WorldWideScience

Sample records for brain extracellular space

  1. Cell cavities increase tortuosity in brain extracellular space.

    Science.gov (United States)

    Tao, A; Tao, L; Nicholson, C

    2005-06-21

    Brain extracellular space (ECS) forms hindered pathways for molecular diffusion in chemical signaling and drug delivery. Hindrance is quantified by the tortuosity lambda; the tortuosity obtained from simulations using uniformly spaced convex cells is significantly lower than that measured experimentally. To attempt to account for the difference in results, this study employed a variety of ECS models based on an array of cubic cells containing open rectangular cavities that provided the ECS with dead-space microdomains. Monte Carlo simulations demonstrated that, in such ECS models, lambda can equal or exceed the typical experimental value of about 1.6. The simulations further revealed that lambda is relatively independent of cavity shape and the number of cavities per cell. It mainly depends on the total ECS volume fraction alpha, the cavity volume fraction alpha(c), and whether the cavity is located at the center of a cell face or formed at the junction of multiple cells. To describe the results from the different ECS models, an expression was obtained that related lambda to alpha, alpha(c), and an empirical exit factor beta that correlated with the ease with which a molecule could leave a cavity and its vicinity.

  2. Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced convex cells.

    Science.gov (United States)

    Tao, L; Nicholson, C

    2004-07-07

    Brain extracellular space (ECS) constitutes a porous medium in which diffusion is subject to hindrance, described by tortuosity, lambda = (D/D*)1/2, where D is the free diffusion coefficient and D* is the effective diffusion coefficient in brain. Experiments show that lambda is typically 1.6 in normal brain tissue although variations occur in specialized brain regions. In contrast, different theoretical models of cellular assemblies give ambiguous results: they either predict lambda-values similar to experimental data or indicate values of about 1.2. Here we constructed three different ECS geometries involving tens of thousands of cells and performed Monte Carlo simulation of 3-D diffusion. We conclude that the geometrical hindrance in the ECS surrounding uniformly spaced convex cells is independent of the cell shape and only depends on the volume fraction alpha (the ratio of the ECS volume to the whole tissue volume). This dependence can be described by the relation lambda = ((3-alpha)/2)1/2, indicating that the geometrical hindrance in such ECS cannot account for lambda > 1.225. Reasons for the discrepancy between the theoretical and experimental tortuosity values are discussed.

  3. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.

    Science.gov (United States)

    Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S

    2008-03-01

    Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.

  4. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    Science.gov (United States)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2016-11-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  5. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    Science.gov (United States)

    Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh

    2016-09-01

    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.

  6. Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging.

    Science.gov (United States)

    Xiao, Fanrong; Nicholson, Charles; Hrabe, Jan; Hrabetová, Sabina

    2008-08-01

    There are a limited number of methods available to quantify the extracellular diffusion of macromolecules in an anisotropic brain region, e.g., an area containing numerous aligned fibers where diffusion is faster along the fibers than across. We applied the integrative optical imaging method to measure diffusion of the fluorophore Alexa Fluor 488 (molecular weight (MW) 547) and fluorophore-labeled flexible random-coil dextran polymers (dex3, MW 3000; dex75, MW 75,000; dex282, MW 282,000; dex525, MW 525,000) in the extracellular space (ECS) of the anisotropic molecular layer of the isolated turtle cerebellum. For all molecules, two-dimensional images acquired an elliptical shape with major and minor axes oriented along and across, respectively, the unmyelinated parallel fibers. The effective diffusion coefficients, D*(major) and D*(minor), decreased with molecular size. The diffusion anisotropy ratio (DAR = D*(major)/D*(minor)) increased for Alexa Fluor 488 through dex75 but then unexpectedly reached a plateau. We argue that dex282 and dex525 approach the ECS width and deform to diffuse. In support of this concept, scaling theory shows the diffusion behavior of dex282 and dex525 to be consistent with transition to a reptation regime, and estimates the average ECS width at approximately 31 nm. These findings have implications for the interstitial transport of molecules and drugs, and for modeling neurotransmitter diffusion during ectopic release and spillover.

  7. Extracellular proteolysis in the adult murine brain.

    Science.gov (United States)

    Sappino, A P; Madani, R; Huarte, J; Belin, D; Kiss, J Z; Wohlwend, A; Vassalli, J D

    1993-08-01

    Plasminogen activators are important mediators of extracellular metabolism. In the nervous system, plasminogen activators are thought to be involved in the remodeling events required for cell migration during development and regeneration. We have now explored the expression of the plasminogen activator/plasmin system in the adult murine central nervous system. Tissue-type plasminogen activator is synthesized by neurons of most brain regions, while prominent tissue-type plasminogen activator-catalyzed proteolysis is restricted to discrete areas, in particular within the hippocampus and hypothalamus. Our observations indicate that tissue-type plasminogen activator-catalyzed proteolysis in neural tissues is not limited to ontogeny, but may also contribute to adult central nervous system physiology, for instance by influencing neuronal plasticity and synaptic reorganization. The identification of an extracellular proteolytic system active in the adult central nervous system may also help gain insights into the pathogeny of neurodegenerative disorders associated with extracellular protein deposition.

  8. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K(+) rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K(+) is the Na(+)/K(+)-ATPase, although the relative involvement and physiological impact of the different subunit...... isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K......(+) absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na(+)/K(+)-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic...

  9. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  10. Protein Dynamics in the Plant Extracellular Space

    Science.gov (United States)

    Guerra-Guimarães, Leonor; Pinheiro, Carla; Chaves, Inês; Barros, Danielle R.; Ricardo, Cândido P.

    2016-01-01

    The extracellular space (ECS or apoplast) is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF). The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in “cell wall organization and biogenesis”, “response to stimulus” and “protein metabolism”. It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions. PMID:28248232

  11. Field theory model of brain extracellular matrix

    OpenAIRE

    Molochkov, Alexander; Goy, Vladimir; Tolstonogov, Anton

    2014-01-01

    The perineural net (PNN) is responsible for synaptic stabilization of adult brain. It plays an important role in brain signal processing and non-synaptic signal transfer as well [ 1]. Since it is composed of largely negatively charged chains of disaccharides, it can be easily affected by strong external electromagnetic field irradiated by high-energy particles passing brain tissues. One of the effects of such exposure is a cognitive impairment. Since outside of the Bragg peak area local elect...

  12. Peripersonal space in the brain.

    Science.gov (United States)

    di Pellegrino, Giuseppe; Làdavas, Elisabetta

    2015-01-01

    Research in neuroscience reveals that the brain constructs multiple representation of space. Here, we primarily focus on peripersonal space (PPS) representation, the region of space immediately surrounding our bodies and in which objects can be grasped and manipulated. We review convergent results from several generations of studies, including neurophysiological studies in animals, neuropsychological investigations in monkeys and brain-damaged patients with spatial cognition disorders, as well as recent neuroimaging experiments in neurologically normal individuals. Collectively, these studies show that the primate brain constructs multiple, rapidly modifiable representations of space, centered on different body parts (i.e., hand-centered, head-centered, and trunk-centered), which arise through extensive multisensory interactions within a set of interconnected parietal and frontal regions. PPS representations are pivotal in the sensory guidance of motor behavior, allowing us to interact with objects and, as demonstrated by recent studies, with other people in the space around us.

  13. Intra- and extracellular pH of the brain in vivo studied by 31P-NMR during hyper- and hypocapnia

    DEFF Research Database (Denmark)

    Portman, M A; Lassen, N A; Cooper, T G;

    1991-01-01

    Studies were performed to determine the pH relationships among the extracellular, intracellular, and arterial blood compartments in the brain in vivo. Resolution of the extracellular monophosphate resonance peak from the intracellular peak in 31P nuclear magnetic resonance (NMR) spectra of sheep...... brain with the calvarium intact enabled pH measurement in these respective compartments. Sheep were then subjected to both hyper- and hypoventilation, which resulted in a wide range of arterial PCO2 and pH values. Linear regression analysis of pH in these compartments yielded slopes of 0.56 +/- 0...... of the extracellular space from the vascular space may be a function of the blood-brain barrier, which contributes to the buffering capability of the extracellular compartment. A marked decrease in the pH gradient between the extracellular and intracellular space occurs during hypercarbia and may influence mechanisms...

  14. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  15. Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor.

    Science.gov (United States)

    Wellbourne-Wood, Joel; Rimmele, Theresa S; Chatton, Jean-Yves

    2017-01-01

    Neuronal activity results in the release of [Formula: see text] into the extracellular space (ECS). Classically, measurements of extracellular [Formula: see text] ([Formula: see text]) are carried out using [Formula: see text]-sensitive microelectrodes, which provide a single point measurement with undefined spatial resolution. An imaging approach would enable the spatiotemporal mapping of [Formula: see text]. Here, we report on the design and characterization of a fluorescence imaging-based [Formula: see text]-sensitive nanosensor for the ECS based on dendrimer nanotechnology. Spectral characterization, sensitivity, and selectivity of the nanosensor were assessed by spectrofluorimetry, as well as in both wide-field and two-photon microscopy settings, demonstrating the nanosensor efficacy over the physiologically relevant ion concentration range. Spatial and temporal kinetics of the nanosensor responses were assessed using a localized iontophoretic [Formula: see text] application on a two-photon imaging setup. Using acute mouse brain slices, we demonstrate that the nanosensor is retained in the ECS for extended periods of time. In addition, we present a ratiometric version of the nanosensor, validate its sensitivity in brain tissue in response to elicited neuronal activity and correlate the responses to the extracellular field potential. Together, this study demonstrates the efficacy of the [Formula: see text]-sensitive nanosensor approach and validates the possibility of creating multimodal nanosensors.

  16. Brain extracellular matrix retains connectivity in neuronal networks.

    Science.gov (United States)

    Bikbaev, Arthur; Frischknecht, Renato; Heine, Martin

    2015-09-29

    The formation and maintenance of connectivity are critically important for the processing and storage of information in neuronal networks. The brain extracellular matrix (ECM) appears during postnatal development and surrounds most neurons in the adult mammalian brain. Importantly, the removal of the ECM was shown to improve plasticity and post-traumatic recovery in the CNS, but little is known about the mechanisms. Here, we investigated the role of the ECM in the regulation of the network activity in dissociated hippocampal cultures grown on microelectrode arrays (MEAs). We found that enzymatic removal of the ECM in mature cultures led to transient enhancement of neuronal activity, but prevented disinhibition-induced hyperexcitability that was evident in age-matched control cultures with intact ECM. Furthermore, the ECM degradation followed by disinhibition strongly affected the network interaction so that it strongly resembled the juvenile pattern seen in naïve developing cultures. Taken together, our results demonstrate that the ECM plays an important role in retention of existing connectivity in mature neuronal networks that can be exerted through synaptic confinement of glutamate. On the other hand, removal of the ECM can play a permissive role in modification of connectivity and adaptive exploration of novel network architecture.

  17. Microfluidic partitioning of the extracellular space around single cardiac myocytes.

    Science.gov (United States)

    Klauke, Norbert; Smith, Godfrey L; Cooper, Jonathan M

    2007-02-01

    This paper describes the partitioning of the extracellular space around an electrically activated single cardiac myocyte, constrained within a microfluidic device. Central to this new method is the production of a hydrophobic gap-structure, which divides the extracellular space into two distinct microfluidic pools. The content of these pools was controlled using a pair of concentric automated pipets (subsequently called "dual superfusion pipet"), each providing the ability to dispense (i.e., the source, inner pipet) and aspirate (the sink, outer pipet) a buffer solution (perfusate) into each of the two pools. For rapid solution switching around the cell, additional dual superfusion pipets were inserted into the microchannel for defined time periods using a piezostepper, enabling us to add a test solution, such as a drug. Three distinct areas of the cell were manipulated, namely, the microfluidic environment, the cellular membrane, and the intracellular space. Planar integrated microelectrodes enabled the electrical stimulation of the cardiomyocyte and the recording of the evoked action potential. The device was mounted on an inverted microscope to allow simultaneous sarcomere length and epifluorescence measurements during evoked electrical activity, including, for example, the response of the stimulated end of the cardiac myocyte in comparison with the untreated cell end.

  18. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    Science.gov (United States)

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium concentration and intracellular sodium volume fraction, but not measures of intracellular sodium concentration were correlated with T2-weighted and T1-weighted lesion volumes (0.05 < P < 0.01) and with Expanded Disability Status Scale (P < 0.05). Thus, suggesting that while intracellular sodium volume fraction decrease could

  19. Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn.

    Science.gov (United States)

    Kay, Alan R

    2003-07-30

    Zinc colocalizes with glutamate in the synaptic vesicles of certain glutamatergic vesicles in the mammalian brain. Here, I introduce a method for detecting Zn in the extracellular space of brain slices and another method for detecting the passage of Zn out of the slice. In both cases, the fluorimetric Zn probe FluoZin-3 is used in conjunction with a slow Zn chelator, Ca-EDTA, to reduce background fluorescence. In addition, a new Zn chelator, ethylenediiminodi-2-pentanedioic acid, with little affinity for Ca or Mg is introduced. These tools are then used to show that little Zn (approximately 2 nm) is released during the course of synaptic transmission into the extracellular space. However, when hippocampal slices are subjected to a high potassium stimulus (50 mM) combined with an increase in osmolarity, Zn is externalized in the Timm's-stained areas (approximately 6 nm). This stimulus also leads to even greater Zn elevations in area CA1 that is only weakly stained by the Timm's method. Nevertheless, even under these conditions, little if any Zn makes its way out of the slices. I present evidence for a layer of Zn in the extracellular space that maps onto the Timm's stained region of the hippocampus. This Zn veneer appears to be loosely associated with molecules in the extracellular space and may be the raison d'être for vesicular Zn.

  20. CHARACTERIZATION OF EXTRACELLULAR GABA IN THE SUBSTANTIA-NIGRA-RETICULATA BY MEANS OF BRAIN MICRODIALYSIS

    NARCIS (Netherlands)

    TIMMERMAN, W; ZWAVELING, J; WESTERINK, BHC

    1992-01-01

    Brain microdialysis was used to characterize extracellular gamma-aminobutyric acid (GABA) in the substantia nigra reticulata (SNR) of freely moving rats. The extracellular GABA in the SNR was characterized using acutely implanted probes (4-8 h after surgery; day 1) and chronically implanted probes (

  1. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space

    CERN Document Server

    Bedard, C; Destexhe, A; Bédard, Claude; Kroeger, Helmut; Destexhe, Alain

    2003-01-01

    Extracellular local field potentials (LFP) are usually modeled as arising from a set of current sources embedded in a homogeneous extracellular medium. Although this formalism can successfully model several properties of LFPs, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent attenuation. We first show that, if the extracellular conductivity is non-homogeneous, there is induction of non-homogeneous charge densities which may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical) current source with spherically-symmetric conductivity/permittivity gradients around the source. We analyze the effect of different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple model generally displays low-pass filtering behav...

  2. Extracellular Nucleotides in Exercise: Possible Effect on Brain Metabolism.

    Science.gov (United States)

    Forrester, Tom

    1979-01-01

    A review of experiments which demonstrate the release of ATP from skeletal muscle, cardiac muscle, and active brain tissue. Effects of exogenously applied ATP to brain tissue are discussed in relation to whole body exercise. (Author/SA)

  3. Vesicular mechanisms of traffic of fungal molecules to the extracellular space.

    Science.gov (United States)

    Rodrigues, Marcio L; Franzen, Anderson J; Nimrichter, Leonardo; Miranda, Kildare

    2013-08-01

    Fungal cells are efficient in releasing to the extracellular space molecules that lack typical secretion signals, including cytoplasmic components. Studies developed during the last five years indicate that extracellular vesicle formation is involved in the traffic of these intracellular components to the extracellular space. The cellular origin of these vesicles, however, is still unknown. Here we review the potential mechanisms involved in formation of fungal extracellular vesicles and consequent release of fungal molecules to the outer cellular space. We also propose that these compartments can originate from cytoplasmic subtractions whose formation is dependent on plasma membrane reshaping.

  4. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  5. Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates.

    Science.gov (United States)

    Loryan, Irena; Sinha, Vikash; Mackie, Claire; Van Peer, Achiel; Drinkenburg, Wilhelmus H; Vermeulen, An; Heald, Donald; Hammarlund-Udenaes, Margareta; Wassvik, Carola M

    2015-02-01

    In the present work we sought to gain a mechanistic understanding of the physicochemical properties that influence the transport of unbound drug across the blood-brain barrier (BBB) as well as the intra- and extracellular drug exposure in the brain. Interpretable molecular descriptors that significantly contribute to the three key neuropharmacokinetic properties related to BBB drug transport (Kp,uu,brain), intracellular accumulation (Kp,uu,cell), and binding and distribution in the brain (Vu,brain) for a set of 40 compounds were identified using partial least-squares (PLS) analysis. The tailoring of drug properties for improved brain exposure includes decreasing the polarity and/or hydrogen bonding capacity. The design of CNS drug candidates with intracellular targets may benefit from an increase in basicity and/or the number of hydrogen bond donors. Applying this knowledge in drug discovery chemistry programs will allow designing compounds with more desirable CNS pharmacokinetic properties.

  6. Managing brain extracellular K+ during neuronal activity: The physiological role of the Na+/K+-ATPase subunit isoforms

    Directory of Open Access Journals (Sweden)

    Brian Roland eLarsen

    2016-04-01

    Full Text Available AbstractDuring neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity.Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2 and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood. This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.

  7. Secretion and extracellular space travel of Wnt proteins.

    Science.gov (United States)

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.

  8. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain

    Directory of Open Access Journals (Sweden)

    Ruben Machado

    2016-10-01

    Full Text Available Extracellular potassium concentration, [K+]o, plays a fundamental role in the physiological functions of the brain. Studies investigating changes in [K+]o have predominantly relied upon glass capillary electrodes with K+-sensitive solution gradients for their measurements. However, such electrodes are unsuitable for taking spatio-temporal measurements and are limited by the surface area of their tips. We illustrate seizures invoked chemically and in optogenetically modified mice using blue light exposure while impedimetrically measuring the response. A sharp decrease of 1–2 mM in [K+]o before each spike has shown new physiological events not witnessed previously when measuring extracellular potassium concentrations during seizures in mice. We propose a novel approach that uses multichannel monolayer coated gold microelectrodes for in vivo spatio-temporal measurements of [K+]o in a mouse brain as an improvement to the conventional glass capillary electrode.

  9. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain

    Science.gov (United States)

    Machado, Ruben; Soltani, Nima; Dufour, Suzie; Salam, Muhammad Tariqus; Carlen, Peter L.; Genov, Roman; Thompson, Michael

    2016-01-01

    Extracellular potassium concentration, [K+]o, plays a fundamental role in the physiological functions of the brain. Studies investigating changes in [K+]o have predominantly relied upon glass capillary electrodes with K+-sensitive solution gradients for their measurements. However, such electrodes are unsuitable for taking spatio-temporal measurements and are limited by the surface area of their tips. We illustrate seizures invoked chemically and in optogenetically modified mice using blue light exposure while impedimetrically measuring the response. A sharp decrease of 1–2 mM in [K+]o before each spike has shown new physiological events not witnessed previously when measuring extracellular potassium concentrations during seizures in mice. We propose a novel approach that uses multichannel monolayer coated gold microelectrodes for in vivo spatio-temporal measurements of [K+]o in a mouse brain as an improvement to the conventional glass capillary electrode. PMID:27754393

  10. Brain extracellular matrix meets COST--matrix for European research networks.

    Science.gov (United States)

    Gajović, Srećko; Pochet, Roland

    2014-01-01

    Today's researchers are faced with a change from curiosity-driven to mandate-driven research. These two approaches are well combined within scientific networks (Actions) supported by the European Cooperation in Science and Technology (COST) program. The functioning of COST Actions, although directed only to networking, has a substantial impact on European science and can be compared to the functioning of the extracellular matrix in the brain, which although scarce plays a key role in initiation, maintenance, and plasticity of intercellular interactions in the nervous system. COST networks enable interdisciplinary approach and support early-stage researchers, which is a vital asset for the advancement of science.

  11. Overexpression of Extracellular Superoxide Dismutase Protects against Brain Injury Induced by Chronic Hypoxia

    Science.gov (United States)

    Zaghloul, Nahla; Patel, Hardik; Codipilly, Champa; Marambaud, Philippe; Dewey, Stephen; Frattini, Stephen; Huerta, Patricio T.; Nasim, Mansoor; Miller, Edmund J.; Ahmed, Mohamed

    2014-01-01

    Extracellular superoxide dismutase (EC-SOD) is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1%) for 10 days (H-KI) and compared to transgenic animals housed in room air (RA-KI), wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT). Overall brain metabolism evaluated by positron emission tomography (PET) showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation. PMID:25268361

  12. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Nahla Zaghloul

    Full Text Available Extracellular superoxide dismutase (EC-SOD is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1% for 10 days (H-KI and compared to transgenic animals housed in room air (RA-KI, wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT. Overall brain metabolism evaluated by positron emission tomography (PET showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation.

  13. Extracellular Brain pH and Outcome following Severe Traumatic Brain Injury.

    Science.gov (United States)

    Gupta, Arun K; Zygun, David A; Johnston, Andrew J; Steiner, Luzius A; Al-Rawi, Pippa G; Chatfield, Dot; Shepherd, Edna; Kirkpatrick, Peter J; Hutchinson, Peter J; Menon, David K

    2004-06-01

    The ability to measure brain tissue chemistry has led to valuable information regarding pathophysiological changes in patients with traumatic brain injury (TBI). Over the last few years, the focus has been on monitoring changes in brain tissue oxygen to determine thresholds of ischemia that affect outcome. However, the variability of this measurement suggests that it may not be a robust method. We have therefore investigated the relationship of brain tissue pH (pH(b)) and outcome in patients with TBI. We retrospectively analyzed prospectively collected data of 38 patients admitted to the Neurosciences Critical Care Unit with TBI between 1998 and 2003, and who had a multiparameter tissue gas sensor inserted into the brain. All patients were managed using an evidence-based protocol targeting CPP > 70 mm Hg. Physiological variables were averaged over 4 min and analyzed using a generalized least squares random effects model to determine the temporal profile of pH(b) and its association with outcome. Median (IQR) minimum pH(b) was 7.00 (6.89, 7.08), median (IQR) maximum pH(b) was 7.25 (7.18, 7.33), and median (IQR) patient averaged pH(b) was 7.13 (7.07, 7.17). pH(b) was significantly lower in those who did not survive their hospital stay compared to those that survived. In addition, those with unfavorable neurological outcome had lower pH(b) values than those with favorable neurological outcome. pH(b) differentiated between survivors and non-survivors. Measurement of pH(b) may be a useful indicator of outcome in patients with TBI.

  14. Development of a Rat Plasma and Brain Extracellular Fluid Pharmacokinetic Model for Bupropion and Hydroxybupropion Based on Microdialysis Sampling, and Application to Predict Human Brain Concentrations.

    Science.gov (United States)

    Cremers, Thomas I F H; Flik, Gunnar; Folgering, Joost H A; Rollema, Hans; Stratford, Robert E

    2016-05-01

    Administration of bupropion [(±)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] and its preformed active metabolite, hydroxybupropion [(±)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]-1-propanone], to rats with measurement of unbound concentrations by quantitative microdialysis sampling of plasma and brain extracellular fluid was used to develop a compartmental pharmacokinetics model to describe the blood-brain barrier transport of both substances. The population model revealed rapid equilibration of both entities across the blood-brain barrier, with resultant steady-state brain extracellular fluid/plasma unbound concentration ratio estimates of 1.9 and 1.7 for bupropion and hydroxybupropion, respectively, which is thus indicative of a net uptake asymmetry. An overshoot of the brain extracellular fluid/plasma unbound concentration ratio at early time points was observed with bupropion; this was modeled as a time-dependent uptake clearance of the drug across the blood-brain barrier. Translation of the model was used to predict bupropion and hydroxybupropion exposure in human brain extracellular fluid after twice-daily administration of 150 mg bupropion. Predicted concentrations indicate that preferential inhibition of the dopamine and norepinephrine transporters by the metabolite, with little to no contribution by bupropion, would be expected at this therapeutic dose. Therefore, these results extend nuclear imaging studies on dopamine transporter occupancy and suggest that inhibition of both transporters contributes significantly to bupropion's therapeutic efficacy.

  15. Gas chromatography/tandem mass spectrometry detection of extracellular kynurenine and related metabolites in normal and lesioned rat brain.

    Science.gov (United States)

    Notarangelo, Francesca M; Wu, Hui-Qiu; Macherone, Anthony; Graham, David R; Schwarcz, Robert

    2012-02-15

    We describe here a gas chromatography-tandem mass spectrometry (GC/MS/MS) method for the sensitive and concurrent determination of extracellular tryptophan and the kynurenine pathway metabolites kynurenine, 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN) in rat brain. This metabolic cascade is increasingly linked to the pathophysiology of several neurological and psychiatric diseases. Methodological refinements, including optimization of MS conditions and the addition of deuterated standards, resulted in assay linearity to the low nanomolar range. Measured in samples obtained by striatal microdialysis in vivo, basal levels of tryptophan, kynurenine, and QUIN were 415, 89, and 8 nM, respectively, but 3-HK levels were below the limit of detection (<2 nM). Systemic injection of kynurenine (100 mg/kg, i.p.) did not affect extracellular tryptophan but produced detectable levels of extracellular 3-HK (peak after 2-3 h: ~50 nM) and raised extracellular QUIN levels (peak after 2h: ~105 nM). The effect of this treatment on QUIN, but not on 3-HK, was potentiated in the N-methyl-D-aspartate (NMDA)-lesioned striatum. Our results indicate that the novel methodology, which allowed the measurement of extracellular kynurenine and 3-HK in the brain in vivo, will facilitate studies of brain kynurenines and of the interplay between peripheral and central kynurenine pathway functions under physiological and pathological conditions.

  16. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.

    Science.gov (United States)

    Dietzel, I; Heinemann, U; Lux, H D

    1989-01-01

    The aim of this investigation is to estimate the contribution of spatial glial K+ buffer currents to extracellular K+ homeostasis during enhanced neuronal activity. Neuronal hyperactivity was induced by electrical stimulation of the cortical surface or the ventrobasal thalamic nuclei of cats (5-50 Hz, 0.1-0.2 ms, two to three times threshold stimulation intensity, 5-20 s). The accompanying slow field potential changes were recorded simultaneously across the grey matter with vertical assemblies of eight micropipettes glued 300 microns apart. Using the Poisson equation, the amplitudes of the underlying current sources and sinks were calculated. The current source densities depended on the depth of recording, frequency, strength, and duration of the stimulation. Current sinks, corresponding to a removal of 0.1-0.5 mmoles of monovalent cations per liter of brain tissue and second from the extracellular space, were observed in middle cortical layers, whereas sources appeared at superficial and deeper sites. These sinks and sources might represent K+ moved across glial membranes by spatial buffer currents. The consequences of glial buffer currents of this magnitude were investigated with model calculations. It turned out that measurements of electrolyte and volume changes of the extracellular space (Dietzel et al. Exp. Brain Res. 40:432-439, 1980; Exp. Brain Res. 46:73-84, 1982) could only partially be explained by spatial buffer currents of this magnitude. Comparison of the calculated values with intracellular measurements in neurons and glial cells (Coles et al. Ann. N.Y. Acad. Sci. 481:303-317, 1986; Ballanyi et al. J. Physiol. 382:159-174, 1987) suggests that spatial buffering combines with an approximately equimolar KCl transport and, depending on the preparation, also K+/Na+-exchange across glial membranes.

  17. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    OpenAIRE

    Haqqani Arsalan S; Delaney Christie E; Tremblay Tammy-Lynn; Sodja Caroline; Sandhu Jagdeep K; Stanimirovic Danica B

    2013-01-01

    Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain ...

  18. Brain Machine Interfaces for Robotic Control in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  19. In Vivo Analysis of Extracellular Proteins in Rat Brains with a Newly Developed Intracerebral Microdialysis Probe

    Directory of Open Access Journals (Sweden)

    Nakamura,Mitsuo

    1990-02-01

    Full Text Available Peptides and proteins in the extracellular space in the central nervous system were investigated in vivo using an intracerebral microdialysis probe. The molecular cut-off of the hollow fiber which was used for the probe was approximately 100 kDa. We examined recovery rates of several compounds in vitro. The recovery rates of proteins and peptides were between 7-28%, with the exceptions of substance P and insulin-like growth factor I. The recovery rates of monoamines and their metabolites were 22-40%. In in vivo studies, two major proteins with apparent molecular weights of 62 kDa and 12 kDa, and several minor proteins (28 kDa, 43 kDa, 52 kDa and 70 kDa were detected by SDS-polyacrylamide gel electrophoresis in the dialysate from a probe implanted in the striatum of anesthetized rats. These results suggest that the newly developed, intracerebral microdialysis probe might be useful for investigating the dynamic changes of peptides and proteins in the central nervous system.

  20. Involvement of extracellular signal regulated kinases in traumatic brain injury-induced depression in rodents.

    Science.gov (United States)

    Kuo, Jinn-Rung; Cheng, Yi-Hsuan; Chen, Yi-Shion; Chio, Chung-Ching; Gean, Po-Wu

    2013-07-15

    Traumatic brain injury (TBI) is the most common cause of death and acquired disability among children and young adults in the developed countries. In clinical studies, the incidence of depression is high after TBI, and the mechanisms behind TBI-induced depression remain unclear. In the present study, we subjected rats to a moderate fluid percussion into the closed cranial cavity to induce TBI. After 3 days of recovery, injured rats were given a forced swim test (FST) and novelty-suppressed feeding tests. We found that TBI rats exhibited increased duration of immobility and longer latency to begin chewing food in a new environment compared with sham-operated rats. Western blot analysis showed that TBI led to a decrease in the phosphorylated levels of extracellular signal regulated kinases (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK). Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), significantly reduced the duration of immobility when administered once per day for 14 days. Consistent with behavioral tests, fluoxetine treatment reversed TBI-induced decrease in p-ERK1/2 and p-p38 MAPK levels. Pre-treatment with a selective tryptophan hydroxylase inhibitor para-chlorophenylalanine (PCPA) blocked the antidepressant effect of fluoxetine. PCPA also prevented the effect of fluoxetine on ERK1/2 phosphorylation without affecting p38 MAPK phosphorylation. Pre-treatment with ERK inhibitor SL327 but not p38 MAPK inhibitor SB203580 prevented the antidepressant effect of fluoxetine. These results suggest that ERK1/2 plays a critical role in TBI-induced depression.

  1. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  2. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie Voigt; Hansen, Stine Normann; Tveden-Nyborg, Pernille

    2016-01-01

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical...

  3. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain.

    Science.gov (United States)

    Ramos-Moreno, Tania; Galazo, Maria J; Porrero, Cesar; Martínez-Cerdeño, Verónica; Clascá, Francisco

    2006-01-01

    Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.

  4. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures

    Science.gov (United States)

    Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.

    2004-01-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  5. Quantum processes, space-time representation and brain dynamics

    CERN Document Server

    Roy, Sisir; Roy, Sisir; Kafatos, Menas

    2003-01-01

    The recent controversy of applicability of quantum formalism to brain dynamics has been critically analysed. The prerequisites for any type of quantum formalism or quantum field theory is to investigate whether the anatomical structure of brain permits any kind of smooth geometric notion like Hilbert structure or four dimensional Minkowskian structure for quantum field theory. The present understanding of brain function clearly denies any kind of space-time representation in Minkowskian sense. However, three dimensional space and one time can be assigned to the neuromanifold and the concept of probabilistic geometry is shown to be appropriate framework to understand the brain dynamics. The possibility of quantum structure is also discussed in this framework.

  6. Extracellular vesicles and a novel form of communication in the brain

    Directory of Open Access Journals (Sweden)

    Manuela eBasso

    2016-03-01

    Full Text Available In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.

  7. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  8. ONLINE MONITORING OF EXTRACELLULAR BRAIN GLUCOSE USING MICRODIALYSIS AND A NADPH-LINKED ENZYMATIC ASSAY

    NARCIS (Netherlands)

    VANDERKUIL, JHF; KORF, J

    1991-01-01

    A method to monitor extracellular glucose in freely moving rats, based on intracerebral microdialysis coupled to an enzyme reactor is described. The dialysate is continuously mixed with a solution containing the enzymes hexokinase and glucose-6-phosphate dehydrogenase, and the fluorescence of NADPH

  9. RELATIONSHIP BETWEEN ANALGESIA AND EXTRACELLULAR MORPHINE IN BRAIN AND SPINAL-CORD IN AWAKE RATS

    NARCIS (Netherlands)

    MATES, FF; ROLLEMA, H; TAIWO, YO; LEVINE, JD; BASBAUM, AI

    1995-01-01

    Extracellular concentrations of morphine from the dorsal spinal cord, the periaqueductal gray (FAG) including the dorsal raphe, and the lateral hypothalamus were measured by microdialysis in awake rats after intraperitoneal (i.p.) administration of 2.5, 5.0 and 10 mg/kg morphine. Morphine concentrat

  10. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Gabriella Schiera

    2015-01-01

    Full Text Available Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

  11. Extracellular matrix pleural tent for persistent air leak and air space in a child after upper lobectomy.

    Science.gov (United States)

    McConnell, Patrick I

    2015-01-01

    Creation of a pleural tent is effective in reducing persistent air leaks after pulmonary resection. I report a case of a pleural-like tent being created out of extracellular matrix to treat a persistent air leak in child after upper lobectomy for a large congenital pulmonary airway malformation type II. Over the next year, ipsilateral lung expansion and growth occurred with near complete resolution of the apical air space.

  12. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  13. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  14. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    Science.gov (United States)

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  15. Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders.

    Science.gov (United States)

    Gillet, Virginie; Hunting, Darel John; Takser, Larissa

    2016-09-01

    The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.

  16. In vivo measurement of extravasation of silver nanoparticles into liver extracellular space by push-pull-based continuous monitoring system.

    Science.gov (United States)

    Su, Cheng-Kuan; Hung, Ching-Wen; Sun, Yuh-Chang

    2014-06-05

    With the increasing prevalence of silver nanoparticles (AgNPs) in various products, whether such AgNPs will introduce new injury mechanisms from new pathologies remains to be determined. From the toxicokinetic viewpoint, it is vital to have in-depth knowledge of their in vivo transport kinetics and extravasation phenomenon. By combining push-pull perfusion sampling, in-tube solid phase extraction, and inductively coupled plasma mass spectrometry, we used an in vivo push-pull-based continuous monitoring system to investigate in vivo transport kinetics of extracellular AgNPs in living rat liver with a detection limit and temporal resolution of 0.64μgL(-1) and 10min, respectively. Before administration into living rats, the pre-incubation in DMEM with 10% FBS for 8h was adopted as the optimized exposure condition for the used AgNPs. After repeated-dose treatments, we observed a higher concentration of AgNPs in the liver extracellular space, suggesting that AgNP clearance by the reticuloendothelial system (RES) may be blocked by a prior administration of AgNPs. Future studies on AgNP distribution in different liver compartments (blood stream, extracellular space and Kupffer cells/hepatocytes) are necessary for defining the risks and benefits of AgNP applications.

  17. Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients.

    Science.gov (United States)

    Meyerson, B A; Linderoth, B; Karlsson, H; Ungerstedt, U

    1990-01-01

    Microdialysis in the human brain has been performed for the first time during thalamotomy intended to relieve tremor in patients with Parkinson's disease. The aim was to test the reliability of the microdialysis technique for biochemical characterization of a target area in the human brain during a routine operation. Microdialysis probes were introduced through the same trajectory as the lesioning electrode thus causing no additional damage to the brain. Dopamine, DOPAC, HVA, 5-HIAA, hypoxanthine, inosine, guanosine, adenosine, GABA, taurine, aspartate and glutamate were measured in the perfusate from the target region - the Vim nucleus. The results show initial high levels that reach baseline levels after 10-20 minutes. Surprisingly, consistent and reproducible levels were found, the only exception being one patient on 1-DOPA therapy who had elevated DA and metabolite levels.

  18. Extracellular matrix heparin induces alteration of the cell adhesion during brain development

    NARCIS (Netherlands)

    Ushakova, GA; Nikonenko, IR; Nikonenko, AG; Skibo, GG

    2002-01-01

    The studies of neuronal cell-glycosaminoglycan interactions indicate an increasing interest in the question of how heparin can mediate adhesion properties of the cell. We have found that high levels of both N-CAM concentration and heparin-binding activity were noticed in the early stages of brain fo

  19. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia

    DEFF Research Database (Denmark)

    Astrup, J; Symon, L; Branston, N M;

    1977-01-01

    As shown previously, the electrical function of the brain is critically dependent on cerebral blood flow in the sense that reduction beyond an ischemic threshold of approximately 15 ml/100 gm per minute (approximately 35% of control) in the baboon leads to complete failure of the somatosensory...

  20. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger;

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted...

  1. Involvement of Extracellular Signal Regulated Kinases in Traumatic Brain Injury-Induced Depression in Rodents

    OpenAIRE

    Kuo, Jinn-Rung; Cheng, Yi-Hsuan; Chen, Yi-Shion; Chio, Chung-Ching; Gean, Po-Wu

    2013-01-01

    Traumatic brain injury (TBI) is the most common cause of death and acquired disability among children and young adults in the developed countries. In clinical studies, the incidence of depression is high after TBI, and the mechanisms behind TBI-induced depression remain unclear. In the present study, we subjected rats to a moderate fluid percussion into the closed cranial cavity to induce TBI. After 3 days of recovery, injured rats were given a forced swim test (FST) and novelty-suppressed fe...

  2. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner.

    Science.gov (United States)

    Polanco, Juan Carlos; Scicluna, Benjamin James; Hill, Andrew Francis; Götz, Jürgen

    2016-06-10

    The microtubule-associated protein tau has a critical role in Alzheimer disease and related tauopathies. There is accumulating evidence that tau aggregates spread and replicate in a prion-like manner, with the uptake of pathological tau seeds causing misfolding and aggregation of monomeric tau in recipient cells. Here we focused on small extracellular vesicles enriched for exosomes that were isolated from the brains of tau transgenic rTg4510 and control mice. We found that these extracellular vesicles contained tau, although the levels were significantly higher in transgenic mice that have a pronounced tau pathology. Tau in the vesicles was differentially phosphorylated, although to a lower degree than in the brain cells from which they were derived. Several phospho-epitopes (AT8, AT100, and AT180) thought to be critical for tau pathology were undetected in extracellular vesicles. Despite this, when assayed with FRET tau biosensor cells, extracellular vesicles derived from transgenic mice were capable of seeding tau aggregation in a threshold-dependent manner. We also observed that the dye used to label extracellular vesicle membranes was still present during nucleation and formation of tau inclusions, suggesting either a role for membranes in the seeding or in the process of degradation. Together, we clearly demonstrate that extracellular vesicles can transmit tau pathology. This indicates a role for extracellular vesicles in the transmission and spreading of tau pathology. The characteristics of tau in extracellular vesicles and the seeding threshold we identified may explain why tau pathology develops very slowly in neurodegenerative diseases such as Alzheimer disease.

  3. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner*

    Science.gov (United States)

    Polanco, Juan Carlos; Scicluna, Benjamin James; Hill, Andrew Francis

    2016-01-01

    The microtubule-associated protein tau has a critical role in Alzheimer disease and related tauopathies. There is accumulating evidence that tau aggregates spread and replicate in a prion-like manner, with the uptake of pathological tau seeds causing misfolding and aggregation of monomeric tau in recipient cells. Here we focused on small extracellular vesicles enriched for exosomes that were isolated from the brains of tau transgenic rTg4510 and control mice. We found that these extracellular vesicles contained tau, although the levels were significantly higher in transgenic mice that have a pronounced tau pathology. Tau in the vesicles was differentially phosphorylated, although to a lower degree than in the brain cells from which they were derived. Several phospho-epitopes (AT8, AT100, and AT180) thought to be critical for tau pathology were undetected in extracellular vesicles. Despite this, when assayed with FRET tau biosensor cells, extracellular vesicles derived from transgenic mice were capable of seeding tau aggregation in a threshold-dependent manner. We also observed that the dye used to label extracellular vesicle membranes was still present during nucleation and formation of tau inclusions, suggesting either a role for membranes in the seeding or in the process of degradation. Together, we clearly demonstrate that extracellular vesicles can transmit tau pathology. This indicates a role for extracellular vesicles in the transmission and spreading of tau pathology. The characteristics of tau in extracellular vesicles and the seeding threshold we identified may explain why tau pathology develops very slowly in neurodegenerative diseases such as Alzheimer disease. PMID:27030011

  4. Extracellular signal regulated kinases 1/2 signal pathway and responses of astrocytes after diffuse brain injury

    Institute of Scientific and Technical Information of China (English)

    Jinxing Li; Haimei Zhao; Yu Li; Chong Wang; Jiashan Zhao; Xianli Zhu

    2007-01-01

    BACKGROUND: The treatment of diffuse brain injury during an acute period is focused on relieving degrees of secondary brain injury. Generation and development of pathological changes of secondary brain injury depend on signal conduction, so down-regulating over response of astrocyte through interfering a key link of signal conduction pathway may bring a new thinking for the treatment of diffuse brain injury. OBJECTIVE: To observe the effect of over activity of extracellular signal regulated kinases 1/2 (ERK1/2) signal pathway on the response of astrocyte during an acute period of diffuse brain injury. DESIGN: Completely randomized grouping and controlled animal study.SETTINGS: Department of Neurosurgery, the Third Affiliated Hospital, Nanchang University; Department of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: A total of 158 healthy male SD rats, of 11 weeks old, weighing 320 - 370 g, were provided by Experimental Animal Faulty, Tongji Medical College, Huazhong University of Science and Technology. Rabbit-anti-phosphorylated ERK1/2 (pERKl/2) polyclonal antibody was provided by R&D Company; rabbit-anti-glial fibrillary acidic protein (GFAP) polyclonal antibody, SP immunohistochemical kit and horseradish peroxidase (HRP)-labeled goat-anti-rabbit IgG by Santa Cruz Company; specific inhibitor U0126 of ERK1/2 signal pathway by Alexis Company. METHODS: The experiment was carried out in the Laboratory of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology from September 2004 to March 2006. ①Detection of pERKl/2 expression: A total of 110 rats were randomly divided into sham operation group (n =5), model group (n =35), high-dosage U0126 group (n =35) and low-dosage U0126 group (n =35). Rats in the sham operation group were only treated with incision of epicranium and fixation of backup plate, but not hit. Rats in the model group

  5. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain.

    Science.gov (United States)

    Pachmerhiwala, Rashida; Bhide, Nirmal; Straiko, Megan; Gudelsky, Gary A

    2010-10-10

    The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10mg/kg, i.p.) resulted in a significant and sustained increase of 65-100% in the extracellular concentration of glucose in the striatum, as well as in the prefrontal cortex and hippocampus, and a 35% decrease in brain glycogen content. Peripheral blood glucose was modestly increased by 32% after MDMA treatment. Treatment of rats with fluoxetine (10mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose in the striatum but had no effect on MDMA-induced glycogenolysis or hyperthermia. Treatment with prazosin (1mg/kg, i.p.) did not alter the glucose or glycogen responses to MDMA but completely suppressed MDMA-induced hyperthermia. Finally, propranolol (3mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose and glycogenolysis but did not alter MDMA-induced hyperthermia. The present results suggest that MDMA increases extracellular glucose in multiple brain regions, and that this response involves both serotonergic and noradrenergic mechanisms. Furthermore, beta-adrenergic and alpha-adrenergic receptors appear to contribute to MDMA-induced glycogenolysis and hyperthermia, respectively. Finally, hyperthermia, glycogenolysis and elevated extracellular glucose appear to be independent, unrelated responses to acute MDMA administration.

  6. Comparative pharmacokinetics of tetramethylpyrazine phosphate in rat plasma and extracellular fluid of brain after intranasal, intragastric and intravenous administration

    Directory of Open Access Journals (Sweden)

    Dongmei Meng

    2014-02-01

    Full Text Available The purpose of this study was to compare the pharmacokinetic profiles of tetramethylpyrazine phosphate (TMPP in plasma and extracellular fluid of the cerebral cortex of rats via three delivery routes: intranasal (i.n., intragastric (i.g. and intravenous (i.v. administration. After i.n., i.g. and i.v. administration of a single-dose at 10 mg/kg, cerebral cortex dialysates and plasma samples drawn from the carotid artery were collected at timed intervals. The concentration of TMPP in the samples was analyzed by HPLC. The area under the concentration–time curve (AUC and the ratio of the AUCbrain to the AUCplasma (drug targeting efficiency, DTE was calculated to evaluate the brain targeting efficiency of the drug via these different routes of administration. After i.n. administration, TMPP was rapidly absorbed to reach its peak plasma concentration within 5 min and showed a delayed uptake into cerebral cortex (tmax=15 min. The ratio of the AUCbrain dialysates value between i.n. route and i.v. injection was 0.68, which was greater than that obtained after i.g. administration (0.43. The systemic bioavailability obtained with i.n. administration was greater than that obtained by the i.g. route (86.33% vs. 50.39%, whereas the DTE of the nasal route was 78.89%, close to that of oral administration (85.69%. These results indicate that TMPP is rapidly absorbed from the nasal mucosa into the systemic circulation, and then crosses the blood–brain barrier (BBB to reach the cerebral cortex. Intranasal administration of TMPP could be a promising alternative to intravenous and oral approaches.

  7. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    Science.gov (United States)

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  8. Quantifying the interfibrillar spacing and fibrillar orientation of the aortic extracellular matrix using histology image processing: toward multiscale modeling.

    Science.gov (United States)

    Shahmirzadi, Danial; Bruck, Hugh A; Hsieh, Adam H

    2013-05-01

    An essential part of understanding tissue microstructural mechanics is to establish quantitative measures of the morphological changes. Given the complex, highly localized, and interactive architecture of the extracellular matrix, developing techniques to reproducibly quantify the induced microstructural changes has been found to be challenging. In this paper, a new method for quantifying the changes in the fibrillar organization is developed using histology images. A combinatorial frequency-spatial image processing approach was developed based on the Fourier and Hough transformations of histology images to measure interfibrillar spacing and fibrillar orientation, respectively. The method was separately applied to the inner and outer wall thickness of native- and elastin-isolated aortic tissues under different loading states. Results from both methods were interpreted in a complementary manner to obtain a more complete understanding of morphological changes due to tissue deformations at the microscale. The observations were consistent in quantifying the observed morphological changes during tissue deformations and in explaining such changes in terms of tissue-scale phenomena. The findings of this study could pave the way for more rigorous modeling of structure-property relationships in soft tissues, with implications extendable to cardiovascular constitutive modeling and tissue engineering.

  9. Astrocytic and neuronal accumulation of elevated extracellular K+ with a 2/3 K+/Na+ flux ratio - consequences for energy metabolism, osmolarity and higher brain function

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2013-08-01

    Full Text Available Brain excitation increases neuronal Na+ concentration by 2 major mechanisms: i Na+influx caused by glutamatergic synaptic activity; and ii action-potential-mediateddepolarization by Na+ influx followed by repolarizating K+ efflux, increasingextracellular K+ concentration. This review deals mainly with the latter and it concludesthat clearance of extracellular K+ is initially mainly effectuated by Na+,K+-ATPasemediatedK+ uptake into astrocytes, at K+ concentrations above ~10 mM aided by uptakeof Na+, K+ and 2 Cl- by the cotransporter NKCC1. Since operation of the astrocytic Na+,K+-ATPase requires K+-dependent glycogenolysis for stimulation of the intracellularATPase site, it ceases after normalization of extracellular K+ concentration. This allowsK+ release via the inward rectifying K+ channel Kir1.4, perhaps after trans-astrocyticconnexin- and/or pannexin-mediated K+ transfer, which would be a key candidate fordetermination by synchronization-based computational analysis and may have signalingeffects. Spatially dispersed K+ release would have little effect on extracellular K+concentration and allow K+ accumulation by the less powerful neuronal Na+,K+-ATPase,which is not stimulated by increases in extracellular K+. Since the Na+,K+-ATPaseexchanges 3 Na+ with 2 K+, it creates extracellular hypertonicity and cell shrinkage.Hypertonicity also stimulates NKCC1, which, aided by -adrenergic stimulation of theNa+,K+-ATPase, causes regulatory volume increase, furosemide-inhibited undershoot in[K+]e and perhaps facilitation of the termination of slow neuronal hyperpolarization(sAHP, with behavioral consequences. The ion transport processes involved minimizeionic disequilibria caused by the asymmetric Na+,K+-ATPase fluxes.

  10. Changes in brain glucose use and extracellular ions associated with kainic acid-induced seizures: (/sup 14/C)-2-deoxyglucose and intracranial

    Energy Technology Data Exchange (ETDEWEB)

    Chastain, J.E Jr.

    1986-01-01

    The effect of kainic acid (KA) on brain glucose use with coadministration of diazepam, and the effect of KA on brain extracellular (K/sup +/), Ca/sup 2 +/), and (Na/sup +/) was investigated in rats by means of (/sup 14/C)-2-deoxyglucose (2-DG) and intracranial microdialysis, respectively. Also, the impact of intracranial microdialysis on brain regional metabolic function was studied. Co-treatment with KA and diazepam attenuated KA-induced 3 hr increases and prevented 48 hr decreases in glucose use within all structures measured, particularly the piriform cortex and amygdala. Hippocampal CA/sub 3/, CA/sub 4/, and CA/sub 1/-ventral were least affected by diazepam. The results suggest that diazepam suppresses KA seizure spread from its focus, proposed to be CA/sub 3/. KA-induced ions changes were studied by intracranial microdialysis. Dialysis fibers were implanted within the hippocampus or piriform cortex and perfused 24 hr later. Samples, collected before and after KA, were analyzed for (K/sup +/), (Ca/sup 2 +/), and (Na/sup +/). KA caused an early and prolonged increase in extracellular (K/sup +/) and a negligible decrease in (Ca/sup 2 +/) within the hippocampus. In the piriform cortex, both (K/sup +/) and (Na/sup +/) increase during a period of early seizure signs. The results indicate that ion homostatic control of ion levels is better maintained during parenteral KA-induced seizures than when the brain is activated locally or during ischemia/hypoxia. The effect of intracranial microdialysis was studied by means of 2-DG in control state and KA-induced seizure state. The results indicate that intracranial microdialysis alters brain metabolic function during KA-induced seizures, but not in the control state. At 3 hr post KA, seizure metabolic activity was enhanced within the piriform cortex, and attenuated within the hippocampus.

  11. Impedance recordings to determine change in extracellular volume in the brain following cardiac arrest in broiler chickens

    NARCIS (Netherlands)

    Ruis-Heutinck, LFM; Savenije, B; Postema, F; Van Voorst, A; Lambooij, E; Korf, J

    1998-01-01

    The present study describes a method to determine the onset and development of brain damage in broiler chickens. Exsanguination disrupts the brain metabolism and causes the brain to become ischemic. Energy-requiring systems in the cell membrane fail, which results in an ionic shift over the membrane

  12. Waxholm Space atlas of the Sprague Dawley rat brain

    OpenAIRE

    Papp, Eszter A.; Trygve B. Leergaard; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.

    2014-01-01

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in ...

  13. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers.

    Science.gov (United States)

    Xiao, F; Hrabetová, S

    2009-06-16

    Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and a real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (alpha) in the neocortex of AQP4(-/-) mice compared to AQP4(+/+) mice but no change in the hindrance imposed to diffusing molecules (tortuosity lambda). In contrast, other diffusion studies employing large molecules (dextran polymers) and a fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10%-20% in lambda in the neocortex of AQP4(-/-) mice. These conflicting findings on lambda would imply that large molecules diffuse more readily in the enlarged ECS of AQP4(-/-) mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (molecular weight [MW] 547, lambda(AF)) and two large dextran polymers (MW 3000, lambda(dex3) and MW 75,000, lambda(dex75)) in the in vitro neocortex of AQP4(+/+) and AQP4(-/-) mice. We found that lambda(AF)=1.59, lambda(dex3)=1.76 and lambda(dex75)=2.30 obtained in AQP4(-/-) mice were not significantly different from lambda(AF)=1.61, lambda(dex3)=1.76, and lambda(dex75)=2.33 in AQP4(+/+) mice. These IOI results demonstrate that lambda measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4(-/-) mice compared to values in AQP4(+/+) mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure.

  14. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry.

  15. The Drug-Drug Effects of Rhein on the Pharmacokinetics and Pharmacodynamics of Clozapine in Rat Brain Extracellular Fluid by In Vivo Microdialysis.

    Science.gov (United States)

    Hou, Mei-Ling; Lin, Chi-Hung; Lin, Lie-Chwen; Tsai, Tung-Hu

    2015-10-01

    Clozapine, an atypical antipsychotic agent, is highly effective in treatment-resistant schizophrenia; however, its major side effect is constipation. Instead of laxatives, rhein is a pharmacologically active component found in Rheum palmatum L., a medicinal herbal remedy for constipation. The purpose of this study is to determine whether rhein impacts the pharmacokinetics (PK) and pharmacodynamics (PD) of clozapine in brain when used to relieve clozapine-induced constipation. Here, we have investigated not only the PK of clozapine in blood but also the effects of rhein on the PK of clozapine in blood and in brain extracellular fluid together with the PD effects on neurotransmitters in extracellular fluid. The concentrations of clozapine and norclozapine in biologic samples were measured by ultra-performance liquid chromatography-tandem mass spectrometry. The drug-drug effects of rhein on extracellular neurotransmitter efflux in the rat medial prefrontal cortex (mPFC) produced by clozapine were assayed by high-performance liquid chromatography-electrochemical detection. The results demonstrate that the clozapine PK was nonlinear. Pretreatment with rhein for 7 days increased the total blood concentration of clozapine, but significantly reduced the unbound clozapine concentrations in the mPFC by approximately 3-fold. Furthermore, 7 days of rhein pretreatment thoroughly abolished the efflux of dopamine and its metabolite (3,4-dihydroxyphenylacetic acid) and altered the profile of homovanillic acid, another metabolite of dopamine, in the mPFC. In conclusion, rhein was found to substantially decrease clozapine and norclozapine concentrations in the mPFC dialysate, and this is accompanied by lower concentrations in the neurotransmitters in the same biophase. These findings suggest that a detailed clinical study for drug-drug interactions is recommended.

  16. Fresh-frozen plasma resuscitation after traumatic brain injury and shock attenuates extracellular nucleosome levels and deoxyribonuclease 1 depletion

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Oklu, Rahmi;

    2013-01-01

    Traumatic brain injury and shock are among the leading causes of trauma-related mortality. We have previously shown that fresh-frozen plasma (FFP) resuscitation reduces the size of brain lesion and associated swelling compared with crystalloids. We hypothesized that this effect would be associated...

  17. Perivascular Spaces--MRI Marker of Inflammatory Activity in the Brain?

    Science.gov (United States)

    Wuerfel, Jens; Haertle, Mareile; Waiczies, Helmar; Tysiak, Eva; Bechmann, Ingo; Wernecke, Klaus D.; Zipp, Frauke; Paul, Friedemann

    2008-01-01

    The Virchow-Robin spaces (VRS), perivascular compartments surrounding small blood vessels as they penetrate the brain parenchyma, are increasingly recognized for their role in leucocyte trafficking as well as for their potential to modulate immune responses. In the present study, we investigated VRS numbers and volumes in different brain regions…

  18. Brain-machine interfaces for space applications-research, technological development, and opportunities.

    Science.gov (United States)

    Summerer, Leopold; Izzo, Dario; Rossini, Luca

    2009-01-01

    Recent advances in brain research and brain-machine interfaces suggest these devices could play a central role in future generation computer interfaces. Successes in the use of brain machine interfaces for patients affected by motor paralysis, as well as first developments of games and gadgets based on this technology have matured the field and brought brain-machine interfaces to the brink of more general usability and eventually of opening new markets. In human space flight, astronauts are the most precious "payload" and astronaut time is extremely valuable. Astronauts operate under difficult and unusual conditions since the absence of gravity renders some of the very simple tasks tedious and cumbersome. Therefore, computer interfaces are generally designed for safety and functionality. All improvements and technical aids to enhance their functionality and efficiency, while not compromising safety or overall mass requirements, are therefore of great interest. Brain machine interfaces show some interesting properties in this respect. It is however not obvious that devices developed for functioning on-ground can be used as hands-free interfaces for astronauts. This chapter intends to highlight the research directions of brain machine interfaces with the perceived highest potential impact on future space applications, and to present an overview of the long-term plans with respect to human space flight. We conclude by suggesting research and development steps considered necessary to include brain-machine interface technology in future architectures for human space flight.

  19. Segmentation of brain structures in presence of a space-occupying lesion.

    Science.gov (United States)

    Pollo, Claudio; Cuadra, Meritxell Bach; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2005-02-15

    Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.

  20. Inhibition of Brain Swelling after Ischemia-Reperfusion by β-Adrenergic Antagonists: Correlation with Increased K+ and Decreased Ca2+ Concentrations in Extracellular Fluid

    Directory of Open Access Journals (Sweden)

    Dan Song

    2014-01-01

    Full Text Available Infarct size and brain edema following ischemia/reperfusion are reduced by inhibitors of the Na+, K+, 2Cl−, and water cotransporter NKCC1 and by β1-adrenoceptor antagonists. NKCC1 is a secondary active transporter, mainly localized in astrocytes, driven by transmembrane Na+/K+ gradients generated by the Na+,K+-ATPase. The astrocytic Na+,K+-ATPase is stimulated by small increases in extracellular K+ concentration and by the β-adrenergic agonist isoproterenol. Larger K+ increases, as occurring during ischemia, also stimulate NKCC1, creating cell swelling. This study showed no edema after 3 hr medial cerebral artery occlusion but pronounced edema after 8 hr reperfusion. The edema was abolished by inhibitors of specifically β1-adrenergic pathways, indicating failure of K+-mediated, but not β1-adrenoceptor-mediated, stimulation of Na+,K+-ATPase/NKCC1 transport during reoxygenation. Ninety percent reduction of extracellular Ca2+ concentration occurs in ischemia. Ca2+ omission abolished K+ uptake in normoxic cultures of astrocytes after addition of 5 mM KCl. A large decrease in ouabain potency on K+ uptake in cultured astrocytes was also demonstrated in Ca2+-depleted media, and endogenous ouabains are needed for astrocytic K+ uptake. Thus, among the ionic changes induced by ischemia, the decrease in extracellular Ca2+ causes failure of the high-K+-stimulated Na+,K+-ATPase/NKCC1 ion/water uptake, making β1-adrenergic activation the only stimulus and its inhibition effective against edema.

  1. Brain in Space: A Teacher's Guide with Activities for Neuroscience

    Science.gov (United States)

    Sullivan, Walter W., Jr.

    1998-01-01

    The lessons and activities in this guide will engage your students in the excitement of space life science investigations after the Neurolab Spacelab mission. It is the authors' goal that the information in this guide will inspire both you and your students to become interested and active participants in this space mission. Few experiences can compare with the excitement and thrill of watching a Shuttle launch. This guide provides an opportunity for you and your students to go one step further by conducting the experiments on Earth that are relevent to the research conducted in space.

  2. Changes in Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to Nerve Against in Freely Moving Guinea Pigs

    Science.gov (United States)

    2010-01-01

    was drawn using the toe nail clip method (VallejO-Freire 1951) for determination of baseline AChE activity. The animal was then placed in an...Groothuis DR, Ward S, Schlageter KE, Itskovich AC, Schwerin SC, Allen CV; Dills C, Levy RM. 1998. Changes in blood-brain barrier permeability asso- ciated

  3. Small-Animal PET Study of Adenosine A(1) Receptors in Rat Brain : Blocking Receptors and Raising Extracellular Adenosine

    NARCIS (Netherlands)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A.; Kwizera, Chantal; Sijbesma, Jurgen W. A.; Ishiwata, Kiichi; Willemsen, Antoon T. M.; Elsinga, Philip H.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2011-01-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-C-11-methyl-3-propyl-xanthine (C-11-MPDX) and PET. This study aims to test whether C-11-MPDX c

  4. SIMULTANEOUS MEASUREMENT OF EXTRACELLULAR MORPHINE AND SEROTONIN IN BRAIN-TISSUE AND CSF BY MICRODIALYSIS IN AWAKE RATS

    NARCIS (Netherlands)

    MATOS, FF; ROLLEMA, H; BASBAUM, AI

    1992-01-01

    In this report, we describe an HPLC with electrochemical detection assay for the simultaneous measurement of levels of morphine, serotonin, 5-hydroxyindole-3-acetic acid, and homovanillic acid in dialysates of various brain areas and CSF in the awake rat. Morphine could be detected in the dialysates

  5. Cenicriviroc blocks HIV entry but does not lead to redistribution of HIV into extracellular space like maraviroc

    Directory of Open Access Journals (Sweden)

    Victor Kramer

    2014-11-01

    , while in vitro analysis showed that CVC-treated cells do not repel virus back into the extracellular space, as seen with MVC. Experiments are underway to determine whether or not interactions between CVC and HIV at the binding site may explain these unanticipated findings.

  6. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier.

    Science.gov (United States)

    Menezes, Michael J; McClenahan, Freyja K; Leiton, Cindy V; Aranmolate, Azeez; Shan, Xiwei; Colognato, Holly

    2014-11-12

    Laminins are major constituents of the gliovascular basal lamina of the blood-brain barrier (BBB); however, the role of laminins in BBB development remains unclear. Here we report that Lama2(-/-) mice, lacking expression of the laminin α2 subunit of the laminin-211 heterotrimer expressed by astrocytes and pericytes, have a defective BBB in which systemically circulated tracer leaks into the brain parenchyma. The Lama2(-/-) vascular endothelium had significant abnormalities, including altered integrity and composition of the endothelial basal lamina, inappropriate expression of embryonic vascular endothelial protein MECA32, substantially reduced pericyte coverage, and tight junction abnormalities. Additionally, astrocytic endfeet were hypertrophic and lacked appropriately polarized aquaporin4 channels. Laminin-211 appears to mediate these effects at least in part by dystroglycan receptor interactions, as preventing dystroglycan expression in neural cells led to a similar set of BBB abnormalities and gliovascular disturbances, which additionally included perturbed vascular endothelial glucose transporter-1 localization. These findings provide insight into the cell and molecular changes that occur in congenital muscular dystrophies caused by Lama2 mutations or inappropriate dystroglycan post-translational modifications, which have accompanying brain abnormalities, including seizures. Our results indicate a novel role for laminin-dystroglycan interactions in the cooperative integration of astrocytes, endothelial cells, and pericytes in regulating the BBB.

  7. Modelling Human Cortical Network in Real Brain Space

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; FENG Hong-Bo; TANG Yi-Yuan

    2007-01-01

    Highly specific structural organization is of great significance in the topology of cortical networks.We introduce a human cortical network model.taking the specific cortical structure into account,in which nodes are brain sites placed in the actual positions of cerebral cortex and the establishment of edges depends on the spatial path length rather than the linear distance.The resulting network exhibits the essential features of cortical connectivity,properties of small-world networks and multiple clusters structure.Additionally.assortative mixing is also found in this roodel.All of these findings may be attributed to the spedtic cortical architecture.

  8. The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space

    Directory of Open Access Journals (Sweden)

    Schiller Madlen

    2012-07-01

    Full Text Available Abstract Background The two highly similar Arabidopsis apyrases AtAPY1 and AtAPY2 were previously shown to be involved in plant growth and development, evidently by regulating extracellular ATP signals. The subcellular localization of AtAPY1 was investigated to corroborate an extracellular function. Results Transgenic Arabidopsis lines expressing AtAPY1 fused to the SNAP-(O6-alkylguanine-DNA alkyltransferase-tag were used for indirect immunofluorescence and AtAPY1 was detected in punctate structures within the cell. The same signal pattern was found in seedlings stably overexpressing AtAPY1-GFP by indirect immunofluorescence and live imaging. In order to identify the nature of the AtAPY1-positive structures, AtAPY1-GFP expressing seedlings were treated with the endocytic marker stain FM4-64 (N-(3-triethylammoniumpropyl-4-(p-diethylaminophenyl-hexatrienyl-pyridinium dibromide and crossed with a transgenic line expressing the trans-Golgi marker Rab E1d. Neither FM4-64 nor Rab E1d co-localized with AtAPY1. However, live imaging of transgenic Arabidopsis lines expressing AtAPY1-GFP and either the fluorescent protein-tagged Golgi marker Membrin 12, Syntaxin of plants 32 or Golgi transport 1 protein homolog showed co-localization. The Golgi localization was confirmed by immunogold labeling of AtAPY1-GFP. There was no indication of extracellular AtAPY1 by indirect immunofluorescence using antibodies against SNAP and GFP, live imaging of AtAPY1-GFP and immunogold labeling of AtAPY1-GFP. Activity assays with AtAPY1-GFP revealed GDP, UDP and IDP as substrates, but neither ATP nor ADP. To determine if AtAPY1 is a soluble or membrane protein, microsomal membranes were isolated and treated with various solubilizing agents. Only SDS and urea (not alkaline or high salt conditions were able to release the AtAPY1 protein from microsomal membranes. Conclusions AtAPY1 is an integral Golgi protein with the substrate specificity typical for Golgi apyrases. It is

  9. Quantum turing machine and brain model represented by Fock space

    Science.gov (United States)

    Iriyama, Satoshi; Ohya, Masanori

    2016-05-01

    The adaptive dynamics is known as a new mathematics to treat with a complex phenomena, for example, chaos, quantum algorithm and psychological phenomena. In this paper, we briefly review the notion of the adaptive dynamics, and explain the definition of the generalized Turing machine (GTM) and recognition process represented by the Fock space. Moreover, we show that there exists the quantum channel which is described by the GKSL master equation to achieve the Chaos Amplifier used in [M. Ohya and I. V. Volovich, J. Opt. B 5(6) (2003) 639., M. Ohya and I. V. Volovich, Rep. Math. Phys. 52(1) (2003) 25.

  10. The amusic brain: lost in music, but not in space.

    Directory of Open Access Journals (Sweden)

    Barbara Tillmann

    Full Text Available Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1 and a mental rotation task (Experiment 2. Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.

  11. The amusic brain: lost in music, but not in space.

    Science.gov (United States)

    Tillmann, Barbara; Jolicoeur, Pierre; Ishihara, Masami; Gosselin, Nathalie; Bertrand, Olivier; Rossetti, Yves; Peretz, Isabelle

    2010-04-21

    Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.

  12. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed.

  13. Exercise pre‑conditioning alleviates brain damage via excitatory amino acid transporter 2 and extracellular signal‑regulated kinase 1/2 following ischemic stroke in rats.

    Science.gov (United States)

    Wang, Xiao; Zhang, Min; Feng, Rui; Li, Wen-Bin; Ren, Shi-Qing; Zhang, Feng

    2015-02-01

    Previous studies have reported that physical exercise may exert a neuroprotective effect in humans as well as animals. However, the detailed mechanisms underlying the neuroprotective effect of exercise has remained to be elucidated. The aim of the present study was to explore the possible signaling pathways involved in the protective effect of pre‑ischemic treadmill training for ischemic stroke in rats. A total of 36 male Sprague‑Dawley rats were divided at random into three groups as follows (n=12 for each): Sham surgery group; middle cerebral artery occlusion (MCAO) group; and exercise with MCAO group. Following treadmill training for three weeks, the middle cerebral artery was occluded for 90 min in order to induce ischemic stroke, followed by reperfusion. Following 24 h post‑reperfusion, six rats from each group were assessed for neurological deficits and then sacrificed to calculate the infarct volume. The remaining rats (n=6 for each group) were sacrificed and the expression levels of excitatory amino acid transporter 2 (EAAT‑2) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blot analysis. The results of the present study demonstrated that rats that underwent pre‑ischemic exercise intervention had a significantly decreased brain infarct volume and neurological deficits; in addition, the pre‑ischemic exercise group showed decreased overexpression of phosphorylated ERK1/2 and increased expression of EAAT‑2 following ischemic stroke. In conclusion, treadmill training exercise prior to ischemic stroke alleviated brain damage in rats via regulation of EAAT‑2 and ERK1/2.

  14. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    Science.gov (United States)

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  15. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    Directory of Open Access Journals (Sweden)

    Adrián Ponce-Alvarez

    2015-08-01

    Full Text Available How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  16. Extracellular cadmium in the bronchoalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation

    Directory of Open Access Journals (Sweden)

    Sundblad BM

    2016-05-01

    Full Text Available Britt-Marie Sundblad,1,* Jie Ji,1,* Bettina Levänen,1 Klara Midander,2 Anneli Julander,2 Kjell Larsson,1 Lena Palmberg,1 Anders Lindén1 1Unit for Lung and Airway Research, 2Unit for Occupational and Environmental Dermatology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden *These authors contributed equally to this work Abstract: Tobacco contains cadmium, and this metal has been attributed a causative role in pulmonary emphysema among smokers, although extracellular cadmium has not to date been quantified in the bronchoalveolar space of tobacco smokers with or without COPD. We determined whether cadmium is enhanced in the bronchoalveolar space of long-term tobacco smokers with or without COPD in vivo, its association with inflammation, and its effect on chemokine release in macrophage-like cells in vitro. Bronchoalveolar lavage (BAL, sputum, and blood samples were collected from current, long-term smokers with and without COPD and from healthy nonsmokers. Cadmium concentrations were determined in cell-free BAL fluid using inductively coupled plasma mass spectrometry. Blood monocyte-derived macrophages were exposed to cadmium chloride in vitro. Depending upon the type of sample, molecular markers of inflammation were quantified either as protein (enzyme-linked immunosorbent assay or as mRNA (real-time polymerase chain reaction. Cadmium concentrations were markedly increased in cell-free BAL fluid of smokers compared to that of nonsmokers (n=19–29; P<0.001, irrespective of COPD. In these smokers, the measured cadmium displayed positive correlations with macrophage TNF-α mRNA in BAL, neutrophil and CD8+ cell concentrations in blood, and finally with IL-6, IL-8, and MMP-9 protein in sputum (n=10–20; P<0.05. The cadmium chloride exposure caused a concentration-dependent increase in extracellular IL-8 protein in monocyte-derived macrophages in vitro. In conclusion, extracellular cadmium is enhanced in the

  17. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients

    Science.gov (United States)

    Lázaro-Ibáñez, Elisa; Peris-Celda, María; Alonso, Marta M.; Guzmán-De-Villoria, Juan; Fernández-Carballal, Carlos; de Mendivil, Ana Ortiz; García-Duque, Sara; Escobedo-Lucea, Carmen; Prat-Acín, Ricardo; Belda-Iniesta, Cristóbal; Ayuso-Sacido, Angel

    2017-01-01

    Tumor-cell-secreted extracellular vesicles (EVs) can cross the disrupted blood-brain barrier (BBB) into the bloodstream. However, in certain gliomas, the BBB remains intact, which might limit EVs release. To evaluate the ability of tumor-derived EVs to cross the BBB, we used an orthotopic xenotransplant mouse model of human glioma-cancer stem cells featuring an intact BBB. We demonstrated that all types of tumor cells-derived EVs−apoptotic bodies, shedding microvesicles and exosomes−cross the intact BBB and can be detected in the peripheral blood, which provides a minimally invasive method for their detection compared to liquid biopsies obtained from cerebrospinal fluid (CSF). Furthermore, these EVs can be readily distinguished from total murine EVs, since they carry human-specific DNA sequences relevant for GBM biology. In a small cohort of glioma patients, we finally demonstrated that peripheral blood EVs cargo can be successfully used to detect the presence of IDH1G395A, an essential biomarker in the current management of human glioma PMID:27902458

  18. UV-B Exposure Affects the Biosynthesis of Microcystin in Toxic Microcystis aeruginosa Cells and Its Degradation in the Extracellular Space.

    Science.gov (United States)

    Yang, Zhen; Kong, Fanxiang

    2015-10-20

    Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by cyanobacteria that can be toxic to aquatic and terrestrial organisms. MC synthesis and degradation are thought to be influenced by several different physical and environmental parameters. In this study, the effects of different intensities of UV-B radiation on MC biosynthesis in Microcystis cells and on its extracellular degradation were investigated by mRNA analysis and degradation experiments. Exposure to UV-B at intensities of 1.02 and 1.45 W/m² not only remarkably inhibited the growth of Microcystis, but also led to a decrease in the MC concentration. In addition, mcyD transcription was decreased under the same UV-B intensities. These results demonstrated that the effects of UV-B exposure on the biosynthesis of MCs in Microcystis cells could be attributed to the regulation of mcy gene transcription. Moreover, the MC concentration was decreased significantly after exposure to different intensities of UV-B radiation. Of the three MC variants (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine), MC-LR and MC-YR were sensitive to UV-B radiation, whereas MC-RR was not. In summary, our results showed that UV-B radiation had a negative effect on MC production in Microcystis cells and MC persistence in the extracellular space.

  19. UV-B Exposure Affects the Biosynthesis of Microcystin in Toxic Microcystis aeruginosa Cells and Its Degradation in the Extracellular Space

    Directory of Open Access Journals (Sweden)

    Zhen Yang

    2015-10-01

    Full Text Available Microcystins (MCs are cyclic hepatotoxic heptapeptides produced by cyanobacteria that can be toxic to aquatic and terrestrial organisms. MC synthesis and degradation are thought to be influenced by several different physical and environmental parameters. In this study, the effects of different intensities of UV-B radiation on MC biosynthesis in Microcystis cells and on its extracellular degradation were investigated by mRNA analysis and degradation experiments. Exposure to UV-B at intensities of 1.02 and 1.45 W/m2 not only remarkably inhibited the growth of Microcystis, but also led to a decrease in the MC concentration. In addition, mcyD transcription was decreased under the same UV-B intensities. These results demonstrated that the effects of UV-B exposure on the biosynthesis of MCs in Microcystis cells could be attributed to the regulation of mcy gene transcription. Moreover, the MC concentration was decreased significantly after exposure to different intensities of UV-B radiation. Of the three MC variants (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine, MC-LR and MC-YR were sensitive to UV-B radiation, whereas MC-RR was not. In summary, our results showed that UV-B radiation had a negative effect on MC production in Microcystis cells and MC persistence in the extracellular space.

  20. Antioxidant effect of hyaluronan on polymorphonuclear leukocyte-derived reactive oxygen species is dependent on its molecular weight and concentration and mainly involves the extracellular space

    Directory of Open Access Journals (Sweden)

    Rafał Krasiński

    2009-05-01

    Full Text Available Introduction: Hyaluronan (HA, a component of the extracellular matrix, may regulate immune cell functions through its interactions with cellular receptors. Besides its effect on cytokine and chemokine production, its antioxidant properties have been described. However, the mechanisms of this are not fully elucidated. The aim of this study was to evaluate the relationship between HA concentration and molecular weight and its antioxidant properties towards human neutrophils. Also assessed was whether the antioxidant effect of HA is connected with a reduction in intracellular oxygen potential, which could indicate its direct effect on neutrophil respiratory burst.Materials/Methods: The relationship between HA’s antioxidant properties and its concentration and molecular weight was assessed by the luminol-enhanced chemiluminescence method (CL. To evaluate the effect of HA on intracellular oxygen potential selectively, the dihydrorhodamine 123 (DHR123 flow cytometric method was used.Results: Reduction of both HA molecular weight and its concentration decreased its antioxidant properties in the CL method. A selective effect of HA on intracellular oxygen potential measured by the DHR123 method was not shown.Conclusions: The antioxidant properties of HA are related to both its molecular weight and its concentration. The lack of an antioxidant effect of HA in the DHR123 test compared with a significant reduction in CL values at the same HA concentration suggests that HA acts mainly as a chemical ROI scavenger in the extracellular space.

  1. Extracellular brain pH with or without hypoxia is a marker of profound metabolic derangement and increased mortality after traumatic brain injury

    Science.gov (United States)

    Timofeev, Ivan; Nortje, Jurgens; Al-Rawi, Pippa G; Hutchinson, Peter JA; Gupta, Arun K

    2013-01-01

    Cerebral hypoxia and acidosis can follow traumatic brain injury (TBI) and are associated with increased mortality. This study aimed to evaluate a relationship between reduced pHbt and disturbances of cerebral metabolism. Prospective data from 56 patients with TBI, receiving microdialysis and Neurotrend monitoring, were analyzed. Four tissue states were defined based on pHbt and PbtO2: 1—low PbtO2/pHbt, 2—low pHbt/normal PbtO2, 3—normal pHbt/low PbtO2, and 4—normal pHbt/PbtO2). Microdialysis values were compared between the groups. The relationship between PbtO2 and lactate/pyruvate (LP) ratio was evaluated at different pHbt levels. Proportional contribution of each state was evaluated against mortality. As compared with the state 4, the state 3 was not different, the state 2 exhibited higher levels of lactate, LP, and glucose and the state 1—higher LP and reduced glucose (P<0.001). A significant negative correlation between LP and PbtO2 (rho=−0.159, P<0.001) was stronger at low pHbt (rho=−0.201, P<0.001) and nonsignificant at normal pHbt (P=0.993). The state 2 was a significant discriminator of mortality categories (P=0.031). Decreased pHbt is associated with impaired metabolism. Measuring pHbt with PbtO2 is a more robust way of detecting metabolic derangements. PMID:23232949

  2. Efficacy of head space solid-phase microextraction coupled to gas chromatography-mass spectrometry method for determination of the trace extracellular hydrocarbons of cyanobacteria.

    Science.gov (United States)

    Guan, Wenna; Zhu, Tao; Wang, Yuejie; Zhang, Zhongyi; Jin, Zhao; Wang, Cong; Bai, Fali

    2016-09-01

    Hydrocarbons are widespread in cyanobacteria, and the biochemical synthetic pathways were recently identified. Intracellular fatty alka(e)nes of cyanobacteria have been detected by liquid-liquid extraction (LLE) coupled to gas chromatography-mass spectrometry (GC/MS). However, whether fatty alka(e)nes can be released to cyanobacterial culture media remains to be clarified. This work develops a sensitive method for analyzing the trace level of extracellular hydrocarbons in cyanobacterial culture media by head space solid-phase microextraction (HS-SPME) coupled to GC/MS. Headspace (HS) extraction mode using polydimethylsiloxane fiber to extract for 30min at 50°C was employed as the optimal extraction conditions. Five cyanobacterial fatty alka(e)nes analogs including pentadecene (C15:1), pentadecane (C15:0), heptadecene (C17:1), heptadecane (C17:0), nonadecane (C19:0) were analyzed, and the data obtained from HS-SPME-GC/MS method were quantified using internal standard peak area comparisons. Limits of detection (LOD), limits of quantitation (LOQ), linear dynamic range, precisions (RSD) and recovery for the analysis of extracellular fatty alka(e)nes of cyanobacteria by HS-SPME-GC/MS were evaluated. The LODs limits of detection (S/N = 3) varied from 10 to 21 ng L-1. The correlation coefficients (r) of the calibration curves ranged from 0.9873 to 0.9977 with a linearity from 0.1 to 50 μg L-1. The RSD values were ranging from 7.8 to 14.0% and from 4.0 to 8.8% at 1.0 μg L-1 and 10.0 μg L-1 standard solutions, respectively. Comparative analysis of extracellular fatty alka(e)nes in the culture media of model cyanobacteria Synechocystis sp. PCC 6803 demonstrated that sensitivity of HS-SPME-GC/MS method was significantly higher than LLE method. Finally, we found that heptadecane can be released into the culture media of Synechocystis sp. PCC 6803 at the later growth period.

  3. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning

    DEFF Research Database (Denmark)

    Andersen, F; Watanabe, Hideaki; Bjarkam, Carsten;

    2005-01-01

    developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland...

  4. The perception of peripersonal space in right and left brain damage hemiplegic patients.

    Science.gov (United States)

    Bartolo, Angela; Carlier, Mauraine; Hassaini, Sabrina; Martin, Yves; Coello, Yann

    2014-01-01

    Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere (RH) in motor planning and of the left hemisphere (LH) in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH) or right (RH) hemisphere and eight matched healthy controls performed a color discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the color discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH) or to the healthy arm (RH). Moreover, RH group showed longer response times in the reachability judgment task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that RH damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of peripersonal space.

  5. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  6. Detail-preserving construction of neonatal brain atlases in space-frequency domain.

    Science.gov (United States)

    Zhang, Yuyao; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang

    2016-06-01

    Brain atlases are commonly utilized in neuroimaging studies. However, most brain atlases are fuzzy and lack structural details, especially in the cortical regions. This is mainly caused by the image averaging process involved in atlas construction, which often smoothes out high-frequency contents that capture fine anatomical details. Brain atlas construction for neonatal images is even more challenging due to insufficient spatial resolution and low tissue contrast. In this paper, we propose a novel framework for detail-preserving construction of population-representative atlases. Our approach combines spatial and frequency information to better preserve image details. This is achieved by performing atlas construction in the space-frequency domain given by wavelet transform. In particular, sparse patch-based atlas construction is performed in all frequency subbands, and the results are combined to give a final atlas. For enhancing anatomical details, tissue probability maps are also used to guide atlas construction. Experimental results show that our approach can produce atlases with greater structural details than existing atlases. Hum Brain Mapp 37:2133-2150, 2016. © 2016 Wiley Periodicals, Inc.

  7. Interaction patterns of brain activity across space, time and frequency. Part I: methods

    CERN Document Server

    Pascual-Marqui, Roberto D

    2011-01-01

    We consider exploratory methods for the discovery of cortical functional connectivity. Typically, data for the i-th subject (i=1...NS) is represented as an NVxNT matrix Xi, corresponding to brain activity sampled at NT moments in time from NV cortical voxels. A widely used method of analysis first concatenates all subjects along the temporal dimension, and then performs an independent component analysis (ICA) for estimating the common cortical patterns of functional connectivity. There exist many other interesting variations of this technique, as reviewed in [Calhoun et al. 2009 Neuroimage 45: S163-172]. We present methods for the more general problem of discovering functional connectivity occurring at all possible time lags. For this purpose, brain activity is viewed as a function of space and time, which allows the use of the relatively new techniques of functional data analysis [Ramsay & Silverman 2005: Functional data analysis. New York: Springer]. In essence, our method first vectorizes the data from...

  8. A case of brain abscess extended from deep fascial space infection.

    Science.gov (United States)

    Sakamoto, Haruo; Karakida, Kazunari; Otsuru, Mitsunobu; Arai, Masayuki; Shimoda, Masami

    2009-09-01

    A case of brain abscess in the temporal lobe caused by direct intracranial extension of deep neck abscess is described. The abscess also spread to the orbital cavity through infraorbital fissure. The possible etiology of this case might be dental surgery. The diagnostic imaging clearly showed the routes of intracranial and -orbital extension of parapharyngeal and masticator space abscesses. From the abscess specimens, oral streptococci, anaerobic streptococci, and anaerobic gram-negative bacilli were isolated. Antimicrobial susceptibility testing of isolates showed that some Prevotella and Fusobacterium strains had decreased susceptibility to penicillin, and these bacteria produced beta-lactamase. The bacteria from the deep neck abscess were consistent with those detected from the brain abscess. Proper diagnosis, aggressive surgical intervention, and antibiotics chemotherapy saved the patient from this life-threatening condition.

  9. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain

    OpenAIRE

    Pachmerhiwala, Rashida; Bhide, Nirmal; Straiko, Megan; Gudelsky, Gary A.

    2010-01-01

    The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10 mg/kg, i.p.) resulted in a significant and sustained increase ...

  10. Comparison of Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to the Nerve Agents Cyclosarin and Tabun in Freely Moving Guinea Pigs

    Science.gov (United States)

    2010-01-01

    ment, blood (0.25–0.5 ml) was drawn using the toe nail clip method (Vallejo-Freire 1951) for determination of baseline ChE activity. The animal...Dills C, Levy RM. 1998. Changes in blood-brain barrier permeability asso- ciated with insertion of brain cannulas and microdialysis probes. Brain Res

  11. A continuous semantic space describes the representation of thousands of object and action categories across the human brain.

    Science.gov (United States)

    Huth, Alexander G; Nishimoto, Shinji; Vu, An T; Gallant, Jack L

    2012-12-20

    Humans can see and name thousands of distinct object and action categories, so it is unlikely that each category is represented in a distinct brain area. A more efficient scheme would be to represent categories as locations in a continuous semantic space mapped smoothly across the cortical surface. To search for such a space, we used fMRI to measure human brain activity evoked by natural movies. We then used voxelwise models to examine the cortical representation of 1,705 object and action categories. The first few dimensions of the underlying semantic space were recovered from the fit models by principal components analysis. Projection of the recovered semantic space onto cortical flat maps shows that semantic selectivity is organized into smooth gradients that cover much of visual and nonvisual cortex. Furthermore, both the recovered semantic space and the cortical organization of the space are shared across different individuals.

  12. Multi-resolutional brain network filtering and analysis via wavelets on non-Euclidean space.

    Science.gov (United States)

    Kim, Won Hwa; Adluru, Nagesh; Chung, Moo K; Charchut, Sylvia; GadElkarim, Johnson J; Altshuler, Lori; Moody, Teena; Kumar, Anand; Singh, Vikas; Leow, Alex D

    2013-01-01

    Advances in resting state fMRI and diffusion weighted imaging (DWI) have led to much interest in studies that evaluate hypotheses focused on how brain connectivity networks show variations across clinically disparate groups. However, various sources of error (e.g., tractography errors, magnetic field distortion, and motion artifacts) leak into the data, and make downstream statistical analysis problematic. In small sample size studies, such noise have an unfortunate effect that the differential signal may not be identifiable and so the null hypothesis cannot be rejected. Traditionally, smoothing is often used to filter out noise. But the construction of convolving with a Gaussian kernel is not well understood on arbitrarily connected graphs. Furthermore, there are no direct analogues of scale-space theory for graphs--ones which allow to view the signal at multiple resolutions. We provide rigorous frameworks for performing 'multi-resolutional' analysis on brain connectivity graphs. These are based on the recent theory of non-Euclidean wavelets. We provide strong evidence, on brain connectivity data from a network analysis study (structural connectivity differences in adult euthymic bipolar subjects), that the proposed algorithm allows identifying statistically significant network variations, which are clinically meaningful, where classical statistical tests, if applied directly, fail.

  13. Primo Vascular System in the Subarachnoid Space of a Mouse Brain

    Directory of Open Access Journals (Sweden)

    Sang-Ho Moon

    2013-01-01

    Full Text Available Objective. Recently, a novel circulatory system, the primo vascular system (PVS, was found in the brain ventricles and in the central canal of the spinal cord of a rat. The aim of the current work is to detect the PVS along the transverse sinuses between the cerebrum and the cerebellum of a mouse brain. Materials and Methods. The PVS in the subarachnoid space was analyzed after staining with 4',6-diamidino-2-phenylindole (DAPI and phalloidin in order to identify the PVS. With confocal microscopy and polarization microscopy, the primo vessel underneath the sagittal sinus was examined. The primo nodes under the transversal sinuses were observed after peeling off the dura and pia maters of the brain. Results. The primo vessel underneath the superior sagittal sinus was observed and showed linear optical polarization, similarly to the rabbit and the rat cases. The primo nodes were observed under the left and the right transverse sinuses at distances of 3,763 μm and 5,967 μm. The average size was 155 μm × 248 μm. Conclusion. The observation of primo vessels was consistent with previous observations in rabbits and rats, and primo nodes under the transverse sinuses were observed for the first time in this work.

  14. Developmental features of the neonatal brain: MR imaging. Part II. Ventricular size and extracerebral space.

    Science.gov (United States)

    McArdle, C B; Richardson, C J; Nicholas, D A; Mirfakhraee, M; Hayden, C K; Amparo, E G

    1987-01-01

    Magnetic resonance (MR) imaging with a 0.6-T magnet was performed on 51 neonates, aged 29-42 weeks postconception. In 45 neonates, the ventricular/brain ratio (V/B) at the level of the frontal horns and midbody of the lateral ventricles ranged from 0.26 to 0.34. In six other infants a V/B of 0.36 or greater was associated with either cerebral atrophy or obstructive hydrocephalus. The width of the extracerebral space measured along specified points varied little in the neonatal period and ranged from 0 to 4 mm in 48 infants. Extracerebral space widths of 5-6 mm were seen in three other infants with severe asphyxia. Prominence of the subarachnoid space overlying the posterior parietal lobes is normal in neonates and should not be confused with cerebral atrophy. The authors conclude that V/B ratios of 0.26-0.34 and extracerebral space widths of 0-4 mm represent the normal range, and that neonates whose measurements exceed these values should be followed up.

  15. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: A single compartment with preferential pathways.

    Science.gov (United States)

    Bedussi, Beatrice; van der Wel, Nicole N; de Vos, Judith; van Veen, Henk; Siebes, Maria; VanBavel, Ed; Bakker, Erik Ntp

    2016-06-15

    Recent evidence suggests an extensive exchange of fluid and solutes between the subarachnoid space and the brain interstitium, involving preferential pathways along blood vessels. We studied the anatomical relations between brain vasculature, cerebrospinal fluid compartments, and paravascular spaces in male Wistar rats. A fluorescent tracer was infused into the cisterna magna, without affecting intracranial pressure. Tracer distribution was analyzed using a 3D imaging cryomicrotome, confocal microscopy, and correlative light and electron microscopy. We found a strong 3D colocalization of tracer with major arteries and veins in the subarachnoid space and large cisterns, attributed to relatively large subarachnoid space volumes around the vessels. Confocal imaging confirmed this colocalization and also revealed novel cisternal connections between the subarachnoid space and ventricles. Unlike the vessels in the subarachnoid space, penetrating arteries but not veins were surrounded by tracer. Correlative light and electron microscopy images indicated that this paravascular space was located outside of the endothelial layer in capillaries and just outside of the smooth muscle cells in arteries. In conclusion, the cerebrospinal fluid compartment, consisting of the subarachnoid space, cisterns, ventricles, and para-arteriolar spaces, forms a continuous and extensive network that surrounds and penetrates the rat brain, in which mixing may facilitate exchange between interstitial fluid and cerebrospinal fluid.

  16. Relationship between myocardial extracellular space expansion estimated with post-contrast T1 mapping MRI and left ventricular remodeling and neurohormonal activation in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Son, Jung Woo; Chung, Hye Moon [Cardiology Division, Dept. of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-10-15

    Post-contrast T1 values are closely related to the degree of myocardial extracellular space expansion. We determined the relationship between post-contrast T1 values and left ventricular (LV) diastolic function, LV remodeling, and neurohormonal activation in patients with dilated cardiomyopathy (DCM). Fifty-nine patients with DCM (mean age, 55 ± 15 years; 41 males and 18 females) who underwent both 1.5T magnetic resonance imaging and echocardiography were enrolled. The post-contrast 10-minute T1 value was generated from inversion time scout images obtained using the Look-Locker inversion recovery sequence and a curve-fitting algorithm. The T1 sample volume was obtained from three interventricular septal points, and the mean T1 value was used for analysis. The N-Terminal pro-B-type natriuretic peptide (NT-proBNP) level was measured in 40 patients. The mean LV ejection fraction was 24 ± 9% and the post-T1 value was 254.5 ± 46.4 ms. The post-contrast T1 value was significantly correlated with systolic longitudinal septal velocity (s'), peak late diastolic velocity of the mitral annulus (a'), the diastolic elastance index (Ed, [E/e']/stroke volume), LV mass/volume ratio, LV end-diastolic wall stress, and LV end-systolic wall stress. In a multivariate analysis without NT-proBNP, T1 values were independently correlated with Ed (β = -0.351, p = 0.016) and the LV mass/volume ratio (β = 0.495, p = 0.001). When NT-proBNP was used in the analysis, NT-proBNP was independently correlated with the T1 values (β = -0.339, p = 0.017). Post-contrast T1 is closely related to LV remodeling, diastolic function, and neurohormonal activation in patients with DCM.

  17. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    Science.gov (United States)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  18. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity.

    Science.gov (United States)

    Danzer, Karin M; Ruf, Wolfgang P; Putcha, Preeti; Joyner, Daniel; Hashimoto, Tadafumi; Glabe, Charles; Hyman, Bradley T; McLean, Pamela J

    2011-01-01

    The paradoxical appearance of aggregated α-synuclein (αsyn) in naive transplanted embryonic stem cells in Parkinson's disease (PD) brains has recently been reported, highlighting the possibility of neuron to neuron transmission of αsyn in PD. Here, we demonstrate in a cellular model the presence of αsyn oligomers in the extracellular space, their uptake by neurons, retrograde axonal transport to cell soma, and detrimental effects on neighboring cells. Moreover, we demonstrate that Hsp70 chaperones αsyn in the extracellular space and reduces extracellular αsyn oligomer formation and related toxicity. These novel findings provide evidence that extracellular αsyn oligomers may represent a crucial player in the propagation of pathology in PD, with their modulation by Hsp70 representing a potential new target for therapeutic interventions.

  19. Metabolism of [3-{sup 3}H]oleanolic acid in the isolated ``Calendula officinalis`` leaf cells and transport of the synthesized glycosides, to the cell wall and the extracellular space

    Energy Technology Data Exchange (ETDEWEB)

    Szakiel, A.; Wasiukiewicz, I.; Janiszowska, W. [Warsaw Univ. (Poland). Katedra Biochemii

    1995-12-31

    It has been shown for the first time that [3-{sup 3}H]oleanolic acid glycosides formed in the cytosol of ``C. officinalis`` leaf cells are transported to the extracellular space in the form of pentaglucoside VI (44%), whereas glucuronides derived from [3-{sup 3}H]oleanolic acid 3-O-monoglucuronide (29%) as well as a part of glucosides (24%) were transported into the cell walls. (author). 15 refs, 2 figs, 1 tab.

  20. Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application

    Directory of Open Access Journals (Sweden)

    Molina Gary N Garcia

    2003-01-01

    Full Text Available Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.

  1. Common and distinct brain regions processing multisensory bodily signals for peripersonal space and body ownership.

    Science.gov (United States)

    Grivaz, Petr; Blanke, Olaf; Serino, Andrea

    2017-02-15

    We take the feeling that our body belongs to us for granted. However, recent research has shown that it is possible to alter the subjective sensation of body ownership (BO) by manipulating multisensory bodily inputs. Several frontal and parietal regions are known to specifically process multisensory cues presented close to the body, i.e., within the peripersonal space (PPS). It has been proposed that these PPS fronto-parietal regions also underlie BO. However, most previous studies investigated the brain mechanisms of either BO or of PPS processing separately and by using a variety of paradigms. Here, we conducted an extensive meta-analysis of functional neuroimaging studies to investigate PPS and BO processing in humans in order to: a) assess quantitatively where each one of these functions was individually processed in the brain; b) identify whether and where these processes shared common or engaged distinct brain mechanisms; c) characterize these areas in terms of whole-brain co-activation networks and functions, respectively. We identified (i) a bilateral PPS network including superior parietal, temporo-parietal and ventral premotor regions and (ii) a BO network including posterior parietal cortex (right intraparietal sulcus, IPS; and left IPS and superior parietal lobule, SPL), right ventral premotor cortex, and the left anterior insula. Co-activation maps related to both PPS and BO encompassed largely overlapping fronto-parietal networks, but whereas the PPS network was more frequently associated with sensorimotor tasks, the BO network was rather associated with attention and awareness tasks. Finally, the conjunction analysis showed that (iii) PPS and BO tasks anatomically overlapped only in two clusters located in the left parietal cortex (dorsally at the intersection between the SPL, the IPS and area 2 and ventrally between areas 2 and IPS). Distinct activations were located for PPS at the temporo-parietal junction and for BO in the anterior insula. These

  2. Brain representation of object-centered space in monkeys and humans.

    Science.gov (United States)

    Olson, Carl R

    2003-01-01

    Visuospatial cognition requires taking into account where things are relative to each other and not just relative to the viewer. Consequently it would make sense for the brain to form an explicit representation of object-centered and not just of ego-centered space. Evidence bearing on the presence and nature of neural maps of object-centered space has come from two sources: single-neuron recording in behaving monkeys and assessment of the visual abilities of human patients with hemispatial neglect. Studies of the supplementary eye field of the monkey have revealed that it contains neurons with object-centered spatial selectivity. These neurons fire when the monkey has selected, as target for an eye movement or attention, a particular location defined relative to a reference object. Studies of neglect have revealed that in some patients the condition is expressed with respect to an object-centered and object-aligned reference frame. These patients neglect one side of an object, as defined relative to its intrinsic midline, regardless of its location and orientation relative to the viewer. The two sets of observations are complementary in the sense that the loss of neurons, such as observed in the monkey, could explain the spatial distribution of neglect in these patients.

  3. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats.

    Science.gov (United States)

    Zhang, Bei; He, Qiang; Li, Ying-Ying; Li, Ce; Bai, Yu-Long; Hu, Yong-Shan; Zhang, Feng

    2015-12-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of 'learned non-use' and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  4. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  5. Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Xue, Zhanxia; Gu, Li; Hertz, Leif; Peng, Liang

    2013-03-01

    The importance of astrocytic K(+) uptake for extracellular K(+) ([K(+)](e)) clearance during neuronal stimulation or pathophysiological conditions is increasingly acknowledged. It occurs by preferential stimulation of the astrocytic Na(+),K(+)-ATPase, which has higher K(m) and V(max) values than its neuronal counterpart, at more highly increased [K(+)](e) with additional support of the cotransporter NKCC1. Triggered by a recent DiNuzzo et al. paper, we used administration of the glycogenolysis inhibitor DAB to primary cultures of mouse astrocytes to determine whether K(+) uptake required K(+)-stimulated glycogenolysis. KCl was increased by either 5 mM (stimulating only the Na(+),K(+)-ATPase) or 10 mM (stimulating both transporters) in glucose-containing saline media prepared to become iso-osmotic after the addition. DAB completely inhibited both uptakes, the Na(+),K(+)-ATPase-mediated by preventing Na(+) uptake for stimulation of its intracellular Na(+)-activated site, and the NKCC1-mediated uptake by inhibition of depolarization- and L-channel-mediated Ca(2+) uptake. Drugs inhibiting the signaling pathways involved in either of these processes also abolished K(+) uptake. Assuming similar in vivo characteristics, partly supported by literature data, K(+)-stimulated astrocytic K(+) uptake must discontinue after normalization of extracellular K(+). This will allow Kir1.4-mediated release and reuptake by the less powerful neuronal Na(+),K(+)-ATPase.

  6. Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury

    DEFF Research Database (Denmark)

    Chung, Roger S; Penkowa, Milena; Dittmann, Justin;

    2008-01-01

    A number of intracellular proteins that are protective after brain injury are classically thought to exert their effect within the expressing cell. The astrocytic metallothioneins (MT) are one example and are thought to act via intracellular free radical scavenging and heavy metal regulation, and...

  7. Modeling and tissue parameter extraction challenges for free space broadband fNIR brain imaging systems

    Science.gov (United States)

    Sultan, E.; Manseta, K.; Khwaja, A.; Najafizadeh, L.; Gandjbakhche, A.; Pourrezaei, K.; Daryoush, A. S.

    2011-02-01

    Fiber based functional near infra-red (fNIR) spectroscopy has been considered as a cost effective imaging modality. To achieve a better spatial resolution and greater accuracy in extraction of the optical parameters (i.e., μa and μ's), broadband frequency modulated systems covering multi-octave frequencies of 10-1000MHz is considered. A helmet mounted broadband free space fNIR system is considered as significant improvement over bulky commercial fiber fNIR realizations that are inherently uncomfortable and dispersive for broadband operation. Accurate measurements of amplitude and phase of the frequency modulated NIR signals (670nm, 795nm, and 850nm) is reported here using free space optical transmitters and receivers realized in a small size and low cost modules. The tri-wavelength optical transmitter is based on vertical cavity semiconductor lasers (VCSEL), whereas the sensitive optical receiver is based on either PIN or APD photodiodes combined with transimpedance amplifiers. This paper also has considered brain phantoms to perform optical parameter extraction experiments using broadband modulated light for separations of up to 5cm. Analytical models for predicting forward (transmittance) and backward (reflectance) scattering of modulated photons in diffused media has been modeled using Diffusion Equation (DE). The robustness of the DE modeling and parameter extraction algorithm was studied by experimental verification of multi-layer diffused media phantoms. In particular, comparison between analytical and experimental models for narrow band and broadband has been performed to analyze the advantages of our broadband fNIR system.

  8. Gravity in the Brain as a Reference for Space and Time Perception.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2015-01-01

    Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.

  9. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  10. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  11. Accelerated detection of intracranial space-occupying lesions with CUDA based on statistical texture atlas in brain HRCT.

    Science.gov (United States)

    Liu, Wei; Feng, Huanqing; Li, Chuanfu; Huang, Yufeng; Wu, Dehuang; Tong, Tong

    2009-01-01

    In this paper, we present a method that detects intracranial space-occupying lesions in two-dimensional (2D) brain high-resolution CT images. Use of statistical texture atlas technique localizes anatomy variation in the gray level distribution of brain images, and in turn, identifies the regions with lesions. The statistical texture atlas involves 147 HRCT slices of normal individuals and its construction is extremely time-consuming. To improve the performance of atlas construction, we have implemented the pixel-wise texture extraction procedure on Nvidia 8800GTX GPU with Compute Unified Device Architecture (CUDA) platform. Experimental results indicate that the extracted texture feature is distinctive and robust enough, and is suitable for detecting uniform and mixed density space-occupying lesions. In addition, a significant speedup against straight forward CPU version was achieved with CUDA.

  12. Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu²⁺ in Rat Brain.

    Science.gov (United States)

    Lin, Yuqing; Wang, Chao; Li, Linbo; Wang, Hao; Liu, Kangyu; Wang, Keqing; Li, Bo

    2015-12-16

    Carbon quantum dots (CDs) combined with self-assembly strategy have created an innovative way to fabricate novel hybrids for biological analysis. This study demonstrates a new fluorescence platform with enhanced selectivity for copper ion sensing in the striatum of the rat brain following the cerebral calm/sepsis process. Here, the fabrication of silica-coated CDs probes is based on the efficient hybridization of APTES which act as a precursor of organosilane self-assembly, with CDs to form silica-coated CDs probes. The fluorescent properties including intensity, fluorescence quantum yield, excitation-independent region, and red/blue shift of the emission wavelength of the probe are tunable through reliable regulation of the ratio of CDs and APTES, realizing selectivity and sensitivity-oriented Cu(2+) sensing. The as-prepared probes (i.e., 3.33% APTES-0.9 mg mL(-1) CDs probe) show a synergistic amplification effect of CDs and APTES on enhancing the fluorescence signal of Cu(2+) detection through fluorescent self-quenching. The underlying mechanism can be ascribed to the stronger interaction including chelation and electrostatic attraction between Cu(2+) and N and O atoms-containing as well as negatively charged silica-coated CDs than other interference. Interestingly, colorimetric assay and Tyndall effect can be observed and applied to directly distinguish the concentration of Cu(2+) by the naked eye. The proposed fluorescent platform here has been successfully applied to monitor the alteration of striatum Cu(2+) in rat brain during the cerebral calm/sepsis process. The versatile properties of the probe provide a new and effective fluorescent platform for the sensing method in vivo sampled from the rat brain.

  13. Dorsal raphe nucleus of brain in the rats flown in space inflight and postflight alteration of structure

    Science.gov (United States)

    Krasnov, I.

    The structure of brain dorsal raphe nucleus (DRN) was studied in the rats flown in space aboard Space Shuttle "Columbia" (STS-58, SLS-2 program) and dissected on day 13 of the mission ("inflight" rats) and in 5-6 hours after finishing 14-day flight ("postflight" rats). The brain of "inflight" rats were excised after decapitation, sectioned sagitally halves of brain were fixed by immersion in 2,5 % glutaraldehyde in 0.1 M cacodylate buffer pH 7.3 at 4°C and kept in the flight at 4°C. After landing the brain frontal 0.5 mm sections from DRN area were osmificated and embedded in araldite at NASA ARC. The brains of "postflight": and control rats were underwent to the same procedure. Electronmicroscopical analysis, computer morphometry and glial cell count were performed at Moscow. In DRN neuropil of "inflight" rats the most part of axo-dendritic synapses were surrounded by glia cell processes and had decreased electron density of pre- and postsynaptic membrane and pronounced diminution of synaptic vesicle amount while dendrites were characterized by decrease in matrix electron density and microtubule quantity that in total indicates the decline of afferent flow reaching DRN neurons in microgravity. In DRN neurons of "inflight" rats all mitochondria were characterized by evenly increased dimensions, decreased matrix electron density, small amount of short and far- between located cristae and enlarged intermembrane and intercristae spaces, that in total points out low level of coupling of oxidation to phosphorilation, decrease in energy supply of neuron. Amount of ribosome in cytoplasm was significantly decreased indicating lower lever of biosynthetic processes. The last is supported by diminished dimensions of neuronal body, nucleus and nucleolus (place of r RNA synthesis), cross section area of that were reduced in DRN neurons of "inflight" rats by 18.8 % (p < 0.01), 11.1 % and 26.6 % (p <0,005) correspondingly. Ultrastructure and dimensions of intracellular

  14. Diffusion from gel in brain: modelisation and identification.

    Science.gov (United States)

    Bellagoun, A; Meulemans, A; Cherruault, Y

    1992-03-01

    A mathematical model is proposed for describing the mechanism of diffusion from gel (Tissucol) into the extracellular space. After diffusion of the antibiotic in one dimension, the gradient concentration was determined with microvoltametric electrodes. These microelectrodes measure the free diffusible form of electroactive antibiotics in the extracellular brain space. The aim of this study was to find simultaneously the coefficient of diffusion and extraction of some antibiotics (in our case the Fotemustin) using the Alienor Algorithm. These coefficients are useful for predicting the concentration gradient into abscesses, fibrin, etc.

  15. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.

    Science.gov (United States)

    Laakso, Ilkka; Tanaka, Satoshi; Mikkonen, Marko; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-08-15

    The electric field produced in the brain is the main physical agent of transcranial direct current stimulation (tDCS). Inter-subject variations in the electric fields may help to explain the variability in the effects of tDCS. Here, we use multiple-subject analysis to study the strength and variability of the group-level electric fields in the standard brain space. Personalized anatomically-accurate models of 62 subjects were constructed from T1- and T2-weighted MRI. The finite-element method was used to computationally estimate the individual electric fields, which were registered to the standard space using surface based registration. Motor cortical and frontal tDCS were modelled for 16 electrode montages. For each electrode montage, the group-level electric fields had a consistent strength and direction in several brain regions, which could also be located at some distance from the electrodes. In other regions, the electric fields were more variable, and thus more likely to produce variable effects in each individual. Both the anode and cathode locations affected the group-level electric fields, both directly under the electrodes and elsewhere. For motor cortical tDCS, the electric fields could be controlled at the group level by moving the electrodes. However, for frontal tDCS, the group-level electric fields were more variable, and the electrode locations had only minor effects on the group average fields. Our results reveal the electric fields and their variability at the group level in the standard brain space, providing insights into the mechanisms of tDCS for plasticity induction. The data are useful for planning, analysing and interpreting tDCS studies.

  16. In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison.

    Science.gov (United States)

    Figini, Matteo; Zucca, Ileana; Aquino, Domenico; Pennacchio, Paolo; Nava, Simone; Di Marzio, Alessandro; Preti, Maria Giulia; Baselli, Guseppe; Spreafico, Roberto; Frassoni, Carolina

    2015-04-01

    Diffusion tensor imaging (DTI) is a magnetic resonance modality that permits to characterize the orientation and integrity of white matter (WM). DTI-based tractography techniques, allowing the virtual reconstruction of WM tract pathways, have found wide application in preclinical neurological research. Recently, anatomically detailed rat brain atlases including DTI data were constructed from ex vivo DTI images, but tractographic atlases of normal rats in vivo are still lacking. We propose here a probabilistic tractographic atlas of the main WM tracts in the healthy rat brain based on in vivo DTI acquisition. Our study was carried out on 10 adult female Sprague-Dawley rats using a 7T preclinical scanner. The MRI protocol permitted a reliable reconstruction of the main rat brain bundles: corpus callosum, cingulum, external capsule, internal capsule, anterior commissure, optic tract. The reconstructed fibers were compared with histological data, proving the viability of in vivo DTI tractography in the rat brain with the proposed acquisition and processing protocol. All the data were registered to a rat brain template in the coordinate system of the commonly used atlas by Paxinos and Watson; then the individual tracts were binarized and averaged, obtaining a probabilistic atlas in Paxinos-Watson space of the main rat brain WM bundles. With respect to the recent high-resolution MRI atlases, the resulting tractographic atlas, available online, provides complementary information about the average anatomical position of the considered WM tracts and their variability between normal animals. Furthermore, reference values for the main DTI-derived parameters, mean diffusivity and fractional anisotropy, were provided. Both these results can be used as references in preclinical studies on pathological rat models involving potential alterations of WM.

  17. Possible role of brain stem respiratory neurons in mediating vomiting during space motion sickness

    Science.gov (United States)

    Miller, A. D.; Tan, L. K.

    1987-01-01

    The object of this study was to determine if brain stem expiratory neurons control abdominal muscle activity during vomiting. The activity of 27 ventral respiratory group expiratory neurons, which are known to be of primary importance for control of abdominal muscle activity during respiration, was recorded. It is concluded that abdominal muscle activity during vomiting must be controlled not only by some brain stem expiratory neurons but also by other input(s).

  18. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  19. A novel three-phase model of brain tissue microstructure.

    Directory of Open Access Journals (Sweden)

    Jana L Gevertz

    Full Text Available We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

  20. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  1. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    Science.gov (United States)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  2. A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis.

    Science.gov (United States)

    Nie, Binbin; Chen, Kewei; Zhao, Shujun; Liu, Junhua; Gu, Xiaochun; Yao, Qunli; Hui, Jiaojie; Zhang, Zhijun; Teng, Gaojun; Zhao, Chunjie; Shan, Baoci

    2013-06-01

    This study constructs a rat brain T2 -weighted magnetic resonance imaging template including olfactory bulb and a compatible digital atlas. The atlas contains 624 carefully delineated brain structures based on the newest (2005) edition of rat brain atlas by Paxinos and Watson. An automated procedure, as an SPM toolbox, was introduced for spatially normalizing individual rat brains, conducting statistical analysis and visually localizing the results in the Atlas coordinate space. The brain template/atlas and the procedure were evaluated using functional images between rats with the right side middle cerebral artery occlusion (MCAO) and normal controls. The result shows that the brain region with significant signal decline in the MCAO rats was consistent with the occlusion position.

  3. Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules.

    Directory of Open Access Journals (Sweden)

    Raffaella Scardigli

    Full Text Available BACKGROUND: sFRP-3 is a soluble antagonist of Wnts, widely expressed in developing embryos. The Wnt gene family comprises cysteine-rich secreted ligands that regulate cell proliferation, differentiation, organogenesis and oncogenesis of different organisms ranging from worms to mammals. In the canonical signal transduction pathway Wnt proteins bind to the extracellular domain of Frizzled receptors and consequently recruit Dishevelled (Dsh to the cell membrane. In addition to Wnt membrane receptors belonging to the Frizzled family, several other molecules have been described which share homology in the CRD domain and lack the putative trans-membrane domain, such as sFRP molecules (soluble Frizzled Related Protein. Among them, sFRP-3 was originally isolated from bovine articular cartilage and also as a component of the Spemann organizer. sFRP-3 blocks Wnt-8 induced axis duplication in Xenopus embryos and binds to the surface of cells expressing a membrane-anchored form of Wnt-1. Injection of sFRP-3 mRNA blocks expression of XMyoD mRNA and leads to embryos with enlarged heads and shortened trunks. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that sFRP-3 specifically blocks EGF-induced fibroblast proliferation and foci formation. Over-expression of sFRP-3 reverts EGF-mediated inhibition of hair follicle development in the mouse ectoderm while its ablation in Xenopus maintains EGF-mediated inhibition of ectoderm differentiation. Conversely, over-expression of EGF reverts the inhibition of somitic myogenesis and axis truncation in Xenopus and mouse embryos caused by sFRP-3. In vitro experiments demonstrated a direct binding of EGF to sFRP-3 both on heparin and on the surface of CHO cells where the molecule had been membrane anchored. CONCLUSIONS/SIGNIFICANCE: sFRP-3 and EGF reciprocally inhibit their effects on cell proliferation, differentiation and morphogenesis and indeed are expressed in contiguous domains of the embryo, suggesting that in

  4. Modeling invariant object processing based on tight integration of simulated and empirical data in a Common Brain Space

    Directory of Open Access Journals (Sweden)

    Judith Carolien Peters

    2012-03-01

    Full Text Available Both in the field of Computer Vision and Experimental Neuroscience, recent advances have been made regarding the mechanisms underlying invariant object recognition. However, the differential methodological aims in both fields caused an independent model evolvement. A tighter integration of simulations and empirical observations may contribute to cross-fertilized development of 1 neurobiologically plausible computational models and 2 computationally-defined empirical theories, incrementally merged into a comprehensive brain model.We review recent fMRI findings on object invariance and suggest how they can be quantitatively compared to model simulations by projecting predicted and observed data in one Common Brain Space". The simultaneous matching of activity patterns within and across multiple processing stages in the simulated and empirical large-scale network may help to clarify how high-order invariant representations are created from low-level features. Given that columnar-level imaging is now in reach, due to the advent of high-resolution fMRI, it is time to capitalize on this new window into the brain and test which predictions of the various object recognition models are supported by this novel empirical evidence.

  5. The Sileye-3/Alteino experiment for the study of Light Flashes, radiation environment and astronaut brain activity on board the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Bidoli, V.; Casolino, M.; Pascale, M.P. de [Rome Univ. (Italy)] [and others

    2002-12-01

    In this work we describe the instrument Sileye-3/Alteino, placed on board the International Space Station in April 2002. The instrument is constituted by an Electroencephalograph and a cosmic ray silicon detector. The scientific aims include the investigation of the Light Flash phenomenon, the measurement of the radiation environment and the nuclear abundance insider the International Space Station (ISS) and the study of astronaut brain activity in space when subject to cosmic rays. (author)

  6. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  7. Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos.

    Science.gov (United States)

    Kvetnansky, R; Culman, J; Serova, L V; Tigranjan, R A; Torda, T; Macho, L

    1983-01-01

    The activity of the catecholaminergic system was measured in the hypothalamus of rats which had experienced an 18.5-19.5-day-long stay in the state of weightlessness during space flights on board Soviet biosatellites of the type Cosmos. In the first two experiments, Cosmos 782 and 936, the concentration of norepinephrine and the activities of synthesizing enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase and of the degrading enzyme monoamine oxidase were measured in the total hypothalamus. None of the given parameters was changed after space flight. In the light of the changes of these parameters recorded after exposure to acute stress on Earth, this finding indicates that long-term state of weightlessness does not represent an intensive stressogenic stimulus for the system studied. In the space experiment Cosmos 1129, the concentration of norepinephrine, epinephrine, and dopamine was studied in isolated nuclei of the hypothalamus of rats within 6-10 hr following return from space. Norepinephrine was found to be significantly reduced in the arcuate nucleus, median eminence and periventricular nucleus, epinephrine in the median eminence, periventricular and suprachiasmatic nuclei, whereas dopamine was not significantly changed after space flight. The decreased catecholamine levels found in some hypothalamic nuclei of rats which had undergone space flight indicate that no chronic intensive stressor could have acted during the flight, otherwise the catecholamine concentration would have been increased in the nuclei. The decreased levels must have been induced by the effect of a stressogenic factor acting for a short time only, and that either during the landing maneuver or immediately after landing. Thus long-term exposure of the organism to the state of weightlessness does not represent a stressogenic stimulus for the catecholaminergic system in the hypothalamus, which is one of the regulators of the activation of neuroendocrine reactions under stress.

  8. The effect of ionic diffusion on extracellular potentials in neural tissue

    CERN Document Server

    Halnes, Geir; Keller, Daniel; Pettersen, Klas H; Eivenoll, Gaute T

    2015-01-01

    In computational neuroscience, it is common to use the simplifying assumption that diffusive currents are negligible compared to Ohmic currents. However, endured periods of intense neural signaling may cause local ion concentration changes in the millimolar range. Theoretical studies have identified scenarios where steep concentration gradients give rise to diffusive currents that are of comparable magnitude with Ohmic currents, and where the simplifying assumption that diffusion can be neglected does not hold. We here propose a novel formalism for computing (1) the ion concentration dynamics and (2) the electrical potential in the extracellular space surrounding multi-compartmental neuron models or networks of such (e.g., the Blue-Brain simulator). We use this formalism to explore the effects that diffusive currents can have on the extracellular (ECS) potential surrounding a small population of active cortical neurons. Our key findings are: (i) Sustained periods of neuronal output (simulations were run for 8...

  9. Waxholm Space atlas of the rat brain hippocampal region: three-dimensional delineations based on magnetic resonance and diffusion tensor imaging.

    Science.gov (United States)

    Kjonigsen, Lisa J; Lillehaug, Sveinung; Bjaalie, Jan G; Witter, Menno P; Leergaard, Trygve B

    2015-03-01

    Atlases of the rat brain are widely used as reference for orientation, planning of experiments, and as tools for assigning location to experimental data. Improved quality and use of magnetic resonance imaging (MRI) and other tomographical imaging techniques in rats have allowed the development of new three-dimensional (3-D) volumetric brain atlas templates. The rat hippocampal region is a commonly used model for basic research on memory and learning, and for preclinical investigations of brain disease. The region features a complex anatomical organization with multiple subdivisions that can be identified on the basis of specific cytoarchitectonic or chemoarchitectonic criteria. We here investigate the extent to which it is possible to identify boundaries of divisions of the hippocampal region on the basis of high-resolution MRI contrast. We present the boundaries of 13 divisions, identified and delineated based on multiple types of image contrast observed in the recently published Waxholm Space MRI/DTI template for the Sprague Dawley rat brain (Papp et al., Neuroimage 97:374-386, 2014). The new detailed delineations of the hippocampal formation and parahippocampal region (Waxholm Space atlas of the Sprague Dawley rat brain, v2.0) are shared via the INCF Software Center (http://software.incf.org/), where also the MRI/DTI reference template is available. The present update of the Waxholm Space atlas of the rat brain is intended to facilitate interpretation, analysis, and integration of experimental data from this anatomically complex region.

  10. Aging reduces glial uptake and promotes extracellular accumulation of Aβ from a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Wenjuan eZhao

    2014-08-01

    Full Text Available We used a lentiviral system for expressing secreted human Aβ in the brains of young and old APOE knock-in mice. This system allowed us to examine Aβ metabolism in vivo, and test the effects of both aging and APOE genotype, two of the strongest risk factors for Alzheimer’s disease. We injected the Aβ1-42 lentivirus into the motor cortex of young (two month old and old (20-22 month old APOE3 and APOE4 mice. After two weeks of lentiviral expression, we analyzed the pattern of Aβ accumulation, glial activation, and phosphor-tau. In young mice, Aβ accumulated mainly within neurons with no evidence of extracellular Aβ. Significantly higher levels of intraneuronal Aβ were observed in APOE4 mice compared to APOE3 mice. In old mice, APOE4 predisposed again to higher levels of Aβ accumulation, but the Aβ was mainly in extracellular spaces. In younger mice, we also observed Aβ in microglia but not astrocytes. The numbers of microglia containing Aβ were significantly higher in APOE3 mice compared to APOE4 mice, and were significantly lower in both genetic backgrounds with aging. The astrocytes in old mice were activated to a greater extent in the brain regions where Aβ was introduced, an effect that was again increased by the presence of APOE4. Finally, phospho-tau accumulated in the region of Aβ expression, with evidence of extracellular phospho-tau increasing with aging. These data suggest that APOE4 predisposes to less microglial clearance of Aβ, leading to more intraneuronal accumulation. In older brains, decreased clearance leads to more extracellular Aβ, and more downstream consequences relating to astrocyte activation and phospho-tau accumulation. We conclude that both aging and APOE genotype affect pathways related to Aβ metabolism by microglia.

  11. Focusing brain therapeutic interventions in space and time for Parkinson's disease.

    Science.gov (United States)

    Little, S; Brown, P

    2014-09-22

    The last decade has seen major progress at all levels of neuroscience, from genes and molecules up to integrated systems-level models of brain function. In particular, there have been advances in the understanding of cell-type-specific contributions to function, together with a clearer account of how these contributions are coordinated from moment to moment to organise behavior. A major current endeavor is to leverage this knowledge to develop new therapeutic approaches. In Parkinson's disease, there are a number of promising emerging treatments. Here, we will highlight three ambitious novel therapeutic approaches for this condition, each robustly driven by primary neuroscience. Pharmacogenetics genetically re-engineers neurons to produce neurotrophins that are neuroprotective to vulnerable dopaminergic cells or to directly replace dopamine through enzyme transduction. Deep brain stimulation (DBS) is undergoing a transformation, with adaptive DBS controlled by neural signals resulting in better motor outcomes and significant reductions in overall stimulation that could reduce side effects. Finally, optogenetics presents the opportunity to achieve cell-type-specific control with a high temporal specification on a large enough scale to effectively repair network-level dysfunction.

  12. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces

    Science.gov (United States)

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  13. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    Science.gov (United States)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  14. On the space and time evolution of regular or irregular human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2011-01-01

    A coupled map is suggested to investigate various spatial or temporal designs in biology: Several cells (or tissues) in an organ are considered as connected to each other in terms of some molecular diffusions or electrical potential differences and so on. The biological systems (groups of cells) start from various initial conditions for spatial designs (or initial signals for temporal designs) and they evolve in time in terms of the mentioned interactions (connections) besides some individual feedings. The basic aim of the present contribution is to mimic various empirical data for the heart (in normal, quasi-stable, unstable and post operative physiological conditions) or brain (regular or irregular; for epilepsy) signals. The mentioned empirical data are borrowed from various literatures which are cited. The suggested model (to be used besides or instead of the artificial network models) involves simple mathematics and the related software is easy. The results may be considered as in good agreement with the...

  15. Complete coverage of space favors modularity of the grid system in the brain

    Science.gov (United States)

    Sanzeni, A.; Balasubramanian, V.; Tiana, G.; Vergassola, M.

    2016-12-01

    Grid cells in the entorhinal cortex fire when animals that are exploring a certain region of space occupy the vertices of a triangular grid that spans the environment. Different neurons feature triangular grids that differ in their properties of periodicity, orientation, and ellipticity. Taken together, these grids allow the animal to maintain an internal, mental representation of physical space. Experiments show that grid cells are modular, i.e., there are groups of neurons which have grids with similar periodicity, orientation, and ellipticity. We use statistical physics methods to derive a relation between variability of the properties of the grids within a module and the range of space that can be covered completely (i.e., without gaps) by the grid system with high probability. Larger variability shrinks the range of representation, providing a functional rationale for the experimentally observed comodularity of grid cell periodicity, orientation, and ellipticity. We obtain a scaling relation between the number of neurons and the period of a module, given the variability and coverage range. Specifically, we predict how many more neurons are required at smaller grid scales than at larger ones.

  16. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  17. Active endocannabinoids are secreted on extracellular membrane vesicles.

    Science.gov (United States)

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.

  18. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate

    OpenAIRE

    Featherstone, David E.; Scott A. Shippy

    2007-01-01

    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μ...

  19. Extracellular Vesicle (EV) Array

    DEFF Research Database (Denmark)

    Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona

    2013-01-01

    Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define...

  20. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  1. Magnitude Processing in the Brain: An fMRI Study of Time, Space, and Numerosity as a Shared Cortical System

    Science.gov (United States)

    Skagerlund, Kenny; Karlsson, Thomas; Träff, Ulf

    2016-01-01

    Continuous dimensions, such as time, space, and numerosity, have been suggested to be subserved by common neurocognitive mechanisms. Neuroimaging studies that have investigated either one or two dimensions simultaneously have consistently identified neural correlates in the parietal cortex of the brain. However, studies investigating the degree of neural overlap across several dimensions are inconclusive, and it remains an open question whether a potential overlap can be conceptualized as a neurocognitive magnitude processing system. The current functional magnetic resonance imaging study investigated the potential neurocognitive overlap across three dimensions. A sample of adults (N = 24) performed three different magnitude processing tasks: a temporal discrimination task, a number discrimination task, and a line length discrimination task. A conjunction analysis revealed several overlapping neural substrates across multiple magnitude dimensions, and we argue that these cortical nodes comprise a distributed magnitude processing system. Key components of this predominantly right-lateralized system include the intraparietal sulcus, insula, premotor cortex/SMA, and inferior frontal gyrus. Together with previous research highlighting intraparietal sulcus, our results suggest that the insula also is a core component of the magnitude processing system. We discuss the functional role of each of these components in the magnitude processing system and suggest that further research of this system may provide insight into the etiology of neurodevelopmental disorders where cognitive deficits in magnitude processing are manifest. PMID:27761110

  2. On the influence of space storms on the frequency of infarct-myocardial, brain strokes, and hard car accidents; possible using of CR for their forecasting

    Science.gov (United States)

    Dorman, L. I.; Iucci, N.; Ptitsyna, N. G.; Villoresi, G.

    We consider the influence of space storms as strong interplanetary shock waves causing great cosmic ray Forbush-decreases and big geomagnetic storms on the people health at the ground level We used data of more than 7 millions ambulance cases in Moscow and St Petersburg included information on daily numbers of the hard traffic accidents infarctions and brain strokes We found that during space storms the average daily numbers of hard traffic accidents with using ambulances as well as infarctions and brain strokes confirmed by medical personal increase by 17 4 pm 3 1 10 5 pm 1 2 and 7 0 pm 1 7 respectively We show that the forecasting of these dangerous apace phenomena can be done partly by using cosmic ray data on pre-increase and pre-decrease effects as well as on the change of 3-D cosmic ray anisotropy

  3. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); School of Advanced International Studies on Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: elio.conte@fastwebnet.it; Khrennikov, Andrei [International Center for Mathematical Modelling in Physics and Cognitive Sciences, M.S.I., University of Vaexjoe, S-35195 (Sweden); Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-09-15

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  4. Spaces

    Directory of Open Access Journals (Sweden)

    Maziar Nekovee

    2010-01-01

    Full Text Available Cognitive radio is being intensively researched as the enabling technology for license-exempt access to the so-called TV White Spaces (TVWS, large portions of spectrum in the UHF/VHF bands which become available on a geographical basis after digital switchover. Both in the US, and more recently, in the UK the regulators have given conditional endorsement to this new mode of access. This paper reviews the state-of-the-art in technology, regulation, and standardisation of cognitive access to TVWS. It examines the spectrum opportunity and commercial use cases associated with this form of secondary access.

  5. The role of extracellular proteolysis in synaptic plasticity of the central nervous system 

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    2012-11-01

    Full Text Available The extracellular matrix (ECM of the central nervous system has a specific structure and protein composition that are different from those in other organs. Today we know that the ECM not only provides physical scaffolding for the neurons and glia, but also actively modifies their functions. Over the last two decades, a growing body of research evidence has been collected, suggesting an important role of ECM proteolysis in synaptic plasticity of the brain. So far the majority of data concern two large families of proteases: the serine proteases and the matrix metalloproteinases. The members of these families are localized at the synapses, and are secreted into the extracellular space in an activity-dependent manner. The proteases remodel the local environment as well as influencing synapse structure and function. The structural modifications induced by proteases include shape and size changes, as well as synapse elimination, and synaptogenesis. The functional changes include modifications of receptor function in the postsynaptic part of the synapse, as well as the potentiation or depression of neurotransmitter secretion by the presynaptic site. The present review summarizes the current view on the role of extracellular proteolysis in the physiological synaptic plasticity underlying the phenomena of learning and memory, as well as in the pathological plasticity occurring during epileptogenesis or development of drug addiction. 

  6. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  7. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    Science.gov (United States)

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  8. Extracellular vesicles for clinical diagnostics of nervous system diseases

    NARCIS (Netherlands)

    Atai, N.

    2014-01-01

    In the last decade there has emerged a new dimension in molecular studies which can be applied to gliomas (brain tumors). Extracellular vesicles (EVs), small structures containing genetic materials, are now known to be produced by glioma cells. These EVs, often many hundreds in number, are released

  9. Concentrations of Monoamines and Their Metabolites in Blood Plasma and Some Brain Structures of Mice, Participated in a Space Flight on the Aircraft BION-M1

    Science.gov (United States)

    Shtemberg, Andrey; Kudrin, Vladimir

    The purpose of this work was to study the possible disturbances of monoamines concentration and their metabolites in some structures of mouse brain and blood plasma caused by the influence of space flight. The forty eight C57BL/6 mice were divided into the following groups : basal control - animals , which together with a group of space flight arrived at Baykonur and then were returned to Moscow; the first space flight group - animals who spent 30 days in space, BION-M1 - board and decapitated 12 hours after the landing; animal house control to the first space flight group; second space flight group - animals who spent 30 days in space, aboard the BION-M1, and then recovered at ground conditions for 7 days; animal house control to the second space flight group; space flight imitation group - spent 30 days on board at ground model of BION-M1; animal house control to the imitation group. In all animals concentration of HA, DA, 5 -HT and their metabolites DOPAC, HVA, 3 -MT, 5 - HIAA in plasma and in the prefrontal cortex, hypothalamus, striatum and hippocampus were studied. In the blood plasma of first space flight group the concentrations of DOPAC were significantly higher compared to animal house control. The most significant changes were observed in the second space flight group, in those animals which recovered after the flight. There was a significant increase in the concentration of HA and A in blood plasma relative to the basal control and increased concentration of HA and the DOPAC/DA ratio relative to the first space flight group. No significant changes were observed in the hippocampus. In the first space flight group there was observed an increase in concentration of HA and DOPAC in the hypothalamus relative to controls. Seven days after rest concentrations of monoamines and their metabolites were significantly enhanced relative to the control and the first space flight groups. In physiology and pharmacology there is a process called as withdrawal effect

  10. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  11. In vivo monitoring of quantum dots in the extracellular space using push-pull perfusion sampling, online in-tube solid phase extraction, and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Su, C K; Huang, C W; Yang, C S; Wang, Y J; Sun, Y C

    2010-09-01

    To monitor the dynamic changes of extracellular quantum dots (QDs) in vivo in the livers of anesthetized rats, we developed an automatic online analytical system comprising push-pull perfusion (PPP) sampling, the established in-tube solid phase extraction (SPE) procedure, and inductively coupled plasma mass spectrometry (ICPMS). The method takes advantage of the retention of QDs onto the interior surface of a polytetrafluoroethylene (PTFE) tube as a means of extracting the QDs from complicated push-pull perfusates. For the injected QDs present in the liver extracellular fluid (ECF) at low picomolar levels, a temporal resolution of 10 min was required to collect sufficient amounts of QDs to meet the sensitivity requirements of the ICPMS system. To the best of our knowledge, this study is the first to exploit the PPP technique for the collection of QDs from living animals and PTFE tubing as a SPE adsorbent for the online extraction of QDs and the removal of biological matrix prior to ICPMS analysis of cadmium-containing inorganic nanocrystal. We confirmed the analytical reliability of this method from measurements of the spike recoveries of saline samples; in addition, we demonstrated the systems' applicability through in vivo monitoring of the time-dependent concentration profile of liver extracellular QDs in living rats after intravenous administration.

  12. Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study.

    Science.gov (United States)

    Berkovich-Ohana, Aviva; Dor-Ziderman, Yair; Glicksohn, Joseph; Goldstein, Abraham

    2013-01-01

    Meditation practice can lead to what have been referred to as "altered states of consciousness."One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space, and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term mindfulness meditation (MM) practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing. The participants were asked to volitionally bring about distinct states of "Timelessness" (outside time) and "Spacelessness" (outside space) while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory, or imagination, we used control states of "Then" (past) and "There" (another place). MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming). Particularly, we searched for similar neural activity hypothesized to underlie both the state of "Timelessness" and "Spacelessness." The results were mostly confined to the theta band, and showed that: (1) the "Then"/"There" overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule (PPL), right precentral/middle frontal gyrus (MFG), bilateral precuneus); (2) "Timelessness"/"Spacelessness" conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction (TPJ), cerebellum); and (3) phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners

  13. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.

    Science.gov (United States)

    Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta

    2013-07-01

    With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the

  14. Alterations in the sense of time, space and body in the Mindfulness-trained brain: A neurophenomenologically-guided MEG study

    Directory of Open Access Journals (Sweden)

    Aviva eBerkovich-Ohana

    2013-12-01

    Full Text Available Meditation practice can lead to what have been referred to as 'altered states of consciousness'. One of the phenomenological characteristics of these states is a joint alteration in the sense of time, space and body. Here, we set out to study the unique experiences of alteration in the sense of time and space by collaborating with a select group of 12 long-term Mindfulness meditation practitioners in a neurophenomenological setup, utilizing first-person data to guide the neural analyses. We hypothesized that the underlying neural activity accompanying alterations in the sense of time and space would be related to alterations in bodily processing.The participants were asked to volitionally bring about distinct states of 'Timelessness' (outside time and 'Spacelessness' (outside space while their brain activity was recorded by MEG. In order to rule out the involvement of attention, memory or imagination, we used control states of 'Then' (past and 'There' (another place. MEG sensors evidencing alterations in power values were identified, and the brain regions underlying these changes were estimated via spatial filtering (beamforming. Particularly, we searched for similar neural activity hypothesized to underlie both the state of 'Timelessness' and 'Spacelessness'. The results were mostly confined to the theta band, and showed that: 1 the 'Then' / 'There' overlap yielded activity in regions related to autobiographic memory and imagery (right posterior parietal lobule, right precentral / middle frontal gyrus, bilateral precuneus; 2 'Timelessness' / 'Spacelessness' conditions overlapped in a different network, related to alterations in the sense of the body (posterior cingulate, right temporoparietal junction, cerebellum; and 3 phenomenologically-guided neural analyses enabled us to dissociate different levels of alterations in the sense of the body. This study illustrates the utility of employing experienced contemplative practitioners within a

  15. Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties

    Science.gov (United States)

    Morawski, Markus; Reinert, Tilo; Meyer-Klaucke, Wolfram; Wagner, Friedrich E.; Tröger, Wolfgang; Reinert, Anja; Jäger, Carsten; Brückner, Gert; Arendt, Thomas

    2015-12-01

    Perineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes. For the first time, we can provide quantitative data on the distribution and net amount of pericellularly fixed charge-densities, which, determined at 0.4-0.5 M, is much higher than previously assumed. PNs, thus, represent an immobilized ion exchanger with ion sorting properties high enough to partition mobile ions in accord with Donnan-equilibrium. We propose that fixed charge-densities in the brain are involved in regulating ion mobility, the volume fraction of extracellular space and the viscosity of matrix components.

  16. Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

    Science.gov (United States)

    Silchenko, A. N.; Tass, P. A.

    2013-10-01

    It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells' density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates' size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.

  17. Behavioral, Brain Imaging and Genomic Measures to Predict Functional Outcomes Post-Bed Rest and Space Flight

    Science.gov (United States)

    Mulavara, A. P.; Peters, B.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Oddsson, L.; Kreutzberg, G.; Zanello, S.; Clark, T. K.; Oman, C. M.; Cohen, H. S.; Wood, S.; Seidler, R. D.; Reschke, M. F.; Bloomberg, J. J.

    2017-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts are affected will improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience greater challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging

  18. A Simulation Model of Periarterial Clearance of Amyloid-beta from the Brain

    Directory of Open Access Journals (Sweden)

    Alexandra Katharina Diem

    2016-02-01

    Full Text Available The accumulation of soluble and insoluble amyloid-beta (A-beta in the brain indicates failure of elimination of A-beta from the brain with age and Alzheimer's disease. There is a variety of mechanisms for elimination of A-beta from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of A-beta into the blood and periarterial lymphatic drainage of A-beta. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as A-beta, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of A-beta in the walls of human arteries with age and Alzheimer's disease as cerebral amyloid angiopathy (CAA. Initially, A-beta diffuses through the extracellular spaces of grey matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterised, the exact mechanism whereby perivascular elimination of A-beta occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy.

  19. [Glutamic acid as a universal extracellular signal].

    Science.gov (United States)

    Yoneda, Yukio

    2015-08-01

    The prevailing view is that both glutamic (Glu) and gamma-aminobutyric (GABA) acids play a role as an amino acid neurotransmitter released from neurons. However, little attention has been paid to the possible expression and functionality of signaling machineries required for amino acidergic neurotransmission in cells other than central neurons. In line with our first demonstration of the presence of Glu receptors outside the brain, in this review I will outline our recent findings accumulated since then on the physiological and pathological significance of neuronal amino acids as an extracellular signal essential for homeostasis in a variety of phenotypic cells. In undifferentiated neural progenitor cells, for instance, functional expression is seen with different signaling machineries used for glutamatergic and GABAergic neurotransmission in neurons. Moreover, Glu plays a role in mechanisms underlying suppression of proliferation for self-replication in undifferentiated mesenchymal stem cells. There is more accumulating evidence for neuronal amino acids playing a role as an extracellular autocrine or paracrine signal commonly used in different phenotypic cells. Evaluation of drugs currently used could be thus beneficial for the efficient prophylaxis and/or the therapy of a variety of diseases relevant to disturbance of amino acid signaling in diverse organs.

  20. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes.

    Science.gov (United States)

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2013-11-01

    Recent advances in brain energy metabolism support the notion that glycogen in astrocytes is necessary for the clearance of neuronally-released K(+) from the extracellular space. However, how the multiple metabolic pathways involved in K(+)-induced increase in glycogen turnover are regulated is only partly understood. Here we summarize the current knowledge about the mechanisms that control glycogen metabolism during enhanced K(+) uptake. We also describe the action of the ubiquitous Na(+)/K(+) ATPase for both ion transport and intracellular signaling cascades, and emphasize its importance in understanding the complex relation between glycogenolysis and K(+) uptake.

  1. 脑细胞微环境研究的情报学分析%Informational analysis of brain cell microenvironment

    Institute of Scientific and Technical Information of China (English)

    李维; 韩鸿宾

    2014-01-01

    脑细胞微环境,也称为脑组织通道,是由脑细胞外间隙及其内容物共同组成.长期以来,由于研究技术手段的限制,其在认知与脑病发生发展中的作用没有得到足够的重视.随着医学成像技术的成熟和发展,该领域的研究将可能为脑认知科学的发展开辟新研究空间,并为脑病诊治与新药研发提供新途径与新方向.本文以医学情报学方法揭示脑科学发展热点的特征及脑细胞微环境发展历史与延革,分析神经学建构的文献发展过程,为今后的研究者提供借鉴和思路.%Brain cell microenvironment,also known as cerebral tissue channel,consists of the brain extracellular space and its contents.For a long time,because of the limit of technology,the research about brain extracellular space hasn't been given enough attention in the field of cognitive sciences and neuroscience.With the development of medical imaging technology,the research about brain extracellular space will open up a new space for brain and cognitive sciences,and provide a new approach for diagnosis and treatment of encephalopathy.Based on the method of medical informatics,this article reveals hot topics on brain science,presents the history of the research about brain cell microenvironment,and analyzes the construction of neurology literature so as to provide reference for the future researchers.

  2. Association between pro-inflammatory cytokine expression, angiogenesis, extracellular matrix remodeling, and prognosis in cervical cancer

    NARCIS (Netherlands)

    Zijlmans, Henry Johanna Maria Antonius Adrianus

    2014-01-01

    Growth and progression of cervical carcinoma is dependent on a complex interaction between cervical carcinoma cells and composition of the extracellular matrix. For local progression as well as metastasizing, the extracellular matrix needs to be rearranged creating space for tumor cells to expand an

  3. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  4. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases.

    Science.gov (United States)

    Bakker, Erik N T P; Bacskai, Brian J; Arbel-Ornath, Michal; Aldea, Roxana; Bedussi, Beatrice; Morris, Alan W J; Weller, Roy O; Carare, Roxana O

    2016-03-01

    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (Aβ). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer's disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that Aβ is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of Aβ in the glia limitans in Alzheimer's disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of Aβ. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance.

  5. The Effects of Extracellular Acidosis on Neurons and Glia In Vitro

    OpenAIRE

    Goldman, Steven A.; PULSINELLI, WILLIAM A.; Clarke, Wendy Y.; Kraig, Richard P.; Plum, Fred

    1989-01-01

    Cerebral lactic acid, a product of ischemic anaerobic glycolysis, may directly contribute to ischemic brain damage in vivo. In this study we evaluated the effects of extracellular acid exposure on 7-day-old cultures of embryonic rat forebrain. Mixed neuronal and glial cultures were exposed to either lactic or hydrochloric acid to compare the toxicities of relatively permeable and impermeable acids. Neurons were relatively resistant to extracellular HCl acidosis, often surviving 10-min exposur...

  6. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  7. Unidirectional cell crawling model guided by extracellular cues.

    Science.gov (United States)

    Wang, Zhanjiang; Geng, Yuxu

    2015-03-01

    Cell migration is a highly regulated and complex cellular process to maintain proper homeostasis for various biological processes. Extracellular environment was identified as the main affecting factors determining the direction of cell crawling. It was observed experimentally that the cell prefers migrating to the area with denser or stiffer array of microposts. In this article, an integrated unidirectional cell crawling model was developed to investigate the spatiotemporal dynamics of unidirectional cell migration, which incorporates the dominating intracellular biochemical processes, biomechanical processes and the properties of extracellular micropost arrays. The interpost spacing and the stiffness of microposts are taken into account, respectively, to study the mechanism of unidirectional cell locomotion and the guidance of extracellular influence cues on the direction of unidirectional cell crawling. The model can explain adequately the unidirectional crawling phenomena observed in experiments such as "spatiotaxis" and "durotaxis," which allows us to obtain further insights into cell migration.

  8. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  9. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained consider

  10. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  11. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  12. Extracellular citrulline levels in the nucleus accumbens during the acquisition and extinction of a classical conditioned reflex with pain reinforcement.

    Science.gov (United States)

    Savel'ev, S A; Saul'skaya, N B

    2007-03-01

    Studies on Sprague-Dawley rats using in vivo microdialysis and HPLC showed that the acquisition and performance of a classical conditioned reflex with pain reinforcement was accompanied by increases in the concentrations of citrulline (a side product of nitric oxide formation) and arginine (the substrate of NO synthase) in the intercellular space of the nucleus accumbens. During extinction of the reflex, there was a decrease in the elevation of extracellular citrulline in this brain structure, which correlated with the extent of extinction of the reflex. Recovery of the reflex led to increases in arginine and citrulline levels in the nucleus accumbens. These data suggest that there is an increase in nitric oxide production in the nucleus accumbens during the acquisition and performance of a classical conditioned reflex with pain reinforcement, which decreases as the reflex is extinguished and recovers with recovery of the reflex.

  13. Association between the fMRI manifestations of activated brain areas and muscle strength in patients with space-occupying lesions in motor cortex

    Institute of Scientific and Technical Information of China (English)

    Wenbin Zheng; Xiaoke Chen; Guorui Liu; Renhua Wu

    2006-01-01

    was obvious smaller in the patients with motor deficit than in those without motor deficit (P < 0.01). ② The M1 activation and changes were observed in contralateral hemisphere in the patient group, and the activated volume was obviously larger than that in the control group (P < 0.01). The activated volumes of M1 and PMC in ipsilateral hemisphere were obviously larger than those in the control group (P < 0.05), but that of SMA had no obvious difference between the two groups (P > 0.05).CONCLUSION: fMRI can be used to observe the activation of the brain motor functional areas of patient with space-occupying lesions in motor area, and evaluate the state of their motor function. The larger the distance of displacement of M1 compressed by tumor, the more obviously the muscle strength decreases in the patients.

  14. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... tractography. Although probabilistic tractography currently holds great promise as a powerful non-invasive connectivity-measurement tool, its accuracy and limitations remain to be evaluated. Probabilistic tractography was assessed post mortem in an in vitro environment. Postmortem DWI benefits from...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  15. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  16. Neutrophil Extracellular Traps and Microcrystals

    Science.gov (United States)

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed. PMID:28373994

  17. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  18. Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study

    NARCIS (Netherlands)

    Lenz, Michael; Musso, Mariachristina; Linke, Yannick; Tüscher, Oliver; Timmer, Jens; Weiller, Cornelius; Schelter, Björn

    2011-01-01

    An often addressed challenge in neuroscience research is the assignment of different tasks to specific brain regions. In many cases several brain regions are activated during a single task. Therefore, one is also interested in the temporal evolution of brain activity to infer causal relations betwee

  19. Extracellular ATP and P2X7 receptors in neurodegeneration.

    Science.gov (United States)

    Le Feuvre, Rosalind; Brough, David; Rothwell, Nancy

    2002-07-05

    Neuronal injury and cell death in the central nervous system (CNS) are underlying features of neurodegenerative disorders. However, our understanding of the fundamental mechanisms involved is still limited. Inflammatory processes mediated by cytokines, and interleukin-1 (IL-1) in particular, play a significant role in neuronal death following pathological insults. Despite this growing area of research, very little is known about the factors regulating the expression, cleavage and release of interleukin-1 in the brain. Recent studies on immune cells demonstrate that extracellular ATP can act as a potent stimulus for the maturation and release of interleukin-1beta, via activation of P2X7 receptors. Stimulation of P2X7 receptors with ATP has dramatic cytotoxic properties and a wider role in neurodegenerative processes is possible. This review discusses the potential involvement of extracellular ATP and P2X7 receptors as regulators of interleukin-1-mediated neuropathologies and thus as a mediator of cell death following pathological insults.

  20. Postulated Role of Vasoactive Neuropeptide-Related Immunopathology of the Blood Brain Barrier and Virchow-Robin Spaces in the Aetiology of Neurological-Related Conditions

    Directory of Open Access Journals (Sweden)

    D. R. Staines

    2008-01-01

    Full Text Available Vasoactive neuropeptides (VNs such as pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP have critical roles as neurotransmitters, vasodilators including perfusion and hypoxia regulators, as well as immune and nociception modulators. They have key roles in blood vessels in the central nervous system (CNS including maintaining functional integrity of the blood brain barrier (BBB and blood spinal barrier (BSB. VNs are potent activators of adenylate cyclase and thus also have a key role in cyclic AMP production affecting regulatory T cell and other immune functions. Virchow-Robin spaces (VRSs are perivascular compartments surrounding small vessels within the CNS and contain VNs. Autoimmunity of VNs or VN receptors may affect BBB and VRS function and, therefore, may contribute to the aetiology of neurological-related conditions including multiple sclerosis, Parkinson's disease, and amyotrophic lateral sclerosis. VN autoimmunity will likely affect CNS and immunological homeostasis. Various pharmacological and immunological treatments including phosphodiesterase inhibitors and plasmapheresis may be indicated.

  1. Brain carbonic acid acidosis after acetazolamide

    DEFF Research Database (Denmark)

    Heuser, D; Astrup, J; Lassen, N A;

    1975-01-01

    In cats in barbiturate anesthesia extracellular pH and potassium were continously recorded from brian cortex by implanted microelectrodes. Implantation of the electrodes preserved the low permeability of the blood-brain-barrier to HCO3-minus and H+ions as indicated by the development of brain aci...

  2. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  3. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  4. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

    DEFF Research Database (Denmark)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G

    2016-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymor......Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages......), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide...

  5. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

    Science.gov (United States)

    Buzsáki, György; Anastassiou, Costas A.; Koch, Christof

    2016-01-01

    Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal. PMID:22595786

  6. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.

    Science.gov (United States)

    Buzsáki, György; Anastassiou, Costas A; Koch, Christof

    2012-05-18

    Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources--including Na(+) and Ca(2+) spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations--can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

  7. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  8. Indomethacin abolishes cerebral blood flow increase in response to acetazolamide-induced extracellular acidosis

    DEFF Research Database (Denmark)

    Wang, Qian; Paulson, O B; Lassen, N A

    1993-01-01

    by acetazolamide (Az), a drug that induces brain extracellular acidosis, which triggers its effect on CBF. We compared the results to the inhibitory effect of indomethacin on the CBF increase during hypercapnia. Indomethacin but not diclofenac, another potent cyclooxygenase inhibitor, was found to block almost...

  9. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  10. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  11. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  12. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  13. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  14. GLUCOSE-CONCENTRATION IN SUBCUTANEOUS EXTRACELLULAR-SPACE

    NARCIS (Netherlands)

    SCHMIDT, FJ; SLUITER, WJ; SCHOONEN, AJM

    1993-01-01

    OBJECTIVE- To compare the subcutaneous glucose sensor measurements with two reference methods. Previous studies provide conflicting findings about the real glucose concentrations in subcutaneous tissue. Some suggest substantially lower concentration, whereas others measure proportionally higher gluc

  15. Extracellular proteolysis of apolipoprotein E (apoE by secreted serine neuronal protease.

    Directory of Open Access Journals (Sweden)

    Irfan Y Tamboli

    Full Text Available Under normal conditions, brain apolipoprotein E (apoE is secreted and lipidated by astrocytes, then taken up by neurons via receptor mediated endocytosis. Free apoE is either degraded in intraneuronal lysosomal compartments or released. Here we identified a novel way by which apoE undergoes proteolysis in the extracellular space via a secreted neuronal protease. We show that apoE is cleaved in neuronal conditioned media by a secreted serine protease. This apoE cleavage was inhibited by PMSF and α1-antichymotrypsin, but not neuroserpin-1 or inhibitors of thrombin and cathepsin G, supporting its identity as a chymotrypsin like protease. In addition, apoE incubation with purified chymotrypsin produced a similar pattern of apoE fragments. Analysis of apoE fragments by mass spectrometry showed cleavages occurring at the C-terminal side of apoE tryptophan residues, further supporting our identification of cleavage by chymotrypsin like protease. Hippocampal neurons were more efficient in mediating this apoE cleavage than cortical neurons. Proteolysis of apoE4 generated higher levels of low molecular weight fragments compared to apoE3. Primary glial cultures released an inhibitor of this proteolytic activity. Together, these studies reveal novel mechanism by which apoE can be regulated and therefore could be useful in designing apoE directed AD therapeutic approaches.

  16. Theoretical Compartment Modeling of DCE-MRI Data Based on the Transport across Physiological Barriers in the Brain

    Directory of Open Access Journals (Sweden)

    Laura Fanea

    2012-01-01

    Full Text Available Neurological disorders represent major causes of lost years of healthy life and mortality worldwide. Development of their quantitative interdisciplinary in vivo evaluation is required. Compartment modeling (CM of brain data acquired in vivo using magnetic resonance imaging techniques with clinically available contrast agents can be performed to quantitatively assess brain perfusion. Transport of 1H spins in water molecules across physiological compartmental brain barriers in three different pools was mathematically modeled and theoretically evaluated in this paper and the corresponding theoretical compartment modeling of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI data was analyzed. The pools considered were blood, tissue, and cerebrospinal fluid (CSF. The blood and CSF data were mathematically modeled assuming continuous flow of the 1H spins in these pools. Tissue data was modeled using three CMs. Results in this paper show that transport across physiological brain barriers such as the blood to brain barrier, the extracellular space to the intracellular space barrier, or the blood to CSF barrier can be evaluated quantitatively. Statistical evaluations of this quantitative information may be performed to assess tissue perfusion, barriers' integrity, and CSF flow in vivo in the normal or disease-affected brain or to assess response to therapy.

  17. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    Science.gov (United States)

    Nhan, Tam; Burgess, Alison; Lilge, Lothar; Hynynen, Kullervo

    2014-10-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min-1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.

  18. In situ staining of the primo vascular system in the ventricles and subarachnoid space of the brain by trypan blue injection into the lateral ventricle

    Institute of Scientific and Technical Information of China (English)

    Jingxing Dai; Byung-Cheon Lee; Ping An; Zhendong Su; Rongmei Qu; Ki Hoon Eom; Kwang-Sup Soh

    2011-01-01

    We examined a new method for visualization of the primo vascular system in the rat brain in-volving lateral ventricle injection of trypan blue. Results showed that the primo vascular system in the lateral ventricles and arachnoid mater of the brain were preferentially stained relative to blood vessels and fascia. The primo-vessels along blood vessels in the brain were clearly ex-hibited. In addition, the primo vascular system was evident between the fourth ventricle and the quadrigeminal cistern. Our experimental findings indicate that this new technique of lateral ventricle injection of trypan blue can visualize the primo vascular system in lateral ventricles and arachnoid mater of rats in situ.

  19. Extracellular DNA in oral microbial biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S; Burgess, J Grant

    2015-07-01

    The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.

  20. A Principle for Describing and Verifying Brain Mechanisms Using Ongoing Activity

    Science.gov (United States)

    Eriksson, David

    2017-01-01

    Not even the most informed scientist can setup a theory that takes all brain signals into account. A neuron not only receives neuronal short range and long range input from all over the brain but a neuron also receives input from the extracellular space, astrocytes and vasculature. Given this complexity, how does one describe and verify a typical brain mechanism in vivo? Common to most described mechanisms is that one focuses on how one specific input signal gives rise to the activity in a population of neurons. This can be an input from a brain area, a population of neurons or a specific cell type. All remaining inputs originating from all over the brain are lumped together into one background input. The division into two inputs is attractive since it can be used to quantify the relative importance of either input. Here we have chosen to extract the specific and the background input by means of recording and inhibiting the specific input. We summarize what it takes to estimate the two inputs on a single trial level. The inhibition should not only be strong but also fast and the specific input measurement has to be tailor-made to the inhibition. In essence, we suggest ways to control electrophysiological experiments in vivo. By applying those controls it may become possible to describe and verify many brain mechanisms, and it may also allow the study of the integration of spontaneous and ongoing activity, which in turn governs cognition and behavior. PMID:28174523

  1. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 23 patients with brain tumors using the 133Xe intra-carotid injection method and a 254 channel gamma camera. The glioblastomas (4) and astrocytomas (4) all showed hyperemia in the tumor and tumor-near region. This was also seen in several...... meningiomas (4 of 7 cases) in which most of the tumor itself did not receive any isotope. Brain metastases (6) usually had a low flow in the tumor and tumor-near region. The glioblastomas tended to show markedly bending 133Xe wash-out curves pointing to pronounced heterogeneity of blood flow. Most of the flow...... maps, regardless of the tumor types, showed widespread abnormalities of rCBF not only in the tumor region but also in the region remote from the tumor. It is concluded that measurement of rCBF cannot yield accurate differential diagnostic information, but that the widespread derangement of the brain...

  2. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  3. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    Science.gov (United States)

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research.

  4. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    Science.gov (United States)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  5. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Shu Liu

    2016-07-01

    Full Text Available Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer.

  6. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?

    Science.gov (United States)

    Giner-Lamia, Joaquín; Pereira, Sara B; Bovea-Marco, Miquel; Futschik, Matthias E; Tamagnini, Paula; Oliveira, Paulo

    2016-01-01

    Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  7. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  8. Qualitative and quantitative characteristics of the extracellular DNA delivered to the nucleus of a living cell

    Directory of Open Access Journals (Sweden)

    Bogachev Sergei S

    2006-10-01

    Full Text Available Abstract Background The blood plasma and other intertissue fluids usually contain a certain amount of DNA, getting there due to a natural cell death in the organism. Cells of this organism can capture the extracellular DNA, whereupon it is delivered to various cell compartments. It is hypothesized that the extracellular DNA is involved in the transfer of genetic information and its fixation in the genome of recipient cell. Results The existence of an active flow of extracellular DNA into the cell is demonstrated using human breast adenocarcinoma (MCF-7 cells as a recipient culture. The qualitative state of the DNA fragments delivered to the main cell compartments (cytoplasm and interchromosomal fraction was assessed. The extracellular DNA delivered to the cell is characterized quantitatively. Conclusion It is demonstrated that the extracellular DNA fragments in several minutes reach the nuclear space, where they are processed so that their linear size increases from about 500 bp to 10,000 bp. The amount of free extracellular DNA fragments simultaneously present in the nuclear space may reach up to 2% of the haploid genome. Using individual DNA fragments with a known molecular weight and sequence as an extracellular DNA, it is found that these fragments degrade instantly in the culture liquid in the absence of a competitor DNA and are delivered into the cell as degradants. When adding a sufficient amount of competitor DNA, the initial undegraded molecules of the DNA fragments with the known molecular weight and sequence are detectable both in the cytoplasm and nuclear space only at the zero point of experiments. The labeled precursor α-dNTP*, added to culture medium, was undetectable inside the cell in all the experiments.

  9. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  10. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalography (EEG to determine whether specific information is stored in a subject's brain.

  11. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  12. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  13. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  14. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  15. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in huma

  16. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  17. Brain components

    Science.gov (United States)

    ... can make complex movements without thinking. The brain stem connects the brain with the spinal cord and is composed of ... structures: the midbrain, pons, and medulla oblongata. The brain stem provides us with automatic functions that are necessary ...

  18. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  19. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  2. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  3. Extracellular vesicles as mediators of neuron-glia communication

    Directory of Open Access Journals (Sweden)

    Carsten eFrühbeis

    2013-10-01

    Full Text Available In the nervous system, glia cells maintain homeostasis, synthesize myelin, provide metabolic support, and participate in immune defense. The communication between glia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs, such as exosomes and shedding microvesicles, are key players in intercellular signaling. Among others, the cells of the nervous system secrete EVs, which carry protein and RNA cargo from one cell to another. After delivery, the cargo has the ability to modify the target cell phenotype. Here, we review the recent advances in understanding the role of EV secretion by astrocytes, microglia, and oligodendrocytes in the central nervous system. Current work has demonstrated that oligodendrocytes transfer exosomes to neurons as a result of neurotransmitter signaling suggesting that these vesicles may mediate glial support of neurons.

  4. Furin proteolytically processes the heparin-binding region of extracellular superoxide dismutase

    DEFF Research Database (Denmark)

    Bowler, Russell P; Nicks, Mike; Olsen, Dorte Aa

    2002-01-01

    . (1999) J. Biol. Chem. 274, 14818-14822). By using mammalian cell lines, we have now determined that removal of the heparin-binding region occurs after passage through the Golgi network but before being secreted into the extracellular space. Specific protease inhibitors and overexpression...

  5. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease.

    Directory of Open Access Journals (Sweden)

    Claudia Trappetti

    Full Text Available During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.

  6. Neutrophil recruitment to the brain in mouse and human ischemic stroke.

    Science.gov (United States)

    Perez-de-Puig, Isabel; Miró-Mur, Francesc; Ferrer-Ferrer, Maura; Gelpi, Ellen; Pedragosa, Jordi; Justicia, Carles; Urra, Xabier; Chamorro, Angel; Planas, Anna M

    2015-02-01

    Neutrophils are rapidly recruited in response to local tissue infection or inflammation. Stroke triggers a strong inflammatory reaction but the relevance of neutrophils in the ischemic brain is not fully understood, particularly in the absence of reperfusion. We investigated brain neutrophil recruitment in two murine models of permanent ischemia induced by either cauterization of the distal portion of the middle cerebral artery (c-MCAo) or intraluminal MCA occlusion (il-MCAo), and three fatal cases of human ischemic stroke. Flow cytometry analyses revealed progressive neutrophil recruitment after c-MCAo, lesser neutrophil recruitment following il-MCAo, and absence of neutrophils after sham operation. Confocal microscopy identified neutrophils in the leptomeninges from 6 h after the occlusion, in the cortical basal lamina and cortical Virchow-Robin spaces from 15 h, and also in the cortical brain parenchyma at 24 h. Neutrophils showed signs of activation including histone-3 citrullination, chromatin decondensation, and extracellular projection of DNA and histones suggestive of extracellular trap formation. Perivascular neutrophils were identified within the entire cortical infarction following c-MCAo. After il-MCAo, neutrophils prevailed in the margins but not the center of the cortical infarct, and were intraluminal and less abundant in the striatum. The lack of collaterals to the striatum and a collapsed pial anastomotic network due to brain edema in large hemispheric infarctions could impair neutrophil trafficking in this model. Neutrophil extravasation at the leptomeninges was also detected in the human tissue. We concluded that neutrophils extravasate from the leptomeningeal vessels and can eventually reach the brain in experimental animal models and humans with prolonged arterial occlusion.

  7. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo.

    Science.gov (United States)

    Nakajima, Hidemitsu; Itakura, Masanori; Sato, Keishi; Nakamura, Sunao; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2017-03-04

    Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.

  8. Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks

    Directory of Open Access Journals (Sweden)

    Kjell eFuxe

    2012-06-01

    Full Text Available Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT and histamine striatal afferents, the cholinergic interneurons and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal

  9. Postulated Role of Vasoactive Neuropeptide-Related Immunopathology of the Blood Brain Barrier and Virchow-Robin Spaces in the Aetiology of Neurological-Related Conditions

    OpenAIRE

    Staines, D. R.; E. W. Brenu; Marshall-Gradisnik, S.

    2008-01-01

    Vasoactive neuropeptides (VNs) such as pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) have critical roles as neurotransmitters, vasodilators including perfusion and hypoxia regulators, as well as immune and nociception modulators. They have key roles in blood vessels in the central nervous system (CNS) including maintaining functional integrity of the blood brain barrier (BBB) and blood spinal barrier (BSB). VNs are potent activators of aden...

  10. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the natural occurring R213G substitution

    DEFF Research Database (Denmark)

    Gottfredsen, Randi Heidemann; Goldstrohm, David; Hartney, John

    2014-01-01

    Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages...

  11. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    Science.gov (United States)

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  12. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL.

    Science.gov (United States)

    Monet-Leprêtre, Marie; Haddad, Iman; Baron-Menguy, Céline; Fouillot-Panchal, Maï; Riani, Meriem; Domenga-Denier, Valérie; Dussaule, Claire; Cognat, Emmanuel; Vinh, Joelle; Joutel, Anne

    2013-06-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, one of the most common inherited small vessel diseases of the brain, is characterized by a progressive loss of vascular smooth muscle cells and extracellular matrix accumulation. The disease is caused by highly stereotyped mutations within the extracellular domain of the NOTCH3 receptor (Notch3(ECD)) that result in an odd number of cysteine residues. While CADASIL-associated NOTCH3 mutations differentially affect NOTCH3 receptor function and activity, they all are associated with early accumulation of Notch3(ECD)-containing aggregates in small vessels. We still lack mechanistic explanation to link NOTCH3 mutations with small vessel pathology. Herein, we hypothesized that excess Notch3(ECD) could recruit and sequester functionally important proteins within small vessels of the brain. We performed biochemical, nano-liquid chromatography-tandem mass spectrometry and immunohistochemical analyses, using cerebral and arterial tissue derived from patients with CADASIL and mouse models of CADASIL that exhibit vascular lesions in the end- and early-stage of the disease, respectively. Biochemical fractionation of brain and artery samples demonstrated that mutant Notch3(ECD) accumulates in disulphide cross-linked detergent-insoluble aggregates in mice and patients with CADASIL. Further proteomic and immunohistochemical analyses identified two functionally important extracellular matrix proteins, tissue inhibitor of metalloproteinases 3 (TIMP3) and vitronectin (VTN) that are sequestered into Notch3(ECD)-containing aggregates. Using cultured cells, we show that increased levels or aggregation of Notch3 enhances the formation of Notch3(ECD)-TIMP3 complex, promoting TIMP3 recruitment and accumulation. In turn, TIMP3 promotes complex formation including NOTCH3 and VTN. In vivo, brain vessels from mice and patients with CADASIL exhibit elevated levels of both insoluble cross

  13. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    NARCIS (Netherlands)

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  14. Anatomy of the Brain

    Science.gov (United States)

    ... Menu Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ... form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ...

  15. Vertebrate extracellular preovulatory and postovulatory egg coats.

    Science.gov (United States)

    Menkhorst, Ellen; Selwood, Lynne

    2008-11-01

    Extracellular egg coats deposited by maternal or embryonic tissues surround all vertebrate conceptuses during early development. In oviparous species, the time of hatching from extracellular coats can be considered equivalent to the time of birth in viviparous species. Extracellular coats must be lost during gestation for implantation and placentation to occur in some viviparous species. In the most recent classification of vertebrate extracellular coats, Boyd and Hamilton (Cleavage, early development and implantation of the egg. In: Parkes AS (ed.), Marshall's Physiology of Reproduction, vol. 2, 3rd ed. London: Longmans, Green & Co; 1961:1-126) defined the coat synthesized by the oocyte during oogenesis as primary and the coat deposited by follicle cells surrounding the oocyte as secondary. Tertiary egg coats are those synthesized and deposited around the primary or secondary coat by the maternal reproductive tract. This classification is difficult to reconcile with recent data collected using modern molecular biological techniques that can accurately establish the site of coat precursor synthesis and secretion. We propose that a modification to the classification by Boyd and Hamilton is required. Vertebrate egg coats should be classed as belonging to the following two broad groups: the preovulatory coat, which is deposited during oogenesis by the oocyte or follicle cells, and the postovulatory coats, which are deposited after fertilization by the reproductive tract or conceptus. This review discusses the origin and classification of vertebrate extracellular preovulatory and postovulatory coats and illustrates what is known about coat homology between the vertebrate groups.

  16. Experimental MR-guided cryotherapy of the brain with almost real-time imaging by radial k-space scanning; Experimentelle MR-gesteuerte Kryotherapie des Gehirns mit nahezu Echtzeitdarstellung durch radiale k-Raum-Abtastung

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J.; Schorn, R.; Glowinski, A.; Grosskortenhaus, S.; Adam, G.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Speetzen, R.; Rau, G. [Helmholtz-Institut fuer Biomedizinische Technik, Aachen (Germany); Rasche, V. [Philips GmbH Forschungslaboratorium, Hamburg (Germany)

    1999-02-01

    Purpose: To test radial k-space scanning by MR fluoroscopy to guide and control MR-guided interstitial cryotherapy of the healthy pig brain. Methods: After MR tomographic planning of the approach, an MR-compatible experimental cryotherapy probe of 2.7 mm diameter was introduced through a 5 mm burr hole into the right frontal brain of five healthy pigs. The freeze-thaw cycles were imaged using a T{sub 1}-weighted gradient echo sequence with radial k-space scanning in coronal, sagittal, and axial directions. Results: The high temporal resolution of the chosen sequence permits a continuous representation of the freezing process with good image quality and high contrast between ice and unfrozen brain parenchyma. Because of the interactive conception of the sequence the layer plane could be chosen as desired during the measurement. Ice formation was sharply demarcated, spherically configurated, and was free of signals. Its maximum diameter was 13 mm. Conclusions: With use of the novel, interactively controllable gradient echo sequence with radial k-space scanning, guidance of the intervention under fluoroscopic conditions with the advantages of MRT is possible. MR-guided cryotherapy allows a minimally-invasive, precisely dosable focal tissue ablation. (orig.) [Deutsch] Ziel: Erprobung der radialen k-Raum-Abtastung bei der MR-Fluoroskopie zur Steuerung und Kontrolle MR-gesteuerter interstitieller Kryotherapie des gesunden Schweinegehirns. Methoden: Nach MR-tomographischer Planung des Zugangsweges wurde eine MR-kompatible experimentelle Kryotherapiesonde von 2,7 mm Durchmesser ueber ein 5 mm Bohrloch in das rechte Frontalhirn von fuenf gesunden Schweinen eingebracht. Die Frier-/Tauzyklen wurden anhand einer T{sub 1}-gewichteten Gradientenechosequenz mit radialer k-Raum-Abtastung in koronarer, sagittaler und axialer Schichtfuehrung dargestellt. Ergebnisse: Die hohe zeitliche Aufloesung der gewaehlten Sequenz erlaubte eine kontinuierliche Darstellung des Friervorgangs bei

  17. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  18. Extracellular proteins: Novel key components of metal resistance in cyanobacteria?

    Directory of Open Access Journals (Sweden)

    Joaquin eGiner-Lamia

    2016-06-01

    Full Text Available Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias towards the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  19. Neutrophil Extracellular Traps in Periodontitis: A Web of Intrigue.

    Science.gov (United States)

    White, P C; Chicca, I J; Cooper, P R; Milward, M R; Chapple, I L C

    2016-01-01

    Neutrophil extracellular traps (NETs) represent a novel paradigm in neutrophil-mediated immunity. NETs are believed to constitute a highly conserved antimicrobial strategy comprising decondensed nuclear DNA and associated histones that are extruded into the extracellular space. Associated with the web-like strands of DNA is an array of antimicrobial peptides (AMPs), which facilitate the extracellular destruction of microorganisms that become entrapped within the NETs. NETs can be released by cells that remain viable or following a unique form of programmed cell death known as NETosis, which is dependent on the production of reactive oxygen species (ROS) and the decondensing of the nuclear DNA catalyzed by peptidyl arginine deiminase-4. NETs are produced in response to a range of pathogens, including bacteria, viruses, fungi, and protozoa, as well as host-derived mediators. NET release is, however, not without cost, as the concomitant release of cytotoxic molecules can also cause host tissue damage. This is evidenced by a number of immune-mediated diseases, in which excess or dysfunctional NET production, bacterial NET evasion, and decreased NET removal are associated with disease pathogenesis. Periodontitis is the most prevalent infectious-inflammatory disease of humans, characterized by a dysregulated neutrophilic response to specific bacterial species within the subgingival plaque biofilm. Neutrophils are the predominant inflammatory cell involved in periodontitis and have previously been found to exhibit hyperactivity and hyperreactivity in terms of ROS production in chronic periodontitis patients. However, the contribution of ROS-dependent NET formation to periodontal health or disease remains unclear. In this focused review, we discuss the mechanisms, stimuli, and requirements for NET production; the ability of NET-DNA and NET-associated AMPs to entrap and kill pathogens; and the potential immunogenicity of NETs in disease. We also speculate on the potential

  20. Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson's disease: from preclinical to clinical studies.

    Science.gov (United States)

    Senova, Suhan; Hosomi, Koichi; Gurruchaga, Jean-Marc; Gouello, Gaëtane; Ouerchefani, Naoufel; Beaugendre, Yara; Lepetit, Hélène; Lefaucheur, Jean-Pascal; Badin, Romina Aron; Dauguet, Julien; Jan, Caroline; Hantraye, Philippe; Brugières, Pierre; Palfi, Stéphane

    2016-08-01

    OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p SPACE-FLAIR sequence (p SPACE-FLAIR sequences at 3 T improved STN lead placement under stereotactic conditions, improved the clinical outcome of patients with PD, and increased the benefit/risk ratio of STN-DBS surgery.

  1. Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI acquisition scheme

    Directory of Open Access Journals (Sweden)

    Chandana Kodiweera

    2016-06-01

    Full Text Available This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI, “Hybrid diffusion imaging” [1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI model, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain” [2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid, anisotropic hindered diffusion (e.g., extracellular space, and anisotropic restricted diffusion (e.g., intracellular space. The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article “Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study” [3].

  2. Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development.

    Science.gov (United States)

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2013-08-01

    Fibroblast Growth Factor (FGF) signaling plays crucial roles in multiple cellular processes including cell proliferation, differentiation, survival, and migration during mammalian embryogenesis. In the extracellular matrix, as well as at the cell surface, the movement of FGF ligands to target cells and the subsequent complex formations with their receptors are positively and negatively controlled extracellularly by heparan sulfate proteoglycans (HSPGs) such as syndecans, glypicans, and perlecan. Additionally, spreading of HSPGs by cleavage with sheddases such as proteinases and heparanases, and the overall length and sulfation level of specific heparan sulfate structures further generate a great diversity of FGF signaling outcomes. This review presents our current understanding of the regulatory mechanisms of FGF signaling in extracellular spaces through HSPGs in mammalian development.

  3. CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus.

    Science.gov (United States)

    Bradley, W G

    2015-05-01

    CSF normally flows back and forth through the aqueduct during the cardiac cycle. During systole, the brain and intracranial vasculature expand and compress the lateral and third ventricles, forcing CSF craniocaudad. During diastole, they contract and flow through the aqueduct reverses. Hyperdynamic CSF flow through the aqueduct is seen when there is ventricular enlargement without cerebral atrophy. Therefore, patients presenting with clinical normal pressure hydrocephalus who have hyperdynamic CSF flow have been found to respond better to ventriculoperitoneal shunting than those with normal or decreased CSF flow. Patients with normal pressure hydrocephalus have also been found to have larger intracranial volumes than sex-matched controls, suggesting that they may have had benign external hydrocephalus as infants. While their arachnoidal granulations clearly have decreased CSF resorptive capacity, it now appears that this is fixed and that the arachnoidal granulations are not merely immature. Such patients appear to develop a parallel pathway for CSF to exit the ventricles through the extracellular space of the brain and the venous side of the glymphatic system. This pathway remains functional until late adulthood when the patient develops deep white matter ischemia, which is characterized histologically by myelin pallor (ie, loss of lipid). The attraction between the bare myelin protein and the CSF increases resistance to the extracellular outflow of CSF, causing it to back up, resulting in hydrocephalus. Thus idiopathic normal pressure hydrocephalus appears to be a "2 hit" disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood.

  4. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  5. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    The interaction of extracellular matrix with cells regulates their adhesion, migration and proliferation, and it is believed that damage to vascular matrix components is a factor in the development of atherosclerosis. Evidence has been provided for a role for the haem enzyme MPO (myeloperoxidase...

  6. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, Hugo; Moroni, Lorenzo; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to a

  7. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior.

    Science.gov (United States)

    Potter, Michelle C; Elmer, Greg I; Bergeron, Richard; Albuquerque, Edson X; Guidetti, Paolo; Wu, Hui-Qiu; Schwarcz, Robert

    2010-07-01

    At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the alpha 7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (-71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (-66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease.

  8. Light and electron microscopic evaluation of hydrogen ion-induced brain necrosis.

    Science.gov (United States)

    Petito, C K; Kraig, R P; Pulsinelli, W A

    1987-10-01

    Excessive accumulation of hydrogen ions in the brain may play a pivotal role in initiating the necrosis seen in infarction and following hyperglycemic augmentation of ischemic brain damage. To examine possible mechanisms involved in hydrogen ion-induced necrosis, sequential structural changes in rat brain were examined following intracortical injection of sodium lactate solution (pH 4.5), as compared with injections at pH 7.3. Following pH 7.3 injection, neuronal swelling developed between 1 and 6 h, but only a needle track wound surrounded by a thin rim of necrotic neurons and vacuolated neuropil was present 24 h after injection. In contrast, pH 4.5 injection produced neuronal necrosis as soon as 1 h after injection, followed by necrosis of astrocytes and intravascular thrombi at 3 and 6 h. Alterations common to both groups included vascular permeability to horseradish peroxidase, dilation of extracellular spaces, astrocyte swelling, capillary compression, and vascular stasis. These data suggest that neurons, astrocytes, and endothelia can be directly damaged by increased acid in the interstitial space. Lethal injury initially appeared to affect neurons, while subsequent astrocyte necrosis and vascular occlusion may damage tissue by secondary ischemia.

  9. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases.

  10. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    Science.gov (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  11. The gravitational field and brain function

    Science.gov (United States)

    Mei, Lei; Zhou, Chuan-Dai; Lan, Jing-Quan; Wang, Zhi-Ging; Wu, Wen-Can; Xue, Xin-Min

    The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the ``frontalization'' of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: ``encephalization'', ``corticalization'', ``lateralization'' and ``frontalization''. The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.

  12. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    [1]Cheng. W. Y., Cyclic 3', 5'-nucleotide phosphodiestrase: demonstration of an activator, Biochm. Biophys. Res. Commun.,1970, 38: 533-538.[2]Boynton, A. L., Whitfield, J. F., MacManus, J. P., Calmodulin stimulates DNA synthesis by rat liver cells, BBRC.1980,95(2): 745-749.[3]Gorbacherskaya, L. V., Borovkova, T. V., Rybin, U. O. et al., Effect of exogenous calmodulin on lymphocyte proliferation in normal subjects, Bull Exp. Med. Biol., 1983, 95: 361-363.[4]Wong, P. Y.-K., Lee, W. H., Chao, PH.-W., The role of calmodulin in prostaglandin metabolism, Ann. NY Acad. Sci.,1980, 356: 179-189.[5]Mac Neil, S., Dawson, R. A., Crocker, G. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth, J. Invest. Dermatol., 1984, 83: 15-19.[6]Crocker, D. G., Dawson, R. A., Mac Neil, S. et al., An extracellular role for calmodulin-like activity in cell proliferation,Biochem. J., 1988, 253: 877-884.[7]Polito. V. S., Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth, in Pollen: Biology and Implications for Plant Breeding (eds. Mulvshy, D. L., Ottaviaro, E.), New York: Elsevier, 1983.53-60.[8]Biro, R. L., Sun, D. Y., Roux, S. J.et al., Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution, Plant Physiol., 1984,75: 382-386.[9]Terry, M. E., Bonner, B. A., An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of IAA-induced growth, Plant Physiol., 1980, 66: 321-325.[10]Josefina, H. N., Aldasars, J. J., Rodriguez, D., Localization of calmodulin on embryonic Cice aricium L, in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.), New York, London: Plenum Press, 1985, 313.[11]Dauwalder, M., Roux, S. J., Hardison, L., Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices, Planta, 1986, 168: 461

  13. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  18. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... their final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  2. Oxidative and other posttranslational modifications in extracellular vesicle biology.

    Science.gov (United States)

    Szabó-Taylor, Katalin; Ryan, Brent; Osteikoetxea, Xabier; Szabó, Tamás G; Sódar, Barbara; Holub, Marcsilla; Németh, Andrea; Pálóczi, Krisztina; Pállinger, Éva; Winyard, Paul; Buzás, Edit I

    2015-04-01

    Extracellular vesicles including exosomes, microvesicles and apoptotic vesicles, are phospholipid bilayer surrounded structures secreted by cells universally, in an evolutionarily conserved fashion. Posttranslational modifications such as oxidation, citrullination, phosphorylation and glycosylation play diverse roles in extracellular vesicle biology. Posttranslational modifications orchestrate the biogenesis of extracellular vesicles. The signals extracellular vesicles transmit between cells also often function via modulating posttranslational modifications of target molecules, given that extracellular vesicles are carriers of several active enzymes catalysing posttranslational modifications. Posttranslational modifications of extracellular vesicles can also contribute to disease pathology by e.g. amplifying inflammation, generating neoepitopes or carrying neoepitopes themselves.

  3. Early extracellular and cellular lipid deposits in aorta of cholesterol-fed rabbits.

    Science.gov (United States)

    Guyton, J. R.; Klemp, K. F.

    1992-01-01

    Subendothelial accumulation of extracellular liposomes rich in unesterified cholesterol has been described as an early feature of atherosclerosis induced by cholesterol feeding in rabbits. Beta-very-low-density lipoproteins, however, the presumed source of atherogenic lipid in this animal model, contain mostly esterified cholesterol. The purpose of this study was to test for the presence of extracellular neutral lipid deposits consistent with esterified cholesterol, by employing new electron microscopic techniques. Rabbits were fed 0.5% cholesterol, 5% butter for 0, 1, 2, and 4 weeks. The lipid-preserving ultrastructural techniques showed, in control and atherosclerotic rabbit arteries, neutral lipid droplets adherent to the endothelial luminal surface. After 1 to 2 weeks, subendothelial extracellular deposits of mostly membranous lipid appeared; these deposits contained variable amounts of neutral lipid. At the same time, cytoplasmic neutral lipid droplets appeared in smooth muscle cells and in a small number of subendothelial macrophagelike cells. After 4 weeks, monocytic infiltration and macrophage foam cell development were prominent, but abundant extracellular lipid deposits also were found. Therefore, in arteries of cholesterol-fed rabbits, deposition of membranous and neutral lipid in the extracellular space and neutral lipid accumulation in resident arterial cells are early and probably independent events, both occurring before monocytic infiltration of the arterial intima. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:1415485

  4. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  5. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  6. The Brain.

    Science.gov (United States)

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  7. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development

    Directory of Open Access Journals (Sweden)

    Karen Stanic

    2016-09-01

    Full Text Available Extracellular matrix (ECM molecules are pivotal for central nervous system development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axonal guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during central nervous system development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn towards the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.

  8. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development

    Science.gov (United States)

    Stanic, Karen; Saldivia, Natalia; Förstera, Benjamín; Torrejón, Marcela; Montecinos, Hernán; Caprile, Teresa

    2016-01-01

    Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons. PMID:27733818

  9. Collagens and proteoglycans of the corneal extracellular matrix

    Directory of Open Access Journals (Sweden)

    Y.M. Michelacci

    2003-08-01

    Full Text Available The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV, and other nonfibrillar collagens (XIII and XVIII. FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils.Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.

  10. Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin

    DEFF Research Database (Denmark)

    Barnea, G; Grumet, M; Milev, P;

    1994-01-01

    The extracellular domain of receptor type protein tyrosine phosphatase beta (RPTP beta) exhibits striking sequence similarity with a soluble, rat brain chondroitin sulfate proteoglycan (3F8 PG). Immunoprecipitation experiments of cells transfected with RPTP beta expression vector and metabolically...... labeled with [35S]sulfate and [35S]methionine indicate that the transmembrane form of RPTP beta is indeed a chondroitin sulfate proteoglycan. The 3F8 PG is therefore a variant form composed of the entire extracellular domain of RPTP beta probably generated by alternative RNA splicing. Previous...

  11. Wave onset in central gray matter - its intrinsic optical signal and phase transitions in extracellular polymers

    Directory of Open Access Journals (Sweden)

    VERA M. FERNANDES-DE-LIMA

    2001-09-01

    Full Text Available The brain is an excitable media in which excitation waves propagate at several scales of time and space. ''One-dimensional'' action potentials (millisecond scale along the axon membrane, and spreading depression waves (seconds to minutes at the three dimensions of the gray matter neuropil (complex of interacting membranes are examples of excitation waves. In the retina, excitation waves have a prominent intrinsic optical signal (IOS. This optical signal is created by light scatter and has different components at the red and blue end of the spectrum. We could observe the wave onset in the retina, and measure the optical changes at the critical transition from quiescence to propagating wave. The results demonstrated the presence of fluctuations preceding propagation and suggested a phase transition. We have interpreted these results based on an extrapolation from Tasaki's experiments with action potentials and volume phase transitions of polymers. Thus, the scatter of red light appeared to be a volume phase transition in the extracellular matrix that was caused by the interactions between the cellular membrane cell coat and the extracellular sugar and protein complexes. If this hypothesis were correct, then forcing extracellular current flow should create a similar signal in another tissue, provided that this tissue was also transparent to light and with a similarly narrow extracellular space. This control tissue exists and it is the crystalline lens. We performed the experiments and confirmed the optical changes. Phase transitions in the extracellular polymers could be an important part of the long-range correlations found during wave propagation in central nervous tissue.O encéfalo é um meio excitável no qual ondas de excitação se propagam em várias escalas de tempo e espaço. Potenciais de axônios ''unidimensionais'' (escala de milisegundos ao longo da membrana axonal e ondas de depressão alastrante (segundos a minutos nas três dimens

  12. Trophic actions of extracellular ATP: gene expression profiling by DNA array analysis.

    Science.gov (United States)

    Neary, J T

    2000-07-01

    In addition to Professor Burnstock's work on the short-term signaling actions of extracellular nucleotides and nucleosides, Geoff has had a long-standing interest in trophic actions of purines in development and in pathophysiological conditions which has been instrumental in encouraging my work in this area. The trophic actions of extracellular ATP, alone or in combination with polypeptide growth factors, may play an important role in brain development and may contribute to the reactive gliosis that accompanies brain injury and neurodegeneration. P2Y receptors in astrocytes are coupled to the ERK/MAPK cascade, a signal transduction mechanism crucial for cellular proliferation and differentiation. The mitogenic signaling pathway from P2Y receptors to ERK involves phospholipase D and a calcium-independent PKC isoform, PKCdelta. DNA array analysis reveals a number of changes in gene expression after P2Y receptor occupancy, indicating that this methodology will be a powerful tool in understanding the mechanisms underlying the trophic actions of extracellular nucleotides and nucleosides.

  13. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus.

    Science.gov (United States)

    Wiera, Grzegorz; Mozrzymas, Jerzy W

    2015-01-01

    Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  14. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  15. Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume.

    Science.gov (United States)

    Leiserson, William M; Forbush, Biff; Keshishian, Haig

    2011-02-01

    The nervous system is protected by blood barriers that use multiple systems to control extracellular solute composition, osmotic pressure, and fluid volume. In the human nervous system, misregulation of the extracellular volume poses serious health threats. Here, we show that the glial cells that form the Drosophila blood-nerve barrier have a conserved molecular mechanism that regulates extracellular volume: the Serine/Threonine kinase Fray, which we previously showed is an ortholog of mammalian PASK/SPAK; and the Na-K-Cl cotransporter Ncc69, which we show is an ortholog of human NKCC1. In mammals, PASK/SPAK binds to NKCC1 and regulates its activity. In Drosophila, larvae mutant for Ncc69 develop a peripheral neuropathy, where fluid accumulates between glia and axons. The accumulation of fluid has no detectable impact on action potential conduction, suggesting that the role of Ncc69 is to maintain volume or osmotic homeostasis. Drosophila Ncc69 has kinetics similar to human NKCC1, and NKCC1 can rescue Ncc69, suggesting that they function in a conserved physiological mechanism. We show that fray and Ncc69 are coexpressed in nerve glia, interact in a yeast-two-hybrid assay, and have an essentially identical bulging nerve phenotype. We propose that normally functioning nerves generate extracellular solutes that are removed by Ncc69 under the control of Fray. This mechanism may perform a similar role in humans, given that NKCC1 is expressed at the blood-brain barrier.

  16. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes.

    Science.gov (United States)

    Wang, Zhuo; Deng, Zhong; Dahmane, Nadia; Tsai, Kevin; Wang, Pu; Williams, Dewight R; Kossenkov, Andrew V; Showe, Louise C; Zhang, Rugang; Huang, Qihong; Conejo-Garcia, José R; Lieberman, Paul M

    2015-11-17

    Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments.

  17. Bio-inspired benchmark generator for extracellular multi-unit recordings

    Science.gov (United States)

    Mondragón-González, Sirenia Lizbeth; Burguière, Eric

    2017-01-01

    The analysis of multi-unit extracellular recordings of brain activity has led to the development of numerous tools, ranging from signal processing algorithms to electronic devices and applications. Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth databases of neural signals. These databases must be parameterisable, easy to generate and bio-inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards that end, this article introduces an original computational approach to create fully annotated and parameterised benchmark datasets, generated from the summation of three components: neural signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, and a variety of different types of artefacts. We present three application examples. (1) We reproduced in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. (3) Last, we also conducted a series of simulations to study the impact of different level of artefacts on extracellular recordings and their influence in the frequency domain. Beyond the results presented here, such a benchmark dataset generator has many applications such as calibration, evaluation and development of both hardware and software architectures. PMID:28233819

  18. Brain Injury Following Repetitive Apnea in Newborn Piglets

    Science.gov (United States)

    Schears, Gregory; Creed, Jennifer; Antoni, Diego; Zaitseva, Tatiana; Greeley, William; Wilson, David F.; Pastuszko, Anna

    Repetitive apnea is associated with a significant increase in extracellular dopamine, generation of free radicals as determined by o-tyrosine formation and increase in Fluoro-Jade staining of degenerating neurons. This increase in extracellular dopamine and of hydroxyl radicals in striatum of newborn brain is likely to be at least partly responsible for the neuronal injury and neurological side effects of repetitive apnea.

  19. Low-frequency hippocampal stimulation increases the extracellular γ-aminobutyrate level in the brain, inhibits the epileptic seizures and after discharges of the amygdala in pharmacoresistant temporal lobe epileptic rats%低频海马电刺激增加耐药性颞叶癫痫大鼠脑细胞外液γ-氨基丁酸含量和抑制癫痫发作及杏仁核后放电

    Institute of Scientific and Technical Information of China (English)

    伍国锋; 刘晓英; 洪震; 唐太峰

    2014-01-01

    phenobabital and phenytoin.We then divided the pharmacoresistant epileptic rats into the hippocampal stimulation group and control group,with 8 rats in each group.Low-frequency stimulus was conducted for two weeks in the hippocampal stimulation group.The hippocampus extracellular fluid collected by microdialysis was then used to determine the levels of GABA by a high performance liquid chromatography method after hippocampal stimulation.Results The stimulus-induced seizures were inhibited significantly,and the frequency of the AD was decreased,as well as the amplitude,compared with the control group.The extracellular level of GABA in the 8:00-9:00 am and the 8:00-9:00 pm was (32.69 ± 7.80) and (35.76 ± 6.27) μg/ml,respectively,both significantly increased as compared with the control ((26.58 ± 6.87) μg/ml,t =-21.45,P =0.000 ; (31.50 ± 4.87) μg/ml,t =-15.74,P =0.000).Conclusions The low-frequency hippocampal stimulation inhibits the seizures of the kindled model of epilepsy and decreases the frequency,the amplitude,as well as the duration of the amygdale AD in the pharmacoresistant epileptic rats,which may be contributed to the increased GABA content in extracellular fluid of the brain after stimulation.

  20. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  1. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  2. Proton production, regulation and pathophysiological roles in the mammalian brain

    Institute of Scientific and Technical Information of China (English)

    Wei-Zheng Zeng; Tian-Le Xu

    2012-01-01

    The recent demonstration of proton signaling in C elegans muscle contraction suggests a novel mechanism for proton-based intercellular communication and has stimulated enthusiasm for exploring proton signaling in higher organisms.Emerging evidence indicates that protons are produced and regulated in localized space and time.Furthermore,identification of proton regulators and sensors in the brain leads to the speculation that proton production and regulation may be of major importance for both physiological and pathological functions ranging from nociception to learning and memory.Extracellular protons may play a role in signal transmission by not only acting on adjacent cells but also affecting the cell from which they were released.In this review,we summarize the upstream and downstream pathways of proton production and regulation in the mammalian brain,with special emphasis on the proton extruders and sensors that are critical in the homeostatic regulation of pH,and discuss their potential roles in proton signaling under normal and pathophysiological conditions.

  3. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]......Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...... and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromols. are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin...

  4. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  5. Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study

    Science.gov (United States)

    Bellinger, S. C.; Miyazawa, G.; Steinmetz, P. N.

    2008-09-01

    Deep brain stimulation has been used for over a decade to relieve the symptoms of Parkinson's disease, although its mechanism of action remains poorly understood. To better understand the direct effects of DBS on central neurons, a computational model of a myelinated axon has been constructed which includes the effects of K+ accumulation within the peri-axonal space. Using best estimates of anatomic and electrogenic model parameters for in vivo STN axons, the model predicts a functional block along the axon due to K+ accumulation in the submyelin space. The functional block occurs for a range of model parameters: high stimulation frequencies (>130 Hz); high extracellular K+ concentrations (>3 × 10-3 M); low maximum Na+/K+ ATPase current densities (stimulating frequency.

  6. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    , which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate...... that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA....

  7. Engineering hydrogels as extracellular matrix mimics

    OpenAIRE

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable....

  8. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport

    OpenAIRE

    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J

    2008-01-01

    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  9. Tetraspanins in Extracellular Vesicle Formation and Function

    OpenAIRE

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different phy...

  10. Tetraspanins in Extracellular Vesicle formation and function

    OpenAIRE

    Zoraida Andreu Martínez; María eYáñez-Mó

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physi...

  11. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Lauriane Jugé

    Full Text Available Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both, an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM and rearrangement of the cortical gray matter microstructure (P < 0.001, for both, while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both. During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001, while a decrease in space was observed for the ventral internal capsule (P < 0.001. For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001. To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions

  12. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  13. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  14. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

    Science.gov (United States)

    Gorgojo, Juan; Scharrig, Emilia; Gómez, Ricardo M.; Harvill, Eric T.; Rodríguez, Maria Eugenia

    2017-01-01

    B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts. PMID:28095485

  15. Extracellular matrix proteins involved in pseudoislets formation.

    Science.gov (United States)

    Maillard, Elisa; Sencier, Marie-Christine; Langlois, A; Bietiger, William; Krafft, Mp; Pinget, Michel; Sigrist, Séverine

    2009-01-01

    Extracellular matrix proteins are known to mediate, through integrins, cell adhesion and are involved in a number of cellular processes, including insulin expression and secretion in pancreatic islets. We investigated whether expression of some extracellular matrix proteins were implied in islets-like structure formation, named pseudoislets. For this purpose, we cultured the β-cell line, RINm5F, during 1, 3, 5 and 7 days of culture on treated or untreated culture plate to form adherent cells or pseudoislets and analysed insulin, collagen IV, fibronectin, laminin 5 and β1-integrin expression. We observed that insulin expression and secretion were increased during pseudoislets formation. Moreover, we showed by immunohistochemistry an aggregation of insulin secreting cells in the centre of the pseudoislets. Peripheral β-cells of pseudoislets did not express insulin after 7 days of culture. RT-PCR and immunohistochemistry studies showed a transient expression of type IV collagen in pseudoislets for the first 3 days of culture. Study of fibronectin expression indicated that adherent cells expressed more fibronectin than pseudoislets. In contrast, laminin 5 was more expressed in pseudoislets than in adherent cells. Finally, expression of β1-integrin was increased in pseudoislets as compared to adherent cells. In conclusion, laminin 5 and collagen IV might be implicated in pseudoislets formation whereas fibronectin might be involved in cell adhesion. These data suggested that extracellular matrix proteins may enhance the function of pseudoislets.

  16. Extracellular quality control in the epididymis

    Institute of Scientific and Technical Information of China (English)

    Gail A. Cornwall; H. Henning von Horsten; Douglas Swartz; Seethal Johnson; Kim Chau; Sandra Whelly

    2007-01-01

    The epididymal lumen represents a unique extracellular environment because of the active sperm maturation process that takes place within its confines. Although much focus has been placed on the interaction of epididymal secretory proteins with spermatozoa in the lumen, very little is known regarding how the complex epididymal milieu as a whole is maintained, including mechanisms to prevent or control proteins that may not stay in their native folded state following secretion. Because some misfolded proteins can form cytotoxic aggregate structures known as amyloid, it is likely that control/surveillance mechanisms exist within the epididymis to protect against this process and allow sperm maturation to occur. To study protein aggregation and to identify extracellular quality control mechanisms in the epididymis, we used the cystatin family of cysteine protease inhibitors, including cystatin-related epididymal spermatogenic and cystatin C as molecular models because both proteins have inherent properties to aggregate and form amyloid. In this chapter, we present a brief summary of protein aggregation by the amyloid pathway based on what is known from other organ systems and describe quality control mechanisms that exist intracellularly to control protein misfolding and aggregation. We then present a summary of our studies of cystatinrelated epididymal spermatogenic (CRES) oligomerization within the epididymal lumen, including studies suggesting that transglutaminase cross-linking may be one mechanism of extracellular quality control within the epididymis.

  17. Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue.

    Science.gov (United States)

    Tomsett, Richard J; Ainsworth, Matt; Thiele, Alexander; Sanayei, Mehdi; Chen, Xing; Gieselmann, Marc A; Whittington, Miles A; Cunningham, Mark O; Kaiser, Marcus

    2015-07-01

    Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study this link, we developed the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX). We first identified a reduced neuron model that retained the spatial and frequency filtering characteristics of extracellular potentials from neocortical neurons. We then developed VERTEX as an easy-to-use Matlab tool for simulating LFPs from large populations (>100,000 neurons). A VERTEX-based simulation successfully reproduced features of the LFPs from an in vitro multi-electrode array recording of macaque neocortical tissue. Our model, with virtual electrodes placed anywhere in 3D, allows direct comparisons with the in vitro recording setup. We envisage that VERTEX will stimulate experimentalists, clinicians, and computational neuroscientists to use models to understand the mechanisms underlying measured brain dynamics in health and disease.

  18. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Peter J [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA (United States); Broaddus, William C; Chen Zhijian; Gillies, George T [Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA (United States); Fatouros, Panos P; Corwin, Frank D, E-mail: wbroaddus@mcvh-vcu.ed [Department of Radiology, Virginia Commonwealth University, Richmond, VA (United States)

    2010-06-21

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s){sup -1} in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  19. Extracellular calcium-sensing receptor: structural and functional features and association with diseases

    Directory of Open Access Journals (Sweden)

    Hauache O.M.

    2001-01-01

    Full Text Available The recently cloned extracellular calcium-sensing receptor (CaR is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs or antagonizing it (calcilytic drugs, and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.

  20. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    Energy Technology Data Exchange (ETDEWEB)

    Deeley, M A; Cmelak, A J; Malcolm, A W; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Ding, G X [Department of Radiation Oncology, Vanderbilt University, Nashville, TN (United States); Chen, A; Datteri, R; Noble, J H; Dawant, B M [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN (United States); Donnelly, E F [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN (United States); Yei, F; Koyama, T, E-mail: matthew.deeley@uvm.edu [Department of Biostatistics, Vanderbilt University, Nashville, TN (United States)

    2011-07-21

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.

  1. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.

    Directory of Open Access Journals (Sweden)

    Andrea Seper

    Full Text Available The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.

  2. Regulation of extracellular signal-regulated kinase 1/2 inlfuences hippocampal neuronal survival in a rat model of diabetic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yaning Zhao; Jianmin Li; Qiqun Tang; Pan Zhang; Liwei Jing; Changxiang Chen; Shuxing Li

    2014-01-01

    Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and Ku70 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These ifndings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac-celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/reperfusion.

  3. Extracellular polymeric substances play roles in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, En-Hua; Christensen, Hans Erik Mølager

    It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells...... the extraction (Figure 1.a and 1.b). Comparing to cells in control group, MR-1 treated at 38 °C for EPS extraction showed different electrochemical characterizations as revealed by differential pulse voltammetry (Figure 1.c). EPS extracted from MR-1 also was proved to be electrochemically active. The present...

  4. Resorbable extracellular matrix grafts in urologic reconstruction

    Directory of Open Access Journals (Sweden)

    Richard A. Santucci

    2005-06-01

    Full Text Available PURPOSE: There is an increasingly large body of literature concerning tissue-engineering products that may be used in urology. Some of these are quite complex (such as multilayer patient-specific cell-seeded implants yet the most simple and successful products to date are also the most uncomplicated: resorbable acellular extra-cellular matrices (ECMs harvested from animals. ECMs have been used in a variety of difficult urologic reconstruction problems, and this review is intended to summarize this complex literature for the practicing urologist. METHODS: Medline search of related terms such as "SIS, small intestinal submucosa, ECM, extracellular matrix, acellular matrix and urologic reconstruction". Manuscripts missed in the initial search were taken from the bibliographies of the primary references. RESULTS: Full review of potential clinical uses of resorbable extra-cellular matrices in urologic reconstruction. CONCLUSIONS: Currently, the "state of the art" in tissue engineering solutions for urologic reconstruction means resorbable acellular xenograft matrices. They show promise when used as a pubovaginal sling or extra bolstering layers in ureteral or urethral repairs, although recent problems with inflammation following 8-ply pubovaginal sling use and failures after 1- and 4-ply SIS repair of Peyronie's disease underscore the need for research before wide adoption. Preliminary data is mixed concerning the potential for ECM urethral patch graft, and more data is needed before extended uses such as bladder augmentation and ureteral replacement are contemplated. The distant future of ECMs in urology likely will include cell-seeded grafts with the eventual hope of producing "off the shelf" replacement materials. Until that day arrives, ECMs only fulfill some of the requirements for the reconstructive urologist.

  5. Biogenesis, delivery, and function of extracellular RNA

    Directory of Open Access Journals (Sweden)

    James G. Patton

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.

  6. Bidirectional extracellular matrix signaling during tissue morphogenesis

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  7. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  8. Brain Autopsy

    Science.gov (United States)

    ... why a family should consider arranging for a brain autopsy upon the death of their loved one. To get a definitive ... study of tissue removed from the body after death. Examination of the whole brain is important in understanding FTD because the patterns ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues both help to direct ... comparing such children to those with normal brain development may help scientists to pinpoint when and where mental disorders begin and perhaps how to slow or stop ...

  11. Brain peroxisomes.

    Science.gov (United States)

    Trompier, D; Vejux, A; Zarrouk, A; Gondcaille, C; Geillon, F; Nury, T; Savary, S; Lizard, G

    2014-03-01

    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered.

  12. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  13. Extracellular polymers of ozonized waste activated sludge.

    Science.gov (United States)

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  14. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  15. Extracellular superoxide dismutase of boar seminal plasma.

    Science.gov (United States)

    Kowalowka, M; Wysocki, P; Fraser, L; Strzezek, J

    2008-08-01

    Superoxide dismutase (SOD) is an enzymatic component of the antioxidant defense system that protects spermatozoa by catalysing the dismutation of superoxide anions to hydrogen peroxide and oxygen. Age and season effects on SOD activity in the seminal plasma were measured in boars at the onset of 8 months through a 35-month period. It was found that age-related changes in SOD activity in the seminal plasma were markedly higher in boars less than 2 years of age. However, it appeared that SOD activity was established at the early sexual maturity age (8-12 months). There were variations in SOD activity throughout the season, being significantly higher in spring and autumn than in summer. A secretory extracellular form of SOD (EC-SOD) was purified to homogeneity (350-fold) from boar seminal plasma, using a three-step purification protocol (affinity chromatography followed by ion exchange and ceramic hydroxyapatite chromatography). The molecular properties and specificity of SOD (molecular mass, isoelectric point, optimum pH, thermostability and susceptibility to inhibitors) confirmed that the purified enzyme is an extracellular form of Cu/Zn-superoxide dismutase occurring in boar seminal plasma. The results of this study indicate that EC-SOD is an important antioxidant enzyme of boar seminal plasma, which plays an important physiological role in counteracting oxidative stress in spermatozoa.

  16. Defining the extracellular matrix using proteomics

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Humphries, Martin J

    2013-01-01

    The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153

  17. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an overvie

  18. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  19. [Space medicine and life sciences in space].

    Science.gov (United States)

    Gerstenbrand, F; Muigg, A

    1993-01-01

    The examination of pathophysiological disturbances and the process of adaptation in man during space flight is not for optimizing of the biological systems during the training of cosmonauts and astronauts for their stay in space only. These results are also important for medical application on patients. In real microgravity disturbances of motor performances, coordination of movements, accuracy of movements, muscle function as well as structural changes in muscles is found in real microgravity. Spinal reflexes and the control of vestibular system on eye movements are also afflicted. Higher brain functions, especially associative reactions, critical abilities, memory, as well as high brain function like space orientation, body scheme control, geometric and arithmetic analysis and its reproduction, at last speech production, writing and reading are decreased. Vegetative disorders, bone decalcification, primary muscular atrophy occur as well as changes in sleep--wake regulation and diminishing of vigility. Disturbances of blood and body fluid circulation and biologic radiation damage are further effects of man space flight. Several problems of space adaptation can be studied with the methods of the simulated microgravity using the dry water immersion, examination and the bed rest model in special laboratories. The routine medicine is learning from the scientific results of the research in real and simulated microgravity.

  20. Neurocan is dispensable for brain development

    DEFF Research Database (Denmark)

    Zhou, X H; Brakebusch, C; Matthies, H

    2001-01-01

    Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we...... generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons...... appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain....

  1. Design and synthesis of zinc-selective chelators for extracellular applications.

    Science.gov (United States)

    Kawabata, Eri; Kikuchi, Kazuya; Urano, Yasuteru; Kojima, Hirotatsu; Odani, Akira; Nagano, Tetsuo

    2005-01-26

    Zinc (Zn2+) is found in every cell in human bodies. A few millimolar of free Zn2+ exists in the vesicles of presynaptic neurons in the mammalian brain and is released by synaptic activity or depolarization, modulating the function of certain ion channels and receptors. Although various chemical tools for measuring Zn2+ in biological samples, such as fluorescent probes for Zn2+, have been developed, Zn2+-selective chelators have room to be improved. Research on Zn2+ signals in the brain has traditionally employed several chelators, which have several shortcomings for biological applications. Here we report the design, synthesis, and properties of new membrane-impermeable chelators selective for Zn2+ and describe biological applications in hippocampal slices. As a result, our newly designed chelator revealed the first biological implication that presynaptic Zn2+ can be released in the CA1 region. This confirms the utility of these new chelatotrs as extracellular Zn2+ chelators for biological applications.

  2. Extracellular matrix proteins as temporary coating for thin-film neural implants

    Science.gov (United States)

    Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert

    2017-02-01

    Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.

  3. Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors.

    Science.gov (United States)

    Abdul-Hay, Samer O; Bannister, Thomas D; Wang, Hui; Cameron, Michael D; Caulfield, Thomas R; Masson, Amandine; Bertrand, Juliette; Howard, Erin A; McGuire, Michael P; Crisafulli, Umberto; Rosenberry, Terrone R; Topper, Caitlyn L; Thompson, Caroline R; Schürer, Stephan C; Madoux, Franck; Hodder, Peter; Leissring, Malcolm A

    2015-12-18

    Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 μM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.

  4. The effects of extracellular acidosis on neurons and glia in vitro.

    Science.gov (United States)

    Goldman, S A; Pulsinelli, W A; Clarke, W Y; Kraig, R P; Plum, F

    1989-08-01

    Cerebral lactic acid, a product of ischemic anaerobic glycolysis, may directly contribute to ischemic brain damage in vivo. In this study we evaluated the effects of extracellular acid exposure on 7-day-old cultures of embryonic rat forebrain. Mixed neuronal and glial cultures were exposed to either lactic or hydrochloric acid to compare the toxicities of relatively permeable and impermeable acids. Neurons were relatively resistant to extra-cellular HCl acidosis, often surviving 10-min exposures to pH 3.8. In the same cultures, immunochemically defined astrocytes survived 10-min HCl exposures to a maximum acidity of pH 4.2. Similarly, axonal bundles defasciculated in HCl-titrated media below pH 4.4, although their constituent fibers often survived pH 3.8. Cell death occurred at higher pH in cultures subjected to lactic acidosis than in those exposed to HCl. Over half of forebrain neurons and glia subjected for 10 min to lactic acidification failed to survive exposure to pH 4.9. Longer 1-h lactic acid incubations resulted in cell death below pH 5.2. The potent cytotoxicity of lactic acid may be a direct result of the relatively rapid transfer of its neutral protonated form across cell membranes. This process would rapidly deplete intracellular buffer stores, resulting in unchecked cytosolic acidification. Neuronal and glial death from extracellular acidosis may therefore be a function of both the degree and the rapidity of intracellular acidification.

  5. Neutrophils cast extracellular traps in response to protozoan parasites.

    Science.gov (United States)

    Abi Abdallah, Delbert S; Denkers, Eric Y

    2012-01-01

    Release of extracellular traps by neutrophils is a now well-established phenomenon that contributes to the innate response to extracellular bacterial and fungal pathogens. The importance of NETs during protozoan infection has been less explored, but recent findings suggest an emerging role for release of neutrophil-derived extracellular DNA in response to this class of microbial pathogens. The present review summarizes findings to date regarding elicitation of NETs by Toxoplasma gondii, Plasmodium falciparum, Eimeria bovis, and Leishmania spp.

  6. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  7. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ... Higher Death Rate Among Youth with Psychosis Delayed Walking Link ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... Some people who develop a mental illness may recover completely; others may have repeated episodes of illness ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... that contains codes to make proteins and other important body chemicals. DNA also includes information to control ... cells required for normal function and plays an important role during early brain development. It may also ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... of the cell from its surrounding environment and controls what enters and leaves the cell, and responds ... via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ... can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as mood, ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... Offices and Divisions Careers@NIMH Advisory Boards and Groups Staff Directories Getting to NIMH National Institutes of ... electrical signals. The brain begins as a small group of cells in the outer layer of a ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  16. The NIH Extracellular RNA Communication Consortium.

    Science.gov (United States)

    Ainsztein, Alexandra M; Brooks, Philip J; Dugan, Vivien G; Ganguly, Aniruddha; Guo, Max; Howcroft, T Kevin; Kelley, Christine A; Kuo, Lillian S; Labosky, Patricia A; Lenzi, Rebecca; McKie, George A; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S; Srinivas, Pothur R; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A; Tucker, Jessica M; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

  17. Extracellular Matrices (ECM) for Tissue Repair.

    Science.gov (United States)

    Polanco, Thais O; Xylas, Joanna; Lantis, John C

    2016-04-01

    Persistence of skin wounds due to underlying disease, bacterial contamination, and/or repeated trauma, causes a chronic condition where a functional extracellular matrix (ECM) cannot be established and the normal wound-healing cascade is unable to progress. These open chronic wounds leave the body susceptible to infection and present a major healthcare problem. To this end, a broad range of biologic ECM scaffolds have been developed that can provide other therapeutic options aside from traditional wound care approaches. These tissue engineered ECM scaffolds aim to facilitate the restoration of functional skin-like tissue by altering the chronic wound environment and facilitating cellular attachment, proliferation, and differentiation. This discussion will center on reviewing current ECM scaffolds and highlighting their properties and mechanism of action with respect to the clinical application in chronic, non-healing wounds.

  18. Neutrophil extracellular traps in tissue pathology.

    Science.gov (United States)

    Nakazawa, Daigo; Kumar, Santosh; Desai, Jyaysi; Anders, Hans-Joachim

    2017-03-01

    Neutrophil extracellular traps (NETs) are innate immune systems against invading pathogens. NETs are characterized as released DNA mixed with cytoplasmic antimicrobial proteins such as myeloperoxidase, proteinase3 and neutrophil elastase. While NETs are thought to have an important role in host defense, recent work has suggested that NETs contribute to tissue injury in non-infectious disease states. Uncontrolled NET formation in autoimmune diseases, metabolic disorders, cancers and thrombotic diseases can exacerbate a disease or even be a major initiator of tissue injury. But spotting NETs in tissues is not easy. Here we review the available histopathological evidence on the presence of NETs in a variety of diseases. We discuss technical difficulties and potential sources of misinterpretation while trying to detect NETs in tissue samples.

  19. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine

    Science.gov (United States)

    Grolla, Ambra A; Travelli, Cristina

    2016-01-01

    Abstract In this review, we focus on the secreted form of nicotinamide phosphoribosyltransferase (NAMPT); extracellular NAMPT (eNAMPT), also known as pre‐B cell colony‐enhancing factor or visfatin. Although intracellular NAMPT is a key enzyme in controlling NAD metabolism, eNAMPT has been reported to function as a cytokine, with many roles in physiology and pathology. Circulating eNAMPT has been associated with several metabolic and inflammatory disorders, including cancer. Because cytokines produced in the tumour micro‐environment play an important role in cancer pathogenesis, in part by reprogramming cellular metabolism, future improvements in cancer immunotherapy will require a better understanding of the crosstalk between cytokine action and tumour biology. In this review, the knowledge of eNAMPT in cancer will be discussed, focusing on its immunometabolic function as a metabokine, its secretion, its mechanism of action and possible roles in the cancer micro‐environment. PMID:27128025

  20. Extracellular Vesicles in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Tsukasa Kadota

    2016-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by the progression of irreversible airflow limitation and is a leading cause of morbidity and mortality worldwide. Although several crucial mechanisms of COPD pathogenesis have been studied, the precise mechanism remains unknown. Extracellular vesicles (EVs, including exosomes, microvesicles, and apoptotic bodies, are released from almost all cell types and are recognized as novel cell–cell communication tools. They have been shown to carry and transfer a wide variety of molecules, such as microRNAs, messenger RNAs, and proteins, which are involved in physiological functions and the pathology of various diseases. Recently, EVs have attracted considerable attention in pulmonary research. In this review, we summarize the recent findings of EV-mediated COPD pathogenesis. We also discuss the potential clinical usefulness of EVs as biomarkers and therapeutic agents for the treatment of COPD.

  1. Ciliary extracellular vesicles: Txt msg orgnlls

    Science.gov (United States)

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  2. Identification of a receptor for extracellular renalase.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI in wild type (WT mice. Therefore, we sought to identity the receptor for extracellular renalase.RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase.PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling.

  3. Filter based phase distortions in extracellular spikes

    Science.gov (United States)

    Yael, Dorin

    2017-01-01

    Extracellular recordings are the primary tool for extracting neuronal spike trains in-vivo. One of the crucial pre-processing stages of this signal is the high-pass filtration used to isolate neuronal spiking activity. Filters are characterized by changes in the magnitude and phase of different frequencies. While filters are typically chosen for their effect on magnitudes, little attention has been paid to the impact of these filters on the phase of each frequency. In this study we show that in the case of nonlinear phase shifts generated by most online and offline filters, the signal is severely distorted, resulting in an alteration of the spike waveform. This distortion leads to a shape that deviates from the original waveform as a function of its constituent frequencies, and a dramatic reduction in the SNR of the waveform that disrupts spike detectability. Currently, the vast majority of articles utilizing extracellular data are subject to these distortions since most commercial and academic hardware and software utilize nonlinear phase filters. We show that this severe problem can be avoided by recording wide-band signals followed by zero phase filtering, or alternatively corrected by reversed filtering of a narrow-band filtered, and in some cases even segmented signals. Implementation of either zero phase filtering or phase correction of the nonlinear phase filtering reproduces the original spike waveforms and increases the spike detection rates while reducing the number of false negative and positive errors. This process, in turn, helps eliminate subsequent errors in downstream analyses and misinterpretations of the results. PMID:28358895

  4. Role of extracellular superoxide dismutase in hypertension.

    Science.gov (United States)

    Gongora, Maria Carolina; Qin, Zhenyu; Laude, Karine; Kim, Ha Won; McCann, Louise; Folz, J Rodney; Dikalov, Sergey; Fukai, Tohru; Harrison, David G

    2006-09-01

    We previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.01). In keeping with this, angiotensin II increased superoxide and reduced endothelium-dependent vasodilatation in small mesenteric arterioles to a greater extent in ecSOD(-/-) than in wild-type mice. In contrast to these findings in resistance vessels, angiotensin II paradoxically improved endothelium-dependent vasodilatation, reduced intracellular and extracellular superoxide, and increased NO production in aortas of ecSOD(-/-) mice. Whereas aortic expression of endothelial NO synthase, Cu/ZnSOD, and MnSOD were not altered in ecSOD(-/-) mice, the activity of Cu/ZnSOD was increased by 80% after angiotensin II infusion. This was associated with a concomitant increase in expression of the copper chaperone for Cu/ZnSOD in the aorta but not in the mesenteric arteries. Moreover, the angiotensin II-induced increase in aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity was diminished in ecSOD(-/-) mice as compared with controls. Thus, during angiotensin II infusion, ecSOD reduces hypertension, minimizes vascular superoxide production, and preserves endothelial function in resistance arterioles. We also identified novel compensatory mechanisms involving upregulation of copper chaperone for Cu/ZnSOD, increased Cu/ZnSOD activity, and decreased reduced nicotinamide-adenine dinucleotide phosphate oxidase activity in larger vessels. These compensatory mechanisms preserve large vessel function when ecSOD is absent in

  5. Bioengineering Human Myocardium on Native Extracellular Matrix

    Science.gov (United States)

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  6. Therapeutic application of extracellular vesicles in acute and chronic renal injury.

    Science.gov (United States)

    Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José

    2016-07-23

    A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation.

  7. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Science.gov (United States)

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.

  8. Modafinil-Induced Increases in Brain Dopamine Levels

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-04-01

    Full Text Available The acute effects of modafinil on extracellular dopamine and on dopamine transporters in the male human brain were measured by PET study in 10 healthy subjects at Brookhaven National Laboratory and National Institute on Drug Abuse, Bethesda, MD.

  9. Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum

    Science.gov (United States)

    Amori, L; Wu, H.-Q.; Marinozzi, M; Pellicciari, R; Guidetti, P; Schwarcz, R

    2011-01-01

    Fluctuations in the endogenous levels of kynurenic acid (KYNA), a potent α7 nicotinic and NMDA receptor antagonist, affect extracellular dopamine (DA) concentrations in the rat brain. Moreover, reductions in KYNA levels increase the vulnerability of striatal neurons to NMDA receptor-mediated excitotoxic insults. We now assessed the role of a key KYNA-synthesizing enzyme, kynurenine aminotransferase II (KAT II), in these processes in the rodent striatum, using KAT II KO mice—which have reduced KYNA levels—and the selective KAT II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (S-ESBA) as tools. S-ESBA (applied by reverse dialysis) raised extracellular DA levels in the striatum of KYNA-deficient mice threefold and caused a much larger, 15-fold increase in wild-type mice. In the rat striatum, S-ESBA produced a 35% reduction in extracellular KYNA, which was accompanied by a 270% increase in extracellular DA. The latter effect was abolished by co-infusion of 100 nM KYNA. Intrastriatal S-ESBA pre-treatment augmented the size of a striatal quinolinate lesion by 370%, and this potentiation was prevented by co-infusion of KYNA. In separate animals, acute inhibition of KAT II reduced the de novo synthesis of KYNA during an early excitotoxic insult without enhancing the formation of the related neurotoxic metabolites 3-hydroxykynurenine and quinolinate. Taken together, these results provide further support for the concept that KAT II is a critical determinant of functionally relevant KYNA fluctuations in the rodent striatum. PMID:19138730

  10. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  11. Incorporation of Tenascin-C into the Extracellular Matrix by Periostin Underlies an Extracellular Meshwork Architecture*

    OpenAIRE

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2009-01-01

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C...

  12. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    Full Text Available BACKGROUND: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that both conventional and unconventional pathways of secretion are

  13. How brains make decisions

    CERN Document Server

    Yukalov, V I

    2014-01-01

    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simple...

  14. Brain death.

    Science.gov (United States)

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families.

  15. Exosomes function in cell-cell communication during brain circuit development

    OpenAIRE

    Sharma, Pranav; Schiapparelli, Lucio; Cline, Hollis T.

    2013-01-01

    Exosomes are small extracellular vesicles that mediate intercellular signaling in the brain without requiring direct contact between cells. Although exosomes have been shown to play a role in neurological diseases and in response to nerve trauma, a role for exosome-mediated signaling in brain development and function has not yet been demonstrated. Here we review data building a case for exosome function in the brain.

  16. Brain computer

    Directory of Open Access Journals (Sweden)

    Sarah N. Abdulkader

    2015-07-01

    Full Text Available Brain computer interface technology represents a highly growing field of research with application systems. Its contributions in medical fields range from prevention to neuronal rehabilitation for serious injuries. Mind reading and remote communication have their unique fingerprint in numerous fields such as educational, self-regulation, production, marketing, security as well as games and entertainment. It creates a mutual understanding between users and the surrounding systems. This paper shows the application areas that could benefit from brain waves in facilitating or achieving their goals. We also discuss major usability and technical challenges that face brain signals utilization in various components of BCI system. Different solutions that aim to limit and decrease their effects have also been reviewed.

  17. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  18. Engineering hydrogels as extracellular matrix mimics.

    Science.gov (United States)

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-04-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell-cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine.

  19. Relevance of extracellular DNA in rhizosphere

    Science.gov (United States)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  20. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  1. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  2. Micro- and macrorheology of jellyfish extracellular matrix.

    Science.gov (United States)

    Gambini, Camille; Abou, Bérengère; Ponton, Alain; Cornelissen, Annemiek J M

    2012-01-04

    Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish.

  3. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  4. Extracellular Vesicles: potential roles in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Olivier G de Jong

    2014-12-01

    Full Text Available Extracellular vesicles (EV consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell-cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering.

  5. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension, formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows: pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  6. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Binbin; XIONG Jinshui; YAN Jingchun

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension,formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100 ℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows:pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  7. Getting to know the extracellular vesicle glycome.

    Science.gov (United States)

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-01

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences.

  8. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  9. Role of Extracellular Vesicles in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Stefania Raimondo

    2015-01-01

    Full Text Available In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules, a key role has been attributed to extracellular vesicles (EV, released from different cell types. EV (microvesicles and exosomes may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.

  10. The NIH Extracellular RNA Communication Consortium

    Directory of Open Access Journals (Sweden)

    Alexandra M. Ainsztein

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c identifying exRNA biomarkers of disease, (d demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators.

  11. Mechanics of composite cytoskeletal and extracellular networks

    Science.gov (United States)

    Das, Moumita

    2014-03-01

    Living cells sense and respond to mechanical forces in their surroundings. This mechanical response is mainly due to the cell cytoskeleton, and its interaction with the extracellular matrix (ECM). The cell cytoskeleton is a composite polymeric scaffold made of many different types of protein filaments and crosslinking proteins. Two major filament systems in the cytoskeleton are actin filaments (F-actin) and microtubules (MTs). Actin filaments are semiflexible, while the much stiffer MTs behave as rigid rods. I shall discuss theories that help understand how the direct coupling to the surrounding F-actin matrix allows intracellular MTs to bear large compressive forces and controls the range of force transmission along the MTs, and how the MTs not only enhance the stiffness of the cell cytoskeleton, but can also dramatically endow an initially nearly incompressible F-actin matrix with enhanced compressibility relative to its shear compliance. A second source of compositeness in the cytoskeleton is the presences of different types of crosslinkers that can interact cooperatively leading to enhanced mechanical rigidity and tunable response. Like the cytoskeleton, the ECM is also a polymeric composite. It is primarily composed of a mesh of fibrous proteins, mainly stiff collagen filaments, and a comparatively flexible gel of proteoglycans and hyaluronan. I shall discuss a model that shows how the interplay between the collagen network and the background elastic gel leads to a mechanically robust ECM.

  12. Extracellular matrix components in peripheral nerve regeneration.

    Science.gov (United States)

    Gonzalez-Perez, Francisco; Udina, Esther; Navarro, Xavier

    2013-01-01

    Injured axons of the peripheral nerve are able to regenerate and, eventually, reinnervate target organs. However, functional recovery is usually poor after severe nerve injuries. The switch of Schwann cells to a proliferative state, secretion of trophic factors, and the presence of extracellular matrix (ECM) molecules (such as collagen, laminin, or fibronectin) in the distal stump are key elements to create a permissive environment for axons to grow. In this review, we focus attention on the ECM components and their tropic role in axonal regeneration. These components can also be used as molecular cues to guide the axons through artificial nerve guides in attempts to better mimic the natural environment found in a degenerating nerve. Most used scaffolds tested are based on natural molecules that form the ECM, but use of synthetic polymers and functionalization of hydrogels are bringing new options. Progress in tissue engineering will eventually lead to the design of composite artificial nerve grafts that may replace the use of autologous nerve grafts to sustain regeneration over long gaps.

  13. Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Bai, Qiufang; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-04-01

    Glycogenolysis, in brain parenchyma an astrocyte-specific process, has changed from being envisaged as an emergency procedure to playing central roles during brain response to whisker stimulation, memory formation, astrocytic K(+) uptake and stimulated release of ATP. It is activated by several transmitters and by even very small increases in extracellular K(+) concentration, and to be critically dependent upon an increase in free cytosolic Ca(2+) concentration ([Ca(2+)]i), whereas cAMP plays only a facilitatory role together with increased [Ca(2+)]i. Detailed knowledge about the signaling pathways eliciting glycogenolysis is therefore of interest and was investigated in the present study in well differentiated cultures of mouse astrocytes. The β-adrenergic agonist isoproterenol stimulated glycogenolysis by a β1-adrenergic effect, which initiated a pathway in which cAMP/protein kinase A activated a Gi/Gs shift, leading to Ca(2+)-activated glycogenolysis. Inhibition of this pathway downstream of cAMP but upstream of the Gi/Gs shift abolished the glycogenolysis. However, inhibitors operating downstream of the Ca(2+)-sensitive step, but preventing transactivation-mediated epidermal growth factor (EGF) receptor stimulation, a later step in the activated pathway, also caused inhibition of glycogenolysis. For this reason the effect of EGF was investigated and it was found to be glycogenolytic. Large increases in extracellular K(+) activated glycogenolysis by a nifedipine-inhibited L-channel opening allowing influx of Ca(2+), known to be glycogenolysis-dependent. Small increases (addition of 5 mM KCl) caused a smaller effect by a similarly glycogenolysis-reliant opening of an IP3 receptor-dependent ouabain signaling pathway. The same pathway could be activated by GABA (also in brain slices) due to its depolarizing effect in astrocytes.

  14. NtSCP1 from tobacco is an extracellular serine carboxypeptidase III that has an impact on cell elongation.

    Science.gov (United States)

    Bienert, Manuela Désirée; Delannoy, Mélanie; Navarre, Catherine; Boutry, Marc

    2012-03-01

    The leaf extracellular space contains several peptidases, most of which are of unknown function. We isolated cDNAs for two extracellular serine carboxypeptidase III genes from tobacco (Nicotiana tabacum), NtSCP1 and NtSCP2, belonging to a phylogenetic clade not yet functionally characterized in plants. NtSCP1 and NtSCP2 are orthologs derived from the two ancestors of tobacco. Reverse transcription-polymerase chain reaction analysis showed that NtSCP1 and NtSCP2 are expressed in root, stem, leaf, and flower tissues. Expression analysis of the β-glucuronidase reporter gene fused to the NtSCP1 transcription promoter region confirmed this expression profile. Western blotting of NtSCP1 and expression of an NtSCP1-green fluorescent protein fusion protein showed that the protein is located in the extracellular space of tobacco leaves and culture cells. Purified His-tagged NtSCP1 had carboxypeptidase activity in vitro. Transgenic tobacco plants overexpressing NtSCP1 showed a reduced flower length due to a decrease in cell size. Etiolated seedlings of these transgenic plants had shorter hypocotyls. These data provide support for a role of an extracellular type III carboxypeptidase in the control of cell elongation.

  15. Morphine sensitization increases the extracellular level of glutamate in CA1 of rat hippocampus via μ-opioid receptor.

    Science.gov (United States)

    Farahmandfar, Maryam; Karimian, Seyed Morteza; Zarrindast, Mohammad-Reza; Kadivar, Mehdi; Afrouzi, Hossein; Naghdi, Nasser

    2011-04-25

    Repeated administration of abuse drugs such as morphine elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect plastic changes requiring regulation of glutamatergic system in the brain. In this study, we investigated the effect of morphine sensitization on extracellular glutamate concentration in the hippocampus, a brain region rich in glutamatergic neurons. Sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days free of the opioid treatment. The results showed that extracellular glutamate concentration in the CA1 was decreased following administration of morphine in non-sensitized rats. However, morphine-induced behavioral sensitization significantly increased the extracellular glutamate concentration in this area. The enhancement of glutamate in morphine sensitized rats was prevented by administration of naloxone 30 min before each of three daily doses of morphine. These results suggest an adaptation of the glutamatergic neuronal transmission in the hippocampus after morphine sensitization and it is postulated that opioid receptors may play an important role in this effect.

  16. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  17. Silicon Brains

    Science.gov (United States)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation design an intelligent technical response.

  18. Robot brains

    NARCIS (Netherlands)

    Babuska, R.

    2011-01-01

    The brain hosts complex networks of neurons that are responsible for behavior in humans and animals that we generally call intelligent. I is not easy to give an exact definition of intelligence – for the purpose of this talk it will suffice to say that we refer to intelligence as a collection of cap

  19. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    Science.gov (United States)

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  20. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function.

    Science.gov (United States)

    Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J; Januszyk, Michael; Maan, Zeshaan N; Gurtner, Geoffrey C

    2016-03-01

    Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.

  1. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Science.gov (United States)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  2. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Saurav Z. K. Sajib

    2016-06-01

    Full Text Available Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  3. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  4. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ohno

    2016-02-01

    Full Text Available Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs carry various proteins, messenger RNAs (mRNAs, and microRNAs (miRNAs, like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  5. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems.

    Science.gov (United States)

    Ohno, Shin-Ichiro; Drummen, Gregor P C; Kuroda, Masahiko

    2016-02-06

    Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a "message in a bottle" to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  6. Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease.

    Science.gov (United States)

    Yumoto, Sakae; Kakimi, Shigeo; Ohsaki, Akihiro; Ishikawa, Akira

    2009-11-01

    Aluminum (Al) exposure has been reported to be a risk factor for Alzheimer's disease (senile dementia of Alzheimer type), although the role of Al in the etiology of Alzheimer's disease remains controversial. We examined the presence of Al in the Alzheimer's brain using energy-dispersive X-ray spectroscopy combined with transmission electron microscopy (TEM-EDX). TEM-EDX analysis allows simultaneous imaging of subcellular structures with high spatial resolution and analysis of small quantities of elements contained in the same subcellular structures. We identified senile plaques by observation using TEM and detected Al in amyloid fibers in the cores of senile plaques located in the hippocampus and the temporal lobe by EDX. Phosphorus and calcium were also present in the amyloid fibers. No Al could be detected in the extracellular space in senile plaques or in the cytoplasm of nerve cells. In this study, we demonstrated colocalization of Al and beta-amyloid (Abeta) peptides in amyloid fibers in the cores of senile plaques. The results support the following possibilities in the brains of patients with Alzheimer's disease: Al could be involved in the aggregation of Abeta peptides to form toxic fibrils; Al might induce Abeta peptides into the beta-sheet structure; and Al might facilitate iron-mediated oxidative reactions, which cause severe damage to brain tissues.

  7. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury.

  8. Transport characteristics of tramadol in the blood-brain barrier.

    Science.gov (United States)

    Kitamura, Atsushi; Higuchi, Kei; Okura, Takashi; Deguchi, Yoshiharu

    2014-10-01

    Tramadol is a centrally acting analgesic whose action is mediated by both agonistic activity at opioid receptors and inhibitory activity on neuronal reuptake of monoamines. The purpose of this study was to characterize the blood-brain barrier (BBB) transport of tramadol by means of microdialysis studies in rat brain and in vitro studies with human immortalized brain capillary endothelial cells (hCMEC/D3). The Kp,uu,brain value of tramadol determined by rat brain microdialysis was greater than unity, indicating that tramadol is actively taken up into the brain across the BBB. Tramadol was transported into hCMEC/D3 cells in a concentration-dependent manner. The uptake was inhibited by type II cations (pyrilamine, verapamil, etc.), but not by substrates of organic cation transporter OCTs or OCTN2. It was also inhibited by a metabolic inhibitor but was independent of extracellular sodium or membrane potential. The uptake was altered by changes of extracellular pH, and by ammonium chloride-induced intracellular acidification, suggesting that transport of tramadol is driven by an oppositely directed proton gradient. Thus, our in vitro and in vivo results suggest that tramadol is actively transported, at least in part, from blood to the brain across the BBB by proton-coupled organic cation antiporter.

  9. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  10. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  11. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  12. Brain and Nervous System

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... brain is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  13. Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus.

    Science.gov (United States)

    Choi, Bo Young; Kim, Jin Hee; Kim, Hyun Jung; Lee, Bo Eun; Kim, In Yeol; Sohn, Min; Suh, Sang Won

    2014-10-01

    Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal

  14. Metabolic requirements for neutrophil extracellular traps formation

    Science.gov (United States)

    Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Moreno-Altamirano, María Maximina Bertha; López-Villegas, Edgar Oliver; Sánchez-García, Francisco Javier

    2015-01-01

    As part of the innate immune response, neutrophils are at the forefront of defence against infection, resolution of inflammation and wound healing. They are the most abundant leucocytes in the peripheral blood, have a short lifespan and an estimated turnover of 1010 to 1011 cells per day. Neutrophils efficiently clear microbial infections by phagocytosis and by oxygen-dependent and oxygen-independent mechanisms. In 2004, a new neutrophil anti-microbial mechanism was described, the release of neutrophil extracellular traps (NETs) composed of DNA, histones and anti-microbial peptides. Several microorganisms, bacterial products, as well as pharmacological stimuli such as PMA, were shown to induce NETs. Neutrophils contain relatively few mitochondria, and derive most of their energy from glycolysis. In this scenario we aimed to analyse some of the metabolic requirements for NET formation. Here it is shown that NETs formation is strictly dependent on glucose and to a lesser extent on glutamine, that Glut-1, glucose uptake, and glycolysis rate increase upon PMA stimulation, and that NET formation is inhibited by the glycolysis inhibitor, 2-deoxy-glucose, and to a lesser extent by the ATP synthase inhibitor oligomycin. Moreover, when neutrophils were exposed to PMA in glucose-free medium for 3 hr, they lost their characteristic polymorphic nuclei but did not release NETs. However, if glucose (but not pyruvate) was added at this time, NET release took place within minutes, suggesting that NET formation could be metabolically divided into two phases; the first, independent from exogenous glucose (chromatin decondensation) and, the second (NET release), strictly dependent on exogenous glucose and glycolysis. PMID:25545227

  15. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  16. Lung extracellular matrix and redox regulation.

    Science.gov (United States)

    Watson, Walter H; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-08-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  17. Extracellular Matrix Assembly in Diatoms (Bacillariophyceae)1

    Science.gov (United States)

    Wustman, Brandon A.; Lind, Jan; Wetherbee, Richard; Gretz, Michael R.

    1998-01-01

    Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility. PMID:9536061

  18. Lung extracellular matrix and redox regulation

    Directory of Open Access Journals (Sweden)

    Walter H. Watson

    2016-08-01

    Full Text Available Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This

  19. Acute dosing of latrepirdine (Dimebon™, a possible Alzheimer therapeutic, elevates extracellular amyloid-β levels in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Sano Mary

    2009-12-01

    Full Text Available Abstract Background Recent reports suggest that latrepirdine (Dimebon™, dimebolin, a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD. However, the mechanism(s underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-β (Aβ peptide in the brain, and Aβ-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Aβ using in vitro and in vivo experimental systems. Results We evaluated extracellular levels of Aβ in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 μM. Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 μM or 10 μM. Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg. Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Aβ in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01, while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01. Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 μM and led to more modest

  20. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  1. DMPD: Fragments of extracellular matrix as mediators of inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18243041 Fragments of extracellular matrix as mediators of inflammation. Adair-Kirk...l) Show Fragments of extracellular matrix as mediators of inflammation. PubmedID 18243041 Title Fragments of extracellular matr

  2. Space Station

    Science.gov (United States)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  3. Cognitive neuroscience in space.

    Science.gov (United States)

    De la Torre, Gabriel G

    2014-07-03

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  4. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  5. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  6. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.

    OpenAIRE

    Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by ...

  7. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture.

    Science.gov (United States)

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-15

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.

  8. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  9. Brain and Addiction

    Science.gov (United States)

    ... Search Term(s): Teens / Drug Facts / Brain and Addiction Brain and Addiction Print Your Brain Your brain is who you are. It’s what ... solve problems, and make decisions. How Does Your Brain Communicate? The brain is a complex communications network ...

  10. Behavioral and Brain Functions. A new journal

    Directory of Open Access Journals (Sweden)

    Sagvolden Terje

    2005-04-01

    Full Text Available Abstract Behavioral and Brain Functions (BBF is an Open Access, peer-reviewed, online journal considering original research, review, and modeling articles in all aspects of neurobiology or behavior, favoring research that relates to both domains. Behavioral and Brain Functions is published by BioMed Central. The greatest challenge for empirical science is to understand human behavior; how human behavior arises from the myriad functions such as attention, language, memory and emotion; how these functions are reflected in brain structures and functions; and how the brain and behavior are altered in disease. Behavioral and Brain Functions covers the entire area of behavioral and cognitive neuroscience – an area where animal studies traditionally play a prominent role. Behavioral and Brain Functions is published online, allowing unlimited space for figures, extensive datasets to allow readers to study the data for themselves, and moving pictures, which are important qualities assisting communication in modern science.

  11. Quantum Brain?

    CERN Document Server

    Mershin, A; Skoulakis, E M C

    2000-01-01

    In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.

  12. Cl- and K+ channels and their role in primary brain tumour biology.

    Science.gov (United States)

    Turner, Kathryn L; Sontheimer, Harald

    2014-03-19

    Profound cell volume changes occur in primary brain tumours as they proliferate, invade surrounding tissue or undergo apoptosis. These volume changes are regulated by the flux of Cl(-) and K(+) ions and concomitant movement of water across the membrane, making ion channels pivotal to tumour biology. We discuss which specific Cl(-) and K(+) channels are involved in defined aspects of glioma biology and how these channels are regulated. Cl(-) is accumulated to unusually high concentrations in gliomas by the activity of the NKCC1 transporter and serves as an osmolyte and energetic driving force for volume changes. Cell volume condensation is required as cells enter M phase of the cell cycle and this pre-mitotic condensation is caused by channel-mediated ion efflux. Similarly, Cl(-) and K(+) channels dynamically regulate volume in invading glioma cells allowing them to adjust to small extracellular brain spaces. Finally, cell condensation is a hallmark of apoptosis and requires the concerted activation of Cl(-) and Ca(2+)-activated K(+) channels. Given the frequency of mutation and high importance of ion channels in tumour biology, the opportunity exists to target them for treatment.

  13. A secreted tyrosine kinase acts in the extracellular environment.

    Science.gov (United States)

    Bordoli, Mattia R; Yum, Jina; Breitkopf, Susanne B; Thon, Jonathan N; Italiano, Joseph E; Xiao, Junyu; Worby, Carolyn; Wong, Swee-Kee; Lin, Grace; Edenius, Maja; Keller, Tracy L; Asara, John M; Dixon, Jack E; Yeo, Chang-Yeol; Whitman, Malcolm

    2014-08-28

    Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.

  14. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We prese

  15. EVpedia : A community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si Hyun; Park, Kyong Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; Van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Christina Gross, Julia; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'T Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; Van Leeuwen, Johannes; Lener, Thomas; Liu, Ming Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, Francois; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stepień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yánez-Mó, Maria; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We prese

  16. Extracellular Neurotransmitter Receptor Clustering: Think Outside the Box

    Institute of Scientific and Technical Information of China (English)

    Matthias Kneussel

    2010-01-01

    @@ Postsynaptic submembrane scaffolds cluster neurotransmitter receptors through intracellular protein-protein interactions. Growing evidence supports the view that extracellular factors can be almost as important to trigger synaptic receptor aggregation.

  17. Extracellular siderophores of rapidly growing Aspergillus nidulans and Penicillium chrysogenum

    OpenAIRE

    Charlang, G; Horowitz, R M; Lowy, P H; Ng, B.; Poling, S M; Horowitz, N. H.

    1982-01-01

    The highly active extracellular siderophores previously detected in young cultures of Aspergillus nidulans and Penicillium chrysogenum have been identified as the cyclic ester fusigen (fusarinine C), and its open-chain form, fusigen B (fusarinine B).

  18. Animating Brains

    Science.gov (United States)

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  19. RNA sequencing of creatine transporter (SLC6A8) deficient fibroblasts reveals impairment of the extracellular matrix.

    Science.gov (United States)

    Nota, Benjamin; Ndika, Joseph D T; van de Kamp, Jiddeke M; Kanhai, Warsha A; van Dooren, Silvy J M; van de Wiel, Mark A; Pals, Gerard; Salomons, Gajja S

    2014-09-01

    Creatine transporter (SLC6A8) deficiency is the most common cause of cerebral creatine syndromes, and is characterized by depletion of creatine in the brain. Manifestations of this X-linked disorder include intellectual disability, speech/language impairment, behavior abnormalities, and seizures. At the moment, no effective treatment is available. In order to investigate the molecular pathophysiology of this disorder, we performed RNA sequencing on fibroblasts derived from patients. The transcriptomes of fibroblast cells from eight unrelated individuals with SLC6A8 deficiency and three wild-type controls were sequenced. SLC6A8 mutations with different effects on the protein product resulted in different gene expression profiles. Differential gene expression analysis followed by gene ontology term enrichment analysis revealed that especially the expression of genes encoding components of the extracellular matrix and cytoskeleton are altered in SLC6A8 deficiency, such as collagens, keratins, integrins, and cadherins. This suggests an important novel role for creatine in the structural development and maintenance of cells. It is likely that the (extracellular) structure of brain cells is also impaired in SLC6A8-deficient patients, and future studies are necessary to confirm this and to reveal the true functions of creatine in the brain.

  20. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  1. Economical evolution: microbes reduce the synthetic cost of extracellular proteins.

    Science.gov (United States)

    Smith, Daniel R; Chapman, Matthew R

    2010-08-24

    Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism's proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell.

  2. Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus.

    Science.gov (United States)

    de Groote, L; Linthorst, A C E

    2007-09-07

    In the hippocampus, a brain structure critically important in the stress response, GABA controls neuronal activity not only via synaptic inhibition, but also via tonic inhibition through stimulation of extrasynaptic GABA receptors. The extracellular level of GABA may represent a major determinant for tonic inhibition and, therefore, it is surprising that its responsiveness to stress has hardly been investigated. To clarify whether hippocampal extracellular GABA levels change in response to acute stress, we conducted an in vivo microdialysis study in rats. We found that dialysate GABA levels respond to various neuropharmacological manipulations such as reuptake inhibition, elevated concentrations of K(+), tetrodotoxin and baclofen, indicating that a large proportion of hippocampal extracellular GABA depends on neuronal release and that GABA re-uptake plays a role in determining the extracellular levels of this neurotransmitter. Next, rats were exposed to a novel cage or to forced swimming in 25 degrees C water. Interestingly, these two stressors resulted in opposite effects. Novelty caused a fast increase in GABA (120% of baseline), whereas forced swimming resulted in a profound decrease (70% of baseline). To discriminate between the psychological and physical aspects (i.e. the effects on body temperature) of forced swimming, another group of animals was forced to swim at 35 degrees C. This stressor, like novelty, caused an increase in hippocampal GABA, suggesting a stimulatory effect of psychological stress. The effects of novelty could not be blocked by the corticotropin-releasing factor receptor antagonist D-Phe-CRF(12-41). These results are the first to demonstrate stressor-dependent changes in hippocampal extracellular GABA; an observation which may be of particular significance for GABAergic tonic inhibition of hippocampal neurons.

  3. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    Science.gov (United States)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent

  4. Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit.

    Science.gov (United States)

    Brückner, G; Morawski, M; Arendt, T

    2008-01-24

    The extracellular matrix is known to be involved in neuronal communication and the regulation of plastic changes, and also considered to protect neurons and synapses against damage. The goal of this study was to investigate how major extracellular matrix components (aggrecan, link protein, hyaluronan) constitute the pathways of the nigral system in the human basal ganglia circuit affected by neurodegeneration in Parkinson's disease. Here we show that aggrecan- and link protein-related components form clear regional distribution patterns, whereas hyaluronan is widely distributed in gray and white matter. Two predominant phenotypes of the aggrecan-based matrix can be discriminated: (1) perineuronal nets (PNs) and (2) axonal coats (ACs) encapsulating preterminal fibers and synaptic boutons. Clearly contoured PNs are associated with GABAergic projection neurons in the external and internal division of the globus pallidus, the lateral and reticular part of the substantia nigra, as well as subpopulations of striatal and thalamic inhibitory interneurons. Dopaminergic nigral neurons are devoid of PNs but are contacted to a different extent by matrix-coated boutons forming subnucleus-specific patterns. A very dense network of ACs is characteristic especially of the posterior lateral cell groups of the compact substantia nigra (nigrosome 1). In the subthalamic nucleus and the lateral thalamic nuclei numerous AC-associated axons were attached to principal neurons devoid of PNs. We conclude from the region-specific patterns that the aggrecan-based extracellular matrix is adapted to the fast processing of sensorimotor activities which are the therapeutic target of surgery and deep brain stimulation in the treatment of advanced stages of Parkinson's disease.

  5. Estimating extracellular spike waveforms from CA1 pyramidal cells with multichannel electrodes.

    Science.gov (United States)

    Molden, Sturla; Moldestad, Olve; Storm, Johan F

    2013-01-01

    Extracellular (EC) recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the "local field potential" (LFP). In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe). We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike.

  6. In the presence of danger:the extracellular matrix defensive response to central nervous system injury

    Institute of Scientific and Technical Information of China (English)

    Lyn B. Jakeman; Kent E. Williams; Bryan Brautigam

    2014-01-01

    Glial cells in the central nervous system (CNS) contribute to formation of the extracellular matrix, which provides adhesive sites, signaling molecules, and a diffusion barrier to enhance efifcient neurotransmission and axon potential propagation. In the normal adult CNS, the extracellular matrix (ECM) is relatively stable except in selected regions characterized by dynamic remodel-ing. However, after trauma such as a spinal cord injury or cortical contusion, the lesion epicenter becomes a focus of acute neuroinlfammation. The activation of the surrounding glial cells leads to a dramatic change in the composition of the ECM at the edges of the lesion, creating a perile-sion environment dominated by growth inhibitory molecules and restoration of the peripheral/central nervous system border. An advantage of this response is to limit the invasion of damaging cells and diffusion of toxic molecules into the spared tissue regions, but this occurs at the cost of inhibiting migration of endogenous repair cells and preventing axonal regrowth. The following review was prepared by reading and discussing over 200 research articles in the ifeld published in PubMed and selecting those with signiifcant impact and/or controversial points. This article highlights structural and functional features of the normal adult CNS ECM and then focuses on the reactions of glial cells and changes in the perilesion border that occur following spinal cord or contusive brain injury. Current research strategies directed at modifying the inhibitory perile-sion microenvironment without eliminating the protective functions of glial cell activation are discussed.

  7. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment.

    Science.gov (United States)

    Howell, M D; Gottschall, P E

    2012-08-16

    The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.

  8. Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells.

    Science.gov (United States)

    Shrestha, Pravesh; Yun, Ji-Hye; Kim, Woo Taek; Kim, Tae-Yoon; Lee, Weontae

    2016-03-01

    A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

  9. Glycolysis and the significance of lactate in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-04-01

    Full Text Available In traumatic brain injury (TBI patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well recognised, and are associated statistically with unfavourable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolised via glycolysis (Embden-Meyerhof-Parnas pathway to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate’s association with unfavourable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilise lactate by feeding into the tricarboxylic acid (TCA cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilisation of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labelled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labelling in glutamine consistent with lactate utilisation via the TCA cycle. This suggests that where neurons are too damaged to utilise the lactate produced from glucose by astrocytes, i.e. uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining association between high lactate and poor outcome. An intravenous exogenous lactate supplementation study in TBI patients showed evidence for a beneficial effect judged by surrogate endpoints. Here we review current knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better

  10. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  11. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...... underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential...

  12. Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels.

    Science.gov (United States)

    Pen, Ally; Moreno, Maria J; Martin, Joel; Stanimirovic, Danica B

    2007-04-15

    Glioblastoma multiforme (GBM) are the most malignant and vascularized brain tumors. The aberrant vascular phenotype of GBM could be exploited for diagnosis or therapeutic targeting. This study identified new molecular markers of GBM vessels, using a combination of laser capture microdissection (LCM) microscopy, RNA amplification, and microarray analyses to compare vessels from nonmalignant human brain and GBM tumors. Forty-two genes were differentially expressed in GBM vessels compared to nonmalignant brain vessels. Validation of differentially expressed genes was performed by literature mining, Q-PCR, and immunohistochemistry. Among the differentially expressed genes, only 64% were previously associated with vessels, angiogenesis, gliomas, and/or cancer. The upregulation of genes encoding secreted extracellular proteins IGFBP7 and SPARC was confirmed by Q-PCR in LCM-captured vessels. Whereas SPARC and IGFBP7 protein were absent in nonmalignant brain vessels, a distinct immunoreactivity patterns were observed in GBM sections whereby SPARC was strongly expressed in perivascular cells adjacent to GBM vessels while GBM endothelial cells were immunostained for IGFBP7. IGFBP7 immunoreactivity was also detected on the abluminal side of GBM vessels deposited between strands of vascular basal lamina. The study discerns unique molecular characteristics of GBM vessels compared with nonmalignant brain vessels that could potentially be used for diagnostic or therapeutic purposes.

  13. Sobolev spaces

    CERN Document Server

    Adams, Robert A

    2003-01-01

    Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.This second edition of Adam''s ''classic'' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.* Self-contained and accessible for readers in other disciplines.* Written at elementary level making it accessible to graduate students.

  14. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space

    DEFF Research Database (Denmark)

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T;

    2009-01-01

    Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astr......Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...

  15. SPACE LIFE SCIENCE IN 2000-2001

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chinese scientists studied some of the problems in the field of space life science and achieved success in the area during 2000-2001. Space biological experi ments were carried out in the orbit and the results of ground studies on protein crystallization, space radiation, space motion sickness were introduced in this paper. The influences of simulated weightlessness on the brain-function, the car diovascular, endocrine hormones, immunity, skeletal and muscle systems were presented. In addition, gravity medicine and space environment medicine, as well as countermeasures to space deconditioning, such as the traditional Chinese medicine, were also reported.

  16. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes

    DEFF Research Database (Denmark)

    Jahnsen, Henrik; Kristensen, Bjarne Winther; Thiébaud, P

    1999-01-01

    such hippocampal rat brain slice cultures on biocompatible silicon-based chips with arrays of electrodes with a histological organization comparable to that of conventional brain slice cultures grown by the roller drum technique and on semiporous membranes. Intracellular and extracellular recordings from neurons......Fetal or early postnatal brain tissue can be cultured in viable and healthy condition for several weeks with development and preservation of the basic cellular and connective organization as so-called organotypic brain slice cultures. Here we demonstrate and describe how it is possible to establish...

  17. In vitro Determination of Extracellular Proteins from Xylella fastidiosa

    Science.gov (United States)

    Mendes, Juliano S.; Santiago, André S.; Toledo, Marcelo A. S.; Horta, Maria A. C.; de Souza, Alessandra A.; Tasic, Ljubica; de Souza, Anete P.

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3–30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components. PMID:28082960

  18. Vitamin A Deficiency and Alterations in the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Teresa Barber

    2014-11-01

    Full Text Available Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.

  19. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Science.gov (United States)

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-01-01

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology. PMID:27775594

  20. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  1. From mechanotransduction to extracellular matrix gene expression in fibroblasts.

    Science.gov (United States)

    Chiquet, Matthias; Gelman, Laurent; Lutz, Roman; Maier, Silke

    2009-05-01

    Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.

  2. Dynamic brain mapping methodology and application.

    Science.gov (United States)

    Itil, T M; Mucci, A; Eralp, E

    1991-01-01

    Brain mapping has opened important perspectives for the neurophysiological evaluation of patients, for the discrimination of drug effects on the brain and for the study of the relationship between the brain and behavior. Our Dynamic Brain Mapping System is the result of many years of EEG quantification. It was designed as a software-oriented system to favor the largest clinical application and simultaneously stimulate new research objectives. Data collection and analysis procedures are critically important in brain mapping for a good understanding of the results. For clinical use, the maps should answer relevant EEG questions and be interpretable with the consolidated knowledge. Therefore, we have developed a new type of brain mapping technology which is called "Field blending interpolation" mapping offered together with the conventional technology with user-selectable interpolation algorithms. In addition to diagnosis, the use of computer-analyzed EEG and brain mapping can be instrumental in drug monitoring, drug selection and drug discriminations. Prospective studies are, however, required to validate the use of brain mapping in each of these new areas. Spatial analysis is the original goal of brain mapping. The development of a new data collection procedure and analysis will be instrumental in the determination of an adequate time and space resolution.

  3. Multipurpose Spaces

    Science.gov (United States)

    Gordon, Douglas

    2010-01-01

    The concept of multipurpose spaces in schools is certainly not new. Especially in elementary schools, the combination of cafeteria and auditorium (and sometimes indoor physical activity space as well) is a well-established approach to maximizing the use of school space and a school district's budget. Nonetheless, there continue to be refinements…

  4. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain.

    Science.gov (United States)

    Higashida, Tetsuhiro; Peng, Changya; Li, Jie; Dornbos, David; Teng, Kailing; Li, Xiaohua; Kinni, Harish; Guthikonda, Murali; Ding, Yuchuan

    2011-02-01

    Brain edema following stroke is a critical clinical problem due to its association with increased morbidity and mortality. Despite its significance, present treatment for brain edema simply provides symptomatic relief due to the fact that molecular mechanisms underlying brain edema remain poorly understood. The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α) and aquaporins (AQP-4 and -9) in regulating cerebral glycerol accumulation and inducing brain edema in a rodent model of stroke. Two-hours of middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in male Sprague-Dawley rats (250-280 g). Anti-AQP-4 antibody, anti-AQP-9 antibody, or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) was given at the time of MCAO. The rats were sacrificed at 1 and 24 hours after reperfusion and their brains were examined. Extracellular and intracellular glycerol concentration of brain tissue was calculated with an enzymatic glycerol assay. The protein expressions of HIF-1α, AQP-4 and AQP-9 were determined by Western blotting. Brain edema was measured by brain water content. Compared to control, edema (p < 0.01), increased glycerol (p < 0.05), and enhanced expressions of HIF-1α, AQP-4, and AQP-9 (p < 0.05) were observed after stroke. With inhibition of AQP-4, AQP-9 or HIF-1α, edema and extracellular glycerol were significantly (p < 0.01) decreased while intracellular glycerol was increased (p < 0.01) 1 hour after stroke. Inhibition of HIF-1α with 2ME2 suppressed (p < 0.01) the expression of AQP-4 and AQP-9. These findings suggest that HIF-1α serves as an upstream regulator of cerebral glycerol concentrations and brain edema via a molecular pathway involving AQP-4 and AQP-9. Pharmacological blockade of this pathway in stroke patients may provide novel therapeutic strategies.

  5. In-vivo evaluation of the permeability of the blood-brain barrier to arsenicals, molybdate, and methylmercury by use of online microdialysis-packed minicolumn-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Su, Cheng-Kuan; Yang, Cheng-Hung; Lin, Cheng-Hsing; Sun, Yuh-Chang

    2014-01-01

    To study the permeability of the blood-brain barrier (BBB) to arsenates, arsenite, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), molybdate, and methylmercury, and the transfer behavior of these species, we constructed an automatic online analytical system comprising a microdialysis sampling device, a minicolumn packed with nonfunctionalized poly(vinyl chloride) beads, and an inductively coupled plasma mass spectrometer for continuous in-vivo measurement of their dynamic variation in the extracellular space of the brains of living rats. By using ion-polymer interactions as a novel working mechanism for sample pretreatment of volume-limited microdialysate, we simplified the operating procedure of conventional solid-phase extraction and reduced the contribution to the blank of the chemicals used. After optimizing this hyphenated system, we measured its performance by analysis of NIST standard reference materials 1640a (trace elements in natural water) and 2672a (trace elements in human urine) and by in-vivo monitoring of the dynamic variation of the compounds tested in the extracellular fluid (ECF) of rat brain. We found that intraperitoneal administration led to observable BBB permeability of arsenates, arsenite, DMA, MMA, and molybdate. Nevertheless, the limited sensitivity of the system and the size of microdialysis samples meant that detection of MeHg in ECF remained problematic, even when we administered a dose of 20 mg MeHg kg(-1) body weight. On the basis of these practical demonstrations, we suggest that our analytical system could be used not only for dynamic monitoring of the transfer kinetics of the four arsenicals and molybdate in the rat brain but also to describe associated neurotoxicity in terms of exposure to toxic metals and their species.

  6. Brain Tumor Surgery

    Science.gov (United States)

    ... Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. The part of the brain where the tumor is/was located. The areas ...

  7. Brain injury - discharge

    Science.gov (United States)

    ... and caregivers. Biausa.org. www.biausa.org/brain-injury-family-caregivers.htm#Manage the Home . Accessed December 8, 2016. ... Caregiver Alliance; National Center on Caregiving. Traumatic brain injury. ... www.caregiver.org/traumatic-brain-injury . Accessed ...

  8. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  9. Extracellular Protease Activity of Enteropathogenic Escherechia coli on Mucin Substrate

    Directory of Open Access Journals (Sweden)

    SRI BUDIARTI

    2007-03-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC causes gastrointestinal infections in human. EPEC invasion was initiated by attachment and aggressive colonization on intestinal surface. Attachment of EPEC alter the intestine mucosal cells. Despite this, the pathogenic mechanism of EPEC infectior has not been fully understood. This research hypothesizes that extracellular proteolytic enzymes is necessary for EPEC colonization. The enzyme is secreted into gastrointestinal milieu and presumably destroy mucus layer cover the gastrointestinal tract. The objective of this study was to assay EPEC extracellular protease enzyme by using mucin substrate. The activity of EPEC extracellular proteolytic enzyme on 1% mucin substrate was investigated. Non-pathogenic E. coli was used as a negative control. Positive and tentative controls were Yersinia enterocolitica and Salmonella. Ten EPEC strains were assayed, seven of them were able to degrade mucin, and the highest activity was produced by K1.1 strain. Both positive and tentative controls also showed the ability to digest 0.20% mucin.

  10. Gap junction modulation by extracellular signaling molecules: the thymus model

    Directory of Open Access Journals (Sweden)

    Alves L.A.

    2000-01-01

    Full Text Available Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

  11. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  12. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Angelo Colagiorgi

    2016-07-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS’s. In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.

  13. The impact of extracellular acidosis on dendritic cell function.

    Science.gov (United States)

    Vermeulen, Mónica Elba; Gamberale, Romina; Trevani, Analía Silvina; Martínez, Diego; Ceballos, Ana; Sabatte, Juan; Giordano, Mirta; Geffner, Jorge Raúl

    2004-01-01

    Dendritic cells (DCs) are the most efficient antigen-presenting cells. They are activated in the periphery by conserved pathogen molecules and by inflammatory mediators produced by a variety of cell types in response to danger signals. It is widely appreciated that inflammatory responses in peripheral tissues are usually associated with the development of acidic microenvironments. Surprisingly, there are relatively few studies directed to analyze the effect of extracellular acidosis on the immune response. We focus on the influence of extracellular acidosis on the function of immature DCs. The results presented here show that acidosis activates DCs. It increases the acquisition of extracellular antigens for MHC class I-restricted presentation and the ability of antigen-pulsed DCs to induce both specific CD8+ CTL and B-cell responses. These findings may have important implications to our understanding of the mechanisms through which DCs sense the presence of infection or inflammation in nonlymphoid tissues.

  14. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    Science.gov (United States)

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world.

  15. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-gui; ZHANG Rui-yong; XIA Jin-lan; ZHANG Qian; NIE Zhen-yuan

    2008-01-01

    The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates,elemental sulfur and ferrous sulfate,were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis.Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOF.Based on peptide mass fingerprints and bioinformatical analysis,the extracellular proteins were classified according to their functions as conjugal transfer protein,pilin,vacJ lipoprotein,polysaccharide deacetylase family protein,Ser/Thr protein phosphatase family protein and hypothetical proteins.Several extracellular proteins were found abundant in thiol groups and with CXXC functional motif,these proteins may be directly involved in the sulfur activation by use of their thiol group (Pr-SH) to bond the elemental sulfur.

  16. Extracellular matrix as a driver for lung regeneration.

    Science.gov (United States)

    Balestrini, Jenna L; Niklason, Laura E

    2015-03-01

    Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

  17. Magnetic-resonance imaging for kinetic analysis of permeability changes during focused ultrasound-induced blood-brain barrier opening and brain drug delivery.

    Science.gov (United States)

    Chai, Wen-Yen; Chu, Po-Chun; Tsai, Meng-Yen; Lin, Yu-Chun; Wang, Jiun-Jie; Wei, Kuo-Chen; Wai, Yau-Yau; Liu, Hao-Li

    2014-10-28

    Focused ultrasound (FUS) with the presence of microbubbles has been shown to induce transient and local opening of the blood-brain barrier (BBB) for the delivery of therapeutic molecules which normally cannot penetrate into the brain. The success of FUS brain-drug delivery relies on its integration with in-vivo imaging to monitor kinetic change of therapeutic molecules into the brain. In this study, we developed a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique for kinetic analysis of delivered molecules during FUS-BBB opening. Three kinetic parameters (Ktrans, Ve, Kep) were characterized dynamically to describe BBB-permeability at two FUS exposure conditions (0.4 or 0.8MPa) over 24h. Ktrans, defined as the influx volume transfer constant from plasma to EES, and Ve, the EES volume fraction, were both found to be pressure-dependent. Ktrans and Ve showed a peak increase of 0.0086-0.0131min(-1) (for 0.4-0.8MPa pressure), and 0.0431-0.0692, respectively, immediately after FUS exposure. Both parameters subsequently decreased exponentially as a function of time, with estimated half-lives of decay of 2.89-5.3 and 2.2-4.93h, respectively. The kinetics of Kep, defined as the efflux rate constant from the extracellular extravascular space (EES) to the plasma, were complementary to Ktrans, with an initial decrease from 0.2010 to 0.1901min(-1) followed by a significantly longer recovery time (half-life of 17.39-99.92h). Our observations strongly supported the existence of imbalanced and mismatched kinetics of influx (Ktrans) and efflux (Kep) between the plasma and EES, indicating the existence of directional permeability during FUS-BBB opening. We further showed that kinetic change determined by DCE-MRI correlated well with the concentration of Evans Blue (EB)-albumin (coefficient of 0.74-0.89). These findings suggest that MRI kinetic monitoring may serve as an alternative method for in-vivo monitoring of pharmacokinetics and pharmacodynamics (PK

  18. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  19. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  20. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    Science.gov (United States)

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.

  1. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  2. Interactive exploration of neuroanatomical meta-spaces

    Directory of Open Access Journals (Sweden)

    Shantanu H Joshi

    2009-11-01

    Full Text Available Large-archives of neuroimaging data present many opportunities for re-analysis and mining that can lead to new findings of use in basic research or in the characterization of clinical syndromes. However, interaction with such archives tends to be driven textually, based on subject or image volume meta-data, not the actual neuroanatomical morphology itself, for which the imaging was performed to measure. What is needed is a content-driven approach for examining not only the image content itself but to explore brains that are anatomically similar, and identifying patterns embedded within entire sets of neuroimaging data. With the aim of visual navigation of large- scale neurodatabases, we introduce the concept of brain meta-spaces. The meta-space encodes pair-wise dissimilarities between all individuals in a population and shows the relationships between brains as a navigable framework for exploration. We employ multidimensional scaling (MDS to implement meta-space processing for a new coordinate system that distributes all data points (brain surfaces in a common frame of reference, with anatomically similar brain data located near each other. To navigate within this derived meta-space, we have developed a fully interactive 3D visualization environment that allows users to examine hundreds of brains simultaneously, visualize clusters of brains with similar characteristics, zoom in on particular instances, and examine the surface topology of an individual brain's surface in detail. The visualization environment not only displays the dissimilarities between brains, but also renders complete surface representations of individual brain structures, allowing an instant 3D view of the anatomies, as well as their differences.

  3. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...

  4. Simple models of human brain functional networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  5. Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Javier Perez-Hernandez

    2015-01-01

    Full Text Available Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs, including microvesicles (also known as microparticles, apoptotic bodies, and exosomes, are recognized vehicles of intercellular communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus erythematosus.

  6. Syndecans as receptors and organizers of the extracellular matrix

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Gopal, Sandeep; Couchman, John

    2009-01-01

    and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles......, the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as "co-receptors". However, just as with integrins, syndecans can interact with actin-associated proteins...

  7. Matricryptins and matrikines: biologically active fragments of the extracellular matrix.

    Science.gov (United States)

    Ricard-Blum, Sylvie; Salza, Romain

    2014-07-01

    Numerous extracellular proteins and glycosaminoglycans (GAGs) undergo limited enzymatic cleavage resulting in the release of fragments exerting biological activities, which are usually different from those of the full-length molecules. In this review, we define matrikines and matricryptins, which are bioactive fragments released from the extracellular matrix proteins, proteoglycans and GAGs and report their major biological activities. These fragments regulate a number of physiopathological processes including angiogenesis, cancer, fibrosis, inflammation, neurodegenerative diseases and wound healing. The challenges to translate these fragments from molecules biologically active in vitro and in experimental models to potential drugs are discussed in the last part of the review.

  8. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron...

  9. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  10. Extracellular proteins limit the dispersal of biogenic nanoparticles

    Science.gov (United States)

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  11. Cerebral ischemia is exacerbated by extracellular nicotinamide phosphoribosyltransferase via a non-enzymatic mechanism.

    Directory of Open Access Journals (Sweden)

    Bing Zhao

    Full Text Available Intracellular nicotinamide phosphoribosyltransferase (iNAMPT in neuron has been known as a protective factor against cerebral ischemia through its enzymatic activity, but the role of central extracellular NAMPT (eNAMPT is not clear. Here we show that eNAMPT protein level was elevated in the ischemic rat brain after middle-cerebral-artery occlusion (MCAO and reperfusion, which can be traced to at least in part from blood circulation. Administration of recombinant NAMPT protein exacerbated MCAO-induced neuronal injury in rat brain, while exacerbated oxygen-glucose-deprivation (OGD induced neuronal injury only in neuron-glial mixed culture, but not in neuron culture. In the mixed culture, NAMPT protein promoted TNF-α release in a time- and concentration-dependent fashion, while TNF-α neutralizing antibody protected OGD-induced, NAMPT-enhanced neuronal injury. Importantly, H247A mutant of NAMPT with essentially no enzymatic activity exerted similar effects on ischemic neuronal injury and TNF-α release as the wild type protein. Thus, eNAMPT is an injurious and inflammatory factor in cerebral ischemia and aggravates ischemic neuronal injury by triggering TNF-α release from glia cells, via a mechanism not related to NAMPT enzymatic activity.

  12. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    Directory of Open Access Journals (Sweden)

    Aaron D Levy

    2014-10-01

    Full Text Available Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM, composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults.

  13. The evolving proteome of a complex extracellular matrix, the Oikopleura house.

    Directory of Open Access Journals (Sweden)

    Julia Hosp

    Full Text Available Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in "houses" or "tunics". Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins, ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A(2 domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.

  14. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Giselle A Funchal

    Full Text Available Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.

  15. Epstein Barr Virus and Blood Brain Barrier in Multiple Sclerosis

    Science.gov (United States)

    2014-01-01

    Multiple sclerosis (MS) is a chronic, autoimmune neurodegenerative disease. Epstein-Barr virus (EBV) infection is associated with MS pathogenesis. However, mechanism for the EBV-MS connection is unclear. The blood brain barrier (BBB) is a separation of circulating blood and the brain extracellular fluid in the central nervous system. BBB contains both endothelial cells as well as astrocytes. Interestingly EBV is able to infect both kinds of cells. Because EBV is able to transfer infection from one cell type to another cell type, it is thus hypothesized that EBV uses

  16. Proteoglycans and their roles in brain cancer.

    Science.gov (United States)

    Wade, Anna; Robinson, Aaron E; Engler, Jane R; Petritsch, Claudia; James, C David; Phillips, Joanna J

    2013-05-01

    Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets.

  17. Clearance systems in the brain-implications for Alzheimer disease.

    Science.gov (United States)

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J

    2015-08-01

    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.

  18. Multidrug resistance-associated protein 1 decreases the concentrations of antiepileptic drugs in cortical extracellular fluid in amygdale kindling rats

    Institute of Scientific and Technical Information of China (English)

    Ying-hui CHEN; Cui-cui WANG; Xia XIAO; Li WEI; Guoxiong XU

    2013-01-01

    Aim:To investigate whether multidrug resistance-associated protein 1 (MRP1) was responsible for drug resistence in refractory epilepsy in amygdale kindling rats.Methods:Rat amygdale kindling was used as a model of refractory epilepsy.The expression of MRP1 mRNA and protein in the brains was examined using RT-PCR and Western blot.MRP1-positive cells in the cortex and hippocampus were studied with immunohistochemical staining.The rats were intraperitoneally injected with phenytoin (50 mg/kg) or carbamazepine (20 mg/kg),and their concentrations in the cortical extracellular fluid were measured using microdialysis and HPLC.Probenecid,a MRP1 inhibitor (40 mmol/L,50 μL) was administered through an inflow tube into the cortex 30 min before injection of the antiepileptic drugs.Results:The expression of MRP1 mRNA and protein was significantly up-regulated in the cortex and hippocampus in amygdale kindling rats compared with the control group.Furthermore,the number of MRP1-positive cells in the cortex and hippocampus was also significantly increased in amygdale kindling rats.Microdialysis studies showed that the concentrations of phenytoin and carbamazepine in the cortical extracellular fluid were significantly decreased in amygdale kindling rats.Pre-administration of probenecid could restore the concentrations back to their control levels.Conclusion:Up-regulation of MRP1 is responsible for the resistance of brain cells to antiepileptic drugs in the amygdale kindling rats.

  19. Microdialysis study of cefotaxime cerebral distribution in patients with acute brain injury.

    Science.gov (United States)

    Dahyot-Fizelier, Claire; Frasca, Denis; Grégoire, Nicolas; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine

    2013-06-01

    Central nervous system (CNS) antibiotic distribution was described mainly from cerebrospinal fluid data, and only few data exist on brain extracellular fluid concentrations. The aim of this study was to describe brain distribution of cefotaxime (2 g/8 h) by microdialysis in patients with acute brain injury who were treated for a lung infection. Microdialysis probes were inserted into healthy brain tissue of five critical care patients. Plasma and unbound brain concentrations were determined at steady state by high-performance liquid chromatography. In vivo recoveries were determined individually using retrodialysis by drug. Noncompartmental and compartmental pharmacokinetic analyses were performed. Unbound cefotaxime brain concentrations were much lower than corresponding plasma concentrations, with a mean cefotaxime unbound brain-to-plasma area under the curve ratio equal to 26.1 ± 12.1%. This result was in accordance with the brain input-to-brain output clearances ratio (CL(in,brain)/CL(out,brain)). Unbound brain concentrations were then simulated at two dosing regimens (4 g every 6 h or 8 h), and the time over the MICs (T>MIC) was estimated for breakpoints of susceptible and resistant Streptococcus pneumoniae strains. T>MIC was higher than 90% of the dosing interval for both dosing regimens for susceptible strains and only for 4 g every 6 h for resistant ones. In conclusion, brain distribution of cefotaxime was well described by microdialysis in patients and was limited.

  20. Microfabricated solid-state ion-selective electrode probe for measuring potassium in the living rodent brain: Compatibility with DC-EEG recordings to study spreading depression

    NARCIS (Netherlands)

    Odijk, M.; Wouden, van der E.J.; Olthuis, W.; Ferrari, M.D.; Tolner, E.A.; Maagdenberg, van den A.M.J.M.; Berg, van den A.

    2014-01-01

    There is considerable need in neuroscience research to reliably measure concentrations of extracellular ions in the living brain as the dynamics of ion levels increasingly is considered to play a key role in the pathophysiology of many brain disorders. Unfortunately, most probes currently used for d