow, no lysis or thrombectomy was performed. To lower ICP, a craniectomy was performed. After seven days, mechanical ventilation was terminated. Four days later the patient was already stable enough to be discharged from the surgical itensive care unit.