WorldWideScience

Sample records for brain 5-ht receptor

  1. Radioligands for brain 5-HT2 receptor imaging in vivo: why do we need them?

    International Nuclear Information System (INIS)

    Busatto, G.F.

    1996-01-01

    Recently, PET and SPET radiotracers with high specificity for 5-HT 2 receptors have been developed. These have been studied in baboons and humans with promising results, displaying a binding profile compatible with the brain distribution of 5-HT 2 receptors. It is predicted that studies with the newly developed 5-HT radioligands will substantially increase knowledge about the pharmacology of brain disorders. (orig./MG)

  2. Low 5-HT1B receptor binding in the migraine brain

    DEFF Research Database (Denmark)

    Deen, Marie; Hansen, Hanne D; Hougaard, Anders

    2018-01-01

    Background The pathophysiology of migraine may involve dysfunction of serotonergic signaling. In particular, the 5-HT1B receptor is considered a key player due to the efficacy of 5-HT1B receptor agonists for treatment of migraine attacks. Aim To examine the cerebral 5-HT1B receptor binding....... Patients who reported migraine brain regions involved in pain modulation as regions of interest and applied a latent variable model (LVM) to assess the group effect on binding across these regions. Results Our data...... support a model wherein group status predicts the latent variable ( p = 0.038), with migraine patients having lower 5-HT1B receptor binding across regions compared to controls. Further, in a whole-brain voxel-based analysis, time since last migraine attack correlated positively with 5-HT1B receptor...

  3. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairment...... specific for the serotonin 2A receptor (5-HT(2A)R) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT(2A)Rs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered...... was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT(2A) and 5-HT(1A) mRNA expression but normal 5-HT(2C) content in these brain regions in BDNF(2L/2LCk-cre) mice. We investigated whether the reduction in frontal 5-HT(2A...

  4. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven

    2007-01-01

    With the appropriate radiolabeled tracers, positron emission tomography (PET) enables in vivo human brain imaging of markers for neurotransmission, including neurotransmitter synthesis, receptors, and transporters. Whereas structural imaging studies have provided compelling evidence that the human...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  5. Radioligands for brain 5-HT{sub 2} receptor imaging in vivo: why do we need them?

    Energy Technology Data Exchange (ETDEWEB)

    Busatto, G.F. [Section of Clinical Neuropharmacology, Dept. of Psychological Medicine, Inst. of Psychiatry, London (United Kingdom)

    1996-08-01

    Recently, PET and SPET radiotracers with high specificity for 5-HT{sub 2} receptors have been developed. These have been studied in baboons and humans with promising results, displaying a binding profile compatible with the brain distribution of 5-HT{sub 2} receptors. It is predicted that studies with the newly developed 5-HT radioligands will substantially increase knowledge about the pharmacology of brain disorders. (orig./MG)

  6. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Comley, Robert A

    2009-01-01

    The serotonin 4 receptor (5-HT(4) receptor) is known to be involved in learning and memory. We evaluated for the first time the quantification of a novel 5-HT(4) receptor radioligand, (11)C-SB207145, for in vivo brain imaging with PET in humans. METHODS: For evaluation of reproducibility, 6...

  7. Different distributions of the 5-HT reuptake complex and the postsynaptic 5-HT(2A) receptors in Brodmann areas and brain hemispheres.

    Science.gov (United States)

    Rosel, Pilar; Arranz, Belén; Urretavizcaya, Mikel; Oros, Miguel; San, Luis; Vallejo, Julio; Navarro, Miguel Angel

    2002-08-30

    The aim of the present study was to determine the distribution of the presynaptic 5-HT reuptake complex and the 5-HT(2A) receptors through Brodmann areas from two control subjects, together with the possible existence of laterality between both brain hemispheres. A left laterality was observed in the postsynaptic 5-HT(2A) binding sites, with significantly higher B(max) values in the left frontal and cingulate cortex. In frontal cortex, [3H]imipramine and [3H]paroxetine binding showed the highest B(max) values in areas 25, 10 and 11. In cingulate cortex, the highest [3H]imipramine and [3H]paroxetine B(max) values were noted in Brodmann area 33 followed by area 24, while postsynaptic 5-HT(2A) receptors were mainly distributed through Brodmann areas 23 and 29. In temporal cortex, the highest [3H]imipramine and [3H]paroxetine B(max) was noted in Brodmann areas 28 and 34, followed by areas 35 and 38. All Brodmann areas from parietal cortex (1, 2, 3, 4, 5, 6, 7, 39, 40 and 43) showed similar presynaptic and postsynaptic binding values. In occipital cortex no differences were observed with regard to the brain hemisphere or to the Brodmann area (17, 18 and 19). These results suggest the need to carefully define the brain hemisphere and the Brodmann areas studied, as well to avoid comparisons between studies including different Brodmann areas or brain hemispheres.

  8. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome.

    Science.gov (United States)

    Zou, Bai-cang; Dong, Lei; Wang, Yan; Wang, Sheng-hao; Cao, Ming-bo

    2007-12-05

    The 5-hydroxytryptamine7 receptor (5-HT(7) receptor, 5-HT(7)R) plays an important role in the regulation of smooth muscle relaxation and visceral sensation and might be involved in the pathogenesis of the gastrointestinal dyskinesia, abdominal pain and visceral paresthesia in irritable bowel syndrome (IBS). The aim of this study was to investigate the role of the 5-HT(7) receptor in the pathogenesis of IBS. A rat model of irritable bowel syndrome with diarrhea (IBS-D) was established by colonic instillation of acetic acid and restraint stress. A rat model with irritable bowel syndrome with constipation (IBS-C) was established by stomach irrigated with 0 - 4 degrees C cool water daily for 14 days. The content and distribution of 5-HT in the brain and gut were examined by immunohistochemistry and the mRNA expression of the 5-HT(7) receptor was determined by fluorescent quantitative reverse transcription polymerase chain reaction. The accumulation of cyclic adenosine monophosphate (cAMP) in all the same tissues was measured by radioimmunity. The models of IBS were reliable by identification. The immunohistochemistry results showed that there were significantly more 5-HT positive cells in the IBS-D group than in the control group in the hippocampus, hypothalamus, jejunum, ileum, proximate colon and distal colon (P intestine is related to the IBS pathogenesis. The up-regulated expression of the 5-HT(7) receptor in the brain and colon might play an important role in the pathogenesis of IBS-C.

  9. Selective labelling of 5-HT{sub 7} receptor recognition sites in rat brain using [{sup 3}H]5-carboxamidotryptamine

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, R.L.; Barnes, N.M. [Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    1998-12-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT{sub 7} receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT ([{sup 3}H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 {mu}M) displayed a pharmacological profile similar to the recombinant 5-HT{sub 7} receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT recognition sites also resembled, pharmacologically, the 5-HT{sub 7} receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [{sup 3}H]5-CT binding to residual, possibly, 5-HT{sub 1A} sites. Competition for this [{sup 3}H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT{sub 7} receptor. Saturation studies also indicated that ({+-})-pindolol (10 {mu}M)/WAY 100635 (100 nM)-insensitive [{sup 3}H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B{sub max}=33.2{+-}0.7 fmol mg{sup -1} protein, pK{sub d}=8.78{+-}0.05, mean{+-}S.E.M., n=3). The development of this 5-HT{sub 7} receptor binding assay will aid investigation of the rat native 5-HT{sub 7} receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine

    International Nuclear Information System (INIS)

    Stowe, R.L.; Barnes, N.M.

    1998-01-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT 7 receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT ([ 3 H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 μM) displayed a pharmacological profile similar to the recombinant 5-HT 7 receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT recognition sites also resembled, pharmacologically, the 5-HT 7 receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [ 3 H]5-CT binding to residual, possibly, 5-HT 1A sites. Competition for this [ 3 H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT 7 receptor. Saturation studies also indicated that (±)-pindolol (10 μM)/WAY 100635 (100 nM)-insensitive [ 3 H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B max =33.2±0.7 fmol mg -1 protein, pK d =8.78±0.05, mean±S.E.M., n=3). The development of this 5-HT 7 receptor binding assay will aid investigation of the rat native 5-HT 7 receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    International Nuclear Information System (INIS)

    Leysen, J.E.; Schotte, A.; Jurzak, M.; Luyten, W.H.M.L.; Voorn, P.; Bonaventure, P.

    1997-01-01

    The similar pharmacology of the 5-HT 1B and 5-HT 1D receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [ 35 S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [ 3 H]alniditan).The anatomical patterns of 5-HT 1B and 5-HT 1D receptor messenger RNA were quite different. While 5-HT 1B receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT 1D receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT 1B/1D binding sites (combined) obtained with [ 3 H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT 1B receptor labelling in the presence of ketanserin under conditions to occlude 5-HT 1D receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT 1B and 5-HT 1D receptors. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Characterization of [(11)C]Cimbi-36 as an agonist PET radioligand for the 5-HT(2A) and 5-HT(2C) receptors in the nonhuman primate brain

    DEFF Research Database (Denmark)

    Finnema, Sjoerd J; Stepanov, Vladimir; Ettrup, Anders

    2014-01-01

    a more meaningful assessment of available receptors than antagonist radioligands. In the current study we characterized [(11)C]Cimbi-36 receptor binding in the primate brain. On five experimental days, a total of 14 PET measurements were conducted in three female rhesus monkeys. On each day, PET...... agonist radioligand suitable for examination of 5-HT2A receptors in the cortical regions and of 5-HT2C receptors in the choroid plexus of the primate brain....

  13. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography....... In the Flinders Sensitive Line, the 5-HT(4) receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16-47% down-regulation of 5-HT(4......) receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT(4) receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT(2A) receptor binding was decreased in the frontal and cingulate...

  14. Radioiodinated SB 207710 as a radioligand in vivo: imaging of brain 5-HT{sub 4} receptors with SPET

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Victor W. [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, MD 20892-1003, Bethesda (United States); Halldin, Christer; Nobuhara, Kenji; Swahn, Carl-Gunnar; Karlsson, Per; Olsson, Hans; Larsson, Stig; Schnell, Per-Olof; Farde, Lars [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Karolinska Hospital, 17176, Stockholm (Sweden); Hiltunen, Julka [MAP Medical Technologies, Oy, Tikkakoski (Finland); Mulligan, Rachel S. [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Institute of Psychiatry, SE 8AF, De Crespigny Park, Denmark Hill, London (United Kingdom); Centre for PET, Austin and Repatriation Medical Centre, Studley Road, Melbourne VIC 3084 (Australia); Hume, Susan P.; Hirani, Ella [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Imaging Research Solutions Ltd., Cyclotron Building, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Whalley, Jaqueline [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, SE 8AF, De Crespigny Park, Denmark Hill, London (United Kingdom); Institute of Nuclear Medicine, Royal Free and University College, Medical School, Mortimer Street, W1N 8AA, London (United Kingdom); Ell, Peter J. [Institute of Nuclear Medicine, Royal Free and University College, Medical School, Mortimer Street, W1N 8AA, London (United Kingdom)

    2003-11-01

    Single-photon emission tomography (SPET) and positron emission tomography (PET), when coupled to suitable radioligands, are uniquely powerful for investigating the status of neurotransmitter receptors in vivo. The serotonin subtype-4 (5-HT{sub 4}) receptor has discrete and very similar distributions in rodent and primate brain. This receptor population may play a role in normal cognition and memory and is perhaps perturbed in some neuropsychiatric disorders. SB 207710 [(1-butyl-4-piperidinylmethyl)-8-amino-7-iodo-1,4-benzodioxan-5-carboxylate] is a selective high-affinity antagonist at 5-HT{sub 4} receptors. We explored radioiodinated SB 207710 as a possible radioligand for imaging 5-HT{sub 4} receptors in vivo. Rats were injected intravenously with iodine-125 labelled SB 207710, euthanised at known times and dissected to establish radioactivity content in brain tissues. Radioactivity entered brain but cleared rapidly and to a high extent from blood and plasma. Between 45 and 75 min after injection, the ratios of radioactivity concentration in each of 12 selected brain tissues to that in receptor-poor cerebellum correlated with previous measures of 5-HT{sub 4} receptor density distribution in vitro. The highest ratio was about 3.4 in striatum. SB 207710 was labelled with iodine-123 by an iododestannylation procedure. A cynomolgus monkey was injected intravenously with [{sup 123}I]SB 207710 and examined by SPET. Maximal whole brain uptake of radioactivity was 2.3% of the injected dose at 18 min after radioligand injection. Brain images acquired between 9 and 90 min showed high radioactivity uptake in 5-HT{sub 4} receptor-rich regions, such as striatum, and low uptake in receptor-poor cerebellum. At 169 min the ratio of radioactivity concentration in striatum to that in cerebellum was 4.0. In a second SPET experiment, the cynomolgus monkey was pretreated with a selective 5-HT{sub 4} receptor antagonist, SB 204070, at 20 min before [{sup 123}I]SB 207710 injection

  15. Quantification of 5-HT{sub 1A} receptors in human brain using p-MPPF kinetic modelling and PET

    Energy Technology Data Exchange (ETDEWEB)

    Sanabria-Bohorquez, S.M.; Veraart, C. [Neural Rehabilitation Engineering Lab., Univ. Catholique de Louvain, Brussels (Belgium); Biver, F.; Damhaut, P.; Wikler, D.; Goldman, S. [PET/Biomedical Cyclotron Unit, Univ. Libre de Bruxelles (Belgium)

    2002-01-01

    Serotonin-1A (5-HT{sub 1A}) receptors are implicated in neurochemical mechanisms underlying anxiety and depression and their treatment. Animal studies have suggested that 4-(2'-methoxyphenyl)-1-[2'-[N-(2''-pyridinyl)-p-[{sup 18}F]fluorobenzamido] ethyl] piperazine (p-MPPF) may be a suitable positron emission tomography (PET) tracer of 5-HT{sub 1A} receptors. To test p-MPPF in humans, we performed 60-min dynamic PET scans in 13 healthy volunteers after single bolus injection. Metabolite quantification revealed a fast decrease in tracer plasma concentration, such that at 5 min post injection about 25% of the total radioactivity in plasma corresponded to p-MPPF. Radioactivity concentration was highest in hippocampus, intermediate in neocortex and lowest in basal ganglia and cerebellum. The interactions between p-MPPF and 5-HT{sub 1A} receptors were described using linear compartmental models with plasma input and reference tissue approaches. The two quantification methods provided similar results which are in agreement with previous reports on 5-HT{sub 1A} receptor brain distribution. In conclusion, our results show that p-MPPF is a suitable PET radioligand for 5-HT{sub 1A} receptor human studies. (orig.)

  16. Differences in the effects of 5-HT1A receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice

    NARCIS (Netherlands)

    Veenema, AH; Cremers, TIFH; Jongsma, ME; Steenbergen, PJ; de Boer, SF; Koolhaas, JM; Jongsma, Minke E.

    Rationale: Male wild house- mice genetically selected for long attack latency ( LAL) and short attack latency ( SAL) differ in structural and functional properties of postsynaptic serotonergic- 1A ( 5- HT1A) receptors. These mouse lines also show divergent behavioral responses in the forced swimming

  17. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    Science.gov (United States)

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  18. Detailed mapping of serotonin 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    Energy Technology Data Exchange (ETDEWEB)

    Leysen, J.E. [Graduate School Neurosciences, Amsterdam (Netherlands); Schotte, A.; Jurzak, M.; Luyten, W.H.M.L. [Department of Biochemical Pharmacology, Janssen Research Foundation, Beerse (Belgium); Voorn, P.; Bonaventure, P. [Graduate School Neurosciences, Amsterdam (Netherlands)

    1997-10-17

    The similar pharmacology of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [{sup 35}S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [{sup 3}H]alniditan).The anatomical patterns of 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA were quite different. While 5-HT{sub 1B} receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT{sub 1D} receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT{sub 1B/1D} binding sites (combined) obtained with [{sup 3}H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT{sub 1B} receptor labelling in the presence of ketanserin under conditions to occlude 5-HT{sub 1D} receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors. (Copyright (c

  19. In vitro assessment of the agonist properties of the novel 5-HT1A receptor ligand, CUMI-101 (MMP), in rat brain tissue

    International Nuclear Information System (INIS)

    Hendry, Nicola; Christie, Isabel; Rabiner, Eugenii Alfredovich; Laruelle, Marc; Watson, Jeannette

    2011-01-01

    Introduction: Development of agonist positron emission tomography (PET) radioligands for the 5-HT neurotransmitter system is an important target to enable the understanding of human 5-HT function in vivo. [ 11 C]CUMI-101, proposed as the first 5-HT 1A receptor agonist PET ligand, has been reported to behave as a potent 5-HT 1A agonist in a cellular system stably expressing human recombinant 5-HT 1A receptors. In this study, we investigate the agonist properties of CUMI-101 in rat brain tissue. Methods: [ 35 S]-GTPγS binding studies were used to determine receptor function in HEK (human embryonic kidney) 293 cells transfected with human recombinant 5-HT 1A receptors and in rat cortex and rat hippocampal tissue, following administration of CUMI-101 and standard 5-HT1A antagonists (5-HT, 5-CT and 8-OH-DPAT). Results: CUMI-101 behaved as an agonist at human recombinant 5-HT 1A receptors (pEC 50 9.2). However, CUMI-101 did not show agonist activity in either rat cortex or hippocampus at concentrations up to 10 μM. In these tissues, CUMI-behaved as an antagonist with pK B s of 9.2 and 9.3, respectively. Conclusions: Our studies demonstrate that as opposed to its behavior in human recombinant system, in rat brain tissue CUMI-101 behaves as a potent 5-HT 1A receptor antagonist.

  20. 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices.

    Directory of Open Access Journals (Sweden)

    Matthias Wawra

    Full Text Available The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD. In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4 receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1, 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output.

  1. Distribution of 5HT2A receptors in the human brain: Comparison of data in vivo and post mortem

    International Nuclear Information System (INIS)

    Forutan, F.; Estalji, S.; Beu, M.; Nikolaus, S.; Vosberg, H.; Mueller-Gaertner, H.W.; Larisch, R.; Hamacher, K.; Coenen, H.H.

    2002-01-01

    Aim: The study presented here firstly compars the distribution of the binding potential of the serotonin-5HT 2A receptor as measured in vivo with data of receptor density taken from literature. Secondly, the sensitivity of the method to detect gradual differences in receptor densities is evaluated. Methods: Positron emission tomography (PET) studies were carried out in 6 healthy volunteers using the selective serotonin-5HT 2A ligand 18 F-altanserin. The binding potential was quantified in 12 regions using Logan's graphical method and the equilibrium method. These data were compared to the distribution of receptor density as taken from literature. Results: The binding data in vivo correlated to autoradiography data (post mortem) with r = 0.83 (Pearson regression coefficient; p 18 F-altanserin and PET in healthy volunteers and the true autoradiographically determined distribution of 5HT 2A receptors in human brains. The in vivo method seems to be sensitive enough to detect changes in receptor density of more than 18%. (orig.)

  2. Psychopharmacology of 5-HT1A receptors

    International Nuclear Information System (INIS)

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  3. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald

    2016-01-01

    of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145......Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels...... for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well...

  4. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain

    DEFF Research Database (Denmark)

    Aznar, Susana; Qian, Zhaoxia; Shah, Reshma

    2003-01-01

    distributed in the rat brain, with a particularly high density in the limbic system. The receptor's localization in the different neuronal subtypes, which may be of importance for understanding its role in neuronal circuitries, is, however, unknown. In this study we show by immunocytochemical double......-labeling techniques, that the 5-HT(1A) receptor is present on both pyramidal and principal cells, and calbindin- and parvalbumin-containing neurons, which generally define two different subtypes of interneurons. Moreover, semiquantitative analysis showed that the receptor's distribution in the different neuronal...... types varies between brain areas. In cortex, hippocampus, hypothalamus, and amygdala the receptor was located on both principal cells and calbindin- and parvalbumin-containing neurons. In septum and thalamus, the receptor was mostly present on calbindin- and parvalbumin-containing cells. Especially...

  5. Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function.

    Science.gov (United States)

    Holbrook, Joanna D; Gill, Catherine H; Zebda, Noureddine; Spencer, Jon P; Leyland, Rebecca; Rance, Kim H; Trinh, Han; Balmer, Gemma; Kelly, Fiona M; Yusaf, Shahnaz P; Courtenay, Nicola; Luck, Jane; Rhodes, Andrew; Modha, Sundip; Moore, Stephen E; Sanger, Gareth J; Gunthorpe, Martin J

    2009-01-01

    The 5-HT(3) receptor is a member of the 'Cys-loop' family of ligand-gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5-HT(3) receptors originating from homomeric assemblies of 5-HT(3A) or heteromeric assembly of 5-HT(3A) and 5-HT(3B). Novel genes encoding 5-HT(3C), 5-HT(3D), and 5-HT(3E) have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5-HT(3C), 5-HT(3D), and 5-HT(3E) are not human-specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5-HT(3C), 5-HT(3D), and 5-HT(3E) were all non-functional when expressed alone. Co-transfection studies to determine potential novel heteromeric receptor interactions with 5-HT(3A) demonstrated that the expression or function of the receptor was modified by 5-HT(3C) and 5-HT(3E), but not 5-HT(3D). The lack of distinct effects on current rectification, kinetics or pharmacology of 5-HT(3A) receptors does not however provide unequivocal evidence to support a direct contribution of 5-HT(3C) or 5-HT(3E) to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5-HT(3) receptor antagonists have major clinical usage, therefore remains to be fully determined.

  6. Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography

    International Nuclear Information System (INIS)

    Biver, F.; Goldman, S.; Luxen, A.; Monclus, M.; Forestini, M.; Mendlewicz, J.; Lotstra, F.

    1994-01-01

    Serotoninergic type 2 (5HT 2 ) receptors have been implicated in the regulation of many brain functions in humans and may play a role in several neurological and psychiatric diseases. Fluorine-18 altanserin has been proposed as a new radiotracer for the study of 5HT 2 receptors by PET because of its high affinity for 5HT 2 receptors (Ki: 0.13 nM) and its good specificity in in vitro studies. Dynamic PET studies were carried out in 12 healthy volunteers after intravenous injection of 0.1 mCi/kg [ 18 F] altanserin. Ninety minutes after injection, we observed mainly cortical binding. Basal ganglia and cerebellum showed very low uptake and the frontal cortex to cerebellum ratio was about 3. To evaluate the quantitative distribution of this ligand in the brain, we used two different methods of data analysis: a four-compartment model was used to achieve quantitative evaluation of rate constants (K 1 and k 2 through k 6 ) by non-linear regression, and a multiple-time graphical analysis technique for reversible binding was employed for the measurement of k 1 /k 2 and k 3 /k 4 ratios. Using both methods, we found significant differences in binding capacity (estimated by k 3 /k 4 = B max /K d ) between regions, the values increasing as follows: occipital, limbic, parietal, frontal and temporal cortex. After correction of values obtained by the graphical method for the existence of non-specific binding, results generated by the two methods were consistent. (orig.)

  7. In vivo binding of 125I-LSD to serotonin 5-HT2 receptors in mouse brain

    International Nuclear Information System (INIS)

    Hartig, P.R.; Scheffel, U.; Frost, J.J.; Wagner, H.N. Jr.

    1985-01-01

    The binding of 125 I-LSD (2-[ 125 I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125 I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125 I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125 I-LSD. Serotonergic compounds potently inhibited 125 I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that 125 I-LSD labels serotonin 5-HT 2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125 I-LSD labeling occurs predominantly or entirely at serotonic 5-HT 2 sites. In the striatum, 125 I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that 125 I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT 2 receptors in the mammalian cortex

  8. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    Science.gov (United States)

    Mc Mahon, Brenda; MacDonald Fisher, Patrick; Jensen, Peter Steen; Svarer, Claus; Moos Knudsen, Gitte

    2016-01-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [11C]SB207145 for quantification of brain 5-HT4R binding. The Buss–Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well as BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low cerebral 5-HT levels, as indexed by 5-HT4R binding were associated with high trait aggression in males, but not in females. PMID:26772668

  9. Effects of swim stress and fluoxetine on 5-HT1A receptor gene expression and monoamine metabolism in the rat brain regions.

    Science.gov (United States)

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2012-07-01

    Changes in gene expression of the brain serotonin (5-HT) 1A receptors may be important for the development and ameliorating depression, however identification of specific stimuli that activate or reduce the receptor transcriptional activity is far from complete. In the present study, the forced swim test (FST) exposure, the first stress session of which is already sufficient to induce behavioral despair in rats, significantly increased 5-HT1A receptor mRNA levels in the brainstem, frontal cortex, and hippocampus at 24 h. In the brainstem and frontal cortex, the elevation in the receptor gene expression after the second forced swim session was not affected following chronic administration of fluoxetine, while in the cortex, both control and FST values were significantly reduced in fluoxetine-treated rats. In contrast to untreated rats, no increase in hippocampal 5-HT1A receptor mRNA was observed in response to FST in rats chronically treated with fluoxetine. Metabolism of 5-HT (5-HIAA/5-HT) in the brainstem was significantly decreased by fluoxetine and further reduced by swim stress, showing a certain degree of independence of these changes on 5-HT1A receptor gene expression that was increased in this brain region only after the FST, but not after fluoxetine. FST exposure also decreased the brainstem dopamine metabolism, which was unexpectedly positively correlated with 5-HT1A receptor mRNA levels in the frontal cortex. Together, these data suggest that the effects of the forced swim stress as well as fluoxetine involve brain region-dependent alterations in 5-HT1A receptor gene transcription, some of which may be interrelated with concomitant changes in catecholamine metabolism.

  10. Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat

    Directory of Open Access Journals (Sweden)

    Huang Yuejun

    2012-02-01

    Full Text Available Abstract Background Many studies have found that stress before or during pregnancy is linked to an increased incidence of behavioural disorders in offspring. However, few studies have investigated hypothalamic-pituitary-adrenal (HPA axis activity and the serotonergic system as a consequence of pregestational stress. In the present study, we investigated the effect of pre-gestational stress on HPA axis activity in maternal rats and their foetuses and examined whether changes in HPA axis activity of maternal rats produced functional changes in the serotonergic system in the brain of foetuses. Results We used the behavioural tests to assess the model of chronic unpredictable stress (CUS in maternal rats. We found the activity in the open field and sucrose consumption was lower for rats with CUS than for the controls. Body weight but not brain weight was higher for control foetuses than those from the CUS group. Serum corticosterone and corticotrophin-releasing hormone levels were significantly higher for mothers with CUS before pregnancy and their foetuses than for the controls. Levels of 5-hydroxytryptamine (5-HT were higher in the hippocampus and hypothalamus of foetuses in the CUS group than in the controls, and 5-hydroxyindoleacetic acid (5-HIAA levels were lower in the hippocampus in foetuses in the CUS group than in the control group. Levels of 5-HIAA in the hypothalamus did not differ between foetuses in the CUS group and in the control group. The ratio of 5-HIAA to 5-HT was significantly lower for foetuses in the CUS group than in the control group. Levels of 5-HT1A receptor were significantly lower in the foetal hippocampus in the CUS group than in the control group, with no significant difference in the hypothalamus. The levels of serotonin transporter (SERT were lower in both the foetal hippocampus and foetal hypothalamus in the CUS group than in the control group. Conclusions Our data demonstrate that pre-gestational stress alters HPA

  11. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Directory of Open Access Journals (Sweden)

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  12. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Directory of Open Access Journals (Sweden)

    Malgorzata S. Martin-Gronert

    2016-04-01

    Full Text Available Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC peptides within the arcuate nucleus of the hypothalamus (ARC. We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.

  13. Cyclopentadienyl tricarbonyl complexes of 99mTc for the in vivo imaging of the serotonin 5-HT 1a receptor in the brain

    International Nuclear Information System (INIS)

    Saidi, Mouldi; Trabelsi, Adel; MEKNI, Abdelkader; Kretzschmar, M.; Sefert, S.; Bergmann, R.; Pietzsch, H.-J.

    2005-01-01

    The present interest in the 5-HT 1a receptor is due to its implicated role in several major neuropsychiatric disorders such as depression, eating disorders and anxiety. For the diagnosis of these pathophysiological processes it is important to have radioligands in hand able to specifically bind on the 5-HT 1a receptor in order to allow brain imaging. due to the optimal radiation properties of 99mTc there is a considerable interest in the development of 99mTc radiopharmaceuticals for imaging serotonergic CNS receptors using single-photon emission tomography (SPET). Here we introduce two cyclopentadienyl technitium tricarbonyl conjugates of piperidine derivatives which show high accumulation of radioactivity in brain areas rich in 5-HT 1a receptors

  14. Specific in vivo binding in the rat brain of [18F]RP 62203: A selective 5-HT2A receptor radioligand for positron emission tomography

    International Nuclear Information System (INIS)

    Besret, Laurent; Dauphin, Francois; Huard, Cecile; Lasne, Marie-Claire; Vivet, Richard; Mickala, Patrick; Barbelivien, Alexandra; Baron, Jean-Claude

    1996-01-01

    In vivo pharmacokinetic and brain binding characteristics of [ 18 F]RP 62203, a selective high-affinity serotonergic 5-HT 2A receptor antagonist, were assessed in the rat following intravenous injection of trace amount of the radioligand. The radioactive distribution profile observed in the brain 60 min after injection was characterized by greater than fourfold higher uptake in neocortex as compared to cerebellum (0.38 ± 0.07% injected dose/g, % ID/g and 0.08 ± 0.01 ID/g, respectively), consistent with in vivo specific binding to the 5-HT 2A receptor. Furthermore, specific [ 18 F]RP 62203 binding significantly correlated with the reported in vitro distribution of 5-HT 2A receptors, but not with known concentration profiles of dopaminergic D 2 or adrenergic α 1 receptors. Finally, detectable specific binding was abolished by pretreatment with large doses of ritanserin, a selective 5-HT 2A antagonist, which resulted in uniform uptakes across cortical, striatal and cerebellar tissues. Thus, [ 18 F]RP 62203 appears to be a promising selective tool to visualize and quantify 5-HT 2A brain receptors in vivo with positron emission tomography

  15. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    International Nuclear Information System (INIS)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-01-01

    In the presence of a 30 nM prazosin mask, [ 3 H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([ 3 H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [ 3 H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [ 3 H]WB4101-binding sites in the presence of 30 nM prazosin and [ 3 H] lysergic acid diethylamide ([ 3 H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [ 3 H]WB4101 is significantly lower than the Bmax of [ 3 H]LSD in various brain regions. WB4101 competition for [ 3 H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [ 3 H]WB4101 binding derived from saturation experiments. This suggests that [ 3 H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [ 3 H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [ 3 H]WB4101 but compete for multiple [ 3 H]LSD 5-HT1 binding sites. These data indicate that [ 3 H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [ 3 H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [ 3 H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [ 3 H]WB4101 binding

  16. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding.

    Science.gov (United States)

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald; Jensen, Peter Steen; Svarer, Claus; Knudsen, Gitte Moos

    2016-04-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145 for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well as BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low cerebral 5-HT levels, as indexed by 5-HT4R binding were associated with high trait aggression in males, but not in females. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Plenge, P.; Jørgensen, O.S.

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, an...

  18. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Science.gov (United States)

    Röser, Claudia; Jordan, Nadine; Balfanz, Sabine; Baumann, Arnd; Walz, Bernd; Baumann, Otto; Blenau, Wolfgang

    2012-01-01

    Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.

  19. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Directory of Open Access Journals (Sweden)

    Claudia Röser

    Full Text Available Secretion in blowfly (Calliphora vicina salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT, which activates both inositol 1,4,5-trisphosphate (InsP(3/Ca(2+ and cyclic adenosine 3',5'-monophosphate (cAMP signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7 that share high similarity with mammalian 5-HT(2 and 5-HT(7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+] in a dose-dependent manner (EC(50 = 24 nM. In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i (EC(50 = 4 nM. We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α or Cv5-HT(7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM activates only the Cv5-HT(2α receptor, 5-carboxamidotryptamine (300 nM activates only the Cv5-HT(7 receptor, and clozapine (1 µM antagonizes the effects of 5-HT via Cv5-HT(7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+- and cAMP-signalling cascades.

  20. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  1. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    Science.gov (United States)

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. © 2016. Published by The Company of Biologists Ltd.

  2. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    Science.gov (United States)

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  3. High-resolution imaging of brain 5-HT{sub 1B} receptors in the rhesus monkey using [{sup 11}C]P943

    Energy Technology Data Exchange (ETDEWEB)

    Nabulsi, Nabeel; Huang Yiyun; Weinzimmer, David; Ropchan, Jim; Frost, James J. [Yale PET Center, Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520-8048 (United States); McCarthy, Timothy [Pfizer Global R and D, Groton, CT 06340 (United States); Carson, Richard E.; Ding Yushin [Yale PET Center, Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520-8048 (United States)

    2010-02-15

    The serotonin 5-HT{sub 1B} receptors regulate the release of serotonin and are involved in various disease states, including depression and schizophrenia. The goal of the study was to evaluate a high affinity and high selectivity antagonist, [{sup 11}C]P943, as a positron emission tomography (PET) tracer for imaging the 5-HT{sub 1B} receptor. [{sup 11}C]P943 was synthesized via N-methylation of the precursor with [{sup 11}C]methyl iodide or [{sup 11}C]methyl triflate using automated modules. The average radiochemical yield was approx. 10% with radiochemical purity of >99% and specific activity of 8.8{+-}3.6 mCi/nmol at the end-of-synthesis (n=37). PET imaging was performed in non-human primates with a high-resolution research tomograph scanner with a bolus/infusion paradigm. Binding potential (BP{sub ND}) was calculated using the equilibrium ratios of regions to cerebellum. The tracer uptake was highest in the globus pallidus and occipital cortex, moderate in basal ganglia and thalamus, and lowest in the cerebellum, which is consistent with the known brain distribution of 5-HT{sub 1B} receptors. Infusion of tracer at different specific activities (by adding various amount of unlabeled P943) reduced BP{sub ND} values in a dose-dependent manner, demonstrating the saturability of the tracer binding. Blocking studies with GR127935 (2 mg/kg iv), a selective 5-HT{sub 1B}/5-HT{sub 1D} antagonist, resulted in reduction of BP{sub ND} values by 42-95% across regions; for an example, in occipital region from 0.71 to 0.03, indicating a complete blockade. These results demonstrate the saturability and specificity of [{sup 11}C]P943 for 5-HT{sub 1B} receptors, suggesting its suitability as a PET radiotracer for in vivo evaluations of the 5-HT{sub 1B} receptor system in humans.

  4. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairmen...

  5. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  6. 5-HT2A receptors in the feline brain: 123I-5-I-R91150 kinetics and the influence of ketamine measured with micro-SPECT.

    Science.gov (United States)

    Waelbers, Tim; Polis, Ingeborgh; Vermeire, Simon; Dobbeleir, André; Eersels, Jos; De Spiegeleer, Bart; Audenaert, Kurt; Slegers, Guido; Peremans, Kathelijne

    2013-08-01

    Subanesthetic doses of ketamine can be used as a rapid-acting antidepressant in patients with treatment-resistant depression. Therefore, the brain kinetics of (123)I-5-I-R91150 (4-amino-N-[1-[3-(4-fluorophenyl)propyl]-4-methylpiperidin-4-yl]-5-iodo-2-methoxybenzamide) and the influence of ketamine on the postsynaptic serotonin-2A receptor (5-hydroxytryptamine-2A, or 5-HT2A) status were investigated in cats using micro-SPECT. This study was conducted on 6 cats using the radioligand (123)I-5-I-R91150, a 5-HT2A receptor antagonist, as the imaging probe. Anesthesia was induced and maintained with a continuous-rate infusion of propofol (8.4 ± 1.2 mg kg(-1) followed by 0.22 mg kg(-1) min(-1)) 75 min after tracer administration, and acquisition of the first image began 15 min after induction of anesthesia. After this first acquisition, propofol (0.22 mg kg(-1) min(-1)) was combined with ketamine (5 mg kg(-1) followed by 0.023 mg kg(-1) min(-1)), and the second acquisition began 15 min later. Semiquantification, with the cerebellum as a reference region, was performed to calculate the 5-HT2A receptor binding indices (parameter for available receptor density) in the frontal and temporal cortices. The binding indices were analyzed with Wilcoxon signed ranks statistics. The addition of ketamine to the propofol continuous-rate infusion resulted in decreased binding indices in the right frontal cortex (1.25 ± 0.22 vs. 1.45 ± 0.16; P = 0.028), left frontal cortex (1.34 ± 0.15 vs. 1.49 ± 0.10; P = 0.028), right temporal cortex (1.30 ± 0.17 vs. 1.45 ± 0.09; P = 0.046), and left temporal cortex (1.41 ± 0.20 vs. 1.52 ± 0.20; P = 0.046). This study showed that cats can be used as an animal model for studying alterations of the 5-HT2A receptor status with (123)I-5-I-R91150 micro-SPECT. Furthermore, an interaction between ketamine and the 5-HT2A receptors resulting in decreased binding of (123)I-5-I-R91150 in the frontal and temporal cortices was demonstrated. Whether the

  7. MicroPET imaging of 5-HT{sub 1A} receptors in rat brain: a test-retest [{sup 18}F]MPPF study

    Energy Technology Data Exchange (ETDEWEB)

    Aznavour, Nicolas [McGill University, Department of Psychiatry, Montreal, QC (Canada)]|[Laboratory of Neuroenergetics and Cellular Dynamics, EPFL, SV, BMI, Lausanne (Switzerland); Benkelfat, Chawki; Gravel, Paul [McGill University, Department of Psychiatry, Montreal, QC (Canada)]|[McGill University, Department of Neurology and Neurosurgery, Montreal, QC (Canada); Aliaga, Antonio [McGill University, Department of Small Animal Imaging Laboratory, Montreal, QC (Canada); Rosa-Neto, Pedro [Douglas Hospital, Molecular NeuroImaging Laboratory, Montreal, QC (Canada); Bedell, Barry [McGill University, Department of Neurology and Neurosurgery, Montreal, QC (Canada)]|[McGill University, Department of Small Animal Imaging Laboratory, Montreal, QC (Canada); Zimmer, Luc [CERMEP, ANIMAGE Department, Lyon (France)]|[Universite Lyon 1 and CNRS, Lyon (France); Descarries, Laurent [Universite de Montreal, Department of Pathology and Cell Biology, Montreal, QC (Canada)]|[Universite de Montreal, Department of Physiology, Montreal, QC (Canada)]|[Universite de Montreal, GRSNC, Montreal, QC (Canada)

    2009-01-15

    Earlier studies have shown that positron emission tomography (PET) imaging with the radioligand [{sup 18}F]MPPF allows for measuring the binding potential of serotonin 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptors in different regions of animal and human brain, including that of 5-HT{sub 1A} autoreceptors in the raphe nuclei. In the present study, we sought to determine if such data could be obtained in rat, with a microPET (R4, Concorde Microsystems). Scans from isoflurane-anaesthetised rats (n = 18, including six test-retest) were co-registered with magnetic resonance imaging data, and binding potential, blood to plasma ratio and radiotracer efflux were estimated according to a simplified reference tissue model. Values of binding potential for hippocampus (1.2), entorhinal cortex (1.1), septum (1.1), medial prefrontal cortex (1.0), amygdala (0.8), raphe nuclei (0.6), paraventricular hypothalamic nucleus (0.5) and raphe obscurus (0.5) were comparable to those previously measured with PET in cats, non-human primates or humans. Test-retest variability was in the order of 10% in the larger brain regions (hippocampus, medial prefrontal and entorhinal cortex) and less than 20% in small nuclei such as the septum and the paraventricular hypothalamic, basolateral amygdaloid and raphe nuclei. MicroPET brain imaging of 5-HT{sub 1A} receptors with [{sup 18}F]MPPF thus represents a promising avenue for investigating 5-HT{sub 1A} receptor function in rat. (orig.)

  8. 5-HT7 receptor activation: procognitive and antiamnesic effects.

    Science.gov (United States)

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Ponce-López, T; Lacivita, E; Leopoldo, M

    2015-02-01

    The serotonin (5-hydroxytryptamine (5-HT)) 5-HT7 receptor is localized in brain areas mediating memory; however, the role of this receptor on memory remains little explored. First, demonstrating the associative nature of Pavlovian/instrumental autoshaping (P/I-A) task, rats were exposed (three sessions) to CS-US (Pavlovian autoshaping), truly random control, free operant, and presentations of US or CS, and they were compared with rats trained-tested for one session to the P/I-A procedure. Also, effects of the 5-HT7 receptor agonist LP-211 administered intraperitoneally after training was determined on short- (1.5 h) and long-term memory 24 and 48 h) and on scopolamine-induced memory impairment and cAMP production. Autoshaping and its behavioral controls were studied. Other animals were subjected to an autoshaping training session and immediately afterwards were given (intraperitoneal) vehicle or LP-211 (0.1-10 mg/kg) and/or scopolamine (0.2 mg/kg) and tested for short-term memory (STM) and long-term memory (LTM); their brains were extracted for the cAMP ELISA immunoassay. P/I-A group produced the higher %CR. LP-211 did not affect STM; nonetheless, at 0.5 and 1.0 mg/kg, it improved LTM. The 5-HT7 receptor antagonist SB-269970 (SB; 10.0 mg/kg) alone had no effect; nevertheless, the LP-211 (1.0 mg/kg) LTM facilitation was reversed by SB. The scopolamine (0.2 mg/kg) induced-decrement in CR was accompanied by significant increased cAMP production. The scopolamine-induced decrement in CR and increments in cAMP were significantly attenuated by LP-211. Autoshaping is a reliable associative learning task whose consolidation is facilitated by the 5-HT7 receptor agonist LP-211.

  9. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    DEFF Research Database (Denmark)

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth

    2011-01-01

    Experimental studies indicate that the 5-HT(4) receptor activation influence cognitive function, affective symptoms, and the development of Alzheimer's disease (AD). The prevalence of AD increases with aging, and women have a higher predisposition to both AD and affective disorders than men....... This study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... in the limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  10. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    DEFF Research Database (Denmark)

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth

    2011-01-01

    in the limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging......Experimental studies indicate that the 5-HT(4) receptor activation influence cognitive function, affective symptoms, and the development of Alzheimer's disease (AD). The prevalence of AD increases with aging, and women have a higher predisposition to both AD and affective disorders than men...... men and 16 women). The output parameter, BP(ND), was modeled using the simplified reference tissue model, and partial volume correction was performed with the Muller-Gartner method. A decline with age of 1% per decade was found only in striatum. Women had a 13% lower 5-HT(4) receptor binding...

  11. Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Narváez, Manuel; Ambrogini, Patrizia; Ferraro, Luca; Brito, Ismel; Romero-Fernandez, Wilber; Andrade-Talavera, Yuniesky; Flores-Burgess, Antonio; Millon, Carmelo; Gago, Belen; Narvaez, Jose Angel; Odagaki, Yuji; Palkovits, Miklos; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2018-06-03

    Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  12. Receptor–Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2018-06-01

    Full Text Available Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term “heteroreceptor complexes” was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A–FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A–FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL rats. Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A–5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1–15 was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1–GalR2–5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  13. Psychopharmacology of 5-HT{sub 1A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  14. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors.

    Science.gov (United States)

    Romón, Tamara; Planas, Anna M; Adell, Albert

    2014-02-01

    Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists can produce positive and negative symptomatology as well as impairment of cognitive function that closely resemble those present in schizophrenia. In rats, these drugs induce a behavioral syndrome (characterized by hyperlocomotion and stereotypies), an enhanced glutamatergic transmission in the medial prefrontal cortex, and damage to retrosplenial cortical neurons in adult rats, which was measured as the induction of the stress protein 72/73 kDa heat shock protein (Hsp72/73). In the present work, we have examined the existence of possible differences among different antipsychotic drugs in their capacity to block immunolabeling of Hsp72/73 in the retrosplenial cortex of the rat induced by the potent NMDA receptor antagonist, MK- 801. In addition, the effects of selective monoaminergic agents were also studied to delineate the particular receptors responsible for the actions of antipsychotic drugs. Pretreatment with clozapine, chlorpromazine, olanzapine, ziprasidone--and to a lesser extent haloperidol-reduced the formation of Hsp72/73 protein in the rat retrosplenial cortex after the administration of MK-801. In addition, antagonism at dopamine D2 (raclopride), 5-HT2 (M100907) and α1- adrenoceptors (prazosin) as well as agonism at 5-HT1A receptors (BAY x 3702) also diminished the MK-801-induced number of cells labeled with Hsp72/73. Each of these effects may contribute to antipsychotic action. The results suggest that the efficacy of atypical antipsychotic drugs in the clinic may result from a combined effect on 5-HT2, 5-HT1A and α1-adrenergic receptors added to the classical dopamine D2 receptor antagonism.

  15. Parametric mapping of 5HT1A receptor sites in the human brain with the Hypotime method: theory and normal values

    DEFF Research Database (Denmark)

    Møller, Mette; Rodell, Anders; Gjedde, Albert

    2009-01-01

    The radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY) is a PET tracer of the serotonin 5HT(1A) receptors in the human brain. It is metabolized so rapidly in the circulation that it behaves more as a chemical microsphere than as a tracer subject to continuous exchange between the circulation...... and reference regions continue to exchange radioligand with the circulation during the entire uptake period. Here, we proposed a method of calculation (Hypotime) that specifically uses the washout rather than the accumulation of (11)C-WAY to determine binding potentials (BP(ND)), without the use of regression...

  16. Enhancement of cortical extracellular 5-HT by 5-HT1A and 5-HT2C receptor blockade restores the antidepressant-like effect of citalopram in non-responder mice.

    Science.gov (United States)

    Calcagno, Eleonora; Guzzetti, Sara; Canetta, Alessandro; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W

    2009-07-01

    We recently found that the response of DBA/2 mice to SSRIs in the forced swim test (FST) was impaired and they also had a smaller basal and citalopram-stimulated increase in brain extracellular serotonin (5-HT) than 'responder' strains. We employed intracerebral microdialysis, FST and selective antagonists of 5-HT1A and 5-HT2C receptors to investigate whether enhancing the increase in extracellular 5-HT reinstated the anti-immobility effect of citalopram in the FST. WAY 100635 (0.3 mg/kg s.c.) or SB 242084 (1 mg/kg s.c.), respectively a selective 5-HT1A and 5-HT2C receptor antagonist, raised the effect of citalopram (5 mg/kg) on extracellular 5-HT in the medial prefrontal cortex of DBA/2N mice (citalopram alone 5.2+/-0.3 fmol/20 microl, WAY 100635+citalopram 9.9+/-2.1 fmol/20 microl, SB 242084+ citalopram 7.6+/-1.0 fmol/20 microl) to the level reached in 'responder' mice given citalopram alone. The 5-HT receptor antagonists had no effect on the citalopram-induced increase in extracellular 5-HT in the dorsal hippocampus. The combination of citalopram with WAY 100635 or SB 242084 significantly reduced immobility time in DBA/2N mice that otherwise did not respond to either drug singly. Brain levels of citalopram in mice given citalopram alone or with 5-HT antagonists did not significantly differ. The results confirm that impaired 5-HT transmission accounts for the lack of effect of citalopram in the FST and suggest that enhancing the effect of SSRIs on extracellular 5-HT, through selective blockade of 5-HT1A and 5-HT2C receptors, could be a useful strategy to restore the response in treatment-resistant depression.

  17. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    Science.gov (United States)

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    Science.gov (United States)

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The role of 5-HT(1A) receptors in learning and memory.

    Science.gov (United States)

    Ogren, Sven Ove; Eriksson, Therese M; Elvander-Tottie, Elin; D'Addario, Claudio; Ekström, Joanna C; Svenningsson, Per; Meister, Björn; Kehr, Jan; Stiedl, Oliver

    2008-12-16

    The ascending serotonin (5-HT) neurons innervate the cerebral cortex, hippocampus, septum and amygdala, all representing brain regions associated with various domains of cognition. The 5-HT innervation is diffuse and extensively arborized with few synaptic contacts, which indicates that 5-HT can affect a large number of neurons in a paracrine mode. Serotonin signaling is mediated by 14 receptor subtypes with different functional and transductional properties. The 5-HT(1A) subtype is of particular interest, since it is one of the main mediators of the action of 5-HT. Moreover, the 5-HT(1A) receptor regulates the activity of 5-HT neurons via autoreceptors, and it regulates the function of several neurotransmitter systems via postsynaptic receptors (heteroreceptors). This review assesses the pharmacological and genetic evidence that implicates the 5-HT(1A) receptor in learning and memory. The 5-HT(1A) receptors are in the position to influence the activity of glutamatergic, cholinergic and possibly GABAergic neurons in the cerebral cortex, hippocampus and in the septohippocampal projection, thereby affecting declarative and non-declarative memory functions. Moreover, the 5-HT(1A) receptor regulates several transduction mechanisms such as kinases and immediate early genes implicated in memory formation. Based on studies in rodents the stimulation of 5-HT(1A) receptors generally produces learning impairments by interfering with memory-encoding mechanisms. In contrast, antagonists of 5-HT(1A) receptors facilitate certain types of memory by enhancing hippocampal/cortical cholinergic and/or glutamatergic neurotransmission. Some data also support a potential role for the 5-HT(1A) receptor in memory consolidation. Available results also implicate the 5-HT(1A) receptor in the retrieval of aversive or emotional memories, supporting an involvement in reconsolidation. The contribution of 5-HT(1A) receptors in cognitive impairments in various psychiatric disorders is still

  20. Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain

    DEFF Research Database (Denmark)

    Yang, Kai-Chun; Stepanov, Vladimir; Martinsson, Stefan

    2017-01-01

    Background: [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the c...... sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain....

  1. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell

    2015-01-01

    subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...... with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may...

  2. What would 5-HT do? Regional diversity of 5-HT1 receptor modulation of primary afferent neurotransmission

    OpenAIRE

    Connor, Mark

    2012-01-01

    5-HT (serotonin) is a significant modulator of sensory input to the CNS, but the only analgesics that selectively target G-protein-coupled 5-HT receptors are highly specific for treatment of headache. Two recent papers in BJP shed light on this puzzling situation by showing that primary afferent neurotransmission to the superficial layers of the spinal and trigeminal dorsal is inhibited by different subtypes of the 5-HT1 receptor5-HT1B(and 1D) in the trigeminal dorsal horn and 5-HT1A in th...

  3. What do we really know about 5-HT1A receptor signaling in neuronal cells?

    Directory of Open Access Journals (Sweden)

    JENNY LUCY FIEDLER

    2016-11-01

    Full Text Available Serotonin (5-HT is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of serotonin receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR, specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other serotonin receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and PI3K-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease.

  4. Specific in vivo binding in the rat brain of [{sup 18}F]RP 62203: A selective 5-HT{sub 2A} receptor radioligand for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Besret, Laurent; Dauphin, Francois; Huard, Cecile; Lasne, Marie-Claire; Vivet, Richard; Mickala, Patrick; Barbelivien, Alexandra; Baron, Jean-Claude

    1996-02-01

    In vivo pharmacokinetic and brain binding characteristics of [{sup 18}F]RP 62203, a selective high-affinity serotonergic 5-HT{sub 2A} receptor antagonist, were assessed in the rat following intravenous injection of trace amount of the radioligand. The radioactive distribution profile observed in the brain 60 min after injection was characterized by greater than fourfold higher uptake in neocortex as compared to cerebellum (0.38 {+-} 0.07% injected dose/g, % ID/g and 0.08 {+-} 0.01 ID/g, respectively), consistent with in vivo specific binding to the 5-HT{sub 2A} receptor. Furthermore, specific [{sup 18}F]RP 62203 binding significantly correlated with the reported in vitro distribution of 5-HT{sub 2A} receptors, but not with known concentration profiles of dopaminergic D{sub 2} or adrenergic {alpha}{sub 1} receptors. Finally, detectable specific binding was abolished by pretreatment with large doses of ritanserin, a selective 5-HT{sub 2A} antagonist, which resulted in uniform uptakes across cortical, striatal and cerebellar tissues. Thus, [{sup 18}F]RP 62203 appears to be a promising selective tool to visualize and quantify 5-HT{sub 2A} brain receptors in vivo with positron emission tomography.

  5. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    Science.gov (United States)

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  6. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment

    DEFF Research Database (Denmark)

    Hasselbalch, S G; Madsen, K; Svarer, C

    2008-01-01

    cerebral 5-HT(2A) receptor binding in patients with mild cognitive impairment (MCI) and related 5-HT(2A) receptor binding to clinical symptoms. Sixteen patients with MCI of the amnestic type (mean age 73, mean MMSE 26.1) and 17 age and sex matched control subjects were studied with MRI and [(18)F......Previous studies of patients with Alzheimer's disease (AD) have described reduced brain serotonin 2A (5-HT(2A)) receptor density. It is unclear whether this abnormality sets in early in the course of the disease and whether it is related to early cognitive and neuropsychiatric symptoms. We assessed...

  7. Ebselen has lithium-like effects on central 5-HT2A receptor function.

    Science.gov (United States)

    Antoniadou, I; Kouskou, M; Arsiwala, T; Singh, N; Vasudevan, S R; Fowler, T; Cadirci, E; Churchill, G C; Sharp, T

    2018-02-27

    Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in G q protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here we investigated both ebselen and lithium in models of the 5-HT 2A receptor, a G q protein coupled receptor implicated in lithium's actions. 5-HT 2A receptor function was modelled in mice by measuring the behavioural (head-twitches) and cortical immediate early gene (IEG; Arc, c-fos and Erg2 mRNA) responses to 5-HT 2A receptor agonist administration. Ebselen and lithium were administered either acutely or chronically prior to assessment of 5-HT 2A receptor function. Given the SSRI augmenting action of lithium and 5-HT 2A antagonists, ebselen was also tested for this action by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT 2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690,330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen increased regional brain 5-HT synthesis and enhanced the increase in extracellular 5-HT induced by citalopram. The current data demonstrate lithium-mimetic effects of ebselen in different experimental models of 5-HT 2A receptor function, likely mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorder, including as an antidepressant augmenting agent. This article is protected by copyright. All rights reserved.

  8. A PET [18F]altanserin study of 5-HT2A receptor binding in the human brain and responses to painful heat stimulation

    DEFF Research Database (Denmark)

    Kupers, Ronny Clement Florent; Frokjaer, Vibe G; Naert, Arne

    2009-01-01

    There is a large body of evidence that serotonin [5-hydroxytryptamine (5-HT)] plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) to study the relationship between baseline 5-HT(2A) binding in the brain and responses to noxious heat...... stimulation in a group of young healthy volunteers. Twenty-one healthy subjects underwent PET scanning with the 5-HT(2A) antagonist, [(18)F]altanserin. In addition, participants underwent a battery of pain tests using noxious heat stimulation to assess pain threshold, pain tolerance and response to short......-lasting phasic and long-lasting (7-minute) tonic painful stimulation. Significant positive correlations were found between tonic pain ratings and [(18)F]altanserin binding in orbitofrontal (r=0.66; p=0.005), medial inferior frontal (r=0.60; p=0.014), primary sensory-motor (r=0.61; p=0.012) and posterior...

  9. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  10. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    Science.gov (United States)

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  11. Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors

    Science.gov (United States)

    Ceglia, I; Acconcia, S; Fracasso, C; Colovic, M; Caccia, S; Invernizzi, R W

    2004-01-01

    Microdialysis was used to study the acute and chronic effects of escitalopram (S-citalopram; ESCIT) and chronic citalopram (CIT), together with the 5-HT1A receptor antagonist WAY100,635 (N-[2-[methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide trihydrochloride) and the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on extracellular 5-hydroxytryptamine (5-HT) levels in the rat prefrontal cortex. Extracellular 5-HT rose to 234 and 298% of basal values after subcutaneous (s.c.) acute doses of 0.15 and 0.63 mg kg−1 ESCIT. No further increase was observed at 2.5 mg kg−1 ESCIT (290%). The effect of 13-day s.c. infusion of 10 mg kg−1day−1 ESCIT on extracellular 5-HT (422% of baseline) was greater than after 2 days (257% of baseline), whereas exposure to ESCIT was similar. In contrast, the increase in extracellular 5-HT induced by the infusion of CIT for 2 (306%) and 13 days (302%) was similar. However, brain and plasma levels of S-citalopram in rats infused with CIT for 13 days were lower than after 2 days. Acute treatment with 2.5 mg kg−1 ESCIT or 5 mg kg−1 CIT raised extracellular 5-HT by 243 and 276%, respectively, in rats given chronic vehicle but had no effect in rats given ESCIT (10 mg kg−1 day−1) or CIT (20 mg kg−1 day−1) for 2 or 13 days, suggesting that the infused doses had maximally increased extracellular 5-HT. WAY100,635 (0.1 mg kg−1 s.c.) increased extracellular 5-HT levels by 168, 174 and 169% of prechallenge values in rats infused with vehicle or ESCIT for 2 or 13 days, respectively. WAY100,635 enhanced extracellular 5-HT levels to 226, 153 and 164% of prechallenge values in rats infused with vehicle or CIT for 2 and 13 days, respectively. 8-OH-DPAT (0.025 mg kg−1) reduced extracellular 5-HT by 54% in control rats, but had no effect in those given ESCIT and CIT for 13 days. This series of experiments led to the conclusion that chronic treatment with ESCIT desensitizes the 5-HT1A

  12. Changes in global brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor

    OpenAIRE

    Anticevic, Alan; Vollenweider, Franz; Murray, John; Krystal, John; Repovs, Grega; Staempfli, Philipp; Adkinson, Brendan; Schleifer, Charles; Ji, Jie; Burt, Joshua; Preller, Katrin

    2017-01-01

    Lysergic acid diethylamide (LSD) is a psychedelic drug with predominantly agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, the specific receptor contributions to its neurobiological effects remain largely unknown. To address this knowledge gap, we conducted a double-blind, randomized, counterbalanced, cross-over study during which 24 healthy participants received either i) placebo+placebo, ii) placebo+LSD (100 microgr...

  13. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation

    DEFF Research Database (Denmark)

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor...... depletion impaired memory performance in rats through one or more of its receptor activities....... partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore...

  14. The effects of manipulation of presynaptic 5-HT nerve terminals of postsynaptic 5-HT1 and 5-HT2 binding sites of the rat brain

    International Nuclear Information System (INIS)

    Hall, H.; Wedel, I.

    1985-01-01

    The effects of long-term treatment of rats with alaproclate and amiflamine on the number and kinetics of 5-HT 1 and 5-HT 2 binding sites were investigated using in vitro receptor binding techniques. Some other studies have reported down-regulatory effects of alaproclate and amiflamine on 5-HT 2 binding sites in certain regions of the rat forebrain, but no such effects could be detected in the present study. Induction of a high-affinity binding site for 3 H-5-HT after long-term antidepressant treatment, as has been reported elsewhere, was not obtained in the present study. The results are compared to the effects obtained by treatment of rats with para-chloroamphetamine (PCA), which depletes the presynaptic neurons of monoamines. These different types of treatment do not cause any change in the binding properties of the specific 5-HT binding sites. It is thus concluded that such manipulations of the presynaptic 5-HT neurons do not affect the postsynaptic 5-HT 1 and 5-HT 2 binding sites. (Author)

  15. 5HT-1A receptors and anxiety-like behaviours: studies in rats with constitutionally upregulated/downregulated serotonin transporter.

    Science.gov (United States)

    Bordukalo-Niksic, Tatjana; Mokrovic, Gordana; Stefulj, Jasminka; Zivin, Marko; Jernej, Branimir; Cicin-Sain, Lipa

    2010-12-01

    Altered activity of brain serotonergic (5HT) system has been implicated in a wide range of behaviours and behavioural disorders, including anxiety. Functioning of 5HT-1A receptor has been suggested as a modulator of emotional balance in both, normal and pathological forms of anxiety. Here, we studied serotonergic modulation of anxiety-like behaviour using a genetic rat model with constitutional differences in 5HT homeostasis, named Wistar-Zagreb 5HT (WZ-5HT) rats. The model, consisting of high-5HT and low-5HT sublines, was developed by selective breeding of animals for extreme activities of peripheral (platelet) 5HT transporter, but selection process had affected also central 5HT homeostasis, as evidenced from neurochemical and behavioural studies. Anxiety-like behaviour in WZ-5HT rats was evaluated by two commonly used paradigms: open field and elevated-plus maze. The involvement of 5HT-1A receptors in behavioural response was assessed by measuring mRNA expression in cell bodies (raphe nuclei) and projection regions (frontal cortex, hippocampus) by use of RT-PCR and in situ hybridization, and by measuring functionality of cortical 5HT-1A receptors by use of [(3)H]8-OH-DPAT radioligand binding. Animals from the high-5HT subline exhibit increased anxiety-like behaviour and decreased exploratory activity when exposed to novel environment. No measurable differences in constitutional (baseline) functionality or expression of 5HT-1A receptors between sublines were found. The results support contribution of increased serotonergic functioning to the anxiety-like behaviour. They also validate the high-5HT subline of WZ-5HT rats as a potential model to study mechanisms of anxiety, especially of its nonpathological form, while the low-5HT subline may be useful to model sensation seeking phenotype. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  17. Structural basis of ligand recognition in 5-HT(3) receptors

    NARCIS (Netherlands)

    Kesters, D.; Thompson, A.J.; Brams, M.; van Elk, R.; Spurny, R.; Geitmann, M.; Villalgordo, J.M.; Guskov, A.; Danielson, U.H.; Lummis, S.C.R.; Smit, A.B.; Ulens, C.

    2013-01-01

    The 5-HT 3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist

  18. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands

    DEFF Research Database (Denmark)

    Herth, Matthias M; Petersen, Ida Nymann; Hansen, Hanne Demant

    2016-01-01

    INTRODUCTION: The serotonin 2A receptor (5-HT2AR) is the most abundant excitatory 5-HT receptor in the human brain and implicated in various brain disorders such as schizophrenia, depression, and Alzheimer's disease. Positron emission tomography (PET) can be used to image specific proteins...... to be potent 5-HT2A agonists. (18)F-labeling of the appropriate precursors was performed using [(18)F]FETos, typically yielding 0.2-2.0GBq and specific activities of 40-120GBq/μmol. PET studies in Danish landrace pigs revealed that [(18)F]1 displayed brain uptake in 5-HT2AR rich regions. However, high uptake...

  19. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats.

    Science.gov (United States)

    Solati, Jalal; Salari, Ali-Akbar; Bakhtiari, Amir

    2011-10-31

    Medial prefrontal cortex (MPFC) is one of the brain regions which play an important role in emotional behaviors. The purpose of the present study was to evaluate the role of 5HT(1A) and 5HT(1B) receptors of the MPFC in modulation of anxiety behaviors in rats. The elevated plus maze (EPM) which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents, was used. Bilateral intra-MPFC administration of 5HT(1A) receptor agonist, 8-OH-DPAT (5, 10, and 50 ng/rat) decreased the percentages of open arm time (OAT%) and open arm entries (OAE%), indicating an anxiogenic response. Moreover, administration of 5HT(1A) receptor antagonist, NAN-190 (0.25, 0.5, and 1 μg/rat) significantly increased OAT% and OAE%. Pre-treatment administration of NAN-190 (0.5 μg/rat), which was injected into the MPFC, reversed the anxiogenic effects of 8-OH-DPAT (5, 10, and 50 ng/rat). Intra-MPFC microinjection of 5HT(1B) receptor agonist, CGS-12066A (0.25, 0.5, and 1 μg/rat) significantly decreased OAT% and OAE%, without any change in locomotor activity, indicating an anxiogenic effect. However, injection of 5HT(1B) receptor antagonist, SB-224289 (0.5, 1, and 2 μg/rat) into the MPFC showed no significant effect. In conclusion, these findings suggest that 5HT(1A) and 5HT(1B) receptors of the MPFC region modulate anxiogenic-like behaviors in rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Autroadiographic characterization of 125I-labeled 2,5-dimethoxy-4-iodophenylisopropylamine (DOI): A phenylisopropylamine derivative labeling both 5HT2 and 5HT1c receptors

    International Nuclear Information System (INIS)

    Appel, N.M.; Mitchell, W.M.; Garlick, R.K.; Glennon, R.A.; Titeler, M.; De Souza, E.B.

    1990-01-01

    The best-characterized 5HT 2 radioligands, such as [ 3 H]ketanserin and [ 3 H]spiperone, are antagonists that label both high- and low-affinity states of this receptor. Recently, the radiolabeled phenylisopropylamine hallucinogens DOB and DOI, which are agonists at 5HT 2 receptors, have been demonstrated to label selectively the high-affinity state of brain 5HT 2 receptors. In the present study, the authors determined optimum conditions for autoradiographic visualization of [ 125 I]DOI binding and characterized its pharmacology and guanine nucleotide sensitivity under those conditions. In slide-mounted tissue sections (rat forebrain; two 10 μm sections/slide), (±)[ 125 I]DOI binding was saturable, of high affinity (K D ∼4nM) and displayed a pharmacological profile [R(-)DOI > spiperone > DOB > (±)DOI > ketanserin > S(+)DOI > 5HT > DOM] comparable to that seen in homogenate assays. Consistent with coupling of 5HT 2 receptors to a guanine nucleotide regulatory protein, [ 125 I]DOI binding was inhibited by guanine nucleotides but not by ATP. In autoradiograms, high densities of [ 125 I]DOI binding sites were present in frontal cortex, olfactory tubercle, claustrum, caudate/putamen and mamillary nuclei with lower densities in trigeminal and solitary nuclei. The highest density of [ 125 l]DOI binding was observed in choroid plexus; these binding sites displayed a pharmacological profile characteristic of 5HT 1C receptors. These data suggest that [ 125 I]DOI labels both 5HT 2 and 5HT 1C receptors

  1. Serotonergic 5-HT6 Receptor Antagonists: Heterocyclic Chemistry and Potential Therapeutic Significance.

    Science.gov (United States)

    Bali, Alka; Singh, Shalu

    2015-01-01

    The serotonin 5-HT(6) receptor (5- HT(6)R) is amongst the recently discovered serotonergic receptors with almost exclusive localization in the brain. Hence, this receptor is fast emerging as a promising target for cognition enhancement in central nervous system (CNS) diseases such as Alzheimer's disease (cognitive function), obesity, schizophrenia and anxiety. The last decade has seen a surge of literature reports on the functional role of this receptor in learning and memory processes and investigations related to the chemistry and pharmacology of 5-HT(6) receptor ligands, especially 5- HT(6) receptor antagonists. Studies show the involvement of multiple neurotransmitter systems in cognitive enhancement by 5-HT(6)R antagonists including cholinergic, glutamatergic, and GABAergic systems. Several of the 5-HT(6)R ligands are indole based agents bearing structural similarity to the endogenous neurotransmitter serotonin. Based on the pharmacophoric models proposed for these agents, drug designing has been carried out incorporating various heterocyclic replacements for the indole nucleus. In this review, we have broadly summarized the medicinal chemistry and current status of this fairly recent class of drugs along with their potential therapeutic applications.

  2. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm.

    Science.gov (United States)

    Meyer, Jeffrey H; McMain, Shelley; Kennedy, Sidney H; Korman, Lorne; Brown, Gregory M; DaSilva, Jean N; Wilson, Alan A; Blak, Thomas; Eynan-Harvey, Rahel; Goulding, Verdell S; Houle, Sylvain; Links, Paul

    2003-01-01

    Dysfunctional attitudes are negatively biased assumptions and beliefs regarding oneself, the world, and the future. In healthy subjects, increasing serotonin (5-HT) agonism with a single dose of d-fenfluramine lowered dysfunctional attitudes. To investigate whether the converse, a low level of 5-HT agonism, could account for the higher levels of dysfunctional attitudes observed in patients with major depression or with self-injurious behavior, cortex 5-HT(2) receptor binding potential and dysfunctional attitudes were measured in patients with major depressive disorder, patients with a history of self-injurious behavior, and healthy comparison subjects (5-HT(2) receptor density increases during 5-HT depletion). Twenty-nine healthy subjects were recruited to evaluate the effect of d-fenfluramine or of clonidine (control condition) on dysfunctional attitudes. Dysfunctional attitudes were assessed with the Dysfunctional Attitude Scale 1 hour before and 1 hour after drug administration. In a second experiment, dysfunctional attitudes and 5-HT(2) binding potential were measured in 22 patients with a major depressive episode secondary to major depressive disorder, 18 patients with a history of self-injurious behavior occurring outside of a depressive episode, and another 29 age-matched healthy subjects. Cortex 5-HT(2) binding potential was measured with [(18)F]setoperone positron emission tomography. In the first experiment, dysfunctional attitudes decreased after administration of d-fenfluramine. In the second experiment, in the depressed group, dysfunctional attitudes were positively associated with cortex 5-HT(2) binding potential, especially in Brodmann's area 9 (after adjustment for age). Depressed subjects with extremely dysfunctional attitudes had higher 5-HT(2) binding potential, compared to healthy subjects, particularly in Brodmann's area 9. Low levels of 5-HT agonism in the brain cortex may explain the severely pessimistic, dysfunctional attitudes associated

  3. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen...

  4. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor dependent manner

    Science.gov (United States)

    Garcia-Garcia, Alvaro L.; Canetta, Sarah; Stujenske, Joseph M.; Burghardt, Nesha S.; Ansorge, Mark S.; Dranovsky, Alex; Leonardo, E. David

    2017-01-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions. PMID:28761080

  5. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner.

    Science.gov (United States)

    Garcia-Garcia, A L; Canetta, S; Stujenske, J M; Burghardt, N S; Ansorge, M S; Dranovsky, A; Leonardo, E D

    2017-08-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT 1A antagonist. Finally, we demonstrate that activation of 5-HT 1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT 1A receptors under naturalistic conditions.Molecular Psychiatry advance online publication, 1 August 2017; doi:10.1038/mp.2017.165.

  6. Test-retest reliability of [{sup 11}C]AZ10419369 binding to 5-HT{sub 1B} receptors in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Nord, Magdalena; Finnema, Sjoerd J.; Schain, Martin; Halldin, Christer; Farde, Lars [Karolinska Institutet, Center for Psychiatric Research, R5:00, Karolinska University Hospital, Department of Clinical Neuroscience, Stockholm (Sweden)

    2014-02-15

    [{sup 11}C]AZ10419369 is a recently developed 5-HT{sub 1B} receptor radioligand that is sensitive to changes in endogenous serotonin concentrations in the primate brain. Thus, [{sup 11}C] AZ10419369 may serve as a useful tool in clinical studies of the pathophysiology and pharmacological treatment of diseases related to the serotonin system, such as depression and anxiety disorders. The aim of this study was to evaluate the test-retest reliability of [{sup 11}C]AZ10419369. Eight men were examined with PET and [{sup 11}C] AZ10419369 twice on the same day. The binding potentials (BP{sub ND}) of [{sup 11}C]AZ10419369 in selected serotonergic projection areas and in the raphe nuclei (RN) were determined using the simplified reference tissue model, and for comparison also using a wavelet-aided parametric imaging approach. The BP{sub ND} values obtained from the first and second PET scans were compared by means of descriptive statistics, difference, absolute variability and intraclass correlation coefficient. Similar BP{sub ND} values were obtained with the two methods. The absolute mean differences in BP{sub ND} between PET 1 and PET 2 were less than 3 % in all serotonergic projection regions. Absolute variabilities were low in cortical regions (5 - 7 %), low to moderate (7 - 14 %) in subcortical regions, but higher (20 %) in the RN. The BP{sub ND} of [{sup 11}C]AZ10419369 is highly reproducible in cortical regions and satisfactory in subcortical projection areas. The variability in the RN is higher. Thus larger sample sizes or larger divergences are required to assess a potential difference between subjects or between experimental conditions in this region. (orig.)

  7. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Science.gov (United States)

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  9. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  10. Compositions and methods related to serotonin 5-HT1A receptors

    Science.gov (United States)

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  11. 5-HT radioligands for human brain imaging with PET and SPECT

    DEFF Research Database (Denmark)

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...

  12. Implication of 5-HT(2B) receptors in the serotonin syndrome.

    Science.gov (United States)

    Diaz, Silvina Laura; Maroteaux, Luc

    2011-09-01

    The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT(2B) receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied. We analyzed here, a putative role of 5-HT(2B) receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT(2B)(-/-) mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT(2B) receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT(2B)(-/-) mice after the administration of 5-HT(1A), 5-HT(2A) or 5-HT(2C) receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT(2B) receptor agonist BW723C86 (3 mg/kg) or 5-HT(1B) receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT(2B)(-/-) mice by administration of 5-HT(1A) and 5-HT(2C) receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT(2A) receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT(2B)(-/-) mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes. This evidence suggests that the presence of 5-HT(2B) receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism

  13. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    Science.gov (United States)

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  14. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs.

    Science.gov (United States)

    Li, Bing; Luo, Xiumei; Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (plight could cause progressive myopia in guinea pigs. 5-HT and 5-HT2A receptor increased both in form deprivation myopia and flickering light induced myopia, indicating that 5-HT possibly involved in myopic development via binding to5-HT2A receptor.

  15. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    DEFF Research Database (Denmark)

    Madsen, Karine; Torstensen, Eva; Holst, Klaus K

    2014-01-01

    was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which had first......-degree relatives treated for MDD. RESULTS: We found that having a family history of MDD was associated with lower striatal 5-HT4 receptor binding (p = 0.038; in individuals below 40 years, p = 0.013). Further, we found evidence for a "risk-dose effect" on 5-HT4 receptor binding, since the number of first......-degree relatives with a history of MDD binding correlated negatively with 5-HT4 receptor binding in both the striatum (p = 0.001) and limbic regions (p = 0.012). CONCLUSIONS: Our data suggest that the 5-HT4 receptor is involved in the neurobiological mechanism underlying familial risk for depression...

  16. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    Science.gov (United States)

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  17. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    Directory of Open Access Journals (Sweden)

    Darya V. Bazovkina

    2015-01-01

    Full Text Available In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  18. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Science.gov (United States)

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.

  19. Role of 5-HT5A receptors in the consolidation of memory.

    Science.gov (United States)

    Gonzalez, Roberto; Chávez-Pascacio, Karla; Meneses, Alfredo

    2013-09-01

    5-HT5 receptor occurs in brain areas implicated in learning and memory. Hence, the effects (0.01-3.0 mg/kg) of SB-6995516 (a 5-HT5A receptor antagonist) in the associative learning task of autoshaping were studied. The results showed that post-training injection of SB-699551 decreased conditioned responses (CR) during short-term (STM; 1.5h; at 0.1mg/kg) and long-term memory (LTM; 24 h; at 3.0 mg/kg) relative to the vehicle animals. Moreover, considering that there are no selective 5-HT5A receptor agonists, next, diverse doses of the serotonin precursor l-tryptophan were studied during STM and LTM, showing that l-tryptophan (5-100mg/kg) facilitated performance, particularly at 50mg/kg. In interactions experiments, l-tryptophan (50 mg/kg) attenuated the impairment effect induced by SB-699551 (either 0.3 or 3.0 mg/kg). All together this evidence suggests that the blockade of 5-HT5A receptor appear to be able to impair STM and LTM (24 h), while its stimulation might facilitate it. Of course further investigation is necessary, meanly with selective 5-HT5A compounds are necessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cerebral 5-HT2A receptor binding is increased in patients with Tourette's syndrome

    DEFF Research Database (Denmark)

    Haugbøl, Steven; Pinborg, Lars H.; Regeur, Lisbeth

    2007-01-01

    Experimental and clinical data have suggested that abnormalities in the serotonergic neurotransmissions in frontal-subcortical circuits are involved in Tourette's syndrome. To test the hypothesis that the brain's 5-HT2A receptor binding is increased in patients with Tourette's syndrome, PET imagi...

  1. Down-regulation of dopamine D-2, 5-HT2 receptors and β-adrenoceptors in rat brain after prolonged treatment with a new potential antidepressant, Lu 19-005

    International Nuclear Information System (INIS)

    Nowak, G.; Arnt, J.; Hyttel, J.; Svendsen, O.

    1985-01-01

    Lu 19-005 is a new phenylindan derivative with strong and equipotent inhibitory effect on dopamine (DA), noradrenaline (NA) and serotonin (5-HT) uptake. The adaptive effects of 2 weeks treatment with Lu 19-005, on receptor binding in vitro and on d-amphetamine responsiveness in vivo have been investigated in rats. One or 3 days after the final dose the number of β-adrenoceptors and of 5-HT 2 and DA D-2 receptors was decreased by 20-30%, whereas αsub1-adrenoceptor number was slightly decreased only 1 day after withdrawal. The DA D-2 receptor number remained decreased at 7 days withdrawal, but returned to normal after another 3 days. The brain levels of DA, NA and 5-HT were not changed by 2 weeks' Lu 19-005 treatment. The down-regulation of DA D-2 receptors was accompanied by tolerance to d-amphetamine-induced hypermotility (after low doses) and stereotyped licking or biting (after a high dose). The tolerance to d-amphetamine-induced hypermotility was maximal 3-5 days withdrawal time, and remained significant also 15 days after the last dose. The results are discussed in relation to the effect of prolonged treatment with other antidepressant drugs. (Author)

  2. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    Science.gov (United States)

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  3. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression.

    Science.gov (United States)

    Wesołowska, Anna; Nikiforuk, Agnieszka

    2007-04-01

    The effects of a selective 5-HT(6) receptor antagonist, SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide), were evaluated in behavioural tests sensitive to clinically effective anxiolytic- and antidepressant-compounds using diazepam and imipramine as reference drugs. In the Vogel conflict drinking test in rats, SB-399885 (1-3mg/kg i.p.) caused an anxiolytic-like activity comparable to that of diazepam (2.5-5mg/kg i.p.). An anxiolytic-like effect was also seen in the elevated plus-maze test in rats, where SB-399885 (0.3-3mg/kg i.p.) was slightly weaker than diazepam (2.5-5mg/kg i.p.). In the four-plate test in mice, SB-399885 (3-20mg/kg i.p.) showed an anxiolytic-like effect which was weaker than that produced by diazepam (2.5-5mg/kg i.p.). In the forced swim test in rats, SB-399885 (10mg/kg i.p.) significantly shortened the immobility time and the effect was stronger than that of imipramine (30mg/kg i.p.). In the forced swim test in mice, SB-399885 (20-30mg/kg i.p.) had an anti-immobility action, comparable to imipramine (30mg/kg i.p.) and also in the tail suspension test in mice, SB-399885 (10-30mg/kg i.p.) had an antidepressant-like effect, though was weaker than imipramine (10-20mg/kg i.p.). The tested 5-HT(6) antagonist (3-20mg/kg i.p.) shortened the walking time of rats in the open field test and, at a dose of 30mg/kg i.p. reduced the locomotor activity of mice. SB-399885 (in doses up to 30mg/kg i.p.) did not affect motor coordination in mice and rats tested in the rota-rod test. Such data indicate that the selective 5-HT(6) receptor antagonist SB-399885had specific effects, indicative of this compound's anxiolytic and antidepressant potential.

  4. The binding characteristics and orientation of a novel radioligand with distinct properties at 5-HT3A and 5-HT3AB receptors

    NARCIS (Netherlands)

    Thompson, Andrew J; Verheij, Mark H P; Verbeek, Joost; Windhorst, Albert D; de Esch, Iwan J P; Lummis, Sarah C R

    2014-01-01

    VUF10166 (2-chloro-3-(4-methyl piperazin-1-yl)quinoxaline) is a ligand that binds with high affinity to 5-HT3 receptors. Here we synthesise [(3)H]VUF10166 and characterise its binding properties at 5-HT3A and 5-HT3AB receptors. At 5-HT3A receptors [(3)H]VUF10166 displayed saturable binding with a Kd

  5. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  6. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors

    Directory of Open Access Journals (Sweden)

    Gregory eBeaudet

    2015-01-01

    Full Text Available Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered navigation is quite preserved during aging, allocentric (externally-centered navigation — based on a cognitive map using distant landmarks — declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline.

  7. Functional expression of the 5-HT1c receptor in neuronal and nonneuronal cells

    International Nuclear Information System (INIS)

    Julius, D.; MacDermott, A.B.; Jessel, T.M.; Huang, K.; Molineaux, S.; Schieren, I.; Axel, R.

    1988-01-01

    The isolation of the genes encoding the multiple serotonin receptor subtypes and the ability to express these receptors in new cellular environments will help to elucidate the molecular mechanisms of action of serotonin in the mammalian brain. The cloning of most neurotransmitter receptors has required the purification of receptor, the determination of partial protein sequence, and the synthesis of oligonucleotide probes with which to obtain cDNA or genomic clones. However, the serotonin receptors have not been purified and antibodies have not been generated. The authors therefore designed a cDNA expression system that permits the identification of functional cDNA clones encoding serotonin receptors in the absence of protein sequence information. They have combined cloning in RNA expression vectors with an electrophysiological assay in oocytes to isolate a functional cDNA clone encoding the entire 5-HT 1c receptor. The sequence of this clone reveals that the 5-HT 1c receptor belongs to a family of G-protein-coupled receptors that are thought to traverse the membrane seven times. Mouse fibroblasts transformed with this clone bind serotonergic ligands and respond to serotonin with an elevation in intracellular calcium. Moreover, in situ hybridization and Northern blot analysis indicate that the 5-HT 1c receptor mRNA is expressed in a wide variety of neurons in the rat central nervous system, suggesting that this receptor plays a prominent role in neuronal function

  8. Synthesis and pharmacological evaluation of a new series of radiolabeled ligands for 5-HT7 receptor PET neuroimaging

    International Nuclear Information System (INIS)

    Colomb, Julie; Becker, Guillaume; Forcellini, Elsa; Meyer, Sandra; Buisson, Lauriane; Zimmer, Luc; Billard, Thierry

    2014-01-01

    Introduction: The brain serotonin-7 receptor (5-HT 7 ) is the most recently discovered serotonin receptor. It is targeted by several drug-candidates in psychopharmacology and neuropharmacology. In these fields, positron emission tomography (PET) is a molecular imaging modality offering great promise for accelerating the development process from preclinical discovery to clinical phases. We recently described fluorinated 5-HT 7 radioligands, inspired by the structure of SB269970, the prototypical 5-HT 7 antagonist. Although these results were promising, it appeared that the radiotracer-candidates suffered, among other drawbacks, from too low a 5-HT 7 receptor affinity. Methods: In the present study, seven structural analogs of SB269970 were synthesized using design strategies aiming to improve their radiopharmacological properties. Their 5-HT 7 binding properties were investigated by cellular functional assay. The nitro-precursors of the analogs were radiolabeled by [ 18 F-]nucleophilic substitution, and in vitro autoradiography was performed in rat brain, followed by in vivo microPET. Result: The chemical and radiochemical purity of the fluorine radiotracers was > 99% with specific activity in the 40–129 GBq/μmol range. The seven derivatives presented heterogeneous binding affinities toward 5-HT 7 and 5-HT 1A receptors. While [ 18 F]2F3P3 had promising characteristics in vitro, it showed poor brain penetration in vivo, partially reversed after pharmacological inhibition of P-glycoprotein. Conclusions: These results indicated that, while chemical modification of these series improved several radiotracer-candidates in terms of 5-HT 7 receptor affinity and specificity toward 5-HT 1A receptors, other physicochemical modulations would be required in order to increase brain penetration

  9. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    International Nuclear Information System (INIS)

    Audenaert, K.; Laere, K. van; Dierckx, R.A.; Dumont, F.; Slegers, G.; Mertens, J.; Heeringen, C. van

    2001-01-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT 2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT 2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123 I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123 I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT 2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P 2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT 2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT 2a receptors. (orig.)

  10. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET

    DEFF Research Database (Denmark)

    Ettrup, Anders; Palner, Mikael; Gillings, Nic

    2010-01-01

    PET brain imaging of the serotonin 2A (5-hydroxytryptamine 2A, or 5-HT(2A)) receptor has been widely used in clinical studies, and currently, several well-validated radiolabeled antagonist tracers are used for in vivo imaging of the cerebral 5-HT(2A) receptor. Access to 5-HT(2A) receptor agonist...... PET tracers would, however, enable imaging of the active, high-affinity state of receptors, which may provide a more meaningful assessment of membrane-bound receptors. In this study, we radiolabel the high-affinity 5-HT(2A) receptor agonist 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-[(11)C-OCH(3......)]methoxybenzyl)ethanamine ((11)C-CIMBI-5) and investigate its potential as a PET tracer....

  11. Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions

    Directory of Open Access Journals (Sweden)

    Alain M Gardier

    2013-08-01

    Full Text Available Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of Selective serotonin reuptake inhibitors (SSRIs in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and to identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 90s, and since then in conscious wild-type or knockout mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines, and re-uptake by selective transporters (e.g., SERT for serotonin 5-HT. Complementary to electrophysiology, this technique reflects presynaptic monoamines release and intrasynaptic events corresponding to ≈ 80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limit the antidepressant-like activity of Selective Serotonin Reuptake Inhibitors (SSRI. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed Rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in Human, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and hetero-receptors and ICM helped to clarify the role of the

  12. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Eriksson, Therese M; Holst, Sarah; Stan, Tiberiu L; Hager, Torben; Sjögren, Benita; Ogren, Sven Öve; Svenningsson, Per; Stiedl, Oliver

    2012-11-01

    This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT(7) receptors (5-HT(7)Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT(7)R binding affinity and 5-HT(7)R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT(1A)R antagonist NAD-299. This facilitation was blocked by the selective 5-HT(7)R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT(7)Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT(1A)Rs results in enhanced 5-HT stimulation of 5-HT(7)Rs. The putative 5-HT(7)R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT(7)R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT(1A)R/5-HT(7)R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT(7)R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT(1A)R activation, while 5-HT(7)Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    Directory of Open Access Journals (Sweden)

    Oliver eStiedl

    2015-08-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  14. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    Science.gov (United States)

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  15. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    International Nuclear Information System (INIS)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A y mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A y mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A y mice, but did not increase plasma adiponectin levels

  16. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...... evaluation in Danish landrace pigs showed that both ligands displayed high brain uptake. However, neither of the radioligands could be displaced by the 5-HT7 receptor selective inverse agonist SB-269970....

  17. Serotonin 5-HT4 receptors: A new strategy for developing fast acting antidepressants?

    Science.gov (United States)

    Vidal, Rebeca; Castro, Elena; Pilar-Cuéllar, Fuencisla; Pascual-Brazo, Jesús; Díaz, Alvaro; Rojo, María Luisa; Linge, Raquel; Martín, Alicia; Valdizán, Elsa M; Pazos, Angel

    2014-01-01

    The regulation of the activity of brain monoaminergic systems has been the focus of attention of many studies since the first antidepressant drug emerged 50 years ago. The search for novel antidepressants is deeply linked to the search for fast-acting strategies, taking into account that 2-4 weeks of treatment with classical antidepressant are required before clinical remission of the symptoms becomes evident. In the recent years several hypotheses have been proposed on the basis of the existence of alterations in brain synaptic plasticity in major depression. Recent evidences support a role for 5-HT4 receptors in the pathogenesis of depression as well as in the mechanism of action of antidepressant drugs. In fact, chronic treatment with antidepressant drugs appears to modulate, at different levels, the signaling pathway associated to 5-HT4 receptors, as well as their levels of expression in the brain. Moreover, several experimental studies have identified this receptor subtype as a promising new target for fast-acting antidepressant strategy: the administration of partial agonists of this receptor induces a number of responses similar to those observed after chronic treatment with classical antidepressants, but with a rapid onset of action. They include efficacy in behavioral models of depression, rapid desensitization of 5-HT1A autoreceptors, and modifications in the expression of several molecular markers of brain neuroplasticity. Although much work remains to be done in order to clarify the real therapeutic potential of these drugs, the evidences reviewed below support the hypothesis that 5-HT4 receptor partial agonists could behave as rapid and effective antidepressants.

  18. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    Science.gov (United States)

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  19. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Zhao-hui Xu

    Full Text Available Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP because of Fmr1 gene silencing. Serotonin (5-HT is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP in the anterior cingulate cortex (ACC of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca(2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.

  20. Secondhand cigarette smoke exposure causes upregulation of cerebrovascular 5-HT(1) (B) receptors via the Raf/ERK/MAPK pathway in rats

    DEFF Research Database (Denmark)

    Cao, L; Xu, C B; Zhang, Y

    2013-01-01

    Cigarette smoke exposure increases the risk of stroke. Upregulation of 5-hydroxytryptamine 1B (5-HT(1) (B) ) receptors is associated with the pathogenesis of cerebral ischaemia. This study examined the hypothesis that the expression of 5-HT(1) (B) receptors is altered in brain vessels after secon...... secondhand smoke (SHS) exposure.......Cigarette smoke exposure increases the risk of stroke. Upregulation of 5-hydroxytryptamine 1B (5-HT(1) (B) ) receptors is associated with the pathogenesis of cerebral ischaemia. This study examined the hypothesis that the expression of 5-HT(1) (B) receptors is altered in brain vessels after...

  1. Pindolol antagonises G-protein activation at both pre- and postsynaptic serotonin 5-HT1A receptors: a.

    Science.gov (United States)

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2001-04-01

    The arylalkylamine, pindolol, may potentiate the clinical actions of antidepressant agents. Although it is thought to act via blockade of 5-HT1A autoreceptors, its efficacy at these sites remains controversial. Herein, we evaluated the actions of pindolol at 5-HT1A autoreceptors and specific populations of postsynaptic 5-HT1A receptors employing [35S]GTPgammaS autoradiography, a measure of receptor-mediated G-protein activation. Both 8-OH-DPAT (1 microM) and 5-HT (10 microM) elicited a pronounced increase in [35S]GTPyS binding in the dorsal raphe nucleus, which contains serotonergic cell bodies bearing 5-HT1A autoreceptors. Pindolol abolished their actions. In the dentate gyrus, lateral septum and entorhinal cortex, structures enriched in postsynaptic 5-HT1A receptors, 8-OH-DPAT (1 microM) and 5-HT (10 microM) also elicited a marked increase in [35S]GTPgammaS binding which was likewise blocked by pindolol. The antagonism of 5-HT-induced [35S]GTPgammaS labelling in the dentate gyrus was shown to be concentration-dependent, yielding a pIC50 of 5.82. Pindolol did not, itself, affect [35S]GTPgammaS binding in any brain region examined. In conclusion, these data suggest that, as characterised by [35S]GTPgammaS autoradiography, and compared with 5-HT and 8-OH-DPAT, pindolol possesses low efficacy at both pre- and postsynaptic 5-HT1A receptors.

  2. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    Science.gov (United States)

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine5-HT(1A/2A/6/7) receptors, systemic and intrahippocampal administration of 5-HT drugs were further explored. The ketamine STM-induced deficit was blocked by 8-OHDPAT (5-HT(1A/7) agonist) and SB-399885 (a 5-HT(6) antagonist) but not by 5-HT(1B), 5-HT(2) and 5-HT(7) antagonists, thus implicating 5-HT(1A/7) and 5-HT(6) receptors. These data also suggest that ketamine (at 10 mg/kg) represents a reliable pharmacological tool to explore memory deficits related to hippocampus and schizophrenia.

  3. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster.

    Science.gov (United States)

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster , a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT 1A , Dm5-HT 1B , and Dm5-HT 7 couple to cAMP signaling cascades, the Dm5-HT 2A receptor leads to Ca 2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT 2B receptor. Knowledge about this receptor's pharmacological properties is very limited. This is quite surprising because Dm5-HT 2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT 2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT 2B 's pharmacology, we evaluated the receptor's response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT 2B signaling in vitro and in vivo .

  4. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Wolfgang Blenau

    2017-05-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects and deuterostomes (e.g., mammals. In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.

  5. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Science.gov (United States)

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.

  6. Functional Characterization of 5-HT1B Receptor Drugs in Nonhuman Primates Using Simultaneous PET-MR.

    Science.gov (United States)

    Hansen, Hanne D; Mandeville, Joseph B; Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Knudsen, Gitte M

    2017-11-01

    In the present study, we used a simultaneous PET-MR experimental design to investigate the effects of functionally different compounds (agonist, partial agonist, and antagonist) on 5-HT 1B receptor (5-HT 1B R) occupancy and the associated hemodynamic responses. In anesthetized male nonhuman primates ( n = 3), we used positron emission tomography (PET) imaging with the radioligand [ 11 C]AZ10419369 administered as a bolus followed by constant infusion to measure changes in 5-HT 1B R occupancy. Simultaneously, we measured changes in cerebral blood volume (CBV) as a proxy of drug effects on neuronal activity. The 5-HT 1B R partial agonist AZ10419369 elicited a dose-dependent biphasic hemodynamic response that was related to the 5-HT 1B R occupancy. The magnitude of the response was spatially overlapping with high cerebral 5-HT 1B R densities. High doses of AZ10419369 exerted an extracranial tissue vasoconstriction that was comparable to the less blood-brain barrier-permeable 5-HT 1B R agonist sumatriptan. By contrast, injection of the antagonist GR127935 did not elicit significant hemodynamic responses, even at a 5-HT 1B R cerebral occupancy similar to the one obtained with a high dose of AZ10419369. Given the knowledge we have of the 5-HT 1B R and its function and distribution in the brain, the hemodynamic response informs us about the functionality of the given drug: changes in CBV are only produced when the receptor is stimulated by the partial agonist AZ10419369 and not by the antagonist GR127935, consistent with low basal occupancy by endogenous serotonin. SIGNIFICANCE STATEMENT We here show that combined simultaneous positron emission tomography and magnetic resonance imaging uniquely enables the assessment of CNS active compounds. We conducted a series of pharmacological interventions to interrogate 5-HT 1B receptor binding and function and determined blood-brain barrier passage of drugs and demonstrate target involvement. Importantly, we show how the spatial

  7. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    OpenAIRE

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  8. Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Broersen, L.M.; Linde, J. van der; Groenink, L.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2003-01-01

    Previous studies with mice lacking 5-HT(1A) (1AKO) and 5-HT(1B) (1BKO) receptors in hippocampus-dependent learning and memory paradigms, suggest that these receptors play an important role in learning and memory, although their precise role is unclear. In the present study, 1AKO and 1BKO mice were

  9. The role of the 5-HT2C receptor in emotional processing in healthy adults

    OpenAIRE

    2010-01-01

    Serotonin (5-HT) has long been implicated in the pathophysiology of depression and anxiety, and the therapeutic effect of treatments. Several drugs useful in treatment produce either acute or neuroadaptive changes in 5-HT2C receptor activity, and there has been growing interest in how alterations in the 5-HT2C receptor might be important in mediating antidepressant and anxiolytic activity. The neuropsychological hypothesis of drug action implies that the clinical effects of medications a...

  10. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    DEFF Research Database (Denmark)

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny

    2007-01-01

    parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein...... intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action. Udgivelsesdato: 2007-Sep-6...

  11. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  12. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  13. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  14. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig

    DEFF Research Database (Denmark)

    Kornum, B.R.; Lind, N.M.; Gillings, N.

    2009-01-01

    This study investigates 5-hydroxytryptamine 4 (5-HT(4)) receptor binding in the minipig brain with positron emission tomography (PET), tissue homogenate-binding assays, and autoradiography in vitro. The cerebral uptake and binding of the novel 5-HT(4) receptor radioligand [(11)C]SB207145 in vivo...... was modelled and the outcome compared with postmortem receptor binding. Different models for quantification of [(11)C]SB207145 binding were evaluated: One-tissue and two-tissue compartment kinetic modelling, Logan arterial input, and three different reference tissue models. We report that the pig...... model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT(4) receptor concentrations determined in brain homogenates from the same regions, except...

  15. The 5-HT(1F) receptor agonist lasmiditan as a potential treatment of migraine attacks

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Olesen, Jes

    2012-01-01

    Lasmiditan is a novel selective 5-HT(1F) receptor agonist. It is both scientifically and clinically relevant to review whether a 5-HT(1F) receptor agonist is effective in the acute treatment of migraine. Two RCTs in the phase II development of lasmiditan was reviewed. In the intravenous placebo...

  16. The role of the 5-HT1a receptor in central cardiovascular regulation

    NARCIS (Netherlands)

    G.H. Dreteler

    1991-01-01

    textabstractThe aim of the studies describe~ in this thesis is to further clarify the role of the 5- HT1A receptor in central cardiovascular regulation. The hypotensive action of 5-HT1A receptor agonists is mainly due to differential sympatho-inhibition resulting in an increase in total

  17. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Directory of Open Access Journals (Sweden)

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  18. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands

    International Nuclear Information System (INIS)

    Herth, Matthias M.; Petersen, Ida Nymann; Hansen, Hanne Demant; Hansen, Martin; Ettrup, Anders; Jensen, Anders A.; Lehel, Szabolcs; Dyssegaard, Agnete; Gillings, Nic; Knudsen, Gitte M.

    2016-01-01

    Introduction: The serotonin 2A receptor (5-HT 2A R) is the most abundant excitatory 5-HT receptor in the human brain and implicated in various brain disorders such as schizophrenia, depression, and Alzheimer's disease. Positron emission tomography (PET) can be used to image specific proteins and processes in the human brain and several 5-HT 2A R PET antagonist radioligands are available. In contrast to an antagonist radioligand, an agonist radioligand should be able to image the population of functional receptors, i.e., those capable of inducing neuroreceptor signaling. Recently, we successfully developed and validated the first 5-HT 2A R agonist PET tracer, [ 11 C]Cimbi-36, for neuroimaging in humans and herein disclose some of our efforts to develop an 18 F-labeled 5-HT 2A R agonist PET-ligand. Methods and results: Three fluorine containing derivatives of Cimbi-36 were synthesized and found to be potent 5-HT 2A agonists. 18 F-labeling of the appropriate precursors was performed using [ 18 F]FETos, typically yielding 0.2–2.0 GBq and specific activities of 40–120 GBq/μmol. PET studies in Danish landrace pigs revealed that [ 18 F]1 displayed brain uptake in 5-HT 2A R rich regions. However, high uptake in bone was also observed. No blocking effect was detected during a competition experiment with a 5-HT 2A R selective antagonist. [ 18 F]2 and [ 18 F]3 showed very low brain uptake. Conclusion: None of the investigated 18 F-labeled Cimbi-36 derivatives [ 18 F]1, [ 18 F]2 and [ 18 F]3 show suitable tracer characteristics for in vivo PET neuroimaging of the 5-HT 2A R. Although for [ 18 F]1 there was reasonable brain uptake, we suggest that a large proportion radioactivity in the brain was due to radiometabolites, which would explain why it could not be displaced by a 5-HT 2A R antagonist.

  19. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    Science.gov (United States)

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  20. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    Science.gov (United States)

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  1. The 5-HT1A Receptor and the Stimulus Effects of LSD in the Rat

    Science.gov (United States)

    Reissig, C.J.; Eckler, J.R.; Rabin, R.A.; Winter, J.C.

    2005-01-01

    Rationale It has been suggested that the 5-HT1A receptor plays a significant modulatory role in the stimulus effects of the indoleamine hallucinogen lysergic acid diethylamide (LSD). Objectives The present study sought to characterize the effects of several compounds with known affinity for the 5-HT1A receptor on the discriminative stimulus effects of LSD. Methods 12 Male F-344 rats were trained in a two-lever, fixed ratio10, food reinforced task with LSD (0.1 mg/kg; IP; 15 min pretreatment) as a discriminative stimulus. Combination and substitution tests with the 5-HT1A agonists, 8-OH-DPAT, buspirone, gepirone, and ipsapirone, with LSD-induced stimulus control were then performed. The effects of these 5-HT1A ligands were also tested in the presence of the selective 5-HT1A receptor antagonist, WAY-100,635 (0.3 mg/kg; SC; 30 min. pretreatment). Results In combination tests stimulus control by LSD was increased by all 5-HT1A receptor ligands with agonist properties. Similarly, in tests of antagonism, the increase in drug-appropriate responding caused by stimulation of the 5-HT1A receptor was abolished by administration of WAY-100,635. Conclusions These data, obtained using a drug discrimination model of the hallucinogenic effects of LSD, provide support for the hypothesis that the 5-HT1A receptor has a significant modulatory role in the stimulus effects of LSD. PMID:16025319

  2. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    Science.gov (United States)

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  3. Convergent [18]F-labeling and evaluation of N-benzyl-phenethylamines as 5-HT2A receptor PET ligands

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Villadsen, Jonas; Hansen, Hanne Demant

    2016-01-01

    Positron emission tomography (PET) investigations of the 5-HT2A receptor (5-HT2AR) system can be used as a research tool in diseases such as depression, Alzheimer's disease and schizophrenia. We have previously developed a (11)C-labeled agonist PET ligand ([(11)C]Cimbi-36), and the aim of this st......Positron emission tomography (PET) investigations of the 5-HT2A receptor (5-HT2AR) system can be used as a research tool in diseases such as depression, Alzheimer's disease and schizophrenia. We have previously developed a (11)C-labeled agonist PET ligand ([(11)C]Cimbi-36), and the aim...... of this study was to identify a (18)F-labeled analogue of this PET-ligand. Thus, we developed a convergent radiochemical approach giving easy access to 5 different (18)F-labeled ligands structurally related to Cimbi-36 from a common (18)F-labeled intermediate. After intravenous injection, all ligands entered...... the pig brain. However, since within-scan intervention with ketanserin, a known orthosteric 5-HT2A receptor antagonist, did not result in significant blocking, the radioligands seem unsuitable for neuroimaging of the 5-HT2AR in vivo....

  4. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Science.gov (United States)

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  6. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  7. Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice

    Directory of Open Access Journals (Sweden)

    Katsunori Nonogaki

    2018-01-01

    Full Text Available A recent report suggested that brain-derived serotonin (5-HT is critical for maintaining weight loss induced by glucagon-like peptide-1 (GLP-1 receptor activation in rats and that 5-HT2A receptors mediate the feeding suppression and weight loss induced by GLP-1 receptor activation. Here, we show that changes in daily food intake and body weight induced by intraperitoneal administration of liraglutide, a GLP-1 receptor agonist, over 4 days did not differ between mice treated with the tryptophan hydroxylase (Tph inhibitor p-chlorophenylalanine (PCPA for 3 days and mice without PCPA treatment. Treatment with PCPA did not affect hypothalamic 5-HT2A receptor expression. Despite the anorexic effect of liraglutide disappearing after the first day of treatment, the body weight loss induced by liraglutide persisted for 4 days in mice treated with or without PCPA. Intraperitoneal administration of liraglutide significantly decreased the gene expression of hypothalamic 5-HT2A receptors 1 h after injection. Moreover, the acute anorexic effects of liraglutide were blunted in mice treated with the high-affinity 5-HT2A agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl methylamine hydrobromide 14 h or 24 h before liraglutide injection. These findings suggest that liraglutide reduces appetite and body weight independently of 5-HT synthesis in mice, whereas GLP-1 receptor activation downregulates the gene expression of hypothalamic 5-HT2A receptors.

  8. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    DEFF Research Database (Denmark)

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus Kähler

    2013-01-01

    The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes...... in hippocampus. However, any associations between memory functions and the expression of the 5-HT(4) R in the human hippocampus have not been investigated. Using positron emission tomography with the tracer [(11) C]SB207145 and Reys Auditory Verbal Learning Test we aimed to examine the individual variation...... of the 5-HT4R binding in hippocampus in relation to memory acquisition and consolidation in healthy young volunteers. We found significant, negative associations between the immediate recall scores and left and right hippocampal BP(ND) , (p = 0.009 and p = 0.010 respectively) and between the right...

  9. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging

    International Nuclear Information System (INIS)

    Lemoine, Laetitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Newman-Tancredi, Adrian; Le Bars, Didier; Zimmer, Luc

    2010-01-01

    The serotonin-1A (5-HT 1A ) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT 1A receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT 1A receptors. Since all clinical PET 5-HT 1A radiopharmaceuticals are antagonists, it is of great interest to develop a 18 F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{ [(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT 1A receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT 1A receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [ 18 F]MPPF, a validated 5-HT 1A antagonist radiopharmaceutical. The chemical and radiochemical purities of [ 18 F]F15599 were >98%. In vitro [ 18 F ]F15599 binding was consistent with the known 5-HT 1A receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [ 18 F ]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [ 18 F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT 1A antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain radioactive

  10. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.

    Science.gov (United States)

    Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc

    2010-03-01

    The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain

  11. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  12. Identification of 5HT2-receptors on longitudinal muscle of the guinea pig ileum

    International Nuclear Information System (INIS)

    Engel, G.; Hoyer, D.; Kalkman, H.O.; Wick, M.B.

    1984-01-01

    In binding experiments with the radioligands [ 3 H]Ketanserin (HKet) and [ 125 I]LSD (ILSD) 21 compounds were investigated using rat brain cortex membranes. The pK/sub D/-values of the compounds were virtually independent of the radioligand used and their rank order was consistent with classification of the binding sites as being of the 5-HT 2 -type. In contrast, in the longitudinal muscle of the guinea pig ileum in the presence of 0.3 microM cinanserin, ILSD labelled sites which were quite different to those in the cortex. In a functional test antagonism of the 5HT induced contraction of the guinea-pig ileum was measured in the presence of 1 microM atropine. The pharmacological inhibition constants (IC 50 -values) of 8 compounds correlated well with the dissociation constants for HKet binding in the cortex and did not correlate with the data from ILSD binding in the guinea pig ileum. It is concluded that the ileum contains postjunctional 5HT 2 -receptors which mediate contraction. The nature of the ILSD binding sites in the ileum remains to be elucidated

  13. Serotonin Signaling through Prefrontal Cortex 5-HT1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors.

    Science.gov (United States)

    Garcia-Garcia, Alvaro L; Meng, Qingyuan; Canetta, Sarah; Gardier, Alain M; Guiard, Bruno P; Kellendonk, Christoph; Dranovsky, Alex; Leonardo, E David

    2017-01-31

    Lifelong homeostatic setpoints for mood-related behaviors emerge during adolescence. Serotonin (5-HT) plays an important role in refining the formation of brain circuits during sensitive developmental periods. In rodents, the role of 5-HT 1A receptors in general and autoreceptors in particular has been characterized in anxiety. However, less is known about the role of 5-HT 1A receptors in depression-related behavior. Here, we show that whole-life suppression of heteroreceptor expression results in a broad depression-like behavioral phenotype accompanied by physiological and cellular changes within medial prefrontal cortex-dorsal raphe proper (mPFC-DRN) circuitry. These changes include increased basal 5-HT in a mPFC that is hyporesponsive to stress and decreased basal 5-HT levels and firing rates in a DRN hyperactivated by the same stressor. Remarkably, loss of heteroreceptors in the PFC at adolescence is sufficient to recapitulate this depression-like behavioral syndrome. Our results suggest that targeting mPFC 5-HT 1A heteroreceptors during adolescence in humans may have lifelong ramifications for depression and its treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Serotonin Signaling through Prefrontal Cortex 5-HT1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors

    Directory of Open Access Journals (Sweden)

    Alvaro L. Garcia-Garcia

    2017-01-01

    Full Text Available Lifelong homeostatic setpoints for mood-related behaviors emerge during adolescence. Serotonin (5-HT plays an important role in refining the formation of brain circuits during sensitive developmental periods. In rodents, the role of 5-HT1A receptors in general and autoreceptors in particular has been characterized in anxiety. However, less is known about the role of 5-HT1A receptors in depression-related behavior. Here, we show that whole-life suppression of heteroreceptor expression results in a broad depression-like behavioral phenotype accompanied by physiological and cellular changes within medial prefrontal cortex-dorsal raphe proper (mPFC-DRN circuitry. These changes include increased basal 5-HT in a mPFC that is hyporesponsive to stress and decreased basal 5-HT levels and firing rates in a DRN hyperactivated by the same stressor. Remarkably, loss of heteroreceptors in the PFC at adolescence is sufficient to recapitulate this depression-like behavioral syndrome. Our results suggest that targeting mPFC 5-HT1A heteroreceptors during adolescence in humans may have lifelong ramifications for depression and its treatment.

  15. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Passchier, J.; Waarde, A. van

    2001-01-01

    The 5-HT 1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT 1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl- 11 C] WAY-100635 (WAY), [carbonyl- 11 C]desmethyl-WAY-100635 (DWAY), p-[ 18 F]MPPF and [ 11 C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT 1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  16. Identification of a cys-ser substitution in the 5-HT{sub 2C} (HTR2C) receptor gene and allelic association to violent behavior and alcoholism

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, J.; Ozaki, N.; Goldman, D. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1994-09-01

    Several lines of evidence suggest that brain serotonergic functions, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist, are abnormal in some individuals with alcoholism and aggressive behaviors. The aim of the present study was to identify coding sequence variants in the human 5-HT{sub 2C} receptor gene which may cause abnormal or variant function of this receptor. Using SSCP analysis, a non-conservative cys-ser substitution was found in the 5-HT{sub 2C} receptor (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}). The polymorphism was typed in CEPH families to genetically map the gene. To test for association of the variant to alcoholism, violent behavior and serotonin function, the 5-HT{sub 2C} genotypes of 151 non-related Finnish male alcoholic violent offenders and impulsive fire setters and 127 Finnish psychiatrically interviewed healthy male volunteers were determined. CSF 5-HIAA concentrations were available for 74 alcoholic violent offenders and 25 healthy volunteers. Linkage analysis placed the 5-HT{sub 2C} gene on Xq21, a region that has been previously shown to contain genes for several mental retardation syndromes. The 5-HT{sub 2Ccys}/5-HT{sub 2Cser} genotype frequencies in alcoholic violent offenders and controls differed significantly (0.90/0.10 and 0.82/0.18, respectively, P=0.048). The association was found to be strongest in the violent offenders who did not fulfill the criteria for antisocial personality disorder (5-HT{sub 2Ccys}/5-HT{sub 2Cser} 0.93/0.07, p=0.021). No association was found between CSF 5-HIAA concentrations and 5-HT{sub 2C} genotype. These results implicate a 5-HT{sub 2C} receptor amino acid substitution in predisposition to alcohol abuse and violent behavior in a subgroup of alcoholics.

  17. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    DEFF Research Database (Denmark)

    Madsen, Karine; Torstensen, Eva; Holst, Klaus Kähler

    2015-01-01

    was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which had first...

  18. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  19. Pet imaging of human pituitary 5-HT2 receptors with F-18 setoperone

    Energy Technology Data Exchange (ETDEWEB)

    Fischman, A.J.; Bonab, A.A.; Babich, J.W. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-05-01

    Serotonin (5-HT) receptors play an important role in the regulation of pituitary function. In particular, 5HT agonists stimulate ACTH, {beta}-endorphin, prolactin and growth hormone secretion but inhibit TSH release. 5-HT binding sites have been identified by autoradiographic studies of rat and human pituitary. In the present investigation, we used PET with F-18 setoperone to image 5-HT2 receptors in normal humans. Setoperone, a piperidine derivative with potent 5-HT2 receptor blocking properties was labelled with F-18 by nucleophilic substitution on the nitro derivative. After HPLC purification, specific activity was between 10,000 and 15,000 mCi/{mu} mole and radiochemical purity was >98%. Six healthy male volunteers were injected with 5-7 mCi of F-18. Setoperone and serial PET images and arterial blood samples were collected over 2 hrs. Specific binding to 5-HT2 receptors in the frontal cortex (FC), striatum (ST) and pituitary (P) was quantitated using the cerebellum (C) as reference. The tracer showed clear retention in FC, ST and P (known to contain a high density of 5-HT2 receptors) relative to C (known to be devoid of 5-HT2 receptors). In all subjects, FC/C, ST/C and P/C ratios increased during the first hr. and remained stable thereafter. For FC and ST, the ratios reached similar values; 3.92{plus_minus}0.73 and 3.53{plus_minus}0.32. For pituitary, a significantly higher ratio, was measured at all times; 6.53{plus_minus}1.82 (p<0.01). These results indicate that F-18 setoperone is an effective PET radiopharmaceutical for imaging 5-HT2 receptors in the human pituitary. Future applications of this agent could provide important new insights into neuroendocrine function.

  20. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    Science.gov (United States)

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  1. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats.

    Science.gov (United States)

    Miszkiel, Joanna; Przegaliński, Edmund

    2013-01-01

    Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.

  2. Spinal 5-HT7 Receptors and Protein Kinase A Constrain Intermittent Hypoxia-Induced Phrenic Long-term Facilitation

    Science.gov (United States)

    Hoffman, M.S.; Mitchell, G.S.

    2013-01-01

    Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation via TrkB “trans-activation.” Since serotonin release near phrenic motor neurons may activate multiple serotonin receptor subtypes, we tested the hypothesis that 5-HT7 receptor activation contributes to AIH-induced pLTF. A selective 5-HT7 receptor antagonist (SB-269970, 5mM, 12μl) was administered intrathecally at C4 to anesthetized, vagotomized and ventilated rats prior to AIH (3, 5-min episodes, 11% O2). Contrary to predictions, pLTF was greater in SB-269970 treated versus control rats (80±11% vs 45±6% 60 min post-AIH; p<0.05). Hypoglossal LTF was unaffected by spinal 5-HT7 receptor inhibition, suggesting that drug effects were localized to the spinal cord. Since 5-HT7 receptors are coupled to protein kinase A (PKA), we tested the hypothesis that PKA inhibits AIH-induced pLTF. Similar to 5-HT7 receptor inhibition, spinal PKA inhibition (KT-5720, 100μM, 15μl) enhanced pLTF (99±15% 60 min post-AIH; p<0.05). Conversely, PKA activation (8-br-cAMP, 100μM, 15μl) blunted pLTF versus control rats (16±5% vs 45±6% 60 min post-AIH; p<0.05). These findings suggest a novel mechanism whereby spinal Gs protein-coupled 5-HT7 receptors constrain AIH-induced pLTF via PKA activity. PMID:23850591

  3. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.

    Science.gov (United States)

    Salim, Saima; Ali, Ayesha S; Ali, Sharique A

    2013-02-01

    The presence of distinct class of 5-HT receptors in the melanophores of tilapia (Oreochromis mossambicus) is reported. The cellular responses to 5-HT (5-hydroxytryptamine), 5-HT(1), and 5-HT(2), agonists on isolated scale melanophores were observed with regard to pigment translocation within the cells. It was found that 5-HT exerted rapid and strong concentration dependent pigment granule dispersion within the melanophores. The threshold pharmacological dose of 5-HT that could elicit a measurable response was as low as 4.7×10(-12) M/L. Selective 5-HT(1) and 5-HT(2) agonists, sumatriptan and myristicin were investigated and resulted in dose-dependent pigment dispersion. The dispersing effects were effectively antagonized by receptor specific antagonists. It is suggested that 5-HT-induced physiological effects are mediated via distinct classes of receptors that possibly participate in modulation of pigmentary responses of the fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    Directory of Open Access Journals (Sweden)

    Urszula eSlawinska

    2014-08-01

    Full Text Available There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-OHDPAT (acting on 5-HT1A/7 receptors and quipazine (acting on 5-HT2 receptors, to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor CPG. Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.

  5. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans

    DEFF Research Database (Denmark)

    Haahr, M E; Fisher, P M; Jensen, Christian Gaden

    2014-01-01

    levels, is associated with a decline in brain 5-HT4R binding. A total of 35 healthy men were studied in a placebo-controlled, randomized, double-blind study. Participants were assigned to receive 3 weeks of oral dosing with placebo or fluoxetine, 40 mg per day. Brain 5-HT4R binding was quantified...... at baseline and at follow-up with [(11)C]SB207145 positron emission tomography (PET). Three weeks of intervention with fluoxetine was associated with a 5.2% reduction in brain 5-HT4R binding (P=0.017), whereas placebo intervention did not change 5-HT4R binding (P=0.52). Our findings are consistent...

  6. Targeting to 5-HT1F Receptor Subtype for Migraine Treatment

    DEFF Research Database (Denmark)

    Mitsikostas, Dimos D; Tfelt-Hansen, Peer

    2012-01-01

    attacks with efficacy in the same range as oral sumatriptan 100mg, the gold standard for triptans. The LY334370 project withdrew because of toxicity in animals, while lasmiditan is still testing. In this review we present all the available preclinical and clinical data on the 5-HT1F agonists...... inhibited markers associated with electrical stimulation of the TG. Thus 5-HT1F receptor represents an ideal target for anti-migraine drugs. So far two selective 5-HT1F agonists have been tested in human trials for migraine: LY334370 and lasmiditan. Both molecules were efficient in attenuating migraine...

  7. Analysis of the 5-HT receptor in rabbit saphenous vein exemplifies the problems of using exclusion criteria for receptor classification.

    Science.gov (United States)

    Martin, G R; MacLennan, S J

    1990-08-01

    5-Hydroxytryptamine (5-HT) contracts ring preparations of rabbit saphenous vein via direct and indirect components, the latter being compatible with a "tyramine-like" action at sympathetic nerve terminals. Here an attempt was made to establish the identity of the receptor mediating contraction directly, in terms of the currently accepted proposals (Bradley et al. 1986). Results with agonists suggested 5-HT1-like receptor activation: methylsergide behaved as a partial agonist with microcolar affinity and 5-HT effects were mimicked by 5-carboxamidotryptamine (5-CT) and GR43175. The agonist potency order was 5-CT greater than 5-HT greater than methysergide greater than or equal to GR43175, the same as that reported at the 5-HT1-like receptor in dog saphenous vein (Feniuk et al. 1985; Humphrey et al. 1988). Consistent with this, 5-HT effects were resistant to blockade by the selective 5-HT3 receptor antagonist MDL72222 (1.0 mumol/l). In contrast, methiothepin (0.01-0.3 mumol/l), ketanserin (0.3-30.0 mumol/l) and spiperone (0.3-30.0 mumol/l) each produced surmountable antagonism which, although competitive in nature only for methiothepin (pKB = 9.45 +/- 0.09, 17 d.f.), implied 5-HT2 receptor involvement. The possibility that these discrepancies resulted from mixed populations of 5-HT1-like and 5-HT2 receptors can be excluded because; 1). Ketanserin and spiperone blocked the actions of 5-HT and the selective 5-HT1-like receptor agonist GR43175 with equal facility and 2). Responses to all of the agonists studied were similarly antagonised by flesinoxan (pKB approximately 6.4), a simple competitive antagonist at the receptor in rabbit saphenous vein.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Science.gov (United States)

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  9. Synthesis and In Vitro Evaluation of Oxindole Derivatives as Potential Radioligands for 5-HT7 Receptor Imaging with PET

    DEFF Research Database (Denmark)

    Herth, Matthias Manfred; Volk, Balázs; Pallagi, Katalin

    2012-01-01

    The most recently discovered serotonin (5-HT) receptor subtype, 5-HT(7), is considered to be associated with several CNS disorders. Noninvasive in vivo positron emission tomography (PET) studies of cerebral 5-HT(7) receptors could provide a significant advance in the understanding of the neurobio...

  10. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  11. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    DEFF Research Database (Denmark)

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...... tomography. Within each individual, a regional intercorrelation for the various brain regions was seen with both markers, most notably for 5-HT2A receptor binding. An inverted U-shaped relationship between the 5-HT2A receptor and the SERT binding was identified. The observed regional intercorrelation...

  12. Synthesis and evaluation of [11C]Cimbi-806 as a potential PET ligand for 5-HT7 receptor imaging

    DEFF Research Database (Denmark)

    Herth, Matthias Manfred; Hansen, Hanne Demant; Ettrup, Anders Janusz

    2012-01-01

    )-N,N-dimethylethanamine ([(11)C]Cimbi-806) as a radioligand for imaging brain 5-HT(7) receptors with positron emission tomography (PET). Precursor and reference compound was synthesized and subsequent (11)C-labelling with [(11)C]methyltriflate produced [(11)C]Cimbi-806 in specific activities ranging from 50 to 300 GBq...... of appropriate in vivo blocking with a 5-HT(7) receptor selective compounds renders the conclusion that [(11)C]Cimbi-806 is not an appropriate PET radioligand for imaging the 5-HT(7) receptor in vivo....

  13. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    Science.gov (United States)

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  14. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  15. Contribution of 5-HT2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury.

    Science.gov (United States)

    Lee, Kun-Ze; Gonzalez-Rothi, Elisa J

    2017-10-01

    Unilateral C2 spinal cord hemisection (C2Hx) interrupts bulbospinal respiratory pathways innervating ipsilateral phrenic motoneurons, resulting in cessation of ipsilateral diaphragm motor output. Plasticity within the spinal neural circuitry controlling the diaphragm can induce partial recovery of phrenic bursting which correlates with the time-dependent return of spinal serotonin (5-HT) immunoreactivity in the vicinity of phrenic motoneurons. The 5-HT 2A receptor subtype is present on phrenic motoneurons and its expression is up-regulated after cervical spinal cord injury; however the functional role of these receptors following injury has not been clearly defined. The present study evaluated the functional role of 5-HT 2A receptors by testing the hypothesis that pharmacologic blockade would attenuate diaphragm activity in rats with chronic cervical spinal cord injury. Bilateral diaphragm electromyography (EMG) was performed in vagal-intact and spontaneously breathing rats before and after intravenous administration of the 5-HT 2A receptor antagonist Ketanserin (1mg/kg). Intravenous ketanserin significantly attenuated ipsilateral diaphragm EMG activity in C2Hx animals but had no impact on diaphragm output in uninjured animals. We conclude that 5-HT 2A receptor activation contributes to the recovery of ipsilateral phrenic motor output after chronic cervical spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 5HT{sub 2} receptors in cerebral cortex of migraineurs studied using PET and {sup 18}F-fluorosetoperoene

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H.; Tehindrazanarivelo, A.; Vera, P.; Samson, Y.; Pappata, S.; Boullais, N.; Bousser, M.G. [Hospital Saint Antoine, Paris (France)

    1995-04-01

    Since the brain 5HT{sub 2} might be implicated in migraine pathogenesis, the authors have used positron emission tomography and {sup 18}F-fluorosetoperone, a 5HT{sub 2} specific radioligand, to investigate in vivo the cortical 5HT{sub 2} receptors in migraine subjects. Nine migraineurs who had either migraine with and without aura or only migraine without aura were studied between attacks. 12 unmedicated healthy subjects of similar mean age were used as controls. Brain radioactivity was measured after {sup 18}F-setoperone IV injection for 90 min. A decrease of the regional specific distribution volumes (SDV) of the ligand was observed both in migraineurs and in controls. The age adjusted group means of SDV did not differ between patients and controls for the whole and for the right or left frontal, temporal, parietal and occipital cortex. These results suggest that cortical 5HT{sub 2} receptors may be unaltered between attacks in migraine sufferers. 30 refs., 4 figs., 2 tabs.

  17. 4-(Phenylsulfonyl)piperidines: novel, selective, and bioavailable 5-HT(2A) receptor antagonists.

    Science.gov (United States)

    Fletcher, Stephen R; Burkamp, Frank; Blurton, Peter; Cheng, Susan K F; Clarkson, Robert; O'Connor, Desmond; Spinks, Daniel; Tudge, Matthew; van Niel, Monique B; Patel, Smita; Chapman, Kerry; Marwood, Rose; Shepheard, Sara; Bentley, Graham; Cook, Gina P; Bristow, Linda J; Castro, Jose L; Hutson, Peter H; MacLeod, Angus M

    2002-01-17

    On the basis of a spirocyclic ether screening lead, a series of acyclic sulfones have been identified as high-affinity, selective 5-HT(2A) receptor antagonists. Bioavailability lacking in the parent, 1-(2-(2,4-difluorophenyl)ethyl)-4-(phenylsulfonyl)piperidine (12), was introduced by using stability toward rat liver microsomes as a predictor of bioavailability. By this means, the 4-cyano- and 4-carboxamidophenylsulfonyl derivatives 26 and 31 were identified as orally bioavailable, brain-penetrant analogues suitable for evaluation in animal models. Bioavailability was also attainable by N substitution leading to the N-phenacyl derivative 35. IKr activity detected through counterscreening was reduced to insignificant levels in vivo with the latter compound.

  18. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Kjekshus, John K; Torp-Pedersen, Christian; Gullestad, Lars

    2009-01-01

    weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0.......3, 3.2, P = 0.020), primarily through reduced end-systolic volume from 165 to 158 mL (P = 0.060). There was a trend for greater increase in LVEF (2.7%, CI -1.1, 6.6, P = 0.15) in a small subset of patients not on chronic beta-blocker therapy. There was no significant effect on neurohormones, quality......AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...

  19. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors

    Directory of Open Access Journals (Sweden)

    Rui Hao

    2017-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.

  20. The 5-HT2A receptor antagonist M100907 produces antiparkinsonian effects and decreases striatal glutamate

    Directory of Open Access Journals (Sweden)

    Twum eAnsah

    2011-06-01

    Full Text Available 5-HT plays a regulatory role in voluntary movements of the basal ganglia and have a major impact on disorders of the basal ganglia such as Parkinson’s disease (PD. Clinical studies have suggested that 5-HT2 receptor antagonists may be useful in the treatment of the motor symptoms of PD. We hypothesized that 5-HT2A receptor antagonists may restore motor function by regulating glutamatergic activity in the striatum. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP exhibited decreased performance on the beam-walking apparatus. Peripheral administration of the 5-HT2A receptor antagonist M100907 improved performance of MPTP-treated mice on the beam-walking apparatus. In vivo microdialysis revealed an increase in striatal extracellular glutamate in MPTP-treated mice and local perfusion of M100907 into the dorsal striatum significantly decreased extracellular glutamate levels in saline and MPTP-treated mice. Our studies suggest that blockade of 5-HT2A receptors may represent a novel therapeutic target for the motor symptoms of Parkinson’s disease.

  1. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2015-07-01

    Full Text Available Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline.  Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333 and antagonist (RS23597-190 were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively.  Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg, RS67333 (0.5 ng/mouse and RS23597-190 (0.5 ng/mouse decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse or RS23597-190 (0.005 ng/mouse with subthreshold dose of harmaline (0.5 mg/kg, i.p. intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors.  Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia.

  2. The 5HT(1A) receptor ligand, S15535, antagonises G-protein activation: a [35S]GTPgammaS and [3H]S15535 autoradiography study.

    Science.gov (United States)

    Newman-Tancredi, A; Rivet, J; Chaput, C; Touzard, M; Verrièle, L; Millan, M J

    1999-11-19

    4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine (S15535) is a highly selective ligand at 5-HT(1A) receptors. The present study compared its autoradiographic labelling of rat brain sections with its functional actions, visualised by guanylyl-5'-[gamma-thio]-triphosphate ([35S]GTPgammaS) autoradiography, which affords a measure of G-protein activation. [3H]S15535 binding was highest in hippocampus, frontal cortex, entorhinal cortex, lateral septum, interpeduncular nucleus and dorsal raphe, consistent with specific labelling of 5-HT(1A) receptors. In functional studies, S15535 (10 microM) did not markedly stimulate G-protein activation in any brain region, but abolished the activation induced by the selective 5-HT(1A) agonist, (+)-8-hydroxy-dipropyl-aminotetralin ((+)-8-OH-DPAT, 1 microM), in structures enriched in [3H]S15535 labelling. S15535 did not block 5-HT-stimulated activation in caudate nucleus or substantia nigra, regions where (+)-8-OH-DPAT was ineffective and [3H]S15535 binding was absent. Interestingly, S15535 attenuated (+)-8-OH-DPAT and 5-HT-stimulated G-protein activation in dorsal raphe, a region in which S15535 is known to exhibit agonist properties in vivo [Lejeune, F., Millan, M.J., 1998. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY100,635-reversible actions of the highly selective ligands, flesinoxan and S15535. Synapse 30, 172-180.]. The present data show that (i) [3H]S15535 labels pre- and post-synaptic populations of 5-HT(1A) sites in rat brain sections, (ii) S15535 exhibits antagonist properties at post-synaptic 5-HT(1A) receptors in corticolimbic regions, and (iii) S15535 also attenuates agonist-stimulated G-protein activation at raphe-localised 5-HT(1A) receptors.

  3. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors.

    Science.gov (United States)

    Pazos, M Ruth; Mohammed, Nagat; Lafuente, Hector; Santos, Martin; Martínez-Pinilla, Eva; Moreno, Estefania; Valdizan, Elsa; Romero, Julián; Pazos, Angel; Franco, Rafael; Hillard, Cecilia J; Alvarez, Francisco J; Martínez-Orgado, Jose

    2013-08-01

    The mechanisms underlying the neuroprotective effects of cannabidiol (CBD) were studied in vivo using a hypoxic-ischemic (HI) brain injury model in newborn pigs. One- to two-day-old piglets were exposed to HI for 30 min by interrupting carotid blood flow and reducing the fraction of inspired oxygen to 10%. Thirty minutes after HI, the piglets were treated with vehicle (HV) or 1 mg/kg CBD, alone (HC) or in combination with 1 mg/kg of a CB₂ receptor antagonist (AM630) or a serotonin 5HT(1A) receptor antagonist (WAY100635). HI decreased the number of viable neurons and affected the amplitude-integrated EEG background activity as well as different prognostic proton-magnetic-resonance-spectroscopy (H(±)-MRS)-detectable biomarkers (lactate/N-acetylaspartate and N-acetylaspartate/choline ratios). HI brain damage was also associated with increases in excitotoxicity (increased glutamate/N-acetylaspartate ratio), oxidative stress (decreased glutathione/creatine ratio and increased protein carbonylation) and inflammation (increased brain IL-1 levels). CBD administration after HI prevented all these alterations, although this CBD-mediated neuroprotection was reversed by co-administration of either WAY100635 or AM630, suggesting the involvement of CB₂ and 5HT(1A) receptors. The involvement of CB₂ receptors was not dependent on a CBD-mediated increase in endocannabinoids. Finally, bioluminescence resonance energy transfer studies indicated that CB₂ and 5HT(1A) receptors may form heteromers in living HEK-293T cells. In conclusion, our findings demonstrate that CBD exerts robust neuroprotective effects in vivo in HI piglets, modulating excitotoxicity, oxidative stress and inflammation, and that both CB₂ and 5HT(1A) receptors are implicated in these effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents

    International Nuclear Information System (INIS)

    Leon, A.; Rey, A.; Mallo, L.; Pirmettis, I.; Papadopoulos, M.; Leon, E.; Pagano, M.; Manta, E.; Incerti, M.; Raptopoulou, C.; Terzis, A.; Chiotellis, E.

    2002-01-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand 99m Tc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT 1A antagonist WAY 100635, is reported. Complexes at tracer level 99m TcO[(CH 3 CH 2 ) 2 NCH 2 CH 2 N(CH 2 CH 2 S) 2 ][o-CH 3 OC 6 H 4 N(CH 2 CH 2 ) 2 NCH 2 CH 2 S], 99m Tc-1, and 99m TcO[((CH 3 ) 2 CH) 2 NCH 2 CH 2 N(CH 2 CH 2 S) 2 ][o-CH 3 OC 6 H 4 N (CH 2 CH 2 ) 2 NCH 2 CH 2 S], 99m Tc-2, were prepared using 99m Tc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl 3 (PPh 3 ) 2 as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of 99m Tc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT 1A receptors (IC 50 : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of 99m Tc-1 and 99m Tc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT 1A receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7).

  5. Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents.

    Science.gov (United States)

    León, A; Rey, A; Mallo, L; Pirmettis, I; Papadopoulos, M; León, E; Pagano, M; Manta, E; Incerti, M; Raptopoulou, C; Terzis, A; Chiotellis, E

    2002-02-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand 99mTc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT1A antagonist WAY 100635, is reported. Complexes at tracer level 99mTcO[(CH3CH2)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N(CH2CH2)2NCH2CH2S], 99mTc-1, and 99mTcO[((CH3)2CH)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N (CH2CH2)2NCH2CH2S], 99mTc-2, were prepared using 99mTc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl3(PPh3)2 as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of 99mTc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT1A receptors (IC50 : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of 99mTc-1 and 99mTc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT1A receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7).

  6. Novel mixed ligand technetium complexes as 5-HT{sub 1A} receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Leon, A.; Rey, A. E-mail: arey@bilbo.edu.uy; Mallo, L.; Pirmettis, I.; Papadopoulos, M.; Leon, E.; Pagano, M.; Manta, E.; Incerti, M.; Raptopoulou, C.; Terzis, A.; Chiotellis, E

    2002-02-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand {sup 99m}Tc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT{sub 1A} antagonist WAY 100635, is reported. Complexes at tracer level {sup 99m}TcO[(CH{sub 3}CH{sub 2}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}S){sub 2}][o-CH{sub 3}OC{sub 6}H{sub 4}N(CH{sub 2}CH{sub 2}){sub 2}NCH{sub 2}= CH{sub 2}S], {sup 99m}Tc-1, and {sup 99m}TcO[((CH{sub 3}){sub 2}CH){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}S){sub 2}][o-CH{sub 3}OC{sub 6}H{sub 4}N (CH{sub 2}CH{sub 2}){sub 2}NCH{sub 2}CH{sub 2}S], {sup 99m}Tc-2, were prepared using {sup 99m}Tc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl{sub 3}(PPh{sub 3}){sub 2} as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of {sup 99m}Tc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT{sub 1A} receptors (IC{sub 50} : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of {sup 99m}Tc-1 and {sup 99m}Tc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT{sub 1A} receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7)

  7. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    DEFF Research Database (Denmark)

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley

    2012-01-01

    +/+ mice in all brain regions. Compared to wild-type (WT) littermate controls, 5-HTT OE mice had increased 5-HT4 binding density across all brain regions, except amygdala (118-164% of WT) and this difference between genotypes was reduced by the 5-HTT inhibitor, fluoxetine (20 mg/kg twice daily, 3 d...

  8. Current radiosynthesis strategies for 5-HT2A receptor PET tracers

    DEFF Research Database (Denmark)

    Herth, Matthias M; Knudsen, Gitte M

    2015-01-01

    Serotonin 2A receptors have been implicated in various psychophysiological functions and disorders such as depression, Alzheimer's disease, or schizophrenia. Therefore, neuroimaging of this specific receptor is of significant clinical interest, and it is not surprising that many attempts have been...... made to develop a suitable 5-HT2A R positron emission tomography-tracer. In this review, we give an overview on the precursor, reference compound synthesis, and the preparation of promising 5-HT2A R radiopharmaceuticals applied in positron emission tomography. We also highlight possible learning...

  9. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  10. The 5-HT(1A) receptor agonist, 8-OH-DPAT, attenuates stress-induced anorexia in conjunction with the suppression of hypothalamic serotonin release in rats.

    Science.gov (United States)

    Shimizu, N; Hori, T; Ogino, C; Kawanishi, T; Hayashi, Y

    2000-12-22

    The effect of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on stress-induced anorexia and serotonin (5-HT) release in the rat hypothalamus was studied with brain microdialysis. Subcutaneous injection of 8-OH-DPAT (1 mg/kg) significantly attenuated the immobilization-induced anorexia for 3 h, but had no effect during the following 9 h. Injection of 8-OH-DPAT itself had no effect on basal release of 5-HT, while it significantly blocked the immobilization-induced 5-HT release in the lateral hypothalamus. The results suggest that 8-OH-DPAT attenuated the stress-induced anorexia through the activation of 5-HT(1A) autoreceptors in dorsal raphe nucleus.

  11. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  12. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task.

    Science.gov (United States)

    Meneses, Alfredo

    2004-12-06

    There is an important debate regarding the functional role of the 5-HT(1A) and 5-HT(7) receptor in memory systems. Hence, the objective of this paper is to investigate the function of serotonin (5-hydroxytryptamine, 5-HT) in memory consolidation, utilising an autoshaping Pavlovian/instrumental learning test. Specific antagonists at 5-HT(1A) (WAY 100635) and 5-HT(7) (SB-269970 or DR 4004) receptors administered i.p. or s.c.) after training, significantly decreased the improvement of performance produced by the 5-HT(1A/7) agonist 8-OH-DPAT to levels lower than controls'. These same antagonists attenuated the decreased level of performance produced by mCPP, although they decrease the performance levels after p-chloroamphetamine (PCA) lesion of the 5-HT system, which has no effect on its own on the conditioned response. Moreover, SB-269970 or DR 4004 reversed amnesia induced by scopolamine and dizocilpine. These data confirm a role for 5-HT(1A) and 5-HT(7) receptors in memory formation and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals. These findings support a potential role for both 5-HT(1A) and 5-HT(7) receptors in the pathophysiology and/or treatment of schizophrenia, cognitive deficits and the mechanism of action of atypical antipsychotic drugs.

  13. Refining the Role of 5-HT in Postnatal Development of Brain Circuits

    Directory of Open Access Journals (Sweden)

    Anne Teissier

    2017-05-01

    Full Text Available Changing serotonin (5-hydroxytryptamine, 5-HT brain levels during critical periods in development has long-lasting effects on brain function, particularly on later anxiety/depression-related behaviors in adulthood. A large part of the known developmental effects of 5-HT occur during critical periods of postnatal life, when activity-dependent mechanisms remodel neural circuits. This was first demonstrated for the maturation of sensory brain maps in the barrel cortex and the visual system. More recently this has been extended to the 5-HT raphe circuits themselves and to limbic circuits. Recent studies overviewed here used new genetic models in mice and rats and combined physiological and structural approaches to provide new insights on the cellular and molecular mechanisms controlled by 5-HT during late stages of neural circuit maturation in the raphe projections, the somatosensory cortex and the visual system. Similar mechanisms appear to be also involved in the maturation of limbic circuits such as prefrontal circuits. The latter are of particular relevance to understand the impact of transient 5-HT dysfunction during postnatal life on psychiatric illnesses and emotional disorders in adult life.

  14. 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]ketanserin labeling of 5-hydroxytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5HT2 cDNA: Evidence for multiple states and not multiple 5HT2 receptor subtypes

    International Nuclear Information System (INIS)

    Teitler, M.; Leonhardt, S.; Weisberg, E.L.; Hoffman, B.J.

    1990-01-01

    Evidence has accumulated indicating that the radioactive hallucinogens 4-bromo-[3H](2,5-dimethoxy)phenylisopropylamine ([3H]DOB) and 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine ([125I]DOI) label an agonist high affinity state of the 5-hydroxytryptamine2 (5HT2) receptor and [3H]ketanserin labels both agonist high and low affinity states. Recently, an alternative hypothesis has been put forward proposing that the radioactive hallucinogens are labeling a 5HT2 receptor subtype distinct from the receptor labeled by [3H]ketanserin. In order to provide definitive evidence as to which of these hypotheses is correct, the rat 5HT2 receptor gene was transfected into NIH-3T3 cells and COS cells. Neither nontransfected cell type expresses 5HT2 receptors; the transfected cells expressed high affinity binding sites for both [125I] DOI (KD = 0.8 nM and Bmax = 363 fmol/mg in NIH-3T3 cells; KD = 0.2 nM and Bmax = 26 fmol/mg in COS cells) and [3H]ketanserin (KD = 0.4 nM and Bmax = 5034 fmol/mg in NIH-3T3 cells; KD = 1.0 nM and Bmax = 432 fmol/mg in COS cells). The affinities of agonists and antagonists for the [125I]DOI-labeled receptor were significantly higher than for the [3H]ketanserin-labeled receptor. The affinities of agonists and antagonists for these binding sites were essentially identical to their affinities for the sites radiolabeled by these radioligands in mammalian brain homogenates. The [125I]DOI binding was guanyl nucleotide sensitive, indicating a coupling to a GTP-binding protein. These data indicate that the 5HT2 receptor gene product contains both the guanyl nucleotide-sensitive [125I]DOI binding site and the [3H]ketanserin binding site. Therefore, these data indicate that the 5HT2 receptor gene product can produce a high affinity binding site for the phenylisopropylamine hallucinogen agonists as well as for the 5HT2 receptor antagonists

  15. Liaison of 3H 5-HT and adenyl cyclasic activation induced by the 5-HT in preparations of brain glial membranes

    International Nuclear Information System (INIS)

    Fillion, Gilles; Beaudoin, Dominique; Rousselle, J.-C.; Jacob, Joseph

    1980-01-01

    Purified glial membrane preparations have been isolated from horse brain striatum. Tritiated 5-HT bound to these membranes with a high affinity (K(D)=10 nM); the corresponding bindings is reversible and appears specific of the serotoninergic structure. In parallel, 5-HT activates an adenylate cyclase with a low affinity (K(D)=1 μM). The sites involved in this binding and in this adenylate cyclase activation appear different from the serotoninergic sites reported in the neuronal membrane preparations [fr

  16. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    International Nuclear Information System (INIS)

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan

    2012-01-01

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT 4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT 4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT 4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg −1 ·day −1 , days 36-42), tegaserod (1 mg·kg −1 ·day −1 , day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT 4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT 4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level

  17. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Directory of Open Access Journals (Sweden)

    Chi Yan

    2012-10-01

    Full Text Available Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05 and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05. Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42, tegaserod (1 mg·kg-1·day-1, day 43, or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01 but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654. These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.

  18. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  19. 125I-BH-8-MeO-N-PAT, a new ligand for studying 5-HT1A receptors in the central nervous system

    International Nuclear Information System (INIS)

    Ponchant, M.; Beaucourt, J.P.; Vanhove, A.

    1988-01-01

    Specific radioactive ligands are needed for studying the pharmacological properties and the regional distribution of the different classes of 5-HT 1 receptors within the central nervous system. We describe here the synthesis and some characteristics of the first iodinated specific ligand of 5-HT 1A receptors. Like its parent compound, the agonist 8-hydroxy-2-(di-n-propylamino)tetralin or 8-OH-DPAT, [ 125 I]-BH-8-MeO-N-PAT, exhibits a high affinity and excellent selectivity for 5-HT 1A sites. Its high specific radioactivity makes this ligand a useful tool for studying 5-HT 1A receptors in membranes and sections of the rat brain [fr

  20. Synthesis of a [sup 11]C-labeled novel, quinuclidine based ligand for the 5-HT[sub 3] receptor

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, S; Diksic, M [Montreal Neurological Inst., PQ (Canada); Francis, B; Burns, H D [Merck Research Labs., West Point, PA (United States). Dept. of Radiopharmacology; Swain, C J [Merck Sharp and Dohme Research Labs., Harlow (United Kingdom). Neuroscience Research Centre

    1992-11-01

    L-683,877, a high affinity, 5-HT[sub 3] selective receptor ligand has been labeled with [sup 11]C for use in PET studies to measure regional brain kinetics of L-683,877 and to determine if [[sup 11]C]L-683,877 can be used for serotonin 5-HT[sub 3] receptor imaging. [[sup 11]C]L-683,877 was prepared by reacting [[sup 11]C]methyl iodide with the desmethyl, borane-protected precursor, L-686,472, in DMF in the presence of tetrabutyl ammonium hydroxide. The average specific activity of [[sup 11]C]L-683,877 was 2700 Ci/mmol and the average radiochemical yield (decay corrected)was 20% at the end of synthesis. (Author).

  1. 5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology

    DEFF Research Database (Denmark)

    Peng, Yao; Mccorvy, John D.; Harpsøe, Kasper

    2018-01-01

    Drugs frequently require interactions with multiple targets—via a process known as polypharmacology—to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The comp...... the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs....

  2. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  3. Paroxetine and Low-dose Risperidone Induce Serotonin 5-HT1A and Dopamine D2 Receptor Heteromerization in the Mouse Prefrontal Cortex.

    Science.gov (United States)

    Kolasa, Magdalena; Solich, Joanna; Faron-Górecka, Agata; Żurawek, Dariusz; Pabian, Paulina; Łukasiewicz, Sylwia; Kuśmider, Maciej; Szafran-Pilch, Kinga; Szlachta, Marta; Dziedzicka-Wasylewska, Marta

    2018-05-01

    Recently, it has been shown that serotonin 5-HT 1A receptor interacts with dopamine D2 receptor in vitro. However, the existence of 5-HT 1A -D2 heteromers in native tissue remains unexplored. In the present study, we investigated 5-HT 1A -D2 receptor heteromerization in mice treated acutely or chronically with paroxetine (10 mg/kg) or risperidone (0.05 mg/kg). Receptor heteromerization was visualized and quantified in the mouse brain by in situ proximity ligation assay (PLA). Additionally, we aimed to determine the cellular localization of 5-HT 1A -D2 receptor heteromers in mouse adult primary neuronal cells by immunofluorescent staining with markers for astrocytes (GFAP) and neurons (NeuN and MAP2). The results from the current study demonstrated that 5-HT 1A and D2 receptor co-localization and heteromerization occurred in the mouse prefrontal cortex. Counterstaining after PLA confirmed neuronal (pyramidal and GABAergic) as well as astrocytal localization of 5-HT 1A -D2 receptor heteromers. Chronic administration of paroxetine or risperidone increased the level of 5-HT 1A -D2 receptor heteromers in the prefrontal cortex. These changes were not accompanied by any changes in the expression of mRNAs (measured by in situ hybridization) or densities of 5-HT 1A and D2 receptors (quantified by receptor autoradiography with [3H]8-OH-DPAT and [3H]domperidone, respectively), what all indicated that paroxetine and risperidone facilitated 5-HT 1A -D2 heteromer formation independently of the receptor expression. In vitro homogenous time-resolved FRET (HTRF) study confirmed the ability of tested drugs to influence the human 5-HT 1A -D2 heteromer formation. The obtained data indicate that the increase in 5-HT 1A -D2 receptor heteromerization is a common molecular characteristic of paroxetine and low-dose risperidone treatment. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Detailed characterization of the in vitro pharmacological and pharmacokinetic properties of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (25CN-NBOH), a highly selective and brain-penetrant 5-HT2A receptor agonist

    DEFF Research Database (Denmark)

    Jensen, Anders A; McCorvy, John D; Petersen, Sebastian Leth

    2017-01-01

    ]ketanserin/[3H]mesulergine, [3H]LSD and [3H]Cimbi-36 binding assays (Ki 2C/Ki 2A ratio range 52-81, Ki 2B/Ki 2A ratio 37). Moreover, in inositol phosphate and intracellular Ca2+ mobilization assays 25CN-NBOH exhibited 30- to 180-fold 5-HT2A/5-HT2C selectivities and 54-fold 5-HT2A/5-HT2B selectivity as measured...

  5. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    DEFF Research Database (Denmark)

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine...... about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure...... but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure...

  6. Influence of the 5-HT3A Receptor Gene Polymorphism and Childhood Sexual Trauma on Central Serotonin Activity.

    Directory of Open Access Journals (Sweden)

    Kuk-In Jang

    Full Text Available Gene-environment interactions are important for understanding alterations in human brain function. The loudness dependence of auditory evoked potential (LDAEP is known to reflect central serotonergic activity. Single nucleotide polymorphisms (SNPs in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. This study aimed to investigate the effect between 5-HT3A receptor gene polymorphisms and childhood sexual trauma on the LDAEP as an electrophysiological marker in healthy subjects.A total of 206 healthy subjects were recruited and evaluated using the childhood trauma questionnaire (CTQ and hospital anxiety and depression scale (HADS. Peak-to-peak N1/P2 was measured at five stimulus intensities, and the LDAEP was calculated as the linear-regression slope. In addition, the rs1062613 SNPs of 5-HT3A (CC, CT, and TT were analyzed in healthy subjects.There was a significant interaction between scores on the CTQ-sexual abuse subscale and 5-HT3A genotype on the LDAEP. Subjects with the CC polymorphism had a significantly higher LDEAP than T carriers in the sexually abused group. In addition, CC genotype subjects in the sexually abused group showed a significantly higher LDAEP compared with CC genotype subjects in the non-sexually abused group.Our findings suggest that people with the CC polymorphism of the 5-HT3A gene have a greater risk of developing mental health problems if they have experienced childhood sexual abuse, possibly due to low central serotonin activity. Conversely, the T polymorphism may be protective against any central serotonergic changes following childhood sexual trauma.

  7. Central Serotonin-2A (5-HT2A Receptor Dysfunction in Depression and Epilepsy: The Missing Link?

    Directory of Open Access Journals (Sweden)

    Bruno Pierre Guiard

    2015-03-01

    Full Text Available 5-Hydroxytryptamine 2A receptors (5-HT2A-Rs are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.

  8. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression,Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Institute of Scientific and Technical Information of China (English)

    Mei-Yan Liu; Yah-Ping Ren; Wan-Lin Wei; Guo-Xiang Tian; Guo Li

    2015-01-01

    Background:To evaluate whether serotonin (5-HT),5-HT2A receptor (5-HT2AR),and 5-HT transporter (serotonin transporter [SERT]) are associated with different disease states of depression,myocardial infarction (MI) and MI co-exist with depression in Sprague-Dawley rats.Methods:After established the animal model of four groups include control,depression,MI and MI with depression,we measured 5-HT,5-HT2AR and SERT from serum and platelet lysate.Results:The serum concentration of 5-HT in depression rats decreased significantly compared with the control group (303.25 ± 9.99 vs.352.98 ± 13.73;P =0.000),while that in MI group increased (381.78 ± 14.17 vs.352.98 ± 13.73;P =0.000).However,the depression + MI group had no change compared with control group (360.62 ± 11.40 vs.352.98 ± 13.73;P =0.036).The changes of the platelet concentration of 5-HT in the depression,MI,and depression + MI group were different from that of serum.The levels of 5-HT in above three groups were lower than that in the control group (380.40 ± 17.90,387.75 ± 22.28,246.40 ± 18.99 vs.500.29 ± 20.91;P =0.000).The platelet lysate concentration of 5-HT2AR increased in depression group,MI group,and depression + MI group compared with the control group (370.75 ± 14.75,393.47 ± 15.73,446.66 ± 18.86 vs.273.66 ± 16.90;P =0.000).The serum and platelet concentration of SERT in the depression group,MI group and depression + MI group were all increased compared with the control group (527.51 ± 28.32,602.02 ± 23.32,734.76 ± 29.59 vs.490.56 ± 16.90;P =0.047,P =0.000,P =0.000 in each and 906.38 ± 51.84,897.33 ± 60.34,1030.17 ± 58.73 vs.708.62 ± 51.15;P =0.000 in each).Conclusions:The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression.Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  9. Management of skin cancer by agonists of 5-HT1A and antagonists of 5-HT2A receptors

    OpenAIRE

    Menezes, Ana Catarina da Silva Fernandes Saraiva de

    2015-01-01

    Tese de mestrado, Ciências Biofarmacêuticas, Universidade de Lisboa, Faculdade de Farmácia, 2015 A pele é o maior órgão humano e apresenta funções importantes quer a nível neuroendócrino, quer imunológico. A presença de um análogo do eixo hipotalâmico-hipofisário-adrenal na pele permite reagir a fatores externos de stress e modular as funções da mesma, tais como a melanogénese. A serotonina (5-hidroxitriptamina, 5-HT) é um neuromodelador importante que atua como fator de crescimento no can...

  10. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    International Nuclear Information System (INIS)

    Burris, K.D.; Breeding, M.; Sanders-Bush, E.

    1991-01-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD

  11. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice.

    Directory of Open Access Journals (Sweden)

    Yvonne Couch

    Full Text Available It is well documented that serotonin (5-HT plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS, which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p., at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS.

  12. Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron.

    Science.gov (United States)

    Steward, L. J.; Ge, J.; Bentley, K. R.; Barber, P. C.; Hope, A. G.; Lambert, J. J.; Peters, J. A.; Blackburn, T. P.; Barnes, N. M.

    1995-01-01

    1. The radioligand binding characteristics of the 3H-derivative of the novel 5-HT3 receptor antagonist BRL46470 were investigated and directly compared to the well characterized 5-HT3 receptor radioligand [3H]-granisetron, in tissue homogenates prepared from rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen. 2. In rat cerebral cortex/hippocampus, rat ileum, NG108-15 cell and HEK-5-HT3As cell homogenates, [3H]-BRL46470 bound with high affinity (Kd (nM): 1.57 +/- 0.18, 2.49 +/- 0.30, 1.84 +/- 0.27, 3.46 +/- 0.36, respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 102 +/- 16, 44 +/- 4, 968 +/- 32 and 2055 +/- 105, respectively; mean +/- s.e. mean, n = 3-4) but failed to display specific binding in human putamen homogenates. 3. In the same homogenates of rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen as used for the [3H]-BRL46470 studies, [3H]-granisetron also bound with high affinity (Kd (nM): 1.55 +/- 0.61, 2.31 +/- 0.44, 1.89 +/- 0.36, 2.03 +/- 0.42 and 6.46 +/- 2.58 respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 39 +/- 4, 20 +/- 2, 521 +/- 47, 870 +/- 69 and 18 +/- 2, respectively; mean +/- s.e. mean, n = 3-4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528560

  13. Attention switching after dietary brain 5-HT challenge in high impulsive subjects.

    Science.gov (United States)

    Markus, C Rob; Jonkman, Lisa M

    2007-09-01

    High levels of impulsivity have adverse effects on performance in cognitive tasks, particularLy in those tasks that require high attention investment. Furthermore, both animal and human research has indicated that reduced brain serotonin (5-HT) function is associated with increases in impulsive behaviour or decreased inhibition ability, but the effects of 5-HT challenge have not yet been investigated in subjects vulnerable to impulsivity. The present study aimed to investigate whether subjects with high trait impulsivity perform worse than low impulsive subjects in a task switching paradigm in which they have to rapidly shift their attention between two response rules, and to investigate the influence of a 5-HT enhancing diet. Healthy subjects with high ( n = 19) and low (n = 18) trait impulsivity scores participated in a double-blind placebo-controlled study. All subjects performed the attention switch task in the morning following breakfast containing either tryptophan-rich alpha-lactalbumin (4.8 g/100 g TRP) or placebo protein (1.4 g/100 g TRP). Whereas there were no baseline differences between high and low impulsive subjects in task switching abilities, high impulsive subjects made significantly more switch errors and responded slower after dietary 5-HT stimulation, whereas no dietary effects were found on task switching performance in low-impulsive subjects. The deterioration in task switching performance induced by the 5-HT enhancing diet in high impulsive subjects was suggested to be established by general arousal/attention-reducing effects of 5-HT, which might have a larger impact in high impulsive subjects due to either different brain circuitry involved in task switching in this group or lower baseline arousal levels.

  14. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Science.gov (United States)

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  15. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Directory of Open Access Journals (Sweden)

    Xavier Viñals

    2015-07-01

    Full Text Available Activation of cannabinoid CB1 receptors (CB1R by delta9-tetrahydrocannabinol (THC produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  16. [carbonyl-11C]Desmethyl-WAY-100635 (DWAY) is a potent and selective radioligand for central 5-HT1A receptors in vitro and in vivo

    International Nuclear Information System (INIS)

    Pike, V.W.; McCarron, J.A.; Hirani, E.; Hume, S.P.; Osman, S.; Poole, K.G.; Wikstroem, H.; Mensonidas, M.

    1998-01-01

    In this study we set out to assess the ability of DWAY to enter brain in vivo and to elucidate its possible interaction with 5-HT 1A receptors. Desmethyl-WAY-100635 was labelled efficiently with carbon-11 in high specific radioactivity by reaction of its descyclohexanecarbonyl analogue with [carbonyl- 11 C]cyclohexanecarbonyl chloride. The product was separated in high radiochemical purity by HPLC. Rats were injected intravenously with DWAY, sacrificed and dissected to establish radioactivity content in brain tissues. At 60 min after injection, the ratios of radioactivity concentration in each brain region to that in cerebellum correlated with previous in vitro and in vivo measures of 5-HT 1A receptor density. The highest ratio was about 22 in hippocampus. Radioactivity cleared rapidly from plasma; HPLC analysis revealed that DWAY represented 55% of the radioactivity in plasma at 5 min and 33% at 30 min. Only polar radioactive metabolites were detected. Subsequently, a cynomolgus monkey was injected intravenously with DWAY and examined by PET. Maximal whole brain uptake of radioactivity was 5.7% of the administered dose at 5 min after injection. The image acquired between 9 and 90 min showed high radioactivity uptake in brain regions rich in 5-HT 1A receptors, moderate uptake in raphe nuclei and low uptake in cerebellum. A transient equilibrium was achieved in cortical regions at about 60 min, when the ratio of radioactivity concentration in frontal cortex to tcat in cerebellum reached 6. The corresponding ratio for raphe nuclei was about 3. Radioactive metabolites appeared rapidly in plasma, but these were all more polar than DWAY, which represented 52% of the radioactivity in plasma at 4 min and 20% at 55 min. In a second PET experiment, in which a cynomolgus monkey was pretreated with the selective 5-HT 1A receptor antagonist, WAY-100635, at 25 min before DWAY injection, radioactivity in all brain regions was reduced to that in cerebellum. Autoradiography of

  17. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Göttingen minipig

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Lind, Nanna M; Gillings, Nic

    2009-01-01

    This study investigates 5-hydroxytryptamine 4 (5-HT(4)) receptor binding in the minipig brain with positron emission tomography (PET), tissue homogenate-binding assays, and autoradiography in vitro. The cerebral uptake and binding of the novel 5-HT(4) receptor radioligand [(11)C]SB207145 in vivo...... was modelled and the outcome compared with postmortem receptor binding. Different models for quantification of [(11)C]SB207145 binding were evaluated: One-tissue and two-tissue compartment kinetic modelling, Logan arterial input, and three different reference tissue models. We report that the pig...... model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT(4) receptor concentrations determined in brain homogenates from the same regions, except...

  18. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder.

    Science.gov (United States)

    Larisch, R; Klimke, A; Mayoral, F; Hamacher, K; Herzog, H R; Vosberg, H; Tosch, M; Gaebel, W; Rivas, F; Coenen, H H; Müller-Gärtner, H W

    2001-08-01

    The characteristics of 5HT2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p depression rather than by medication. The data suggest that 5HT2 receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness.

  19. 5-HT4 receptors mediating enhancement of contractility in canine stomach; an in vitro and in vivo study

    NARCIS (Netherlands)

    Prins, NH; van der Grijn, A; Lefebvre, RA; Akkermans, LMA; Schuurkes, JAJ

    1 We aimed to study 5-HT4 receptors in canine stomach contractility both in vivo and in vitro. 2 In anaesthetized Beagle dogs, the selective 5-HT4 receptor agonist prucalopride (i.v.) induced dose-dependent tonic stomach contractions under isobaric conditions, an effect that was antagonized by the

  20. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    NARCIS (Netherlands)

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using

  1. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  3. Synthesis, radiolabeling and bioevaluation of a novel arylpiperazine derivative containing triazole as a 5-HT1A receptor imaging agents

    International Nuclear Information System (INIS)

    Hassanzadeh, Leila; Erfani, Mostafa; Najafi, Reza; Shafiei, Mohammad; Amini, Mohsen; Shafiee, Abbass; Ebrahimi, Seyed Esmaeil Sadat

    2013-01-01

    Introduction: It has been recognized that serotonin plays a main role in various pathological conditions such as anxiety, depression, aggressiveness, schizophrenia, suicidal behavior, panic and autism. 1-(2-Methoxyphenyl) piperazine pharmacophore, a fragment of the true 5-HT 1A antagonist WAY100635, is found in numerous selective 5-HT 1A imaging agents. In this paper, we have reported the synthesis of a novel derivative of 1-(2-methoxyphenyl) piperazine that is labeled with 99m Tc (CO) 3 via click chemistry. Methods: The bidentate alkyne, propargylglycine was reacted with phenyl piperazine triazole derivative in the presence of a catalytic amount of Cu (I) to form tridentate ligand. The ligand was radiolabeled with the precursor [ 99m Tc] [(H 2 O) 3 (CO) 3 ] + and characterized by HPLC. The bioevaluation of radio labeled ligand was carried out in rats. Results: Triazole complex was labeled by 99m Tc-tricarbonyl and its radiochemical yield was more than > 95% which was determined by HPLC. In vivo stability studies in human serum albumin show a 93% ratio of complex after a 24 h period. The calculated partition coefficient (logP) was 0.34 ± 0.02. Receptor binding assays indicated about 70% specific binding of radioligand to 5-HT 1A receptors. Biodistribution studies have shown brain hippocampus uptake of 0.40 ± 0.08 %ID/g at 30 min post injection. Conclusions: Results indicate that this 99m Tc-tricabonyl-arylpiperazine derivative has specific binding to 5-HT 1A receptors and presented suitable characters for its use as a CNS imaging agent

  4. 5-HT6 receptor antagonist attenuates the memory deficits associated with neuropathic pain and improves the efficacy of gabapentinoids.

    Science.gov (United States)

    Jayarajan, Pradeep; Nirogi, Ramakrishna; Shinde, Anil; Goura, Venkatesh; Babu, Vuyyuru Arun; Yathavakilla, Sumanth; Bhyrapuneni, Gopinadh

    2015-10-01

    Memory deficit is a co-morbid disorder in patients suffering from neuropathic pain. Gabapentin and pregabalin (gabapentinoids) are among the widely prescribed medications for the treatment of neuropathic pain. Memory loss and sedation are the commonly reported side effects with gabapentinoids. Improving the cognitive functions and attenuating drug-induced side effects may play a crucial role in the management of pain. We evaluated the effects of 5-HT6 receptor antagonists on the memory deficits associated with neuropathy. We also studied the effects of 5-HT6 receptor antagonists on the side effects, and the analgesic effects of gabapentinoids. 5-HT6 receptor antagonists attenuated the cognitive deficits in neuropathic rats. Neuropathic rats co-treated with 5-HT6 receptor antagonist and gabapentinoids showed improvement in memory. 5-HT6 receptor antagonists enhanced the analgesic effects of gabapentinoids but had no effect on the motor side effects. The observed effects may not be due to pharmacokinetic interactions. 5-HT6 receptor antagonist attenuate the cognitive deficits associated with neuropathy, and this effect is also seen when co-treated with gabapentinoids. Since, 5-HT6 antagonists improved the effectiveness of gabapentinoids, reduction in the dosage and frequency of gabapentinoids treatment may reduce the side effects. Combining 5-HT6 receptor antagonist with gabapentinoids may offer a novel treatment strategy for neuropathic pain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Differential effects of centrally-active antihypertensives on 5-HT1A receptors in rat dorso-lateral septum, rat hippocampus and guinea-pig hippocampus.

    Science.gov (United States)

    Leishman, D J; Boeijinga, P H; Galvan, M

    1994-01-01

    1. The electrophysiological responses elicited by 5-hydroxytryptamine1A-(5-HT1A) receptor agonists in rat and guinea-pig CA1 pyramidal neurones and rat dorso-lateral septal neurones were compared in vitro by use of conventional intracellular recording techniques. 2. In the presence of 1 microM tetrodotoxin (TTX), to prevent indirect effects, 5-HT, N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT) and 8-hydroxy-2(di-n-propylamino) tetralin (8-OH-DPAT) hyperpolarized the neurones from rat and guinea-pig brain. 3. The hypotensive drug flesinoxan, a selective 5-HT1A receptor agonist, hyperpolarized neurones in all three areas tested; however, another hypotensive agent with high affinity at 5-HT1A-receptors, 5-methyl-urapidil, hyperpolarized only the neurones in rat hippocampus and septum. 4. In guinea-pig hippocampal neurones, 5-methyl-urapidil behaved as a 5-HT1A-receptor antagonist. 5. The relative efficacies (5-HT = 1) of DP-5-CT, 8-OH-DPAT, flesinoxan and 5-methyl-urapidil at the three sites were: rat hippocampus, 1.09, 0.7, 0.5 and 0.24; rat septum, 0.88, 0.69, 0.82 and 0.7; guinea-pig hippocampus, 1.0, 0.69, 0.89 and 0, respectively. 6. It is concluded that the hypotensive agents flesinoxan and 5-methyl-urapidil appear to have different efficacies at 5-HT1A receptors located in different regions of the rodent brain. Whether these regional and species differences arise from receptor plurality or variability in intracellular transduction mechanisms remains to be elucidated.

  6. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Science.gov (United States)

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain.

    Science.gov (United States)

    Tomie, Arthur; Di Poce, Jason; Aguado, Allison; Janes, Amy; Benjamin, Daniel; Pohorecky, Larissa

    2003-06-13

    Effects of experience with Pavlovian autoshaping procedures on lever-press autoshaping conditioned response (CR) performance and 3H-8-OH-DPAT-labeled binding of 5-HT(1a) receptors as well as 125I-LSD-labeled binding of 5-HT(2a) receptors were evaluated in four groups of male Long-Evans hooded rats. Two groups of rats (Group Paired High CR and Group Paired Low CR) received Pavlovian autoshaping procedures wherein the presentation of a lever (conditioned stimulus, CS) was followed by the response-independent presentation of food (unconditioned stimulus, US). Rats in Group Paired High CR (n=12) showed more rapid CR acquisition and higher asymptotic levels of lever-press autoshaping CR performance relative to rats in Group Low CR (n=12). Group Omission (n=9) received autoshaping with an omission contingency, such that performing the lever-press autoshaping CR resulted in the cancellation the food US, while Group Random (n=9) received presentations of lever CS and food US randomly with respect to one another. Though Groups Omission and Random did not differ in lever-press autoshaping CR performance, Group Omission showed significantly lower levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in post-synaptic areas (frontal cortex, septum, caudate putamen), as well as significantly higher plasma corticosterone levels than Group Random. In addition, Group Random showed higher levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in pre-synaptic somatodendritic autoreceptors on dorsal raphe nucleus relative to each of the other three groups. Autoradiographic analysis of 125I-LSD-labeled 5-HT(2a) receptor binding revealed no significant differences between Groups Paired High CR and Paired Low CR or between Groups Omission and Random in any brain regions.

  8. 5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, Hoplobatrachus tigerinus

    Science.gov (United States)

    Ali, Sharique A; Salim, Saima; Sahni, Tarandeep; Peter, Jaya; Ali, Ayesha S

    2012-01-01

    BACKGROUND AND PURPOSE Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance. EXPERIMENTAL APPROACH Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. In vitro responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells. KEY RESULTS 5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1 × 10−6 g·mL−1. Specific 5-HT1 and 5-HT2 receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT3 and 5-HT4 receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT. CONCLUSIONS AND IMPLICATIONS The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian. PMID:21880033

  9. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    Directory of Open Access Journals (Sweden)

    Drew J. Puxty

    2017-07-01

    Full Text Available Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol, which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg, combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg. Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations. Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  10. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Science.gov (United States)

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  11. Characterization of the binding of /sup 3/H-norzimeldine, a 5-HT uptake inhibitor, to rat brain homogenates

    Energy Technology Data Exchange (ETDEWEB)

    Hall, H. (Department of Biochemical Neuropharmacology, Research and Development Laboratories, Astra Laekemedel, Soedertaelje, Sweden)

    1984-01-01

    The binding of radiolabelled norzimeldine, a potent selective 5-HT reuptake inhibitor, to rat brain homogenates is described. /sup 3/H-Norzimeldine binds to a site with high affinity (Ksub(D) = 10.5 nM) in a saturable manner (Bsub(max) = 15.4 pmol/g wet weight in the cerebral cortex). The number of binding sites in the various regions of the brain parallels the capacity of the 5-HT reuptake mechanism. Drugs that inhibit the reuptake of 5-HT are also potent inhibitors of the /sup 3/H-norzimeldine binding, as are the tricyclic antidepressants, which are non-specific inhibitors of the noradrenaline and the 5-HT reuptake. Lesioning experiments using DSP4 (a NA neurotoxin) and p-chloroamphetamine (a 5-HT neurotoxin) suggest that the binding site is located on the presynaptic 5-HT nerve terminal, although a small component of the binding may be to noradrenergic uptake sites as well.

  12. Characterization of the binding of 3H-norzimeldine, a 5-HT uptake inhibitor, to rat brain homogenates

    International Nuclear Information System (INIS)

    Hall, H.

    1984-01-01

    The binding of radiolabelled norzimeldine, a potent selective 5-HT reuptake inhibitor, to rat brain homogenates is described. 3 H-Norzimeldine binds to a site with high affinity (Ksub(D) = 10.5 nM) in a saturable manner (Bsub(max) = 15.4 pmol/g wet weight in the cerebral cortex). The number of binding sites in the various regions of the brain parallels the capacity of the 5-HT reuptake mechanism. Drugs that inhibit the reuptake of 5-HT are also potent inhibitors of the 3 H-norzimeldine binding, as are the tricyclic antidepressants, which are non-specific inhibitors of the noradrenaline and the 5-HT reuptake. Lesioning experiments using DSP4 (a NA neurotoxin) and p-chloroamphetamine (a 5-HT neurotoxin) suggest that the binding site is located on the presynaptic 5-HT nerve terminal, although a small component of the binding may be to noradrenergic uptake sites as well.(author)

  13. Extended N-Arylsulfonylindoles as 5-HT6 Receptor Antagonists: Design, Synthesis & Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Gonzalo Vera

    2016-08-01

    Full Text Available Based on a known pharmacophore model for 5-HT6 receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT6 receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT6 receptor functional assays. Compounds 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-tosyl-1H-indol-3-ylethanol (4b, 1-(1-(4-iodophenylsulfonyl-1H-indol-3-yl-2-(4-(2-methoxyphenylpiperazin-1-ylethanol (4g and 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-(naphthalen-1-ylsulfonyl-1H-indol-3-ylethanol (4j showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83. Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM in calcium mobilisation functional assay.

  14. Cannabis Users Show Enhanced Expression of CB1-5HT2A Receptor Heteromers in Olfactory Neuroepithelium Cells.

    Science.gov (United States)

    Galindo, Liliana; Moreno, Estefanía; López-Armenta, Fernando; Guinart, Daniel; Cuenca-Royo, Aida; Izquierdo-Serra, Mercè; Xicota, Laura; Fernandez, Cristina; Menoyo, Esther; Fernández-Fernández, José M; Benítez-King, Gloria; Canela, Enric I; Casadó, Vicent; Pérez, Víctor; de la Torre, Rafael; Robledo, Patricia

    2018-01-02

    Cannabinoid CB1 receptors (CB 1 R) and serotonergic 2A receptors (5HT 2A R) form heteromers in the brain of mice where they mediate the cognitive deficits produced by delta-9-tetrahydrocannabinol. However, it is still unknown whether the expression of this heterodimer is modulated by chronic cannabis use in humans. In this study, we investigated the expression levels and functionality of CB 1 R-5HT 2A R heteromers in human olfactory neuroepithelium (ON) cells of cannabis users and control subjects, and determined their molecular characteristics through adenylate cyclase and the ERK 1/2 pathway signaling studies. We also assessed whether heteromer expression levels correlated with cannabis consumption and cognitive performance in neuropsychological tests. ON cells from controls and cannabis users expressed neuronal markers such as βIII-tubulin and nestin, displayed similar expression levels of genes related to cellular self-renewal, stem cell differentiation, and generation of neural crest cells, and showed comparable Na + currents in patch clamp recordings. Interestingly, CB 1 R-5HT 2A R heteromer expression was significantly increased in cannabis users and positively correlated with the amount of cannabis consumed, and negatively with age of onset of cannabis use. In addition, a negative correlation was found between heteromer expression levels and attention and working memory performance in cannabis users and control subjects. Our findings suggest that cannabis consumption regulates the formation of CB 1 R-5HT 2A R heteromers, and may have a key role in cognitive processing. These heterodimers could be potential new targets to develop treatment alternatives for cognitive impairments.

  15. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    Science.gov (United States)

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Oppositional effects of serotonin receptors 5-HT1a, 2 and 2c in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    2010-07-01

    Full Text Available Serotonin (5-HT appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lack acute effects on adult neurogenesis in many studies, which suggests a surprising long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT

  17. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    Science.gov (United States)

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  18. [{sup 18}F]F15599, a novel 5-HT{sub 1A} receptor agonist, as a radioligand for PET neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, Laetitia; Verdurand, Mathieu [Universite de Lyon, Laboratory of Neuropharmacology, Lyon (France); CERMEP - Imagerie du Vivant, PET Department, Lyon (France); Vacher, Bernard; Blanc, Elodie; Newman-Tancredi, Adrian [Centre de Recherches Pierre Fabre, Castres (France); Le Bars, Didier [CERMEP - Imagerie du Vivant, PET Department, Lyon (France); Zimmer, Luc [Universite de Lyon, Laboratory of Neuropharmacology, Lyon (France); CERMEP - Imagerie du Vivant, PET Department, Lyon (France); CERMEP - Imagerie du Vivant, ANIMAGE Department, Lyon (France)

    2010-03-15

    The serotonin-1A (5-HT{sub 1A}) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT{sub 1A} receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT{sub 1A} receptors. Since all clinical PET 5-HT{sub 1A} radiopharmaceuticals are antagonists, it is of great interest to develop a{sup 18}F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{l_brace}[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl{r_brace}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT{sub 1A} receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT{sub 1A} receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [{sup 18}F]MPPF, a validated 5-HT{sub 1A} antagonist radiopharmaceutical. The chemical and radiochemical purities of [{sup 18}F]F15599 were >98%. In vitro [{sup 18}F ]F15599 binding was consistent with the known 5-HT{sub 1A} receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [{sup 18}F ]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [{sup 18}F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT{sub 1A} antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer

  19. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors.

    Science.gov (United States)

    Yamaguchi, T; Suzuki, M; Yamamoto, M

    1997-12-01

    Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.

  20. Modulation by calcineurin of 5-HT3 receptor function in NG108-15 neuroblastoma x glioma cells

    NARCIS (Netherlands)

    Boddeke, HWGM; Meigel, [No Value; Boeijinga, P; Arbuckle, J; Docherty, RJ

    1 We have investigated the mechanism of regulation of 5-HT3 receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2 The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants,

  1. Modulation by calcineurin of 5-HT3receptor function in NG108-15 neuroblastoma x glioma cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Meigel, I.; Boeijinga, P.; Arbuckle, J.; Docherty, R.J.

    1996-01-01

    1. We have investigated the mechanism of regulation of 5-HT3receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2. The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants,

  2. Functional characterization of 5-HT1B receptor drugs in nonhuman primates using simultaneous PET-MR

    DEFF Research Database (Denmark)

    Hansen, Hanne D.; Mandeville, Joseph B.; Sander, Christin Y.

    2017-01-01

    In the present study, we used a simultaneous PET-MR experimental design to investigate the effects of functionally different compounds (agonist, partial agonist, and antagonist) on 5-HT1B receptor (5-HT1BR) occupancy and the associated hemodynamic responses. In anesthetized male nonhuman primates...

  3. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    Science.gov (United States)

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  4. Serotonergic Regulation of Prefrontal Cortical Circuitries Involved in Cognitive Processing: A Review of Individual 5-HT Receptor Mechanisms and Concerted Effects of 5-HT Receptors Exemplified by the Multimodal Antidepressant Vortioxetine.

    Science.gov (United States)

    Leiser, Steven C; Li, Yan; Pehrson, Alan L; Dale, Elena; Smagin, Gennady; Sanchez, Connie

    2015-07-15

    It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.

  5. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  7. Serotonin 5HT1A receptor availability and pathological crying after stroke

    DEFF Research Database (Denmark)

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...... by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS: We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS: The maps showed highest...

  8. GABA(A)-benzodiazepine receptor complex sensitivity in 5-HT(1A) receptor knockout mice on a 129/Sv background.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Oosting, R.S.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2002-01-01

    Previous studies in 5-HT(1A) receptor knockout (1AKO) mice on a mixed Swiss Websterx129/Sv (SWx129/Sv) and a pure 129/Sv genetic background suggest a differential gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor complex sensitivity in both strains, independent from the anxious phenotype. To

  9. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    OpenAIRE

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited...

  10. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    Science.gov (United States)

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Labeling and preliminary in vivo evaluation of the 5-HT7 receptor selective agonist [(11)C]E-55888

    DEFF Research Database (Denmark)

    Hansen, Hanne D; Andersen, Valdemar L; Lehel, Szabolcs

    2015-01-01

    E-55888 has been identified as a selective serotonin 7 (5-HT7) receptor agonist. In this study, we describe the synthesis, radiolabeling and in vivo evaluation of [(11)C]E-55888 as a radioligand for positron emission tomography (PET) imaging. [(11)C]E-55888 was obtained by N-methylation of an app...... neither be displaced by the structurally different 5-HT7 receptor ligand SB-269970 nor by self-block with unlabeled E-55888. Based on these data, [(11)C]E-55888 does not show promise as a PET radioligand for imaging the 5-HT7 receptor in vivo....

  12. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study

    NARCIS (Netherlands)

    Compton, J.; Travis, M. J.; Norbury, R.; Erlandsson, K.; van Amelsvoort, T.; Daly, E.; Waddington, W.; Matthiasson, P.; Eersels, J. L. H.; Whitehead, M.; Kerwin, R. W.; Ell, P. J.; Murphy, D. G. M.

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human

  13. OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding.

    Science.gov (United States)

    Pittenger, Christopher; Adams, Thomas G; Gallezot, Jean-Dominique; Crowley, Michael J; Nabulsi, Nabeel; James Ropchan; Gao, Hong; Kichuk, Stephen A; Simpson, Ryan; Billingslea, Eileen; Hannestad, Jonas; Bloch, Michael; Mayes, Linda; Bhagwagar, Zubin; Carson, Richard E

    2016-05-15

    Obsessive-compulsive disorder (OCD) is characterized by impaired sensorimotor gating, as measured using prepulse inhibition (PPI). This effect may be related to abnormalities in the serotonin (5-HT) system. 5-HT1B agonists can impair PPI, produce OCD-like behaviors in animals, and exacerbate OCD symptoms in humans. We measured 5-HT1B receptor availability using (11)C-P943 positron emission tomography (PET) in unmedicated, non-depressed OCD patients (n=12) and matched healthy controls (HC; n=12). Usable PPI data were obtained from 20 of these subjects (10 from each group). There were no significant main effects of OCD diagnosis on 5-HT1B receptor availability ((11)C-P943 BPND); however, the relationship between PPI and (11)C-P943 BPND differed dramatically and significantly between groups. 5-HT1B receptor availability in the basal ganglia and thalamus correlated positively with PPI in controls; these correlations were lost or even reversed in the OCD group. In cortical regions there were no significant correlations with PPI in controls, but widespread positive correlations in OCD patients. Positive correlations between 5-HT1B receptor availability and PPI were consistent across diagnostic groups only in two structures, the orbitofrontal cortex and the amygdala. Differential associations of 5-HT1B receptor availability with PPI in patients suggest functionally important alterations in the serotonergic regulation of cortical/subcortical balance in OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Actions of 5-hydroxytryptamine and 5-HT1A receptor ligands on rat dorso-lateral septal neurones in vitro.

    Science.gov (United States)

    Van den Hooff, P; Galvan, M

    1992-08-01

    1. The actions of 5-hydroxytryptamine (5-HT) and some 5-HT1A receptor ligands on neurones in the rat dorso-lateral septal nucleus were recorded in vitro by intracellular recording techniques. 2. In the presence of tetrodotoxin (1 microM) to block any indirect effects, bath application of 5-HT (0.3-30 microM) hyperpolarized the neurones in a concentration-dependent manner and reduced membrane resistance. The hyperpolarization did not exhibit desensitization and was sometimes followed by a small depolarization. 3. The 5-HT1A receptor ligands, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT) and buspirone but not the non-selective 5-HT1 receptor agonist, 1-m-trifluoromethylphenylpiperazine (TFMPP), also hyperpolarized the neurones. 4. 5-HT, 8-OH-DPAT and DP-5-CT appeared to act as full agonists whereas buspirone behaved as a partial agonist. The estimated EC50S were: DP-5-CT 15 nM, 8-OH-DPAT 110 nM, 5-HT 3 microM and buspirone 110 nM. 5. At a concentration of 3 microM, the putative 5-HT1A receptor antagonists, spiperone, methiothepin, NAN-190 (1-(2-methoxyphenyl)-4-[4-(2-pthalimido)butyl]piperazine) and MDL 73005EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8- azaspiro[4,5]decane-7,9-dione methyl sulphonate), produced a parallel rightward shift in the concentration-response curve to 5-HT with no significant reduction in the maximum response. The estimated pA2 values were: NAN-190 6.79, MDL 73005EF 6.59, spiperone 6.54 and methiothepin 6.17.6. The 5-HT2/5-HTlc receptor antagonist, ketanserin (3 microM) and the 5HT3 receptor antagonist, tropisetron (3 microM) did not antagonize the 5-HT-induced hyperpolarizations; however, ketanserin blocked the depolarization which sometimes followed the hyperpolarization.7. It is concluded that the 5-HT-induced membrane hyperpolarization of rat dorso-lateral septal neurones is mediated by 5-HTA receptors.

  15. Reversal of sibutramine-induced anorexia with a selective 5-HT(2C) receptor antagonist.

    Science.gov (United States)

    Higgs, Suzanne; Cooper, Alison J; Barnes, Nicholas M

    2011-04-01

    The monoamine reuptake inhibitor sibutramine reduces food intake but the receptor subtypes mediating the effects of sibutramine on feeding remain to be clearly identified. The involvement of the 5-HT(2C) receptor subtype in the satiety-enhancing effects of sibutramine was investigated by examining the effects of co-administration of sibutramine with the selective 5-HT(2C) receptor antagonist SB 242084 Microstructural analyses of licking for a glucose solution by non-deprived, male rats were performed over a range of doses of sibutramine to identify a selective satiety-enhancing dose (experiment 1). Similar analyses were performed after administration of a vehicle control, two doses of SB 242084 alone or two doses of SB 242084 in combination with sibutramine (experiment 2). Sibutramine at doses of 1-3 mg/kg selectively reduced glucose consumption via a reduction in the number of bouts of licking. Non-selective effects to increase latency to lick were only observed at the higher dose of 6 mg/kg. Co-administration of sibutramine (3 mg/kg) with SB 242084 (1 or 3 mg/kg) reversed the effect of sibutramine on bout number whereas either dose of SB 242084 alone had no significant effect. We confirm behaviourally selective effects of sibutramine on feeding and provide further support for the satiety-enhancing effects of sibutramine. Our data also provide evidence for the involvement of the 5-HT(2C) receptor in the satiety-enhancing effects of sibutramine although additional targets may have an impact, and further investigation of the molecular mechanisms underlying the efficacy of sibutramine as an anorectic is warranted.

  16. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  17. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Rabie Mohammadi

    2016-07-01

    Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus.

  18. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    Science.gov (United States)

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    Science.gov (United States)

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  20. Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of granisetron derivatives.

    Science.gov (United States)

    Vernekar, Sanjeev Kumar V; Hallaq, Hasan Y; Clarkson, Guy; Thompson, Andrew J; Silvestri, Linda; Lummis, Sarah C R; Lochner, Martin

    2010-03-11

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT(3)A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT(3)A receptors in mammalian cells.

  1. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  2. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder

    International Nuclear Information System (INIS)

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W.; Klimke, A.; Gaebel, W.; Mayoral, F.; Rivas, F.; Hamacher, K.; Coenen, H.H.; Herzog, H.R.

    2001-01-01

    Aim: The characteristics of 5HT 2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p 2 receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.) [de

  3. [11C]WAY-100635 PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sasai, Taeko; Matsuura, Masato; Itou, Shigeo; Suhara, Tetsuya; Yahata, Noriaki; Okubo, Yoshiro

    2006-01-01

    To understand the role of 5-HT in human temporal lobe epilepsy, here we measured 5-HT 1A receptor binding potential by positron emission tomography (PET) with [carbonyl- 11 C]WAY100635, a selective 5-HT 1A receptor antagonist, in patients with temporal lobe epilepsy and normal controls. Twelve patients with temporal lobe epilepsy and seventeen healthy controls participated in the study. For each subject, we conducted PET and magnetic resonance imaging (MRI), by which we measured the 5-HT 1A receptor binding potential, the R1-value, a relative indicator of cerebral blood flow in regions of interest, and the volume of gray matter. Patients with temporal lobe epilepsy showed significantly reduced 5-HT 1A receptor binding potential in the temporal lobe. The laterality of the reduction was coincided with the epileptogenic foci estimated by a scalp electroencephalography (EEG). In contrast, the R1-value and gray matter volume showed no difference between the patient and control groups. Our study revealed that 5-HT 1A receptor binding was reduced significantly at the epileptogenic foci. We suggest that PET imaging with [carbonyl- 11 C]WAY100635 is potentially a useful non-invasive method for determining the epileptogenic foci. (author)

  4. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    Science.gov (United States)

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  5. Stimulation of 5-HT2A receptors recovers sensory responsiveness in acute spinal neonatal rats.

    Science.gov (United States)

    Swann, Hillary E; Kauer, Sierra D; Allmond, Jacob T; Brumley, Michele R

    2017-02-01

    Quipazine is a 5-HT 2A -receptor agonist that has been used to induce motor activity and promote recovery of function after spinal cord injury in neonatal and adult rodents. Sensory stimulation also activates sensory and motor circuits and promotes recovery after spinal cord injury. In rats, tail pinching is an effective and robust method of sacrocaudal sensory afferent stimulation that induces motor activity, including alternating stepping. In this study, responsiveness to a tail pinch following treatment with quipazine (or saline vehicle control) was examined in spinal cord transected (at midthoracic level) and intact neonatal rats. Rat pups were secured in the supine posture with limbs unrestricted. Quipazine or saline was administered intraperitoneally and after a 10-min period, a tail pinch was administered. A 1-min baseline period prior to tail-pinch administration and a 1-min response period postpinch was observed and hind-limb motor activity, including locomotor-like stepping behavior, was recorded and analyzed. Neonatal rats showed an immediate and robust response to sensory stimulation induced by the tail pinch. Quipazine recovered hind-limb movement and step frequency in spinal rats back to intact levels, suggesting a synergistic, additive effect of 5-HT-receptor and sensory stimulation in spinal rats. Although levels of activity in spinal rats were restored with quipazine, movement quality (high vs. low amplitude) was only partially restored. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. [Effect of (+/-)-pindolol on the central 5-HT1A receptor by the use of in vivo microdialysis and hippocampal slice preparations].

    Science.gov (United States)

    Tsuji, Keiichiro

    2002-06-01

    Although it is suggested that (+/-)-pindolol, a beta-adrenergic/5-HT1A receptor antagonist, may enhance the efficacy of selective serotonin reuptake inhibitors (SSRI), the results of double-blind studies are contradictory and recent animal studies suggest that (+/-)-pindolol may act as a partial agonist to the 5-HT1A receptor. In this study we have investigated the effect of (+/-)-pindolol on both pre- and postsynaptic 5-HT1A receptors using in vivo microdialysis and hippocampal slice preparations. (+/-)-pindolol and flesinoxan, a 5-HT1A receptor full agonist, significantly decreased the extracellular levels of 5-HT in the raphe and prefrontal cortex. The 5-HT and other 5-HT1A receptor agonists, flesinoxan and 8-hydroxy-2- (di-n-propylamino)tetralon (8-OH-DPAT), significantly decreased the population excitatory postsynaptic potential (EPSP) in the CA3-CA1 excitatory synapse in a dose-dependent manner. The effect of 5-HT and other 5-HT1A receptor agonists accompanied the increase in paired-pulse facilitation (ppf) induced by short-interval two stimuli and were reversed by the coadministration of the 5-HT1A receptor agonist, NAN-190, but not by (+/-)-pindolol. (+/-)-pindolol also suppressed the EPSP, but this effect was not reversed by NAN-190. These results suggest that (+/-)-pindolol acts as a partial agonist to the somatodendritic 5-HT1A receptor in the raphe, whereas it may have no action on the postsynaptic 5-HT1A receptor in the hippocampus.

  7. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  8. Positron emission tomography study of pindolol occupancy of 5-HT1A receptors in humans: preliminary analyses

    International Nuclear Information System (INIS)

    Martinez, Diana; Mawlawi, Osama; Hwang, Dah-Ren; Kent, Justine; Simpson, Norman; Parsey, Ramin V.; Hashimoto, Tomoki; Slifstein, Mark; Huang Yiyun; Heertum, Ronald van; Abi-Dargham, Anissa; Caltabiano, Stephen; Malizia, Andrea; Cowley, Hugh; Mann, J. John; Laruelle, Marc

    2000-01-01

    Preclinical studies in rodents suggest that augmentation of serotonin reuptake inhibitors (SSRIs) therapy by the 5-hydroxytryptamine 1A (5-HT 1A ) receptor agent pindolol might reduce the delay between initiation of treatment and antidepressant response. This hypothesis is based on the ability of pindolol to potentiate the increase in serotonin (5-HT) transmission induced by SSRIs, an effect achieved by blockade of the 5-HT 1A autoreceptors in the dorsal raphe nuclei (DRN). However, placebo-controlled clinical studies of pindolol augmentation of antidepressant therapy have reported inconsistent results. Here, we evaluated the occupancy of 5-HT 1A receptors following treatment with controlled release pindolol in nine healthy volunteers with positron-emission tomography (PET). Each subject was studied four times: at baseline (scan 1), following 1 week of oral administration of pindolol CR (7.5 mg/day) at peak level, 4 h after the dose (scan 2), and at 10 h following the dose (scan 3), and following one dose of pindolol CR (30 mg) (at peak level, 4 h) (scan 4). Pindolol occupancy of 5-HT 1A receptors was evaluated in the DRN and cortical regions as the decrease in binding potential (BP) of the radiolabelled selective 5-HT 1A antagonist [carbonyl- 11 C]WAY-100635 or [carbonyl- 11 C] N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide abbreviated as [ 11 C]WAY-100635. Pindolol dose-dependently decreased [ 11 C]WAY-100635 BP. Combining all the regions, occupancy was 20 ± 8% at scan 2, 14 ± 8% at scan 3, and 44 ± 8% at scan 4. The results of this study suggest that at doses used in clinical studies of augmentation of the SSRI effect by pindolol (2.5 mg t.i.d.), the occupancy of 5-HT 1A receptors is moderate and highly variable between subjects. This factor might explain the variable results obtained in clinical studies. On the other hand, at each dose tested, pindolol occupancy of 5-HT 1A receptors was higher in the DRN compared to

  9. Synthesis and in vivo evaluation of [O-methyl-11C](2R,4R)-4-hydroxy-2-[2-[2-[2-(3-methoxy)phenyl]ethyl]phenoxy] ethyl-1-methylpyrrolidine as a 5-HT2A receptor PET ligand

    International Nuclear Information System (INIS)

    Kumar, J.S. Dileep; Prabhakaran, Jaya; Erlandsson, Kjell; Majo, Vattoly J.; Simpson, Norman R.; Pratap, Mali; Heertum, Ronald L. van; Mann, J. John; Parsey, Ramin V.

    2006-01-01

    The serotonin 2A (5-HT 2A ) receptor is implicated in the pathophysiology of schizophrenia and mood disorders, and in vivo studies of this receptor would be of value in studying the pathophysiology of these disorders and in measuring the relationship of clinical response to receptor occupancy for 5-HT 2A antagonists such as atypical antipsychotics. Therefore, (2R,4R)-4-hydroxy-2-[2-[2-[2-(3-methoxy)-phenyl]ethyl] phenoxy]ethyl-1-methylpyrrolidine (MPM) (13), a selective and high-affinity (K i =0.79 nM) 5HT 2A antagonist, has been radiolabeled with carbon-11 by O-methylation of the corresponding desmethyl analogue (2R,4R)-4-hydroxy-2-[2-[2-[2-(3-hydroxy)phenyl]ethyl]phenoxy] ethyl-1-methylpyrrolidine (12) with [ 11 C]methyltriflate in order to determine the suitability of [ 11 C]MPM to quantify 5-HT 2A in living brain using PET. Desmethyl-MPM 12 and standard MPM were prepared, starting from 3-hydroxymethylphenol (2), in excellent yield. The yield obtained for radiolabeling was 40±5% (EOB), and the total synthesis time was 30 min at EOS. PET studies with [ 11 C]MPM in baboon showed a distribution in the brain consistent with the known distribution of 5-HT 2A receptors. The time-activity curves for the high-binding regions peaked at ∼45 min after injection. Blocking studies with M100907 demonstrated not only 38-57% blocking of tracer binding in brain regions known to have 5-HT 2A receptors but also 38% blocking in cerebellum, which has a low 5-HT 2A receptor concentration. Although [ 11 C]MPM exhibits appropriate kinetics in baboon for imaging 5-HT 2A receptors, its specific binding in cerebellum and higher proportion of nonspecific binding limit its usefulness for the in vivo quantification of 5-HT 2A receptors with PET

  10. Intrahippocampal LSD accelerates learning and desensitizes the 5-HT(2A) receptor in the rabbit, Romano et al.

    Science.gov (United States)

    Romano, Anthony G; Quinn, Jennifer L; Li, Luchuan; Dave, Kuldip D; Schindler, Emmanuelle A; Aloyo, Vincent J; Harvey, John A

    2010-10-01

    Parenteral injections of d-lysergic acid diethylamide (LSD), a serotonin 5-HT(2A) receptor agonist, enhance eyeblink conditioning. Another hallucinogen, (±)-1(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), was shown to elicit a 5-HT(2A)-mediated behavior (head bobs) after injection into the hippocampus, a structure known to mediate trace eyeblink conditioning. This study aims to determine if parenteral injections of the hallucinogens LSD, d,l-2,5-dimethoxy-4-methylamphetamine, and 5-methoxy-dimethyltryptamine elicit the 5-HT(2A)-mediated behavior of head bobs and whether intrahippocampal injections of LSD would produce head bobs and enhance trace eyeblink conditioning. LSD was infused into the dorsal hippocampus just prior to each of eight conditioning sessions. One day after the last infusion of LSD, DOI was infused into the hippocampus to determine whether there had been a desensitization of the 5-HT(2A) receptor as measured by a decrease in DOI-elicited head bobs. Acute parenteral or intrahippocampal LSD elicited a 5-HT(2A) but not a 5-HT(2C)-mediated behavior, and chronic administration enhanced conditioned responding relative to vehicle controls. Rabbits that had been chronically infused with 3 or 10 nmol per side of LSD during Pavlovian conditioning and then infused with DOI demonstrated a smaller increase in head bobs relative to controls. LSD produced its enhancement of Pavlovian conditioning through an effect on 5-HT(2A) receptors located in the dorsal hippocampus. The slight, short-lived enhancement of learning produced by LSD appears to be due to the development of desensitization of the 5-HT(2A) receptor within the hippocampus as a result of repeated administration of its agonist (LSD).

  11. Selective up-regulation of 5-HT(1B/1D) receptors during organ culture of cerebral arteries

    DEFF Research Database (Denmark)

    Hoel, N L; Hansen-Schwartz, J; Edvinsson, L

    2001-01-01

    5-Hydroxytryptamine (5-HT) is thought to be involved in migraine headache and the pathophysiology of cerebrovascular diseases. Previous data show that organ culture induces a phenotypic change in cerebral vessels. Therefore we investigated if these changes also applied for the vasoconstrictive 5-HT......(cultured) 6.8+/-0.4). The response was inhibited by the 5-HT(1B/1D) selective antagonist GR55562 (pEC50(fresh) 5.1+/-0.2 and pEC50(cultured) 6.0+/-0.3). The organ model might mimic the phenotypic changes during cerebrovascular diseases....... receptors. Rat cerebral arteries express 5-HT2 receptors. Using organ culture we observed a phenotypic change with a selective up-regulation of 5-HT(1B/1D) receptors. This was revealed by an increased sensitivity to the selective 5-HT(1B/1D) agonist 5-CT after organ culture (pEC50(fresh) 5.6+/-0.2 and pEC50...

  12. Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats.

    Science.gov (United States)

    Cervantes-Durán, C; Rocha-González, H I; Granados-Soto, V

    2013-11-12

    The role of 5-HT receptors in fluoxetine-induced nociception and antinociception in rats was assessed. Formalin produced a typical pattern of flinching and licking/lifting behaviors. Local peripheral ipsilateral, but not contralateral, pre-treatment with fluoxetine (0.3-3 nmol/paw) increased in a dose-dependent fashion 0.5% formalin-induced nociception. In contrast, intrathecal pretreatment with fluoxetine (0.3-3 nmol/rat) prevented nociception induced by formalin. The peripheral pronociceptive effect of fluoxetine was prevented by the 5-HT2A (ketanserin, 3-10 pmol/paw), 5-HT2B (3-(2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl)-2,4(1H,3H)-quinazolinedione(+) tartrate, RS-127445, 3-10 pmol/paw), 5-HT2C (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulphonamido) phenyl-5-oxopentyl]1,3,8-triazaspiro[4.5] decane-2,4-dione hydrochloride, RS-102221, 3-10 pmol/paw), 5-HT3 (ondansetron, 3-10 nmol/paw), 5-HT4 ([1-[2-methylsulphonylamino ethyl]-4-piperidinyl]methyl 1-methyl-1H-indole-3-carboxylate, GR-113808, 3-100 fmol/paw), 5-HT6 (4-iodo-N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]benzene-sulfonamide hydrochloride, SB-258585, 3-10 pmol/paw) and 5-HT7 ((R)-3-(2-(2-(4-methylpiperidin-1-yl) ethyl) pyrrolidine-1-sulfonyl) phenol hydrochloride, SB-269970, 0.3-1 nmol/paw), but not by the 5-HT1A (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate, WAY-100635, 0.3-1 nmol/paw), 5-HT1B/1D (N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-1,1'-biphenyl-4-carboxamide hydrochloride hydrate, GR-127935, 0.3-1 nmol/paw), 5-HT1B (1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine hydrochloride, SB-224289, 0.3-1 nmol/paw), 5-HT1D (4-(3-chlorophenyl)-α-(diphenylmethyl)-1-piperazineethanol hydrochloride, BRL-15572, 0.3-1nmol/paw) nor 5-HT5A ((N-[2-(dimethylamino)ethyl]-N-[[4'-[[(2-phenylethyl)amino]methyl][1,1'-biphenyl]-4

  13. G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations

    DEFF Research Database (Denmark)

    Ísberg, Vignir; Balle, Thomas; Sander, Tommy

    2011-01-01

    molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability......A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...

  14. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus.

    Science.gov (United States)

    Valdizán, Elsa Maria; Castro, Elena; Pazos, Angel

    2010-08-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal raphe nucleus, we studied their activation by two agonists with a different profile of efficacy [(+)8-OH-DPAT and buspirone], addressing simultaneously the identification of the specific Galpha subtypes ([35S]GTPgammaS labelling and immunoprecipitation) involved and the subsequent changes in cAMP formation. A significant increase (32%, plabelling of immunoprecipitates was obtained with anti-Galphai3 antibodies but not with anti-Galphao, anti-Galphai1, anti-Galphai2, anti-Galphaz or anti-Galphas antibodies. In contrast, in the presence of buspirone, significant [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 (50%, plabelling with anti-Galphai1, anti-Galphaz or anti-Galphas. The selective 5-HT1A antagonist WAY 100635 blocked the labelling induced by both agonists. Furthermore, (+)8-OH-DPAT failed to modify forskolin-stimulated cAMP accumulation, while buspirone induced a dose-dependent, WAY 100635-sensitive, inhibition of this response (Imax 30.8+/-4.9, pIC50 5.95+/-0.46). These results demonstrate the existence of an agonist-dependency pattern of G-protein coupling and transduction for 5-HT1A autoreceptors in native brain tissue. These data also open new perspectives for the understanding of the differential profiles of agonist efficacy in pre- vs. post-synaptic 5-HT1A receptor-associated responses.

  15. The pharmacology of TD-8954, a potent and selective 5-HT4 receptor agonist with gastrointestinal prokinetic properties

    Directory of Open Access Journals (Sweden)

    David T Beattie

    2011-05-01

    Full Text Available This study evaluated the in vitro and in vivo pharmacological properties of TD-8954, a potent and selective 5-HT4 receptor agonist. TD-8954 had high affinity (pKi = 9.4 for human recombinant 5-HT4(c (h5-HT4(c receptors, and selectivity (> 2,000-fold over all other 5-HT receptors and non-5-HT receptors, ion channels, enzymes and transporters tested (n = 78. TD-8954 produced an elevation of cAMP in HEK-293 cells expressing the h5-HT4(c receptor (pEC50 = 9.3, and contracted the guinea pig colonic longitudinal muscle/myenteric plexus (LMMP preparation (pEC50 = 8.6. TD-8954 had moderate intrinsic activity (IA in the in vitro assays. In conscious guinea pigs, subcutaneous (s.c. administration of TD 8954 (0.03 - 3 mg/kg increased the colonic transit of carmine red dye, reducing the time taken for its excretion. Following intraduodenal (i.d. dosing to anesthetized rats, TD 8954 (0.03 - 10 mg/kg evoked a dose-dependent relaxation of the esophagus. Following oral administration to conscious dogs, TD 8954 (10 and 30 µg/kg produced an increase in contractility of the antrum, duodenum and jejunum. In a single ascending oral dose study in healthy human subjects, TD-8954 (0.1 - 20 mg increased bowel movement frequency and reduced the time to first stool. It is concluded that TD-8954 is a potent and selective 5-HT4 receptor agonist in vitro, with robust in vivo stimulatory activity in the gastrointestinal (GI tract of guinea pigs, rats, dogs and humans. TD-8954 may have clinical utility in patients with disorders of reduced GI motility.

  16. Estradiol suppresses ingestive response evoked by activation of 5-HT1A receptors in the lateral hypothalamus of ovariectomized rats.

    Science.gov (United States)

    Taschetto, Ana P D; Levone, Brunno R; Kochenborger, Larissa; da Silva, Eduardo S; Flores, Rafael A; Faria, Moacir S; Paschoalini, Marta A

    2018-03-08

    The present study investigated the effects of estradiol (E2) on ingestive behavior after activation of 5-HT1A receptors in the lateral hypothalamus (LH) of female rats habituated to eat a wet mash diet. Ovariectomized rats treated with corn oil (OVX) or estradiol cypionate (OVX+E) received local injections into the LH of vehicle or an agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; at a dose of 6 nmol). To determine the involvement of these receptors in food intake, some animals were pretreated with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY-100635, a 5-HT1A receptor full antagonist, at a dose of 0.37 nmol), followed by the injection of the agonist 8-OH-DPAT or its vehicle. The results showed that the injection of 8-OH-DPAT into the LH of OVX rats significantly increased food intake, and the duration and frequency of this behavior. The pretreatment with E2 suppressed the hyperphagic response induced by 8-OH-DPAT in OVX animals. The inhibition of 5-HT1A receptors after pretreatment with WAY-100635 blocked the hyperphagic effects evoked by 8-OH-DPAT in OVX. These results indicate that the activity of LH 5-HT1A receptors could be affected by blood E2 levels.

  17. 5-HT(1A) receptor binding in euthymic bipolar patients using positron emission tomography with [carbonyl-(11)C]WAY-100635.

    Science.gov (United States)

    Sargent, Peter A; Rabiner, Eugenii A; Bhagwagar, Zubin; Clark, Luke; Cowen, Philip; Goodwin, Guy M; Grasby, Paul M

    2010-06-01

    This study was undertaken to examine whether brain 5-HT(1A) receptor binding is reduced in euthymic bipolar patients. Eight medicated euthymic bipolar patients and 8 healthy volunteers underwent positron emission tomography scanning using the selective 5-HT(1A) receptor radioligand [carbonyl-(11)C]WAY-100635. No significant difference in global postsynaptic parametric binding potential (BP(ND)) was found between euthymic bipolar patients (mean + or - SD, 4.24 + or - 0.76) and healthy volunteers (mean + or - SD, 4.34 + or - 0.86). Ninety five percent Confidence Intervals for the difference in group mean global postsynaptic BP(ND) were -0.77 to 0.97. Analysis of regional BP(ND) did not reveal regional differences between patients and healthy controls. The number of subjects studied was limited and all subjects were on medication. In contrast to previous findings of reduced 5-HT(1A) receptor binding in untreated unipolar and bipolar depressed patients [Sargent, P.A., Kjaer, K.H., Bench, C.J., Rabiner, E.A., Messa, C., Meyer, J., Gunn, R.N., Grasby, P.M., Cowen, P.J., 2000. Brain serotonin1A receptor binding measured by positron emission tomography with [(11)C]WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psychiatry 57, 174-180]; [Drevets, W.C., Frank, E., Price, J.C., Kupfer, D.J., Holt, D., Greer, P.J., Huang, Y., Gautier, C., Mathis, C., 1999. PET imaging of serotonin1A receptor binding in depression. Biol. Psychiatry 46, 1375-1387] and in recovered unipolar depressed patients [Bhagwagar, Z., Rabiner, E.A., Sargent, P.A., Grasby, P.M., Cowen, P.J., 2004. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [(11)C]WAY-100635. Mol. Psychiatry 9, 386-92], this study found no difference in 5-HT(1A) receptor BP(ND) between medicated euthymic bipolar patients and healthy controls. Normal 5-HT(1A) receptor BP(ND) in these patients may be a result of drug treatment or

  18. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    Science.gov (United States)

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  19. Trait aggression and trait impulsivity are not related to frontal cortex 5-HT2A receptor binding in healthy individuals

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sophie; Stenbæk, Dea Siggaard; Holst, Klaus

    2013-01-01

    age 47.0±18.7, range 23-86) to determine if trait aggression and trait impulsivity were related to frontal cortex 5-HT2A receptor binding (5-HT2AR) as measured with [(18)F]-altanserin PET imaging. Trait aggression and trait impulsivity were assessed with the Buss-Perry Aggression Questionnaire (AQ...... and the AQ or BIS-11 total scores. Also, there was no significant interaction between gender and frontal cortex 5-HT2AR in predicting trait aggression and trait impulsivity. This is the first study to examine how 5-HT2AR relates to trait aggression and trait impulsivity in a large sample of healthy......Numerous studies indicate that the serotonergic (5-HT) transmitter system is involved in the regulation of impulsive aggression and there is from post-mortem, in vivo imaging and genetic studies evidence that the 5-HT2A receptor may be involved. We investigated 94 healthy individuals (60 men, mean...

  20. Effects of mosapride citrate, a 5-HT4-receptor agonist, on gastric distension-induced visceromotor response in conscious rats.

    Science.gov (United States)

    Seto, Yasuhiro; Yoshida, Naoyuki; Kaneko, Hiroshi

    2011-01-01

    Mosapride citrate (mosapride), a prokinetic agent with 5-HT(4)-receptor agonistic activity, is known to enhance gastric emptying and alleviate symptoms in patients with functional dyspepsia (FD). As hyperalgesia and delayed gastric emptying play an important role in the pathogenesis of FD, we used in this study balloon gastric distension to enable abdominal muscle contractions and characterized the visceromotor response (VMR) to such distension in conscious rats. We also investigated the effects of mosapride on gastric distension-induced VMR in the same model. Mosapride (3-10 mg/kg, p.o.) dose-dependently inhibited gastric distension-induced VMR in rats. However, itopride even at 100 mg/kg failed to inhibit gastric distension-induced VMR in rats. Additionally, a major metabolite M1 of mosapride, which possesses 5-HT(3)-receptor antagonistic activity, inhibited gastric distension-induced VMR. The inhibitory effect of mosapride on gastric distension-induced visceral pain was partially, but significantly inhibited by SB-207266, a selective 5-HT(4)-receptor antagonist. This study shows that mosapride inhibits gastric distension-induced VMR in conscious rats. The inhibitory effect of mosapride is mediated via activation of 5-HT(4) receptors and blockage of 5-HT(3) receptors by a mosapride metabolite. This finding indicates that mosapride may be useful in alleviating FD-associated gastrointestinal symptoms via increase in pain threshold.

  1. Ondansetron and granisetron binding orientation in the 5-HT(3) receptor determined by unnatural amino acid mutagenesis.

    Science.gov (United States)

    Duffy, Noah H; Lester, Henry A; Dougherty, Dennis A

    2012-10-19

    The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.

  2. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    Science.gov (United States)

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  3. Radiosynthesis and autoradiographic evaluation of [{sup 11}C]NAD-299, a radioligand for visualization of the 5-HT{sub 1A} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sandell, Johan E-mail: Johan.Sandell@psyk.ks.se; Halldin, Christer; Hall, Haakan; Thorberg, Seth-Olov; Werner, Tom; Sohn, Daniel; Sedvall, Goeran; Farde, Lars

    1999-02-01

    The selective 5-HT{sub 1A} receptor antagonist NAD-299 ([R]-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran- 5-carboxamide) was labeled with the positron emitting radionucldie carbon-11. The radioligand was synthesized from NAD-195 ([R]-3-N,N-dicyclobutylamino-8-fluoro-5-trifluoromethylsulfonyloxy-3, 4-dihydro-2H-1-benzopyran) in two radiochemical steps. A palladium-catalyzed reaction of NAD-195 and [{sup 11}C]cyanide was followed by hydrolysis of the carbon-11-labeled nitrile intermediate with basic hydrogen peroxide. The total radiochemical yield, based on [{sup 11}C]CO{sub 2} and corrected for decay, was 20-40%. The specific radioactivity was 24 GBq/{mu}mol (900 Ci/mmol) at end of synthesis, with a radiochemical purity better than 99% and a total synthesis time of 40-45 min. Autoradiographic examination of [{sup 11}C]NAD-299 binding in human brain postmortem demonstrated high binding in hippocampus, raphe nuclei, and neocortex. The binding in the hippocampus was higher than in the neocortex. Within the hippocampus, the densest binding was observed in the CA1 region. [{sup 11}C]NAD-299 binding was inhibited by addition of the 5-HT{sub 1A} receptor ligands WAY-100635, pindolol, ({+-})-8-OH-DPAT, 5-HT, and buspirone, leaving a low background of nonspecific binding. The results indicate that [{sup 11}C]NAD-299 binds specifically to 5-HT{sub 1A} receptors in the human brain in vitro and is a potential radioligand for positron emission tomography (PET) examination of 5-HT{sub 1A} receptors in vivo.

  4. Radiosynthesis and autoradiographic evaluation of [11C]NAD-299, a radioligand for visualization of the 5-HT1A receptor

    International Nuclear Information System (INIS)

    Sandell, Johan; Halldin, Christer; Hall, Haakan; Thorberg, Seth-Olov; Werner, Tom; Sohn, Daniel; Sedvall, Goeran; Farde, Lars

    1999-01-01

    The selective 5-HT 1A receptor antagonist NAD-299 ([R]-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran- 5-carboxamide) was labeled with the positron emitting radionucldie carbon-11. The radioligand was synthesized from NAD-195 ([R]-3-N,N-dicyclobutylamino-8-fluoro-5-trifluoromethylsulfonyloxy-3, 4-dihydro-2H-1-benzopyran) in two radiochemical steps. A palladium-catalyzed reaction of NAD-195 and [ 11 C]cyanide was followed by hydrolysis of the carbon-11-labeled nitrile intermediate with basic hydrogen peroxide. The total radiochemical yield, based on [ 11 C]CO 2 and corrected for decay, was 20-40%. The specific radioactivity was 24 GBq/μmol (900 Ci/mmol) at end of synthesis, with a radiochemical purity better than 99% and a total synthesis time of 40-45 min. Autoradiographic examination of [ 11 C]NAD-299 binding in human brain postmortem demonstrated high binding in hippocampus, raphe nuclei, and neocortex. The binding in the hippocampus was higher than in the neocortex. Within the hippocampus, the densest binding was observed in the CA1 region. [ 11 C]NAD-299 binding was inhibited by addition of the 5-HT 1A receptor ligands WAY-100635, pindolol, (±)-8-OH-DPAT, 5-HT, and buspirone, leaving a low background of nonspecific binding. The results indicate that [ 11 C]NAD-299 binds specifically to 5-HT 1A receptors in the human brain in vitro and is a potential radioligand for positron emission tomography (PET) examination of 5-HT 1A receptors in vivo

  5. Changes of Serotonin (5-HT, 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression, Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Directory of Open Access Journals (Sweden)

    Mei-Yan Liu

    2015-01-01

    Conclusions: The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression. Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  6. GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus.

    Science.gov (United States)

    McAllister, C E; Creech, R D; Kimball, P A; Muma, N A; Li, Q

    2012-08-01

    Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxa mide, a useful radioligand for 5HT3 receptors

    International Nuclear Information System (INIS)

    Robertson, D.W.; Bloomquist, W.; Cohen, M.L.; Reid, L.R.; Schenck, K.; Wong, D.T.

    1990-01-01

    The advent of potent, highly selective 5HT3 receptor antagonists has stimulated considerable interest in 5HT3 receptor mediated physiology and pharmacology. To permit detailed biochemical studies regarding interaction of the indazole class of serotonin (5HT) antagonists with 5HT3 receptors in multiple tissues, we synthesized 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole- 3-carboxamide (LY278584, compound 9) in high specific activity, tritium-labeled form. This radioligand was selected as a synthetic target because of its potency as a 5HT3-receptor antagonist, its selectivity for this receptor viz a viz other 5HT-receptor subtypes, and the ability to readily incorporate three tritia via the indazole N-CH3 substituent. Alkylation of N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxamide (8) with sodium hydride and tritium-labeled iodomethane, followed by HPLC purification, resulted in [3H]-9 with a radiochemical purity of 99% and a specific activity of 80.5 Ci/mmol. This radioligand bound with high affinity to a single class of saturable recognition sites in membranes isolated from cerebral cortex of rat brain. The Kd was 0.69 nM and the Bmax was 16.9 fmol/mg of protein. The specific binding was excellent, and accounted for 83-93% of total binding at concentrations of 2 nM or less. The potencies of known 5HT3-receptor antagonists as inhibitors of [3H]-9 binding correlated well with their pharmacological receptor affinities as antagonists of 5HT-induced decreases in heart rate and contraction of guinea pig ileum, suggesting the central recognition site for this radioligand may be extremely similar to or identical with peripheral 5HT3 receptors

  8. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  9. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  10. Evidence for a role of 5-HT2C receptors in the motor aspects of performance, but not the efficacy of food reinforcers, in a progressive ratio schedule.

    Science.gov (United States)

    Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Bradshaw, C M; Glennon, J C; Szabadi, E

    2015-02-01

    5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment. Mathematical models can help to differentiate between these processes. The effects of the 5-HT2C receptor agonist Ro-600175 ((αS)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine) and the non-selective 5-HT receptor agonist 1-(m-chlorophenyl)piperazine (mCPP) on rats' performance on a progressive ratio schedule maintained by food pellet reinforcers were assessed using a model derived from Killeen's Behav Brain Sci 17:105-172, 1994 general theory of schedule-controlled behaviour, 'mathematical principles of reinforcement'. Rats were trained under the progressive ratio schedule, and running and overall response rates in successive ratios were analysed using the model. The effects of the agonists on estimates of the model's parameters, and the sensitivity of these effects to selective antagonists, were examined. Ro-600175 and mCPP reduced the breakpoint. Neither agonist significantly affected a (the parameter expressing incentive value), but both agonists increased δ (the parameter expressing minimum response time). The effects of both agonists could be attenuated by the selective 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-N-{6-[(2-methylpyridin-3-yl)oxy]pyridin-3-yl}indoline-1-carboxamide). The effect of mCPP was not altered by isamoltane, a selective 5-HT1B receptor antagonist, or MDL-100907 ((±)2,3-dimethoxyphenyl-1-(2-(4-piperidine)methanol)), a selective 5-HT2A receptor antagonist. The results are consistent with the hypothesis that the effect of the 5-HT2C receptor agonists on progressive ratio schedule performance is mediated by an impairment of motor capacity rather than by a reduction of the incentive value of the food reinforcer.

  11. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Directory of Open Access Journals (Sweden)

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  12. Maternal aggression in Wistar rats: effect of 5-HT2A/2C receptor agonist and antagonist microinjected into the dorsal periaqueductal gray matter and medial septum

    Directory of Open Access Journals (Sweden)

    Almeida R.M.M. de

    2005-01-01

    Full Text Available The objective of the present study was to assess the role of the 5-HT2A/2C receptor at two specific brain sites, i.e., the dorsal periaqueductal gray matter (DPAG and the medial septal (MS area, in maternal aggressive behavior after the microinjection of either a 5-HT2A/2C receptor agonist or antagonist. Female Wistar rats were microinjected on the 7th postpartum day with the selective agonist alpha-methyl-5-hydroxytryptamine maleate (5-HT2A/2C or the antagonist 5-HT2A/2C, ketanserin. The agonist was injected into the DPAG at 0.2 (N = 9, 0.5 (N = 10, and 1.0 µg/0.2 µl (N = 9, and the antagonist was injected at 1.0 µg/0.2 µl (N = 9. The agonist was injected into the medial septal area (MS at 0.2 (N = 9, 0.5 (N = 7, and 1.0 µg/0.2 µl (N = 6 and the antagonist was injected at 1.0 µg/0.2 µl (N = 5. For the control, saline was injected into the DPAG (N = 7 and the MS (N = 12. Both areas are related to aggressive behavior and contain a high density of 5-HT receptors. Non-aggressive behaviors such as horizontal locomotion (walking and social investigation and aggressive behaviors such as lateral threat (aggressive posture, attacks (frontal and lateral, and biting the intruder were analyzed when a male intruder was placed into the female resident's cage. For each brain area studied, the frequency of the behaviors was compared among the various treatments by analysis of variance. The results showed a decrease in maternal aggressive behavior (number of bites directed at the intruder after microinjection of the agonist at 0.2 and 1.0 µg/0.2 µl (1.6 ± 0.7 and 0.9 ± 0.3 into the DPAG compared to the saline group (5.5 ± 1.1. There was no dose-response relationship with the agonist. The present findings suggest that the 5-HT2A/2C receptor agonist has an inhibitory effect on maternal aggressive behavior when microinjected into the DPAG and no effect when microinjected into the MS. Ketanserin (1.0 µg/0.2 µl decreased locomotion when microinjected

  13. [Effect of 5-HT1A receptors in the hippocampal DG on active avoidance learning in rats].

    Science.gov (United States)

    Jiang, Feng-ze; Lv, Jing; Wang, Dan; Jiang, Hai-ying; Li, Ying-shun; Jin, Qing-hua

    2015-01-01

    To investigate the effects of serotonin (5-HTIA) receptors in the hippocampal dentate gyrus (DG) on active avoidance learning in rats. Totally 36 SD rats were randomly divided into control group, antagonist group and agonist group(n = 12). Active avoidance learning ability of rats was assessed by the shuttle box. The extracellular concentrations of 5-HT in the DG during active avoidance conditioned reflex were measured by microdialysis and high performance liquid chromatography (HPLC) techniques. Then the antagonist (WAY-100635) or agonist (8-OH-DPAT) of the 5-HT1A receptors were microinjected into the DG region, and the active avoidance learning was measured. (1) During the active avoidance learning, the concentration of 5-HT in the hippocampal DG was significantly increased in the extinction but not establishment in the conditioned reflex, which reached 164.90% ± 26.07% (P active avoidance learning. (3) The microinjection of 8-OH-DPAT(an agonist of 5-HT1A receptor) into the DG significantly facilitated the establishment process and inhibited the extinction process during active avoidance conditioned reflex. The data suggest that activation of 5-HT1A receptors in hipocampal DG may facilitate active avoidance learning and memory in rats.

  14. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta.

    Science.gov (United States)

    Rossi, Dania V; Dai, Ying; Thomas, Peter; Carrasco, Gonzalo A; DonCarlos, Lydia L; Muma, Nancy A; Li, Qian

    2010-08-01

    Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) receptor function. We previously demonstrated that selective activation of the estrogen receptor, GPR30, desensitizes 5-HT(1A) receptor signaling in rat hypothalamic paraventricular nucleus (PVN). However, since estrogen receptor-beta (ERbeta), is highly expressed in the PVN, we investigated the role of ERbeta in estradiol-induced desensitization of 5-HT(1A) receptor signaling. We first showed that a selective ERbeta agonist, diarylpropionitrile (DPN) has a 100-fold lower binding affinity than estradiol for GPR30. Administration of DPN did not desensitize 5-HT(1A) receptor signaling in rat PVN as demonstrated by agonist-stimulated hormone release. Second, we used a recombinant adenovirus containing ERbeta siRNAs to decrease ERbeta expression in the PVN. Reductions in ERbeta did not alter the estradiol-induced desensitization of 5-HT(1A) receptor signaling in oxytocin cells. In contrast, in animals with reduced ERbeta, estradiol administration, instead of producing desensitization, augmented the ACTH response to a 5-HT(1A) agonist. Combined with the results from the DPN treatment experiments, desensitization of 5-HT(1A) receptor signaling does not appear to be mediated by ERbeta in oxytocin cells, but that ERbeta, together with GPR30, may play a complex role in central regulation of 5-HT(1A)-mediated ACTH release. Determining the mechanisms by which estrogens induce desensitization may aid in the development of better treatments for mood disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Synthesis and initial biological evaluation of a novel Tc-99m radioligand as a potential agent for 5-HT1A receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abdelounis, Najoua Mejri; Saied, Nadia Malek; Essouissi, Imen; Guizani, Sihem; Saidi, Mouldi [CNSTN, Sidi Thabet (Tunisia). Research Unit of Medical, Agricultural and Environmental Use of Nuclear Applications

    2014-09-01

    The synthesis, characterization and biological evaluation of N-Tolueneferrocenecarboxamide labeled with technetium-99m ({sup 99m}Tc-TTCC) is reported. Biological studies in Wistar rats showed the ability of {sup 99m}Tc-TPCC to cross the intact blood-brain barrier. In vivo biodistribution indicated that this complex had good brain uptake (1.32%ID/g at 5 min and 0.64%ID/g at 60 min) and good retention (about 50% of the activity was retained in the brain at 60 min post-injection). Regional brain distribution study showed that hippocampus, where the 5-HT1A receptor density is high, had the highest uptake (0.73%ID/g at 5 min p.i.) and the cerebellum, where the 5-HT1A receptor density is low, had the lowest uptake (0.12%ID/gID/g at 5 min p.i.). After blocking with 8-hydroxy-2-(dipropylamino) tetralin, the uptake of hippocampus was decreased significantly from 0.73%ID/g to 0.20%ID/g at 5 min p.i., while the cerebellum had no significant decrease. This result indicates that 99mTc complex has specific binding to 5-HT1A receptor. (orig.)

  16. Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients

    DEFF Research Database (Denmark)

    Erritzoe, David; Rasmussen, Hans; Kristiansen, Klaus Nyegaard

    2008-01-01

    MRIs and PET images. The cerebellum was used as a reference region. The binding potential of specific tracer binding (BP(p)) was used as the outcome measure. No significant difference was seen in cortical receptor distribution between patients and controls. An increase in 5-HT(2A) receptor binding...

  17. Reproducibility of 5-HT2A receptor measurements and sample size estimations with [18F]altanserin PET using a bolus/infusion approach

    DEFF Research Database (Denmark)

    Haugbøl, Steven; Pinborg, Lars H; Arfan, Haroon M

    2006-01-01

    PURPOSE: To determine the reproducibility of measurements of brain 5-HT2A receptors with an [18F]altanserin PET bolus/infusion approach. Further, to estimate the sample size needed to detect regional differences between two groups and, finally, to evaluate how partial volume correction affects...... reproducibility and the required sample size. METHODS: For assessment of the variability, six subjects were investigated with [18F]altanserin PET twice, at an interval of less than 2 weeks. The sample size required to detect a 20% difference was estimated from [18F]altanserin PET studies in 84 healthy subjects....... Regions of interest were automatically delineated on co-registered MR and PET images. RESULTS: In cortical brain regions with a high density of 5-HT2A receptors, the outcome parameter (binding potential, BP1) showed high reproducibility, with a median difference between the two group measurements of 6...

  18. 5-HT1A receptor-dependent modulation of emotional and neurogenic deficits elicited by prolonged consumption of alcohol.

    Science.gov (United States)

    Belmer, Arnauld; Patkar, Omkar L; Lanoue, Vanessa; Bartlett, Selena E

    2018-02-01

    Repeated episodes of binge-like alcohol consumption produce anxiety, depression and various deleterious effects including alterations in neurogenesis. While the involvement of the serotonin receptor 1 A (5-HT 1A ) in the regulation of anxiety-like behavior and neurogenesis is well documented, its contribution to alcohol withdrawal-induced anxiety and alcohol-induced deficits in neurogenesis is less documented. Using the Drinking-In-the-Dark (DID) paradigm to model chronic long-term (12 weeks) binge-like voluntary alcohol consumption in mice, we show that the selective partial activation of 5-HT 1A receptors by tandospirone (3 mg/kg) prevents alcohol withdrawal-induced anxiety in a battery of behavioral tests (marble burying, elevated-plus-maze, open-field), which is accompanied by a robust decrease in binge-like ethanol intake (1 and 3 mg/kg). Furthermore, using triple immunolabelling of proliferation and neuronal differentiation markers, we show that long-term DID elicits profound deficits in neurogenesis and neuronal fate specification in the dorsal hippocampus that are entirely reversed by a 2-week chronic treatment with the 5-HT 1A partial agonist tandospirone (3 mg/kg/day). Together, our results confirm previous observations that 5-HT 1A receptors play a pivotal role in alcohol drinking behavior and the associated emotional and neurogenic impairments, and suggest that 5-HT 1A partial agonists represent a promising treatment strategy for alcohol abuse.

  19. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    Science.gov (United States)

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Andrea Forero

    2017-09-01

    Full Text Available Background: During early prenatal stages of brain development, serotonin (5-HT-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR, innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13 has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system.Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency.Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs, which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5.Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell

  1. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    NARCIS (Netherlands)

    Stiedl, O.; Pappa, E.; Konradssson-Geuken, A.; Ogren, S.O.

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models.

  2. Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus.

    Science.gov (United States)

    Kim, Mun Hee; Leem, Yea Hyun

    2014-03-01

    Mood disorders such as anxiety and depression are prevalent psychiatric illness, but the role of 5HT1A in the anti-depressive effects of exercise has been rarely known yet. We investigated whether long-term exercise affected a depressive-like behavior and a hippocampal 5HT1A receptor-mediated cAMP/PKA/CREB signaling in depression mice model. To induce depressive behaviors, mice were subjected to 14 consecutive days of restraint stress (2 hours/day). Depression-like behaviors were measured by forced swimming test (TST), and anxiety-like behavior was assessed by elevated plus maze (EPM). Treadmill exercise was performed with 19 m/min for 60 min/day, 5 days/week from weeks 0 to 8. Restraint stress was started at week 6 week and ended at week 8. To elucidate the role of 5HT1A in depression, the immunoreactivities of 5HT1A were detected in hippocampus using immunohistochemical technique. Chronic/repeated restraint stress induced behavioral anxiety and depression, such as reduced time and entries in open arms in EPM and enhanced immobility time in FST. These anxiety and depressive behaviors were ameliorated by chronic exercise. Also, these behavioral changes were concurrent with the deficit of 5HT1A and cAMP/PKA/CREB cascade in hippocampus, which was coped with chronic exercise. These results suggest that chronic exercise may improve the disturbance of hippocampal 5HT1A-regulated cAMP/PKA/CREB signaling in a depressed brain, thereby exerting an antidepressive action.

  3. Test-retest reliability of the novel 5-HT1B receptor PET radioligand [11C]P943

    International Nuclear Information System (INIS)

    Saricicek, Aybala; Chen, Jason; Ruf, Barbara; Planeta, Beata; Labaree, David; Gallezot, Jean-Dominique; Huang, Yiyun; Subramanyam, Kalyani; Maloney, Kathleen; Matuskey, David; Deserno, Lorenz; Neumeister, Alexander; Krystal, John H.; Carson, Richard E.; Bhagwagar, Zubin

    2015-01-01

    [ 11 C]P943 is a novel, highly selective 5-HT 1B PET radioligand. The aim of this study was to determine the test-retest reliability of [ 11 C]P943 using two different modeling methods and to perform a power analysis with each quantification technique. Seven healthy volunteers underwent two PET scans on the same day. Regions of interest (ROIs) were the amygdala, hippocampus, pallidum, putamen, insula, frontal, anterior cingulate, parietal, temporal and occipital cortices, and cerebellum. Two multilinear radioligand quantification techniques were used to estimate binding potential: MA1, using arterial input function data, and the second version of the multilinear reference tissue model analysis (MRTM2), using the cerebellum as the reference region. Between-scan percent variability and intraclass correlation coefficients (ICC) were used to assess test-retest reliability. We also performed power analyses to determine the method that would allow the least number of subjects using within-subject or between-subject study designs. A voxel-wise ICC analysis for MRTM2 BP ND was performed for the whole brain and all the ROIs studied. Mean percent variability between two scans across regions ranged between 0.4 % and 12.4 % for MA1 BP ND , 0.5 % and 11.5 % for MA1 BP P , 16.7 % and 28.3 % for MA1 BP F , and between 0.2 % and 5.4 % for MRTM2 BP ND . The power analyses showed a greater number of subjects were required using MA1 BP F compared with other outcome measures for both within-subject and between-subject study designs. ICC values were the highest using MRTM2 BP ND and the lowest with MA1 BP F in ten ROIs. Small regions and regions with low binding had lower ICC values than large regions and regions with high binding. Reliable measures of 5-HT 1B receptor binding can be obtained using the novel PET radioligand [ 11 C]P943. Quantification of 5-HT 1B receptor binding with MRTM2 BP ND and with MA1 BP P provided the least variability and optimal power for within-subject and

  4. Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand.

    Science.gov (United States)

    Buhot, Marie-Christine; Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, René; Segu, Louis

    2003-01-01

    Age-related memory decline is associated with a combined dysfunction of the cholinergic and serotonergic systems in the hippocampus and frontal cortex, in particular. The 5-HT1B receptor occupies strategic cellular and subcellular locations in these structures, where it plays a role in the modulation of ACh release. In an attempt to characterize the contribution of this receptor to memory functions, 5-HT1B receptor knockout (KO) mice were submitted to various behavioral paradigms carried out in the same experimental context (water maze), which were aimed at exposing mice to various levels of memory demand. 5-HT1BKO mice exhibited a facilitation in the acquisition of a hippocampal-dependent spatial reference memory task in the Morris water maze. This facilitation was selective of task difficulty, showing thus that the genetic inactivation of the 5-HT1B receptor is associated with facilitation when the complexity of the task is increased, and reveals a protective effect on age-related hippocampal-dependent memory decline. Young-adult and aged KO and wild-type (WT) mice were equally able to learn a delayed spatial matching-to-sample working memory task in a radial-arm water maze with short (0 or 5 min) delays. However, 5-HT1BKO mice, only, exhibited a selective memory impairment at intermediate and long (15, 30, and 60 min) delays. Treatment by scopolamine induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. Taken together, these studies revealed a beneficial effect of the mutation on the acquisition of a spatial reference memory task, but a deleterious effect on a working memory task for long delays. This 5-HT1BKO mouse story highlights the problem of the potential existence of "global memory enhancers."

  5. Effect of the 5-HT{sub 4} receptor and serotonin transporter on visceral hypersensitivity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan [Department of Gastroenterology, Peking University First Hospital, Beijing (China)

    2012-07-27

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT{sub 4} receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT{sub 4} receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT{sub 4} receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg{sup −1}·day{sup −1}, days 36-42), tegaserod (1 mg·kg{sup −1}·day{sup −1}, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT{sub 4} receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT{sub 4} receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT

  6. Effectiveness of somatodendritic and/or postsynaptic 5-ht-1A receptors following exposure to single restraint stress

    International Nuclear Information System (INIS)

    Samad, N.; Haleem, D.J.

    2012-01-01

    Effects of a selected dose of 8-hydroxy-2-(di-n-propylamino)tetralin (8-0H-DPAT) were studied on somatodendritic and/or postsynaptic S-hydroxytryptamine (S-HT; serotonin)-) A receptors responsiveness following exposure to single restraint stress. Rats were restrained for 2.h. 24-h after the termination of restraint period, 8-OH-DPAT at the doses of 0.25 mg/kg and saline (1 ml/kg), was injected to unrestrained and restrained animals. Activity in a light dark box was monitored. Intensity of 8-0H-DPAT-induced serotonin syndrome was monitored for 5-30 min post injection. Rats were decapitated I-h post-injection to collect brain samples for neurochemical estimation by high performance liquid chromatography with electrochemical detection (HPLC-EC). An episode of 2-h restraint stress decreased 24-h cumulative food intakes and changes in growth rates. Administration of 8-0H-DPAT increased time spent in light compartment in both unrestrained and restrained animals. Time spent in light compartment was smaller in 8-0H-DPAT injected restrained than unrestrained animals. Intensity of 8-0H-DPAT-induced serotonin syndrome monitored next day was smaller in restrained than unrestrained animals. Restrained animals injected with saline exhibited an increase in S-HT and S hydroxyindolacetic acid (S-HIAA) levels in the hippocampus, hypothalamus, midbrain and cortex but not in the striatum. 8-OH-DPAT decreased 5-HT and S-HIAA levels in different brain regions of unrestrained and restrained animals. The decreases were greater in restrained than unrestrained animals, suggesting a supersensitivity of somatodendritic S-HT -I A receptors. Stimulation of somatodendritic S-HT -I A receptor following exposure to an episode of 2-h restraint stress decreased the functional activity of postsynaptic S-HT -I A dependent responses. 8-OH-DP A T decreased S-HT and S-HIAA levels more in restrained than unrestrained animals, suggesting an increase in the effectiveness of somatodendritc 5-HT-IAA receptor

  7. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  8. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2015-02-01

    Full Text Available It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI’s exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all 5 currently used SSRIs to stimulate the 5-HT2B receptor equipotentially incultured astrocyteshas been known for several years,and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 daystogether with effects ofanti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.

  9. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells.

    NARCIS (Netherlands)

    Neijt, H.C.; Plomp, J.J.; Vijverberg, H.P.M.

    1989-01-01

    1. Ionic currents mediated by serotonin 5-HT3 receptors were studied in the mouse neuroblastoma cell line N1E-115, using suction pipettes for intracellular perfusion and voltage clamp recording. The dependence of the kinetics of the membrane current on serotonin concentration was investigated. 2. At

  10. Acute social defeat does not alter cerebral 5-HT2A receptor binding in male Wistar rats

    DEFF Research Database (Denmark)

    Visser, Anniek K D; Meerlo, Peter; Ettrup, Anders

    2014-01-01

    suppressed growth, but did not affect anxiety-like behavior in an open field test. A positron emission tomography scan with the 5-HT2A R tracer [11C]MDL 100907 1 day and 3 weeks after defeat did not show significant changes in receptor binding. To verify these results, [3H]MDL 100907 binding assays were...

  11. Adrenaline release by the 5-HT1A receptor agonist 8-OH-DPAT is partly responsible for pituitary activation

    NARCIS (Netherlands)

    Korte, S.M; Buwalda, B; Bohus, B.G J; de Kloet, E.R

    1996-01-01

    In male Wistar rats the effect of adrenalectomy on pituitary activation by the 5-HT1A receptor agonist. 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), was studied. Rats were injected intravenously with 8-OH-DPAT (0.10 mg/kg) in their home cages. Blood samples were withdrawn from freely moving

  12. 5-HT2C receptor involvement in the control of persistence in the reinforced spatial alternation animal model of obsessive-compulsive disorder.

    Science.gov (United States)

    Papakosta, Vassiliki-Maria; Kalogerakou, Stamatina; Kontis, Dimitris; Anyfandi, Eleni; Theochari, Eirini; Boulougouris, Vasileios; Papadopoulos, Sokrates; Panagis, George; Tsaltas, Eleftheria

    2013-04-15

    The serotonergic system is implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, the distinct role of serotonin (5-HT) receptor subtypes remains unclear. This study investigates the contribution of 5-HT2A and 5-HT2C receptors in the modulation of persistence in the reinforced spatial alternation model of OCD. Male Wistar rats were assessed for spontaneous and pharmacologically induced (by m-chlorophenylpiperazine: mCPP) directional persistence in the reinforced alternation OCD model. Systemic administration of mCPP (non-specific 5-HT agonist, 2.5mg/kg), M100907 (selective 5-HT2A receptor antagonist, 0.08 mg/kg), SB242084 (selective 5-HT2C receptor antagonist, 0.5 mg/kg) and vehicle was used. Experiment 1 investigated M100907 and SB242084 effects in animals spontaneously exhibiting high and low persistence during the early stages of alternation training. Experiment 2 investigated M100900 and SB242084 effects on mCPP-induced persistence. Under the regime used in Experiment 1, 5-HT2A or 5-HT2C receptor antagonism did not affect spontaneous directional persistence in either high or low persistence groups. In Experiment 2, 5-HT2C but not 5-HT2A receptor antagonism significantly reduced, but did not abolish, mCPP-induced directional persistence. These findings suggest that 5-HT2C but not 5-HT2A receptors contribute to the modulation of mCPP-induced persistent behaviour, raising the possibility that the use of 5-HT2C antagonists may have a therapeutic value in OCD. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Antidepressant 5-HT2A Receptor Antagonists Pizotifen and Cyproheptadine Inhibit Serotonin-Enhanced Platelet Function

    Science.gov (United States)

    Lin, Olivia A.; Karim, Zubair A.; Vemana, Hari Priya; Espinosa, Enma V. P.; Khasawneh, Fadi T.

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  14. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  15. The analgesic effect of clonixine is not mediated by 5-HT3 subtype receptors.

    Science.gov (United States)

    Paeile, C; Bustamante, S E; Sierralta, F; Bustamante, D; Miranda, H F

    1995-10-01

    1. The analgesic effect of clonixinate of L-lysine (Clx) in the nociceptive C-fiber reflex in rat and in the writhing test in mice is reported. 2. Clx was administered by three routes, i.v., i.t. and i.c.v., inducing a dose-dependent antinociception. 3. The antinociceptive effect of Clx was 40-45% with respect to the control integration values in the nociceptive C-fiber reflex method. 4. The writhing test yielded ED50 values (mg/kg) of 12.0 +/- 1.3 (i.p.), 1.8 +/- 0.2 (i.t.) and 0.9 +/- 0.1 (i.c.v.) for Clx administration. 5. Ondansetron was not able to antagonize the antinociception response of Clx in the algesiometric tests used. 6. Chlorophenilbiguanide did not produce any significative change in the analgesic effect of Clx in the nociceptive C-fiber reflex method. 7. It is suggested that the mechanism of action of the central analgesia of Clx is not mediated by 5-HT3 subtype receptors.

  16. Estrous cycle and food availability affect feeding induced by amygdala 5-HT receptor blockade.

    Science.gov (United States)

    Parker, Graham C; Bishop, Christopher; Coscina, Donald V

    2002-04-01

    We have recently reported that bilateral infusions of the 5-HT receptor antagonist metergoline (MET) into the posterior basolateral amygdala (pBLA) elicit feeding in female rats tested at mid-light cycle. The present study was performed to determine whether (1) testing at two different phases of the estrous cycle, and/or (2) the palatability of the food might modify this effect. Subjects were 18 adult females with bilateral pBLA cannulae. Following familiarization with Froot Loops cereal, a within-subjects design tested all animals for 1- and 2-h food intake under 2 Drug (0.3 nmol MET vs. Vehicle), 2 Estrous Cycle (diestrus vs. estrus) and 2 Food (lab chow vs. Froot Loops) conditions. Rats weighed more at diestrus than at proestrus (Pestrus (Pestrus. A three-way interaction (Pestrus than in diestrus to lab chow but not Froot Loops. These data suggest pBLA MET differentially affects feeding over the estrous cycle depending on the palatability of food available.

  17. Behavioural profiles in the mouse defence test battery suggest anxiolytic potential of 5-HT(1A) receptor antagonists.

    Science.gov (United States)

    Griebel, G; Rodgers, R J; Perrault, G; Sanger, D J

    1999-05-01

    Compounds varying in selectivity as 5-HT1A receptor antagonists have recently been reported to produce anxiolytic-like effects comparable to those of benzodiazepines in the mouse elevated plus-maze procedure. In view of the potential clinical significance of these findings, the present experiments compared the behavioural effects of diazepam (0.5-3.0 mg/kg) with those of several non-selective 5-HT1A receptor antagonists [NAN-190, 0.1-3.0 mg/kg, MM-77, 0.03-1.0 mg/kg, (S)-UH-301, 0.3-3.0 mg/kg and pindobind-5-HT1A, 0.03-1.0 mg/kg], and three selective 5-HT1A receptor antagonists (WAY100635, 0.01-3.0 mg/kg, p-MPPI, 0.1-3.0 mg/kg and SL88.0338, 0.3-3.0 mg/kg) in the mouse defence test battery (MDTB). In this well-validated anxiolytic screening test, Swiss mice are directly confronted with a natural threat (a rat) as well as situations associated with this threat. Primary measures taken during and after rat confrontation were flight, risk assessment (RA), defensive threat/attack and escape attempts. Diazepam significantly decreased flight reactions after the rat was introduced into the runway, reduced RA activities of mice chased by the rat, increased RA responses displayed when subjects were constrained in a straight alley and reduced defensive upright postures and biting upon forced contact. All the selective 5-HT1A receptor antagonists and NAN-190 also reduced flight, RA in the chase test, and defensive threat and attack behaviours. (S)-UH-301 and pindobind-5-HT1A reduced RA in the chase test, but only partially modified defensive threat and attack. Unlike the other drugs tested, MM-77 produced significant effects only at doses which also markedly reduced spontaneous locomotor activity, suggesting a behaviourally non-specific action. In contrast to diazepam, the 5-HT1A receptor ligands failed to affect RA in the straight alley test. Following removal of the rat from the test area, only diazepam and (S)-UH-301 reduced escape behaviour (contextual defence) at doses

  18. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    Science.gov (United States)

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  19. Membrane cholesterol effect on the 5-HT2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target.

    Science.gov (United States)

    Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana

    2018-01-01

    The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  20. Synthesis and Pharmacological Evaluation of [11C]Granisetron and [18F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging.

    Science.gov (United States)

    Mu, Linjing; Müller Herde, Adrienne; Rüefli, Pascal M; Sladojevich, Filippo; Milicevic Sephton, Selena; Krämer, Stefanie D; Thompson, Andrew J; Schibli, Roger; Ametamey, Simon M; Lochner, Martin

    2016-11-16

    Serotonin-gated ionotropic 5-HT 3 receptors are the major pharmacological targets for antiemetic compounds. Furthermore, they have become a focus for the treatment of irritable bowel syndrome (IBS) and there is some evidence that pharmacological modulation of 5-HT 3 receptors might alleviate symptoms of other neurological disorders. Highly selective, high-affinity antagonists, such as granisetron (Kytril) and palonosetron (Aloxi), belong to a family of drugs (the "setrons") that are well established for clinical use. To enable us to better understand the actions of these drugs in vivo, we report the synthesis of 8-fluoropalonosetron (15) that has a binding affinity (K i = 0.26 ± 0.05 nM) similar to the parent drug (K i = 0.21 ± 0.03 nM). We radiolabeled 15 by nucleophilic 18 F-fluorination of an unsymmetrical diaryliodonium palonosetron precursor and achieved the radiosynthesis of 1-(methyl- 11 C)-N-granisetron ([ 11 C]2) through N-alkylation with [ 11 C]CH 3 I, respectively. Both compounds [ 18 F]15 (chemical and radiochemical purity >95%, specific activity 41 GBq/μmol) and [ 11 C]2 (chemical and radiochemical purity ≥99%, specific activity 170 GBq/μmol) were evaluated for their utility as positron emission tomography (PET) probes. Using mouse and rat brain slices, in vitro autoradiography with both [ 18 F]15 and [ 11 C]2 revealed a heterogeneous and displaceable binding in cortical and hippocampal regions that are known to express 5-HT 3 receptors at significant levels. Subsequent PET experiments suggested that [ 18 F]15 and [ 11 C]2 are of limited utility for the PET imaging of brain 5-HT 3 receptors in vivo.

  1. Conditioned taste aversion: modulation by 5-HT receptor activity and corticosterone

    DEFF Research Database (Denmark)

    Boris, Gorzalka; Hanson, Laura; Harrington, J

    2003-01-01

    Two experiments were designed to elucidate the involvement of the hypothalamic-pituitary-adrenal axis and the 5-hydroxytryptamine (5-HT) system in the acquisition of lithium chloride-conditioned taste aversion. In Experiment 1, rats were administered either vehicle or 50 mg/kg nefazodone daily fo......, corticosterone-treated animals required more trials to reach extinction. These results suggest the involvement of both the 5-HT system and the hypothalamic-pituitary-adrenal axis in lithium chloride-conditioned taste aversion....

  2. Reproducibility of 5-HT2A receptor measurements and sample size estimations with [18F]altanserin PET using a bolus/infusion approach

    International Nuclear Information System (INIS)

    Haugboel, Steven; Pinborg, Lars H.; Arfan, Haroon M.; Froekjaer, Vibe M.; Svarer, Claus; Knudsen, Gitte M.; Madsen, Jacob; Dyrby, Tim B.

    2007-01-01

    To determine the reproducibility of measurements of brain 5-HT 2A receptors with an [ 18 F]altanserin PET bolus/infusion approach. Further, to estimate the sample size needed to detect regional differences between two groups and, finally, to evaluate how partial volume correction affects reproducibility and the required sample size. For assessment of the variability, six subjects were investigated with [ 18 F]altanserin PET twice, at an interval of less than 2 weeks. The sample size required to detect a 20% difference was estimated from [ 18 F]altanserin PET studies in 84 healthy subjects. Regions of interest were automatically delineated on co-registered MR and PET images. In cortical brain regions with a high density of 5-HT 2A receptors, the outcome parameter (binding potential, BP 1 ) showed high reproducibility, with a median difference between the two group measurements of 6% (range 5-12%), whereas in regions with a low receptor density, BP 1 reproducibility was lower, with a median difference of 17% (range 11-39%). Partial volume correction reduced the variability in the sample considerably. The sample size required to detect a 20% difference in brain regions with high receptor density is approximately 27, whereas for low receptor binding regions the required sample size is substantially higher. This study demonstrates that [ 18 F]altanserin PET with a bolus/infusion design has very low variability, particularly in larger brain regions with high 5-HT 2A receptor density. Moreover, partial volume correction considerably reduces the sample size required to detect regional changes between groups. (orig.)

  3. Positron emission tomography study of pindolol occupancy of 5-HT{sub 1A} receptors in humans: preliminary analyses

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diana; Mawlawi, Osama; Hwang, Dah-Ren; Kent, Justine; Simpson, Norman; Parsey, Ramin V.; Hashimoto, Tomoki; Slifstein, Mark; Huang Yiyun; Heertum, Ronald van; Abi-Dargham, Anissa; Caltabiano, Stephen; Malizia, Andrea; Cowley, Hugh; Mann, J. John; Laruelle, Marc

    2000-07-01

    Preclinical studies in rodents suggest that augmentation of serotonin reuptake inhibitors (SSRIs) therapy by the 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor agent pindolol might reduce the delay between initiation of treatment and antidepressant response. This hypothesis is based on the ability of pindolol to potentiate the increase in serotonin (5-HT) transmission induced by SSRIs, an effect achieved by blockade of the 5-HT{sub 1A} autoreceptors in the dorsal raphe nuclei (DRN). However, placebo-controlled clinical studies of pindolol augmentation of antidepressant therapy have reported inconsistent results. Here, we evaluated the occupancy of 5-HT{sub 1A} receptors following treatment with controlled release pindolol in nine healthy volunteers with positron-emission tomography (PET). Each subject was studied four times: at baseline (scan 1), following 1 week of oral administration of pindolol CR (7.5 mg/day) at peak level, 4 h after the dose (scan 2), and at 10 h following the dose (scan 3), and following one dose of pindolol CR (30 mg) (at peak level, 4 h) (scan 4). Pindolol occupancy of 5-HT{sub 1A} receptors was evaluated in the DRN and cortical regions as the decrease in binding potential (BP) of the radiolabelled selective 5-HT{sub 1A} antagonist [carbonyl-{sup 11}C]WAY-100635 or [carbonyl-{sup 11}C] N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide abbreviated as [{sup 11}C]WAY-100635. Pindolol dose-dependently decreased [{sup 11}C]WAY-100635 BP. Combining all the regions, occupancy was 20 {+-} 8% at scan 2, 14 {+-} 8% at scan 3, and 44 {+-} 8% at scan 4. The results of this study suggest that at doses used in clinical studies of augmentation of the SSRI effect by pindolol (2.5 mg t.i.d.), the occupancy of 5-HT{sub 1A} receptors is moderate and highly variable between subjects. This factor might explain the variable results obtained in clinical studies. On the other hand, at each dose tested, pindolol occupancy of 5

  4. Impact of 5-HT3 receptor antagonists on chemotherapy-induced nausea and vomiting: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Lin Swu-Jane

    2012-07-01

    Full Text Available Abstract Background 1st generation 5-hydroxytryptamine receptor antagonists (5-HT3 RAs, and palonosetron, a 2nd generation 5-HT3 RA, are indicated for the prevention of chemotherapy (CT-induced nausea and vomiting (CINV associated with moderately (MEC and highly emetogenic CT agents (HEC. This study explores the impact of step therapy policies requiring use of an older 5-HT3 RA before palonosetron on risk of CINV associated with hospital or emergency department (ED admissions. Methods Patients who received cyclophosphamide post breast cancer (BC surgery or who were diagnosed with lung cancer on carboplatin (LC-carboplatin or cisplatin (LC-cisplatin were selected from PharMetrics’ (IMS LifeLink claims dataset (2005-2008. Patients were followed for 6 months from initial CT administration for CINV events identified through ICD-9-CM codes. Patients were grouped into those initiated with older, generic 5-HT3 RAs (ondansetron, granisetron, and dolasetron and those initiated and maintained on palonosetron throughout study follow-up. CINV events and CINV days were analyzed using multivariate regressions controlling for demographic and clinical variables. Results Eligible patients numbered 3,606 in BC, 4,497 in LC-carboplatin and 1,154 in LC-cisplatin cohorts, with 52%, 40%, and 34% in the palonosetron group, respectively. There was no significant difference between the two 5-HT3 RA groups in age or Charlson Comorbidity Index among the two MEC cohorts (BC and LC-carboplatin. Among the LC-cisplatin cohort, palonosetron users were older with more males than the older 5-HT3 RA group (age: 60.1 vs. 61.3; males, 66.9% vs. 56.9%. Compared to the older 5-HT3 RAs, the palonosetron groups incurred 22%-51% fewer 5-HT3 RA pharmacy claims, had fewer patients with CINV events (3.5% vs. 5.5% in BC, 9.5% vs. 12.8% in LC-carboplatin, 16.4% vs. 21.7% in LC-cisplatin, and had lower risk for CINV events (odds ratios 0.62, 0.71, or 0.71, respectively; p 3 RA group (p

  5. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Repeated Exposure to the “Spice” Cannabinoid JWH-018 Induces Tolerance and Enhances Responsiveness to 5-HT1A Receptor Stimulation in Male Rats

    Directory of Open Access Journals (Sweden)

    Joshua S. Elmore

    2018-02-01

    Full Text Available Naphthalen-1-yl-(1-pentylindol-3-ylmethanone (JWH-018 is a synthetic compound found in psychoactive “spice” products that activates cannabinoid receptors. Preclinical evidence suggests that exposure to synthetic cannabinoids increases 5-HT2A/2C receptor function in the brain, an effect which might contribute to psychotic symptoms. Here, we hypothesized that repeated exposures to JWH-018 would enhance behavioral responsiveness to the 5-HT2A/2C receptor agonist DOI. Male Sprague-Dawley rats fitted with subcutaneously (sc temperature transponders received daily injections of JWH-018 (1.0 mg/kg, sc or its vehicle for seven consecutive days. Body temperature and catalepsy scores were determined at 1, 2, and 4 h post-injection each day. At 1 and 7 days after the final repeated treatment, rats received a challenge injection of either DOI (0.1 mg/kg, sc or the 5-HT1A receptor agonist 8-OH-DPAT (0.3 mg/kg, sc, then temperature and behavioral responses were assessed. Behaviors induced by DOI included wet dog shakes and back muscle contractions (i.e., skin jerks, while behaviors induced by 8-OH-DPAT included ambulation, forepaw treading, and flat body posture. On the first day of repeated treatment, JWH-018 produced robust hypothermia and catalepsy which lasted up to 4 h, and these effects were significantly blunted by day 7 of treatment. Repeated exposure to JWH-018 did not affect behaviors induced by DOI, but behavioral and hypothermic responses induced by 8-OH-DPAT were significantly augmented 1 day after cessation of JWH-018 treatment. Collectively, our findings show that repeated treatment with JWH-018 produces tolerance to its hypothermic and cataleptic effects, which is accompanied by transient enhancement of 5-HT1A receptor sensitivity in vivo.

  7. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior

    DEFF Research Database (Denmark)

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe

    2009-01-01

    with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c...

  8. 5-HT(1A) receptor antagonism reverses and prevents fluoxetine-induced sexual dysfunction in rats.

    Science.gov (United States)

    Sukoff Rizzo, Stacey J; Pulicicchio, Claudine; Malberg, Jessica E; Andree, Terrance H; Stack, Gary P; Hughes, Zoë A; Schechter, Lee E; Rosenzweig-Lipson, Sharon

    2009-09-01

    Sexual dysfunction associated with antidepressant treatment continues to be a major compliance issue for antidepressant therapies. 5-HT(1A) antagonists have been suggested as beneficial adjunctive treatment in respect of antidepressant efficacy; however, the effects of 5-HT(1A) antagonism on antidepressant-induced side-effects has not been fully examined. The present study was conducted to evaluate the ability of acute or chronic treatment with 5-HT(1A) antagonists to alter chronic fluoxetine-induced impairments in sexual function. Chronic 14-d treatment with fluoxetine resulted in a marked reduction in the number of non-contact penile erections in sexually experienced male rats, relative to vehicle-treated controls. Acute administration of the 5-HT(1A) antagonist WAY-101405 resulted in a complete reversal of chronic fluoxetine-induced deficits on non-contact penile erections at doses that did not significantly alter baselines. Chronic co-administration of the 5-HT(1A) antagonists WAY-100635 or WAY-101405 with fluoxetine prevented fluoxetine-induced deficits in non-contact penile erections in sexually experienced male rats. Moreover, withdrawal of WAY-100635 from co-treatment with chonic fluoxetine, resulted in a time-dependent reinstatement of chronic fluoxetine-induced deficits in non-contact penile erections. Additionally, chronic administration of SSA-426, a molecule with dual activity as both a SSRI and 5-HT(1A) antagonist, did not produce deficits in non-contact penile erections at doses demonstrated to have antidepressant-like activity in the olfactory bulbectomy model. Taken together, these data suggest that 5-HT(1A) antagonist treatment may have utility for the management of SSRI-induced sexual dysfunction.

  9. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Xu, Cang-Bao

    2003-01-01

    experimental SAH. METHODS: Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive...... RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. CONCLUSIONS: Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH...... to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm....

  10. Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats.

    Science.gov (United States)

    Tatarczyńska, Ewa; Kłodzińska, Aleksandra; Chojnacka-Wójcik, Ewa

    2002-01-01

    Clinical data suggest that coadministration of pindolol, a 5-HT1A/5-HT1B/beta-adrenoceptor antagonist, and selective serotonin reuptake inhibitors (SSRIs) may shorten the time of onset of a clinical action and may increase beneficial effects of the therapy of drug-resistant depression. Effects of combined administration of SSRIs and 5-HT receptor ligands are currently evaluated in animal models for the detection of an antidepressant-like activity; however, the obtained results turned out to be inconsistent. The aim of the present study was to investigate effects of a 5-HT1A antagonist (WAY 100635), 5-HT1B antagonists (SB 216641 and GR 127935) or pindolol, given in combination with paroxetine or fluoxetine (SSRIs), in the forced swimming test in rats (Porsolt test). When given alone, paroxetine (10 and 20 mg/kg), fluoxetine (10 and 20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), SB 216641 (2 mg/kg), GR 127935 (10 and 20 mg/kg) and pindolol (4 and 8 mg/kg) did not shorten the immobility time of rats in that test. Interestingly, SB 216641 administered alone at a dose of 4 mg/kg produced a significant reduction of the immobility time in that test. A combination of paroxetine (20 mg/kg) and WAY 100635 or pindolol failed to reveal a significant interaction; on the other hand, when paroxetine was given jointly with SB 216641 (2 mg/kg) or GR 127935 (10 and 20 mg/kg), that combination showed a significant antiimmobility action in the forced swimming test in rats. The active behaviors in that test did not reflect increased general activity because combined administration of both the 5-HT1B antagonists and paroxetine failed to alter the locomotor activity of rats, measured in the open field test. Coadministration of fluoxetine and all the antagonists used did not affect the behavior of rats in the forced swimming test. The obtained results seem to indicate that blockade of 5-HT1B receptors, but not 5-HT1A ones, can facilitate the antidepressant-like effect of paroxetine in the

  11. 5-(sulfonyl)oxy-tryptamines and ethylamino side chain restricted derivatives. Structure-affinity relationships for h5-HT1B and h5-HT1D receptors

    NARCIS (Netherlands)

    Barf, T; Wikstrom, H; Pauwels, PJ; Palmier, C; Tardif, S; Lundmark, M; Sundell, S

    A number of sulfonic acid ester derivatives of serotonin (5-hydroxytryptamine; 5-HT; 1) were prepared and their affinities are compared to that of the reference compound 5-[[(trifluoromethyl)sulfonyl]oxy]-tryptamine (8b). The structure-affinity relationship (SAFIR) is discussed in terms of in vitro

  12. The effect of citalopram hydrobromide on 5-HT2A receptors in the impulsive-aggressive dog, as measured with 123I-5-I-R91150 SPECT

    International Nuclear Information System (INIS)

    Peremans, K.; Hoybergs, Y.; Gielen, I.; Audenaert, K.; Vervaet, M.; Heeringen, C. van; Otte, A.; Goethals, I.; Dierckx, R.; Blankaert, P.

    2005-01-01

    Involvement of the serotonergic system in impulsive aggression has been demonstrated in both human and animal studies. The purpose of the present study was to investigate the effect of citalopram hydrobromide (a selective serotonin re-uptake inhibitor) on the 5-HT 2A receptor and brain perfusion in impulsive-aggressive dogs by means of single-photon emission computed tomography. The binding index of the radioligand 123 I-5-I-R91150 was measured before and after treatment with citalopram hydrobromide in nine impulsive-aggressive dogs. Regional perfusion was measured with 99m Tc-ethyl cysteinate dimer (ECD). Behaviour was assessed before treatment and again after 6 weeks of treatment. A correlation was found between decreased binding and behavioural improvement in eight out of nine dogs. The 5-HT 2A receptor binding index was significantly reduced after citalopram hydrobromide treatment in all cortical regions but not in the subcortical area. None of the dogs displayed alterations in perfusion on the post-treatment scans. This study supports previous findings regarding the involvement of the serotonergic system in impulsive aggression in dogs in general. More specifically, the effect of treatment on the 5-HT 2A receptor binding index could be demonstrated and the decreased binding index correlated with behavioural improvement. (orig.)

  13. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Development of a PET radioligand for the central 5-HT{sub 1B} receptor: radiosynthesis and characterization in cynomolgus monkeys of eight radiolabeled compounds

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jan D., E-mail: j.d.andersson@ki.s [Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm (Sweden); Pierson, M. Edward [AstraZeneca Pharmaceuticals, CNS Discovery, Wilmington, DE 19850 (United States); Finnema, Sjoerd J.; Gulyas, Balazs [Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm (Sweden); Heys, Richard; Elmore, Charles S. [AstraZeneca Pharmaceuticals, CNS Discovery, Wilmington, DE 19850 (United States); Farde, Lars [AstraZeneca Pharmaceuticals, Neuroscience Clinical, SE-15185 Soedertaelje (Sweden); Halldin, Christer [Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm (Sweden)

    2011-02-15

    Introduction: The serotonin 1B (5-HT{sub 1B}) receptor has been implicated in several psychiatric disorders and is a potential pharmacological target in the treatment of depression. The aim of this study was to develop a radioligand for positron emission tomography (PET) imaging of the 5-HT{sub 1B} receptor in the primate brain in vivo. Methods: Eight carboxamide radioligands (1-8) from three different core structures were radiolabeled with carbon-11 employing N-methylation with [{sup 11}C]methyl triflate on the piperazine structural moiety. In vivo PET evaluation of each radioligand was performed in cynomolgus monkeys and included analysis of radioactive metabolites measured in plasma using high-performance liquid chromatography. Results: In a total of 12 radiosynthesis of the eight radioligands, the mean decay corrected yield was 11%, and the mean specific radioactivity was 299 GBq/{mu}mol (8075 Ci/mmol) at time of administration. Of the eight tested candidates, [{sup 11}C]6 demonstrated the most promising in vivo characteristics, showing high binding in 5-HT{sub 1B} receptor-rich regions and low binding in the cerebellum. When inspecting data from all eight compounds, lipophilicity appeared as a physicochemical property that could be related to favorable in vivo imaging characteristics. Conclusion: Candidate [{sup 11}C]6, i.e., [{sup 11}C]AZ10419369, exhibited high binding potentials in regions known to contain 5-HT{sub 1B} receptors and was nominated for further preclinical characterization and PET examination in human subjects.

  15. Longitudinal assessment of cerebral 5-HT{sub 2A} receptors in healthy elderly volunteers: an [{sup 18}F]-altanserin PET study

    Energy Technology Data Exchange (ETDEWEB)

    Marner, Lisbeth; Knudsen, Gitte M.; Haugboel, Steven [University Hospital Rigshospitalet, Neurobiology Research Unit, N9201, Copenhagen O (Denmark); Holm, Soeren [Rigshospitalet, PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Baare, William [Hvidovre Hospital, Danish Research Center for Magnetic Resonance, Copenhagen (Denmark); Hasselbalch, Steen G. [University Hospital Rigshospitalet, Neurobiology Research Unit, N9201, Copenhagen O (Denmark)]|[Memory Disorders Research Unit, The Neuroscience Center, Copenhagen (Denmark)

    2009-02-15

    The serotonin 2A (5-HT{sub 2A}) receptor is of interest in several psychiatric and neurological diseases. In the present study we investigated the longitudinal stability of 5-HT{sub 2A} receptors and the stability of the quantification procedure in the elderly in order to be able to study elderly patients with neuropsychiatric diseases on a longitudinal basis. [{sup 18}F]-Altanserin PET was used to quantify 5-HT{sub 2A} receptors in 12 healthy elderly individuals at baseline and at 2 years in six volumes of interest. A bolus/infusion protocol was used to achieve the binding potential, BP{sub P}. The reproducibility as assessed in terms of variability and the reliability as assessed in terms of intraclass correlation coefficient (ICC) were used to compare inter- and intraobserver stability and to evaluate the effects of increasing complexity of partial volume (PV) corrections. We also compared the stability of our measurements over 2 years with the stability of data from an earlier study with 2-week test-retest measurements. BP{sub P} was unaltered at follow-up without the use of PV correction and when applying two-tissue PV correction, test-retest reproducibility was 12-15% and reliability 0.45-0.67 in the large bilateral regions such as the parietal, temporal, occipital and frontal cortices, while orbitofrontal and anterior cingulate cortical regions were less stable. The use of PV correction decreased the variability but also decreased the between-subject variation, thereby worsening the reliability. In healthy elderly individuals, brain 5-HT{sub 2A} receptor binding remains stable over 2 years, and acceptable reproducibility and reliability in larger regions and high intra- and interobserver stability allow the use of [{sup 18}F]-altanserin in longitudinal studies of patients with neuropsychiatric disorders. (orig.)

  16. Clozapine blockade of MK-801-induced learning/memory impairment in the mEPM: Role of 5-HT1A receptors and hippocampal BDNF levels.

    Science.gov (United States)

    López Hill, Ximena; Richeri, Analía; Scorza, María Cecilia

    2017-10-01

    Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT 1A receptor (5-HT 1A -R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT 1A -R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT 1A -R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT 1A -R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Direct comparison of [18F]MH.MZ and [18F]altanserin for 5-HT2A receptor imaging with PET

    DEFF Research Database (Denmark)

    Hansen, Hanne Demant; Ettrup, Anders; Herth, Matthias Manfred

    2013-01-01

    ]altanserin was blocked by ketanserin supporting that both radioligands bind to 5-HT(2A) receptors in the pig brain. In the HPLC analysis of pig plasma, [(18) F]MH.MZ displayed a fast and reproducible metabolism resulting in hydrophilic radiometabolites only whereas the metabolic profile of [(18) F]altanserin as expected......]altanserin were investigated in Danish Landrace pigs by brain PET scanning at baseline and after i.v. administration of blocking doses of ketanserin. Full arterial input function and HPLC analysis allowed for tissue-compartment kinetic modelling of PET data. In vitro autoradiography showed high binding...

  18. Rapid desensitization and resensitization of 5-HT2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Pauwels, P.J.; Van Gompel, P.; Leysen, J.E.

    1990-01-01

    Agonist regulation of 5-hydroxytryptamine 2 (5-HT 2 ) receptors was studied in calf aortic smooth muscle cultures incubated in a quiescent, defined synthetic medium that does not stimulate cell proliferation, but that provides cells with supplements that maintain cell viability. In these cells, 5-hydroxytryptamine (5-HT)-induced [ 3 H]inositol phosphates accumulation showed the characteristics of a 5-HT 2 receptor coupled transducing system according to the inhibition of the response by 5-HT 2 antagonists at nanomolar concentrations. The 5-HT 2 receptor coupled response became rapidly desensitized during continued incubation with 5-HT and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM); nearly full desensitization was obtained in two hours with 10 μM 5-HT and DOM pretreatment. The recovery of the response had a half-live of 5 hours after 2 hours pretreatment and of 9.5 to 12.5 hours after 24 to 96 hours agonist pretreatment. The DOM-induced desensitization of the 5-HT 2 receptor coupled response was fully blocked by 0.1 μM cinanserin. Cinanserin alone did not induce desensitization or up-regulation of the 5-HT 2 receptor coupled response at 0.1 μM

  19. Hippocampal deletion of BDNF gene attenuates gamma oscillations in area CA1 by up-regulating 5-HT3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2011-01-01

    Full Text Available Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown.Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice.These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.

  20. Impact of 5-HT3 receptor antagonists on chemotherapy-induced nausea and vomiting: a retrospective cohort study.

    Science.gov (United States)

    Lin, Swu-Jane; Hatoum, Hind T; Buchner, Deborah; Cox, David; Balu, Sanjeev

    2012-07-23

    1st generation 5-hydroxytryptamine receptor antagonists (5-HT3 RAs), and palonosetron, a 2nd generation 5-HT3 RA, are indicated for the prevention of chemotherapy (CT)-induced nausea and vomiting (CINV) associated with moderately (MEC) and highly emetogenic CT agents (HEC). This study explores the impact of step therapy policies requiring use of an older 5-HT3 RA before palonosetron on risk of CINV associated with hospital or emergency department (ED) admissions. Patients who received cyclophosphamide post breast cancer (BC) surgery or who were diagnosed with lung cancer on carboplatin (LC-carboplatin) or cisplatin (LC-cisplatin) were selected from PharMetrics' (IMS LifeLink) claims dataset (2005-2008). Patients were followed for 6 months from initial CT administration for CINV events identified through ICD-9-CM codes. Patients were grouped into those initiated with older, generic 5-HT3 RAs (ondansetron, granisetron, and dolasetron) and those initiated and maintained on palonosetron throughout study follow-up. CINV events and CINV days were analyzed using multivariate regressions controlling for demographic and clinical variables. Eligible patients numbered 3,606 in BC, 4,497 in LC-carboplatin and 1,154 in LC-cisplatin cohorts, with 52%, 40%, and 34% in the palonosetron group, respectively. There was no significant difference between the two 5-HT3 RA groups in age or Charlson Comorbidity Index among the two MEC cohorts (BC and LC-carboplatin). Among the LC-cisplatin cohort, palonosetron users were older with more males than the older 5-HT3 RA group (age: 60.1 vs. 61.3; males, 66.9% vs. 56.9%). Compared to the older 5-HT3 RAs, the palonosetron groups incurred 22%-51% fewer 5-HT3 RA pharmacy claims, had fewer patients with CINV events (3.5% vs. 5.5% in BC, 9.5% vs. 12.8% in LC-carboplatin, 16.4% vs. 21.7% in LC-cisplatin), and had lower risk for CINV events (odds ratios 0.62, 0.71, or 0.71, respectively; pRAs. Further studies on impact of step therapy policy are

  1. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  2. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R

    2017-07-01

    Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to

  3. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    Science.gov (United States)

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Chronic treatment with LY341495 decreases 5-HT2A receptor binding and hallucinogenic effects of LSD in mice

    Science.gov (United States)

    Moreno, José L.; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C.; González-Maeso, Javier

    2013-01-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT2A receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24 mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5 mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [3H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT2A agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT2A receptor-dependent hallucinogenic effects of LSD. PMID:23333599

  5. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    Science.gov (United States)

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  6. Synthesis, radiolabeling and bioevaluation of a novel arylpiperazine derivative containing triazole as a 5-HT{sub 1A} receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh, Leila [Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Erfani, Mostafa; Najafi, Reza; Shafiei, Mohammad [Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), end of Karegar Ave., Tehran (Iran, Islamic Republic of); Amini, Mohsen; Shafiee, Abbass [Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ebrahimi, Seyed Esmaeil Sadat, E-mail: sesebrahimi@yahoo.com [Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-02-15

    Introduction: It has been recognized that serotonin plays a main role in various pathological conditions such as anxiety, depression, aggressiveness, schizophrenia, suicidal behavior, panic and autism. 1-(2-Methoxyphenyl) piperazine pharmacophore, a fragment of the true 5-HT{sub 1A} antagonist WAY100635, is found in numerous selective 5-HT{sub 1A} imaging agents. In this paper, we have reported the synthesis of a novel derivative of 1-(2-methoxyphenyl) piperazine that is labeled with {sup 99m}Tc (CO){sub 3} via click chemistry. Methods: The bidentate alkyne, propargylglycine was reacted with phenyl piperazine triazole derivative in the presence of a catalytic amount of Cu (I) to form tridentate ligand. The ligand was radiolabeled with the precursor [{sup 99m}Tc] [(H{sub 2}O){sub 3} (CO){sub 3}]{sup +} and characterized by HPLC. The bioevaluation of radio labeled ligand was carried out in rats. Results: Triazole complex was labeled by {sup 99m}Tc-tricarbonyl and its radiochemical yield was more than > 95% which was determined by HPLC. In vivo stability studies in human serum albumin show a 93% ratio of complex after a 24 h period. The calculated partition coefficient (logP) was 0.34 ± 0.02. Receptor binding assays indicated about 70% specific binding of radioligand to 5-HT{sub 1A} receptors. Biodistribution studies have shown brain hippocampus uptake of 0.40 ± 0.08 %ID/g at 30 min post injection. Conclusions: Results indicate that this {sup 99m}Tc-tricabonyl-arylpiperazine derivative has specific binding to 5-HT{sub 1A} receptors and presented suitable characters for its use as a CNS imaging agent.

  7. An immunocapture/scintillation proximity analysis of G alpha q/11 activation by native serotonin (5-HT)2A receptors in rat cortex: blockade by clozapine and mirtazapine.

    Science.gov (United States)

    Mannoury La Cour, C; Chaput, C; Touzard, M; Millan, M J

    2009-02-01

    Though transduction mechanisms recruited by heterologously expressed 5-HT(2A) receptors have been extensively studied, their interaction with specific subtypes of G-protein remains to be directly evaluated in cerebral tissue. Herein, as shown by an immunocapture/scintillation proximity analysis, 5-HT, the prototypical 5-HT(2A) agonist, DOI, and Ro60,0175 all enhanced [(35)S]GTPgammaS binding to G alpha q/11 in rat cortex with pEC(50) values of 6.22, 7.24 and 6.35, respectively. No activation of G o or G s/olf was seen at equivalent concentrations of DOI. Stimulation of G alpha q/11 by 5-HT (30 microM) and DOI (30 microM) was abolished by the selective 5-HT(2A) vs. 5-HT(2C)/5-HT(2B) antagonists, ketanserin (pK(B) values of 9.11 and 8.88, respectively) and MDL100,907 (9.82 and 9.68). By contrast, 5-HT-induced [(35)S]GTPgammaS binding to G alpha q/11 was only weakly inhibited by the preferential 5-HT(2C) receptor antagonists, RS102,221 (6.94) and SB242,084 (7.39), and the preferential 5-HT(2B) receptor antagonist, LY266,097 (6.66). The antipsychotic, clozapine, which had marked affinity for 5-HT(2A) receptors, blocked the recruitment of G alpha q/11 by 5-HT and DOI with pK(B) values of 8.54 and 8.14, respectively. Its actions were mimicked by the "atypical" antidepressant and 5-HT(2A) receptor antagonist, mirtazapine, which likewise blocked 5-HT and DOI-induced G alpha q/11 protein activation with pK(B) values of 7.90 and 7.76, respectively. In conclusion, by use of an immunocapture/scintillation proximity strategy, this study shows that native 5-HT(2A) receptors in rat frontal cortex specifically recruit G alpha q/11 and that this action is blocked by clozapine and mirtazapine. Quantification of 5-HT(2A) receptor-mediated G alpha q/11 activation in frontal cortex should prove instructive in characterizing the actions of diverse classes of psychotropic agent. 2008 Wiley-Liss, Inc.

  8. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, V G; Erritzoe, D; Madsen, J

    2009-01-01

    to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.......31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding....... binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated...

  9. Synergistic effect of 5-HT2A receptor gene and MAOA gene on the negative emotion of patients with depression.

    Science.gov (United States)

    Guo, Huirong; Ren, Yuming; Zhao, Ning; Wang, Yali; Li, Shuying; Cui, He; Zhang, Sijia; Zhang, Jianhua

    2014-07-01

    To analyse the synergistic effect of polymorphism of the tandem repeat sequence u-VNTR of 5-hydroxytryptamine 2A (5-HT2A) receptor gene and monoamine oxidase A (MAOA) gene on the negative emotion in frontal lobe of patients with depression through functional magnetic resonance imaging (fMRI) technique. Functional magnetic resonance imaging scanning was performed for 72 patients with depression and 70 gender, age-matched healthy people with physical examination under negative emotion recognition task. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was adopted to analyse genotype. The superior, middle and inferior gyrus of bilateral frontal lobe was regarded as the brain region of interest, and then the difference of activation intensity in frontal lobe subregion between control groups and patient groups with different genotypes, and the interaction between the two kinds of polymorphism were compared. The activation intensity in right frontal middle gyrus of patients with CC genotype increased obviously compared with TT and TC genotype patient groups and TT genotype control group (Peffect of the two genotypes on the activation abnormality of negative emotion recognition in right frontal middle gyrus (F = 6·18, P = 0·029). The negative activation in right frontal middle gyrus of patients with CC+H genotypes increased most obviously (Peffect on the activity abnormality when recognizing negative emotion in right frontal middle gyrus of patients with depression. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. 5-HT causes splanchnic venodilation.

    Science.gov (United States)

    Seitz, Bridget M; Orer, Hakan S; Krieger-Burke, Teresa; Darios, Emma S; Thompson, Janice M; Fink, Gregory D; Watts, Stephanie W

    2017-09-01

    Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT 7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT 7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT 1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT 7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT 7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT 7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 μg·kg -1 ·min -1 ) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT 7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure. NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT 7 receptor, an in vitro observation (venorelaxation) with in vivo events

  11. Retraction: Borroto-Escuela et al., The existence of FGFR1-5-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity.

    Science.gov (United States)

    2013-07-10

    The Journal of Neuroscience has received a report describing an investigation by the Karolinska Institutet, which found substantial data misrepresentation in the article "The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity" by Dasiel O. Borroto-Escuela, Wilber Romero-Fernandez, Mileidys Pérez-Alea, Manuel Narvaez, Alexander O. Tarakanov, Giuseppa Mudó , Luigi F. Agnati, Francisco Ciruela, Natale Belluardo, and Kjell Fuxe, which appeared on pages 6295-6303 of the May 2, 2012 issue. Because the results cannot be considered reliable, the editors of The Journal are retracting the paper.

  12. Radiosynthesis and in vivo evaluation of novel radioligands for PET imaging of cerebral 5-HT7 receptors

    DEFF Research Database (Denmark)

    Hansen, Hanne D; Herth, Matthias M; Ettrup, Anders

    2014-01-01

    in the living brain. Here, we present the radiosynthesis and in vivo evaluation of Cimbi-712 (3-{4-[4-(4-methylphenyl)piperazine-1-yl]butyl}p-1,3-dihydro-2H-indol-2-one) and Cimbi-717 (3-{4-[4-(3-methoxyphenyl)piperazine-1-yl]butyl}-1,3-dihydro-2H-indol-2-one) as selective 5-HT7R PET radioligands in the pig...

  13. (11)C-labeling and preliminary evaluation of pimavanserin as a 5-HT2A receptor PET-radioligand

    DEFF Research Database (Denmark)

    Andersen, Valdemar L; Hansen, Hanne D; Herth, Matthias M

    2015-01-01

    ]Pimavanserin was obtained by N-methylation of an appropriate precursor using [(11)C]MeOTf in acetone at 60°C giving radiochemical yields in the range of 1-1.7GBq (n=4). In Danish Landrace pigs the radio ligand readily entered the brain and displayed binding in the cortex in accordance with the distribution of 5-HT2ARs...

  14. Altered 5-HT2A Receptor Binding after Recovery from Bulimia-Type Anorexia Nervosa: Relationships to Harm Avoidance and Drive for Thinness

    Science.gov (United States)

    Bailer, Ursula F; Price, Julie C; Meltzer, Carolyn C; Mathis, Chester A; Frank, Guido K; Weissfeld, Lisa; McConaha, Claire W; Henry, Shannan E; Brooks-Achenbach, Sarah; Barbarich, Nicole C; Kaye, Walter H

    2015-01-01

    Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia nervosa (AN) and bulimia nervosa (BN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5-HT2A) receptor, which could contribute to disturbances of appetite and behavior in AN and BN. To avoid the confounding effects of malnutrition, we studied 10 women recovered from bulimia-type AN (REC AN–BN, >1 year normal weight, regular menstrual cycles, no binging, or purging) compared with 16 healthy control women (CW) using PET imaging and a specific 5-HT2A receptor antagonist, [18F]altanserin. REC AN–BN women had significantly reduced [18F]altanserin binding potential relative to CW in the left subgenual cingulate, the left parietal cortex, and the right occipital cortex. [18F]altanserin binding potential was positively related to harm avoidance and negatively related to novelty seeking in cingulate and temporal regions only in REC AN–BN subjects. In addition, REC AN–BN had negative relationships between [18F]altanserin binding potential and drive for thinness in several cortical regions. In conclusion, this study extends research suggesting that altered 5-HT neuronal system activity persists after recovery from bulimia-type AN, particularly in subgenual cingulate regions. Altered 5-HT neurotransmission after recovery also supports the possibility that this may be a trait-related disturbance that contributes to the pathophysiology of eating disorders. It is possible that subgenual cingulate findings are not specific for AN–BN, but may be related to the high incidence of lifetime major depressive disorder diagnosis in these subjects. PMID:15054474

  15. Disturbance of serotonin 5HT{sub 2} receptors in remitted patients suffering from hereditary depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W. [Kliniken fuer Nuklearmedizin der Heinrich-Heine-Univ., Duesseldorf (Germany); Klimke, A.; Gaebel, W. [Kliniken fuer Psychiatrie der Heinrich-Heine-Univ., Duesseldorf (Germany); Mayoral, F.; Rivas, F. [Psychiatrische Klinik des Hospital Civil Carlos Haya, Malaga (Spain); Hamacher, K.; Coenen, H.H. [Inst. fuer Nuklearchemie des Forschungszentrums Juelich GmbH (Germany); Herzog, H.R. [Inst. fuer Medizin des Forschungszentrums Juelich GmbH (Germany)

    2001-08-01

    Aim: The characteristics of 5HT{sub 2} receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p<0.001). A multiple regression analysis revealed that this difference was mainly induced by depression rather than by medication. Conclusions: The data suggest that 5HT{sub 2} receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.) [German] Ziel: Die vorliegende Studie untersucht die 5HT{sub 2}-Rezeptorbindung bei depressiven Patienten in vivo mit der Positronen-Emissionstomographie und dem Radioliganden F-18-Altanserin. Methoden: Zwoelf Patienten aus Familien mit hoher Inzidenz fuer Depressionen, die in einer geographisch abgeschlossenen Region leben, wurden untersucht und mit gesunden Kontrollpersonen verglichen. Zum Zeitpunkt der PET-Messung waren alle Patienten klinisch remittiert, was bei einigen den Einsatz von Antidepressiva erforderlich machte. Das Bindungspotenzial wurde mit Logans graphischer Methode bestimmt. Ergebnisse: Die Altanserinbindung war bei den Patienten um ca. 38% niedriger als bei den Kontrollpersonen (p<0,001). Eine multiple Regressionsanalyse zeigte, dass dieser Unterschied in erster Linie durch die Erkrankung und nicht durch Praemedikation hervorgerufen wurde. Schlussfolgerung: Die Studie zeigt, dass die 5HT{sub 2}-Rezeptoren an der Depression beteiligt sind. Die

  16. Yokukansan, a traditional Japanese herbal medicine, enhances the anxiolytic effect of fluvoxamine and reduces cortical 5-HT2A receptor expression in mice.

    Science.gov (United States)

    Ohno, Rintaro; Miyagishi, Hiroko; Tsuji, Minoru; Saito, Atsumi; Miyagawa, Kazuya; Kurokawa, Kazuhiro; Takeda, Hiroshi

    2018-04-24

    Yokukansan is a traditional Japanese herbal medicine that has been approved in Japan as a remedy for neurosis, insomnia, and irritability in children. It has also been reported to improve behavioral and psychological symptoms in patients with various forms of dementia. To evaluate the usefulness of co-treatment with an antidepressant and an herbal medicine in the psychiatric field, the current study examined the effect of yokukansan on the anxiolytic-like effect of fluvoxamine in mice. The anxiolytic-like effect in mice was estimated by the contextual fear conditioning paradigm. Contextual fear conditioning consisted of two sessions, i.e., day 1 for the conditioning session and day 2 for the test session. The expression levels of 5-HT 1A and 5-HT 2A receptor in the mouse brain regions were quantified by western blot analysis. A single administration of fluvoxamine (5-20 mg/kg, i.p.) before the test session dose-dependently and significantly suppressed freezing behavior in mice. In the combination study, a sub-effective dose of fluvoxamine (5 mg/kg, i.p.) significantly suppressed freezing behavior in mice that had been repeatedly pretreated with yokukansan (0.3 and 1 g/kg, p.o.) once a day for 6 days after the conditioning session. Western blot analysis revealed that the expression level of 5-HT 2A receptor was specifically decreased in the prefrontal cortex of mice that had been administered yokukansan and fluvoxamine. Furthermore, microinjection of the 5-HT 2A receptor antagonist ketanserin (5 nmol/mouse) into the prefrontal cortex significantly suppressed freezing behavior. The present findings indicate that repeated treatment with yokukansan synergistically enhances the anxiolytic-like effect of fluvoxamine in the contextual fear conditioning paradigm in mice in conjunction with a decrease in 5-HT 2A receptor-mediated signaling in the prefrontal cortex. Therefore, combination therapy with fluvoxamine and yokukansan may be beneficial for the treatment of

  17. Pharmacokinetics and brain distribution in non human primate of R(-)[123I]DOI, A 5HT2A/2C serotonin agonist

    International Nuclear Information System (INIS)

    Zea-Ponce, Yolanda; Kegeles, Lawrence S.; Guo, Ningning; Raskin, Leonid; Bakthavachalam, Venkatesalu; Laruelle, Marc

    2002-01-01

    Our goal was to synthesize with high specific activity R(-)-1-(2,5-Dimethoxy-4-[ 123 I]iodophenyl)-2-aminopropane [R(-)[ 123 I]DOI], an in vitro potent and selective 5-HT 2A/2C serotonin agonist, and study in vivo its plasma pharmacokinetics and brain distribution in baboon by SPECT. The purpose was to evaluate this radiotracer as a potential tool in discerning the role of the agonist high affinity state of 5-HT 2 receptors in depression and other neurological disorders. The radiotracer was prepared by electrophilic radioiodination of the N-trifluoroacetyl precursor of R(-)-1-(2,5-Dimethoxyphenyl)-2-aminopropane [R(-)DMA-TFA] with high-purity sodium [ 123 I]iodide in the presence of chloramine-T, followed by amino deprotection with KOH in isopropanol (labeling yield: 73%, radiochemical yield: 62%, radiochemical purity: 99%). In vivo studies in baboon showed high accumulation of radioactivity in thalamus, the frontoparietal cortex, temporal, occipital and the striatum regions, with slightly lower accumulation in the midbrain and cerebellum. Ketanserin did not displaced the radioactivity in any of these brain regions. Plasma metabolite analysis was performed using methanol protein precipitation, the methanol fractions contained from 68% to 92% of the mixture of a labeled metabolite and parent compound. The recovery coefficient of unmetabolized R(-)[ 123 I]DOI was 68%. The percent parent compound present in the extracted fraction, measured by HPLC, decreased gradually with time from 99.8% to 0.3% still present after 4.7 hours post injection whereas the percentage of the only one detected metabolite increased conversely. Free fraction determination (f 1 ), was 31±0.9% (n=3). For comparison purposes, ex-vivo brain distribution, displacement and metabolite analysis was also carried out in rodents. Although R(-)[ 123 I]DOI displayed good brain uptake and localized in serotonergic areas of the brain, its target to non target ratio and its insensitivity to ketanserin

  18. Association of 5-HT2A receptor gene polymorphisms with gastrointestinal disorders in Egyptian children with autistic disorder.

    Science.gov (United States)

    Abdelrahman, Hadeel M; Sherief, Laila M; Alghobashy, Ashgan A; Abdel Salam, Sanaa M; Hashim, Haitham M; Abdel Fattah, Nelly R; Mohamed, Randa H

    2014-11-12

    Gastrointestinal disturbances (GID) are frequently reported in children with autism spectrum disorders (ASD). Recently, mounting evidence suggests that there may be a genetic link for autism with gastrointestinal disturbances. We aimed to investigate whether there were any association between the -1438A/G, 102T/C and His452Tyr polymorphisms of the serotonin 2A receptor gene (5-HT2A) in Egyptian children with ASD and GID. Eighty children with autistic disorder and 100 healthy control children were examined. -1438A/G, 102T/C and His452Tyr polymorphisms of 5-HT2A were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Significant increase of the G allele and the GG genotype of the -1438A/G polymorphism was observed in children with autism than control, but there were no significant differences in the frequencies either of the 102T/C genotype or His452Tyr genotype between the two groups. There was a significant increase of homozygote A allele of the -1438A/G and CC genotype of the 102T/C polymorphism in ASD children with GID. This study supports the possible involvement of the 5-HT2A receptor in the development of ASD and associated GID. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5HT3A receptors due to the action of flavonoids

    Directory of Open Access Journals (Sweden)

    Robin eHerbrechter

    2015-07-01

    Full Text Available The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g. setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3A receptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonist of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (--liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (--liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito.

  20. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice.

    Science.gov (United States)

    Yamamoto, Hideko; Kamegaya, Etsuko; Hagino, Yoko; Takamatsu, Yukio; Sawada, Wakako; Matsuzawa, Maaya; Ide, Soichiro; Yamamoto, Toshifumi; Mishina, Masayoshi; Ikeda, Kazutaka

    2017-01-01

    The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT 2C ) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT 2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT 2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT 2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special

  1. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors.

    Science.gov (United States)

    De Gregorio, Danilo; Posa, Luca; Ochoa-Sanchez, Rafael; McLaughlin, Ryan; Maione, Sabatino; Comai, Stefano; Gobbi, Gabriella

    2016-11-01

    d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT 1 and 5-HT 2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5-20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT 2A and D 2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30-120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D 2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT 1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR 1 ) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT 1A, D 2 and TAAR 1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Studies To Examine Potential Tolerability Differences between the 5-HT2C Receptor Selective Agonists Lorcaserin and CP-809101.

    Science.gov (United States)

    Higgins, Guy A; Silenieks, Leonardo B; Patrick, Amy; De Lannoy, Ines A M; Fletcher, Paul J; Parker, Linda A; MacLusky, Neil J; Sullivan, Laura C; Chavera, Teresa A; Berg, Kelly A

    2017-05-17

    Lorcaserin (LOR) is a selective 5-HT 2C receptor agonist that has been FDA approved as a treatment for obesity. The most frequently reported side-effects of LOR include nausea and headache, which can be dose limiting. We have previously reported that in the rat, while LOR produced unconditioned signs characteristic of nausea/malaise, the highly selective 5-HT 2C agonist CP-809101 (CP) produced fewer equivalent signs. Because this may indicate a subclass of 5-HT 2C agonists having better tolerability, the present studies were designed to further investigate this apparent difference. In a conditioned gaping model, a rodent test of nausea, LOR produced significantly higher gapes compared to CP consistent with it having higher emetogenic properties. Subsequent studies were designed to identify features of each drug that may account for such differences. In rats trained to discriminate CP-809101 from saline, both CP and LOR produced full generalization suggesting a similar interoceptive cue. In vitro tests of functional selectivity designed to examine signaling pathways activated by both drugs in CHO (Chinese hamster ovary) cells expressing h5-HT 2C receptors failed to identify evidence for biased signaling differences between LOR and CP. Thus, both drugs showed similar profiles across PLC, PLA 2 , and ERK signaling pathways. In studies designed to examine pharmacokinetic differences between LOR and CP, while drug plasma levels correlated with increasing dose, CSF levels did not. CSF levels of LOR increased proportionally with dose; however CSF levels of CP plateaued from 6 to 12 mg/kg. Thus, the apparently improved tolerability of CP likely reflects a limit to CNS levels attained at relatively high doses.

  3. Phosphotidylinositol turnover in vascular, uterine, fundal, and tracheal smooth muscle: effect of serotonin (5HT)

    International Nuclear Information System (INIS)

    Cohen, M.L.; Wittenauer, L.A.

    1986-01-01

    In brain, platelets, and aorta, 5HT has been reported to increase phosphotidylinositol turnover, an effect linked to 5HT 2 receptors. The authors examined the effect of 5HT on 3 H-inositol-1-phosphate ( 3 H-I-P) in tissues possessing 5HT 2 receptors that mediate contraction to 5HT (rat jugular vein, aorta, uterus and guinea pig trachea) and in a tissue in which contraction to 5HT is not mediated by 5HT 2 receptors (rat stomach fundus). Tissues were incubated (37 0 C, 95% O 2 , 5% CO 2 ) with 3 H-inositol (90 min), washed, LiCl 2 (10 mM) and 5HT added for 90 min, extracted, and 3 H-I-P eluted from a Dowex-1 column. Basal 3 H-I-P was 10-fold higher in the uterus than in the other tissues. 5HT (10 -6 -10 -4 M) increased 3 H-I-P in the jugular vein, aorta, and uterus but not in the trachea or fundus. Maximum increase was greatest in the jugular vein (8-fold) with an ED 50 of 0.4 μM 5HT. The selective 5HT 2 receptor blocker, LY53857 (10 -8 M) antagonized the increase in 3 H-I-P by 5HT in the jugular vein, aorta and uterus. Pargyline (10 -5 M) added to the trachea and fundus did not unmask an effect of 5HT (10 -4 M). These data suggest that (1) the jugular vein produced the most sensitive response to 5HT-induced increases in 3 H-I-P, (2) increases in 3 H-I-P by 5HT in smooth muscle may be linked to 5HT 2 receptors and (3) activation of 5HT 2 receptors as occurred in the trachea will not always increase 3 H-I-P

  4. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1

    DEFF Research Database (Denmark)

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila

    2015-01-01

    have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5......-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine...... of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1....

  5. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI

    DEFF Research Database (Denmark)

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D

    2014-01-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly...... correlates to 5-HT2AR activation and is absent in 5-HT2AR knockout mice. The precise mechanism of this response remains unclear, but both an intrinsic cortico-cortical pathway and a thalamo-cortical pathway involving glutamate release have been proposed. Here, we used a genetic model of NMDAR hypofunction......RNA. These altered functional responses in SRKO mice were not associated with changes in cortical or hippocampal 5-HT levels or in 5-HT2AR and metabotropic glutamate-2 receptor (mGluR2) mRNA and protein expression. Together, these findings suggest that D-serine-dependent NMDAR activity is involved in mediating...

  6. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    Science.gov (United States)

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  7. 5-HT2a receptor in mPFC influences context-guided reconsolidation of object memory in perirhinal cortex

    Science.gov (United States)

    Morici, Juan Facundo; Miranda, Magdalena; Gallo, Francisco Tomás; Zanoni, Belén; Bekinschtein, Pedro

    2018-01-01

    Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation. PMID:29717980

  8. The effects of the selective 5-HT(2C) receptor antagonist SB 242084 on learned helplessness in male Fischer 344 rats.

    Science.gov (United States)

    Strong, Paul V; Greenwood, Benjamin N; Fleshner, Monika

    2009-05-01

    Rats exposed to an uncontrollable stressor demonstrate a constellation of behaviors such as exaggerated freezing and deficits in shuttle box escape learning. These behaviors in rats have been called learned helplessness and have been argued to model human stress-related mood disorders. Learned helplessness is thought to be caused by hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) and a subsequent exaggerated release of 5-HT in DRN projection sites. Blocking 5-HT(2C) receptors in the face of an increase in serotonin can alleviate anxiety behaviors in some animal models. However, specific 5-HT receptor subtypes involved in learned helplessness remain unknown. The current experiments tested the hypothesis that 5-HT(2C) receptor activation is necessary and sufficient for the expression of learned helplessness. The selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) administered i.p. to adult male Fischer 344 rats prior to shuttle box behavioral testing, but not before stress, blocked stress-induced deficits in escape learning but had no effect on the exaggerated shock-elicited freezing. The selective 5-HT(2C) receptor agonist CP-809101 was sufficient to produce learned helplessness-like behaviors in the absence of prior stress and these effects were blocked by pretreatment with SB 242084. Results implicate the 5-HT(2C) receptor subtype in mediating the shuttle box escape deficits produced by exposure to uncontrollable stress and suggest that different postsynaptic 5-HT receptor subtypes underlie the different learned helplessness behaviors.

  9. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression.

    Science.gov (United States)

    Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C

    2010-09-01

    Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of

  10. Synthesis, radiolabeling and biological evaluation of [{sup 125}I]-1-[2-(benzylthio)ethyl]-4-(5-iodo-2-methoxyphenyl)piperazine as a new 5-HT{sub 1A} receptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Narimani, Ali [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Islamic Azad Univ., Karaj (Iran, Islamic Republic of). Dept. of Chemistry; Sadeghzadeh, Masoud [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Kurdtabar, Mehran [Islamic Azad Univ., Karaj (Iran, Islamic Republic of). Dept. of Chemistry

    2017-07-01

    5-HT{sub 1A} receptors have been implicated in the pathogenesis of a wide variety of disorders related to the serotonin receptors. WAY100635 is a well-known high affinity 5-HT{sub 1A} receptor antagonist. Many {sup 11}C and {sup 18}F radiolabeled derivatives and its radioiodinated analogues have been reported as imaging agents for 5-HT{sub 1A} receptors. In this regard, the synthesis, radiolabeling and biological evaluation of a new 5-HT{sub 1A} receptor radioligand, [{sup 125}I]-1-(2-(benzylthio)ethyl)-4-(5-iodo-2-methoxyphenyl)piperazine ([{sup 125}I]-BTE-IMPP), are described. Radioiodination of this newly synthesized compound was done by the direct aromatic electrophilic substitution via Iodo-Gen method. Radiochemical yield and radiochemical purity determined by TLC and RTLC were >70% and >95%, respectively. Biodistribution studies of [{sup 125}I]-BTE-IMPP in rats displayed relatively high uptake in hippocampus (Hip) and low uptake in cerebellum (Cer). The level of the radiotracer uptake was over threefold higher in hippocampus than in cerebellum at 30 min post-injection. Moreover, the brain to blood uptake ratio and the blocking studies results indicated prolonged retention of the radiotracer and relatively good specific binding to 5-HT{sub 1A} receptor. These findings strongly suggest that [{sup 125}I]-BTE-IMPP could be a good candidate as an in vivo marker for pharmacological study of 5-HT{sub 1A} receptors in animal models.

  11. Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A receptor binding potential in the anterior cingulate and amygdala.

    Directory of Open Access Journals (Sweden)

    Lena Hillert

    Full Text Available Multiple chemical sensitivity (MCS is a common condition, characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the underlying mechanisms are unknown. Contrary to the expectations it was recently found that persons with MCS activate the odor-processing brain regions less than controls, while their activation of the anterior cingulate cortex (ACC is increased. The present follow-up study was designed to test the hypotheses that MCS subjects have increased harm avoidance and deviations in the serotonin system, which could render them intolerant to environmental odors. Twelve MCS and 11 control subjects, age 22-44, all working or studying females, were included in a PET study where 5-HT(1A receptor binding potential (BP was assessed after bolus injection of [(11C]WAY100635. Psychological profiles were assessed by the Temperament and Character Inventory and the Swedish universities Scales of Personality. All MCS and 12 control subjects were also tested for emotional startle modulation in an acoustic startle test. MCS subjects exhibited significantly increased harm avoidance, and anxiety compared to controls. They also had a reduced 5-HT(1A receptor BP in amygdala (p = 0.029, ACC (p = 0.005 (planned comparisons, significance level 0.05, and insular cortex (p = 0.003; significance level p<0.005 with Bonferroni correction, and showed an inverse correlation between degree of anxiety and the BP in the amygdala (planned comparison. No group by emotional category difference was found in the startle test. Increased harm avoidance and the observed changes in the 5-HT(1A receptor BP in the regions processing harm avoidance provides a plausible pathophysiological ground for the symptoms described in MCS, and yields valuable information for our general understanding of idiopathic environmental intolerances.

  12. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus

    OpenAIRE

    Valdizán, Elsa M.; Castro, Elena; Pazos, Ángel

    2009-01-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal r...

  13. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  14. Longitudinal assessment of cerebral 5-HT2A receptors in healthy elderly volunteers: an [18F]-altanserin PET study

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Knudsen, Gitte M; Haugbøl, Steven

    2009-01-01

    patients with neuropsychiatric diseases on a longitudinal basis. METHODS: [(18)F]-Altanserin PET was used to quantify 5-HT(2A) receptors in 12 healthy elderly individuals at baseline and at 2 years in six volumes of interest. A bolus/infusion protocol was used to achieve the binding potential, BP(P...... of our measurements over 2 years with the stability of data from an earlier study with 2-week test-retest measurements. RESULTS: BP(P) was unaltered at follow-up without the use of PV correction and when applying two-tissue PV correction, test-retest reproducibility was 12-15% and reliability 0...

  15. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems

    Directory of Open Access Journals (Sweden)

    Chen FC

    2016-06-01

    Full Text Available Fu-chao Chen,1 Jun Zhu,1 Bin Li,1 Fang-jun Yuan,1 Lin-hai Wang2 1Department of Pharmacy, Dongfeng Hospital, 2Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China Background: Mixing 5-hydroxytryptamine-3 (5-HT3 receptor antagonists with patient-controlled analgesia (PCA solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration.Materials and methods: Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method.Results: All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period.Conclusion: Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C. Keywords: tramadol, ondansetron, granisetron

  16. Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT1A Receptor in Native Cells of the Immune System.

    Science.gov (United States)

    Hernández-Torres, Gloria; Enríquez-Palacios, Ernesto; Mecha, Miriam; Feliú, Ana; Rueda-Zubiaurre, Ainoa; Angelina, Alba; Martín-Cruz, Leticia; Martín-Fontecha, Mar; Palomares, Oscar; Guaza, Carmen; Peña-Cabrera, Eduardo; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2018-05-14

    Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT 1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT 1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT 1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT 1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT 1A receptor in ex vivo samples of different immune system conditions.

  17. Palonosetron versus older 5-HT3 receptor antagonists for nausea prevention in patients receiving chemotherapy: a multistudy analysis.

    Science.gov (United States)

    Morrow, Gary R; Schwartzberg, Lee; Barbour, Sally Y; Ballinari, Gianluca; Thorn, Michael D; Cox, David

    2014-07-01

    No clinical standard currently exists for the optimal management of nausea induced by emetogenic chemotherapy, 7particularly delayed nausea. To compare the effcacy and safety of palonosetron with older 5-HT3 receptor antagonists (RAs) in preventing chemotherapy-induced nausea. Data were pooled from 4 similarly designed multicenter, randomized, double-blind, clinical trials that compared single intravenous doses of palonosetron 0.25 mg or 0.75 mg with ondansetron 32 mg, dolasetron 100 mg, or granisetron 40 μg/kg, administered 30 minutes before moderately emetogenic chemotherapy (MEC) or highly emetogenic chemotherapy (HEC). Pooled data within each chemotherapy category (MEC: n = 1,132; HEC: n = 1,781) were analyzed by a logistic regression model. Nausea endpoints were complete control rates (ie, no more than mild nausea, no vomiting, and no rescue medication), nausea-free rates, nausea severity, and requirement for rescue antiemetic/antinausea medication over 5 days following chemotherapy. Pooled safety data were summarized descriptively. Numerically more palonosetron-treated patients were nausea-free on each day, and fewer had moderate-severe nausea. Similarly, usage of rescue medication was less frequent among palonosetron-treated patients. Complete control rates for palonosetron and older 5-HT3 RAs in the acute phase were 66% vs 63%, 52% vs 42% in the delayed phase (24-120 hours), and 46% vs 37% in the overall phase. The incidence of adverse events was similar for palonosetron and older 5-HT3 RAs. This post hoc analysis summarized data for palonosetron and several other 5-HT3 RAs but was not powered for statistical comparisons between individual agents. Because nausea is inherently subjective, the reliability of assessments of some aspects (eg, severity) may be infuenced by interindividual variability. Palonosetron may be more effective than older 5-HT3 RAs in preventing nausea, with comparable tolerability. Dr Schwartzberg is a consultant to and Dr Cox an

  18. Imaging the 5-HT1A receptors with PET: WAY-100635 and analogues

    International Nuclear Information System (INIS)

    Houle, Sylvain; DaSilva, Jean N.; Wilson, Alan A.

    2000-01-01

    This paper summarizes our work on WAY-100635 and analogues, labeled either with carbon-11 or fluorine-18, as potential radioligands for the 5-hydroxytryptamine 1A (5-HT 1A ) neuroreceptors. Other facets of our work include: (1) human studies with [O-methyl- 11 C]WAY-100634, the major radioactive metabolite of [O-methyl- 11 C]WAY-100635, and with [ 11 C]CPC 222; (2) use of a human liver metabolism model to screen in vitro potential metabolic problems in humans; (3) modification of the 'dry method' to prepare [carbonyl- 11 C]WAY-100635; and (4) validation studies in humans with [carbonyl- 11 C]WAY-100635

  19. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2014-04-01

    Full Text Available Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5HT receptor antagonist methiothepin and the selective 5HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least 2 different receptor subtypes. The 5HT2B/C and astrocyte-specific 5-HT receptor agonists, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

  20. Successful treatment with risperidone increases 5-HT 3A receptor gene expression in patients with paranoid schizophrenia - data from a prospective study.

    Science.gov (United States)

    Chen, Hongying; Fan, Yong; Zhao, Lei; Hao, Yong; Zhou, Xiajun; Guan, Yangtai; Li, Zezhi

    2017-09-01

    The relationship between peripheral 5-HT3A receptor mRNA level and risperidone efficiency in paranoid schizophrenia patients is still unknown. A total 52 first-episode and drug-naive paranoid schizophrenia patients who were treated with risperidone and 53 matched healthy controls were enrolled. Patients were naturalistically followed up for 8 weeks. Positive and Negative Syndrome Scale (PANSS) was applied to assess symptom severity of the patients at baseline and at the end of 8th week. There was no difference in 5-HT3A receptor mRNA level between paranoid schizophrenia patients and healthy controls at baseline ( p  = .24). Among 47 patients who completed 8-week naturalistic follow-up, 37 were responders to risperidone treatment. 5-HT3A receptor mRNA level of paranoid schizophrenia patients did not change in overall patients after 8-week treatment with risperidone ( p  = .29). However, 5-HT3A receptor mRNA level in responders increased significantly ( p  = .04), but not in nonresponders ( p  = .81). Successful treatment with risperidone increases 5-HT3A receptor gene expression in patients with paranoid schizophrenia, indicating that 5-HT3A receptor may be involved in the mechanism of risperidone effect.

  1. Comparison of hippocampal G protein activation by 5-HT(1A) receptor agonists and the atypical antipsychotics clozapine and S16924.

    Science.gov (United States)

    Newman-Tancredi, A; Rivet, J-M; Cussac, D; Touzard, M; Chaput, C; Marini, L; Millan, M J

    2003-09-01

    This study employed [(35)S]guanosine 5'- O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding to compare the actions of antipsychotic agents known to stimulate cloned, human 5-HT(1A) receptors with those of reference agonists at postsynaptic 5-HT(1A) receptors. In rat hippocampal membranes, the following order of efficacy was observed (maximum efficacy, E(max), values relative to 5-HT=100): (+)8-OH-DPAT (85), flesinoxan (62), eltoprazine (60), S14506 (59), S16924 (48), buspirone (41), S15535 (22), clozapine (22), ziprasidone (21), pindolol (7), p-MPPI (0), WAY100,635 (0), spiperone (0). Despite differences in species and tissue source, the efficacy and potency (pEC(50)) of agonists (with the exception of clozapine) correlated well with those determined previously at human 5-HT(1A) receptors expressed in Chinese hamster ovary (CHO) cells. In contrast, clozapine was more potent at hippocampal membranes. The selective antagonists p-MPPI and WAY100,635 abolished stimulation of binding by (+)8-OH-DPAT, clozapine and S16924 (p-MPPI), indicating that these actions were mediated specifically by 5-HT(1A) receptors. Clozapine and S16924 also attenuated 5-HT- and (+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding, consistent with partial agonist properties. In [(35)S]GTPgammaS autoradiographic studies, 5-HT-induced stimulation, mediated through 5-HT(1A) receptors, was more potent in the septum (pEC(50) approximately 6.5) than in the dentate gyrus of the hippocampus (pEC(50) approximately 5) suggesting potential differences in coupling efficiency or G protein expression. Though clozapine (30 and 100 microM) did not enhance [(35)S]GTPgammaS labelling in any structure, S16924 (10 micro M) modestly increased [(35)S]GTPgammaS labelling in the dentate gyrus. On the other hand, both these antipsychotic agents attenuated 5-HT (10 microM)-stimulated [(35)S]GTPgammaS binding in the dentate gyrus and septum. In conclusion, clozapine, S16924 and ziprasidone act as partial agonists for G

  2. In vivo regulation of the serotonin-2 receptor in rat brain

    International Nuclear Information System (INIS)

    Stockmeier, C.A.; Kellar, K.J.

    1986-01-01

    Serotonin-2 (5-HT-2) receptors in brain were measured using ( 3 H)ketanserin. The authors examined the effects of amitriptyline, an anti-depressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on ( 3 H)ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC 50 nor the Hill coefficient of 5-HT in competing for ( 3 H)ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of ( 3 H)5-HT or ( 3 H)imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. 28 references, 1 figure, 7 tables

  3. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility.

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-02-01

    Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. © 2013 The British Pharmacological Society.

  4. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-01-01

    Background and Purpose Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. Experimental Approach We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. Key Results ADN-1184 exhibits substantial 5-HT6/5-HT7/5-HT2A/D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg−1 i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg−1 i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg−1 ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg−1 i.p.). Conclusions and Implications ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. PMID:24199650

  5. Envolvimento de receptores 5-HT2C do hipocampo ventral em comportamentos de defesa de ratos no labirinto em cruz elevado Involvement of ventral hippocampus 5-HT2C receptors on defensive behaviors of rats in the elevated plus-maze

    Directory of Open Access Journals (Sweden)

    Marília Greidinger Carvalho

    2012-04-01

    Full Text Available A ativação farmacológica dos receptores 5-HT2C induz comportamentos de defesa em modelos animais. O estudo busca investigar se o bloqueio seletivo de receptores 5-HT2C no hipocampo ventral (HV previne comportamentos defensivos induzidos por um agonista de receptor 5-HT2C administrado perifericamente em ratos expostos ao labirinto em cruz elevado (LCE. Quinze minutos após injeções intraperitoniais (IP, 1ml/kg do agonista 5-HT2C WAY-161503, ratos foram microinjetados bilateralmente no HV com o antagonista seletivo de receptores 5-HT2C SB-242084 (0, 0,1, 0,5 ou 1.5μg. Dez minutos após, cada animal foi exposto ao LCE para o registro de categorias de ansiedade. Injeções sistêmicas do WAY-161503 reduziram seletivamente as explorações nos braços abertos e aumentaram padrões de avaliação de risco. Esse efeito foi atenuado de maneira dose-dependente pela microinjeção de SB-242084 no HV, confirmando a ação ansiogênica de agonistas 5-HT2C e sugerindo que esse perfil comportamental seja mediado, pelo menos em parte, por receptores 5-HT2C do HV.Pharmacological 5-HT2C receptor activation induces defensive behaviors in several animal models of anxiety. The present study investigated whether the selective blockade of 5-HT2C receptors in the ventral hippocampus (VH prevents defensive behaviors induced by a 5-HT2C agonist administered systemically in rats exposed to the elevated plus-maze (EPM. Fifteen minutes after intraperitonial (IP, 1ml/kg injections of the selective 5-HT2C receptor agonist WAY-161503 (3 mg/kg, rats were bilaterally microinjected with the selective 5-HT2C antagonist SB-242084 (0, 0.1, 0.5 or 1.5μg into the VH. Ten minutes after, each animal was exposed to the EPM for measuring classical and ethological anxiety measures. IP WAY-161503 injections selectively decreased open-arm exploration while increasing risk-assessment. This anxiogenic-like action was dose-dependently attenuated by intra-VH SB-242084 microinjections

  6. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling.

    Science.gov (United States)

    Yu, Yingcong; Wu, Shujuan; Li, Jianxin; Wang, Renye; Xie, Xupei; Yu, Xuefeng; Pan, Jianchun; Xu, Ying; Zheng, Liang

    2015-02-01

    Irritable bowel syndrome (IBS) is induced by dysfunction of central nervous and peripheral intestinal systems, which affects an estimated 10-15% population worldwide annually. Stress-related psychiatric disorders including depression and anxiety are often comorbid with gastrointestinal function disorder, such as IBS. However, the mechanism of IBS still remains unknown. Curcumin is a biologically active phytochemical presents in turmeric and has pharmacological actions that benefit patients with depression and anxiety. Our study found that IBS rats showed depression- and anxiety-like behaviors associated with decreased 5-HT (serotonin), BDNF (Brain-derived neurotrophic factor) and pCREB (phosphorylation of cAMP response element-binding protein) expression in the hippocampus after chronic acute combining stress (CAS). However, these decreased parameters were obviously increased in the colonic after CAS. Curcumin (40 mg/kg) reduced the immobility time of forced swimming and the number of buried marbles in behavioral tests of CAS rats. Curcumin also decreased the number of fecal output and abdominal withdrawal reflex (AWR) scores in response to graded distention. Moreover, curcumin increased serotonin, BDNF and pCREB levels in the hippocampus, but they were decreased in the colonic of CAS rats. 5-HT(1A) receptor antagonist NAN-190 reversed the effects of curcumin on behaviors and the changes of intestine, pCREB and BDNF expression, which are related to IBS. These results suggested that curcumin exerts the effects on IBS through regulating neurotransmitters, BDNF and CREB signaling both in the brain and peripheral intestinal system.

  7. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  8. Spiro[pyrrolidine-3,3′-oxindoles] and Their Indoline Analogues as New 5-HT6 Receptor Chemotypes

    Directory of Open Access Journals (Sweden)

    Ádám A. Kelemen

    2017-12-01

    Full Text Available Synthetic derivatives of spiro[pyrrolidinyl-3,3′-oxindole] alkaloids (coerulescine analogues were investigated as new ligands for aminergic G-protein coupled receptors (GPCRs. The chemical starting point 2′-phenylspiro[indoline-3,3′-pyrrolidin]-2-one scaffold was identified by virtual fragment screening utilizing ligand- and structure based methods. As a part of the hit-to-lead optimization a structure-activity relationship analysis was performed to explore the differently substituted 2′-phenyl-derivatives, introducing the phenylsulphonyl pharmacophore and examining the corresponding reduced spiro[pyrrolidine-3,3′-indoline] scaffold. The optimization process led to ligands with submicromolar affinities towards the 5-HT6 receptor that might serve as viable leads for further optimization.

  9. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Length and amino acid sequence of peptides substituted for the 5-