WorldWideScience

Sample records for brain hemorrhage traumatic

  1. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha;

    2012-01-01

    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [...... [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  2. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S;

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury, and that this dysfu......Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury...

  3. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  4. Are Isofurans and Neuroprostanes Increased After Subarachnoid Hemorrhage and Traumatic Brain Injury?

    OpenAIRE

    Corcoran, Tomas B; Mas, Emilie; Barden, Anne E.; Durand, Thierry; Galano, Jean-Marie; Roberts, L. Jackson; Phillips, Michael; Ho, Kwok M.; Mori, Trevor A.

    2011-01-01

    Current diagnostic tools to assess neurological injury after aneurysmal subarachnoid hemorrhage (aSAH) and traumatic brain injury (TBI) have poor discriminatory abilities. Free radicals are associated with the pathophysiology of secondary damage after brain trauma. We examined cerebrospinal fluid (CSF) lipid markers of oxidative stress, isofurans (IsoFs), F4-neuroprostanes (F4-NeuroPs), and F2-isoprostanes (F2-IsoPs), in two case-controlled studies in patients with aSAH or severe TBI. Patient...

  5. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  6. Disseminated intravascular coagulation scores as predictors for progressive hemorrhage and neurological prognosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Yirui Sun; Jin Hu; Caihua Xi; Ersong Wang; Jianqing Wang; Yong Liu; Hua Liu; Qiang Yuan; Haijun Yao; Liangfu Zhou

    2011-01-01

    Coagulation abnormalities, such as disseminated intravascular coagulation (DIC), are associated with progressive hemcrrhagic injury (PHI) following head trauma.However, the exact relationship between coagulopathy and PHI remains unclear.The present study utilized a scoring system defined by the International Society of Thrombosis and Haemostasis to investigate whether a high DIC score is predictive for PHI.This study was a multicenter prospective design involving four hospitals, a 6-month observation, and follow-up.Of 352 traumatic brain injury (TBI) patients, serial CT scan indicated approximately one third of patients developed progressive hemorrhage, which was most frequently observed in the frontal, temporal, and orbitof rontal lobes of patients with brain contusion.PHI-positive patients exhibited poor prognosis, as indicated by prolonged length of hospital/intensive care unit stay and high mortality.More importantly, a DIC score after TBI, as well as patient age and sex, could serve as predictors for PHI.In addition, DIC scores were closely associated with injury severity.Therefore, the DIC scoring system facilitated early PHI diagnosis in TBI patients, and DIC scores might serve as a valuable predictor for TBI patients with PHI.Key Words: coagulopathy; disseminated intravascular coagulation; disseminated intravascular coagulation scoring; intracranial hemorrhage; progressive hemorrhagic injury; traumatic brain injury

  7. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted;

    2014-01-01

    of endothelial activation (E-selectin, Intercellular adhesion molecule [ICAM]-1), coagulation activation (prothrombin fragment 1 + 2), and natural anticoagulation (activated protein C [aPC]) were determined in serum and brain whole cell lysates. RESULTS: Serum levels of aPC were greater in the NS group (203 ± 30......). Circulating ICAM-1 levels were increased in the NS group (151 ± 9 ng/mL) compared with the HEX (100 ± 9 ng/mL; P coagulation, natural......BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related deaths. These insults disrupt coagulation and endothelial systems. This study investigated whether previously reported differences in lesion size and brain swelling during normal saline (NS...

  8. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  9. Early treatment with lyophilized plasma protects the brain in a large animal model of combined traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Sillesen, Martin;

    2013-01-01

    Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well as the assoc......Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well...

  10. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  11. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    OpenAIRE

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin; Hartings, Jed A.; Graf, Rudolf; Strong, Anthony John

    2010-01-01

    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic br...

  12. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  13. Protective effects of ω-3 PUFA on the second liver injury in rats with traumatic brain injury and hemorrhagic shock

    Institute of Scientific and Technical Information of China (English)

    许会彬

    2014-01-01

    Objective To investigate the effects of preconditioning withω-3 polyunsaturated fatty acid(ω-3 PUFA)on the second liver injury in rats with traumatic brain injury and hemorrhagic shock(TBIS)and explore the underlying mechanism.Methods Total of 36 male Wistar rats were assigned randomly(random number)into 3 groups(n=12 in each):sham

  14. Synergistic effects of fresh frozen plasma and valproic acid treatment in a combined model of traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Duggan, Michael;

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are major causes of trauma-related deaths and are especially lethal as a combined insult. Previously, we showed that early administration of fresh frozen plasma (FFP) decreased the size of the brain lesion and associated swelling in a swine ...

  15. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model

    DEFF Research Database (Denmark)

    Sillesen, Martin; Rasmussen, Lars S; Jin, Guang;

    2014-01-01

    BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) can be associated with coagulopathy and inflammation, but the mechanisms are poorly understood. We hypothesized that a combination of TBI and HS would disturb coagulation, damage the endothelium, and activate inflammatory...... inflammation (tumor necrosis factor α [TNF-α], 81.1 pg/mL vs. 50.8 pg/mL, p = 0.03) and activation of the protein C system (activated protein C, 56.7 ng/mL vs. 26.1 ng/mL, p = 0.01) were evident following the 2-hour hypotension phase. CONCLUSION: The combination of TBI and shock results in an immediate...

  16. Effect of volume replacement during combined experimental hemorrhagic shock and traumatic brain injury in prostanoids, brain pathology and pupil status

    Directory of Open Access Journals (Sweden)

    Fernando Campos Gomes Pinto

    2015-06-01

    Full Text Available Traumatic brain injury (TBI is the main cause of trauma-related deaths. Systemic hypotension and intracranial hypertension causes cerebral ischemia by altering metabolism of prostanoids. We describe prostanoid, pupilar and pathological response during resuscitation with hypertonic saline solution (HSS in TBI.Method Fifteen dogs were randomized in three groups according to resuscitation after TBI (control group; lactated Ringer’s (LR group and HSS group, with measurement of thromboxane, prostaglandin, macroscopic and microscopic pathological evaluation and pupil evaluation.Result Concentration of prostaglandin is greater in the cerebral venous blood than in plasma and the opposite happens with concentration of thromboxane. Pathology revealed edema in groups with the exception of group treated with HSS.Discussion and conclusion There is a balance between the concentrations of prostaglandin and thromboxane. HSS prevented the formation of cerebral edema macroscopically detectable. Pupillary reversal occurred earlier in HSS group than in LR group.

  17. Effect of volume replacement during combined experimental hemorrhagic shock and traumatic brain injury in prostanoids, brain pathology and pupil status.

    Science.gov (United States)

    Pinto, Fernando Campos Gomes; Oliveira, Matheus Fernandes de; Prist, Ricardo; Silva, Maurício Rocha E; Silva, Luiz Fernando Ferraz da; Capone Neto, Antonio

    2015-06-01

    Traumatic brain injury (TBI) is the main cause of trauma-related deaths. Systemic hypotension and intracranial hypertension causes cerebral ischemia by altering metabolism of prostanoids. We describe prostanoid, pupilar and pathological response during resuscitation with hypertonic saline solution (HSS) in TBI. Method Fifteen dogs were randomized in three groups according to resuscitation after TBI (control group; lactated Ringer's (LR) group and HSS group), with measurement of thromboxane, prostaglandin, macroscopic and microscopic pathological evaluation and pupil evaluation.Result Concentration of prostaglandin is greater in the cerebral venous blood than in plasma and the opposite happens with concentration of thromboxane. Pathology revealed edema in groups with the exception of group treated with HSS.Discussion and conclusion There is a balance between the concentrations of prostaglandin and thromboxane. HSS prevented the formation of cerebral edema macroscopically detectable. Pupillary reversal occurred earlier in HSS group than in LR group. PMID:26083885

  18. The Development of Neuroendocrine Disturbances over Time: Longitudinal Findings in Patients after Traumatic Brain Injury and Subarachnoid Hemorrhage.

    Science.gov (United States)

    Kopczak, Anna; Krewer, Carmen; Schneider, Manfred; Kreitschmann-Andermahr, Ilonka; Schneider, Harald Jörn; Stalla, Günter Karl

    2015-12-22

    Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI) or aneurysmal subarachnoid hemorrhage (SAH) may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI and 87 patients after SAH) in whom hormone levels had been determined at various time points to assess the course and pattern of hormonal insufficiencies. Data were analyzed using three different criteria: (1) patients with lowered basal laboratory values; (2) patients with lowered basal laboratory values or the need for hormone replacement therapy; (3) diagnosis of the treating physician. The first hormonal assessment after a median time of three months after the injury showed lowered hormone laboratory test results in 35% of cases. Lowered testosterone (23.1% of male patients), lowered estradiol (14.3% of female patients) and lowered insulin-like growth factor I (IGF-I) values (12.1%) were most common. Using Criterion 2, a higher prevalence rate of 55.6% of cases was determined, which correlated well with the prevalence rate of 54% of cases using the physicians' diagnosis as the criterion. Intraindividual changes (new onset insufficiency or recovery) were predominantly observed for the somatotropic axis (12.5%), the gonadotropic axis in women (11.1%) and the corticotropic axis (10.6%). Patients after TBI showed more often lowered IGF-I values at first testing, but normal values at follow-up (p hormone results at follow-up were obtained in 78% (free thyroxine (fT4) values) to 94.6% (prolactin values).

  19. Hemorrhagic brain metastases

    International Nuclear Information System (INIS)

    Tumor hemorrhage on computed tomography (CT) was found in 14 patients with brain metastases (7 % of two hundred patients with brain metastases), from April 1979 to July 1983. Primary foci of these lesions were the lung (6 patients), breast (2), kidney (2), uterus (2), colon (1) and adrenal gland (1). ''Stroke'' syndrome was the initial presenting symptom in 3 patients; neurological focal sign or symptoms of increased intracranial pressure in the remaining patients. CT demonstrated peritumoral hemorrhage in all patients with solid mass, intratumoral hemorrhage in a few patients and also cerebral or ventricular hemorrhage, which was fatal complication, in 2 patients (colon and breast cancers). A cystic mass with fluid-blood level was noted in a patient with breast cancer. Several predisposing factors including chemotherapy, thrombocytopenia, radiotherapy or combination of these were recognized in 8 patients. Of these, chemotherapy was the most causative factor of tumor hemorrhage. Brain irradiation for hemorrhagic brain metastases was effective for prolongation of mean survival time of these patients as follows; 10 months in irradiated group, whereas 1.5 months in non-irradiated group. (author)

  20. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted;

    2014-01-01

    BACKGROUND: We have previously shown that resuscitation with fresh frozen plasma (FFP) in a large animal model of traumatic brain injury (TBI) and hemorrhagic shock (HS) decreases the size of the brain lesion, and that addition of a histone deacetylase inhibitor, valproic acid (VPA), provides...... synergistic benefits. In this study, we hypothesized that VPA administration would be associated with a conservation of platelet function as measured by increased platelet activation after resuscitation. MATERIALS AND METHODS: Ten swine (42-50 kg) were subjected to TBI and HS (40% blood loss). Animals were.......05). Circulating transforming growth factor beta levels were elevated in the FFP + VPA group, but this did not reach statistical significance (11.20 ± 1.46 versus 8.09 ± 1.41 ng/mL; P = 0.17). Brain platelet endothelial cell adhesion molecule 1 levels were significantly lower in the FFP + VPA group compared...

  1. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  2. Post-traumatic subarachnoid hemorrhage: A review.

    Science.gov (United States)

    Modi, Nikhilkumar J; Agrawal, Manish; Sinha, Virendra Deo

    2016-01-01

    Head injury has been the leading cause of death and disability in people younger than 40 years and the incidence is rising continuously. Anticipation of the pathological consequences of post-traumatic subarachnoid hemorrhage (tSAH) and an outcome-oriented management are very important in these cases. To encounter the complications pertaining to traumatic brain injury (TBI) and tSAH, various classifications have been proposed and goal-oriented screening strategies have been offered. The role of serial computed tomography (CT) scans, perfusion studies, transcranial Doppler, magnetic resonance imaging (MRI), and angiographic studies as diagnostic tools, has been described. Recently, MRI fluid-attenuated inversion recovery (FLAIR), gradient reversal echo (GRE), and susceptibility weighted imaging (SWI) have emerged as excellent complimentary MRI sequences, and the authors of this article have evaluated their role in the diagnosis and prognostication of patients with tSAH. Numerous studies have been conducted on the various complications associated with tSAH such as vasospasm, hydrocephalus, and electrolyte disturbances and their management. This article discusses these aspects of tSAH and their management nuances. PMID:26954974

  3. Coagulopathy in Traumatic Brain Injury and Its Correlation with Progressive Hemorrhagic Injury: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Yuan, Qiang; Sun, Yi-Rui; Wu, Xing; Yu, Jian; Li, Zhi-Qi; Du, Zhuo-Ying; Wu, Xue-Hai; Zhou, Liang-Fu; Hu, Jin

    2016-07-15

    The association between coagulopathy and either isolated traumatic brain injury (TBI) or progressive hemorrhagic injury (PHI) remains controversial. The aims of this study were to evaluate whether isolated TBI induces pronounced coagulopathy, in comparison with non-TBI or TBI in conjunction with other injuries (TBI + other injuries), and to examine whether there is any evidence of a relationship between coagulopathy and PHI in patients who have experienced TBI. The MEDLINE(®) and Embase databases, and the Cochrane Central Register of Controlled Trials (Central), were trawled for relevant studies. Searches covered the period from the inception of each of the databases to June 2015, and were conducted using appropriate combinations of terms and key words based on medical subject headings (MeSH). Studies were included if they compared isolated TBI with a similar severity of injury to other body regions, or compared PHI with non-PHI, with regard to coagulation tests and the prevalence of coagulopathy. We extracted the means and standard deviations (SD) of coagulation test levels, as well as their ranges or the percentage of abnormal coagulation tests, in both cases and controls. A total of 19 studies were included in our systematic review and meta-analysis. Only the mean fibrinogen (FIB) in isolated TBI was found to be significantly higher than in TBI + other injuries (pooled mean difference [MD] 32.09; 95% confidence interval [CI] 4.92-59.25; p = 0.02); in contrast, it was also significantly higher than in non-TBI (pooled MD 15.44; 95% CI 0.28-30.59; p = 0.05). We identified 15 studies that compared coagulopathy between a PHI group and a non-PHI group. The PHI group had a lower platelet count (PLT) value (pooled MD -19.21; 95% CI: -26.99 to -11.44, p international normalized ratio (INR) value (pooled MD 0.07; 95% CI: 0.02-0.13, p = 0.006) than the non-PHI group, but no differences were observed in the mean activated partial thromboplastin time (APTT

  4. Mild traumatic brain injury.

    NARCIS (Netherlands)

    Vos, P.E.; Alekseenko, Y.; Battistin, L.; Ehler, E.; Gerstenbrand, F.; Muresanu, D.F.; Potapov, A.; Stepan, C.A.; Traubner, P.; Vecsei, L.; Wild, K. von

    2012-01-01

    Traumatic Brain Injury (TBI) is among the most frequent neurological disorders. Of all TBIs 90% are considered mild with an annual incidence of 100-300/100.000. Intracranial complications of Mild Traumatic Brain Injury (MTBI) are infrequent (10%), requiring neurosurgical intervention in a minority o

  5. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Dekker, Simone E; Bambakidis, Ted; Sillesen, Martin;

    2014-01-01

    per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene...

  6. Acute brain hemorrhage in dengue

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2014-01-01

    Dengue is a tropical arboviral infection that can have severe hemorrhagic complication.Acute brain hemorrhage in dengue is rare and is a big challenge in neurosurgery.To perform surgery for management of acute brain hemorrhage in dengue is a controversial issue.Here, the authors try to summarize the previous reports on this topic and compare neurosurgery versus conservative management.

  7. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury

    DEFF Research Database (Denmark)

    Hwabejire, John O; Imam, Ayesha M; Jin, Guang;

    2013-01-01

    We have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed...

  8. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... inflicted traumatic brain injury (ITBI), is a leading cause of child maltreatment deaths in the United States. Meeting the ... Awareness Additional Prevention Resources Childhood Injuries Concussion in Children and Teens Injuries from Violence Injuries from Motor Vehicle Crashes Teen Driver Safety ...

  9. Traumatic Brain Injury (TBI)

    Science.gov (United States)

    ... A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. New England Journal of Medicine, 358, 453–463. ... and Spotlights U.S. hospitals miss followup for suspected child abuse Q&A with NICHD Acting Director Catherine ...

  10. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin;

    2011-01-01

    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence...... treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves....

  11. Systemic inflammation and multiple organ injury in traumatic hemorrhagic shock.

    Science.gov (United States)

    Liu, Huaizheng; Xiao, Xuefei; Sun, Chuanzheng; Sun, Dao; Li, Yayong; Yang, Mingshi

    2015-01-01

    Traumatic hemorrhagic shock (HS) is a severe outcome of traumatic injury that accounts for numerous traumatic deaths. In the process of traumatic HS, both hemorrhage and trauma can trigger a complex cascade of posttraumatic events that are related to inflammatory and immune responses, which may lead to multiple organ injury or even death. From a mechanistic perspective, systemic inflammation and organ injury are involved coagulation, the complement system, impaired microcirculation and inflammatory signaling pathways. In this review, we discuss the systemic inflammation and multiple organ injury in post-traumatic HS. PMID:25961533

  12. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  13. Post-traumatic contrast enhancing brain lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jung; Kim, Hyun Sook; Jeong, Min Sun; Kim, Deok Ryeong; Cho, Young Kwon; Choi, Yun Sun [Eulji Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of)

    2014-10-15

    Only a few studies have been reported on the MR contrast enhancement and the apparent diffusion coefficient (ADC) findings of the post-traumatic lesion of the brain. We report a case of the venous ischemia in the left frontal lobe observed in the MRI obtained one day after the incidence of trauma. Considering the presented slight increase in the ADC, the vasogenic edema was thought to be the major mechanism of the venous ischemia and excitotoxic injury. In spite of a slight increase in the ADC, the hyperintensity in the diffusion weighted imaging and contrast-enhanced areas eventually changed into hemorrhagic lesions.

  14. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  15. Chronic cerebrovascular dysfunction after traumatic brain injury.

    Science.gov (United States)

    Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra; Savona-Baron, Catherine; Pearce, William J; Badaut, Jerome

    2016-07-01

    Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc. PMID:27117494

  16. 大鼠创伤性脑损伤合并失血性休克模型的建立%Establishment of rat model of traumatic brain injury combined with hemorrhagic shock

    Institute of Scientific and Technical Information of China (English)

    祁磊; 王茂德; 李奇; 王伟; 王拓; 李扩

    2012-01-01

    目的 建立一种大鼠创伤性脑损伤合并失血性休克的模型. 方法 采用自由落体撞击法联合静脉损伤法制作大鼠创伤性脑损伤合并失血性休克模型,并记录相关生理学参数.神经功能量表测量神经损伤评分,干湿重法测量脑水肿程度,伊文思蓝(EB)染色法测量血脑屏障(blood brain barrier,BBB)破坏程度,HE染色及免疫组织化学染色评估脑组织病理学改变. 结果 该模型造成大鼠血压在3 min内从95 mm Hg(1 mm Hg =0.133 kPa)降至25 mm Hg左右,1h后仍维持于60 mm Hg左右.神经损伤评分明显升高.脑组织含水量从77%左右上升至81%左右.脑组织残留伊文思蓝升高了1倍多.HE染色可见脑组织神经元皱缩、嗜酸性深染、细胞周围空泡等.免疫组织化学染色可见神经元β -淀粉样前体蛋白(β- amyloid precursor protein,β -APP)含量明显升高. 结论 成功模拟创伤性脑损伤合并失血性休克的大鼠模型,并复制出脑水肿、血脑屏障破坏、神经元受损、β - APP表达等主要病理变化.%Objective To establish rat model of traumatic brain injury combined with hemorrhagic shock. Methods Rat models of traumatic brain injury (produced by free fall impact method) combined with hemorrhagic shock (produced by venous injury method) were established and the related physiological parameters were recorded.The neurological impairment score,cerebral edema degree and blood brain barrier (BBB) were determined by using neurofunction scales,dry-wet method and Evans blue (EB) respectively.HE staining and immunohistochemical staining were applied to evaluate the pathological changes in brain sections. Results Blood pressure dropped from 95 mm Hg to 25 mm Hg within three minutes after modeling and maintained around 60 mm Hg one hour later.Neurological impairment score was increased dramatically.The ratio of water content in the brain tissue was elevated nearly from 77% to 81%.The concentration of EB

  17. Traumatic Brain Injury: FDA Research and Actions

    Science.gov (United States)

    ... Control—Traumatic Brain Injury Public Workshop: Advancing the Development of Biomarkers in Traumatic Brain Injury, March 3, 2016 ... Health Cosmetics Dietary Supplements Drugs Food Medical Devices Nutrition Radiation-Emitting Products Tobacco Products Vaccines, Blood & Biologics ...

  18. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda

    2014-01-01

    Full Text Available The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI and hemorrhagic shock (HS. The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy.

  19. Knowledge of Traumatic Brain Injury among Educators

    Science.gov (United States)

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  20. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  1. [Vasopressin for therapy of persistent traumatic hemorrhagic shock: The VITRIS.at study].

    Science.gov (United States)

    Lienhart, H G; Wenzel, V; Braun, J; Dörges, V; Dünser, M; Gries, A; Hasibeder, W R; Helm, M; Lefering, R; Schlechtriemen, T; Trimmel, H; Ulmer, H; Ummenhofer, W; Voelckel, W G; Waydhas, C; Lindner, K

    2007-02-01

    While fluid management is established in controlled hemorrhagic shock, its use in uncontrolled hemorrhagic shock is being controversially discussed, because it may worsen bleeding. In the irreversible phase of hemorrhagic shock that was unresponsive to volume replacement, airway management and catecholamines, vasopressin was beneficial due to an increase in arterial blood pressure, shift of blood away from a subdiaphragmatic bleeding site towards the heart and brain and decrease of fluid resuscitation requirements. The purpose of this multicenter, randomized, controlled, international trial is to assess the effects of vasopressin (10 IU IV) vs. saline placebo IV (up to 3 injections at least 5 min apart) in patients with prehospital traumatic hemorrhagic shock that persists despite standard shock treatment. The study will be carried out by helicopter emergency medical service teams in Austria, Germany, Czech Republic, Portugal, the Netherlands and Switzerland. Inclusion criteria are adult trauma patients with presumed traumatic hemorrhagic shock (systolic arterial blood pressure fluid resuscitation and use of vasopressors) after arrival of the first emergency physician at the scene. The time window for randomization will close after 30 min of shock treatment. Exclusion criteria are terminal illness, no intravenous access, age 60 min before randomization, cardiac arrest before randomization, presence of a do-not-resuscitate order, untreated tension pneumothorax, untreated cardiac tamponade, or known pregnancy. Primary study end-point is the hospital admission rate, secondary end-points are hemodynamic variables, fluid resuscitation requirements and hospital discharge rate. PMID:17265038

  2. MR imaging of acute hemorrhagic brain infarction

    International Nuclear Information System (INIS)

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author)

  3. MR imaging of acute hemorrhagic brain infarction

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Ohnari, Norihiro; Ohno, Masato (Kyushu Rosai Hospital, Fukuoka (Japan))

    1989-11-01

    Six patients with acute hemorrhagic brain infarct were imaged using spin-echo (SE) pulse sequences on a 1.5 Tesla MR scanner. Including two patients with repeated MR imaging, a total of eight examinations, all performed within 15 days after stroke, were analyzed retrospectively. Four patients revealed massive hemorrhages in the basal ganglia or cerebellum and three cases demonstrated multiple linear hemorrhages in the cerebral cortex. On T1-weighted images, hemorrhages were either mildly or definitely hyperintense relative to gray matter, while varied from mildly hypointense to hyperintense on T2-weighted images. T1-weighted images were superior to T2-weighted images in detection of hemorrhgage. CT failed to detect hemorrhage in two of five cases: indicative of MR superiority to CT in the diagnosis of acute hemorrhagic infarcts. (author).

  4. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  5. Sleep in traumatic brain injury.

    Science.gov (United States)

    Vermaelen, James; Greiffenstein, Patrick; deBoisblanc, Bennett P

    2015-07-01

    More than one-half million patients are hospitalized annually for traumatic brain injury (TBI). One-quarter demonstrate sleep-disordered breathing, up to 50% experience insomnia, and half have hypersomnia. Sleep disturbances after TBI may result from injury to sleep-regulating brain tissue, nonspecific neurohormonal responses to systemic injury, ICU environmental interference, and medication side effects. A diagnosis of sleep disturbances requires a high index of suspicion and appropriate testing. Treatment starts with a focus on making the ICU environment conducive to normal sleep. Treating sleep-disordered breathing likely has outcome benefits in TBI. The use of sleep promoting sedative-hypnotics and anxiolytics should be judicious. PMID:26118920

  6. Traumatic brain injury and reserve.

    Science.gov (United States)

    Bigler, Erin D; Stern, Yaakov

    2015-01-01

    The potential role of brain and cognitive reserve in traumatic brain injury (TBI) is reviewed. Brain reserve capacity (BRC) refers to preinjury quantitative measures such as brain size that relate to outcome. Higher BRC implies threshold differences when clinical deficits will become apparent after injury, where those individuals with higher BRC require more pathology to reach that threshold. Cognitive reserve (CR) refers to how flexibly and efficiently the individual makes use of available brain resources. The CR model suggests the brain actively attempts to cope with brain damage by using pre-existing cognitive processing approaches or by enlisting compensatory approaches. Standard proxies for CR include education and IQ although this has expanded to include literacy, occupational attainment, engagement in leisure activities, and the integrity of social networks. Most research on BRC and CR has taken place in aging and degenerative disease but these concepts likely apply to the effects of TBI, especially with regards to recovery. Since high rates of TBI occur in those under age 35, both CR and BRC factors likely relate to how the individual copes with TBI over the lifespan. These factors may be particularly relevant to the relationship of developing dementia in the individual who has sustained a TBI earlier in life.

  7. Traumatic stress: effects on the brain

    OpenAIRE

    Bremner, J Douglas

    2006-01-01

    Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Traumatic stress can be associated with lasting changes in these brain areas. Traumatic stress is associated with increased cortisol and norepinephrine responses to subsequent stressors. Antidepressants have effets on the hippocampus that counteract the effects of stress. Findings from animal studies have been extended to patients with post-traumatic stress disorder (PTSD) showing smaller h...

  8. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    Science.gov (United States)

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  9. Preconditioning for traumatic brain injury

    Science.gov (United States)

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  10. Traumatic Brain Injury in Kenya

    Directory of Open Access Journals (Sweden)

    Benson Kinyanjui

    2016-03-01

    Full Text Available Kenya has a disproportionately high rate of road traffic accidents each year, many of them resulting in traumatic brain injuries (TBIs. A review of articles written on issues pertaining to the medical treatment of people with TBI in the past 15 years in Kenya indicates a significantly high incidence of TBIs and a high mortality rate. This article reviews the available literature as a first step in exploring the status of rehabilitation of Kenyans with cognitive impairments and other disabilities resulting from TBIs. From this preliminary review, it is apparent that despite TBI being a pervasive public health problem in Kenya, it has not received due attention in the public and private sectors as evidenced by a serious lack of post-acute rehabilitation services for people with TBIs. Implications for this lack of services are discussed and recommendations are made for potential approaches to this problem.

  11. Research progress in traumatic brain penumbra

    Institute of Scientific and Technical Information of China (English)

    Wang Kai; Liu Baiyun; Ma Jun

    2014-01-01

    Objective Following traumatic brain injury (TBI),brain tissue that surrounding the regional primary lesion is known as traumatic penumbra; this region may undergo secondary injury and is considered to have the potential to recover.This review aimed to reveal the existence and significance of traumatic penumbra by analyzing all relevant studies concerning basic pathologic changes and brain imaging after TBI.Data sources We collected all relevant studies about TBI and traumatic penumbra in Medline (1995 to June 2013) and ISI (1997 to March 2013),evaluated their quality and relevance,then extracted and synthesized the information.Study selection We included all relevant studies concerning TBI and traumatic penumbra (there was no limitation of research design and article language) and excluded the duplicated articles.Results The crucial pathological changes after TBI include cerebral blood flow change,cerebral edema,blood-brain barrier damage,cell apoptosis and necrosis.Besides,traditional imaging method cannot characterize the consequences of CBF reduction at an early stage and provides limited insights into the underlying pathophysiology.While advanced imaging technique,such as diffusion tensor imaging (DTI) and positron emission tomography (PET),may provide better characterization of such pathophysiology.Conclusions The future of traumatic brain lesions depends to a large extent on the evolution of the penumbra.Therefore,understanding the formation and pathophysiologic process of the traumatic penumbra and its imaging research progress is of great significant for early clinical determination and timely brain rescue.

  12. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter;

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...

  13. Functional Recovery After Severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Hart, Tessa; Kozlowski, Allan; Whyte, John;

    2014-01-01

    OBJECTIVE: To examine person, injury, and treatment characteristics associated with recovery trajectories of people with severe traumatic brain injury (TBI) during inpatient rehabilitation. DESIGN: Observational prospective longitudinal study. SETTING: Two specialized inpatient TBI rehabilitation...

  14. Aquaporin-4 and traumatic brain edema

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; XU Qiu-ping

    2010-01-01

    Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortal-ity following traumatic brain injury as it increases intracra-nial pressure, impairs cerebral perfusion and oxygenation,and contributes to additional ischemic injuries.Classically,two major types of traumatic brain edema exist: "vasogenic"and "cytotoxic/cellular".However, the cellular and molecu-lar mechanisms contributing to the development/resolution of traumatic brain edema are poorly understood and no ef-fective drugs can be used now.Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, pre-dominantly in astrocyte foot processes at the borders be-tween the brain parenchyma and major fluid compartments, including cerebrospinal fluid and blood.This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma.In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma.AQP4 has been proposed as a novel drug target in brain edema.These findings sug-gest that modulation of AQP4 expression or function may be beneficial in traumatic brain edema.

  15. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  16. Neuroepidemiology of traumatic brain injury.

    Science.gov (United States)

    Gardner, A J; Zafonte, R

    2016-01-01

    Traumatic brain injury (TBI) is a significant public-health concern. TBI is defined as an acute brain injury resulting from mechanical energy to the head from external physical forces. Some of the leading causes of TBI include falls, assaults, motor vehicle or traffic accidents, and sport-related concussion. Two of the most common identified risk factors are sex (males are nearly three times more likely to suffer a TBI than females); and a bimodal age pattern (persons 65 years and older, and children under 14 years old). It is estimated that approximately 1.5-2 million Americans suffer from TBI annually. TBIs account for around 1.4 million emergency room visits, 275 000 hospital admissions, and 52 000 deaths in the USA each year. TBI contributes to approximately 30% of all deaths in the USA annually. In Australia, it is estimated that approximately 338 700 individuals (1.9% of the population) suffer from a disability related to TBI. Of these, 160 200 were severely or profoundly affected by acquired brain injury, requiring daily support. In the UK, TBI accounted for 3.4% of all emergency department attendances annually. An overall rate of 453 per 100 000 was found for all TBI severities, of which 40 per 100 000 (10.9%) were moderate to severe. TBI often results in residual symptoms that affect an individual's cognition, movement, sensation, and/or emotional functioning. Recovery and rehabilitation from TBI may require considerable resources and may take years. Some individuals never fully recover, and some require lifetime ongoing care and support. TBI has an enormous social and financial cost, with estimates of the annual financial burden associated with TBI ranging between 9 and 10 billion US dollars. PMID:27637960

  17. Changes in T lymphocyte subsets after severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Yulu Miao; Mingxia Zhang; Yulin Nie; Wan Zhao; Bin Huang; Zhengming Jiang; Shaoxiong Yu; Zhibin Huang; Hongjin Fu

    2007-01-01

    BACKGROUND: Besides local changes of cranial parenchymal cells, hemorrhage, etc., severe traumatic brain injuries also cause the changes of total body fluid and various functions, and the changes of lymphocytes and T lymphocyte subsets should be paid more attention to.OBJECTIVE: To reveal the changing laws of T lymphocyte subsets after severe traumatic brain injury, and compare with mild to moderate brain injury.DESIGN: A comparative observation.SETTINGS: Department of Neurosurgery, Longgang District Buji People's Hospital of Shenzhen City;Central Laboratory of Shenzhen Hospital of Prevention and Cure for Chronic Disease.PARTICIPANTS: All the subjects were selected from the Department of Neurosurgery, Longgang District Buji People's Hospital of Shenzhen City from August 2002 to August 2005. Thirty patients with severe brain injury, whose Glasgow coma score (GCS) was ≤ 8 points, were taken as the experimental group, including 21 males and 9 females, aging 16 - 62 years. Meanwhile, 30 patients with mild traumatic brain injury were taken as the control group (GCS ranged 14 - 15 points), including 18 males and 12 females, aging 15 - 58 years. All the subjects were in admission at 6 hours after injury, without disease of major organs before injury.Informed consents were obtained from all the patients or their relatives.conditions of pulmonaryinfections were observed at 4 days after injury. The differences of measurement data were compared with the t test.MAIN OUTCOME MEASURES: Changes of T lymphocytes subsets at 1 - 14 days after severe and mild or moderate traumatic injury.RESULTS: Finally, 28 and 25 patients with mild to moderate traumatic brain injury, whereas 25 and 21 patients with severe traumatic brain injury were analyzed at 7 and 14 days respectively, and the missed ones CD3, CD4, CD8, CD4/CD8 began to decrease, whereas CD8 increased in the experimental group, which were very significantly different from those in the control group (t =2.77 - 3.26, P < 0

  18. [Correction of intracranial pressure in patients with traumatic intracranial hemorrhages].

    Science.gov (United States)

    Virozub, I D; Chipko, S S; Chernovskiĭ, V I; Cherniaev, V A

    1986-01-01

    Therapeutical correction of intracranial pressure changes were conducted in 14 patients suffering from traumatic intracranial hematomas by endolumbar administration of physiological solution. The distinguishing feature of this method is the possibility of continuous control of the intracranial pressure level by means of long-term graphic recording of epidural pressure. This makes it possible to perform endolumbar administration of physiological solution in a dose which is determined by the initial level of epidural intracranial pressure. Therapeutic correction of intracranial pressure by endolumbar injection of physiological solution proved successful in the initial stages of dislocation of the brain and in stable intracranial hypotension.

  19. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  20. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI.

  1. Structural Neuroimaging Findings in Mild Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Goodrich-Hunsaker, Naomi J; Black, Garrett; Christensen, Zachary P; Huff, Trevor; Wood, Dawn-Marie G; Hesselink, John R; Wilde, Elisabeth A; Max, Jeffrey E

    2016-09-01

    Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI. PMID:27482782

  2. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin;

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  3. Neuropsychiatric disturbances and hypopituitarism after traumatic brain injury in an elderly man.

    Science.gov (United States)

    Chang, Yi-Cheng; Tsai, Jui-Chang; Tseng, Fen-Yu

    2006-02-01

    Neuropsychiatric or cognitive disturbances are common complications after traumatic brain injury. They are commonly regarded as irreversible sequelae of organic brain injuries. We report a case of hypopituitarism in a 77-year-old man who presented with long-term neuropsychiatric disturbances, including cognitive impairment, disturbed sleep patterns, personality change, loss of affect, and visual and auditory hallucinations after a traumatic subdural hemorrhage. The treatment response to hormone replacement therapy was nearly complete. Hypopituitarism is rarely considered in patients who sustain traumatic brain injury and the neuropsychiatric manifestations of posttraumatic hypopituitarism have rarely been reported. This case highlights the importance of hypopituitarism as a potential reversible cause of neuropsychiatric disturbances after traumatic brain injury.

  4. Traumatic Vitreous Hemorrhage in Children-Clinical Features and Outcomes

    Institute of Scientific and Technical Information of China (English)

    Aditya Sudhalkar; Jay Chhablani; Subhadra Jalali; Raja Narayanan

    2014-01-01

    Purpose: To determine the clinical profile, causes, and out-comes of traumatic vitreous hemorrhage (TVH) in children (<18 years of age). Methods:.Retrospective computer assisted chart review..501 eyes of 464 children (103 females; 361 males) who presented with TVH between 2001 and 2012 were included. All children underwent a complete ocular and systemic examination and investigation. The etiology, visual, and anatomic results of pediatric TVH were the outcome measures. Results: Median age: 12.27 ±4.51 years. 37 patients had bi-lateral VH; 43.24% of these were firecracker injuries..Com-monest complaint was diminished vision (96.45%)..Mean BC-VA(logMAR) at presentation was 2.64±1.11 logMAR. Sticks (43.43%).and cricket balls. (13.24%).were the commonest causes..Treatment included medical therapy (topical and/or systemic; 56 eyes), laser photocoagulation (34 eyes), and/or surgery. (387 eyes)..Mean final BCVA was significantly better (1.01±0.58 logMAR;P=0.011,Z test). Mean follow up in the closed and open globe trauma was 47±12.47 and 36.24± 9.72 months, respectively.Conclusion:.TVH has significant implications in children.Firecracker injuries are notorious for bilateral VH.

  5. Therapeutic anticoagulation can be safely accomplished in selected patients with traumatic intracranial hemorrhage

    Directory of Open Access Journals (Sweden)

    Byrnes Matthew C

    2012-07-01

    Full Text Available Abstract Introduction Therapeutic anticoagulation is an important treatment of thromboembolic complications, such as DVT, PE, and blunt cerebrovascular injury. Traumatic intracranial hemorrhage has traditionally been considered to be a contraindication to anticoagulation. Hypothesis Therapeutic anticoagulation can be safely accomplished in select patients with traumatic intracranial hemorrhage. Methods Patients who developed thromboembolic complications of DVT, PE, or blunt cerebrovascular injury were stratified according to mode of treatment. Patients who underwent therapeutic anticoagulation with a heparin infusion or enoxaparin (1 mg/kg BID were evaluated for neurologic deterioration or hemorrhage extension by CT scan. Results There were 42 patients with a traumatic intracranial hemorrhage that subsequently developed a thrombotic complication. Thirty-five patients developed a DVT or PE. Blunt cerebrovascular injury was diagnosed in four patients. 26 patients received therapeutic anticoagulation, which was initiated an average of 13 days after injury. 96% of patients had no extension of the hemorrhage after anticoagulation was started. The degree of hemorrhagic extension in the remaining patient was minimal and was not felt to affect the clinical course. Conclusion Therapeutic anticoagulation can be accomplished in select patients with intracranial hemorrhage, although close monitoring with serial CT scans is necessary to demonstrate stability of the hemorrhagic focus.

  6. Clinimetric measurement in traumatic brain injuries.

    Science.gov (United States)

    Opara, J A; Małecka, E; Szczygiel, J

    2014-06-15

    Traumatic brain injury is a leading cause of death and disability worldwide. Every year, about 1.5 million affected people die and several millions receive emergency treatment. Most of the burden (90%) is in low and middle-income countries. The costs of care depend on the level of disability. The burden of care after traumatic brain injury is caused by disability as well as by psychosocial and emotional sequelae of injury. The final consequence of brain injury is the reduction of quality of life. It is very difficult to predict the outcome after traumatic brain injury. The basic clinical model included four predictors: age, score in Glasgow coma scale, pupil reactivity, and the presence of major extracranial injury. These are the neuroradiological markers of recovery after TBI (CT, MRI and PET) and biomarkers: genetic markers of ApoE Gene, ectoenzyme CD 38 (cluster of differentiation 38), serum S100B, myelin basic protein (MBP), neuron specific endolase (NSE), and glial fibrillary acidic protein (GPAP). These are many clinimetric scales which are helpful in prognosing after head injury. In this review paper, the most commonly used scales evaluating the level of consciousness after traumatic brain injury have been presented.

  7. Aquaporin 9 in rat brain after severe traumatic brain injury

    OpenAIRE

    Hui Liu; Mei Yang; Guo-ping Qiu; Fei Zhuo; Wei-hua Yu; Shan-quan Sun; Yun Xiu

    2012-01-01

    OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9) in rat brain, after severe traumatic brain injury (TBI). METHODS: Brain water content (BWC), tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest) peaks at 6 and 72 hours, and the blood brain barrier (BBB) was severely destroyed at six hours after ...

  8. Discriminating military and civilian traumatic brain injuries.

    Science.gov (United States)

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  9. Intracranial Hemorrhage Annotation for CT Brain Images

    OpenAIRE

    Tong Hau Lee; Mohammad Faizal Ahmad Fauzi; Su-Cheng Haw

    2011-01-01

    In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM) segmentation to segment the Computed Tomography (CT) images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and s...

  10. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  11. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  12. School Reentry Following Traumatic Brain Injury

    Science.gov (United States)

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  13. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell...

  14. Mild Traumatic Brain Injury: Facilitating School Success.

    Science.gov (United States)

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  15. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...

  16. Executive Functioning after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-07-01

    Full Text Available The Behavior Rating Inventory of Executive Function (BRIEF, a caregiver-report questionnaire, was used to measure changes in executive function in the first year after traumatic brain injury (TBI in a study of children, aged 5 to 15 years, at University of Minnesota, Minneapolis, and Johns Hopkins University School of Medicine, Baltimore, MD.

  17. Executive Functioning after Traumatic Brain Injury

    OpenAIRE

    J Gordon Millichap

    2008-01-01

    The Behavior Rating Inventory of Executive Function (BRIEF), a caregiver-report questionnaire, was used to measure changes in executive function in the first year after traumatic brain injury (TBI) in a study of children, aged 5 to 15 years, at University of Minnesota, Minneapolis, and Johns Hopkins University School of Medicine, Baltimore, MD.

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  19. Risk Factors Analysis on Traumatic Brain Injury Prognosis

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong Qu; Resha Shrestha; Mao-de Wang

    2011-01-01

    To investigate the independent risk factors of traumatic brain injury (TBI) prognosis.Methods A retrospective analysis was performed in 885 hospitalized TEl patients from January 1,2003 to January 1, 2010 in the First Affiliated Hospital of Medical College of Xi' an Jiaotong University. Single-factor and logistic regression analysis were conducted to evaluate the association of different variables with TBI outcome.Results The single-factor analysis revealed significant association between several variables and TEl outcome, including age (P=0.044 for the age group 40-60, P<0.001 for the age group ≥60), complications (P<0.001), cerebrospinal fluid leakage (P<0.001), Glasgow Coma Scale (GCS) (P<0.001), pupillary light reflex (P<0.001), shock (P<0.001), associated extra-cranial lesions (P=0.01), subdural hematoma (P<0.001), cerebral contusion (P<0.001), diffuse axonal injury (P<0.001), and subarachnoid hemorrhage (P<0.001), suggesting the influence of those factors on the prognosis of TBI. Furthermore, logistic regression analysis identified age, GCS score, pupillary light reflex, subdural hematoma, and subarachnoid hemorrhage as independent risk factors of TEl prognosis.Conclusion Age, GCS score, papillary light reflex, subdural hematoma, and subarachnoid hemorrhage may be risk factors influencing the prognosis of TEl. Paying attention to those factors might improve the outcome of TBI in clinical treatment.

  20. Catecholamines and cognition after traumatic brain injury.

    Science.gov (United States)

    Jenkins, Peter O; Mehta, Mitul A; Sharp, David J

    2016-09-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person's catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain 'networks' that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.

  1. Traumatic brain injuries: Forensic and expertise aspects

    Directory of Open Access Journals (Sweden)

    Vuleković Petar

    2008-01-01

    Full Text Available Introduction. Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. Criminal-legal aspect of traumatic brain injuries and litigation. Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Competence and timing of expertise. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  2. Functional level after Traumatic Brain Injury

    OpenAIRE

    Sandhaug, Maria

    2012-01-01

    Objectives: The objectives of the thesis were to describe the functional level (papers I and II) and self awareness of functional deficits (paper III) after moderate and severe Traumatic Brain Injury (TBI), and to evaluate the predictive impact of pre-injury and injury-related factors on functional level (papers I, II) and awareness of functional deficits (paper III). Material and methods: Papers I-II were cohort studies of 55 TBI patients (moderate = 21, severe = 34) and 65...

  3. Plasticity and Inflammation following Traumatic Brain Injury

    OpenAIRE

    Hånell, Anders

    2011-01-01

    Traumatic Brain Injury (TBI) mainly affects young persons in traffic accidents and the elderly in fall accidents. Improvements in the clinical management have significantly improved the outcome following TBI but survivors still suffer from depression, memory problems, personality changes, epilepsy and fatigue. The initial injury starts a series of events that give rise to a secondary injury process and despite several clinical trials there is no drug available for clinical use that targets se...

  4. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  5. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... child is classified as having traumatic brain injury whose brain injuries are caused by an external... does not include children with brain injuries that are congenital or degenerative or caused by...

  6. Combat Helmets and Blast Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Duncan Wallace

    2012-01-01

    Full Text Available Background: The conflicts in Iraq and Afghanistan and the prominence of traumatic brain injury (TBI, mostly from improvised explosive devices, have focused attention on the effectiveness of combat helmets. Purpose: This paper examines the importance of TBI, the role and history of the development of combat helmets, current helmet designs and effectiveness, helmet design methodology, helmet sensors, future research and recommendations. Method: A literature review was conducted using search terms – combat helmets, traumatic brain injury, concussion, Iraq, Afghanistan and helmet sensors, searching PubMed, MEDLINE, ProQuest and Google Scholar. Conclusions: At present, no existing helmet is able to fully protect against all threats faced on the battlefield. The prominence of traumatic brain injury from improvised explosive devices in the current conflicts in Iraq and Afghanistan has highlighted the limitations in knowledge about blast and how to provide protection from it. As a result, considerable research is currently occurring in how to protect the head from blast over-pressure. Helmet sensors may provide valuable data. Some new combat helmets may be able to protect against rifle rounds, but may result in injuries occurring behind body armour. Optimal combat helmet design requires a balance between the need for protection from trauma and the comfort and practicality of the helmet for the user to ensure the best outcomes.

  7. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients...

  8. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J;

    2014-01-01

    OBJECT: Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches...... enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent electrocorticographic...

  9. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy

    2008-01-01

    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  10. Advanced Neuromonitoring and Imaging in Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Stuart H. Friess

    2012-01-01

    Full Text Available While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury.

  11. Mild Traumatic Brain Injuries : A 10-year follow-up

    OpenAIRE

    Elgmark Andersson, Elisabeth; Bedics, Beate Kärrdahl; Falkmer, Torbjörn

    2011-01-01

    Objective and design: Long-term consequences of mild traumatic brain injuries were investigated based on a 10-year follow-up of patients from a previously published randomized controlled study of mild traumatic brain injuries. One aim was to describe changes over time after mild traumatic brain injuries in terms of the extent of persisting post-concussion symptoms, life satisfaction, perceived health, activities of daily living, changes in life roles and sick leave. Another aim was to identif...

  12. Endocrine dysfunction following traumatic brain injury: a 5-year follow-up nationwide-based study

    Science.gov (United States)

    Yang, Wei-Hsun; Chen, Pau-Chung; Wang, Ting-Chung; Kuo, Ting-Yu; Cheng, Chun-Yu; Yang, Yao-Hsu

    2016-01-01

    Post-traumatic endocrine dysfunction is a complication of traumatic brain injury (TBI). However, there is lack of long-term follow-up and large sample size studies. This study included patients suffering from TBI registered in the Health Insurance Database. Endocrine disorders were identified using the ICD codes: 244 (acquired hypothyroidism), 253 (pituitary dysfunction), 255 (disorders of the adrenal glands), 258 (polyglandular dysfunction), and 259 (other endocrine disorders) with at least three outpatient visits within 1 year or one admission diagnosis. Overall, 156,945 insured subjects were included in the final analysis. The 1- and 5-year incidence rates of post-traumatic endocrinopathies were 0.4% and 2%, respectively. The risks of developing a common endocrinopathy (p endocrine dysfunction after TBI increased during the entire 5-year follow-up period. Skull bone fracture and intracranial hemorrhage may be associated with short and long-term post-traumatic pituitary dysfunction, respectively. PMID:27608606

  13. Forensic Pathology of Traumatic Brain Injury.

    Science.gov (United States)

    Finnie, J W

    2016-09-01

    Traumatic brain injury constitutes a significant proportion of cases requiring forensic examination, and it encompasses (1) blunt, nonmissile head injury, especially involving motor vehicle accidents, and (2) penetrating, missile injury produced by a range of high- and lower-velocity projectiles. This review examines the complex pathophysiology and biomechanics of both types of neurotrauma and assesses the macroscopic and histologic features of component lesions, which may be used to determine the cause and manner of death resulting from an intentional assault or accident. Estimation of the survival time postinjury by pathologic examination is also important where malicious head injury is suspected, in an attempt to ascertain a time at which the traumatic event might have been committed, thereby evaluating the authenticity of statements made by the alleged perpetrator. PMID:26578643

  14. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  15. Traumatic brain injury, neuroimaging, and neurodegeneration.

    Science.gov (United States)

    Bigler, Erin D

    2013-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  16. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  17. 78 FR 27036 - Final Priority. National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Science.gov (United States)

    2013-05-09

    ... priority to improve outcomes among individuals with traumatic brain injuries. DATES: This priority is... improve the lives of individuals with traumatic brain injuries (TBIs) through research, including the... with traumatic brain injuries to fully participate in their communities. Accessible Format:...

  18. Traumatic brain injury in modern war

    Science.gov (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  19. Sports-related traumatic brain injury.

    Science.gov (United States)

    Phillips, Shawn; Woessner, Derek

    2015-06-01

    Concussions have garnered more attention in the medical literature, media, and social media. As such, in the nomenclature according to the Centers for Disease Control and Prevention, the term concussion has been supplanted by the term mild traumatic brain injury. Current numbers indicate that 1.7 million TBIs are documented annually, with estimates around 3 million annually (173,285 sports- and recreation-related TBIs among children and adolescents). The Sideline Concussion Assessment Tool 3 and the NFL Sideline Concussion Assessment Tool are commonly used sideline tools.

  20. 血浆和肽素浓度对急性创伤性进展性出血性脑损伤的预测价值%Predictive value of plasma copeptin for acute traumatic progressive hemorrhagic brain injury

    Institute of Scientific and Technical Information of China (English)

    田正丰; 沈永锋; 江力; 俞文华; 董晓巧; 谢国忠; 朱强; 车志豪; 杜权; 王昊; 杨定博

    2016-01-01

    Objective To investigate the predictive value of plasma copeptin for acute traumatic progressive hemorrhagic brain injury (PHI). Methods A total of 112 craniocerebral trauma patients from January 2012 to January 2015 were enrolled as the trauma group, and 112 healthy people served as the control group at the same time. The levels of plasma copeptin, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), neuron specific enolase (NSE),S100B, ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), phosphorylated axonal neurofilament subunit H (pNF-H) and tau were detected and compared between the two groups. And the correlation between all above indices and Glasgow coma scale (GCS) scores were analyzed by Pearson correlation. The ROC was used to analyze the predictive value of these biomarkers and GCS scores for PHI. Results The plasma copeptin [(355 ± 124) pmol/L vs. (86 ± 30) pmol/L], GFAP [(0.14 ± 0.05) pmol/L vs. (0.05 ± 0.03) pmol/L], MBP [(0.61 ± 0.22)μmol/L vs. (0.23 ± 0.17)μmol/L], NSE [(0.11 ± 0.04) nmol/L vs. (0.05 ± 0.03) nmol/L], S100B [(15.5 ± 6.9) pmol/L vs. (2.6 ± 0.9) pmol / L], UCH-L1 [(66 ± 28) pmol / L vs. (10 ± 3) pmol / L], pNF-H [(2.52 ± 0.71) pmol / L vs. (0.14 ± 0.11) pmol / L] and tau [(4.4 ± 1.6) pmol / L vs. (0.4 ± 0.3) pmol / L] concentrations in the trauma group were much higher than those in the control group ( t=22.308, 19.418, 18.531, 16.928, 20.221, 21.063, 39.625, 27.025; all P < 0.001). Pearson correlation showed that GCS scores were all negative related with plasma copeptin, GFAP, MBP, NSE, S100B, UCH-L1, pNF-H and tau concentrations (r = -0.519, -0.478, -0.455, -0.422, -0.431,-0.408, -0.423, -0.421, all P<0.001). The ROC presented that GCS scores, plasma copeptin, GFAP, MBP, NSE, S100B, UCH-L1, pNF-H and tau concentrations all had significant predictive value for PHI (all P<0.05), and the area under curve (AUC) of GFAP (Z=2.693, P=0.007), MBP (Z=2.551, P=0.011), NSE (Z=2.397, P=0.017), S100B (Z=2.446, P=0

  1. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  2. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    Science.gov (United States)

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. PMID:22514794

  3. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Science.gov (United States)

    2013-02-22

    ... Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: In compliance with.... Proposed Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System...

  4. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Science.gov (United States)

    2013-06-24

    ... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: Under the... Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data...

  5. Traumatic Brain Injury - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ... W XYZ List of All Topics All Traumatic Brain Injury - Multiple Languages To use the sharing features on this page, ...

  6. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  7. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber

    2012-04-01

    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  8. Biophysical mechanisms of traumatic brain injuries.

    Science.gov (United States)

    Young, Lee Ann; Rule, Gregory T; Bocchieri, Robert T; Burns, Jennie M

    2015-02-01

    Despite years of effort to prevent traumatic brain injuries (TBIs), the occurrence of TBI in the United States alone has reached epidemic proportions. When an external force is applied to the head, it is converted into stresses that must be absorbed into the brain or redirected by a helmet or other protective equipment. Complex interactions of the head, neck, and jaw kinematics result in strains in the brain. Even relatively mild mechanical trauma to these tissues can initiate a neurochemical cascade that leads to TBI. Civilians and warfighters can experience head injuries in both combat and noncombat situations from a variety of threats, including ballistic and blunt impact, acceleration, and blast. It is critical to understand the physics created by these threats to develop meaningful improvements to clinical care, injury prevention, and mitigation. Here the authors review the current state of understanding of the complex loading conditions that lead to TBI and characterize how these loads are transmitted through soft tissue, the skull and into the brain, resulting in TBI. In addition, gaps in knowledge and injury thresholds are reviewed, as these must be addressed to better design strategies that reduce TBI incidence and severity.

  9. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  10. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident. PMID:27432348

  11. Effect of dipeptide of glutamine and alanine on severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG De-lin; XU Jun-fa

    2007-01-01

    Objective: To determine the effect of dipeptide of glutamine and alanine on patients with severe traumatic brain injury. Methods: A total of 46 patients (31 males and 15 females, aged 7-68 years, (47±9.6) years on average) with severe traumatic brain injury were randomized into two groups: Group G (n=23) and Group C (n=23). The patients in Group G received nutritional remedy with the dipeptide of glutamine and alanine, whereas the patients in Group C received routine nutritional therapy only. GCS changes, the length of stay in the neurosurgical intensive care unit (NICU), the mortality,the count of lymphocytes, related complications including lung infection and hemorrhage of alimentary tracts, etc, were examined and recorded. Results: The fatality rate and the length of stay in NICU in Group G was lower than these in Group C (P<0.05), but no obvious difference was found in GCS changes of the patients between the two groups (P>0.05). The patients with lung infection and alimentary tract hemorrhage in Group G were less than those in Group C (P<0.05). The count of lymphocytes in Group G was more than that in Group C (P<0.05), but no difference was found in other nutritional data. Conclusions: Dipeptide of glutamine and alanine can increase the resisting stress and anti-infection ability of patients with severe traumatic brain injury, which can also lower the mortality and shorten the NICU stay.

  12. Accommodation in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Wesley Green, MS

    2010-05-01

    Full Text Available Accommodative dysfunction in individuals with mild traumatic brain injury (mTBI can have a negative impact on quality of life, functional abilities, and rehabilitative progress. In this study, we used a range of dynamic and static objective laboratory and clinical measurements of accommodation to assess 12 adult patients (ages 18-40 years with mTBI. The results were compared with either 10 control subjects with no visual impairment or normative literature values where available. Regarding the dynamic parameters, responses in those with mTBI were slowed and exhibited fatigue effects. With respect to static parameters, reduced accommodative amplitude and abnormal accommodative interactions were found in those with mTBI. These results provide further evidence for the substantial impact of mTBI on accommodative function. These findings suggest that a range of accommodative tests should be included in the comprehensive vision examination of individuals with mTBI.

  13. Inflammatory neuroprotection following traumatic brain injury.

    Science.gov (United States)

    Russo, Matthew V; McGavern, Dorian B

    2016-08-19

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  14. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    Science.gov (United States)

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  15. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation. PMID:26342279

  16. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  17. Clinical neurorestorative progress in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Huang H

    2015-03-01

    Full Text Available Huiling Huang,1 Lin Chen,2,3 Hongyun Huang4–61Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin Neurosurgical Institute, Tianjin, People's Republic of China; 2Medical Center, Tsinghua University, Beijing, People's Republic of China; 3Tsinghua University Yuquan Hospital, Beijing, People's Republic of China; 4General Hospital of Chinese people's Armed Police Forces, 5Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People's Republic of China; 6Beijing Hongtianji Neuroscience Academy, Beijing, People's Republic of ChinaAbstract: Traumatic brain injury (TBI is a leading cause of death and disability from trauma to the central nervous system. Besides the surgical interventions and symptomatic management, the conventional therapies for TBI and its sequelae are still limited. Recently emerging evidence suggests that some neurorestorative treatments appear to have a potential therapeutic role for TBI and improving the patient's quality of life. The current clinical neurorestorative strategies available in TBI include pharmacological treatments (recombinant human interleukin-1 receptor antagonist, amantadine, lithium, and valproate, the neuromodulation treatments (repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and low-level laser therapy, cell transplantation (bone marrow stromal cells and umbilical cord stromal cells, and combined neurorehabilitation. In this review, we summarize the recent clinical neurorestorative progress in the management of neurodegeneration as well as cognitive and motor deficits after TBI; indeed further clinical trials are required to provide more robust evidence.Keywords: brain trauma, neurorestorative treatment, cell transplantation, clinical study

  18. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  19. Outcome measures for traumatic brain injury.

    Science.gov (United States)

    Shukla, Dhaval; Devi, B Indira; Agrawal, Amit

    2011-07-01

    Traumatic brain injury (TBI) is a major public health problem resulting in death and disabilities of young and productive people. Though the mortality of TBI has decreased substantially in recent years the disability due to TBI has not appreciably reduced. Various outcome scales have been proposed and used to assess disability after TBI. A few, commonly used are Glasgow Outcome Scale (GOS) with or without extended scores, Disability Rating Scale (DRS), Functional Independence Measure (FIM), Community Integration Questionnaire (CIQ), and the Functional Status Examination (FSE). These scales assess disability resulting from physical and cognitive impairments. For patients with good physical recovery a cognitive and neuropsychological outcome measure is required. Such measures include Neurobehavioural Function Inventory and specific neuropsychological tests like Rey Complex Figure for visuoconstruction and memory, Controlled Oral Word Association for verbal fluency, Symbol Digit Modalities (verbal) for sustained attention and Grooved Pegboard for fine motor dexterity. A more holistic and complete outcome measure is Quality of Life (QOL). Disease specific QOL measure for TBI, Quality of Life after Brain Injury (QOLIBRI) has also been recently proposed. The problems with outcome measures include poor operational definitions, lack of sensitivity or low ceiling effects, inability to evaluate patients who cannot report, lack of integration of morbidity and mortality categories, and limited domains of functioning assessed. GOSE-E satisfies most of the criteria of good outcome scale and in combination with neuropsychological tests is a near complete instrument for assessment of outcome after TBI. PMID:21440363

  20. Cushing's ulcer in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Biteghe-bi-Nzeng Alain; WANG Yun-jie

    2008-01-01

    Traumatic brain injury(TBI)remains a complicated and urgent disease in our modernized cities. It becomes now a public health disease. We have got more and more patients in Neurosurgery Intensive Care Unit following motor vehicle accidents and others causes. TBI brings multiple disorders,from the primary injury to secondary injury. The body received the disturbances in the brain,in the hypothalamo-pituitary-adrenocortical(HPA)axis,in the gastric mucosa,in the immune and neuroendocrine systems.The mortality of TBI is more than 50 000 deaths/year, the third of the mortality of all iniuries. Cushing ulcer is one of the severe complications of TBI and its mortality rate is more than 50%. Many studies have improved the management of TBI and the associated complications to give patients a better outcome. Furthers studies need to be done based on the similar methodology to clarify the different steps of the HPA axis and the neuroendocrine change associated. The aim of the present review is to assess the clinical and endocrinal features of hypopituitarism and stress ulcer following TBI.

  1. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  2. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O;

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  3. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin;

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri...

  4. [Familial brain abscess as a complication of hereditary hemorrhagic telangiectasia].

    Science.gov (United States)

    Szöts, M; Szapáry, L; Nagy, F; Vetö, F

    2001-10-21

    The hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber disease) is an inherited autosomal dominant disease with angiodysplasia of the skin, mucosa, parenchymal organs, and it can affect the central nervous system. In 40% of the cases neurological complications, most frequently intracerebral abscesses occur. In this study, the case history of a patient with central nervous system manifestation of hereditary hemorrhagic telangiectasia showing familiar aggregation of brain abscess will be presented. A young male patient was admitted to Neurological Department because of his first epileptic seizure and progressive right hemispheric symptoms. His examinations showed frontal abscess, which was surgically removed. The frequent nose-bleeding of the patient and recurrent brain abscess in his brother's history provided the possibility of hereditary hemorrhagic telangiectasia. The background of brain abscess were multiple pulmonary arteriovenous malformation, which were embolized by repeated angiography. Familiar brain abscess is very rare. However, in the case of brain abscess especially with familiarity diagnosis of the Rendu-Osler-Weber disease should be considered. PMID:11760648

  5. Role of Metabolomics in Traumatic Brain Injury Research.

    Science.gov (United States)

    Wolahan, Stephanie M; Hirt, Daniel; Braas, Daniel; Glenn, Thomas C

    2016-10-01

    Metabolomics is an important member of the omics community in that it defines which small molecules may be responsible for disease states. This article reviews the essential principles of metabolomics from specimen preparation, chemical analysis, to advanced statistical methods. Metabolomics in traumatic brain injury has so far been underutilized. Future metabolomics-based studies focused on the diagnoses, prognoses, and treatment effects need to be conducted across all types of traumatic brain injury. PMID:27637396

  6. Antagonism of purinergic signalling improves recovery from traumatic brain injury

    OpenAIRE

    Choo, Anthony M.; William J. Miller; Chen, Yung-Chia; Nibley, Philip; Patel, Tapan P.; Goletiani, Cezar; Morrison, Barclay; Kutzing, Melinda K.; Firestein, Bonnie L.; Sul, Jai-Yoon; Haydon, Philip G.; Meaney, David F.

    2013-01-01

    The recent public awareness of the incidence and possible long-term consequences of traumatic brain injury only heightens the need to develop effective approaches for treating this neurological disease. In this report, we identify a new therapeutic target for traumatic brain injury by studying the role of astrocytes, rather than neurons, after neurotrauma. We use in vivo multiphoton imaging and show that mechanical forces during trauma trigger intercellular calcium waves throughout the astroc...

  7. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  8. Traumatic brain injury: Changing concepts and approaches

    Institute of Scientific and Technical Information of China (English)

    Andrew Maas

    2016-01-01

    Traumatic brain injury (TBI) represents a huge global medical and public health problem across all ages and in all populations.In this review,we discussed the changing concepts and approaches.Globally,the incidence is increasing and in high income countries epidemiologic patterns are changing with consequences for prevention campaigns.TBI should not be viewed as an event,but as a progressive and chronic disease with lifetime consequences.In the clinical field,precision approaches to treatment are being developed,which require more accurate disease phenotyping.Recent advances in genomics,neuroimaging and biomarker development offer great opportunities to develop improved phenotyping and better disease characterization.In clinical research,randomized controlled clinical trials are being complemented by large data collections in broad TBI populations in comparative effectiveness designs.Global collaborations are being developed among funding agencies,research organizations and researchers.Only by combining efforts and collaboration will we be able to advance the field by providing long-needed evidence to support practice recommendations and to improve treatment.

  9. Effects of magnesium sulfate on traumatic brain edema in rats

    Institute of Scientific and Technical Information of China (English)

    冯东福; 朱志安; 卢亦成

    2004-01-01

    Objective: To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism.Methods: Forty-eight Sprague-Dawley ( SD ) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na + , K + , Ca2 + , Mg2+ contents were measured. Permeability of blood-brain barrier (BBB)was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied.Results: Water, Na + , Ca2 + and EB contents in Treatment group were significantly lower than those in Trauma group ( P < 0. 05 ). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury.Conclusions: Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.

  10. Objective Neuropsychological Deficits in Post-Traumatic Stress Disorder and Mild Traumatic Brain Injury: What Remains Beyond Symptom Similarity?

    OpenAIRE

    Hélène Pineau; André Marchand; Stéphane Guay

    2014-01-01

    This exploratory study intends to characterize the neuropsychological profile in persons with post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) using objective measures of cognitive performance. A neuropsychological battery of tests for attention, memory and executive functions was administered to four groups: PTSD (n = 25), mTBI (n = 19), subjects with two formal diagnoses: Post-traumatic Stress Disorder and Mild Traumatic Brain Injury (mTBI/PTSD) (n = 6) and contr...

  11. Early change of plasma and cerebrospinal fluid arginine vasopressin in traumatic subarachnoid hemorrhage

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhi-hua; ZHU Jian-yong; HUANG Wei-dong; JIANG Jiu-kun; LU Yuan-qiang; XU Miao; SU Wei; JIANG Ting-ying

    2010-01-01

    Objective:To investigate the changes and effects of arginine vasopressin(AVP)in patients with acute traumatic subarachnoid hemorrhage(tSAH).Methods:The plasma and cerebrospinal fluid(CSF)level of AVP,and intracraniai pressure(ICP)were measured in a total of 21 patients within 24 hours after tSAH.The neurological status of the patients was evaluated by Glasgow Coma Scale(GCS).Correlation between AVP and ICP,CrCS was analyzed respectively.Meanwhile,18 healthy volunteers were recruited as control group.Results:Compared with control group,the levels(pg/ml)of AVP in plasma and CSF((x)±s)in tSAH group were significantly increased within 24 hours(38.72±24.71 vs 4.54±1.38and 34.61±21.43 vs 4.13±1.26,P<0.01),and was remarkably higher in GCS≤8 group than GCS>8 group(50.96±36.81 vs 25.26±12.87 and 44.68±31.72 vs 23.53±10.94,P<0.05).The CSF AVP level was correlated with ICP(r= 0.46,P<0.05),but no statistically significant correlation was found between plasma AVP,CSF AVP and initial GCS(r=-0.29,P>0.05 and r=-0.32,P>0.05,respectively).The ICP(mm Hg)in tSAH patients was elevated and higher in GCS≤8 group than in GCS>8 group(25.9±9.7 vs 17.6±5.2,P<0.05=.Conclusion:Our research suggests that AVP is correlated with the severity of tSAH,and may be involved in the pathophysiological process of brain damage in the early stage after tSAH.It seems that compared with the plasma AVP concentration,CSF AVP is more related to the severity of tSAH.

  12. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  13. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  14. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  15. Early Metabolic Crisis-Related Brain Atrophy and Cognition in Traumatic Brain Injury

    OpenAIRE

    Wright, Matthew J.; McArthur, David L.; Alger, Jeffry R.; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C.; Hovda, David A.; Vespa, Paul

    2013-01-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as ‘frontal-temporal’ in nature, suggesting a possible link between acute metabolic crisis related-brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal ...

  16. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and se

  17. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  18. Ischemic and hemorrhagic brain stem lesions mimicking diabetic ophthalmoplegia.

    Science.gov (United States)

    Fujioka, T; Segawa, F; Ogawa, K; Kurihara, T; Kinoshita, M

    1995-05-01

    Two patients with diabetes mellitus, one of them with an isolated third cranial nerve palsy and the other with an isolated sixth cranial nerve palsy, are presented. MRI investigations including diffusion-weighted MRI revealed a small ischemic brain stem lesion in the former and a small hemorrhagic brain stem lesion in the latter. In the former case wallerian degeneration of the nerve fascicle within the mesencephalon was also detected. These cases indicate that vascular accidents of the brain stem may masquerade as fascicular or infranuclear disturbance of the oculomotor or abducens nerve; therefore, it is important to include brain stem lesions into the differential diagnosis of isolated ophthalmoplegia. Thorough investigation by MRI including diffusion-weighted MRI is helpful for correct diagnosis. PMID:7656493

  19. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion) are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    OpenAIRE

    Michael A. Kiraly; Kiraly, Stephen J.

    2007-01-01

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzh...

  20. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  1. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. PMID:26912636

  2. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury.

  3. Influencing factors for posttraumatic hydrocephalus in patients suffering from severe traumatic brain injuries

    Institute of Scientific and Technical Information of China (English)

    JIAO Qing-fang; LIU Zhan; LI Song; ZHOU Liang-xue; LI San-zhong; TIAN Wei; YOU Chao

    2007-01-01

    Objective: To detect the influencing factors for posttraumatic hydrocephalus in patients with severe traumatic brain injuries and provide theoretical reference for clinical treatment. Methods:Retrospective study was made on 139 patients with severe traumatic brain injuries in our hospital. The patients were divided into two groups: hydrocephalus group and non-hydrocephalus group. Single factor analysis and multiple factor analysis were used to determine the related factors and hydrocephalus. Multiple factor analysis was conducted with logistic regression. Results:Posttraumatic hydrocephalus was found in 19.42% of patients. Age(OR=1.050, 95% CI: 1.012-1.090), decompressive craniectomy (OR=4.312, 95% CI: 1.127-16.503), subarachnoid hemorrhage(OR=43.421, 95% CI: 7.835-240.652) and continuous lumbar drainage of cerebrospinal fluid (OR=0.045, 95% CI: 0.011-0.175) were screened out from nine factors as the influencing factors for posttraumatic hydrocephalus. Conclusions:Risk factors for PTH are as follows: age, decompressive craniectomy and subarachnoid hemorrhage (SAH). Continuous lumbar drainage of cerebrospinal fluid can greatly reduce posttraumatic hydrocephalus.

  4. Emergency treatment options for pediatric traumatic brain injury

    OpenAIRE

    Exo, J; Smith, C.; Smith, R.; Bell, MJ

    2009-01-01

    Traumatic brain injury is a leading killer of children and is a major public health problem around the world. Using general principles of neurocritical care, various treatment strategies have been developed to attempt to restore homeostasis to the brain and allow brain healing, including mechanical factors, cerebrospinal fluid diversion, hyperventilation, hyperosmolar therapies, barbiturates and hypothermia. Careful application of these therapies, normally in a step-wise fashion as intracrani...

  5. 77 FR 34363 - Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model...

    Science.gov (United States)

    2012-06-11

    ... Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model Systems... Program--Disability Rehabilitation Research Project (DRRP)-- Traumatic Brain Injury Model Systems Centers... for the Disability and Rehabilitation Research Projects and Centers Program administered by...

  6. Suicide after traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2001-01-01

    OBJECTIVES: To determine the rates of suicide among patients who have had a traumatic brain injury. METHODS: From a Danish population register of admissions to hospital covering the years 1979-93 patients were selected who had had either a concussion (n=126 114), a cranial fracture (n=7560......). There was, however, no evidence of a specific risk period for suicide after injury. CONCLUSION: The increased risk of suicide among patients who had a mild traumatic brain injury may result from concomitant risk factors such as psychiatric conditions and psychosocial disadvantage. The greater risk among...

  7. MR imaging of recent non-traumatic intracranial hemorrhage: early experience at 3 T

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) using 3.0 T scanners in the clinical environment is in its infancy and is only available at a limited number of sites worldwide. There is great interest amongst radiologists about the perceived benefits of clinical imaging at 3.0 T; however, it remains to be seen whether the theoretical advantages will bring real gains. MRI in patients with non-traumatic intracranial hemorrhage (ICH) is difficult, yet, these patients benefit from non-invasive angiography. Conventional catheter angiography (CCA) remains the reference standard for excluding/confirming the presence of intracranial vascular abnormalities, but MR angiography at 3.0 T may offer opportunities for significant changes in patient management. We present our experiences of using 3.0 T MR angiography in 27 patients with acute or early subacute ICH. (orig.)

  8. Extraterrestrial Hemorrhage Control: Terrestrial Developments in Technique, Technology, and Philosophy with Applicability to Traumatic Hemorrhage in Space

    Science.gov (United States)

    Kirkpatrick, Andrew; Dawson, David; Campbell, Mark; Jones, Jeff; Ball, Chad G.; Hamilton, Douglas R.; Dulchavsky, Scott; McBeth, Paul; Holcomb, John

    2004-01-01

    Managing injury and illness during long duration space flight limits efforts to explore beyond low earths orbit. Traumatic injury may be expected to occur in space and is a frequent cause of preventable deaths, often related to uncontrolled or ongoing hemorrhage (H). Such bleeding causes 40% of terrestrial injury mortality. Current guidelines emphasize early control of H compared to intravenous infusions. Recent advances in surgical and critical care may be applicable to trauma care in space, with appropriate considerations of the extreme logistical and personnel limitations. Methods: Recent developments in technique, resuscitation fluids, hemoglobin (Hb) substitutes, hemostatic agents, interventional angiography, damage control principles, and concepts related to suspended animation were reviewed. Results: H associated with instability frequently requires definitive intervention. Direct pressure should be applied to all compressible bleeding, but novel approaches are required for intracavitary noncompressible bleeding. Intravenous hemostatic agents such as recombinant Factor VII may facilitate hemostasis especially when combined with a controlled hypotension approach. Both open and laparoscopic techniques could be used in weightlessness, but require technical expertise not likely to be available. Specific rehearsed invasive techniques such as laparotomy with packing, or arterial catherterization with with robotic intravascular embolization might be considered . Hemodynamic support, thermal manipulation, or pharmacologic induction of a state of metabolic down regulation for whole body preservation may be appropriate. Hypertonic saline, with or without dextran, may temporize vascular support and decrease reperfusion injury, with less mass than other solutions. Hb substitutes have other theoretical advantages. Conclusions: Terrestrial developments suggest potential novel strategies to control H in space, but will required a coordinated program of evaluation and

  9. Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    Science.gov (United States)

    Bramlett, Helen M; Dietrich, W Dalton; Dixon, C Edward; Shear, Deborah A; Schmid, Kara E; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced

  10. Misconceptions on neuropsychological rehabilitation and traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alberto García- Molina

    2013-12-01

    Full Text Available There are many misconceptions about traumatic brain injuries, their recovery and outcome; misconceptions that have their origin in a lack of information influenced by the image that the media show of the brain damage. Development. Based on clinical experience, the authors of this essay sets out his personal view on some of the most frequent misconceptions in the field of neuropsychological rehabilitation of traumatic brain injury: 1 All deficits are evident; 2 The recovery depends mainly on the involvement of the patient: more effort, more rapid recovery; 3 Two years after traumatic brain injury there is no possibility of improvement and recovery; and 4 The “miracle” of recovery will occur when is found the appropriate professional or treatment. These and other beliefs may influence directly or indirectly on the recovery process and the expectations placed on it by the families and patients. Conclusions. Provide accurate, clear and honest information, at the right time, helps patients and their families to better understand the deficits, the course of recovery and to adapt to the new reality resulting from a traumatic brain injury.

  11. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Science.gov (United States)

    2013-02-12

    ... HUMAN SERVICES Health Resources and Services Administration Current Traumatic Brain Injury State...-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State Implementation Partnership... by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently reauthorized by...

  12. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2012-12-10

    ... Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION: Proposed rule. SUMMARY: The... Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. The...

  13. A case of traumatic MLF syndrome with a CT demonstration of a small hemorrhagic legion

    International Nuclear Information System (INIS)

    We report a case who developed internuclear ophthalmoplegia as a result of a closed head injury. A CT scan (Delta scan 50 FSII) demonstrated a small hemorrhage (9 x 12 mm. on actual measurement) in the dorsum of the upper pons. The patient is a 40-year-old male who fell backward while chasing a fly ball, striking the back of the head. He was rendered unconcious for some ten minutes. Upon admission, mild impairment of the adduction of both eye-balls was noted; 10 hours later this became more obvious, along with cerebellar ataxia, mild dysarthria, and paresthesia of the face. A CT scan obtained immediately after admission revealed an area of increased density compatible with a hemorrhage in the dorsum of the upper pons. A follow-up CT scan on the 12th hospital day revealed a complete resolution of the initially noted high-density in the upper pons, and 2 weeks following admission, the above-noted signs started to improve. Two and a half months following the injury he returned to work as a printer, although a detailed neuro-otological examination done 29 months after the injury still demonstrated evidence of bilateral internuclear ophthalmoplegia. To the author's knowledge, only 13 cases of traumatic 'MLF syndrome' have been reported so far, and our case is the first in which a CT scan indeed demonstrated the lesion. The details of the case are presented, along with the results of the neuro-otological evaluation. (author)

  14. The History and Evolution of Experimental Traumatic Brain Injury Models.

    Science.gov (United States)

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  15. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    Science.gov (United States)

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  16. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic l

  17. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  18. School-Based Traumatic Brain Injury and Concussion Management Program

    Science.gov (United States)

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  19. A clinical trial of progesterone for severe traumatic brain injury

    NARCIS (Netherlands)

    van der Naalt, Joukje

    2014-01-01

    BACKGROUND: Progesterone has been associated with robust positive effects in animal models of traumatic brain injury (TBI) and with clinical benefits in two phase 2 randomized, controlled trials. We investigated the efficacy and safety of progesterone in a large, prospective, phase 3 randomized clin

  20. Classroom Interventions for Students with Traumatic Brain Injuries

    Science.gov (United States)

    Bowen, Julie M.

    2005-01-01

    Students who have sustained a traumatic brain injury (TBI) return to the school setting with a range of cognitive, psychosocial, and physical deficits that can significantly affect their academic functioning. Successful educational reintegration for students with TBI requires careful assessment of each child's unique needs and abilities and the…

  1. Assisting Students with a Traumatic Brain Injury in School Interventions

    Science.gov (United States)

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  2. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    OpenAIRE

    Engel, Doortje Caroline

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse, and several rare causes e.g. the use of nail guns or lawn mowers have all been described as causes of TBI. The pathology of TBI can be classified by mechanism (closed versus penetrating); clinical severi...

  3. Genetic susceptibility to traumatic brain injury and apolipoprotein E gene

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-chuan; JIANG Yong

    2008-01-01

    @@ Traumatic brain injury (TBI) is defined as an injury caused by a blow or jolt to the head or a penetrating head injury that disrupts the normal function of the brain. It is a common emergency and severe case in neurosurgery field. Nowadays, there are more and more evidences showing that TBI, which is apparently similar in pathology and severity in the acute stage, may have different outcomes.

  4. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  5. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly

    2007-01-01

    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  6. Epileptogenesis after traumatic brain injury in Plau-deficient mice.

    Science.gov (United States)

    Bolkvadze, Tamuna; Rantala, Jukka; Puhakka, Noora; Andrade, Pedro; Pitkänen, Asla

    2015-10-01

    Several components of the urokinase-type plasminogen activator receptor (uPAR)-interactome, including uPAR and its ligand sushi-repeat protein 2, X-linked (SRPX2), are linked to susceptibility to epileptogenesis in animal models and/or humans. Recent evidence indicates that urokinase-type plasminogen activator (uPA), a uPAR ligand with focal proteinase activity in the extracellular matrix, contributes to recovery-enhancing brain plasticity after various epileptogenic insults such as traumatic brain injury (TBI) and status epilepticus. Here, we examined whether deficiency of the uPA-encoding gene Plau augments epileptogenesis after TBI. Traumatic brain injury was induced by controlled cortical impact in the somatosensory cortex of adult male wild-type and Plau-deficient mice. Development of epilepsy and seizure susceptibility were assessed with a 3-week continuous video-electroencephalography monitoring and a pentylenetetrazol test, respectively. Traumatic brain injury-induced cortical or hippocampal pathology did not differ between genotypes. The pentylenetetrazol test revealed increased seizure susceptibility after TBI (p<0.05) in injured mice. Epileptogenesis was not exacerbated, however, in Plau-deficient mice. Taken together, Plau deficiency did not worsen controlled cortical impact-induced brain pathology or epileptogenesis caused by TBI when assessed at chronic timepoints. These data expand previous observations on Plau deficiency in models of status epilepticus and suggest that inhibition of focal extracellular proteinase activity resulting from uPA-uPAR interactions does not modify epileptogenesis after TBI. PMID:26253597

  7. Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Awwad, Hibah O

    2016-01-01

    Traumatic brain injury (TBI), ranging from mild to severe, almost always elicits an array of behavioral deficits in injured subjects. Some of these TBI-induced behavioral deficits include cognitive and vestibulomotor deficits as well as anxiety and other consequences. Rodent models of TBI have been (and still are) fundamental in establishing many of the pathophysiological mechanisms of TBI. Animal models are also utilized in screening and testing pharmacological effects of potential therapeutic agents for brain injury treatment. This chapter details validated protocols for each of these behavioral deficits post traumatic brain injury in Sprague-Dawley male rats. The elevated plus maze (EPM) protocol is described for assessing anxiety-like behavior; the Morris water maze protocol for assessing cognitive deficits in learning memory and spatial working memory and the rotarod test for assessing vestibulomotor deficits. PMID:27604739

  8. Pathophysiological links between traumatic brain injury and post-traumatic headaches [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Robert L. Ruff

    2016-08-01

    Full Text Available This article reviews possible ways that traumatic brain injury (TBI can induce migraine-type post-traumatic headaches (PTHs in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD, are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD.

  9. Pathophysiological links between traumatic brain injury and post-traumatic headaches.

    Science.gov (United States)

    Ruff, Robert L; Blake, Kayla

    2016-01-01

    This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD.

  10. Mechanism of macrophage injury following traumatic hemorrhagic shock: through PTX-sensitive G-protein-mediated signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    刘靖华; 刘良明; 陈惠孙; 胡德耀; 刘怀琼

    2002-01-01

    Objective: To study the mechanism of macrophage injury after trauma-hemorrhagic shock.   Methods: Wistar male rats underwent trauma (closed bone fracture) and hemorrhage (mean arterial blood pressure of 35 mm Hg±5 mm Hg for 60 minutes, following fluid resuscitation). Rats without trauma, hemorrhage or fluid resuscitation served as controls. Peritoneal macrophages were harvested at 6 hours and 1, 2, 3, 7 days after traumatic hemorrhagic shock to determine the effects of pertussis toxin (PTX, as a specific inhibitor to Giα) and cholera toxin (CTX, as a stimulant to Gsα) on macrophage-Ia expression and TNF-α production and levels of Giα and Gsα.   Results: The macrophages from the injured rats revealed a significant decrease of Ia positive number and TNF-α release in response to LPS. With pretreatment with PTX 10-100 ng/ml Ia positive cells and LPS-induced TNFα production in both control and impaired macrophages populations were dose-dependently increased. Both macrophages populations were not responding to CTX treatment (10-100 ng/ml). Western blot analyses showed that the levels of Giα protein expression increased as much as 116.5%-148.8% of the control level from 6 hours through 7 days after traumatic hemorrhage. The levels of Gsα protein expression were reduced at 6 hours and decreased to the lowest degree; 36% of the control at day 1, began to return at day 2 and returned to the normal level at day 7, following traumatic hemorrhagic shock.   Conclusions: PTX-sensitive G-protein may participate in the modulation of macrophage-Ia expression and TNF-α release following traumatic hemorrhagic shock. Analyses of the alteration of Giα and Gsα protein expressions further supports the concept that G-protein is involved in trauma-induced macrophage signal transduction pathways.

  11. Case of traumatic MLF syndrome with a CT demonstration of a small hemorrhagic legion

    Energy Technology Data Exchange (ETDEWEB)

    Ban, S.; Ogata, M.; Miyamoto, T.; Tabuchi, T. (Kobe Municipal Central Hospital (Japan))

    1981-12-01

    We report a case who developed internuclear ophthalmoplegia as a result of a closed head injury. A CT scan (Delta scan 50 FSII) demonstrated a small hemorrhage (9 x 12 mm. on actual measurement) in the dorsum of the upper pons. The patient is a 40-year-old male who fell backward while chasing a fly ball, striking the back of the head. He was rendered unconcious for some ten minutes. Upon admission, mild impairment of the adduction of both eye-balls was noted; 10 hours later this became more obvious, along with cerebellar ataxia, mild dysarthria, and paresthesia of the face. A CT scan obtained immediately after admission revealed an area of increased density compatible with a hemorrhage in the dorsum of the upper pons. A follow-up CT scan on the 12th hospital day revealed a complete resolution of the initially noted high-density in the upper pons, and 2 weeks following admission, the above-noted signs started to improve. Two and a half months following the injury he returned to work as a printer, although a detailed neuro-otological examination done 29 months after the injury still demonstrated evidence of bilateral internuclear ophthalmoplegia. To the author's knowledge, only 13 cases of traumatic 'MLF syndrome' have been reported so far, and our case is the first in which a CT scan indeed demonstrated the lesion. The details of the case are presented, along with the results of the neuro-otological evaluation.

  12. Neurodegeneration after mild and repetitive traumatic brain injury: Chronic traumatic encepalopathy

    Directory of Open Access Journals (Sweden)

    Stanescu Ioana

    2015-09-01

    Full Text Available Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently under research. CTE can be diagnosed only by post mortem neuropathological examination of the brain. Great efforts are being made to better understand the clinical signs and symptoms of CTE, obtained in most cases retrospectively from families of affected persons.Patients with CTE are described as having behavioral, mood, cognitive and motor impairments, occurring after a long latency from the traumatic events. Recent pathogenetic studies have provided new insights to CTE mechanisms, offering important clues in understanding neurodegenerative process and relations between physical factors and pathologic protein deposition. Further research is needed to better identify the genetic and environmental risk factors for CTE, as well as rehabilitation and treatment strategies.

  13. Neurological consequences of traumatic brain injuries in sports.

    Science.gov (United States)

    Ling, Helen; Hardy, John; Zetterberg, Henrik

    2015-05-01

    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological

  14. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available BACKGROUND: Spontaneous intracerebral hemorrhage (ICH represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. METHODOLOGY/PRINCIPAL FINDINGS: Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH and the corresponding contralateral white (CW and grey (CG matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between -3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed. The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. CONCLUSIONS: The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions.

  15. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  16. Protective effect of albumin on lung injury in traumatic/hemorrhagic shock in rats

    Institute of Scientific and Technical Information of China (English)

    DING Chen-yan; CHEN Zuo-bing; ZHENG Shu-sen; GAO Yuan; ZHANG Yun; ZHAO Xue-hong; NI Ling-mei

    2005-01-01

    Objective: To determine the effect of albumin administration on lung injury in traumatic/hemorrhagic shock (T/HS) in rats. Methods: Forty-eight adult Sprague-Dawley rats were divided into three groups randomly (n=16 in each group): Group A, Group B, Group C. In Group A, rats underwent laparotomy without shock. In Group B, rats undergoing T/HS were resuscitated with their blood plus lactated Ringer's (twice the volume of shed blood). In Group C, rats undergoing T/HS were resuscitated with their shed blood plus additional 3 ml of 5% human albumin. The expression of polymorphonuclear neutrophils CD18/CD11b in jugular vein blood was evaluated. The main lung injury indexes (the activity of myeloperoxidase and lung injury score) were measured. Results: Significant differences of the expression of CD18/11b and the severity degree of lung injury were found between the three groups.(P<0.05). The expression of CD18/CD11b and the main lung injury indexes in Group B and Goup C incresed significantly compared with those in Group A(P<0.05).At the same time, the expression of CD18/CD11b and the main lung injury indexes in Group C decreased dramatically, compared with those in Group B (P<0.05). Conclusions: The infusion of albumin during resuscitation period can protect lungs from injury and decrease the expression of CD18/CD11b in T/HS rats.

  17. Albumin resuscitation protects against traumatic/hemorrhagic shock-induced lung apoptosis in rats

    Institute of Scientific and Technical Information of China (English)

    Yun ZHANG; Zhong-yan LIANG; Shao-yang ZHANG; Fang-fang HUANG; Wei WU; Yuan GAO; Zuo-bing CHEN

    2008-01-01

    Objective: To determine the effects of albumin administration on lung injury and apoptosis in traumatic/hemorrhagic shock (T/HS) rats. Methods: Studies were performed on an in vivo model of spontaneously breathing rats with induced T/HS; the rats were subjected to femur fracture, ischemia for 30 min, and reperfusion for 20 rain with Ringer's lactate solution (RS) or 5% (w/v) albumin (ALB), and the left lower lobes of the lungs were resected. Results: Albumin administered during reperfusion markedly attenuated injury of the lung and decreased the concentration of lactic acid and the number of in situ TdT-mediated dUTP nick-end labelling (TUNEL)-positive cells. Moreover, immunohistochemistry performed 24 h after reperfusion revealed increases in the level of nuclear factor κB (NF-κB), and phosphorylated p38 mitogen-activated protein kinase (MAPK) in the albumin-untreated group was down-regulated by albumin treatment when compared with the sham rats. Conclusion: Resuscitation with albumin attenuates tissue injury and inhibits T/HS-induced apoptosis in the lung via the p38 MAPK signal transduction pathway that functions to stimulate the activation of NF-κB.

  18. Specificity of Cognitive and Behavioral Complaints in Post-Traumatic Stress Disorder and Mild Traumatic Brain Injury

    OpenAIRE

    Hélène Pineau; André Marchand; Stéphane Guay

    2015-01-01

    Characterization of cognitive and behavioral complaints is explored in Post-traumatic stress disorder (PTSD) and mild traumatic brain injury (MTBI) samples according to the severity of PTSD, depression and general anxiety conditions. Self-reported questionnaires on cognitive and behavioral changes are administered to PTSD, MTBI, MTBI/PTSD and control groups. Confounding variables are controlled. All groups report more complaints since the traumatic event. PTSD and MTBI/PTSD groups report more...

  19. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings.

    Science.gov (United States)

    Bigler, Erin D; Maxwell, William L

    2012-06-01

    Neuroimaging identified abnormalities associated with traumatic brain injury (TBI) are but gross indicators that reflect underlying trauma-induced neuropathology at the cellular level. This review examines how cellular pathology relates to neuroimaging findings with the objective of more closely relating how neuroimaging findings reveal underlying neuropathology. Throughout this review an attempt will be made to relate what is directly known from post-mortem microscopic and gross anatomical studies of TBI of all severity levels to the types of lesions and abnormalities observed in contemporary neuroimaging of TBI, with an emphasis on mild traumatic brain injury (mTBI). However, it is impossible to discuss the neuropathology of mTBI without discussing what occurs with more severe injury and viewing pathological changes on some continuum from the mildest to the most severe. Historical milestones in understanding the neuropathology of mTBI are reviewed along with implications for future directions in the examination of neuroimaging and neuropathological correlates of TBI.

  20. Increased risk of dementia in patients with mild traumatic brain injury: a nationwide cohort study.

    Directory of Open Access Journals (Sweden)

    Yi-Kung Lee

    Full Text Available BACKGROUND: It is known that the risk of dementia in patients with moderate to severe traumatic brain injury (TBI is higher. However, the relationship between mild traumatic brain injury (mTBI and dementia has never been established. OBJECTIVES: We investigated the incidences of dementia among patients with mTBI in Taiwan to evaluate if there is higher risk compared with general population. METHODS: We utilized a sampled National Health Insurance (NHI claims data containing one million beneficiaries. We followed all adult beneficiaries from January 1, 2005 till December 31, 2009 to see if they had been diagnosed with dementia. We further identify patients with mTBI and compared their risk of dementia with the general population. RESULTS: We identified 28551 patients with mTBI and 692382 without. After controlled for age, gender, urbanization level, socioeconomic status, diabetes, hypertension, coronary artery disease, hyperlipidemia, history of alcohol intoxication, history of ischemic stroke, history of intracranial hemorrhage and Charlson Comorbidity Index Score, the adjusted hazard ratio is 3.26 (95% Confidence interval, 2.69-3.94. CONCLUSIONS: TBI is an independent significant risk factor of developing dementia even in the mild type.

  1. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis

    OpenAIRE

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter v...

  2. Acute and long-term pituitary insufficiency in traumatic brain injury

    DEFF Research Database (Denmark)

    Klose, M; Juul, A; Struck, J;

    2007-01-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations.......To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations....

  3. Comment: importance of cognitive reserve in traumatic brain injury.

    Science.gov (United States)

    Bigler, Erin D

    2014-05-01

    The expectation for moderate to severe traumatic brain injury (TBI) is permanent damage and lasting deficits. However, in a multicenter investigation, Schneider et al.(1) show that by 1 year postinjury, one-fourth of patients with TBI achieve disability-free recovery (DFR), defined as a score of zero on the Disability Rating Scale. Of importance, cognitive reserve (CR) in the form of educational attainment was related to DFR.

  4. Cost-effectiveness of early rehabilitation after Traumatic brain injury

    OpenAIRE

    2013-01-01

    Traumatic brain injury (TBI) is a craniocerebral trauma which causes long-term physical, cognitive and emotional impairment and adds substantially to the healthcare burden. The cost of TBIs is believed to be huge in Norway. Moderate and severe TBIs require rehabilitation, which helps reduce disability and improves the quality of life of patients. It is important to determine the efficacy of early rehabilitation as a form of treatment after severe TBI both in terms of its costs and effectivene...

  5. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury

    OpenAIRE

    Iverson, Grant L.; Lange, Rael T.; Minna Wäljas; Suvi Liimatainen; Prasun Dastidar; Hartikainen, Kaisa M.; Seppo Soimakallio; Juha Öhman

    2012-01-01

    Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI) using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absenc...

  6. Inhibitory Control after Traumatic Brain Injury in Children

    OpenAIRE

    Sinopoli, Katia J.; Dennis, Maureen

    2011-01-01

    Inhibitory control describes a number of distinct processes. Effortless inhibition refers to acts of control that are automatic and reflexive. Effortful inhibition refers to voluntary, goal-directed acts of control such as response flexibility, interference control, cancellation inhibition, and restraint inhibition. Disruptions to a number of inhibitory control processes occur as a consequence of childhood traumatic brain injury (TBI). This paper reviews the current knowledge of inhibition de...

  7. Neuroprotective effect of Pycnogenol® following traumatic brain injury

    OpenAIRE

    Scheff, Stephen W.; Ansari, Mubeen A.; Roberts, Kelly N.

    2012-01-01

    Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requ...

  8. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris

    2006-04-01

    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  9. Rehabilitation Outcome of Unconscious Traumatic Brain Injury Patients

    OpenAIRE

    Klein, Anke-Maria; Howell, Kaitlen; Vogler, Jana; Grill, Eva; Straube, Andreas; Bender, Andreas

    2013-01-01

    Outcome prediction of traumatic brain injury (TBI) patients with severe disorders of consciousness (DOC) at the end of their time in an intensive care setting is important for clinical decision making and counseling of relatives, and constitutes a major challenge. Even the question of what constitutes an improved outcome is controversially discussed. We have conducted a retrospective cohort study for the rehabilitation dynamics and outcome of TBI patients with DOC. Out of 188 patients, 37.2% ...

  10. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury

    OpenAIRE

    Josef Zihl; Almeida, Osborne F X

    2015-01-01

    Endocrine dysfunction is a common effect of traumatic brain injury (TBI). In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental f...

  11. Dysautonomia after traumatic brain injury: a forgotten syndrome?

    OpenAIRE

    Baguley, I.; Nicholls, J; Felmingham, K.; Crooks, J; Gurka, J.; Wade, L.

    1999-01-01

    OBJECTIVES—To better establish the clinical features, natural history, clinical management, and rehabilitation implications of dysautonomia after traumatic brain injury, and to highlight difficulties with previous nomenclature.
METHODS—Retrospective file review on 35 patients with dysautonomia and 35 sex and Glasgow coma scale score matched controls. Groups were compared on injury details, CT findings, physiological indices, and evidence of infections over the first 28 da...

  12. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  13. Do metals that translocate to the brain exacerbate traumatic brain injury?

    Science.gov (United States)

    Kalinich, John F; Kasper, Christine E

    2014-05-01

    Metal translocation to the brain is strictly controlled and often prevented by the blood-brain barrier. For the most part, only those metals required to maintain normal function are transported into the brain where they are under tight metabolic control. From the literature, there are reports that traumatic brain injury disrupts the blood-brain barrier. This could allow the influx of metals that would normally have been excluded from the brain. We also have preliminary data showing that metal pellets, surgically-implanted into the leg muscle of a rat to simulate a shrapnel wound, solubilize and the metals comprising the pellet can enter the brain. Surprisingly, rats implanted with a military-grade tungsten alloy composed of tungsten, nickel, and cobalt also showed significantly elevated uranium levels in their brains as early as 1 month after pellet implantation. The only source of uranium was low levels that are naturally found in food and water. Conversely, rats implanted with depleted uranium pellets demonstrated elevated uranium levels in brain resulting from degradation of the implanted pellets. However, when cobalt levels were measured, there were no significant increases in the brain until the rats had reached old age. The only source of cobalt for these rats was the low levels found in their food and water. These data suggest that some metals or metal mixtures (i.e., tungsten alloy), when embedded into muscle, can enhance the translocation of other, endogenous metals (e.g., uranium) across the blood-brain barrier. For other embedded metals (i.e., depleted uranium), this effect is not observed until the animal is of advanced age. This raises the possibility that metal body-burdens can affect blood-brain barrier permeability in a metal-specific and age-dependent manner. This possibility is disconcerting when traumatic brain injury is considered. Traumatic brain injury has been called the "signature" wound of the conflicts in Iraq and Afghanistan, often, an

  14. Clinical Feature And Pathogeny Analysis Of Brain Hemorrhage In Young Adult Group

    Institute of Scientific and Technical Information of China (English)

    Wang Jianming; Zeng Xiaoyun

    2000-01-01

    Objection: The trend of brain hemorrhage cases of young adults have increased recently. In this article, We studied brain hemorrhage clinical feature and pathogenic causes of 72 young adults, Whose ages are all beneath 45Y. We found That the major pathogen reasons of young adult brain hemorrhage are blood system diseases、 arteriovenous malformation of cerebral blood vessel、 hypertension arteriosclerosis、 arteritis and rheumatic heart disease et. We also found that the trend can be related to hard work、 tense life、 drinking too much alcohol and eating high lipid food, and cercbral vascular disease family history. So in order to reduce the incidence of young adult brain hemorrhage, Young adults should not drink and smoke heavily, should not eat too much high lipid food. Young adults who have hypertension and brain vessel disease family history should be regularly measured blood pressure and blood lipid. If they had hypertension, should be treated regularly.

  15. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.;

    2008-01-01

    Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity....... Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26...

  16. Glutamate and GABA imbalance following traumatic brain injury.

    Science.gov (United States)

    Guerriero, Réjean M; Giza, Christopher C; Rotenberg, Alexander

    2015-05-01

    Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm. PMID:25796572

  17. Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury.

    Science.gov (United States)

    Van, Ken C; Lyeth, Bruce G

    2016-01-01

    Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI. PMID:27604722

  18. The Stress and Vascular Catastrophes in Newborn Rats: Mechanisms Preceding and Accompanying the Brain Hemorrhages

    Science.gov (United States)

    Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Abakumov, Maxim; Gorin, Dmitry; Avramov, Latchezar; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Serov, Alexander; Pavlov, Alexey; Zinchenko, Ekaterina; Lychagov, Vlad; Navolokin, Nikita; Shirokov, Alexander; Maslyakova, Galina; Zhu, Dan; Luo, Qingming; Chekhonin, Vladimir; Tuchin, Valery; Kurths, Jürgen

    2016-01-01

    In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health. PMID:27378933

  19. Recurrent delayed brain hemorrhage over years after irradiation and chemotherapy for astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Hillemanns, Andreas; Skalej, Martin; Krapf, Hilmar [Department of Neuroradiology, Eberhard Karls University, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Kortmann, Rolf-Dieter [Department of Radiooncology, Eberhard Karls University, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Herrlinger, Ulrich [Department of Neurology, Eberhard Karls University, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany)

    2003-08-01

    We report on an adult patient with a right frontal astrocytoma, classification WHO II, who suffered from radionecrosis 3.5 years after surgery and combined radio- and chemotherapy. Beginning 8 years after initial diagnosis, repeated episodes of bilateral cerebral hemorrhage and cavitation occurred. This case description emphasizes the possibility of repeated hemorrhage as a delayed reaction to brain irradiation and chemotherapy. (orig.)

  20. Post-treatment intracranial hemorrhage of brain metastases from hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Kyu Bo; Chie, Eui Kyu; Kim, Yoon Jun; Yoon, Jung Hwan; Lee, Hyo Suk; Ha, Sung W. [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-03-15

    To evaluate the incidence and risk factors of post-treatment intracranial hemorrhage of brain metastases from hepatocellular carcinoma (HCC). Medical records of 81 patients who have been diagnosed of brain metastases from HCC and underwent surgery, radiosurgery and/or whole brain radiotherapy (WBRT) between January 2000 and December 2013 were retrospectively reviewed. Intracranial hemorrhage was present in 64 patients (79%) at the time of diagnosis. Median value of alpha-fetoprotein (AFP) level was 1,700 ng/mL. The Eastern Cooperative Oncology Group (ECOG) performance status for 20 patients was greater than 2. Fifty-seven patients underwent WBRT and the others were treated with surgery and/or radiosurgery without WBRT. During follow-up, 12 events of intracranial hemorrhage after treatment were identified. Three-month post-treatment hemorrhage rate was 16.1%. Multivariate analyses revealed that ECOG performance status, AFP, and WBRT were associated with post-treatment hemorrhage (p = 0.013, 0.013, and 0.003, respectively). Kaplan-Meier analysis showed that 3-month post-treatment hemorrhage rate of new lesion was higher in patients treated without WBRT, although statistical significance was not reached. (18.6% vs. 4.6%; p = 0.104). Ten of 12 patients with post-treatment hemorrhage died with neurologic cause. WBRT should be considered to prevent post-treatment hemorrhage in the treatment of brain metastases from HCC.

  1. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    Science.gov (United States)

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  2. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury

    OpenAIRE

    Piao, Chun-Shu; Stoica, Bogdan A.; Wu, Junfang; Sabirzhanov, Boris; Zhao, Zaorui; Cabatbat, Rainier; Loane, David J.; Faden, Alan I.

    2013-01-01

    Delayed secondary biochemical and cellular changes after traumatic brain injury continue for months to years, and are associated with chronic neuroinflammation and progressive neurodegeneration. Physical activity can reduce inflammation and facilitate recovery after brain injury. Here, we investigated the time-dependent effects, and underlying mechanisms of post-traumatic exercise initiation on outcome after moderate traumatic brain injury using a well-characterized mouse controlled cortical ...

  3. A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice.

    Directory of Open Access Journals (Sweden)

    YungChia eChen

    2014-06-01

    Full Text Available For the past 25 years, controlled cortical impact (CCI has been a useful tool in traumatic brain injury (TBI research, creating injury patterns that include primary contusion, neuronal loss, and traumatic axonal damage. However, when CCI was first developed, very little was known on the underlying biomechanics of mild TBI. This paper uses information generated from recent computational models of mild TBI in humans to alter CCI and better reflect the biomechanical conditions of mild TBI. Using a finite element model of CCI in the mouse, we adjusted three primary features of CCI: the speed of the impact to achieve strain rates within the range associated with mild TBI, the shape and material of the impounder to minimize strain concentrations in the brain, and the impact depth to control the peak deformation that occurred in the cortex and hippocampus. For these modified cortical impact conditions, we observed peak strains and strain rates throughout the brain were significantly reduced and consistent with estimated strains and strain rates observed in human mild TBI. We saw breakdown of the blood-brain barrier but no primary hemorrhage. Moreover, neuronal degeneration, axonal injury, and both astrocytic and microglia reactivity were observed up to 8 days after injury. Significant deficits in rotarod performance appeared early after injury, but we observed no impairment in spatial object recognition or contextual fear conditioning response 5 days and 8 days after injury, respectively. Together, these data show that simulating the biomechanical conditions of mild TBI with a modified cortical impact technique produces regions of cellular reactivity and neuronal loss that coincide with only a transient behavioral impairment.

  4. Supernova hemorrhage: obliterative hemorrhage of brain arteriovenous malformations following γ knife radiosurgery.

    Science.gov (United States)

    Alexander, Matthew D; Hetts, Steven W; Young, William L; Halbach, Van V; Dowd, Christopher F; Higashida, Randall T; English, Joey D

    2012-09-01

    Hemorrhage represents the most feared complication of cerebral arteriovenous malformations (AVMs) in both untreated patients and those treated with gamma knife radiosurgery. Radiosurgery does not immediately lead to obliteration of the malformation, which often does not occur until years following treatment. Post-obliteration hemorrhage is rare, occurring months to years after radiosurgery, and has been associated with residual or recurrent AVM despite prior apparent nidus elimination. Three cases are reported of delayed intracranial hemorrhage in patients with cerebral AVMs treated with radiosurgery in which no residual AVM was found on catheter angiography at the time of delayed post-treatment hemorrhage. That the pathophysiology of these hemorrhages involves progressive venous outflow occlusion is speculated and the possible mechanistic link to subsequent vascular rupture is discussed. PMID:21990534

  5. [Guidelines for the management of severe traumatic brain injury. Part 3. Surgical management of severe traumatic brain injury (Options)].

    Science.gov (United States)

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the main causes of mortality and severe disability in young and middle age patients. Patients with severe TBI, who are in coma, are of particular concern. Adequate diagnosis of primary brain injuries and timely prevention and treatment of secondary injury mechanisms markedly affect the possibility of reducing mortality and severe disability. The present guidelines are based on the authors' experience in developing international and national recommendations for the diagnosis and treatment of mild TBI, penetrating gunshot wounds of the skull and brain, severe TBI, and severe consequences of brain injury, including a vegetative state. In addition, we used the materials of international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe TBI, which were published in recent years. The proposed recommendations for surgical treatment of severe TBI in adults are addressed primarily to neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in treating these patients.

  6. Increased leakage of brain antigens after traumatic brain injury and effect of immune tolerance induced by cells on traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YAN Hua; ZHANG Hong-wei; WU Qiao-li; ZHANG Guo-bin; LIU Kui; ZHI Da-shi; HU Zhen-bo; ZENG Xian-wei

    2012-01-01

    Background Although traumatic brain injury can lead to opening the blood-brain barrier and leaking of blood substances (including water) into brain tissue,few studies of brain antigens leaking into the blood and the pathways have been reported.Brain antigens result in damage to brain tissues by stimulating the immune system to produce anti-brain antibodies,but no treatment has been reported to reduce the production of anti-brain antibodies and protect the brain tissue.The aim of the study is to confirm the relationship between immune injury and arachnoid granulations following traumatic brain injury,and provide some new methods to inhibit the immune injury.Methods In part one,methylene blue was injected into the rabbits' cisterna magna after traumatic brain injury,and concentrations of methylene blue and tumor necrosis factor (TNF)-α in blood were detected to determine the permeability of arachnoid granulations.In part two,umbilical cord mesenchymal stem cells and immature dendritic cells were injected into veins,and concentrations of interleukin 1 (IL-1),IL-10,interferon (IFN)-y,transforming growth factor (TGF)-β,anti-brain antibodies (ABAb),and IL-12 were measured by ELISA on days 1,3,7,14 and 21 after injury,and the numbers of leukocytes in the blood were counted.Twenty-one days after injury,expression of glutamate in brain tissue was determined by immunohistochemical staining,and neuronal degeneration was detected by H&E staining.Results In part one,blood concentrations of methylene blue and TNF-α in the traumatic brain injury group were higher than in the control group (P <0.05).Concentrations of methylene blue and TNF-α in the trauma cerebrospinal fluid (CSF)injected group were higher than in the control cerebrospinal fluid injected group (P <0.05).In part two,concentrations of IL-1,IFN-y,ABAb,IL-12,expression of glutamate (Glu),neuronal degeneration and number of peripheral blood leukocytes were lower in the group with cell treatment compared to the

  7. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  8. Recovery from Mild Traumatic Brain Injury in Previously Healthy Adults.

    Science.gov (United States)

    Losoi, Heidi; Silverberg, Noah D; Wäljas, Minna; Turunen, Senni; Rosti-Otajärvi, Eija; Helminen, Mika; Luoto, Teemu M; Julkunen, Juhani; Öhman, Juha; Iverson, Grant L

    2016-04-15

    This prospective longitudinal study reports recovery from mild traumatic brain injury (MTBI) across multiple domains in a carefully selected consecutive sample of 74 previously healthy adults. The patients with MTBI and 40 orthopedic controls (i.e., ankle injuries) completed assessments at 1, 6, and 12 months after injury. Outcome measures included cognition, post-concussion symptoms, depression, traumatic stress, quality of life, satisfaction with life, resilience, and return to work. Patients with MTBI reported more post-concussion symptoms and fatigue than the controls at the beginning of recovery, but by 6 months after injury, did not differ as a group from nonhead injury trauma controls on cognition, fatigue, or mental health, and by 12 months, their level of post-concussion symptoms and quality of life was similar to that of controls. Almost all (96%) patients with MTBI returned to work/normal activities (RTW) within the follow-up of 1 year. A subgroup of those with MTBIs and controls reported mild post-concussion-like symptoms at 1 year. A large percentage of the subgroup who had persistent symptoms had a modifiable psychological risk factor at 1 month (i.e., depression, traumatic stress, and/or low resilience), and at 6 months, they had greater post-concussion symptoms, fatigue, insomnia, traumatic stress, and depression, and worse quality of life. All of the control subjects who had mild post-concussion-like symptoms at 12 months also had a mental health problem (i.e., depression, traumatic stress, or both). This illustrates the importance of providing evidence-supported treatment and rehabilitation services early in the recovery period. PMID:26437675

  9. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury.

    Science.gov (United States)

    Bao, Hai-Jun; Qiu, Hai-Yang; Kuai, Jin-Xia; Song, Cheng-Jie; Wang, Shao-Xian; Wang, Chao-Qun; Peng, Hua-Bin; Han, Wen-Can; Wu, Yong-Ping

    2016-07-01

    The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect. PMID:27630697

  10. The military's approach to traumatic brain injury and post-traumatic stress disorder

    Science.gov (United States)

    Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.

    2014-06-01

    Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.

  11. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  12. The role of markers of inflammation in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Thomas eWoodcock

    2013-03-01

    Full Text Available Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (IL-1, TNF, IL-6, the anti-inflammatory cytokines (IL-4, IL-10 and TGF-beta and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following TBI, the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair.Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and

  13. Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury.

    Science.gov (United States)

    Kawoos, Usmah; McCarron, Richard M; Auker, Charles R; Chavko, Mikulas

    2015-12-04

    Intracranial pressure (ICP) measurements are essential in evaluation and treatment of neurological disorders such as subarachnoid and intracerebral hemorrhage, ischemic stroke, hydrocephalus, meningitis/encephalitis, and traumatic brain injury (TBI). The techniques of ICP monitoring have evolved from invasive to non-invasive-with both limitations and advantages. Some limitations of the invasive methods include short-term monitoring, risk of infection, restricted mobility of the subject, etc. The invasiveness of a method limits the frequency of ICP evaluation in neurological conditions like hydrocephalus, thus hampering the long-term care of patients with compromised ICP. Thus, there has been substantial interest in developing noninvasive techniques for assessment of ICP. Several approaches were reported, although none seem to provide a complete solution due to inaccuracy. ICP measurements are fundamental for immediate care of TBI patients in the acute stages of severe TBI injury. In severe TBI, elevated ICP is associated with mortality or poor clinical outcome. ICP monitoring in conjunction with other neurological monitoring can aid in understanding the pathophysiology of brain damage. This review article presents: (a) the significance of ICP monitoring; (b) ICP monitoring methods (invasive and non-invasive); and (c) the role of ICP monitoring in the management of brain damage, especially TBI.

  14. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  15. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury.

    Science.gov (United States)

    Faden, Alan I; Wu, Junfang; Stoica, Bogdan A; Loane, David J

    2016-02-01

    Traumatic brain injury (TBI) has been linked to dementia and chronic neurodegeneration. Described initially in boxers and currently recognized across high contact sports, the association between repeated concussion (mild TBI) and progressive neuropsychiatric abnormalities has recently received widespread attention, and has been termed chronic traumatic encephalopathy. Less well appreciated are cognitive changes associated with neurodegeneration in the brain after isolated spinal cord injury. Also under-recognized is the role of sustained neuroinflammation after brain or spinal cord trauma, even though this relationship has been known since the 1950s and is supported by more recent preclinical and clinical studies. These pathological mechanisms, manifested by extensive microglial and astroglial activation and appropriately termed chronic traumatic brain inflammation or chronic traumatic inflammatory encephalopathy, may be among the most important causes of post-traumatic neurodegeneration in terms of prevalence. Importantly, emerging experimental work demonstrates that persistent neuroinflammation can cause progressive neurodegeneration that may be treatable even weeks after traumatic injury.

  16. Feasibility of computerized brain plasticity-based cognitive training after traumatic brain injury

    OpenAIRE

    Matthew S. Lebowitz, AB; Kristen Dams-O’Connor, PhD; Joshua B. Cantor, PhD

    2013-01-01

    The present study investigates the feasibility and utility of using a computerized brain plasticity-based cognitive training (BPCT) program as an intervention for community-dwelling individuals with traumatic brain injury (TBI). In a pre-post pilot study, 10 individuals with mild to severe TBI who were 6 mo to 22 yr postinjury were asked to use a computerized BPCT intervention—designed to improve cognitive functioning through a graduated series of structured exercises—at their homes in an urb...

  17. Quantitative Brain Electrical Activity in the Initial Screening of Mild Traumatic Brain Injuries

    OpenAIRE

    O'Neil, Brian; Prichep, Leslie S.; Naunheim, Roseanne; Chabot, Robert

    2012-01-01

    Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possi...

  18. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2013-05-15

    ... Traumatic Brain Injury Correction In proposed rule document 2012-29709 beginning on page 73366 in the issue...: Structural imaging of the brain. LOC--Loss of consciousness. AOC--Alteration of consciousness/mental...

  19. Traumatic Brain Injury. Fact Sheet = Lesion Cerebral Traumatica (TBI). Hojas Informativas Sobre Discapacidades.

    Science.gov (United States)

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet, written in both English and Spanish, offers general information about traumatic brain injury. Information includes a definition, incidence, individual characteristics, and educational implications. The signs of traumatic brain injury are listed and include physical disabilities, difficulties with thinking, and social, behavioral,…

  20. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation

    DEFF Research Database (Denmark)

    Kammersgaard, Lars Peter; Linnemann, Mia; Tibæk, Maiken

    2013-01-01

    To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI).......To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI)....

  1. 78 FR 13600 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Science.gov (United States)

    2013-02-28

    ... and Prevention reports that approximately 1.7 million traumatic brain injuries (TBIs) were recorded... practice guidelines that improve the lives of individuals with traumatic brain injuries (TBIs) through... published in the Federal Register on February 15, 2006 (71 FR 8165), can be accessed on the Internet at...

  2. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Sevil Bilgin; Arzu Guclu-Gunduz; Hakan Oruckaptan; Nezire Kose; Bülent Celik

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27)received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury.

  3. Placebo-controlled trial of amantadine for severe traumatic brain injury

    DEFF Research Database (Denmark)

    Giacino, Joseph T; Whyte, John; Bagiella, Emilia;

    2012-01-01

    Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery.......Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery....

  4. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury.

    Science.gov (United States)

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-09-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  5. Neuroimaging biomarkers in mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Bigler, Erin D

    2013-09-01

    Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.

  6. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2015-01-01

    Full Text Available Traumatic brain injury (TBI represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox, ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS, have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  7. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  8. Altered oscillatory brain dynamics after repeated traumatic stress

    Directory of Open Access Journals (Sweden)

    Ruf Martina

    2007-10-01

    Full Text Available Abstract Background Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. Methods Using magnetoencephalographic (MEG-based source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD in comparison to 97 controls. Results PTSD patients showed elevated production of focally generated slow waves (1–4 Hz, particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. Conclusion The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala.

  9. Traumatic brain injury: future assessment tools and treatment prospects

    Directory of Open Access Journals (Sweden)

    Steven R Flanagan

    2008-10-01

    Full Text Available Steven R Flanagan1, Joshua B Cantor2, Teresa A Ashman21New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA; 2Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USAAbstract: Traumatic brain injury (TBI is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the problem of treating TBI successfully will require improvements in the understanding of normal cerebral anatomy, physiology, and function throughout the lifespan, as well as the pathological and recuperative responses that result from trauma. New treatment approaches and combinations will need to be targeted to the heterogeneous needs of TBI populations. This article explores and evaluates the research evidence in areas that will likely lead to a reduction in TBI-related morbidity and improved outcomes. These include emerging assessment instruments and techniques in areas of structural/chemical and functional neuroimaging and neuropsychology, advances in the realms of cell-based therapies and genetics, promising cognitive rehabilitation techniques including cognitive remediation and the use of electronic technologies including assistive devices and virtual reality, and the emerging field of complementary and alternative medicine.Keywords: traumatic brain injury, assessments, treatments

  10. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM

    2012-01-01

    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  11. Perspectives on Creating Clinically Relevant Blast Models for Mild Traumatic Brain Injury and Post Traumatic Stress Disorder Symptoms

    OpenAIRE

    Lisa eBrenner; Nazanin eBahraini; Hernández, Theresa D.

    2012-01-01

    Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic), behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI) and/or post traumatic stress disorder (PTSD). Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full character...

  12. Fresh Frozen Plasma Resuscitation Provides Neuroprotection Compared to Normal Saline in a Large Animal Model of Traumatic Brain Injury and Polytrauma

    DEFF Research Database (Denmark)

    Imam, Ayesha; Jin, Guang; Sillesen, Martin;

    2015-01-01

    swine (42-50 kg) were instrumented to measure hemodynamic parameters, brain oxygenation, and intracranial pressure (ICP) and subjected to computer-controlled TBI and multi-system trauma (rib fracture, soft-tissue damage, and liver injury) as well as combined free and controlled hemorrhage (40% blood......Abstract We have previously shown that early treatment with fresh frozen plasma (FFP) is neuroprotective in a swine model of hemorrhagic shock (HS) and traumatic brain injury (TBI). However, it remains unknown whether this strategy would be beneficial in a more clinical polytrauma model. Yorkshire...... volume). After 2 h of shock (mean arterial pressure, 30-35 mm Hg), animals were resuscitated with normal saline (NS; 3×volume) or FFP (1×volume; n=6/group). Six hours postresuscitation, brains were harvested and lesion size and swelling were evaluated. Levels of endothelial-derived vasodilator...

  13. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body. PMID:24486465

  14. Characterisation of the pressure distribution in penetrating traumatic brain injuries

    Directory of Open Access Journals (Sweden)

    Johan eDavidsson

    2015-03-01

    Full Text Available Severe impacts to the head commonly lead to localised brain damage. Such impacts may also give rise to temporary pressure changes that produce secondary injuries in brain volumes distal to the impact site. Monitoring pressure changes in a clinical setting is difficult; detailed studies into the effect of pressure changes in the brain call for the development and use of animal models. The aim of this study is to characterise the pressure distribution in an animal model of penetrating traumatic brain injuries (pTBI. This data may be used to validate mathematical models of the animal model and to facilitate correlation studies between pressure changes and pathology. Pressure changes were measured in rat brains while subjected to pTBI for different probe velocities and shapes; pointy, blunt and flat. Experiments on ballistic gel samples were carried out to study the formation of any temporary cavities. In addition, pressure recordings from the gel experiments were compared to values recorded in the animal experiments.The pTBI generated short lasting pressure changes in the brain tissue; the pressure in the contralateral ventricle increased to 8 bar followed by a drop to 0.4 bar when applying flat probes. The pressure changes in the periphery of the probe, in the Cisterna Magna and the spinal canal, were significantly less than those recorded in the contralateral ventricle or the vicinity of the skull base. High speed videos of the gel samples revealed the formation of spherically shaped cavities when flat and spherical probes were applied. Pressure changes in the gel were similar to those recorded in the animals, although amplitudes were lower in the gel samples. We concluded cavity expansion rate rather than cavity size correlated with pressure changes in the gel or brain secondary to probe impact.The new data can serve as validation data for finite element models of the trauma model and the animal and to correlate physical measurements with

  15. Goal-directed therapy in trauma induced coagulopathy and focus on traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Klaus Görlinger

    2013-08-01

    Full Text Available In recent years there have been major advances in the management of trauma-induced coagulopathy (TIC and many experiences have demonstrated how we can achieve significant improvements with multidisciplinary approach and implementation of standardized protocols and algorithms. Central nervous system injuries and exanguination remain the primary causes of early trauma-related mortality. Traumatic brain injuries (TBI make hemostasis in TIC even more complex and it is known that the onset of coagulopathy in a patient with severe brain injury has a negative impact on the patient’s outcome in terms of mortality. Standard coagulation tests provide limited information on coagulation disorder. The advantages of whole-blood viscoelastic tests, such as rotational thromboelastometry or thrombelastography, are shorter turn-around time and better diagnostic performance compared to routine plasmatic coagulation tests. In contrast to a fixed ratio of FFP:PC:RBC, the aim of the goal-directed coagulation therapy is to set treatment to the actual needs of the individual patient, based on viscoelastic test results. This article describes the improvements achieved through the implementation of ROTEM-guided treatment algorithms for visceral surgery and liver trasplantation, severe trauma and post-partum hemorrhage and cardiovascular surgery.http://dx.doi.org/10.7175/rhc.v4i3s.877

  16. Traumatic Brain Injury and the Effect on the Brain-Gut Axis.

    Science.gov (United States)

    Kharrazian, Datis

    2015-08-01

    Traumatic brain injury (TBI) is a leading cause of disability worldwide. One commonly overlooked effect of TBI is the disruption of the brain-gut axis, leading to gastrointestinal dysfunction. The brain-gut axis consists of the cortical areas of the insular cortex, cingulate, and hypothalamus that have bidirectional communication with the visceral enteric nervous system through afferent and efferent projections into the pontine vagal complex and nucleus tractus solitarius. Communication with the brain also occurs through messenger signals from the gut's microbiota, involving gut peptides, cytokines, and lipopolysaccharides. Disruption of the brain-gut axis from TBI can lead to a chronic, inflammatory, vicious sequela, involving both the brain and the gastrointestinal system, with both neuroregulatory and neuroimmunological loops. PMID:26348611

  17. Low level laser therapy for traumatic brain injury

    Science.gov (United States)

    Wu, Qiuhe; Huang, Ying-Ying; Dhital, Saphala; Sharma, Sulbha K.; Chen, Aaron C.-H.; Whalen, Michael J.; Hamblin, Michael R.

    2010-02-01

    Low level laser (or light) therapy (LLLT) has been clinically applied for many indications in medicine that require the following processes: protection from cell and tissue death, stimulation of healing and repair of injuries, and reduction of pain, swelling and inflammation. One area that is attracting growing interest is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain would allow non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. LLLT may have beneficial effects in the acute treatment of brain damage injury by increasing respiration in the mitochondria, causing activation of transcription factors, reducing key inflammatory mediators, and inhibiting apoptosis. We tested LLLT in a mouse model of TBI produced by a controlled weight drop onto the skull. Mice received a single treatment with 660-nm, 810-nm or 980-nm laser (36 J/cm2) four hours post-injury and were followed up by neurological performance testing for 4 weeks. Mice with moderate to severe TBI treated with 660- nm and 810-nm laser had a significant improvement in neurological score over the course of the follow-up and histological examination of the brains at sacrifice revealed less lesion area compared to untreated controls. Further studies are underway.

  18. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    Science.gov (United States)

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention. PMID:27604746

  19. A brief report on MRI investigation of experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Timothy Q.Duong; Lora T.Watts

    2016-01-01

    Traumatic brain injury is a major cause of death and disability. This is a brief report based on a symposium presentation to the2014 Chinese Neurotrauma Association Meeting in San Francisco, USA. It covers the work from our laboratory in applying multimodal MRI to study experimental traumatic brain injury in rats with comparisons made to behavioral tests and histology. MRI protocols include structural, perfusion, manganese-enhanced, diffusion-tensor MRI, and MRI of blood-brain barrier integrity and cerebrovascular reactivity.

  20. Age-Dependent Effects of Haptoglobin Deletion in Neurobehavioral and Anatomical Outcomes Following Traumatic Brain Injury

    Science.gov (United States)

    Glushakov, Alexander V.; Arias, Rodrigo A.; Tolosano, Emanuela; Doré, Sylvain

    2016-01-01

    Cerebral hemorrhages are common features of traumatic brain injury (TBI) and their presence is associated with chronic disabilities. Recent clinical and experimental evidence suggests that haptoglobin (Hp), an endogenous hemoglobin-binding protein most abundant in blood plasma, is involved in the intrinsic molecular defensive mechanism, though its role in TBI is poorly understood. The aim of this study was to investigate the effects of Hp deletion on the anatomical and behavioral outcomes in the controlled cortical impact model using wildtype (WT) C57BL/6 mice and genetically modified mice lacking the Hp gene (Hp−∕−) in two age cohorts [2–4 mo-old (young adult) and 7–8 mo-old (older adult)]. The data obtained suggest age-dependent significant effects on behavioral and anatomical TBI outcomes and recovery from injury. Moreover, in the adult cohort, neurological deficits in Hp−∕− mice at 24 h were significantly improved compared to WT, whereas there were no significant differences in brain pathology between these genotypes. In contrast, in the older adult cohort, Hp−∕− mice had significantly larger lesion volumes compared to WT, but neurological deficits were not significantly different. Immunohistochemistry for ionized calcium-binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) revealed significant differences in microglial and astrocytic reactivity between Hp−∕− and WT in selected brain regions of the adult but not the older adult-aged cohort. In conclusion, the data obtained in the study provide clarification on the age-dependent aspects of the intrinsic defensive mechanisms involving Hp that might be involved in complex pathways differentially affecting acute brain trauma outcomes. PMID:27486583

  1. Standard large trauma craniotomy for severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    L(U) Li-quan 吕立权; JIANG Ji-yao 江基尧; YU Ming-kun 于明琨; HOU Li-jun 侯立军; CHEN Zhi-gang 陈志刚; ZHANG Guang-ji 张光霁; ZHU Cheng 朱诚

    2003-01-01

    Objective: To study the effect of standard large trauma craniotomy(SLTC) on outcomes of patients with severe traumatic brain injury (TBI) (GCS≤8).Methods: 230 patients with severe TBI were randomly divided into two groups.115 patients underwent SLTC (10 cm×12 cm) as an SLTC group, and other 115 patients underwent temporo-parietal or fronto-temporal craniotomy (6 cm×8 cm) according to the position of hematomas as a routine craniotomy (RC) group.Other treatments were identical in two groups.According to Glasgow outcome scale (GOS), the prognosis of the patients was evaluated and the complications were compared between two groups.Results: 27 patients got good outcome and moderate disability (23.5%), 40 severe disability and vegetative survival (34.8%), and 48 died (41.7%) in SLTC group.21 patients got good outcome and moderate disability (18.3%), 28 severe disability and vegetative survival (24.3%), and 66 died (57.4%) in RC group.The incidence of incision hernia was lower in SLTC group than in RC group.However, the incidence of operative encephalocele, traumatic epilepsy and intracranial infection were not different in two groups.Conclusions: Standard large trauma craniotomy significantly reduces the mortality of patients with severe TBI without serious complications, but does not improve the life quality of the patients.

  2. Molecular Mechanisms of Cognitive Dysfunction following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kendall Rae Walker

    2013-07-01

    Full Text Available Traumatic brain injury (TBI results in significant disability due to cognitive deficits particularly in attention, learning and memory and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer’s disease (AD, Parkinson’s disease (PD, Amyotrophic Lateral Sclerosis (ALS and most recently chronic traumatic encephalopathy (CTE is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  3. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Michael E Hoffer

    Full Text Available Mild Traumatic Brain Injury (mTBI is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications.

  4. Outcome of 2 284 cases with acute traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the prognosis of 2 284 cases with acute traumatic brain injury and discuss possible methods to improve the outcome of head injuries.   Methods: The relationship between trauma cause, trauma severity and management and patients outcome was retrospectively analyzed.   Results: Good recovery was achieved in 60.20%, moderate disability was 13.22%, severe disability 15.24%, vegetative status 0.31% and mortality 11.03%. The mortality was 1.07% in cases with GCS 15-13, 2.47% in cases with GCS 12-9, 13.29% in cases with GCS 8-6, and 57.4% in cases with GCS 5-3.   Conclusions: To prevent hypoxia, remove intracranial hematoma as soon as possible, use standard large traumatic craniotomy and apply mild hypothermia may be useful means for improving the outcome of severely head injured patients.

  5. Management of patients with severe traumatic brain injury guided by intraventricular intracranial pressure monitoring: a report of 136 cases

    Institute of Scientific and Technical Information of China (English)

    ZENG Tao; GAO Liang

    2010-01-01

    Objective:To evaluate the effect of the treatment modality guided by intraventricular intracranial pressure (ICP) monitoring on patients with severe traumatic brain injury (TBI).Methods:The clinical data of a group of 136 severely brain-injured patients admitted to Shanghai Neurosurgical Emergency Center from December 2004 to February 2006 were studied.Results:The intraventricular ICP monitor was placed in all the 136 patients via Kocher's pathway, Paine's pathway or intraoperative opened ventricle. In this series, the probe was placed during the procedure of craniotomy in 98 patients; for other 38 patients, the probe was placed initially to measure or to monitor ICE A stepwise protocol targeting at ICP control (≤20 mm Hg) and optimal cerebral perfusion pressure (CPP) maintenance (60-90 mm Hg) was deployed.Among them, 76 patients survived with good recovery, 14 with moderate disability, 24 with severe disability, 10 with vegetative state, and 12 died. Complications associated with intraventricular ICP monitoring included hemorrhage and infection. Hemorrhage occurred in 1 patient and infection in 5 patients. There were no unacceptable complications related to ICP monitoring.Conclusions:Ventricular access for ICP monitoring can be safely and accurately achieved. ICP monitoring via ventriculostomy may facilitate an early and accurate intervention for severely brain-injured patients. The intraventricular ICP monitoring is a low-risk procedure and can yield great benefits for management of patients with severe TBI.

  6. Depression after traumatic brain injury: a biopsychosocial cultural perspective.

    Science.gov (United States)

    Roy, Durga; Jayaram, Geetha; Vassila, Alex; Keach, Shari; Rao, Vani

    2015-02-01

    There are several challenges in diagnosing and treating mental illness amongst South Asians. Often times, formulating a patient's case presentation cannot adequately be accomplished strictly using a biopsychosocial model. The cultural components play an imperative role in explaining certain psychiatric symptoms and can guide treatment. With the growing population of immigrants coming to the United States, many of which require treatment for mental illness, it is essential that clinicians be cognizant in incorporating cultural perspectives when treating such patients. The authors describe the case of a 24-year old South Asian male who suffered an exacerbation of a depressive syndrome after a traumatic brain injury. Using a biopsychosocial cultural approach, this case highlights how South Asian cultural values can contribute to and incite psychiatric symptoms while simultaneously providing protective drivers for treatment outcomes.

  7. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Josef Zihl

    2015-05-01

    Full Text Available Endocrine dysfunction is a common effect of traumatic brain injury (TBI. In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental functions, the consequences of TBI on mental health and neuroendocrine homeostasis, and the effects of hormone substitution on mental dysfunction caused by TBI. The available empirical evidence suggests that comprehensive assessment of mental functions should be standard in TBI subjects presenting with hormone deficiency and that hormone replacement therapy should be accompanied by pre- and post-assessments.

  8. Vergence in mild traumatic brain injury: A pilot study

    Directory of Open Access Journals (Sweden)

    Dora Szymanowicz, OD, MS

    2012-10-01

    Full Text Available Vergence dysfunction in individuals with mild traumatic brain injury (mTBI may have a negative effect on quality of life, functional abilities, and rehabilitative progress. In this study, we used a range of dynamic and static objective and subjective measures of vergence to assess 21 adult patients with mTBI and nearwork symptoms. The results were compared with 10 control adult subjects. With respect to dynamic parameters, responses in those with mTBI were slowed, variable, and delayed. With respect to static parameters, reduced near point of convergence and restricted near vergence ranges were found in those with mTBI. The present results provide evidence for the substantial adverse effect of mTBI on vergence function.

  9. Clinical Traumatic Brain Injury in the Preclinical Setting.

    Science.gov (United States)

    Berkner, Justin; Mannix, Rebekah; Qiu, Jianhua

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability for people under 45 years of age. Clinical TBI is often the result of disparate forces resulting in heterogeneous injuries. Preclinical modeling of TBI is a vital tool for studying the complex cascade of metabolic, cellular, and molecular post-TBI events collectively termed secondary injury. Preclinical models also provide an important platform for studying therapeutic interventions. However, modeling TBI in the preclinical setting is challenging, and most models replicate only certain aspects of clinical TBI. This chapter details the most widely used models of preclinical TBI, including the controlled cortical impact, fluid percussion, blast, and closed head models. Each of these models replicates particular critical aspects of clinical TBI. Prior to selecting a preclinical TBI model, it is important to address what aspect of human TBI is being sought to evaluate. PMID:27604710

  10. Application of minimally invasive surgery in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Liu Baiyun

    2014-12-01

    Full Text Available This article aims to expound the essence of minimally invasive surgery as well as when and how to use it in craniocerebral trauma surgery according to the characteristics of the disease. In neurosurgery, the importance of tissue protection should be from the inside to the outside, i.e. brain→dura→skull→scalp. In this article, I want to share my opinion and our team’s experience in terms of selecting surgical approaches and incision, surgical treatment of the skull, dura handling, intracranial operation and placement of drainage based on the above theory. I hope this will be helpful for trauma surgeons. Key words: Traumatic brain injuries; Large craniectomy; Surgical procedures, minimally invasive

  11. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury.

    Science.gov (United States)

    Zihl, Josef; Almeida, Osborne F X

    2015-01-01

    Endocrine dysfunction is a common effect of traumatic brain injury (TBI). In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental functions, the consequences of TBI on mental health and neuroendocrine homeostasis, and the effects of hormone substitution on mental dysfunction caused by TBI. The available empirical evidence suggests that comprehensive assessment of mental functions should be standard in TBI subjects presenting with hormone deficiency and that hormone replacement therapy should be accompanied by pre- and post-assessments. PMID:26239465

  12. Effect of Preferred Music on Agitation After Traumatic Brain Injury.

    Science.gov (United States)

    Park, Soohyun; Williams, Reg Arthur; Lee, Donghyun

    2016-04-01

    Agitation is a common behavioral problem after traumatic brain injury (TBI), which threatens the safety of patients and caregivers and disrupts the rehabilitation process. This study aimed to evaluate the effects of a preferred music intervention on the reduction of agitation in TBI patients and to compare the effects of preferred music with those of classical "relaxation" music. A single group, within-subjects, randomized crossover trial design was formed, consisting of 14 agitated patients with cognitive impairment after severe TBI. Patients listened to preferred music and classical "relaxation" music, with a wash-out period in between. Patients listening to the preferred music reported a significantly greater reduction in agitation compared with the effect seen during the classical "relaxation" music intervention (p = .046). These findings provide preliminary evidence that the preferred music intervention may be effective as an environmental therapeutic approach for reducing agitation after TBI. PMID:26129873

  13. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Hua HU; Er-qing WEI; Gao CHEN; Jian-min ZHANG; Wei-ping ZHANG; Lei ZHANG; Qiu-fu GE; Hong-tian YAO; Wei DING; Zhong CHEN

    2005-01-01

    Aim: To determine the distribution of cysteinyl leukotriene receptor 2 (CysLT2),one of the cysteinyl leukotriene receptors, in human brains with traumatic injury and tumors. Methods: Brain specimens were obtained from patients who underwent brain surgery. CysLT2 in brain tissues was examined using immunohistochemical analysis. Results: CysLT2 was expressed in the smooth muscle cells (not in the endothelial cells) of arteries and veins. CysLT2 was also expressed in the granulocytes in both vessels and in the brain parenchyma. In addition, CysLT2 was detected in neuron- and glial-appearing cells in either the late stages of traumatic injury or in the area surrounding the tumors. Microvessels regenerated 8 d after trauma and CysLT2 expression was recorded in their endothelial cells.Conclusion: CysLT2 is distributed in vascular smooth muscle cells and granulocytes, and brain trauma and tumor can induce its expression in vascular endothelial cells and in a number of other cells.

  14. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    许民辉; 代文光; 邓洵鼎

    2002-01-01

    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  15. Glycolysis and the significance of lactate in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-04-01

    Full Text Available In traumatic brain injury (TBI patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well recognised, and are associated statistically with unfavourable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolised via glycolysis (Embden-Meyerhof-Parnas pathway to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate’s association with unfavourable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilise lactate by feeding into the tricarboxylic acid (TCA cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilisation of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labelled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labelling in glutamine consistent with lactate utilisation via the TCA cycle. This suggests that where neurons are too damaged to utilise the lactate produced from glucose by astrocytes, i.e. uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining association between high lactate and poor outcome. An intravenous exogenous lactate supplementation study in TBI patients showed evidence for a beneficial effect judged by surrogate endpoints. Here we review current knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better

  16. Traumatic brain injury patients: does frontal brain lesion influence basic emotion recognition?

    OpenAIRE

    A.T. Martins; Faísca, L.; Esteves, F.; A. Muresan; Justo, M.; Simão, C.; Reis, A.

    2011-01-01

    Adequate emotion recognition is relevant to individuals’ interpersonal communication. Patients with frontal traumatic brain injury (TBI) exhibit a lower response to facial emotional stimuli, influencing social interactions. In this sense, the main goal of the current study was to assess the ability of TBI patients in recognizing basic emotions. Photographs of facial expressions of five basic emotions (happiness, sadness, fear, anger, and surprise) were presented to 32 TBI patients an...

  17. The Relationship of Hematoma Size and Mortality in Non-Traumatic Intra-Cerebral Hemorrhages in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    P. Ahmadi

    2006-04-01

    Full Text Available Introduction & Objective: Among all of the neurologic diseases in adult life, the cerebrovascular disease (CVD is the most common and important ones. Intracerebral hemorrhage (ICH in basal ganglia (BG is one of the common and major types of CVD. The relations between clot size and mortality rate, in different parts of the brain, has been addressed by several researchers. It is unclear whether such a relationship is in BG. Therefore this study was designed to find a formula that predicts outcome of hemorrhage based on clot size in BG.Materials & Methods: This descriptive-comparative study that was carried out prospectively, conducted on all 63 patients who admitted to the hospital during one year, with definite diagnosis of ICH in BG. After urgent CT scanning, the size of hematoma was determined by scan images. Routine treatment was uniform for all patients. Focal signs and consciousness state were assessed in the first and last days of admission. The data were analyzed using descriptive statistics, frequency tables and chi-square and T- test. Results: 33% of patients died. Hematoma size in 70% of them was larger than 5cm and in other 30% smaller. None of the hematoma with less than 4cm size was fatal. In patients with clots of 5cm or larger, the mortality was 100%. Conclusion: The results indicated that, there was meaningful relationship between hematoma size and mortality, in BG hemorrhages. So the clot size can be used as a factor in predicting hemorrhage outcome in BG.

  18. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity.

    Science.gov (United States)

    Agrawal, Rahul; Noble, Emily; Vergnes, Laurent; Ying, Zhe; Reue, Karen; Gomez-Pinilla, Fernando

    2016-05-01

    Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders. PMID:26661172

  19. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Science.gov (United States)

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  20. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    Science.gov (United States)

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  1. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  2. Using Post-Traumatic Amnesia To Predict Outcome after Traumatic Brain Injury.

    Science.gov (United States)

    Ponsford, Jennie L; Spitz, Gershon; McKenzie, Dean

    2016-06-01

    Duration of post-traumatic amnesia (PTA) has emerged as a strong measure of injury severity after traumatic brain injury (TBI). Despite the growing international adoption of this measure, there remains a lack of consistency in the way in which PTA duration is used to classify severity of injury. This study aimed to establish the classification of PTA that would best predict functional or productivity outcomes. We conducted a cohort study of 1041 persons recruited from inpatient admissions to a TBI rehabilitation center between 1985 and 2013. Participants had a primary diagnosis of TBI, emerged from PTA before discharge from inpatient hospital, and engaged in productive activities before injury. Eight models that classify duration of PTA were evaluated-six that were based on the literature and two that were statistically driven. Models were assessed using area under the receiver operating characteristic curve (AUC) as well as model-based Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) statistics. All categorization models showed longer PTA to be associated with a greater likelihood of being nonproductive at 1 year after TBI. Classification systems with a greater number of categories performed better than two-category systems. The dimensional (continuous) form of PTA resulted in the greatest AUC, and lowest AIC as well as BIC, of the classification systems examined. This finding indicates that the greatest accuracy in prognosis is likely to be achieved using PTA as a continuous variable. This enables the probability of productive outcomes to be estimated with far greater precision than that possible using a classification system. Categorizing PTA to classify severity of injury may be reducing the precision with which clinicians can plan the treatment of patients after TBI. PMID:26234939

  3. Traumatic Brain Injury in Qatar: Age Matters—Insights from a 4-Year Observational Study

    Directory of Open Access Journals (Sweden)

    Moamena El-Matbouly

    2013-01-01

    Full Text Available Background. Overall traumatic brain injury (TBI incidence and related death rates vary across different age groups. Objectives. To evaluate the incidence, causes, and outcome of TBI in adolescents and young adult population in Qatar. Method. This was a retrospective review of all TBIs admitted to the trauma center between January 2008 and December 2011. Demographics, mechanism of injury, morbidity, and mortality were analyzed in different age groups. Results. A total of 1665 patients with TBI were admitted; the majority were males (92% with a mean age of 28 ± 16 years. The common mechanism of injury was motor vehicle crashes and falls from height (51% and 35%, resp.. TBI was incidentally higher in young adults (34% and middle age group (21%. The most frequent injuries were contusion (40%, subarachnoid (25%, subdural (24%, and epidural hemorrhage (18%. The mortality rate was 11% among TBI patients. Mortality rates were 8% and 12% among adolescents and young adults, respectively. The highest mortality rate was observed in elderly patients (35%. Head AIS, ISS, and age were independent predictors for mortality. Conclusion. Adolescents and adults sustain significant portions of TBI, whereas mortality is much higher in the older group. Public awareness and injury prevention campaigns should target young population.

  4. A multidimensional approach to apathy after traumatic brain injury.

    Science.gov (United States)

    Arnould, Annabelle; Rochat, Lucien; Azouvi, Philippe; Van der Linden, Martial

    2013-09-01

    Apathy is commonly described following traumatic brain injury (TBI) and is associated with serious consequences, notably for patients' participation in rehabilitation, family life and later social reintegration. There is strong evidence in the literature of the multidimensional nature of apathy (behavioural, cognitive and emotional), but the processes underlying each dimension are still unclear. The purpose of this article is first, to provide a critical review of the current definitions and instruments used to measure apathy in neurological and psychiatric disorders, and second, to review the prevalence, characteristics, neuroanatomical correlates, relationships with other neurobehavioural disorders and mechanisms of apathy in the TBI population. In this context, we propose a new multidimensional framework that takes into account the various mechanisms at play in the facets of apathy, including not only cognitive factors, especially executive, but also affective factors (e.g., negative mood), motivational variables (e.g., anticipatory pleasure) and aspects related to personal identity (e.g., self-esteem). Future investigations that consider these various factors will help improve the understanding of apathy. This theoretical framework opens up relevant prospects for better clinical assessment and rehabilitation of these frequently described motivational disorders in patients with brain injury. PMID:23921453

  5. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  6. A better mild traumatic brain injury model in the rat.

    Science.gov (United States)

    Takeuchi, Satoru; Nawashiro, Hiroshi; Sato, Shunichi; Kawauchi, Satoko; Nagatani, Kimihiro; Kobayashi, Hiroaki; Otani, Naoki; Osada, Hideo; Wada, Kojiro; Shima, Katsuji

    2013-01-01

    The primary pathology associated with mild -traumatic brain injury (TBI) is selective axonal injury, which may characterize the vast majority of blast-induced TBIs. Axonal injuries in cases of mild TBI have been considered to be the main factors responsible for the long-lasting memory or attentional impairment in affected subjects. Among these axonal injuries, recent attention has been focused on the cingulum bundle (CB). Furthermore, recent studies with diffusion tensor MR imaging have shown the presence of injuries of the CB in cases of mild TBI in humans. This study aimed to provide a better laboratory model of mild TBI.Sprague-Dawley rats were subjected to mild TBI using laser-induced shock waves (LISW) (sham, 0.5 J/cm(2), or 1.0 J/cm(2); n = 4 per group). Bodian-stained brain sections 14 days after LISW at 0.5 J/cm(2) or 1.0 J/cm(2) showed a decrease in the CB axonal density compared with the sham group, whereas there were no differences in the axonal density of the corpus callosum.The present study shows that this model is capable of reproducing the histological changes associated with mild TBI. PMID:23564112

  7. Cognitive and psychopathological sequelae of pediatric traumatic brain injury.

    Science.gov (United States)

    Beauchamp, M H; Anderson, V

    2013-01-01

    Childhood traumatic brain injury (TBI) is a frequent cause of acquired disability in childhood and can have a serious impact on development across the lifespan. The consequences of early TBI vary according to injury severity, with severe injuries usually resulting in more serious physical, cognitive and behavioral sequelae. Both clinical and research reports document residual deficits in a range of skills, including intellectual function, attention, memory, learning, and executive function. In addition, recent investigations suggest that early brain injury also affects psychological and social development and that problems in these domains may increase in the long term postinjury. Together, these deficits affect children's ability to function effectively at school, in the home, and in their social environment, resulting in impaired acquisition of knowledge, psychological and social problems, and overall reduced quality of life. Ultimately, recovery from childhood TBI depends on a range of complex biological, developmental, and psychosocial factors making prognosis difficult to predict. This chapter will detail the cognitive (intellectual, attentional, mnesic, executive, educational, and vocational) and psychopathological (behavioral, adaptive, psychological, social) sequelae of childhood TBI with a particular focus on postinjury recovery patterns in the acute, short-, and long-term phases, as well as into adulthood. PMID:23622301

  8. Past, Present, and Future of Traumatic Brain Injury Research.

    Science.gov (United States)

    Hawryluk, Gregory W J; Bullock, M Ross

    2016-10-01

    Traumatic brain injury (TBI) is the greatest cause of death and severe disability in young adults; its incidence is increasing in the elderly and in the developing world. Outcome from severe TBI has improved dramatically as a result of advancements in trauma systems and supportive critical care, however we remain without a therapeutic which acts directly to attenuate brain injury. Recognition of secondary injury and its molecular mediators has raised hopes for such targeted treatments. Unfortunately, over 30 late-phase clinical trials investigating promising agents have failed to translate a therapeutic for clinical use. Numerous explanations for this failure have been postulated and are reviewed here. With this historical context we review ongoing research and anticipated future trends which are armed with lessons from past trials, new scientific advances, as well as improved research infrastructure and funding. There is great hope that these new efforts will finally lead to an effective therapeutic for TBI as well as better clinical management strategies. PMID:27637391

  9. The role of free radicals in traumatic brain injury.

    Science.gov (United States)

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  10. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence

    Directory of Open Access Journals (Sweden)

    Li S

    2015-06-01

    Full Text Available Shasha Li,1,2 Ana Luiza Zaninotto,2,3 Iuri Santana Neville,4 Wellingson Silva Paiva,4 Danuza Nunn,2 Felipe Fregni21Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2Spaulding Neuromodulation Center, Harvard Medical School, Boston, MA, USA; 3Division of Psychology, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil; 4Division of Neurosurgery, University of São Paulo Medical School, São Paulo, São Paulo, BrazilAbstract: Traumatic brain injury (TBI remains the main cause of disability and a major public health problem worldwide. This review focuses on the neurophysiology of TBI, and the rationale and current state of evidence of clinical application of brain stimulation to promote TBI recovery, particularly on consciousness, cognitive function, motor impairments, and psychiatric conditions. We discuss the mechanisms of different brain stimulation techniques including major noninvasive and invasive stimulations. Thus far, most noninvasive brain stimulation interventions have been nontargeted and focused on the chronic phase of recovery after TBI. In the acute stages, there is limited available evidence of the efficacy and safety of brain stimulation to improve functional outcomes. Comparing the studies across different techniques, transcranial direct current stimulation is the intervention that currently has the higher number of properly designed clinical trials, though total number is still small. We recognize the need for larger studies with target neuroplasticity modulation to fully explore the benefits of brain stimulation to effect TBI recovery during different stages of recovery.Keywords: traumatic brain injury, brain stimulation, neuroplasticity

  11. Lateral fluid percussion: model of traumatic brain injury in mice.

    Science.gov (United States)

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  12. Epidemiology, severity classification, and outcome of moderate and severe traumatic brain injury: a prospective multicenter study

    NARCIS (Netherlands)

    Andriessen, T.M.J.C.; Horn, J.; Franschman, G.; Naalt, J. van der; Haitsma, I.; Jacobs, B.; Steyerberg, E.W.; Vos, P.E.

    2011-01-01

    Changes in the demographics, approach, and treatment of traumatic brain injury (TBI) patients require regular evaluation of epidemiological profiles, injury severity classification, and outcomes. This prospective multicenter study provides detailed information on TBI-related variables of 508 moderat

  13. Epidemiology, Severity Classification, and Outcome of Moderate and Severe Traumatic Brain Injury: A Prospective Multicenter Study

    NARCIS (Netherlands)

    T.M.J.C. Andriessen; J. Horn; G. Franschman; J. van der Naalt; I. Haitsma; B. Jacobs; E.W. Steyerberg; P.E. Vos

    2011-01-01

    Changes in the demographics, approach, and treatment of traumatic brain injury (TBI) patients require regular evaluation of epidemiological profiles, injury severity classification, and outcomes. This prospective multicenter study provides detailed information on TBI-related variables of 508 moderat

  14. Epidemiology, Severity Classification, and Outcome of Moderate and Severe Traumatic Brain Injury : A Prospective Multicenter Study

    NARCIS (Netherlands)

    Andriessen, Teuntje M. J. C.; Horn, Janneke; Franschman, Gaby; van der Naalt, Joukje; Haitsma, Iain; Jacobs, Bram; Steyerberg, Ewout W.; Vos, Pieter E.

    2011-01-01

    Changes in the demographics, approach, and treatment of traumatic brain injury (TBI) patients require regular evaluation of epidemiological profiles, injury severity classification, and outcomes. This prospective multicenter study provides detailed information on TBI-related variables of 508 moderat

  15. Gabapentin in the management of dysautonomia following severe traumatic brain injury: a case series

    DEFF Research Database (Denmark)

    Baguley, Ian J; Heriseanu, Roxana E; Gurka, Joseph A;

    2007-01-01

    The pharmacological management of dysautonomia, otherwise known as autonomic storms, following acute neurological insults, is problematic and remains poorly researched. This paper presents six subjects with dysautonomia following extremely severe traumatic brain injury where gabapentin controlled...

  16. Selective CDK inhibitors:promising candidates for future clinical traumatic brain injury trials

    Institute of Scientific and Technical Information of China (English)

    Shruti V.Kabadi; Alan I.Faden

    2014-01-01

    Traumatic brain injury induces secondary injury that contributes to neuroinlfammation, neuronal loss, and neurological dysfunction. One important injury mechanism is cell cycle activation which causes neuronal apoptosis and glial activation. The neuroprotective effects of both non-selective (Flavopiridol) and selective (Roscovitine and CR-8) cyclin-dependent kinase inhibitors have been shown across multiple experimental traumatic brain injury models and species. Cyclin-depen-dent kinaseinhibitors, administered as a single systemic dose up to 24 hours after traumatic brain injury, provide strong neuroprotection-reducing neuronal cell death, neuroinflammation and neurological dysfunction. Given their effectiveness and long therapeutic window, cyclin-depen-dent kinase inhibitors appear to be promising candidates for clinical traumatic brain injury trials.

  17. Mycotic brain aneurysm and cerebral hemorrhagic stroke: a pediatric case report.

    Science.gov (United States)

    Flor-de-Lima, Filipa; Lisboa, Lurdes; Sarmento, António; Almeida, Jorge; Mota, Teresa

    2013-09-01

    Endocarditis due to Abiotrophia spp. is rare and often associated with negative blood cultures, infection relapse, and high rates of treatment failure and mortality (Lainscak et al., J Heart Valve Dis 14(1):33-36, 2005). The authors describe a case of an adolescent with cerebral hemorrhagic stroke due to mycotic brain aneurysm rupture.

  18. Correlation of cell apoptosis with brain edema and elevated intracranial pressure in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; LIU Wei-guo; SHEN Hong; GONG Jiang-biao; YU Jun; HU Wei-wei; L(U) Shi-ting; ZHENG Xiu-jue; FU Wei-ming

    2005-01-01

    Objective: To study the correlation between brain edema, elevated intracranial pressure (ICP) and cell apoptosis in traumatic brain injury (TBI). Methods: In this study, totally 42 rabbits in 7 groups were studied. Six of the animals were identified as a control group, and the remaining 36 animals were equally divided into 6 TBI groups. TBI models were produced by the modified method of Feeney. After the impact, ICP of each subject was recorded continuously by an ICP monitor until the animal was sacrificed at scheduled time. The apoptotic brain cells were detected by an terminal deoxynucleotide-transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. Cerebral water content (CWC) was measured with a drying method and calculated according to the Elliott formula. Then, an analysis was conducted to determine the correlation between the count of apoptotic cells and the clinical pathological changes of the brain. Results: Apoptotic cell count began to increase 2 h after the impact, and reached its maximum about 3 days after the impact. The peak value of CWC and ICP appeared 1 day and 3 days after the impact, respectively. Apoptotic cell count had a positive correlation with CWC and ICP. Conclusions: In TBI, occurrence of brain edema and ICP increase might lead to apoptosis of brain cells. Any therapy which can relieve brain edema and/or decrease ICP would be able to reduce neuron apoptosis, thereby to attenuate the secondary brain damage.

  19. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  20. Epileptogenesis after traumatic brain injury in Plaur-deficient mice.

    Science.gov (United States)

    Bolkvadze, Tamuna; Puhakka, Noora; Pitkänen, Asla

    2016-07-01

    Binding of the extracellular matrix proteinase urokinase-type plasminogen activator (uPA) to its receptor, uPAR, regulates tissue remodeling during development and after injury in different organs, including the brain. Accordingly, mutations in the Plaur gene, which encodes uPAR, have been linked to language deficits, autism, and epilepsy, both in mouse and human. Whether uPAR deficiency modulates epileptogenesis and comorbidogenesis after brain injury, however, is unknown. To address this question, we induced traumatic brain injury (TBI) by controlled cortical impact (CCI) in 10 wild-type (Wt-CCI) and 16 Plaur-deficient (uPAR-CCI) mice. Sham-operated mice served as controls (10 Wt-sham, 10 uPAR-sham). During the 4-month follow-up, the mice were neurophenotyped by assessing the somatomotor performance with the composite neuroscore test, emotional learning and memory with fear conditioning to tone and context, and epileptogenesis with videoelectroencephalography monitoring and the pentylenetetrazol (PTZ) seizure susceptibility test. At the end of the testing, the mice were perfused for histology to analyze cortical and hippocampal neurodegeneration and mossy fiber sprouting. Fourteen percent (1/7) of the mice in the Wt-CCI and 0% in the uPAR-CCI groups developed spontaneous seizures (p>0.05; chi-square). Both the Wt-CCI and uPAR-CCI groups showed increased seizure susceptibility in the PTZ test (plearning showed a genotype effect, being more impaired in uPAR-CCI than in Wt-CCI mice (p<0.05). The findings of the present study indicate that uPAR deficiency does not increase susceptibility to epileptogenesis after CCI injury but has an unfavorable comorbidity-modifying effect after TBI. PMID:27208924

  1. Traumatic brain injuries in children: A hospital-based study in Nigeria

    OpenAIRE

    David O Udoh; Adeyemo, Adebolajo A.

    2013-01-01

    Background: Traumatic Brain Injury (TBI) is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. Aims: To determine the epidemiology of paediatric traumatic brain injuries. Setting and Design: This is a prospective analysis of paediatric head trauma at the University of Benin Teaching Hospital, a major referral c...

  2. Traumatic Brain Injury: a Case Study of the School Reintegration Process

    OpenAIRE

    McWilliams, Karen P.

    2004-01-01

    The purpose of this linear-analytic exploratory case study is to illustrate the reintegration process from acute care and rehabilitative care to the traditional school setting after one has sustained a Traumatic Brain Injury (TBI). TBI is an unrecognized educational challenge. Few educational professionals are aware of the divarication of TBI. Traumatic Brain Injury is the leading cause of death and disability in children and adolescents in the United States. The review of literature reveals ...

  3. Erythropoietin in traumatic brain injury: study protocol for a randomised controlled trial.

    LENUS (Irish Health Repository)

    Nichol, Alistair

    2015-02-08

    Traumatic brain injury is a leading cause of death and disability worldwide. Laboratory and clinical studies demonstrate a possible beneficial effect of erythropoietin in improving outcomes in the traumatic brain injury cohort. However, there are concerns regarding the association of erythropoietin and thrombosis in the critically ill. A large-scale, multi-centre, blinded, parallel-group, placebo-controlled, randomised trial is currently underway to address this hypothesis.

  4. Personality Change due to Traumatic Brain Injury in Children and Adolescents: Neurocognitive Correlates

    OpenAIRE

    Wilde, Elisabeth A.; Bigler, Erin D; Hanten, Gerri; Dennis, Maureen; Schachar, Russell J.; Saunders, Ann E.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Wesley K. Thompson; Yang, Tony T.; Levin, Harvey S.

    2015-01-01

    Personality Change due to traumatic brain injury (PC) in children is an important psychiatric complication of injury and is a form of severe affective dysregulation. The aim of the study was to examine neurocognitive correlates of PC. The sample included children (n=177) aged 5-14 years with traumatic brain injury from consecutive admissions to 5 trauma centers were followed prospectively at baseline and 6 months with semi-structured psychiatric interviews. Injury severity, socioeconomic stat...

  5. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  6. Occurrence and severity of agitated behavior after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Moth Wolffbrandt, Mia; Poulsen, Ingrid; Engberg, Aase W;

    2013-01-01

    To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS).......To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS)....

  7. Guest Editorial: Leveraging the patient support network in traumatic brain injury

    OpenAIRE

    Kara Gagnon, OD, FAAO; Michael Wininger, PhD

    2013-01-01

    TRAUMATIC BRAIN INJURY AND ASSOCIATED DISORDERS CAN OBSTRUCT THE PATIENT-CARE PATHWAYA recent single-topic issue of this journal (JRRD, 49(7)) gave forum to common—yet often overlooked—sequelae of traumatic brain injury (TBI): sensory and communication dysfunction. The issue gave excellent context not only for the diffuse and idiosyncratic nature of these deficits but also for their prevalence. Perhaps the most compelling aspect of sensory and communication disorders following TBI is that imp...

  8. The Effect of Hemoglobin Levels on Mortality in Pediatric Patients with Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kevin F. Yee

    2016-01-01

    Full Text Available Objective. There is increasing evidence of adverse outcomes associated with blood transfusions for adult traumatic brain injury patients. However, current evidence suggests that pediatric traumatic brain injury patients may respond to blood transfusions differently on a vascular level. This study examined the influence of blood transfusions and anemia on the outcome of pediatric traumatic brain injury patients. Design. A retrospective cohort analysis of severe pediatric traumatic brain injury (TBI patients was undertaken to investigate the association between blood transfusions and anemia on patient outcomes. Measurements and Main Results. One hundred and twenty patients with severe traumatic brain injury were identified and included in the analysis. The median Glasgow Coma Scale (GCS was 6 and the mean hemoglobin (Hgb on admission was 115.8 g/L. Forty-three percent of patients (43% received at least one blood transfusion and the mean hemoglobin before transfusion was 80.1 g/L. Multivariable regression analysis revealed that anemia and the administration of packed red blood cells were not associated with adverse outcomes. Factors that were significantly associated with mortality were presence of abusive head trauma, increasing PRISM score, and low GCS after admission. Conclusion. In this single centre retrospective cohort study, there was no association found between anemia, blood transfusions, and hospital mortality in a pediatric traumatic brain injury patient population.

  9. Brain structure in post-traumatic stress disorder A voxel-based morphometry analysis**

    Institute of Scientific and Technical Information of China (English)

    Liwen Tan; Li Zhang; Rongfeng Qi; Guangming Lu; Lingjiang Li; Jun Liu; Weihui Li

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, us-ing the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, fol owed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occip-ital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  10. Hypofibrinogenemia in isolated traumatic brain injury in Indian patients

    Directory of Open Access Journals (Sweden)

    Chhabra Gaurav

    2010-12-01

    Full Text Available Coagulation abnormalities are common in patients with head injuries. However, the effect of brain injury on fibrinogen levels has not been well studied prospectively to assess coagulation abnormalities in patients with moderate and severe head injuries and correlate these abnormalities with the neurologic outcome. Consecutive patients with moderate (Glasgow Comma Scale (GCS,9-12 and severe (GCS≤8 head injuries were the subjects of this pilot study, All patients had coagulation parameters, including plasma fibrinogen levels measured. Clinical and computed tomography (CT scan findings and immediate clinical outcome were analyzed. Of the 100 patients enrolled, only seven (7% patients had hypofibrinogenemia (fibrinogen ≤200 mg/dL. The head injury was moderate in two patients and severe in five patients. Fibrinogen levels showed a progressively increasing trend in four patients (three with severe head injuries and one with moderate head injury. CT scan revealed subdural hematoma in five patients; extradural hematoma in one; and subarachnoid hemorrhage in another patient. Of the seven patients, two patients died during hospital. Large-scale prospective studies are needed to assess the fibrinogen level in patients with head injury and its impact on outcome.

  11. Effects of dexamthasone with different doses on aquaporin-4 in brain of intracerebral hemorrhage rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To determine the relationship between the expression of aquaporin-4(AQP4) after intracerebral hemorrhage and dexamethasone treated. Methods:Collagenase Ⅶ was injected in caudate nucleus in a stereotaxis frame to establish the intracerebral hemorrhage(ICH) animal models. The intracerebral hemorrhage(ICH) rats were randomly divided into four groups: the sham group (group A), the ICH group(group B), low dosertreated group(group C), moderate dose group(group D) and high dose group(group E). The groups were respectively received an intraperitoneal dexamethasone injection with 1 mg/kg, 15 mg/kg, 30 mg/kg, twice a day for three days. The brain water content(BWC), the permeability of blood-brain barrier(BBB) and the expression of AQP4 were observed. Results:Both the BBB disruption and AQP4 expression decreased in treated groups, and the AQP4 expression had a dose-dependent manner in the dexamethasone treatment. And it seemed that low dose dexamethasone was in favor of brain swelling elimination, but the higher dosage had not similar effect. Conclusion:Dexamethesone may play a critical role on expression of AQP4 in the physiopathology of hemorrhagic edema.

  12. Neuroendocrine abnormalities in patients with traumatic brain injury

    Science.gov (United States)

    Yuan, X. Q.; Wade, C. E.

    1991-01-01

    This article provides an overview of hypothalamic and pituitary alterations in brain trauma, including the incidence of hypothalamic-pituitary damage, injury mechanisms, features of the hypothalamic-pituitary defects, and major hypothalamic-pituitary disturbances in brain trauma. While hypothalamic-pituitary lesions have been commonly described at postmortem examination, only a limited number of clinical cases of traumatic hypothalamic-pituitary dysfunction have been reported, probably because head injury of sufficient severity to cause hypothalamic and pituitary damage usually leads to early death. With the improvement in rescue measures, an increasing number of severely head-injured patients with hypothalamic-pituitary dysfunction will survive to be seen by clinicians. Patterns of endocrine abnormalities following brain trauma vary depending on whether the injury site is in the hypothalamus, the anterior or posterior pituitary, or the upper or lower portion of the pituitary stalk. Injury predominantly to the hypothalamus can produce dissociated ACTH-cortisol levels with no response to insulin-induced hypoglycemia and a limited or failed metopirone test, hypothyroxinemia with a preserved thyroid-stimulating hormone response to thyrotropin-releasing hormone, low gonadotropin levels with a normal response to gonadotropin-releasing hormone, a variable growth hormone (GH) level with a paradoxical rise in GH after glucose loading, hyperprolactinemia, the syndrome of inappropriate ADH secretion (SIADH), temporary or permanent diabetes insipidus (DI), disturbed glucose metabolism, and loss of body temperature control. Severe damage to the lower pituitary stalk or anterior lobe can cause low basal levels of all anterior pituitary hormones and eliminate responses to their releasing factors. Only a few cases showed typical features of hypothalamic or pituitary dysfunction. Most severe injuries are sufficient to damage both structures and produce a mixed endocrine picture

  13. [Brain metastasis from papillary thyroid carcinoma with acute intracerebral hemorrhage: a surgical case report].

    Science.gov (United States)

    Chonan, Masashi; Mino, Masaki; Yoshida, Masahiro; Sakamoto, Kazuhiro

    2012-05-01

    We report a rare case of brain metastasis from papillary thyroid carcinoma with intracerebral hemorrhage. A 79-year-old woman presented with sudden headache and monoplegia of the right upper limb 10 years after diagnosis of thyroid papillary adenocarcinoma. Despite the known metastatic lesions in the cervical lymph nodes and lungs, she had been well for 10 years since thyroidectomy, focal irradiation and internal radiation of 131I. CT demonstrated intracerebral hemorrhage in the left temporal lobe. Magnetic resonance imaging showed marked signal heterogeneity. She underwent radical surgery on the day of the onset and the histological diagnosis was metastatic brain tumor of thyroid papillary carcinoma. Postoperative course was uneventful, and the monoplegia was improved. Papillary thyroid carcinoma has a relatively benign course, and surgical removal of the brain metastasis is able to contribute to longer survival times for patients.

  14. Inosine improves functional recovery after experimental traumatic brain injury.

    Science.gov (United States)

    Dachir, Shlomit; Shabashov, Dalia; Trembovler, Victoria; Alexandrovich, Alexander G; Benowitz, Larry I; Shohami, Esther

    2014-03-25

    Despite years of research, no effective therapy is yet available for the treatment of traumatic brain injury (TBI). The most prevalent and debilitating features in survivors of TBI are cognitive deficits and motor dysfunction. A potential therapeutic method for improving the function of patients following TBI would be to restore, at least in part, plasticity to the CNS in a controlled way that would allow for the formation of compensatory circuits. Inosine, a naturally occurring purine nucleoside, has been shown to promote axon collateral growth in the corticospinal tract (CST) following stroke and focal TBI. In the present study, we investigated the effects of inosine on motor and cognitive deficits, CST sprouting, and expression of synaptic proteins in an experimental model of closed head injury (CHI). Treatment with inosine (100 mg/kg i.p. at 1, 24 and 48 h following CHI) improved outcome after TBI, significantly decreasing the neurological severity score (NSS, pcognitive performance (object recognition, peffect on sensorimotor coordination (rotarod) and spatial cognitive functions (Y-maze). Inosine did not affect CST sprouting in the lumbar spinal cord but did restore levels of the growth-associated protein GAP-43 in the hippocampus, though not in the cerebral cortex. Our results suggest that inosine may improve functional outcome after TBI. PMID:24502983

  15. Attention remediation following traumatic brain injury in childhood and adolescence.

    Science.gov (United States)

    Galbiati, Susanna; Recla, Monica; Pastore, Valentina; Liscio, Mariarosaria; Bardoni, Alessandra; Castelli, Enrico; Strazzer, Sandra

    2009-01-01

    Traumatic brain injury (TBI) frequently affects both the basic and the superordinate components of attention; deficits vary according to patient age. This study evaluated the efficacy of a specific remediation intervention for attention. Sixty-five TBI patients (aged 6?18 years) with attention deficit were assessed at baseline and at 1-year follow-up: 40 patients received attention-specific neuropsychological training for 6 months, and the control group comprised 25 patients. Cognitive assessment included a Wechsler Intelligence Scale (e.g., A. Orsini, 1993) and the Continuous Performance Test II (CPT II; C. K. Conners, 2000). The Vineland Adaptive Behavior Scales (VABS; S. Sparrow, D. Balla & D. V. Cicchetti, 1984) was administered to assess the treatment's ecological validity. At baseline, all patients presented with a mild intellectual disability and pathological scores on the CPT II. At follow-up, significant differences were found between the 2 groups on the CPT II and VABS: The clinical group improved more than the control group. Specific remediation training for attention, including a combination of a process-specific approach and metacognitive strategies, significantly improved attention performance. Improvement in attention skills also affected adaptive skills positively.

  16. Early exposure to traumatic stressors impairs emotional brain circuitry.

    Directory of Open Access Journals (Sweden)

    Mayuresh S Korgaonkar

    Full Text Available Exposure to early life trauma (ELT is known to have a profound impact on mental development, leading to a higher risk for depression and anxiety. Our aim was to use multiple structural imaging methods to systematically investigate how traumatic stressors early in life impact the emotional brain circuits, typically found impaired with clinical diagnosis of depression and anxiety, across the lifespan in an otherwise healthy cohort. MRI data and self-reported histories of ELT from 352 healthy individuals screened for no psychiatric disorders were analyzed in this study. The volume and cortical thickness of the limbic and cingulate regions were assessed for all participants. A large subset of the cohort also had diffusion tensor imaging data, which was used to quantify white matter structural integrity of these regions. We found a significantly smaller amygdala volume and cortical thickness in the rostral anterior cingulate cortex associated with higher ELT exposure only for the adolescence group. White matter integrity of these regions was not affected. These findings demonstrate that exposure to early life trauma is associated with alterations in the gray matter of cingulate-limbic regions during adolescence in an otherwise healthy sample. These findings are interesting in the context that the affected regions are central neuroanatomical components in the psychopathology of depression, and adolescence is a peak period for risk and onset of the disorder.

  17. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Katharine Eakin

    Full Text Available In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI. For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

  18. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury.

    Science.gov (United States)

    Iverson, Grant L; Lange, Rael T; Wäljas, Minna; Liimatainen, Suvi; Dastidar, Prasun; Hartikainen, Kaisa M; Soimakallio, Seppo; Ohman, Juha

    2012-01-01

    Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI) using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absence of intracranial abnormality on day-of-injury CT scan or 3-4 week MRI scan. Results. There was a large statistically significant difference in time to return to work between groups. The patients with uncomplicated MTBIs had a median of 6.0 days (IQR = 0.75-14.75, range = 0-77) off work compared to a median of 36 days (IQR = 13.5-53, range = 3-315) for the complicated group. There were no significant differences between groups for any of the neurocognitive or self-report measures. There were no differences in the proportion of patients who (a) met criteria for ICD-10 postconcussional disorder or (b) had multiple low scores on the neurocognitive measures. Conclusion. Patients with complicated MTBIs took considerably longer to return to work. They did not perform more poorly on neurocognitive measures or report more symptoms, at 3-4 weeks after injury compared to patients with uncomplicated MTBIs. PMID:22577556

  19. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Grant L. Iverson

    2012-01-01

    Full Text Available Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absence of intracranial abnormality on day-of-injury CT scan or 3-4 week MRI scan. Results. There was a large statistically significant difference in time to return to work between groups. The patients with uncomplicated MTBIs had a median of 6.0 days (IQR = 0.75–14.75, range = 0–77 off work compared to a median of 36 days (IQR = 13.5–53, range = 3–315 for the complicated group. There were no significant differences between groups for any of the neurocognitive or self-report measures. There were no differences in the proportion of patients who (a met criteria for ICD-10 postconcussional disorder or (b had multiple low scores on the neurocognitive measures. Conclusion. Patients with complicated MTBIs took considerably longer to return to work. They did not perform more poorly on neurocognitive measures or report more symptoms, at 3-4 weeks after injury compared to patients with uncomplicated MTBIs.

  20. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome.

    Science.gov (United States)

    Chaput, Geneviève; Lajoie, Susanne P; Naismith, Laura M; Lavigne, Gilles

    2016-01-01

    Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI) is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1) and 8 weeks (Time 2) after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r = .31 to .44), number of postconcussion symptoms reported (r = .35 to .45), psychological distress (r = .57 to .67), and level of functionality (r = -.43 to -.29). Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2). Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms. PMID:27445604

  1. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    Directory of Open Access Journals (Sweden)

    Geneviève Chaput

    2016-01-01

    Full Text Available Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1 and 8 weeks (Time 2 after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r=.31 to .44, number of postconcussion symptoms reported (r=.35 to .45, psychological distress (r=.57 to .67, and level of functionality (r=-.43 to -.29. Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2. Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms.

  2. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  3. Social reintegration of traumatic brain-injured: the French experience.

    Science.gov (United States)

    Truelle, J-L; Wild, K Von; Onillon, M; Montreuil, M

    2010-01-01

    Traumatic Brain Injury (TBI) may lead to specific handicap, often hidden, mainly due to cognitive and behavioural sequelae. Social re-entry is a long-term, fluctuant and precarious process. The French experience will be illustrated by 6 initiatives answering to 6 challenges to do with TBI specificities:1. bridging the gap, between initial rehabilitation and community re-entry, via transitional units dealing with assessment, retraining, social/vocational orientation and follow-up. Today, there are 30 such units based on multidisciplinary teams.2. assessing recovery by TBI-specific and validated evaluation tools: EBIS holistic document, BNI Screening of higher cerebral functions, Glasgow outcome extended, and QOLIBRI, a TBI-specific quality of life tool.3. promoting specific re-entry programmes founded on limited medication, ecological neuro-psychological rehabilitation, exchange groups and workshops, violence prevention, continuity of care, environmental structuration, and "resocialisation".4. taking into account the "head injured family"5. facilitating recovery after sports-related concussion6. facing medico-legal consequences and compensation: In that perspective, we developed guidelines for TBI-specific expert appraisal, including mandatory neuro-psychological assessment, family interview and an annual forum gathering lawyers and health professionals. PMID:22028740

  4. Prognostic significance of age in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    S S Dhandapani

    2012-01-01

    Full Text Available Background: Age is a strong prognostic factor following traumatic brain injury (TBI, with discrepancies defining the critical prognostic age threshold. This study was undertaken to determine the impact of various age thresholds on outcome after TBI. Materials and Methods : The ages of patients admitted with TBI were prospectively studied in relation to mode of injury, Glasgow coma score (GCS, CT category and surgical intervention. Mortality was assessed at 1 month, and neurological outcome was assessed at 6 months. Appropriate statistical analyzes (details in article were performed. Results: Of the total 244 patients enrolled, 144 patients had severe, 38 patients had moderate and 62 patients had mild TBI, respectively. Age had significant association with grade of injury, CT category and surgical intervention (P 59 years respectively (P 40 years in all subgroups, based on GCS and surgical intervention (P < 0.05. Conclusions : In patients with TBI, age demonstrates independent association with unfavorable outcome at 6 months, in stepwise manner centered on a threshold of 40 years.

  5. Exploring Vocational Evaluation Practices following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Christina Dillahunt-Aspillaga

    2015-01-01

    Full Text Available Background. Individuals with traumatic brain injury (TBI face many challenges when attempting to return to work (RTW. Vocational evaluation (VE is a systematic process that involves assessment and appraisal of an individual’s current work-related characteristics and abilities. Objective. The aims of this study are to (1 examine demographic and employment characteristics of vocational rehabilitation providers (VRPs, (2 identify the specific evaluation methods that are used in the VE of individuals with TBI, and (3 examine the differences in assessment method practices based upon evaluator assessment preferences. Methods. This exploratory case study used a forty-six-item online survey which was distributed to VRPs. Results. One hundred and nine VRPs accessed the survey. Of these, 74 completed the survey. A majority of respondents were female (79.7%, Caucasian (71.6%, and holding a master’s degree (74.3%, and more than half (56.8% were employed as state vocational rehabilitation counselors (VRCs. In addition, over two-thirds (67.6% were certified rehabilitation counselors (CRCs. Respondents reported using several specific tools and assessments during the VE process. Conclusions. Study findings reveal differences in use of and rationales for specific assessments amongst VRPs. Understanding VRP assessment practices and use of an evidence-based framework for VE following TBI may inform and improve VE practice.

  6. Communication after mild traumatic brain injury: A spouse's perspective

    Directory of Open Access Journals (Sweden)

    Samantha Jayne Crewe-Brown

    2011-11-01

    Full Text Available Individuals with Mild Traumatic Brain Injury (MTBI often perform within normal limits on linguistic and cognitive assessments. However, they may present with debilitating communicative difficulties in daily life. A multifaceted approach to MTBI with a focus on everyday communication in natural settings is required. Significant others who interact with the individual with MTBI in a variety of settings may be sensitive to communicative difficulties experienced by the individual with MTBI. This article examines communication after MTBI from the perspective of the spouse. A case study design was implemented. The spouses of two individuals with MTBI served as the participants for this study. Semi-structured interviews were held during which each participant was requested to describe the communication of their spouse with MTBI. The content obtained from the interviews was subjected to a discourse analysis. The results show that both participants perceived changes in the communication of their spouse following the MTBI. The results further show that MTBI impacted on the communication of the two individuals in different ways. The value of a significant other in providing information regarding communication in natural settings is highlighted. The implications of these findings for the assessment and management of the communication difficulties associated with MTBI is discussed.

  7. Cognitive Impairment and Rehabilitation Strategies After Traumatic Brain Injury.

    Science.gov (United States)

    Barman, Apurba; Chatterjee, Ahana; Bhide, Rohit

    2016-01-01

    Traumatic brain injury (TBI) is among the significant causes of morbidity and mortality in the present world. Around 1.6 million persons sustain TBI, whereas 200,000 die annually in India, thus highlighting the rising need for appropriate cognitive rehabilitation strategies. This literature review assesses the current knowledge of various cognitive rehabilitation training strategies. The entire spectrum of TBI severity; mild to severe, is associated with cognitive deficits of varying degree. Cognitive insufficiency is more prevalent and longer lasting in TBI persons than in the general population. A multidisciplinary approach with neuropsychiatric evaluation is warranted. Attention process training and tasks for attention deficits, compensatory strategies and errorless learning training for memory deficits, pragmatic language skills and social behavior guidance for cognitive-communication disorder, meta-cognitive strategy, and problem-solving training for executive disorder are the mainstay of therapy for cognitive deficits in persons with TBI. Cognitive impairments following TBI are common and vary widely. Different cognitive rehabilitation techniques and combinations in addition to pharmacotherapy are helpful in addressing various cognitive deficits. PMID:27335510

  8. A model for traumatic brain injury using laser induced shockwaves

    Science.gov (United States)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  9. Traumatic brain injury–Modeling neuropsychiatric symptoms in rodents

    Directory of Open Access Journals (Sweden)

    Oz eMalkesman

    2013-10-01

    Full Text Available Each year in the United States, approximately 1.5 million people sustain a traumatic brain injury (TBI. Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms—and why some patients experience differing assortments of persistent maladies—are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential.

  10. Pathophysiology and Treatment of Severe Traumatic Brain Injuries in Children.

    Science.gov (United States)

    Allen, Kimberly A

    2016-02-01

    Traumatic brain injuries (TBIs) in children are a major cause of morbidity and mortality worldwide. Severe TBIs account for 15,000 admissions annually and a mortality rate of 24% in children in the United States. The purpose of this article is to explore pathophysiologic events, examine monitoring techniques, and explain current treatment modalities and nursing care related to caring for children with severe TBI. The primary injury of a TBI is because of direct trauma from an external force, a penetrating object, blast waves, or a jolt to the head. Secondary injury occurs because of alterations in cerebral blood flow, and the development of cerebral edema leads to necrotic and apoptotic cellular death after TBI. Monitoring focuses on intracranial pressure, cerebral oxygenation, cerebral edema, and cerebrovascular injuries. If abnormalities are identified, treatments are available to manage the negative effects caused to the cerebral tissue. The mainstay treatments are hyperosmolar therapy; temperature control; cerebrospinal fluid drainage; barbiturate therapy; decompressive craniectomy; analgesia, sedation, and neuromuscular blockade; and antiseizure prophylaxis.

  11. Systematic Review of Traumatic Brain Injury Animal Models.

    Science.gov (United States)

    Phipps, Helen W

    2016-01-01

    The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope). PMID:27604713

  12. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Kimberly S Meyer

    2014-01-01

    Full Text Available Background: Paroxysmal sympathetic hyperactivity (PSH is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI. It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review using medline and cinahl was conducted to identify articles related to PSH. Search terms included paroxysmal sympathetic hyperactivity, autonomic storming, diencephalic seizures, and sympathetic storming. Reference lists of pertinent articles were also reviewed and these additional papers were included. Results: The literature indicates that the understanding of PSH following TBI is in its infancy. The majority of information is based on small case series. The review revealed treatments that may be useful in treating PSH. Conclusions: Nurses play a critical role in the identification of at-risk patients, symptom complexes, and in the education of family. Early detection and treatment is likely to decrease overall morbidity and facilitate recovery. Further research is needed to establish screening tools and treatment algorithms for PSH.

  13. Pathophysiology and Treatment of Severe Traumatic Brain Injuries in Children.

    Science.gov (United States)

    Allen, Kimberly A

    2016-02-01

    Traumatic brain injuries (TBIs) in children are a major cause of morbidity and mortality worldwide. Severe TBIs account for 15,000 admissions annually and a mortality rate of 24% in children in the United States. The purpose of this article is to explore pathophysiologic events, examine monitoring techniques, and explain current treatment modalities and nursing care related to caring for children with severe TBI. The primary injury of a TBI is because of direct trauma from an external force, a penetrating object, blast waves, or a jolt to the head. Secondary injury occurs because of alterations in cerebral blood flow, and the development of cerebral edema leads to necrotic and apoptotic cellular death after TBI. Monitoring focuses on intracranial pressure, cerebral oxygenation, cerebral edema, and cerebrovascular injuries. If abnormalities are identified, treatments are available to manage the negative effects caused to the cerebral tissue. The mainstay treatments are hyperosmolar therapy; temperature control; cerebrospinal fluid drainage; barbiturate therapy; decompressive craniectomy; analgesia, sedation, and neuromuscular blockade; and antiseizure prophylaxis. PMID:26720317

  14. Assessment of impulsivity after moderate to severe traumatic brain injury.

    Science.gov (United States)

    Rochat, Lucien; Beni, Catia; Billieux, Joël; Azouvi, Philippe; Annoni, Jean-Marie; Van der Linden, Martial

    2010-10-01

    The aim of the study was to develop and validate a short questionnaire assessing four dimensions of impulsivity (urgency, lack of premeditation, lack of perseverance, sensation seeking) in patients with traumatic brain injury (TBI). To this end, 82 patients with TBI and their caregivers completed a short questionnaire adapted from the UPPS Impulsive Behavior Scale designed to assess impulsivity changes after TBI. Confirmatory factor analyses (CFAs) performed on the version of the scale completed by the relatives revealed that a hierarchical model holding that lack of premeditation and lack of perseverance are facets of a higher order construct (lack of conscientiousness), with urgency and sensation seeking as separate correlated factors, fit the data best. Urgency, lack of premeditation, and lack of perseverance increased after the TBI, whereas sensation seeking decreased. CFA failed to reveal a satisfactory model in the version of the scale completed by the patients. The psychological processes related to these impulsivity changes and the discrepancy observed between self-report and informant-report are discussed. This short questionnaire opens up interesting prospects for better comprehension and assessment of behavioural symptoms of TBI. PMID:20635306

  15. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider

    2015-07-01

    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  16. Cognitive impairment and rehabilitation strategies after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Apurba Barman

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is among the significant causes of morbidity and mortality in the present world. Around 1.6 million persons sustain TBI, whereas 200,000 die annually in India, thus highlighting the rising need for appropriate cognitive rehabilitation strategies. This literature review assesses the current knowledge of various cognitive rehabilitation training strategies. The entire spectrum of TBI severity; mild to severe, is associated with cognitive deficits of varying degree. Cognitive insufficiency is more prevalent and longer lasting in TBI persons than in the general population. A multidisciplinary approach with neuropsychiatric evaluation is warranted. Attention process training and tasks for attention deficits, compensatory strategies and errorless learning training for memory deficits, pragmatic language skills and social behavior guidance for cognitive-communication disorder, meta-cognitive strategy, and problem-solving training for executive disorder are the mainstay of therapy for cognitive deficits in persons with TBI. Cognitive impairments following TBI are common and vary widely. Different cognitive rehabilitation techniques and combinations in addition to pharmacotherapy are helpful in addressing various cognitive deficits.

  17. The characteristics of chronic central pain after traumatic brain injury.

    Science.gov (United States)

    Ofek, Hadas; Defrin, Ruth

    2007-10-01

    Central pain following traumatic brain injury (TBI) has not been studied in depth. Our purpose was to conduct a systematic study of patients with TBI suffering from chronic central pain, and to describe the characteristics of the central pain. Groups were TBI patients with (TBIP) and without central pain (TBINP) and healthy controls. TBI patients with other pain mechanisms were excluded from the study. Participants underwent quantitative somatosensory testing in the painful and pain-free body regions. Thresholds for warmth, cold, heat-pain, touch and graphesthesia were measured and pathologically evoked pain (allodynia, hyperpathia and wind-up pain) evaluated. Chronic pain was mapped and characterized. Chronic pain developed at a relatively late onset (6.6+/-9 months) was almost exclusively unilateral and reported as pricking, throbbing and burning. Although both TBIP and TBINP exhibited a significant reduction in thermal and tactile sensations compared to controls, thermal sensations in the painful regions of TBIP were significantly more impaired than pain-free regions in the same patients (p<0.01) and in TBINP (p<0.01). Painful regions also exhibited very high rates of allodynia, hyperpathia and exaggerated wind-up. The characteristics of the chronic pain resembled those of other central pain patients although TBIP displayed several unique features. The sensory profile indicated that damage to the pain and temperature systems is a necessary but not sufficient condition for the development of chronic central pain following TBI. Neuronal hyperexcitability may be a contributing factor to the chronic pain.

  18. Executive Functioning of Combat Mild Traumatic Brain Injury.

    Science.gov (United States)

    Gaines, Katy D; Soper, Henry V; Berenji, Gholam R

    2016-01-01

    This study investigates neuropsychological deficits in recently deployed veterans with mild traumatic brain injury (mTBI). Veterans discharged from 2007 to 2012 were recruited from Veterans Affairs clinics. Independent groups of participants with mTBI (n = 57) and those without TBI (n = 57) were administered the Beck Depression Inventory-II, Combat Exposure Scale, Word Memory Test, and the Self-Awareness of Deficits Interview. Neuropsychological instruments included the Rey-Osterrieth Complex Figure Test, Letter and Category Fluency, Trail-Making Test-Parts A and B, Christiansen H-abbreviated, Soper Neuropsychology Screen, Wechsler Memory Scale subtests Logical Memory I and II, and the Street Completion Test. The mTBI group performed significantly worse on all of the executive and nonexecutive measurements with the exception of Category Fluency, after controlling for age, depression effort, and combat exposure. Depression and combat exposure were greater for the mTBI group. The mTBI group scored poorer on effort, but only the Multiple Choice subtest was significant. The mTBI group had good awareness of their deficits. PMID:26496530

  19. Emergent Endotracheal Intubation and Mortality in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Fine, Philip R

    2008-11-01

    Full Text Available Objective: To determine the relationship between emergent intubation (emergency department and field intubation cases combined and mortality in patients with traumatic brain injury (TBI while controlling for injury severity.Methods: Retrospective observational study of 981 (35.2% intubated, 64.8% not intubated patients with TBI evaluating the association between intubation status and mortality. Logistic regression was used to analyze the data. Injury severity measures included Head/Neck Abbreviated Injury Scale (H-AIS, systolic blood pressure, type of head injury (blunt vs. penetrating, and a propensity score combining the effects of several other potential confounding variables. Age was also included in the model.Results: The simple association of emergent endotracheal intubation with death had an odds ratio (OR of 14.3 (95% CI = 9.4 – 21.9. The logistic regression model including relevant covariates and a propensity score that adjusted for injury severity and age yielded an OR of 5.9 (95% CI = 3.2 – 10.9.Conclusions: This study indicates that emergent intubation is associated with increased risk of death after controlling for a number of injury severity indicators. We discuss the need for optimal paramedic training, and an understanding of the factors that guide patient selection and the decision to intubate in the field. [WestJEM.2008;9:184-189

  20. Substance P immunoreactivity increases following human traumatic brain injury.

    Science.gov (United States)

    Zacest, Andrew C; Vink, Robert; Manavis, Jim; Sarvestani, Ghafar T; Blumbergs, Peter C

    2010-01-01

    Recent experimental evidence suggests that neuropeptides, and in particular substance P (SP), are released following traumatic brain injury (TBI) and may play a significant role in the aetiology of cerebral edema and increased intracranial pressure. Whether SP may play a similar role in clinical TBI remains unknown and was investigated in the current study. Archival post-mortem material was selected from patients who had sustained TBI, had died and had undergone post-mortem and detailed neuropathological examination (n = 13). A second cohort of patients who had died, but who showed no neuropathological abnormality (n = 10), served as case controls. Changes in SP immunoreactivity were examined in the cerebral cortex directly beneath the subdural haematoma in 7 TBI cases and in proximity to contusions in the other 6 cases. Increased SP perivascular immunoreactivity was observed after TBI in 10/13 cases, cortical neurones in 12/13 and astrocytes in 10/13 cases. Perivascular axonal injury was observed by amyloid precursor protein (APP) immunoreactivity in 6/13 TBI cases. Co-localization of SP and APP in a small subset of perivascular fibres suggests perivascular axonal injury could be a mechanism of release of this neuropeptide. The abundance of SP fibres around the human cerebral microvasculature, particularly post capillary venules, together with the changes observed following TBI in perivascular axons, cortical neurones and astrocytes suggest a potentially important role for substance P in neurogenic inflammation following human TBI. PMID:19812951

  1. Traumatic brain injury impairs synaptic plasticity in hippocampus in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-liang; CHEN Xin; TAN Tao; YANG Zhuo; CARLOS Dayao; JIANG Rong-cai; ZHANG Jian-ning

    2011-01-01

    Background Traumatic brain injury (TBl) often causes cognitive deficits and remote symptomatic epilepsy.Hippocampal regional excitability is associated with the cognitive function. However, little is known about injury-induced neuronal loss and subsequent alterations of hippocampal regional excitability. The present study was designed to determine whether TBl may impair the cellular circuit in the hippocampus.Methods Forty male Wistar rats were randomized into control (n=20) and TBl groups (n=20). Long-term potentiation,extracellular input/output curves, and hippocampal parvalbumin-immunoreactive and cholecystokinin-immunoreactive interneurons were compared between the two groups.Results TBI resulted in a significantly increased excitability in the dentate gyrus (DG), but a significantly decreased excitability in the cornu ammonis 1 (CA1) area. Using design-based stereological injury procedures, we induced interneuronal loss in the DG and CA3 subregions in the hippocampus, but not in the CA1 area.Conclusions TBl leads to the impairment of hippocampus synaptic plasticity due to the changing of interneuronal interaction. The injury-induced disruption of synaptic efficacy within the hippocampal circuit may underlie the observed cognitive deficits and symptomatic epilepsy.

  2. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Simarjot K Dhaliwal

    2015-08-01

    Full Text Available Background: Traumatic brain injury (TBI is a common cause of physical, psychological, and cognitive impairment, but many current treatments for TBI are ineffective or produce adverse side effects. Non-invasive methods of brain stimulation could help ameliorate some common trauma-induced symptoms.Objective: This review summarizes instances in which repetitive Transcranial Magnetic Stimulation (rTMS and transcranial Direct Current Stimulation (tDCS have been used to treat symptoms following a traumatic brain injury. A subsequent discussion attempts to determine the value of these methods in light of their potential risks.Methods: The research databases of PubMed/MEDLINE and PsycINFO were electronically searched using terms relevant to the use of rTMS and tDCS as a tool to decrease symptoms in the context of rehabilitation post-TBI.Results: Eight case-studies and four multi-subject reports using rTMS and six multi-subject studies using tDCS were found. Two instances of seizure are discussed. Conclusions: There is evidence that rTMS can be an effective treatment option for some post-TBI symptoms such as depression, tinnitus, and neglect. Although the safety of this method remains uncertain, the use of rTMS in cases of mild-TBI without obvious structural damage may be justified. Evidence on the effectiveness of tDCS is mixed, highlighting the need for additional

  3. Effect of cocaine use on outcomes in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jacky T Yeung

    2013-01-01

    Full Text Available Context: Animal and molecular studies have shown that cocaine exerts a neuroprotective effect against cerebral ischemia. Aims: To determine if the presence of cocaine metabolites on admission following traumatic brain injury (TBI is associated with better outcomes. Settings and Design: Level-1 trauma center, retrospective cohort. Materials and Methods: After obtaining Institutional Review Board (IRB approval, the trauma registry was searched from 2006 to 2009 for all patients aged 15-55 years with blunt head trauma and non-head AIS <3. Exclusion criteria were pre-existing brain pathology and death within 30 min of admission. The primary outcome was in-hospital mortality; secondary outcomes were hospital length of stay (LOS, and Glasgow Outcome Score (GOS. Statistical Analysis: Logistic regression was used to determine the independent effect of cocaine on mortality. Hospital LOS was compared with multiple linear regression. Results: A total of 741 patients met criteria and had drug screens. The screened versus unscreened groups were similar. Cocaine positive patients were predominantly African-American (46% vs. 21%, P < 0.0001, older (40 years vs. 30 years, P < 0.0001, and had ethanol present more often (50.7% vs. 37.8%, P = 0.01. There were no differences in mortality (cocaine-positive 1.4% vs. cocaine-negative 2.7%, P = 0.6 on both univariate and multivariate analysis. Conclusions: Positive cocaine screening was not associated with mortality in TBI. An effect may not have been detected because of the low mortality rate. LOS is affected by many factors unrelated to the injury and may not be a good surrogate for recovery. Similarly, GOS may be too coarse a measure to identify a benefit.

  4. The Relation of Focal Lesions to Cortical Thickness in Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D; Zielinski, Brandon A; Goodrich-Hunsaker, Naomi; Black, Garrett M; Huff, B S Trevor; Christiansen, Zachary; Wood, Dawn-Marie; Abildskov, Tracy J; Dennis, Maureen; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2016-10-01

    In a sample of children with traumatic brain injury, this magnetic resonance imaging (MRI)-based investigation examined whether presence of a focal lesion uniquely influenced cortical thickness in any brain region. Specifically, the study explored the relation of cortical thickness to injury severity as measured by Glasgow Coma Scale score and length of stay, along with presence of encephalomalacia, focal white matter lesions or presence of hemosiderin deposition as a marker of shear injury. For comparison, a group of children without head injury but with orthopedic injury of similar age and sex were also examined. Both traumatic brain injury and orthopedic injury children had normally reduced cortical thickness with age, assumed to reflect neuronal pruning. However, the reductions observed within the traumatic brain injury sample were similar to those in the orthopedic injury group, suggesting that in this sample traumatic brain injury, per se, did not uniquely alter cortical thickness in any brain region at the group level. Injury severity in terms of Glasgow Coma Scale or longer length of stay was associated with greater reductions in frontal and occipitoparietal cortical thickness. However, presence of focal lesions were not related to unique changes in cortical thickness despite having a prominent distribution of lesions within frontotemporal regions among children with traumatic brain injury. Because focal lesions were highly heterogeneous, their association with cortical thickness and development appeared to be idiosyncratic, and not associated with group level effects.

  5. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  6. Diagnostic accuracy of contrast enhancement MRI versus CTA in diagnosis of intracranial aneurysm in patients with non-traumatic subarachnoid hemorrhage

    OpenAIRE

    Gihan Hassan Gamal

    2015-01-01

    Aim of the study: The most common cause of spontaneous SAH is the rupture of cerebral aneurysm. So it is very important to exclude it from circulation as soon as possible using endovascular therapy. The aim was to determine whether contrast enhancement magnetic resonance angiography (CEMRA) is preferable to computed tomography angiography (CTA) in detection of intracranial aneurysm in patients presenting with non-traumatic subarachnoid hemorrhage (SAH). Patients and methods: Twenty-five pa...

  7. Association of HIF- expression and cell apoptosis after traumatic brain injury in the rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the expression of hypoxia inducible factor-1α (HIF-1~) and the correlation between HIF-1α and apoptosis after traumatic brain injury.Methods: Using experimental traumatic brain injury in the rats, the expression of HIF-1α was studied by immunohisto-chemistry in cerebral tissue, apoptotic cell death was evaluated with TUNEL (transferase-mediated XdUTP nick end labeling ), and double-labeled immunohistochemistry and TUNEL methods were used to investigate the relationship between HIF-1α and apoptosis.Results: There was remarkable difference in the expression of HIF-1α between the experimental groups and the control groups (P < 0.01), in the experimental groups,the expression of HIF-1α at 48 hours was highest; the evidence of apoptotic cell death after experimental traumatic brain injury was found by TUNEL; the apoptotic percentage increased or decreased according to the changes of the positive expression of HIF-1α (r = 0.99).Conclusions: The results suggest that secondary brain ischemia plays a crucial role in apoptotic cell death after traumatic brain injury; HIF-1α can prompt apoptotic cell death after experimental traumatic brain injury.e expres

  8. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George;

    2009-01-01

    Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired ......, inferior and superior longitudinal fasciculus, corpus callosum and corona radiata. This indicates that the long-term atrophy is attributable to consequences of traumatic axonal injury. Despite progressive atrophy, remarkable clinical improvement occurred in most patients....

  9. The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injur y

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2014-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability of persons under 45 years old in the United States, affecting over 1.5 million individuals each year. It had been th ought that recovery from such injuries is severely limited due to the inability of the adult bra in to replace damaged neurons. However, recent studies indicate that the mature mammalian central nervous system (CNS) has the potential to replenish damaged neurons by proliferation and neuronal differentiation of adult neural stem/progenitor cells residing in the neurogenic regions in the brain. Furthermore, increasing evidence indicates that these endogenous stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. In support of this notion, heightened levels of cell proliferation and neurogenesis have been ob-served in response to brain trauma or insults suggesting that the brain has the inherent potential to restore populations of damaged or destroyed neurons. This review will discuss the potential functions of adult neurogenesis and recent development of strategies aiming at harnessing this neurogenic capacity in order to repopulate and repair the injured brain.

  10. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  11. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto City, Kyoto (Japan); Sakai, Koji [Kyoto University, Department of Human Health Science, Graduate School of Medicine, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural University of Medicine, Department of Neurosurgery, Graduate School of Medical Science, Kyoto City, Kyoto (Japan)

    2014-10-15

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  12. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets.

    Science.gov (United States)

    Winkler, Ethan A; Minter, Daniel; Yue, John K; Manley, Geoffrey T

    2016-10-01

    Traumatic brain injury is a heterogeneous disorder resulting from an external force applied to the head. The development of cerebral edema plays a central role in the evolution of injury following brain trauma and is closely associated with neurologic outcomes. Recent advances in the understanding of the molecular and cellular pathways contributing to the posttraumatic development of cerebral edema have led to the identification of multiple prospective therapeutic targets. The authors summarize the pathogenic mechanisms underlying cerebral edema and highlight the molecular pathways that may be therapeutically targeted to mitigate cerebral edema and associated sequelae following traumatic brain injury. PMID:27637397

  13. Functional oral intake and time to reach unrestricted dieting for patients with traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, Trine S; Engberg, Aase W; Larsen, Klaus

    2008-01-01

    OBJECTIVES: To investigate the status of functional oral intake for patients with severe traumatic brain injury (TBI) and time to return to unrestricted dieting; and to investigate whether severity of brain injury is a predictor for unrestricted dieting. DESIGN: Observational retrospective cohort...... planning rehabilitation, giving information to patients and relatives, and designing efficacy studies of facial oral tract therapy, which are highly recommended....

  14. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    Science.gov (United States)

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  15. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    Science.gov (United States)

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  16. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    NARCIS (Netherlands)

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time, whiplash-as

  17. Blood-Brain Barrier Breakdown Following Traumatic Brain Injury: A Possible Role in Posttraumatic Epilepsy

    Directory of Open Access Journals (Sweden)

    Oren Tomkins

    2011-01-01

    Full Text Available Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB in the pathogenesis of post-traumatic epilepsy (PTE. This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI. Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG recordings and brain magnetic resonance imaging (bMRI. bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA. TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients (P=.001 and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients (P=.001. Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE.

  18. Association of initial CT findings with quality-of-life outcomes for traumatic brain injury in children

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Jonathan O. [Seattle Children' s Hospital and University of Washington, Department of Radiology, Seattle, WA (United States); Vavilala, Monica S.; Wang, Jin; Rivara, Frederick P. [Harborview Medical Center, University of Washington, Department of Pediatrics, Seattle, WA (United States); Pruthi, Sumit [Monroe Carell Jr. Children' s Hospital at Vanderbilt University, Department of Radiology, Nashville, TN (United States); Fink, James [University of Washington, Department of Radiology, Seattle, WA (United States); Jaffe, Kenneth M. [University of Washington, Department of Rehabilitation Medicine, Seattle, WA (United States); Durbin, Dennis [University of Pennsylvania, Department of Pediatrics, Center for Injury Research and Prevention, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Koepsell, Thomas [University of Washington, Department of Epidemiology, Seattle, WA (United States); Temkin, Nancy [University of Washington, Biostatistics, Seattle, WA (United States)

    2012-08-15

    Traumatic brain injury (TBI) is a leading cause of acquired disability in children and adolescents. To demonstrate the association between specific findings on initial noncontrast head CT and long-term outcomes in children who have suffered TBI. This was an IRB-approved prospective study of children ages 2-17 years treated in emergency departments for TBI and who underwent a head CT as part of the initial work-up (n = 347). The change in quality of life at 12 months after injury was measured by the PedsQL scale. Children with TBI who had intracranial injuries identified on the initial head CT had a significantly lower quality-of-life scores compared to children with TBI whose initial head CTs were normal. In multivariate analysis, children whose initial head CT scans demonstrated intraventricular hemorrhage, parenchymal injury, midline shift {>=}5 mm, hemorrhagic shear injury, abnormal cisterns or subdural hematomas {>=}3 mm had lower quality of life scores 1 year after injury than children whose initial CTs did not have these same injuries. Associations exist between findings from the initial noncontrast head CT and quality of life score 12 months after injury in children with TBI. (orig.)

  19. Spironolactone in preventing hypokalemia following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Saeid Abrishamkar; Mehdi Shafiei; Mohammad Shafiei

    2010-01-01

    Objective: Hypokalemia is a frequent complication observed after traumatic brain injury (TBI).We evaluated the effect of spironolactone on preventing hypokalemia following moderate to severe TBI.Methods: Patients with moderate to severe TBI, whose Glasgow Coma Scale (GCS) scores of 9-12 and <9,respectively, were equally randomized into intervention and control groups, matching with severity of trauma and baseline serum level of potassium. For the intervention group, we administrated spironolactone (1 mg/kg per day)on the second day of admission or the first day of gavage tolerance and continued it for seven days. No additional intervention was done for controls. Hypokalemia (mild: 3-3.5 mg/L, moderate: 2.5-3 mg/L, and severe: <2.5 mg/L serum K+) and other electrolyte abnormalities were compared between the two groups at the end of the intervention.Results: Sixty-eight patients (58 males and 10 females)were included with mean age=(33.1±11.8) years, and GCS=7.6±2.8. The two groups were similar in baseline characteristics.Patients who received spironolactone were significantly less likely to experience mild, moderate, or severe hypokalemia (8.8%, 2.9%, and 0) compared with controls (29.4%, 11.7%,and 2.9%, respectively, P<0.05). No significant difference was observed between the two groups in the occurrence of other electrolyte abnormalities, hyperglycemia or oliguria.Conclusion: Spironolactone within the first week of head injury could prevent the occurrence of late hypokalemia with no severe side effects.

  20. Venous thromboembolic events in isolated severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahin Mohseni

    2012-01-01

    Full Text Available Objective: The purpose of this study was to investigate the effect of prophylactic anticoagulation on the incidence of venous thromboembolic events (VTE in patients suffering from isolated severe traumatic brain injury (TBI. Materials and Methods: Retrospective matched case-control study in adult patients sustaining isolated severe TBI (head AIS ≥3, with extracranial AIS ≤2 receiving VTE prophylaxis while in the surgical intensive care unit from 1/2007 through 12/2009. Patients subjected to VTE prophylaxis were matched 1:1 by age, gender, glasgow coma scale (GCS score at admission, presence of hypotension on admission, injury severity score, and head abbreviated injury scale (AIS score, with patients who did not receive chemical VTE prophylaxis. The primary outcome measure was VTE. Secondary outcomes were SICU and hospital length of stay (HLOS, adverse effects of anticoagulation, and mortality. Results: After propensity matching, 37 matched pairs were analysed. Cases and controls had similar demographics, injury characteristics, rate of craniotomies/craniectomies, SICU LOS, and HLOS. The median time of commencement of VTE prophylaxis was 10 days. The incidence of VTE was increased 3.5-fold in the controls compared to the cases (95% CI 1.0-12.1, P=0.002. The mortality was higher in patients who did not receive anticoagulation (19% vs. 5%, P=0.001. No adverse outcomes were detected in the anticoagulated patients. Conclusion: Prophylactic anticoagulation decreases the overall risk for clinically significant VTE in patients with severe isolated TBI. Prospective validation of the timing and safety of chemical VTE prophylaxis in these instances is warranted.

  1. Perceptual organization deficits in traumatic brain injury patients.

    Science.gov (United States)

    Costa, Thiago L; Zaninotto, Ana Luiza C; Benute, Gláucia G; De Lúcia, Mara C S; Paiva, Wellingson S; Wagemans, Johan; Boggio, Paulo S

    2015-11-01

    Traumatic brain injury (TBI) is a prevalent condition and there is limited visual perception research with this population. Here, we investigated perceptual organization changes in a rather homogeneous sample of closed head TBI outpatients with diffuse axonal injury only and no other known comorbidities. Patients had normal or corrected visual acuity. Perceptual organization was measured with the Leuven Perceptual Organization Screening Test (L-POST), a coherent motion task (CM) and the Leuven Embedded Figures Test (L-EFT). These tests were chosen to screen for deficits in different aspects of perceptual organization (L-POST), to evaluate local and global processing (L-EFT) and grouping in a dynamic set of stimuli (CM). TBI patients were significantly impaired compared to controls in all measures for both response time and accuracy, except for CM thresholds and object recognition subtests. The TBI group was similarly affected in all aspects of the L-EFT. TBI was also similarly affected in all perceptual factors of the L-POST. No significant correlations were found between scores and time post-injury, except for CM thresholds (rs=-0.74), which might explain the lack of group-level differences. The only score significantly correlated to IQ was L-EFT response time (rs=-0.67). These findings demonstrate that perceptual organization is diffusely affected in TBI and this effect has no substantial correlations with IQ. As many of the neuropsychological tests used to measure different cognitive functions involve some level of visual discrimination and perceptual organization demands, these results must be taken into account in the general neuropsychological evaluation of TBI patients. PMID:26455804

  2. Increased Risk of Post-Trauma Stroke after Traumatic Brain Injury-Induced Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Chen, Gunng-Shinng; Liao, Kuo-Hsing; Bien, Mauo-Ying; Peng, Giia-Sheun; Wang, Jia-Yi

    2016-07-01

    This study determines whether acute respiratory distress syndrome (ARDS) is an independent risk factor for an increased risk of post-traumatic brain injury (TBI) stroke during 3-month, 1-year, and 5-year follow-ups, respectively, after adjusting for other covariates. Clinical data for the analysis were from the National Health Insurance Database 2000, which covered a total of 2121 TBI patients and 101 patients with a diagnosis of TBI complicated with ARDS (TBI-ARDS) hospitalized between January 1, 2001 and December 31, 2005. Each patient was tracked for 5 years to record stroke occurrences after discharge from the hospital. The prognostic value of TBI-ARDS was evaluated using a multivariate Cox proportional hazard model. The main outcome found that stroke occurred in nearly 40% of patients with TBI-ARDS, and the hazard ratio for post-TBI stroke increased fourfold during the 5-year follow-up period after adjusting for other covariates. The increased risk of hemorrhagic stroke in the ARDS group was considerably higher than in the TBI-only cohort. This is the first study to report that post-traumatic ARDS yielded an approximate fourfold increased risk of stroke in TBI-only patients. We suggest intensive and appropriate medical management and intensive follow-up of TBI-ARDS patients during the beginning of the hospital discharge. PMID:26426583

  3. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  4. Traumatic rupture of adrenal pseudocyst leading to massive hemorrhage in retroperitoneum

    Directory of Open Access Journals (Sweden)

    Favorito Luciano A.

    2004-01-01

    Full Text Available We present the case of a patient who had a large pseudocyst in the right adrenal gland, which was ruptured following blunt abdominal trauma, leading to a voluminous hemorrhage in retroperitoneum. A 29-year old female patient was admitted in the emergency room following a fall from stairs with trauma in right flank. She underwent a computerized tomography that evidenced a large retroperitoneal collection, with no apparent renal damage. She was submitted to surgery, where a large ruptured cyst was observed, originating from the upper portion of the right adrenal gland. Cystic diseases of adrenal gland are rare. Highly voluminous cysts can be damaged in cases of blunt trauma to the lumbar region leading to large hematomas in retroperitoneum.

  5. Traumatic brain injury alters methionine metabolism: implications for pathophysiology

    Directory of Open Access Journals (Sweden)

    Pramod K Dash

    2016-04-01

    Full Text Available Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM that serves as the principal methyl (-CH3 donor for DNA and histone methyltransferases to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling.. Under conditions of oxidative stress, homocysteine (which is derived from SAM enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (n = 20 and patients with mild TBI (GCS > 12; n = 20 or severe TBI (GCS < 8; n = 20 within the first 24 hours of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS. Severe TBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to healthy volunteers, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline. Mild TBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser

  6. Neurotherapy for chronic headache following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    David V Nelson; Mary Lee Esty

    2015-01-01

    Background:Chronic headache following traumatic brain injury (TBI) sustained in military service, while common, is highly challenging to treat with existing pharmacologic and non-pharmacologic interventions, and it may be complicated by co-morbid posttraumatic stress. Recently, a novel form of brainwave-based intervention known as the Flexyx Neurotherapy System (FNS), which involves minute pulses of electromagnetic energy stimulation of brainwave activity, has been suggested as a means to address symptoms of TBI. This study reports on a clinical series of patients with chronic headache following service-connected TBI treated with FNS. Methods: Nine veterans of the wars in Afghanistan and Iraq with moderate to severe chronic headaches following service-connected TBI complicated by posttraumatic stress symptoms were treated in 20 individual FNS sessions at the Brain Wellness and Biofeedback Center of Washington (in Bethesda, Maryland, USA). They periodically completed measures including the Brief Pain Inventory-Headache (BPI-HA), previous week worst and average pain ratings, the Posttraumatic Stress Disorder Checklist-Military version (PCL-M), and an individual treatment session numerical rating scale (NRS) for the degree of cognitive dysfunction. Data analyses included beginning-to-end of treatmentt-test comparisons for the BPI-HA, PCL-M, and cognitive dysfunction NRS. Results: All beginning-to-end of treatmentt-test comparisons for the BPI-HA, PCL-M, and cognitive dysfunction NRS indicated statistically significant decreases. All but one participant experienced a reduction in headaches along with reductions in posttraumatic stress and perceived cognitive dysfunction, with a subset experiencing the virtual elimination of headaches. One participant obtained modest headache relief but no improvements in posttraumatic stress or cognitive dysfunction. Conclusions: FNS may be a potentially efficacious treatment for chronic posttraumatic headache sustained in military

  7. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  8. Motorcycle-Related Traumatic Brain Injuries: Helmet Use and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Mathias Ogbonna Nnanna Nnadi

    2015-01-01

    Full Text Available Summary. With increasing use of motorcycle as means of transport in developing countries, traumatic brain injuries from motorcycle crashes have been increasing. The only single gadget that protects riders from traumatic brain injury is crash helmet. Objective. The objectives were to determine the treatment outcome among traumatic brain injury patients from motorcycle crashes and the rate of helmet use among them. Methods. It was a prospective, cross-sectional study of motorcycle-related traumatic brain injury patients managed in our center from 2010 to 2014. Patients were managed using our unit protocol for traumatic brain injuries. Data for the study were collected in accident and emergency, intensive care unit, wards, and outpatient clinic. The data were analyzed using Environmental Performance Index (EPI info 7 software. Results. Ninety-six patients were studied. There were 87 males. Drivers were 65. Only one patient wore helmet. Majority of them were between 20 and 40 years. Fifty-three patients had mild head injuries. Favorable outcome among them was 84.35% while mortality was 12.5%. Severity of the injury affected the outcome significantly. Conclusion. Our study showed that the helmet use by motorcycle riders was close to zero despite the existing laws making its use compulsory in Nigeria. The outcome was related to severity of injuries.

  9. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke

    OpenAIRE

    Renée J Turner; Sharp, Frank R.

    2016-01-01

    Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen...

  10. Brain Infarction and Hemorrhage in Young and Middle-aged Adults

    OpenAIRE

    Lacy, Joseph R.; Filley, Christopher M.; Earnest, Michael P.; Graff-Radford, Neill R

    1984-01-01

    Of 131 young (17 to 44 years) and middle-aged (45 to 55 years) adults who had brain infarction or hemorrhage, the most common etiologic factors were rheumatic heart disease, migraine and oral contraceptive use among the younger group. In contrast, atherosclerotic, hypertensive and diabetes-associated cerebrovascular were the most common causes in the middle-aged group. Patients who have a stroke before age 45 should have prompt, complete laboratory and radiologic testing to define a possible ...

  11. Effect of traumatic brain injury among U.S. servicemembers with amputation

    OpenAIRE

    Mitchell J. Rauh, PhD, PT, MPH; Hilary J. Aralis, MS; Ted Melcer, PhD; Caroline A. Macera, PhD; Pinata Sessoms, PhD; Jamie Bartlett, PhD; Michael R. Galarneau, MS

    2013-01-01

    Servicemembers with combat-related limb loss often require substantial rehabilitative care. The prevalence of traumatic brain injury (TBI), which may impair cognitive and functional abilities, among servicemembers has increased. The primary objectives of this study were to determine the frequency of TBI among servicemembers with traumatic amputation and examine whether TBI status was associated with discharge to civilian status and medical and rehabilitative service use postamputation. U.S. s...

  12. Vestibulo-ocular monitoring as a predictor of outcome after severe traumatic brain injury

    OpenAIRE

    Schlosser, Hans-Georg; Lindemann, Jan-Nikolaus; Vajkoczy, Peter; Clarke, Andrew H

    2009-01-01

    Introduction Based on the knowledge that traumatic brainstem damage often leads to alteration in brainstem functions, including the vestibulo-ocular reflex, the present study is designed to determine whether prediction of outcome in the early phase after severe traumatic brain injury is possible by means of vestibulo-ocular monitoring. Methods Vestibulo-ocular monitoring is based on video-oculographic recording of eye movements during galvanic labyrinth polarization. The integrity of vestibul...

  13. Influence of post-traumatic stress disorder on neuroinflammation and cell proliferation in a rat model of traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sandra A Acosta

    Full Text Available Long-term consequences of traumatic brain injury (TBI are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD, yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long

  14. Assessment of traumatic brain injury degree in animal model

    Institute of Scientific and Technical Information of China (English)

    Jian-Qiang Chen; Cheng-Cheng Zhang; Hong Lu; Wei Wang

    2014-01-01

    consistent with pathological changes in three groups of model, and the injury range was significantly different(P<0.01).Conclusions:Application of CCI can make stable quantitative traumatic brain injury model, which overcomes the randomness in previous injury model and possesses highly unity in iconography and pathology changes.This can provide quantitative modeling reference for clinical research.

  15. Fresh frozen plasma resuscitation provides neuroprotection compared to normal saline in a large animal model of traumatic brain injury and polytrauma.

    Science.gov (United States)

    Imam, Ayesha; Jin, Guang; Sillesen, Martin; Dekker, Simone E; Bambakidis, Ted; Hwabejire, John O; Jepsen, Cecilie H; Halaweish, Ihab; Alam, Hasan B

    2015-03-01

    We have previously shown that early treatment with fresh frozen plasma (FFP) is neuroprotective in a swine model of hemorrhagic shock (HS) and traumatic brain injury (TBI). However, it remains unknown whether this strategy would be beneficial in a more clinical polytrauma model. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters, brain oxygenation, and intracranial pressure (ICP) and subjected to computer-controlled TBI and multi-system trauma (rib fracture, soft-tissue damage, and liver injury) as well as combined free and controlled hemorrhage (40% blood volume). After 2 h of shock (mean arterial pressure, 30-35 mm Hg), animals were resuscitated with normal saline (NS; 3×volume) or FFP (1×volume; n=6/group). Six hours postresuscitation, brains were harvested and lesion size and swelling were evaluated. Levels of endothelial-derived vasodilator endothelial nitric oxide synthase (eNOS) and vasoconstrictor endothelin-1 (ET-1) were also measured. FFP resuscitation was associated with reduced brain lesion size (1005.8 vs. 2081.9 mm(3); p=0.01) as well as swelling (11.5% vs. 19.4%; p=0.02). Further, FFP-resuscitated animals had higher brain oxygenation as well as cerebral perfusion pressures. Levels of cerebral eNOS were higher in the FFP-treated group (852.9 vs. 816.4 ng/mL; p=0.03), but no differences in brain levels of ET-1 were observed. Early administration of FFP is neuroprotective in a complex, large animal model of polytrauma, hemorrhage, and TBI. This is associated with a favorable brain oxygenation and cerebral perfusion pressure profile as well as higher levels of endothelial-derived vasodilator eNOS, compared to normal saline resuscitation.

  16. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  17. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hui-yan Sun; Qiang Li; Xi-ping Chen; Lu-yang Tao

    2015-01-01

    Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocogni-tion with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, re-spectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most signiifcant positive correlations were found be-tween mismatch negativity in the fronto-central region and measures of functional outcomes. The most signiifcant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positive-ly associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental ifndings suggest that mismatch negativity might efifciently relfect functional outcomes in patients after traumatic brain injury.

  18. Traumatic brain injury: advanced multimodal neuromonitoring from theory to clinical practice.

    Science.gov (United States)

    Cecil, Sandy; Chen, Patrick M; Callaway, Sarah E; Rowland, Susan M; Adler, David E; Chen, Jefferson W

    2011-04-01

    Traumatic brain injury accounts for nearly 1.4 million injuries and 52 000 deaths annually in the United States. Intensive bedside neuromonitoring is critical in preventing secondary ischemic and hypoxic injury common to patients with traumatic brain injury in the days following trauma. Advancements in multimodal neuromonitoring have allowed the evaluation of changes in markers of brain metabolism (eg, glucose, lactate, pyruvate, and glycerol) and other physiological parameters such as intracranial pressure, cerebral perfusion pressure, cerebral blood flow, partial pressure of oxygen in brain tissue, blood pressure, and brain temperature. This article highlights the use of multimodal monitoring in the intensive care unit at a level I trauma center in the Pacific Northwest. The trends in and significance of metabolic, physiological, and hemodynamic factors in traumatic brain injury are reviewed, the technical aspects of the specific equipment used to monitor these parameters are described, and how multimodal monitoring may guide therapy is demonstrated. As a clinical practice, multimodal neuromonitoring shows great promise in improving bedside therapy in patients with traumatic brain injury, ultimately leading to improved neurological outcomes. PMID:20592189

  19. Third trimester-equivalent ethanol exposure causes micro-hemorrhages in the rat brain.

    Science.gov (United States)

    Welch, J H; Mayfield, J J; Leibowitz, A L; Baculis, B C; Valenzuela, C F

    2016-06-01

    Exposure to ethanol during fetal development produces long-lasting neurobehavioral deficits caused by functional alterations in neuronal circuits across multiple brain regions. Therapeutic interventions currently used to treat these deficits are only partially efficacious, which is a consequence of limited understanding of the mechanism of action of ethanol. Here, we describe a novel effect of ethanol in the developing brain. Specifically, we show that exposure of rats to ethanol in vapor chambers during the equivalent to the third trimester of human pregnancy causes brain micro-hemorrhages. This effect was observed both at low and high doses of ethanol vapor exposure, and was not specific to this exposure paradigm as it was also observed when ethanol was administered via intra-esophageal gavage. The vast majority of the micro-hemorrhages were located in the cerebral cortex but were also observed in the hypothalamus, midbrain, olfactory tubercle, and striatum. The auditory, cingulate, insular, motor, orbital, retrosplenial, somatosensory, and visual cortices were primarily affected. Immunohistochemical experiments showed that the micro-hemorrhages caused neuronal loss, as well as reactive astrogliosis and microglial activation. Analysis with the Catwalk test revealed subtle deficits in motor function during adolescence/young adulthood. In conclusion, our study provides additional evidence linking developmental ethanol exposure with alterations in the fetal cerebral vasculature. Given that this effect was observed at moderate levels of ethanol exposure, our findings lend additional support to the recommendation that women abstain from consuming alcoholic beverages during pregnancy. PMID:26964687

  20. Systemic Inflammatory Effects of Traumatic Brain Injury, Femur Fracture, and Shock: An Experimental Murine Polytrauma Model

    Directory of Open Access Journals (Sweden)

    C. Probst

    2012-01-01

    Full Text Available Objective. Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation. Methods. 45 male C57BL/6J mice (mean weight 27 g were anesthetized with ketamine/xylazine. Animals were subjected to a weight drop closed traumatic brain injury (WD-TBI, a femoral fracture and hemorrhagic shock (FX-SH. Animals were subdivided into WD-TBI, FX-SH and combined trauma (CO-TX groups. Subjects were sacrificed at 96 h. Blood was analysed for cytokines and by flow cytometry for lymphocyte populations. Results. Mortality was 8%, 13% and 47% for FX-SH, WD-TBI and CO-TX groups (P<0.05. TNFα (11/13/139 for FX-SH/WD-TBI/CO-TX; P<0.05, CCL2 (78/96/227; P<0.05 and IL-6 (16/48/281; P=0.05 showed significant increases in the CO-TX group. Lymphocyte populations results for FX-SH, WD-TBI and CO-TX were: CD-4 (31/21/22; P= n.s., CD-8 (7/28/34, P<0.05, CD-4-CD-8 (11/12/18; P= n.s., CD-56 (36/7/8; P<0.05. Conclusion. This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated.

  1. Mechanism of Traumatic Brain Injury at Distant Locations After Exposure to Blast Waves: Preliminary Results from Animal and Phantom Experiments.

    Science.gov (United States)

    Nakagawa, Atsuhiro; Ohtani, Kiyonobu; Goda, Keisuke; Kudo, Daisuke; Arafune, Tatsuhiko; Washio, Toshikatsu; Tominaga, Teiji

    2016-01-01

    Purpose Primary blast-induced traumatic brain injury (bTBI) is the least understood of the four phases of blast injury. Distant injury induced by the blast wave, on the opposite side from the wave entry, is not well understood. This study investigated the mechanism of distant injury in bTBI. Materials and Methods Eight 8-week-old male Sprague-Dawley rats were divided into two groups: group 1 served as the control group and did not receive any shock wave (SW) exposure; group 2 was exposed to SWs (12.5 ± 2.5 MPa). Propagation of SWs within a brain phantom was evaluated by visualization, pressure measurement, and numerical simulation. Results Intracerebral hemorrhage near the ignition site and elongation of the distant nucleus were observed, despite no apparent damage between the two locations in the animal experiment. Visualization, pressure measurement, and numerical simulation indicated the presence of complex wave dynamics accompanying a sudden increase in pressure, followed by negative pressure in the phantom experiment. Conclusion A local increase in pressure above the threshold caused by interference of reflection and rarefaction waves in the vicinity of the brain-skull surface may cause distant injury in bTBI. PMID:27165867

  2. Evidence for Impaired Plasticity after Traumatic Brain Injury in the Developing Brain

    Science.gov (United States)

    Li, Nan; Yang, Ya; Glover, David P.; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney

    2014-01-01

    Abstract The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2–3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks. PMID:24050267

  3. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating b...

  4. Potential application of hydrogen in traumatic and surgical brain injury, stroke and neonatal hypoxia-ischemia

    OpenAIRE

    Eckermann Jan M; Krafft Paul R; Shoemaker Lorelei; Lieberson Robert E; Chang Steven D; Colohan Austin

    2012-01-01

    Abstract This article summarized findings of current preclinical studies that implemented hydrogen administration, either in the gas or liquid form, as treatment application for neurological disorders including traumatic brain injury (TBI), surgically induced brain injury (SBI), stroke, and neonatal hypoxic-ischemic brain insult (HI). Most reviewed studies demonstrated neuroprotective effects of hydrogen administration. Even though anti-oxidative potentials have been reported in several studi...

  5. Correlation between heat shock protein 70 expression in the brain stem and sudden death after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lian-xu; XU Xiao-hu; LIU Chao; PAN Su-yue; ZHU Jia-zhen; ZHANG Cheng

    2001-01-01

    Objective: The aim of this study was to determine the patterns of heat-shock protein 70 (HSP70) biosynthesis following traumatic brain injury, and observe the effect of HSP70 induction on the function of the vital center in the brain stem. Methods: Rat models of sudden death resulted form traumatic brain injury were produced, and HSP70 expression in the rat brain stem was determined by immunohistochemistry, the induction of HSP70 mRNA detected by RT-PCR. Results: The level of HSP70 mRNA was prominently elevated in the brain stem as early as 1 5 min following the impact injury, while HSP70 expression was only observed 3 to 6 h after the injury. It was also observed that the levels of HSP70 mRNA but not the protein were elevated in the brain stem of sudden death rats. Conclusion: The synthesis of HSP70 was significantly enhanced in the brain stem following traumatic injury, and the expression of HSP70 is beneficial to eliminate the stress agents, and to sustain the cellular protein homeostasis. When the injury disturbs the synthesis of HSP70 to disarm the protective mechanism of heat-shock proteins, dysfunction of the vital center in the brain stem, and consequently death may occur. Breach in the synchronization of HSP70 mRNA-protein can be indicative of fatal damage to the nerve cells.

  6. Analysis on the risk factors of intracranial infection secondary to traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Chao Lin; Xin Zhao; Haichen Sun

    2015-01-01

    Objective: To discuss the characteristics and risk factors for intracranial infection post traumatic brain injury to prevent and better the clinical care.Methods: Retrospective study of 520 patients with traumatic brain injury were included, 308 male and 212 female.The risky factors of intracranial infection were identified.Results: Thirty two cases (6.54%, 32/520) of intracranial infection were diagnosed.Intracranial infection most likely happened 4-10 days after injury.Cerebrospinal fluid leakage, drainage, multiple craniotomies were significant related to intracranial infection.Logistic regression predicted cerebrospinal fluid leakage and drainage as independent factors.Conclusion: Intracranial infection is a serious complication after traumatic brain injury.Patients with drainage or cerebrospinal fluid leakage are more risky for intracranial infection.Aggressive precaution should be taken to better outcome.

  7. Evaluation of hyperbaric oxygen treatment of neuropsychiatric disorders following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-yan; TANG Zhong-quan; SUN Da; HE Xiao-jun

    2006-01-01

    Background Improvement of clinical symptoms following hyperbaric oxygen (HBO) treatment of neuropsychiatric disorders arising from traumatic brain injury was proved by our previous study. This study was aim to obtain the evidence of other changes.Methods Three hundred and ten patients with neuropsychiatric disorders arising from traumatic brain injury were treated twice with hyperbaric oxygen. Cerebral single photon emissions computed tomography (SPECT)images and computed tomography scans (CT) before and after hyperbaric oxygen treatment, were compared.Results Before treatment, the proportion of abnormal cerebral changes detected by SPECT was 81.3% but only 15.2% by CT. After HBO treatment, 70.3% of SPECT scans showed no abnormalities and these patients were clinically improved. Treatment improved regional cerebral blood flow.Conclusion SPECT was much more sensitive than CT in the diagnosis of neuropsychiatric disorders following hyperbaric oxygen treatment of neuropsychiatric disorders arising from traumatic brain injury.

  8. Dabigatran Use Does Not Increase Intracranial Hemorrhage in Traumatic Geriatric Falls When Compared with Warfarin.

    Science.gov (United States)

    Pozzessere, Anthony; Grotts, Jonathan; Kaminski, Stephen

    2015-10-01

    Patients on anticoagulation are at increased risk for intracranial hemorrhage (ICH) after trauma. This is important for geriatric trauma patients, who are increasing in number, frequently fall, and often take anticoagulants. This study sought to evaluate whether prehospital use of dabigatran, a newer anticoagulant, is associated with outcome differences in geriatric trauma patients suffering falls when compared with warfarin. The registry of a Level II community trauma center was used to identify 247 patients aged 65 and older who sustained a fall while taking prehospital dabigatran or warfarin admitted between December 2010 and March 2014. Patients on warfarin were included if their International Normalized Ratio was therapeutic (2-3). About 176 of the 247 patients were then compared using coarsened exact matching. In the matched analysis, overall population means for age, Glasgow Coma Score, and Injury Severity Score were 83.5, 14.7, and 5.1, respectively. The overall rate of ICH was 12.5 per cent, with a mortality rate of 16.1 per cent for patients who sustained an ICH. There were no observed differences in ICH, hospital length of stay, intensive care unit length of stay, or mortality between patients taking prehospital warfarin or dabigatran.

  9. Perspectives on creating clinically relevant blast models for mild traumatic brain injury and post traumatic stress disorder symptoms

    Directory of Open Access Journals (Sweden)

    Lisa eBrenner

    2012-03-01

    Full Text Available Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic, behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI and/or post traumatic stress disorder (PTSD. Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast TBI can be used to facilitate the development of clinically relevant blast models.

  10. [Brain hemorrhage in a patient with Kawasaki disease].

    Science.gov (United States)

    Yamazaki-Nakashimada, Marco Antonio; Rivas-Larrauri, Francisco; Alcántara-Salinas, Adriana; Hernández-Bautista, Victor; Rodríguez-Lozano, Ana Luisa

    2013-01-01

    Kawasaki disease is an acute, self-limiting vasculitis of unknown origin, characterized by fever, palms and soles edema, cervical lymphadenopathy, strawberry tongue, and non-exudative conjunctivitis. It is a multisystemic vasculitis that affects predominantly infants and young children. The most feared complication is the development of coronary aneurysms that occurs up to 25% of untreated patients; however there are reports of extra coronary involvement. Herein we present the case of a 2 year-old girl who had a severe symptomatology and persistent fever despite intravenous gammaglobulin. Two years later she presented right hemiparesia and headache, with data from CAT and MRI suggestive of brain mass and deviation of the midline, secondary to left frontoparietal haemorrhage that was treated with a craniotomy. She was discharged on prednisone, ASA and rehabilitation.

  11. Traumatic Brain Injury Studies in Britain during World War II.

    Science.gov (United States)

    Lanska, Douglas J

    2016-01-01

    As a result of the wartime urgency to understand, prevent, and treat patients with traumatic brain injury (TBI) during World War II (WWII), clinicians and basic scientists in Great Britain collaborated on research projects that included accident investigations, epidemiologic studies, and development of animal and physical models. Very quickly, investigators from different disciplines shared information and ideas that not only led to new insights into the mechanisms of TBI but also provided very practical approaches for preventing or ameliorating at least some forms of TBI. Neurosurgeon Hugh Cairns (1896-1952) conducted a series of influential studies on the prevention and treatment of head injuries that led to recognition of a high rate of fatal TBI among motorcycle riders and subsequently to demonstrations of the utility of helmets in lowering head injury incidence and case fatality. Neurologists Derek Denny-Brown (1901-1981) and (William) Ritchie Russell (1903-1980) developed an animal model of TBI that demonstrated the fundamental importance of sudden acceleration (i.e., jerking) of the head in causing concussion and forced a distinction between head injury associated with sudden acceleration/deceleration and that associated with crush or compression. Physicist A.H.S. Holbourn (1907-1962) used theoretical arguments and simple physical models to illustrate the importance of shear stress in TBI. The work of these British neurological clinicians and scientists during WWII had a strong influence on subsequent clinical and experimental studies of TBI and also eventually resulted in effective (albeit controversial) public health campaigns and legislation in several countries to prevent head injuries among motorcycle riders and others through the use of protective helmets. Collectively, these studies accelerated our understanding of TBI and had subsequent important implications for both military and civilian populations. As a result of the wartime urgency to understand

  12. Traumatic Brain Injury Studies in Britain during World War II.

    Science.gov (United States)

    Lanska, Douglas J

    2016-01-01

    As a result of the wartime urgency to understand, prevent, and treat patients with traumatic brain injury (TBI) during World War II (WWII), clinicians and basic scientists in Great Britain collaborated on research projects that included accident investigations, epidemiologic studies, and development of animal and physical models. Very quickly, investigators from different disciplines shared information and ideas that not only led to new insights into the mechanisms of TBI but also provided very practical approaches for preventing or ameliorating at least some forms of TBI. Neurosurgeon Hugh Cairns (1896-1952) conducted a series of influential studies on the prevention and treatment of head injuries that led to recognition of a high rate of fatal TBI among motorcycle riders and subsequently to demonstrations of the utility of helmets in lowering head injury incidence and case fatality. Neurologists Derek Denny-Brown (1901-1981) and (William) Ritchie Russell (1903-1980) developed an animal model of TBI that demonstrated the fundamental importance of sudden acceleration (i.e., jerking) of the head in causing concussion and forced a distinction between head injury associated with sudden acceleration/deceleration and that associated with crush or compression. Physicist A.H.S. Holbourn (1907-1962) used theoretical arguments and simple physical models to illustrate the importance of shear stress in TBI. The work of these British neurological clinicians and scientists during WWII had a strong influence on subsequent clinical and experimental studies of TBI and also eventually resulted in effective (albeit controversial) public health campaigns and legislation in several countries to prevent head injuries among motorcycle riders and others through the use of protective helmets. Collectively, these studies accelerated our understanding of TBI and had subsequent important implications for both military and civilian populations. As a result of the wartime urgency to understand

  13. Neuroprotective effect of Pycnogenol® following traumatic brain injury.

    Science.gov (United States)

    Scheff, Stephen W; Ansari, Mubeen A; Roberts, Kelly N

    2013-01-01

    Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requires a multifaceted approach. Naturally occurring flavonoids are unique in possessing not only tremendous free radical scavenging properties but also the ability to modulate cellular homeostasis leading to a reduction in inflammation and cell toxicity. This study evaluated the therapeutic role of Pycnogenol (PYC), a patented combinational bioflavonoid. Young adult Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion and treated post injury with PYC or vehicle. At either 48 or 96 h post trauma, the animals were killed and the cortex and hippocampus analyzed for changes in enzymatic and non-enzymatic oxidative stress markers. In addition, possible changes in both pre- and post-synaptic proteins (synapsin-1, PSD-95, drebrin, synapse associated protein-97) were analyzed. Finally, a separate cohort of animals was used to evaluate two proinflammatory cytokines (IL-6, TNF-α). Following the trauma there was a significant increase in oxidative stress in both the injured cortex and the ipsilateral hippocampus. Animals treated with PYC significantly ameliorated levels of protein carbonyls, lipid peroxidation, and protein nitration. The PYC treatment also significantly reduced the loss of key pre- and post-synaptic proteins with some levels in the hippocampus of PYC treated animals not significantly different from sham operated controls. Although levels of the proinflammatory cytokines were significantly elevated in both injury groups, the cohort treated with PYC

  14. Energy Drinks, Alcohol, Sports and Traumatic Brain Injuries among Adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available The high prevalence of traumatic brain injuries (TBI among adolescents has brought much focus to this area in recent years. Sports injuries have been identified as a main mechanism. Although energy drinks, including those mixed with alcohol, are often used by young athletes and other adolescents they have not been examined in relation to TBI.We report on the prevalence of adolescent TBI and its associations with energy drinks, alcohol and energy drink mixed in with alcohol consumption.Data were derived from the Centre for Addiction and Mental Health's 2013 Ontario Student Drug Use and Health Survey (OSDUHS. This population-based cross-sectional school survey included 10,272 7th to 12th graders (ages 11-20 who completed anonymous self-administered questionnaires in classrooms.Mild to severe TBI were defined as those resulting in a loss of consciousness for at least five minutes, or being hospitalized for at least one night. Mechanism of TBI, prevalence estimates of TBI, and odds of energy drink consumption, alcohol use, and consumption of energy drinks mixed with alcohol are assessed.Among all students, 22.4% (95% CI: 20.7, 24.1 reported a history of TBI. Sports injuries remain the main mechanism of a recent (past year TBI (45.5%, 95% CI: 41.0, 50.1. Multinomial logistic regression showed that relative to adolescents who never sustained a TBI, the odds of sustaining a recent TBI were greater for those consuming alcohol, energy drinks, and energy drinks mixed in with alcohol than abstainers. Odds ratios were higher for these behaviors among students who sustained a recent TBI than those who sustained a former TBI (lifetime but not past 12 months. Relative to recent TBI due to other causes of injury, adolescents who sustained a recent TBI while playing sports had higher odds of recent energy drinks consumption than abstainers.TBI remains a disabling and common condition among adolescents and the consumption of alcohol, energy drinks, and alcohol

  15. Severe Traumatic Brain Injury, Frontal Lesions, and Social Aspects of Language Use: A Study of French-Speaking Adults

    Science.gov (United States)

    Dardier, Virginie; Bernicot, Josie; Delanoe, Anaig; Vanberten, Melanie; Fayada, Catherine; Chevignard, Mathilde; Delaye, Corinne; Laurent-Vannier, Anne; Dubois, Bruno

    2011-01-01

    The purpose of this study was to gain insight into the social (pragmatic) aspects of language use by French-speaking individuals with frontal lesions following a severe traumatic brain injury. Eleven participants with traumatic brain injury performed tasks in three areas of communication: production (interview situation), comprehension (direct…

  16. Traumatic Brain Injury: General Information. Fact Sheet Number 18 = Lesion Cerebral: Informacion General. Fact Sheet Number 18.

    Science.gov (United States)

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet offers general information about traumatic brain injury. Information includes a definition, incidence, individual characteristics, and educational implications. The fact sheet notes that the designation of traumatic brain injury as a separate category of disability signals that schools should provide children and youth with access…

  17. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    Science.gov (United States)

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance.

  18. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  19. Traumatic brain injury in children in Denmark: a national 15-year study

    DEFF Research Database (Denmark)

    Engberg, A; Teasdale, T W

    1998-01-01

    Demographic trends are reported concerning three types of traumatic brain injury (concussions, cranial fractures, and intracranial contusions/haemorrhages) among children in Denmark of ages up to and including 14 years, for a fifteen year period from 1979 through 1993. The data were derived from...... a national computer-based hospitalization register and include 49,594 children, of whom 60% were boys and 89% had suffered a concussion. Virtually all injuries were the result of accidents. A major finding was that there has been a general decline in the incidence of traumatic brain injuries, especially...

  20. Disability pensions in relation to traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2000-01-01

    From a Danish national register of hospitalizations, all patients were identified who had a discharge diagnosis of traumatic brain injury between the years 1979-1993 inclusive, at ages 18-66 years inclusive. These were classified as having suffered either a concussion (n = 74,398), a cranial...... award appeared to be independent of the injury itself. Rather, being awarded a disability pension appeared to be related to conditions which themselves are risk factors for a traumatic brain injury, e.g. chronic skeletomuscular disease and psychiatric disorders including alcoholism. Comparison...

  1. Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging.

    Science.gov (United States)

    Costanzo, Michelle E; Chou, Yi-Yu; Leaman, Suzanne; Pham, Dzung L; Keyser, David; Nathan, Dominic E; Coughlin, Mary; Rapp, Paul; Roy, Michael J

    2014-08-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may share common symptom and neuropsychological profiles in military service members (SMs) following deployment; while a connection between the two conditions is plausible, the relationship between them has been difficult to discern. The intent of this report is to enhance our understanding of the relationship between findings on structural and functional brain imaging and symptoms of PTSD. Within a cohort of SMs who did not meet criteria for PTSD but were willing to complete a comprehensive assessment within 2 months of their return from combat deployment, we conducted a nested case-control analysis comparing those with combat-related mTBI to age/gender-matched controls with diffusion tensor imaging, resting state functional magnetic resonance imaging and a range of psychological measures. We report degraded white matter integrity in those with a history of combat mTBI, and a positive correlation between the white matter microstructure and default mode network (DMN) connectivity. Higher clinician-administered and self-reported subthreshold PTSD symptoms were reported in those with combat mTBI. Our findings offer a potential mechanism through which mTBI may alter brain function, and in turn, contribute to PTSD symptoms.

  2. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  3. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    Science.gov (United States)

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (Pbrain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE.

  4. American Indians/Native Alaskans with Traumatic Brain Injury: Examining the Impairments of Traumatic Brain Injury, Disparities in Service Provision, and Employment Outcomes

    Science.gov (United States)

    Whitfield, Harold Wayne; Lloyd, Rosalind

    2008-01-01

    The researchers analyzed data from fiscal year 2006 and found that American Indians/Native Alaskans (AI/NA) with traumatic brain injury experienced similar functional limitations at application as did non-AI/NA. Fewer funds were expended on purchased services for AI/NA than for non-AI/NA. The wages of AI/NA were equitable to those of non-AI/NA at…

  5. Transfontanelle Sonography of Brain in Neonates: Focused on Anatomy, Doppler and Intracranial Hemorrhage

    Directory of Open Access Journals (Sweden)

    "M. Rahmani

    2005-08-01

    Full Text Available Introduction & Background: Sonography of the brain is now very important in the care of neonates, especially among high risk premature infants. Screening of premature infants with transfontanelle ultrasonography is highly sensitive and specific for intracranial hemorrhage. It is also valuable in follow-up of hydrocephalus and periventricular leukomalacia. Patients & Methods: In this cross-sectional study, 200 high risk premature newborns admitted to neonate ICU of Vali-e-Asr hospital were evaluated by a sonograghy through fontanels. The time of sonograghy for ICH was in the first day of life If it was negative for ICH, evaluation was repeated in the 3rd day and again if negative, the last examination was performed in the 7th day. Result: Overall, 200 neonates were evaluated. The most common pathologic finding in our high risk premature neonates was germinal matrix hemorrhage, mostly grade 1and 2. A few cases of congenital anomalies were also found.

  6. Implications of MMP9 for Blood Brain Barrier Disruption And Hemorrhagic Transformation Following Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Renee Jade Turner

    2016-03-01

    Full Text Available Numerous studies have documented increases in matrix metalloproteinases (MMPs, specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB, increased risk of hemorrhagic complications and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke.

  7. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke

    Science.gov (United States)

    Turner, Renée J.; Sharp, Frank R.

    2016-01-01

    Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA) treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke. PMID:26973468

  8. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurca, E.; Sivak, S. [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Kucera, P. [Comenius University, 1st Clinic of Neurology, Faculty of Medicine, Bratislava (Slovakia)

    2006-09-15

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  9. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  10. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study.

    Science.gov (United States)

    Okonkwo, David O; Yue, John K; Puccio, Ava M; Panczykowski, David M; Inoue, Tomoo; McMahon, Paul J; Sorani, Marco D; Yuh, Esther L; Lingsma, Hester F; Maas, Andrew I R; Valadka, Alex B; Manley, Geoffrey T

    2013-09-01

    Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84-0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55-0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term "mild" continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409).

  11. Is Goshinjo therapy effective in cognitive impairment after severe traumatic brain injury?

    Institute of Scientific and Technical Information of China (English)

    Keiji Hashimoto; Kisho Kida

    2013-01-01

    We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right hemiplegia and cognitive dysfunction including aphasia and attention and memory disturbance. Conventional rehabilitation programs could not resolve all of the neuropsychological problems. He started receiving Goshinjo therapy over a period of 22 months. Following the therapy, significant improvements in verbal intelligence quotient (assessed by the Wechsler Adult Intelligence Scale-Third Edition) and attention and concentration function (using the Wechsler Memory Scale-Revised), and remission of traumatic epilepsy were observed. Goshinjo therapy is suspected to be effective in the treatment of cognitive dysfunction in the chronic stage after severe traumatic brain injury.

  12. MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke.

    Science.gov (United States)

    Hernandez-Guillamon, Mar; Martinez-Saez, Elena; Delgado, Pilar; Domingues-Montanari, Sophie; Boada, Cristina; Penalba, Anna; Boada, Mercè; Pagola, Jorge; Maisterra, Olga; Rodriguez-Luna, David; Molina, Carlos A; Rovira, Alex; Alvarez-Sabin, José; Ortega-Aznar, Arantxa; Montaner, Joan

    2012-03-01

    Cerebral amyloid angiopathy (CAA) is one of the main causes of intracerebral hemorrhage (ICH) in the elderly. Matrix metalloproteinases (MMPs) have been implicated in blood-brain barrier disruption and ICH pathogenesis. In this study, we determined the levels MMP-2 and MMP-9 in plasma and their brain expression in CAA-associated hemorrhagic stroke. Although MMP-2 and MMP-9 plasma levels did not differ among patients and controls, their brain expression was increased in perihematoma areas of CAA-related hemorrhagic strokes compared with contralateral areas and nonhemorrhagic brains. In addition, MMP-2 reactivity was found in β-amyloid (Aβ)-damaged vessels located far from the acute ICH and in chronic microbleeds. MMP-2 expression was associated to endothelial cells, histiocytes and reactive astrocytes, whereas MMP-9 expression was restricted to inflammatory cells. In summary, MMP-2 expression within and around Aβ-compromised vessels might contribute to the vasculature fatal fate, triggering an eventual bleeding. PMID:21707819

  13. Curcumin reduces brain-infiltrating T lymphocytes after intracerebral hemorrhage in mice.

    Science.gov (United States)

    Liu, Wei; Yuan, Jichao; Zhu, Haitao; Zhang, Xuan; Li, Lan; Liao, Xiaojun; Wen, Zexian; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2016-05-01

    T lymphocytes contribute to inflammation, thereby exacerbating neuronal injury after cerebral ischemia. An increasing amount of evidence indicates that inflammation is a key contributor to intracerebral hemorrhage (ICH)-induced secondary brain injury. Curcumin, a low-molecular-weight curry spice that is derived from the Curcuma longa plant, suppresses T lymphocyte proliferation and migration. Based on these findings, we investigated whether treatment with curcumin would reduce the number of cerebral T lymphocytes in mice with experimentally induced ICH. We found that a large number of T lymphocytes infiltrated the brain at 3days post-ICH. Curcumin significantly improved neurological scores and reduced brain edema in mice with ICH, consistent with a role in reducing neuroinflammation and neurovascular injury. Using flow cytometry, we observed significantly fewer T lymphocytes in brain samples obtained from the curcumin-treated group than in samples obtained from the vehicle-treated group. Moreover, Western blot analysis and immunostaining indicated that treatment with curcumin significantly reduced the expression of a vascular cell adhesion molecule-1 (VCAM-1), interferon-γ (INF-γ) and interleukin-17 (IL-17) in the mouse brain at 72h post-ICH. Our results suggest that administering curcumin may alleviate cerebral inflammation resulting from ICH, at least in part by reducing the infiltration of T lymphocytes into the brain. Therefore, preventing T lymphocytes from infiltrating the brain may become a new strategy for treating clinical ICH. PMID:27026486

  14. Neuroimaging and the school-based assessment of traumatic brain injury.

    Science.gov (United States)

    Jantz, Paul B; Bigler, Erin D

    2014-01-01

    Advanced neuroimaging contributes to a greater understanding of brain pathology following a traumatic brain injury (TBI) and has the ability to guide neurorehabilitation decisions. When integrated with the school-based psychoeducational assessment of a child with a TBI, neuroimaging can provide a different perspective when interpreting educational and behavioral variables relevant to school-based neurorehabilitation. School psychologists conducting traditional psychoeducational assessments of children with TBI seldom obtain and integrate neuroimaging, despite its availability. This article presents contextual information on the medical assessment of TBI, major types of neuroimaging, and networks of the brain. A case study illustrates the value of incorporating neuroimaging into the standard school-based psychoeducational evaluations of children with traumatic brain injury.

  15. Use and Effect of Vasopressors after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Di Gennaro, Jane L.; Mack, Christopher D.; Malakouti, Amin; Zimmerman, Jerry J.; Armstead, William; Vavilala, Monica S.

    2011-01-01

    Background Vasopressors are commonly used to increase mean arterial blood pressure (MAP) and cerebral perfusion pressure (CPP) after traumatic brain injury (TBI), but there are few data comparing vasopressor effectiveness after pediatric TBI. Objective: To determine which vasopressor is most effective at increasing MAP and CPP in children with moderate-to-severe TBI. Methods After institutional review board approval, we performed a retrospective cohort study of children 0–17 years old admitted to a level 1 trauma center (Harborview Medical Center, Seattle, Wash., USA) between 2002 and 2007 with moderate-to-severe TBI who received a vasopressor to increase blood pressure. Baseline demographic and physiologic characteristics and hourly physiologic monitoring for 3 h after having started a vasopressor were abstracted. We evaluated differences in MAP and CPP at 3 h after initiation of therapy between phenylephrine, dopamine and norepinephrine among patients who did not require a second vasopressor during this time. Multivariate linear regression was used to adjust for age, gender, injury severity score and baseline MAP or CPP and to cluster by subject. Results Eighty-two patients contributed data to the entire dataset. The most common initial medication was phenylephrine for 47 (57%). Patients receiving phenylephrine and norepinephrine tended to be older than those receiving dopamine and epinephrine. Thirteen (16%) of the patients received a second vasopressor during the first 3 h of treatment and were thus not included in the regression analyses; these patients received more fluid resuscitation and exhibited higher in-hospital mortality (77 vs. 32%; p = 0.004) compared to patients receiving a single vasopressor. The norepinephrine group exhibited a 5 mm Hg higher MAP (95% CI: −4 to 13; p = 0.31) and a 12 mm Hg higher CPP (95% CI: −2 to 26; p = 0.10) than the phenylephrine group, and a 5 mm Hg higher MAP (95% CI: −4 to 15; p = 0.27) and a 10 mm Hg higher CPP

  16. Pathophysiology of Juvenile Traumatic Brain Injury: Role of Edema and a Potential Treatment

    OpenAIRE

    Adami, Arash

    2013-01-01

    Traumatic brain injury (TBI) is caused by an external force to the head, resulting in damage to the brain. TBI is especially common in children and young adults and is associated with long-term mortality and morbidity. Juveniles seem to be at increased risk of developing cerebral edema after TBI partly due to higher water content and developmental differences in the brain's response to injury. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and plays a critical role in edem...

  17. An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Albert-Weißenberger Christiane

    2012-02-01

    Full Text Available Abstract Traumatic brain injury (TBI is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI.

  18. Feasibility of computerized brain plasticity-based cognitive training after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Matthew S. Lebowitz, AB

    2013-01-01

    Full Text Available The present study investigates the feasibility and utility of using a computerized brain plasticity-based cognitive training (BPCT program as an intervention for community-dwelling individuals with traumatic brain injury (TBI. In a pre-post pilot study, 10 individuals with mild to severe TBI who were 6 mo to 22 yr postinjury were asked to use a computerized BPCT intervention—designed to improve cognitive functioning through a graduated series of structured exercises—at their homes in an urban community. Outcome measures included objective neuropsychological and self-report measures of cognitive functioning. All participants were able to use the software in their homes. Some mild fatigue was reported, which tended to dissipate over time. Few technical difficulties were reported. Remote support was sufficient for what technical assistance was needed. Participants reported subjective improvement in cognitive functioning, and small to large effect sizes on self-report and neuropsychological measures are reported. We conclude that BPCT may be a viable intervention for TBI outpatients as an adjunct to comprehensive neurorehabilitation. The intervention can be delivered in patients’ homes with support provided remotely. Results of this study demonstrate the potential for treatment-related improvements many years after injury. Further study in controlled trials is warranted.

  19. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.

  20. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  1. Traumatic Brain Injury and Grief: Considerations and Practical Strategies for School Psychologists

    Science.gov (United States)

    Jantz, Paul B.; Comerchero, Victoria A.; Canto, Angela I.; Pierson, Eric

    2015-01-01

    Traumatic brain injury (TBI) can result in a range of social, emotional, neurological, cognitive, and behavioral outcomes. If these outcomes are significant, family members and the individual who has sustained the TBI may struggle with accepting the effects of these deficits. They may grieve over disrupted family relationships, roles, and routines…

  2. Traumatic brain injury in the netherlands: Incidence, costs and disability-adjusted life years

    NARCIS (Netherlands)

    A.C. Scholten (Annemieke); J.A. Haagsma (Juanita); M.J.M. Panneman (Martien); E.F. van Beeck (Ed); S. Polinder (Suzanne)

    2014-01-01

    textabstractObjective: Traumatic brain injury (TBI) is a major cause of death and disability, leading to great personal suffering and huge costs to society. Integrated knowledge on epidemiology, economic consequences and disease burden of TBI is scarce but essential for optimizing healthcare policy

  3. TBI-ROC Part Seven: Traumatic Brain Injury--Technologies to Support Memory and Cognition

    Science.gov (United States)

    Scherer, Marcia; Elias, Eileen; Weider, Katie

    2010-01-01

    This article is the seventh of a multi-part series on traumatic brain injury (TBI). The six earlier articles in this series have discussed the individualized nature of TBI and its consequences, the rehabilitation continuum, and interventions at various points along the continuum. As noted throughout the articles, many individuals with TBI…

  4. TBI-ROC Part One: Understanding Traumatic Brain Injury--An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2011-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  5. Mirror Asymmetry of Category and Letter Fluency in Traumatic Brain Injury and Alzheimer's Patients

    Science.gov (United States)

    Capitani, Erminio; Rosci, Chiara; Saetti, Maria Cristina; Laiacona, Marcella

    2009-01-01

    In this study we contrasted the Category fluency and Letter fluency performance of 198 normal subjects, 57 Alzheimer's patients and 57 patients affected by traumatic brain injury (TBI). The aim was to check whether, besides the prevalence of Category fluency deficit often reported among Alzheimer's patients, the TBI group presented the opposite…

  6. Liberal Bias Mediates Emotion Recognition Deficits in Frontal Traumatic Brain Injury

    Science.gov (United States)

    Callahan, Brandy L.; Ueda, Keita; Sakata, Daisuke; Plamondon, Andre; Murai, Toshiya

    2011-01-01

    It is well-known that patients having sustained frontal-lobe traumatic brain injury (TBI) are severely impaired on tests of emotion recognition. Indeed, these patients have significant difficulty recognizing facial expressions of emotion, and such deficits are often associated with decreased social functioning and poor quality of life. As of yet,…

  7. Emotion Recognition following Pediatric Traumatic Brain Injury: Longitudinal Analysis of Emotional Prosody and Facial Emotion Recognition

    Science.gov (United States)

    Schmidt, Adam T.; Hanten, Gerri R.; Li, Xiaoqi; Orsten, Kimberley D.; Levin, Harvey S.

    2010-01-01

    Children with closed head injuries often experience significant and persistent disruptions in their social and behavioral functioning. Studies with adults sustaining a traumatic brain injury (TBI) indicate deficits in emotion recognition and suggest that these difficulties may underlie some of the social deficits. The goal of the current study was…

  8. Cognitive and Behavioral Impairment in Traumatic Brain Injury Related to Outcome and Return to Work

    NARCIS (Netherlands)

    Benedictus, Marieke R.; Spikman, Jacoba M.; van der Naalt, Joukje

    2010-01-01

    Benedictus MR, Spikman JM, van der Naalt J. Cognitive and behavioral impairment in traumatic brain injury related to outcome and return to work. Arch Phys Med Rehabil 2010;91:1436-41. Objective: To evaluate the cognitive and behavioral disturbances related to return to work (RTW) in patients with tr

  9. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism

    DEFF Research Database (Denmark)

    Tanriverdi, F; Agha, A; Aimaretti, G;

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered...

  10. Time Perception in Severe Traumatic Brain Injury Patients: A Study Comparing Different Methodologies

    Science.gov (United States)

    Mioni, G.; Mattalia, G.; Stablum, F.

    2013-01-01

    In this study, we investigated time perception in patients with traumatic brain injury (TBI). Fifteen TBI patients and 15 matched healthy controls participated in the study. Participants were tested with durations above and below 1s on three different temporal tasks that involved time reproduction, production, and discrimination tasks. Data…

  11. The neural basis of impaired self-awareness after traumatic brain injury

    OpenAIRE

    Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Ian H Robertson; Leech, Robert; Sharp, David J.

    2013-01-01

    Impaired self-awareness is a disabling consequence of many neurological diseases. Ham et al. use structural and functional MRI to compare patients with high and low levels of performance monitoring after traumatic brain injury. Dysfunction of the insulae and anterior cingulate cortices within the salience network contributes to deficits in self-awareness.

  12. The Relation of Mild Traumatic Brain Injury to Chronic Lapses of Attention

    Science.gov (United States)

    Pontifex, Matthew B.; Broglio, Steven P.; Drollette, Eric S.; Scudder, Mark R.; Johnson, Chris R.; O'Connor, Phillip M.; Hillman, Charles H.

    2012-01-01

    We assessed the extent to which failures in sustained attention were associated with chronic mild traumatic brain injury (mTBI) deficits in cognitive control among college-age young adults with and without a history of sport-related concussion. Participants completed the ImPACT computer-based assessment and a modified flanker task. Results…

  13. Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury

    OpenAIRE

    Friess, Stuart H.; Ralston, Jill; Eucker, Stephanie A.; Helfaer, Mark A.; Smith, Colin; Margulies, Susan S.

    2011-01-01

    Small-animal models have been used in traumatic brain injury (TBI) research to investigate the basic mechanisms and pathology of TBI. Unfortunately, successful TBI investigations in small-animal models have not resulted in marked improvements in clinical outcomes of TBI patients.

  14. When Service Members with Traumatic Brain Injury Become Students: Methods to Advance Learning

    Science.gov (United States)

    Helms, Kimberly Turner; Libertz, Daniel

    2014-01-01

    The purpose of this paper is to explain which evidence-based interventions in study strategies have been successful in helping soldiers and veterans with traumatic brain injury (TBI) return to the classroom. Military leaders have specifically identified TBI as one of the signature injuries of the wars in Afghanistan and Iraq with over a quarter of…

  15. Learning and Study Strategies of Students with Traumatic Brain Injury: A Mixed Method Study

    Science.gov (United States)

    Bush, Erin; Hux, Karen; Zickefoose, Samantha; Simanek, Gina; Holmberg, Michelle; Henderson, Ambyr

    2011-01-01

    The purpose of this research was to explore the perceptions of four college students with severe traumatic brain injury and people associated with them regarding the use of learning skills and study strategies. The researchers employed a concurrent mixed method design using descriptive quantitative data as well as qualitative multiple case study…

  16. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    Science.gov (United States)

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  17. Explaining Pragmatic Performance in Traumatic Brain Injury: A Process Perspective on Communicative Errors

    Science.gov (United States)

    Bosco, Francesca M.; Angeleri, Romina; Sacco, Katiuscia; Bara, Bruno G.

    2015-01-01

    Background: The purpose of this study is to investigate the pragmatic abilities of individuals with traumatic brain injury (TBI). Several studies in the literature have previously reported communicative deficits in individuals with TBI, however such research has focused principally on communicative deficits in general, without providing an…

  18. Research in rehabilitation treatment for patients with severe traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine

    2010-01-01

      The therapeutic rehabilitation of patients with traumatic brain injury (TBI) has a limited evidence-based foundation. The current rehabilitation approaches have been developed mainly through clinical practice. They often consist of many components that are defined in incomplete ways, making...

  19. Research progress in mechanism of traumatic brain injury affecting speed of fracture healing

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-gang; ZHAO Guang-feng; MA Yue-feng; JIANG Guan-yu

    2007-01-01

    @@ In patients who have sustained traumatic brain injury with associated extremity fracture, there is often a clinical perception that the rate of new bone formation around the fracture site increases. 1 An overgrowth of callus is observed and ectopic ossification even occurs in the muscle,2 but the mechanism remains unclear.

  20. Postconcussive Complaints, Anxiety, and Depression Related to Vocational Outcome in Minor to Severe Traumatic Brain Injury

    NARCIS (Netherlands)

    van der Horn, Harm J.; Spikman, Jacoba M.; Jacobs, Bram; van der Naalt, Joukje

    2013-01-01

    Objectives: To investigate the relation of postconcussive complaints, anxiety, and depression with vocational outcome in patients with traumatic brain injury (TBI) of various severities and to assess sex differences. Design: A prospective cross-sectional cohort study. Setting: Level I trauma center.

  1. Methodological issues and research recommendations for prognosis after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Kristman, Vicki L; Borg, Jörgen; Godbolt, Alison K;

    2014-01-01

    The International Collaboration on Mild Traumatic Brain Injury (MTBI) Prognosis performed a comprehensive search and critical review of the literature from 2001 to 2012 to update the 2002 best-evidence synthesis conducted by the World Health Organization Collaborating Centre for Neurotrauma...

  2. Systematic review of return to work after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Cancelliere, Carol; Kristman, Vicki L; Cassidy, John David;

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence on return to work (RTW) after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) with terms including "craniocerebral trauma" and "employment." Reference lists of eligible articles were also...

  3. Low-field MRI for studies of human pulmonary physiology and traumatic brain injury

    Science.gov (United States)

    Wilson, Alyssa; Devience, Stephen; Rosen, Matthew; Walsworth, Ronald

    2011-05-01

    We describe recent progress on the development of an open-access low-magnetic-field MRI system for studies of human pulmonary physiology and traumatic brain injury. Low-field MRI benefits from reduced magnetic susceptibility effects and can provide high-resolution images of the human body when used with hyperpolarized media such as 3He and 129Xe.

  4. Cerebral perfusion and neuropsychological follow up in mild traumatic brain injury : Acute versus chronic disturbances?

    NARCIS (Netherlands)

    Metting, Zwany; Spikman, Jacoba M.; Rodiger, Lars A.; van der Naalt, Joukje

    2014-01-01

    In a subgroup of patients with mild traumatic brain injury (TBI) residual symptoms, interfering with outcome and return to work, are found. With neuropsychological assessment cognitive deficits can be demonstrated although the pathological underpinnings of these cognitive deficits are not fully unde

  5. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury: Characteristics, Recovery and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm; van der Naalt, Joukje; Spikman, Jacoba

    2015-01-01

    Objectives. To investigate the incidence of acute alcohol intoxication (AAI) at the time of sustaining mild traumatic brain injury (mTBI), describe the characteristics of this intoxicated subgroup, and evaluate recovery and outcome in comparison to sober mTBI patients. Methods. Multicenter cohort st

  6. Performance of Children with Traumatic Brain Injury on the Cognitive Assessment System.

    Science.gov (United States)

    Gutentag, Scott S.; Yeates, Keith Owen; Naglieri, Jack A.

    1998-01-01

    Twenty-two children and adolescents with traumatic brain injury (TBI) were compared to a matched sample of neurologically normal children and adolescents on several measures of cognitive processing. Results are consistent with the literature demonstrating poor performance on measures of attention and executive functioning among children who have…

  7. Relation of Executive Functioning to Pragmatic Outcome following Severe Traumatic Brain Injury

    Science.gov (United States)

    Douglas, Jacinta M.

    2010-01-01

    Purpose: This study was designed to explore the behavioral nature of pragmatic impairment following severe traumatic brain injury (TBI) and to evaluate the contribution of executive skills to the experience of pragmatic difficulties after TBI. Method: Participants were grouped into 43 TBI dyads (TBI adults and close relatives) and 43 control…

  8. Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury.

    NARCIS (Netherlands)

    Kox, M.; Pompe, J.C.; Pickkers, P.; Hoedemaekers, C.W.E.; Vugt, A.B. van; Hoeven, J.G. van der

    2008-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability, especially in the younger population. In the acute phase after TBI, patients are more vulnerable to infection, associated with a decreased immune response in vitro. The cause of this immune paralysis is poorly understood. Apart

  9. Are boys and girls that different? An analysis of traumatic brain injury in children.

    LENUS (Irish Health Repository)

    Collins, Niamh C

    2013-08-01

    The Phillips Report on traumatic brain injury (TBI) in Ireland found that injury was more frequent in men and that gender differences were present in childhood. This study determined when gender differences emerge and examined the effect of gender on the mechanism of injury, injury type and severity and outcome.

  10. Systematic review of the clinical course, natural history, and prognosis for pediatric mild traumatic brain injury

    DEFF Research Database (Denmark)

    Hung, Ryan; Carroll, Linda J; Cancelliere, Carol;

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence on prognosis after pediatric mild traumatic brain injury (MTBI). DATA SOURCES: We searched MEDLINE, Embase, PsycINFO, CINAHL, and SPORTDiscus (2001-2012), as well as reference lists of eligible articles, and relevant systematic reviews and meta...

  11. Outcome Prediction in Moderate and Severe Traumatic Brain Injury : A Focus on Computed Tomography Variables

    NARCIS (Netherlands)

    Jacobs, Bram; Beems, Tjemme; van der Vliet, Ton M.; van Vugt, Arie B.; Hoedemaekers, Cornelia; Horn, Janneke; Franschman, Gaby; Haitsma, Ian; van der Naalt, Joukje; Andriessen, Teuntje M. J. C.; Borm, George F.; Vos, Pieter E.

    2013-01-01

    With this study we aimed to design validated outcome prediction models in moderate and severe traumatic brain injury (TBI) using demographic, clinical, and radiological parameters. Seven hundred consecutive moderate or severe TBI patients were included in this observational prospective cohort study.

  12. Gabapentin in the management of dysautonomia following severe traumatic brain injury: a case series

    DEFF Research Database (Denmark)

    Baguley, Ian J; Heriseanu, Roxana E; Gurka, Joseph A;

    2007-01-01

    The pharmacological management of dysautonomia, otherwise known as autonomic storms, following acute neurological insults, is problematic and remains poorly researched. This paper presents six subjects with dysautonomia following extremely severe traumatic brain injury where gabapentin controlled...... stimuli may represent a better option for dysautonomia management than drugs which increase inhibition of efferent pathways. Potential mechanisms for these effects are discussed....

  13. Systematic review of prognosis after mild traumatic brain injury in the military

    DEFF Research Database (Denmark)

    Boyle, Eleanor; Cancelliere, Carol; Hartvigsen, Jan;

    2014-01-01

    OBJECTIVE: The World Health Organization Collaborating Centre Task Force on Mild Traumatic Brain Injury (MTBI) published its findings on the prognosis of MTBI in 2004. This is an update of that review with a focus on deployed military personnel. DATA SOURCES: Relevant literature published between...

  14. The Effects of Traumatic Brain Injury during Adolescence on Career Plans and Outcomes

    Science.gov (United States)

    Balaban, Tammy; Hyde, Nellemarie; Colantonio, Angela

    2009-01-01

    Traumatic brain injury (TBI) often occurs during the years when individuals are aiming for vocational goals and acquiring skills needed to achieve vocational success. This exploratory study aimed to describe the perceived long-term impact on career outcomes for individuals who were hospitalized with a TBI during adolescence. This study used a…

  15. Melatonin reduces traumatic brain injur y-induced oxidative stress in the cerebral cortex and blood of rats

    Institute of Scientific and Technical Information of China (English)

    Nilgnenol; Mustafa Nazrolu

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We in-vestigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vita-min E, reduced glutathione, and erythrocyte reduced glutathione levels, and plasma vitamin C level were decreased by traumatic brain injury whereas they were increased following melatonin treatment. In conclusion, melatonin seems to have protective effects on traumatic brain inju-ry-induced cerebral cortex and blood toxicity by inhibiting free radical formation and supporting antioxidant vitamin redox system.

  16. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    OpenAIRE

    Chien-Cheng Chen; Tai-Ho Hung; Chao Yu Lee; Liang-Fei Wang; Chun-Hu Wu; Chia-Hua Ke; Szu-Fu Chen

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1)) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain ba...

  17. Traumatic brain injury: an overview of pathobiology with emphasis on military populations

    OpenAIRE

    Cernak, Ibolja; Linda J Noble-Haeusslein

    2010-01-01

    This review considers the pathobiology of non-impact blast-induced neurotrauma (BINT). The pathobiology of traumatic brain injury (TBI) has been historically studied in experimental models mimicking features seen in the civilian population. These brain injuries are characterized by primary damage to both gray and white matter and subsequent evolution of secondary pathogenic events at the cellular, biochemical, and molecular levels, which collectively mediate widespread neurodegeneration. An e...

  18. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pig...

  19. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen; Ford, Corey C. (University of New Mexico, Albuquerque, NM)

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  20. Correlation of Computed Tomography findings with Glasgow Coma Scale in patients with acute traumatic brain injury

    OpenAIRE

    SK Sah; ND Subedi; K. Poudel; Mallik, M

    2015-01-01

    OBJECTIVE To correlate Computed Tomography (CT) findings with Glasgow Coma Scale (GCS) in patients with acute traumatic brain injury attending in Chitwan Medical College teaching hospital Chitwan, Nepal. MATERIALS AND METHODS A cross-sectional study was performed among 50 patients of acute (less than24 hours) cases of craniocerebral trauma over a period of four months. The patient’s level of consciousness (GCS) was determined and a brain CT scan without contrast media was performed. A s...

  1. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

    OpenAIRE

    Nikolakopoulou, Angeliki M.; Koeppen, Jordan; Garcia, Michael; Leish, Joshua; Obenaus, Andre; Iryna M Ethell

    2016-01-01

    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in ...

  2. THE INCIDENCE OF NOSOCOMIAL INFECTIONS IN PATIENTS WITH ISOLATED SEVERE TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Valencic Lara

    2015-12-01

    Full Text Available Introduction: Traumatic brain injury is the leading cause of death in children and adults in developed countries. Severe traumatic brain injury is classified with Glasgow Coma Scale score 8 and less. About 50% of patients with severe traumatic brain injury developes at least one infection as a complication of primary condition during hospitalization in the Intensive Care Unit, resulting with fatal outcome in 28% of patients. Ventilator – associated pneumonia is the leading infection that affects patients with severe traumatic brain injury, with an incidence between 41% and 74%. Following are sepsis and urinary tract infections. The aim: To analyze the number of patients with nosocomial infection and isolated severe traumatic brain injury hospitalized in the Intensive Care Unit of the Clinical Hospital Centre Rijeka, Croatia, from 31st January 2013 to 31st December 2014. Patients and methods: A two – year retrospective study included 46 patients with isolated severe traumatic brain injury and nosocomial infection hospitalized in the Intensive Care Unit of the Clinical Hospital Centre Rijeka,Croatia, in the period from 31st January 2013 to 31st December 2014. All medical data was collected from the Division of Intensive Care Unit, Clinical Hospital Centre Rijeka, Croatia. Results: From 67 patients with isolated severe traumatic brain injury, 46 (68,65% of them developed nosocomial infection. There was statistically significant more male patients than female (p<0.05. The average age of infected patients was 57,8 years. The leading were the infections of the respiratory system. Gram – negative bacteria Proteus mirabilis and Pseudomonas aerugnonsa were the leading pathogens. The average duration of the infection was 5,77 days. For 16 (34,78% of 46 patients the treatment outcome was lethal. Conclusion: Nosocomial infections are becoming a major public health problem. The emphasis must be set on the prevention which includes maintaining the

  3. The frequency of brain lesion on CT scan in traumatic pediatric that referred to Ayatollah Taleghani Hospital of Kermanshah 2011

    OpenAIRE

    Salehi Zahabi, Saleh; Mehrbakhsh, Mahmmod; Salehi Zahabi, Kharaman; Asgari, Shahriar; Darabi, Shahnaz; Ahmadi, Karam

    2012-01-01

    Abstract: Background: Brain trauma (BT) is the most common cause of death among children worldwide. In traumatic patient, the skull is the most common involved part. The importance of computed tomography (CT) scan in diagnosis of BT is well established. CT scan is actually a common option for evaluation of patients with cranial trauma. Considering the importance of CT scan in the diagnosis of brain lesions, the present study was aimed to survey the results of brain CT scan in traumatic patien...

  4. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    Science.gov (United States)

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  5. Posttraumatic Stress Disorder in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Schmidt Roger

    2004-03-01

    Full Text Available Abstract Background Severe traumatic stressors such as war, rape, or life-threatening accidents can result in a debilitating psychopathological development conceptualised as Posttraumatic Stress Disorder (PTSD. Pathological memory formation during an alarm response may set the precondition for PTSD to occur. If true, a lack of memory formation by extended unconsciousness in the course of the traumatic experience should preclude PTSD. Methods 46 patients from a neurological rehabilitation clinic were examined by means of questionnaires and structured clinical interviews. All patients had suffered a TBI due to an accident, but varied with respect to falling unconscious during the traumatic event. Results 27% of the sub-sample who were not unconscious for an extended period but only 3% (1 of 31 patients who were unconscious for more than 12 hours as a result of the accident were diagnosed as having current PTSD (P Conclusion TBI and PTSD are not mutually exclusive. However, victims of accidents are unlikely to develop a PTSD if the impact to the head had resulted in an extended period of unconsciousness.

  6. Inhibitory Effect of Progesterone on Inflammatory Factors After Experimental Traumatic Brain Injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young people. Inflammatory cytokines play an important part in the pathophysiology of TBI. Recent studies demonstrate that progesterone significantly reduces cerebral edema and enhances functional recovery from TBI and stroke in several animal models. This study was designed to investigate the inhibitory effect of progesterone on inflammatory response after traumatic brain injury. Methods Progesterone was injected intraperitoneally using rats as a model of traumatic brain injury,and Western blot technique was applied to detect the expression of three inflammation-related factors:nuclear factor kappa B p65 (NFk B p65),glial fibrillary acidic protein (GFAP),and tumor necrosis factor-α (TNF-α). The water content of injured brain was also examined. A neurological severity score was recorded to evaluate the effect of progesterone on neurodeficit recovery. Results NFk B p65,GFAP,and TNF-α were increased in all injured animals. In rats treated with progesterone,the expression level of NFkB p65 and TNF-α were reduced significantly in comparison with vehicle-treated rats. However,progesterone did not alter the expression of GFAP in the injured rats. Progesterone also reduced the water content of injured brain and the lesion volume. In addition,progesterone-treated injured rats showed significant improvements in the Neurological Severity Score test,compared with vehicle-treated ones.Conclusions Progesterone inhibits the inflammatory response after experimental traumatic brain injury and mitigates the severity of brain damage.

  7. Contrast-enhanced FLAIR (fluid-attenuated inversion recovery for evaluating mild traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Soo Chin Kim

    Full Text Available PURPOSE: To evaluate whether adding a contrast-enhanced fluid-attenuated inversion recovery (FLAIR sequence to routine magnetic resonance imaging (MRI can detect additional abnormalities in the brains of symptomatic patients with mild traumatic brain injury. MATERIALS AND METHODS: Fifty-four patients with persistent symptoms following mild closed head injury were included in our retrospective study (M ∶ F =  32 ∶ 22, mean age: 59.8 ± 16.4, age range: 26-84 years. All MRI examinations were obtained within 14 days after head trauma (mean: 3.2 ± 4.1 days, range: 0.2-14 days. Two neuroradiologists recorded (1 the presence of traumatic brain lesions on MR images with and without contrast-enhanced FLAIR images and (2 the pattern and location of meningeal enhancement depicted on contrast-enhanced FLAIR images. The number of additional traumatic brain lesions diagnosed with contrast-enhanced FLAIR was recorded. Correlations between meningeal enhancement and clinical findings were also evaluated. RESULTS: Traumatic brain lesions were detected on routine image sequences in 25 patients. Three additional cases of brain abnormality were detected with the contrast-enhanced FLAIR images. Meningeal enhancement was identified on contrast-enhanced FLAIR images in 9 cases while the other routine image sequences showed no findings of traumatic brain injury. Overall, the additional contrast-enhanced FLAIR images revealed more extensive abnormalities than routine imaging in 37 cases (p<0.001. In multivariate logistic regression analysis, subdural hematoma and posttraumatic loss of consciousness showed a significant association with meningeal enhancement on contrast-enhanced FLAIR images, with odds ratios 13.068 (95% confidence interval 2.037 to 83.852, and 15.487 (95% confidence interval 2.545 to 94.228, respectively. CONCLUSION: Meningeal enhancement on contrast-enhanced FLAIR images can help detect traumatic brain lesions as well as additional abnormalities

  8. Review: Managing posttraumatic stress disorder in combat veterans with comorbid traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bruce Capehart, MD, MBA

    2012-06-01

    Full Text Available Military deployments to Afghanistan and Iraq have been associated with elevated prevalence of both posttraumatic stress disorder (PTSD and traumatic brain injury (TBI among combat veterans. The diagnosis and management of PTSD when a comorbid TBI may also exist presents a challenge to interdisciplinary care teams at Department of Veterans Affairs (VA and civilian medical facilities, particularly when the patient reports a history of blast exposure. Treatment recommendations from VA and Department of Defense’s (DOD recently updated VA/DOD Clinical Practice Guideline for Management of Post-Traumatic Stress are considered from the perspective of simultaneously managing comorbid TBI.

  9. Combat posttraumatic stress disorder, substance use disorders, and traumatic brain injury.

    Science.gov (United States)

    Brady, Kathleen T; Tuerk, Peter; Back, Sudie E; Saladin, Michael E; Waldrop, Angela E; Myrick, Hugh

    2009-12-01

    Among both civilian and veteran populations, substance use disorders (SUDs) and anxiety disorders frequently co-occur. One of the most common comorbid anxiety disorder is posttraumatic stress disorder (PTSD), a condition which may develop after exposure to traumatic events, such as military combat. In comparison with the general population, rates of both SUDs and PTSD are elevated among veterans. Recent data show that soldiers returning from Iraq and Afghanistan demonstrate high rates of co-occurring SUDs, PTSD, and traumatic brain injury. Careful assessment of these conditions is critical and may be complicated by symptom overlap. More research targeting integrated interventions for these conditions is needed to establish optimal treatments.

  10. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    Science.gov (United States)

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  11. Isolated cystic lesion of the callosal genu after traumatic brain injury.

    Science.gov (United States)

    Kato, Toru; Okumura, Akihisa; Tsuji, Takeshi; Emi, Misugi; Natsume, Jun

    2012-06-01

    We report the case of a 17-month-old infant who developed an isolated cystic lesion of the callosal genu as a unique lesion of traumatic axonal injury (TAI). Although one of the most common sites of TAI is the corpus callosum, there have been no reports describing the lesion seen in our patient. Brain computed tomography findings were normal on the day of the traffic accident. After 3 months, brain magnetic resonance imaging showed an isolated cystic lesion of the callosal genu that had the appearance of a cystic cavity. This lesion decreased in size 16 months later. The neuroimaging findings of this patient suggest that an isolated cystic lesion of the callosal genu could appear as a unique form of TAI in infants after traumatic brain injury (TBI), but it is nevertheless important to attend to such lesions in children with TBI.

  12. Circulating endothelial progenitor cells in traumatic brain injury: an emerging therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-jie; JIANG Rong-cai; LIU Li; ZHANG Jian-ning

    2010-01-01

    Traumatic brain injury (TBI) is a major cause ofmortality and morbidity in the world. Recent clinical investigations and basic researches suggest that strategies to improve angiogenesis following TBI may provide promising opportunities to improve clinical outcomes and brain functional recovery. More and more evidences show that circulating endothelial progenitor cells (EPCs), which have been identified in the peripheral blood, may play an important role in the pathologic and physiological angiogenesis in adults. Moreover, impressive data demonstrate that EPCs are mobilized from bone marrow to blood circulation in response to traumatic or inflammatory stimulations.In this review, we discussed the role of EPCs in the repair of brain injury and the possible therapeutic implication for functional recovery of TBl in the future.

  13. A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury

    Directory of Open Access Journals (Sweden)

    Yong-Peng Yu

    2014-01-01

    Full Text Available Gases such as nitric oxide (NO and carbon monoxide (CO play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH. Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH.

  14. EFFECT OF GINKGO BILOBA EXTRACT ON BRAIN EDEMA AFTER SUBARACHNOID HEMORRHAGE IN RATS

    Institute of Scientific and Technical Information of China (English)

    孙保亮; 夏作理; 杨明峰; 邱平明

    2001-01-01

    @@ The aim of this study was to investigate the protectiveeffect of Ginkgo biloba extract (EGb) on brain edemaafter subarachnoid hemorrhage . Eighty male and femaleWistar rats, weighing 300~ 350g, were used in the ex-periment. Animals were divided into pure SAH group andEGb-treated group. Dynamic changes of regional cerebralblood flow (rCBF) were detected in eight rats from eachgroup. Brain water and electrolytes contents at differenttime points were detected in thirty-two rats from eachgroup (eight rats at each time point from each group) .EGb. provided by Pizhou Pharmaceutical Factory(Xuzhou, Jiangsu, China), was injected intraperi-toneally 30 minutes before operation and repeated withsingle dose of 15mg/kg .every 6 hours.

  15. Corticospinal tract recovery in a patient with traumatic transtentorial herniation

    Institute of Scientific and Technical Information of China (English)

    Sang Seok Yeo; Sung Ho Jang

    2013-01-01

    Transtentorial herniation is one of the causes of motor weakness in traumatic brain injury. In this study, we report on a patient who underwent decompressive craniectomy due to traumatic intracerebral hemorrhage. Brain CT images taken after surgery showed intracerebral hemorrhage in the left fronto-temporal lobe and left transtentorial herniation. The patient presented with severe paralysis of the right extremities at the time of intracerebral hemorrhage onset, but the limb motor function recovered partially at 6 months after onset and to nearly normal level at 27 months. Through diffusion tensor tractography, the left corticospinal tract was disrupted below the cerebral peduncle at 1 month after onset and the disrupted left corticospinal tract was reconstructed at 27 months. These findings suggest that recovery of limb motor function in a patient with traumatic transtentorial herniation can come to be true by recovery of corticospinal tract.

  16. Wearable nanosensor system for monitoring mild traumatic brain injuries in football players

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  17. Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury

    Science.gov (United States)

    Eve, David J; Steele, Martin R; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Traumatic brain injury (TBI) describes the presence of physical damage to the brain as a consequence of an insult and frequently possesses psychological and neurological symptoms depending on the severity of the injury. The recent increased military presence of US troops in Iraq and Afghanistan has coincided with greater use of improvised exploding devices, resulting in many returning soldiers suffering from some degree of TBI. A biphasic response is observed which is first directly injury-related, and second due to hypoxia, increased oxidative stress, and inflammation. A proportion of the returning soldiers also suffer from post-traumatic stress disorder (PTSD), and in some cases, this may be a consequence of TBI. Effective treatments are still being identified, and a possible therapeutic candidate is hyperbaric oxygen therapy (HBOT). Some clinical trials have been performed which suggest benefits with regard to survival and disease severity of TBI and/or PTSD, while several other studies do not see any improvement compared to a possibly poorly controlled sham. HBOT has been shown to reduce apoptosis, upregulate growth factors, promote antioxidant levels, and inhibit inflammatory cytokines in animal models, and hence, it is likely that HBOT could be advantageous in treating at least the secondary phase of TBI and PTSD. There is some evidence of a putative prophylactic or preconditioning benefit of HBOT exposure in animal models of brain injury, and the optimal time frame for treatment is yet to be determined. HBOT has potential side effects such as acute cerebral toxicity and more reactive oxygen species with long-term use, and therefore, optimizing exposure duration to maximize the reward and decrease the detrimental effects of HBOT is necessary. This review provides a summary of the current understanding of HBOT as well as suggests future directions including prophylactic use and chronic treatment. PMID:27799776

  18. Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review.

    Science.gov (United States)

    Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Qianwei; Hua, Feng; Zhang, John; Zhu, Gang; Chen, Zhi

    2016-02-01

    Germinal matrix hemorrhage (GMH) is defined as the rupture of immature blood vessels in the subependymal zone of premature infants with significant mortality and morbidity. Considering the notable social and ecological stress brought by GMH-induced brain injury and sequelae, safe and efficient pharmacological preventions are badly needed. Currently, several appropriate animal models are available to mimic the clinical outcomes of GMH in human patients. In the long run, hemorrhagic strokes are the research target. Previously, we found that minocycline was efficient to alleviate GMH-induced brain edema and posthemorrhagic hydrocephalus (PHH) in rats, which may be closely related to the activation of cannabinoid receptor 2 (CB2R). However, how the two molecules correlate and the underlined molecular pathway remain unknown. To extensively understand current experimental GMH treatment, this literature review critically evaluates existing therapeutic strategies, potential treatments, and potentially involved molecular mechanisms. Each strategy has its own advantages and disadvantages. Some of the mechanisms are still controversial, requiring an increasing number of animal experiments before the therapeutic strategy would be widely accepted.

  19. [Successful induction therapy for acute myeloid leukemia complicated with brain hemorrhage and hyperleukocytosis].

    Science.gov (United States)

    Miyazaki, Takuya; Abe, Nana; Yamazaki, Etsuko; Koyama, Satoshi; Miyashita, Kazuho; Takahashi, Hiroyuki; Nakajima, Yuki; Tachibana, Takayoshi; Kamijo, Aki; Tomita, Naoto; Ishigastubo, Yoshiaki

    2016-02-01

    Adequate management of hyperleukocytosis in patients with acute myeloid leukemia (AML) is essential for the prevention of life-threatening complications related to leukostasis and tumor lysis syndrome, but the optimal therapeutic strategy remains unclear. We report a 15-year-old girl with newly diagnosed AML who had extreme hyperleukocytosis (leukocyte count at diagnosis, 733,000/μl) leading to a brain hemorrhage. She was initially treated with hydroxyurea, but presented with brain hemorrhage due to leukostasis and underwent leukapheresis emergently with intensive care and mechanical ventilation. Full-dose standard induction chemotherapy was initiated after achieving gradual cytoreduction (leukocyte count, 465,000/μl) within five days after the initiation of therapy with hydroxyurea and leukapheresis. These treatments were successful and she experienced no complications. The patient ultimately recovered fully and was discharged with complete remission of AML. Although the effects of hydroxyurea and leukapheresis in the setting of hyperleukocytosis are still controversial, these initial treatments may contribute to successful bridging therapy followed by subsequent induction chemotherapy, especially in AML cases with extreme hyperleukocytosis or life-threatening leukostasis. PMID:26935637

  20. Is management of acute traumatic brain injury effective?A literature review of published Cochrane Systematic Reviews

    Institute of Scientific and Technical Information of China (English)

    LEI Jin; GAO Guo-yi; JIANG Ji-yao

    2012-01-01

    Objective:To evaluate all the possible therapeutic measures concerning the acute management of traumatic brain injury(TBI)mentioned in Cochrane Systematic Reviews published in the Cochrane Database of Systematic Reviews(CDSR).Methods:An exhausted literature search for all published Cochrane Systematic Reviews discussing therapeutic rather than prevention or rehabilitative interventions of TBI was conducted.We retrieved such databases as CDSR and Cochrane Injury Group,excluded the duplications,and eventually obtained 20 results,which stand for critical appraisal for as many as 20 different measures for TBI patients.The important data of each systematic review,including total population,intervention,outcome,etc,were collected and presented in a designed table.Besides,we also tried to find out the possible weakness of these clinical trials included in each review.Results:Analysis of these reviews yielded meanfuling observations:(1)The effectiveness of most ordinary treatments in TBI is inconclusive except that corticosteroids are likely to be ineffective or harmful,and tranexamic acid,nimodipine and progesterone show a promising effect in bleeding trauma,traumatic subarachnoid hemorrhage,TBI or severe TBI.(2)A majority of the systematic reviews include a small number of clinical trials and the modest numbers of patients,largely due to the uncertainty of the effectiveness.(3)The quality of most trials reported in the systematic reviews is more or less questionable.(4)In addition,lots of other complex factors together may lead to the inconclusive results demonstrated in the Cochrane Systematic Reviews.Conclusions:For clinical physicians,to translate these conclusions into practice with caution is essential.Basic medication and nursing care deserve additional attention as well and can be beneficial.For researchers,high quality trials with perfect design and comprehensive consideration of various factors are urgently required.

  1. A comparative study between Marshall and Rotterdam CT scores in predicting early deaths in patients with traumatic brain injury in a major tertiary care hospital in Nepal

    Institute of Scientific and Technical Information of China (English)

    Sunil Munakomi

    2016-01-01

    Purpose:CT plays a crucial role in the early assessment of patients with traumatic brain injury (TBI).Marshall and Rotterdam are the mostly used scoring systems,in which CT findings are grouped differently.We sought to determine the values of the scoring system and initial CT findings in predicting the death at hospital discharge (early death) in patients with TBI.Methods:There were consecutive 634 traumatic neurosurgical patients with mild-to-severe TBI admitted to the emergency department of College of Medical Sciences.Their initial CT and status at hospital discharge (dead or alive) were reviewed,and both CT scores were calculated.We examined whether each score is related to early death;compared the two scoring systems' performance in predicting early death,and identified the CT findings that are independent predictors for early death.Results:Both imaging score (Marshall) and clinical score (Rotterdam) can be used to reliably predict mortality in patients with acute traumatic brain injury with high prognostic accuracy.Other specific CT characteristics that can be used to predict early mortality are traumatic subarachnoid hemorrhage,midline shift and status of the peri-mesencephalic cisterns.Conclusions:Marshall CT classification has strong predictive power,but greater discrimination can be obtained if the individual CT parameters underlying the CT classification are included in a prognostic model as in Rotterdam score.Consequently,for prognostic purposes,we recommend the use of individual characteristics rather than the CT classification.Performance of CT models for predicting outcome in TBI can be significantly improved by including more details of variables and by adding other variables to the models.

  2. Patients' and relatives' experience of difficulties following severe traumatic brain injury: the sub-acute stage

    DEFF Research Database (Denmark)

    Holm, Sara; Schönberger, Michael; Poulsen, Ingrid;

    2008-01-01

    The present study aimed to (1) identify the difficulties most frequently reported by individuals with severe traumatic brain injury (TBI) at the time of discharge from a sub-acute rehabilitation brain injury unit as well as difficulties reported by their relatives, (2) compare patients' and...... relatives' reports of patient difficulties, and (3) explore the role of injury severity, disability and other factors on subjective experience of difficulties. The primary measure was the European Brain Injury Questionnaire (EBIQ) administered to patients and to one of their close relatives at discharge...

  3. Evolving brain lesions in the follow-up CT scans 12 h after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Muhammad Sohail Umerani; Asad Abbas; Saqib Kamran Bakhshi; Ujala Muhammad Qasim; Salman Sharif

    2016-01-01

    Objective: To establish the frequency of evolution in CT appearance from an initial scan to a subsequent scan within 12 h and the prognostic significance of such deterioration. Methods: All patients who presented to Department of Neurosurgery, Liaquat National Hospital and Medical College with traumatic brain injury and received their CT scan within the first 4 h of injury were included in the study. Indications for repeat CT scan were: any deterioration in neurological status after the initial scan, potentially deterio-rating lesion on initial scan with or without worsening neurology, worsening neurological status after the initial CT scan findings, or no neurological improvement after initial management in patients with normal CT scan with significant head injury. This compiled with the data of 107 patients. Results: There were 67 males and 40 females. The cause of trauma of the 70%patients was road traffic accident. In 11 patients, the lesion evolved towards resorption while 32 patients had no significant changes in the subsequent CT scan. Sixty four patients showed an increase in the size of the lesion and 65.6%of them were required surgical intervention subsequently. Conclusions: In case where the initial CT scan performed within 4 h of significant head injury was not correlated with the patient's neurology, it should be repeated within 12 h.

  4. Occludin and connexin 43 expression contribute to the pathogenesis of traumatic brain edema*

    Institute of Scientific and Technical Information of China (English)

    Wanyin Ren; Guojie Jing; Qin Shen; Xiaoteng Yao; Yingchao Jing; Feng Lin; Weidong Pan

    2013-01-01

    The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney’s free fal ing method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Changes in brain water content were determined using the wet and dry weights. Our results showed that water content of tissue significantly increased after traumatic brain injury, and reached minimum at 24 hours. Hematoxylin-eosin staining revealed pathological impairment of brain tissue at each time point after injury, particularly at 3 days, with nerve celledema, degenera-tion, and necrosis observed, and the apoptotic rate significantly increased. Immunohistochemistry and western blot analysis revealed that the expression of occludin at the injured site gradual y de-creased as injury time advanced and reached a minimum at 3 days after injury; the expression of connexin 43 gradual y increased as injury time advanced and reached a peak at 24 hours after in-jury. The experimental findings indicate that changes in occludin and connexin 43 expression were consistent with the development of brain edema, and may reflect the pathogenesis of brain injury.

  5. Brain edema after intracerebral hemorrhage in rats: The role of inflammation

    Directory of Open Access Journals (Sweden)

    Zhang Xiangjian

    2006-01-01

    Full Text Available Background: Intracerebral hemorrhage (ICH results in secondary brain edema and injury that may lead to death and disability. ICH also causes inflammation. It is unclear whether inflammation contributes to brain edema and neuron injury or functions in repairing the brain tissue. Aims: To understand the effect of inflammation in ICH, we have carried out an investigation on the various aspects and the dynamic changes of inflammation. Settings and Design: An ICH model was generated by injecting 50 ml autologous tail artery blood stereotactically into the right caudate nucleus of 30 rats, which were randomly divided into five ICH groups. Similarly, five Sham control groups were generated by inserting the needle to the right caudate nucleus of rats. Materials and Methods: Rat behavior was evaluated over the time course (6 h, 24 h, 48 h, 72 h and 7 d in each group. The rats were then killed by administering an overdose of pentobarbital. Following the euthanasia, the brain water content, neuronal loss, glia proliferation, inflammatory infiltration and brain morphology of the rats were measured. Additionally, the expression of TNF-a,IL-6, ICAM-1, VEGF, NF-kB, C3 and CR2 was analyzed by immunohistochemistry. Statistical Analysis: The data were analyzed by student′s t test. Results: Rat brain water content increased progressively over the time course and reached its peak at 48h followed ICH. The maximum of inflammatory infiltrate (especially neutrophils and immunopositive cells of TNF-a, IL-6 and NF-kB, were at 48h. The expression of C3 and CR2 reached their peaks at 48-72h, while the expression ICAM-1 and VEGF were at maximum at 72h followed ICH. Conclusions: The results suggested that the inflammatory cytokines, complement system and VEGF may have a function in the development of the brain edema and neuron injury followed ICH.

  6. JNK3 involvement in nerve cell apoptosis and neurofunctional recovery after traumatic brain injury☆

    Institute of Scientific and Technical Information of China (English)

    Jiang Long; Li Cai; Jintao Li; Lei Zhang; Haiyang Yang; Tinghua Wang

    2013-01-01

    Increasing evidence has revealed that the activation of the JNK pathway participates in apoptosis of nerve cells and neurological function recovery after traumatic brain injury. However, which genes in the JNK family are activated and their role in traumatic brain injury remain unclear. Therefore, in this study, in situ end labeling, reverse transcription-PCR and neurological function assessment were adopted to investigate the alteration of JNK1, JNK2 and JNK3 gene expression in cerebral injured rats, and their role in cell apoptosis and neurological function restoration. Results showed that JNK3 expression significantly decreased at 1 and 6 hours and 1 and 7 days post injury, but that JNK1 and JNK2 expression remained unchanged. In addition, the number of apoptotic nerve cells surrounding the injured cerebral cortex gradually reduced over time post injury. The Neurological Severity Scores gradually decreased over 1, 3, 5, 14 and 28 days post injury. These findings suggested that JNK3 expression was downregulated at early stages of brain injury, which may be associated with apoptosis of nerve cells. Downregulation of JNK3 expression may promote the recovery of neurological function following traumatic brain injury.

  7. Does progesterone show neuroprotective effects on traumatic brain injury through increasing phosphorylation of Akt in the hippocampus?

    Institute of Scientific and Technical Information of China (English)

    Richard Justin Garling; Lora Talley Watts; Shane Sprague; Lauren Fletcher; David F Jimenez; Murat Digicaylioglu

    2014-01-01

    There are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neu-roprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inlfammation, apoptosis, and promote cell growth in the brain. This study aims to determine if progesterone modulates the phosphor-ylation of Aktvia its threonine 308 phosphorylation site. Phosphorylation at the threonine 308 site is one of several sites responsible for activating Akt and enabling the protein kinase to carry out its neuroprotective effects. To assess the effects of progesterone on Akt phosphorylation, C57BL/6 mice were treated with progesterone (8 mg/kg) at 1 (intraperitonally), 6, 24, and 48 hours (subcutaneously) post closed-skull traumatic brain injury. The hippocampus was harvest-ed at 72 hours post injury and prepared for western blot analysis. Traumatic brain injury caused a signiifcant decrease in Akt phosphorylation compared to sham operation. However, mice treat-ed with progesterone following traumatic brain injury had an increase in phosphorylation of Akt compared to traumatic brain injury vehicle. Our ifndings suggest that progesterone is a viable treatment option for activating neuroprotective pathways after traumatic brain injury.

  8. Spontaneous Wheel Running Exercise Induces Brain Recovery via Neurotrophin-3 Expression Following Experimental Traumatic Brain Injury in Rats

    OpenAIRE

    Koo, Hyun Mo; Lee, Sun Min; Kim, Min Hee

    2013-01-01

    [Purpose] The aim of the present study was to investigate the expression of neurotrophin-3 (NT-3) after applying spontaneous wheel running exercises (SWR) after experimental traumatic brain injury (TBI). [Subjects and Methods] Thirty male Sprague-Dawley rats were divided into 3 groups; 20 rats were subjected to controlled cortical impact for TBI, and then, animals were randomly collected from the SWR group and subjected to wheel running exercise for 3 weeks. Ten rats were not subjected to any...

  9. How Do Health Care Providers Diagnose Traumatic Brain Injury (TBI)?

    Science.gov (United States)

    ... The pressure can cause additional damage to the brain. A health care provider may insert a probe through the skull to monitor this swelling. 2 In some cases, a shunt or drain is placed into the skull to relieve ICP. [ ...

  10. Animal models of traumatic brain injury : a critical evaluation

    OpenAIRE

    O'Connor, William; Smyth, Aoife; Gilchrist, M. D.

    2011-01-01

    Animal models are necessary to elucidate changes occurring after brain injury and to establish new therapeutic strategies towards a stage where drug efficacy in brain injured patients (against all classes of symptoms) can be predicted. In this review, six established animal models of head trauma, namely fluid percussion, rigid indentation, inertial acceleration, impact acceleration, weight-drop and dynamic cortical deformation are evaluated. While no single animal model is entirely successful...

  11. Collaborative European Neuro Trauma Effectiveness Research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study

    NARCIS (Netherlands)

    van der Naalt, Joukje

    2015-01-01

    BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: T

  12. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Armin Iraji

    2016-01-01

    Full Text Available Mild traumatic brain injury (mTBI is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I between the posterior cingulate cortex and the association areas of the brain and (II between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.

  13. Incorporating Human Body Mass in Standards of Helmet Impact Protection against Traumatic Brain Injury

    CERN Document Server

    Blackman, Eric G

    2009-01-01

    Impact induced traumatic brain injury (ITBI) describes brain injury from head impact not necessarily accompanied by skull fracture. For sufficiently abrupt head impact decelerations, ITBI results from brain tissue stress incurred as the brain crashes into the inside of the skull wall, displacing the surrounding cerebral spinal fluid (CSF). Proper helmet cushioning can damp the impact force and reduce ITBI. But force is mass times acceleration and commonly used helmet blunt impact standards are based only on acceleration thresholds. Here I show how this implies that present standards overestimate the minimum acceleration onset for ITBI by implicitly assuming that the brain is mechanically decoupled from the body. I quantify how an arbitrary orientation of the body with respect to impact direction increases the effective mass that should be used in calculating the required damping force and injury threshold accelerations. I suggest a practical method to incorporate the body mass and impact angle into ITBI helme...

  14. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves

    OpenAIRE

    Shetty, Ashok K.

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting ...

  15. Patients with the most severe traumatic brain injury benefit from rehabilitation

    DEFF Research Database (Denmark)

    Poulsen, Ingrid; Norup, Anne; Liebach, Annette;

    2014-01-01

    Patients with the most severe traumatic brain injury benefit from rehabilitation Ingrid Poulsen, Anne Norup, Annette Liebach, Lars Westergaard, Karin Spangsberg Kristensen, Tina Haren, & Lars Peter Kammersgaard Department for Neurorehabilitation, TBI Unit, Copenhagen University, Glostrup Hospital......., Hvidovre, Denmark Objectives: During the last couple of years, studies have indicated that even patients with the most severe traumatic brain injuries (TBI) benefit from rehabilitation despite what initially appears to be dismal prognosis. In Denmark, all patients with severe TBI have had an opportunity...... of 18 poins. Thirty-nine per cent were discharged home; 46% to further rehabilitation; 1.5% to acute treatment; and 9% to nursing homes. Conclusions: In this relatively large sample, comprising all patients with severe TBI in the Eastern part of Denmark, nearly all patients improved in both level...

  16. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  17. Association of Symptoms Following Mild Traumatic Brain Injury With Posttraumatic Stress Disorder vs Postconcussion Syndrome

    DEFF Research Database (Denmark)

    Lagarde, E.; Salmi, L. R.; Holm, L. W.;

    2014-01-01

    IMPORTANCE A proportion of patients experience long-lasting symptoms following mild traumatic brain injury (MTBI). The postconcussion syndrome (PCS), included in the DSM-IV, has been proposed to describe this condition. Because these symptoms are subjective and common to other conditions, there i......IMPORTANCE A proportion of patients experience long-lasting symptoms following mild traumatic brain injury (MTBI). The postconcussion syndrome (PCS), included in the DSM-IV, has been proposed to describe this condition. Because these symptoms are subjective and common to other conditions...... fulfilled the DSM-IV diagnosis of PCS; 8.8% of head-injured patients fulfilled the diagnostic criteria for PTSD compared with 2.2% of control patients. In multivariate analysis, MTBI was a predictor of PTSD (odds ratio, 4.47; 95% CI, 2.38-8.40) but not of PCS (odds ratio, 1.13; 95% CI, 0...

  18. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  19. Hydrogen Sulfide Ameliorates Early Brain Injury Following Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Cui, Yonghua; Duan, Xiaochun; Li, Haiying; Dang, Baoqi; Yin, Jia; Wang, Yang; Gao, Anju; Yu, Zhengquan; Chen, Gang

    2016-08-01

    Increasing studies have demonstrated the neuroprotective effect of hydrogen sulfide (H2S) in central nervous system (CNS) diseases. However, the potential application value of H2S in the therapy of subarachnoid hemorrhage (SAH) is still not well known. This study was to investigate the potential effect of H2S on early brain injury (EBI) induced by SAH and explore the underlying mechanisms. The role of sodium hydrosulfide (NaHS), a donor of H2S, in SAH-induced EBI, was investigated in both in vivo and in vitro. A prechiasmatic cistern single injection model was used to produce experimental SAH in vivo. In vitro, cultured primary rat cortical neurons and human umbilical vein endothelial cells (HUVECs) were exposed to OxyHb at concentration of 10 μM to mimic SAH. Endogenous production of H2S in the brain was significantly inhibited by SAH. The protein levels of the predominant H2S-generating enzymes in the brain, including cystathionineb-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3MST), were also correspondingly reduced by SAH, while treatment with NaHS restored H2S production and the expressions of CBS and 3MST. More importantly, NaHS treatment could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, brain cell apoptosis, inflammatory response, and cerebral vasospasm) after SAH. In vitro, H2S protects neurons and endothelial function by functioning as an antioxidant and antiapoptotic mediator. Our results suggest that NaSH as an exogenous H2S donor could significantly reduce EBI induced by SAH.

  20. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J; Qian, Z; Li, W; Hu, G [Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Yang, T, E-mail: zhiyu@nuaa.edu.cn [School of Clinical Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China)

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient ({mu}{sub s}') and BWC. By recording {mu}{sub s}' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  1. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are.

    Directory of Open Access Journals (Sweden)

    Svein eKleiven

    2013-11-01

    Full Text Available Injury statistics have found the most common accident situation to be an oblique impact. An oblique impact will give rise to both linear and rotational head kinematics. The human brain is most sensitive to rotational motion. The bulk modulus of brain tissue is roughly five to six orders of magnitude larger than the shear modulus so that for a given impact it tends to deform predominantly in shear. This gives a large sensitivity of the strain in the brain to rotational loading and a small sensitivity to linear kinematics. Therefore, rotational kinematics should be a better indicator of traumatic brain injury risk than linear acceleration. To illustrate the difference between radial and oblique impacts, perpendicular impacts through the center of gravity of the head and 45o oblique impacts were simulated. It is obvious that substantially higher strain levels in the brain are obtained for an oblique impact, compared to a corresponding perpendicular one, when impacted into the same padding using an identical impact velocity. It was also clearly illustrated that the radial impact causes substantially higher stresses in the skull with an associated higher risk of skull fractures, and traumatic brain injuries secondary to those.

  2. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Science.gov (United States)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  3. LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage.

    Science.gov (United States)

    Mirendil, H; Thomas, E A; De Loera, C; Okada, K; Inomata, Y; Chun, J

    2015-04-07

    Genetic, environmental and neurodevelopmental factors are thought to underlie the onset of neuropsychiatric disorders such as schizophrenia. How these risk factors collectively contribute to pathology is unclear. Here, we present a mouse model of prenatal intracerebral hemorrhage--an identified risk factor for schizophrenia--using a serum-exposure paradigm. This model exhibits behavioral, neurochemical and schizophrenia-related gene expression alterations in adult females. Behavioral alterations in amphetamine-induced locomotion, prepulse inhibition, thigmotaxis and social interaction--in addition to increases in tyrosine hydroxylase-positive dopaminergic cells in the substantia nigra and ventral tegmental area and decreases in parvalbumin-positive cells in the prefrontal cortex--were induced upon prenatal serum exposure. Lysophosphatidic acid (LPA), a lipid component of serum, was identified as a key molecular initiator of schizophrenia-like sequelae induced by serum. Prenatal exposure to LPA alone phenocopied many of the schizophrenia-like alterations seen in the serum model, whereas pretreatment with an antagonist against the LPA receptor subtype LPA1 prevented many of the behavioral and neurochemical alterations. In addition, both prenatal serum and LPA exposure altered the expression of many genes and pathways related to schizophrenia, including the expression of Grin2b, Slc17a7 and Grid1. These findings demonstrate that aberrant LPA receptor signaling associated with fetal brain hemorrhage may contribute to the development of some neuropsychiatric disorders.

  4. Pilot study to develop telehealth tinnitus management for persons with and without traumatic brain injury

    OpenAIRE

    James A. Henry, PhD; Tara L. Zaugg, AuD; Paula J. Myers, PhD; Caroline J. Schmidt, PhD; Susan Griest, MPH; Marcia W. Legro, PhD; Christine Kaelin, MBA; Emily J. Thielman, MS; Daniel M. Storzbach, PhD; Garnett P. McMillan, PhD;; Kathleen F. Carlson, PhD

    2012-01-01

    Tinnitus, or “ringing in the ears,” affects 10%-15% of adults; cases can be problematic and require lifelong management. Many people who have experienced traumatic brain injury (TBI) also experience tinnitus. We developed Progressive Tinnitus Management (PTM), which uses education and counseling to help patients learn how to self-manage their reactions to tinnitus. We adapted PTM by delivering the intervention via telephone and by adding cognitive-behavioral therapy. A pilot study was conduct...

  5. Subjective cognitive complaints and neuropsychological test performance following military-related traumatic brain injury

    OpenAIRE

    Louis M. French, PsyD; Rael T. Lange, PhD; Tracey A. Brickell, D.Psych

    2014-01-01

    This study examined the relation between neuropsychological test performance and self-reported cognitive complaints following traumatic brain injury (TBI). Participants were 109 servicemembers from the U.S. military who completed a neuropsychological evaluation within the first 2 yr following mild–severe TBI. Measures included the Personality Assessment Inventory (PAI), Posttraumatic Stress Disorder Symptom Checklist-Civilian version (PCL-C), Neurobehavioral Symptom Inventory (NSI), and 17 se...

  6. Report of traumatic brain injury information sources among OIF/OEF Veterans undergoing polytrauma evaluations

    OpenAIRE

    Robert J. Spencer, PhD; Adam P. McGuire; Heather A. Tree, PhD; Brigid Waldron-Perrine, PhD; ­Percival H. Pangilinan, MD; Linas A. Bieliauskas, PhD

    2013-01-01

    Servicemembers returning from recent conflicts frequently report symptoms associated with traumatic brain injury (TBI) and are subsequently assessed within the Department of Veterans Affairs (VA) medical system. Information on potential cognitive and behavioral correlates of TBI is available from multiple sources. A Veteran’s symptom presentation may be significantly influenced by the information he or she has received. Despite knowledge of the relationship between information source and symp...

  7. Response to Goal Management Training in Veterans with blast-related mild traumatic brain injury

    OpenAIRE

    J. Kay Waid-Ebbs, PhD, BCBA-D; Janis Daly, PhD; Samuel S. Wu, PhD; W. Keith Berg, PhD; Russell M. Bauer, PhD; William M. Perlstein, PhD; Bruce Crosson, PhD

    2015-01-01

    Veterans with blast-related mild traumatic brain injury (TBI) experience cognitive deficits that interfere with functional activities. Goal Management Training (GMT), which is a metacognitive intervention, offers an executive function rehabilitation approach that draws upon theories concerning goal processing and sustained attention. GMT has received empirical support in studies of patients with TBI but has not been tested in Veterans with blast-related mild TBI. GMT was modified from 7 weekl...

  8. Guest Editorial: Cognitive-communication rehabilitation for combat-related mild traumatic brain injury

    OpenAIRE

    Donald L. MacLennan, MA, CCC-SLP; Carole R. Roth, PhD, CCC-SLP, BC-ANCDS; Pauline A. Mashima, PhD, CCC-SLP; Micaela Cornis-Pop, PhD, CCC-SLP; Linda M. Picon, MCD, CCC-SLP

    2012-01-01

    Over 2 million servicemembers (SMs) have served in two theaters of operation in Iraq (Operation Iraqi Freedom [OIF]), which ended in December 2011, and Afghanistan (Operation Enduring Freedom [OEF]). Improvements in body armor and advances in medical care have resulted in the highest survival rate of wounded military personnel compared with any previous conflict in U.S. history [1]. Traumatic brain injury (TBI) is among the most common injuries and has been called the “signature injury” of th...

  9. Factors that may improve outcomes of early traumatic brain injury care: prospective multicenter study in Austria

    OpenAIRE

    Brazinova, Alexandra; Majdan, Marek; Leitgeb, Johannes; Trimmel, Helmut; Mauritz, Walter; ,

    2015-01-01

    Background Existing evidence concerning the management of traumatic brain injury (TBI) patients underlines the importance of appropriate treatment strategies in both prehospital and early in-hospital care. The objectives of this study were to analyze the current state of early TBI care in Austria with its physician-based emergency medical service. Subsequently, identified areas for improvement were transformed into treatment recommendations. The proposed changes were implemented in participat...

  10. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism.

    LENUS (Irish Health Repository)

    Tanriverdi, F

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here.

  11. Texture analysis of MR images of patients with Mild Traumatic Brain Injury

    OpenAIRE

    Wäljas Minna; Dastidar Prasun; Harrison Lara; Holli Kirsi K; Liimatainen Suvi; Luukkaala Tiina; Öhman Juha; Soimakallio Seppo; Eskola Hannu

    2010-01-01

    Abstract Background Our objective was to study the effect of trauma on texture features in cerebral tissue in mild traumatic brain injury (MTBI). Our hypothesis was that a mild trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection but could be detected with texture analysis (TA). Methods We imaged 42 MTBI patients by using 1.5 T MRI within three weeks of onset of trauma. TA was performed on the area of mesencephalon, cerebral white matter at the ...

  12. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury

    OpenAIRE

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.

    2013-01-01

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients’ remains under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose ...

  13. Response inhibition in children with and without ADHD after traumatic brain injury

    OpenAIRE

    Ornstein, Tisha J.; Psych, C.; Max, Jeffrey E.; Schachar, Russell; Dennis, Maureen; Barnes, Marcia; Ewing-Cobbs, Linda; Levin, Harvey S.

    2012-01-01

    Children with attention-deficit/hyperactivity disorder (ADHD) and traumatic brain injury (TBI) show deficient response inhibition. ADHD itself is a common consequence of TBI, known as secondary ADHD (S-ADHD). Similarity in inhibitory control in children with TBI, S-ADHD, and ADHD would implicate impaired frontostriatal systems; however, it is first necessary to delineate similarities and differences in inhibitory control in these conditions. We compared performance of children with ADHD and t...

  14. Music-Based Cognitive Remediation Therapy for Patients with Traumatic Brain Injury

    OpenAIRE

    Shantala eHegde

    2014-01-01

    Traumatic brain injury (TBI) is one of the common causes of disability in physical, psychological, and social domains of functioning leading to poor quality of life. TBI leads to impairment in sensory, motor, language, and emotional processing, and also in cognitive functions such as attention, information processing, executive functions, and memory. Cognitive impairment plays a central role in functional recovery in TBI. Innovative methods such as music therapy to alleviate cognitive impairm...

  15. Traumatic brain injury: a review of characteristics, molecular basis and management.

    Science.gov (United States)

    Wang, Ke; Cui, Daming; Gao, Liang

    2016-01-01

    Traumatic brain injury (TBI) is a critical cause of hospitalization, disability, and death worldwide. The global increase in the incidence of TBI poses a significant socioeconomic burden. Guidelines for the management of acute TBI mostly pertain to emergency treatment. Comprehensive gene expression analysis is currently available for several animal models of TBI, along with enhanced understanding of the molecular mechanisms activated during injury and subsequent recovery. The current review focuses on the characteristics, molecular basis and management of TBI. PMID:27100477

  16. Early management of traumatic brain injury in a Tertiary hospital in Central Kenya: A clinical audit

    OpenAIRE

    Clifford Chacha Mwita; Johnstone Muthoka; Stephen Maina; Phillip Mulingwa; Samson Gwer

    2016-01-01

    Background: Traumatic brain injury (TBI) is a major cause of death and disability worldwide and is mostly attributed to road traffic accidents in resource-poor areas. However, access to neurosurgical care is poor in these settings and patients in need of neurosurgical procedures are often managed by general practitioners or surgeons. Materials and Methods: A retrospective clinical audit of the initial management of patients with TBI in Thika Level 5 Hospital (TL5H), a Tertiary Hospital in Cen...

  17. Menace of childhood non-accidental traumatic brain injuries: A single unit report

    OpenAIRE

    Musa Ibrahim; Adamu Ladan Mu′azu; Nura Idris; Musa Uba Rabiu; Binta Wudil Jibir; Kabir Ibrahim Getso; Mohammad Aminu Mohammad; Femi Luqman Owolabi

    2015-01-01

    Background: Childhood traumatic brain injury (TBI) has high rate of mortality and morbidity worldwide. There are dearths of reports from developing countries with large paediatric population on trauma; neurosurgery trauma of nonaccidental origin is not an exemption. This study analysed menace of non-accidental TBI in the paediatric population from our center. Materials and Methods: This is a single unit, retrospective study of the epidemiology of non-accidental TBI in children starting from S...

  18. The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury

    OpenAIRE

    Maggiore, Umberto; Picetti, Edoardo; Antonucci, Elio; Parenti, Elisabetta; Regolisti, Giuseppe; Mergoni, Mario; Vezzani, Antonella; Cabassi, Aderville; Fiaccadori, Enrico

    2009-01-01

    Introduction The study was aimed at verifying whether the occurrence of hypernatremia during the intensive care unit (ICU) stay increases the risk of death in patients with severe traumatic brain injury (TBI). We performed a retrospective study on a prospectively collected database including all patients consecutively admitted over a 3-year period with a diagnosis of TBI (post-resuscitation Glasgow Coma Score ≤ 8) to a general/neurotrauma ICU of a university hospital, providing critical care ...

  19. Hypernatremia in patients with severe traumatic brain injury: a systematic review

    OpenAIRE

    Kolmodin, Leif; Sekhon, Mypinder S; Henderson, William R.; Turgeon, Alexis F; Griesdale, Donald EG

    2013-01-01

    Background Hypernatremia is common following traumatic brain injury (TBI) and occurs from a variety of mechanisms, including hyperosmotic fluids, limitation of free water, or diabetes insipidus. The purpose of this systematic review was to assess the relationship between hypernatremia and mortality in patients with TBI. Methods We searched the following databases up to November 2012: MEDLINE, EMBASE, and CENTRAL. Using a combination of MeSH and text terms, we developed search filters for the ...

  20. The Essential Role of Psychosocial Risk and Protective Factors in Pediatric Traumatic Brain Injury Research

    OpenAIRE

    Gerring, Joan P.; Wade, Shari

    2012-01-01

    This article builds upon Traumatic Brain Injury Common Data Elements (TBI CDE) version 1.0 and the pediatric CDE Initiative by emphasizing the essential role of psychosocial risk and protective factors in pediatric TBI research. The goals are to provide a compelling rationale for including psychosocial risk and protective factors in addition to socioeconomic status (SES), age, and sex in the study design and analyses of pediatric TBI research and to describe recommendations for core common da...