WorldWideScience

Sample records for braid nebula star

  1. CSO BOLOCAM 1.1 mm CONTINUUM MAPPING OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    International Nuclear Information System (INIS)

    Aspin, Colin; Beck, Tracy L.; Davis, Chris J.

    2011-01-01

    We present a 1.1 mm map of the Braid Nebula star formation region in Cygnus OB7 taken using Bolocam on the Caltech Submillimeter Observatory. Within the 1 deg 2 covered by the map, we have detected 55 cold dust clumps all of which are new detections. A number of these clumps are coincident with IRAS point sources although the majority are not. Some of the previously studied optical/near-IR sources are detected at 1.1 mm. We estimate total dust/gas masses for the 55 clumps together with peak visual extinctions. We conclude that over the whole region, approximately 20% of the clumps are associated with IRAS sources suggesting that these are protostellar objects. The remaining 80% are classed as starless clumps. In addition, both FU Orionis (FUor) like objects in the field, the Braid Star and HH 381 IRS, are associated with strong millimeter emission. This implies that FUor eruptions can occur at very early stages of pre-main-sequence life. Finally, we determine that the cumulative clump mass function for the region is very similar to that found in both the Perseus and ρ Ophiuchus star-forming regions.

  2. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    International Nuclear Information System (INIS)

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H.

    2010-01-01

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband Hα and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  3. Spectrophotometry of ring nebulae around Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Kwitter, K.B.

    1979-01-01

    Spectrophotometric observations of four ring nebulae surrounding population I Wolf-Rayet (WN) stars have been obtained, and four additional filamentary nebulae in order to determine the physical conditions and chemical abundances in these objects. It was concluded that the ring nebulae are enriched in nitrogen and helium as a result of contamination of the ambient interstellar medium by the helium- and nitrogen-rich wind from the central Wolf-Rayet star. Of the additional nebulae studied, two were found to be Peimbert Type I planetary nebulae, overabundant in nitrogen and helium due to mixing of CNO processed material into the parent envelope prior to ejection. One of the remaining objects, a shell around an Oef star, is found to have normal abundances; the other, a small H II region around an early Be star, also exhibits normal abundances. It was attempted to interpret the ring nebulae and the Oef shell as interstellar bubbles, according to recent theory; it met with varying degrees of success. For two of the ring nebulae, the fraction of nebular mass contributed by the central star can be estimated from published stellar abundances. It was found that in these two cases, the stellar wind has provided less than 10% of the observed nebular mass

  4. Ring-shaped nebulae around FU Orionis stars

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1987-01-01

    Observational data on the morphology and spectra of the nebulae surrounding V1057 Cyg, V1515 Cyg, and V1735 Cyg stars are presented and studied. The data reveal that V1735 Cyg is more highly reddened than the nebula and the spectra of all three nebulae are from reflection. A simple model for the dust shell is proposed and it is argued that the shells may indicate a relatively advanced evolutionary state for the FU Orionis star. The relation between the shells and the evolution of the stars is examined. The models of Herbig (1977), Mould et al. (1978), Larson (1980), and Hartmann and Kenyon (1985), which are utilized to analyze the FU Orionis outburst phenomenon, are tested. 23 references

  5. Ring nebulae associated with Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Chu, Y.-H.

    1982-01-01

    Using strict selection criteria, the author and colleagues have searched for ring nebulae associated with Wolf-Rayet stars in the Galaxy and the Magellanic Clouds. 15 WR ring nebulae are identified in the Galaxy, 9 in the Large Magellanic Cloud, and none in the small Magellanic Cloud. The morphology and kinematics of these 24 nebulae have subsequently been observed to study their nature. These nebulae and their references are listed and a correlation between spectral and nebular types is presented. (Auth.)

  6. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  7. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  8. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    International Nuclear Information System (INIS)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-01-01

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 ± 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  9. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    Science.gov (United States)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  10. Planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1979-06-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered.

  11. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  12. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  13. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  14. WR stars with ring nebulae

    International Nuclear Information System (INIS)

    Tutukov, A.

    1982-01-01

    It is shown that most of usually apparently single nitrogen WR stars with ring emission nebulae around them (WN + Neb) are a probable product of the evolution of a massive close binary with initial masses of components exceeding approximately 20 solar masses. (Auth.)

  15. On planetary nebulae and Wolf-Rayet stars in the galactic-centre field

    International Nuclear Information System (INIS)

    Allen, D.A.

    1979-01-01

    A UK Schmidt objective-prism plate of the Galactic-centre field has been examined. Of the 74 objects in the field which have been catalogued as planetary nebulae, only half appear correctly classified; the others include Be stars, symbiotic stars, and stars without emission lines. A further 19 planetary nebulae and two Wolf-Rayet stars have been discovered. (author)

  16. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  17. CRL 2688: A post-carbon-star object and probable planetary nebula progenitor

    International Nuclear Information System (INIS)

    Zuckerman, B.; Gilra, D.P.; Turner, B.E.; Morris, M.; Palmer, P.

    1976-01-01

    Millimeter-wavelength emission is observed toward CRL 2688 from H 12 CN, H 13 CN, CS, and HC 3 N. The similarity of this emission and that from the molecular envelope of the carbon star IRC+10216 establishes, beyond a reasonable doubt, that CRL 2688 is a post--carbon-star object. It appears probable that both of these objects will evolve into planetary nebulae. An evolutionary sequence leading from carbon stars to planetary nebulae is outlined

  18. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  19. The nature of the nebula associated with the luminous blue variable star WRA 751

    OpenAIRE

    Hutsemekers, Damien; van Drom, E.

    1991-01-01

    Narrow-band filter imagery as well as medium to high resolution spectroscopy of the nebula surrounding the luminous blue variable (LBV) star WRA 751 are presented. The nebula appears as a slowly expanding H II region of low excitation characterized by a significant N/O overabundance which may be due to the presence in the nebula of nuclear processed material ejected by the star. With the recent discovery of a nebula around HR Car, all but one known galactic LBVs are now shown to be associated...

  20. X-Ray Outburst from Young Star in McNeil's Nebula

    Science.gov (United States)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  1. The interstellar medium, expanding nebulae and triggered star formation theory and simulations

    CERN Document Server

    Bisbas, Thomas G

    2016-01-01

    This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with spectacular images of nebulae taken by talented amateur astronomers. The latter is very likely to stimulate the reader to observe the structure of nebulae from a different point of view, and better understand the associated star formation therein.

  2. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars

    OpenAIRE

    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.

    2002-01-01

    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  3. Mass distribution and evolutionary scheme for central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Heap, S.R.; Augensen, H.J.; Widener Univ., Chester, PA)

    1987-01-01

    IUE data and a distance measuring method that considered central stars in optically thick nebulae were used to examine mass distributions of planetary nebulae. Other data such as spectral type, spatial and kinematic characteristics, etc., were studied to derive relationships between population type and mass distribution. A central star mass range of at least 0.55 solar mass was obtained. Stars with masses of at least 0.64 solar mass, concentrated in the galactic disk, originated from 1.5 solar mass stars. Low mass nuclei originated in old disk or halo populations and evolved from 1.0 solar mass objects. A mass-loss parameter value of 1/3 was calculated for red giants, implying that white dwarfs evolve from stars of under 5 solar masses. Mass distributions around planetary nuclei were concluded to follow patterns associated with the individual mass. 75 references

  4. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value

    2000-01-01

    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  5. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  6. Stellar Parameters and Radial Velocities of Hot Stars in the Carina Nebula

    Science.gov (United States)

    Hanes, Richard J.; McSwain, M. Virginia; Povich, Matthew S.

    2018-05-01

    The Carina Nebula is an active star-forming region in the southern sky that is of particular interest due to the presence of a large number of massive stars in a wide array of evolutionary stages. Here, we present the results of the spectroscopic analysis of 82 B-type stars and 33 O-type stars that were observed in 2013 and 2014. For 82 B-type stars without line blending, we fit model spectra from the Tlusty BSTAR2006 grid to the observed profiles of Hγ and He λλ4026, 4388, and 4471 to measure the effective temperatures, surface gravities, and projected rotational velocities. We also measure the masses, ages, radii, bolometric luminosities, and distances of these stars. From the radial velocities measured in our sample, we find 31 single lined spectroscopic binary candidates. We find a high dispersion of radial velocities among our sample stars, and we argue that the Carina Nebula stellar population has not yet relaxed and become virialized.

  7. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao; Lombardi, Marco

    2009-01-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg 2 of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 μm and 70 μm, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L bol ∼ 0.2 L sun and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only ∼0.06%.

  8. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  9. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  10. DETECTION OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6302

    International Nuclear Information System (INIS)

    Szyszka, C.; Walsh, J. R.; Zijlstra, Albert A.; Tsamis, Y. G.

    2009-01-01

    NGC 6302 is one of the highest ionization planetary nebulae (PNe) known and shows emission from species with ionization potential > 300 eV. The temperature of the central star must be > 200,000 K to photoionize the nebula, and has been suggested to be up to ∼400,000 K. On account of the dense dust and molecular disk, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrowband filters by Wide Field Camera 3 on the Hubble Space Telescope as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula center on the foreground side of the tilted equatorial disk. The magnitudes of the central star have been reliably measured in two filters (F469N and F673N). Assuming a hot blackbody, the reddening has been measured from the (4688-6766 A) color and a value of c = 3.1, A v = 6.6 mag determined. A G-K main-sequence binary companion can be excluded. The position of the star on the H-R diagram suggests a fairly massive PN central star of about 0.64 M sun close to the white dwarf cooling track. A fit to the evolutionary tracks for (T, L, t) = (200,000 K, 2000 L sun , 2200 yr), where t is the nebular age, is obtained; however, the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1% per year. Future observations could test this prediction.

  11. Ages of evolved low mass stars: Central stars of planetary nebulae and white dwarfs

    Directory of Open Access Journals (Sweden)

    Costa R.D.D.

    2013-03-01

    Full Text Available We have developed several methods to estimate the ages of central stars of planetary nebulae (CSPN, which are based either on observed nebular properties or on data from the stars themselves. Our goal is to derive the age distribution of these stars and compare the results with empirical distributions for CSPN and white dwarfs. We have initially developed three methods based on nebular abundances, using (i an age-metallicity relation which is also a function of the galactocentric distance; (ii an age-metallicity relation obtained for the galactic disk, and (iii the central star masses derived from the observed nitrogen abundances. In this work we present two new, more accurate methods, which are based on kinematic properties: (I in this method, the expected rotation velocities of the nebulae around the galactic centre at their galactocentric distances are compared with the predicted values for the galactic rotation curve, and the differences are attributed to the different ages of the evolved stars; (II we determine directly the U, V, W, velocity components of the stars, as well as the velocity dispersions, and use the dispersion-age relation by the Geneva-Copenhagen survey. These methods were applied to two large samples of galactic CSPN. We conclude that most CSPN in the galactic disk have ages under 5 Gyr, and that the age distribution is peaked around 1 to 3 Gyr.

  12. Stellar outflow: relative motions of nebulae and Of stars

    International Nuclear Information System (INIS)

    Lynds, B.T.

    1979-01-01

    On the basis of arguments presented by Roberts (1972) and of Shu et al. (1972), Minn and Greenberg (1973) argued that the velocity differences between newly formed hot stars and the surrounding interstellar medium are sufficiently different so that typical H II regions should consist of material which is continually being replaced by the ambient medium and which should therefore possess the velocity of the medium rather than that of the star. The critical test of this hypothesis will be a comparison of nebular velocities with the velocities of the exciting stars. This is performed for Of stars and nebulae. (Auth.)

  13. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    Science.gov (United States)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  14. Planetary nebulae: understanding the physical and chemical evolution of dying stars.

    Science.gov (United States)

    Weinberger, R; Kerber, F

    1997-05-30

    Planetary nebulae are one of the few classes of celestial objects that are active in every part of the electromagnetic spectrum. These fluorescing and often dusty expanding gaseous envelopes were recently found to be quite complex in their dynamics and morphology, but refined theoretical models can account for these discoveries. Great progress was also made in understanding the mechanisms that shape the nebulae and the spectra of their central stars. In addition, applications for planetary nebulae have been worked out; for example, they have been used as standard candles for long-range distances and as tracers of the enigmatic dark matter.

  15. Discovery of a new Wolf-Rayet star and its ring nebula in Cygnus

    Science.gov (United States)

    Gvaramadze, V. V.; Fabrika, S.; Hamann, W.-R.; Sholukhova, O.; Valeev, A. F.; Goranskij, V. P.; Cherepashchuk, A. M.; Bomans, D. J.; Oskinova, L. M.

    2009-11-01

    We report the serendipitous discovery of a ring nebula around a candidate Wolf-Rayet (WR) star, HBHA4202-22, in Cygnus using the Spitzer Space Telescope archival data. Our spectroscopic follow-up observations confirmed the WR nature of this star (we named it WR138a) and showed that it belongs to the WN8-9h subtype. We thereby add a new example to the known sample of late WN stars with circumstellar nebulae. We analysed the spectrum of WR138a by using the Potsdam Wolf-Rayet (PoWR) model atmospheres, obtaining a stellar temperature of 40kK. The stellar wind composition is dominated by helium with 20 per cent of hydrogen. The stellar spectrum is highly reddened and absorbed (EB- V = 2.4mag, AV = 7.4mag). Adopting a stellar luminosity of logL/Lsolar = 5.3, the star has a mass-loss rate of 10-4.7Msolaryr-1, and resides in a distance of 4.2 kpc. We measured the proper motion for WR138a and found that it is a runaway star with a peculiar velocity of ~=50kms-1. Implications of the runaway nature of WR138a for constraining the mass of its progenitor star and understanding the origin of its ring nebula are discussed.

  16. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...

  17. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    Energy Technology Data Exchange (ETDEWEB)

    Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Riera, A. [Departament de Física I Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, E-08036 Barcelona (Spain); Raga, A.; Velázquez, P. F. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 D.F. (Mexico); Kwitter, K. B., E-mail: balick@uw.edu, E-mail: angels.riera@upc.edu, E-mail: raga@nucleares.unam.mx, E-mail: pablo@nucleares.unam.mx, E-mail: kkwitter@williams.edu [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States)

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  18. Star Formation in the Orion Nebula Cluster

    Science.gov (United States)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  19. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    Science.gov (United States)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  20. Model atmospheres and parameters of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.

    1989-01-01

    Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs

  1. Wolf-Rayet nebulae

    International Nuclear Information System (INIS)

    Chu, You-Hua

    2016-01-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 10 3 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses. (paper)

  2. IRAS 06562-0337, The Ironclad Nebula: A New Young Star Cluster

    International Nuclear Information System (INIS)

    Alves, D.R.; Hoard, D.W.; Rodgers, B.

    1998-01-01

    IRAS 06562-0337 has been the recent subject of a classic debate: is it a proto endash planetary nebula or a young stellar object? We present the first 2 μm image of IRAS 06562-0337, which reveals an extended diffuse nebula containing approximately 70 stars inside a 30 double-prime radius around a bright, possibly resolved, central object. The derived stellar luminosity function is consistent with that expected from a single coeval population, and the brightness of the nebulosity is consistent with the predicted flux of unresolved low-mass stars. The stars and nebulosity are spatially coincident with strong CO line emission. We therefore identify IRAS 06562-0337 as a new young star cluster embedded in its placental molecular cloud. The central object is likely a Herbig Be star, M ∼ 20 M circle-dot , which may be seen in reflection. We present medium-resolution high signal-to-noise ratio 1997 epoch optical spectra of the central object. Comparison with previously published spectra shows new evidence for time-variable permitted and forbidden line emission, including Si ii, Fe ii, [Fe ii], and [O i]. We suggest that the origin is a dynamic stellar wind in the extended stratified atmosphere of the massive central star in IRAS 06562-0337. copyright copyright 1998. The American Astronomical Society

  3. Discovery of a [WO] central star in the planetary nebula Th 2-A

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  4. Hydrogen-deficient Central Stars of Planetary Nebulae

    Science.gov (United States)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  5. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  6. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    O’Dell, C. R. [Department of Physics and Astronomy, Vanderbilt University, Box 1807-B, Nashville, TN 37235 (United States); Ferland, G. J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Henney, W. J. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, México (Mexico); Peimbert, M. [Instituto de Astronomia, Universidad Nacional Autónoma de México, Apdo, Postal 70-264, 04510 México D. F., México (Mexico); García-Díaz, Ma. T. [Instituto de Astronomia, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C., México (Mexico); Rubin, Robert H., E-mail: cr.odell@vanderbilt.edu [NASA/Ames Research Center, Moffett Field, CA 94035-0001 (United States)

    2015-10-15

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.

  7. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; García-Díaz, Ma. T.; Rubin, Robert H.

    2015-01-01

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database

  8. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  9. Flare stars of the Orion Nebula - spectra of an outburst

    International Nuclear Information System (INIS)

    Carter, B.D.; O'Mara, B.J.; Ross, J.E.

    1988-01-01

    For the first time, detailed, time-resolved spectra of a flare event of an Orion cluster flare star are presented. These spectra, covering ∼ λλ3600-4600, were obtained by using the Anglo-Australian Telescope with a fibre coupler to simultaneously monitor 23 flare stars in the region of the Orion Nebula. The flare spectra reveal continuous emission which filled in the photospheric Ca I 4226 A absorption, and hydrogen Balmer, Ca II H and K, He I 4026 A and He I 4471 A line emission. Overall, the spectral behaviour indicates similarities to strong outbursts of the classical dMe flare stars. (author)

  10. Infrared nebula in the Chamaeleon T association

    International Nuclear Information System (INIS)

    Schwartz, R.D.; Henize, K.G.

    1983-01-01

    Data are tabulated for seven nebulae in the Chamaeleon T association. Three, which are large and clearly related to illuminating stars, appear to be typical reflection nebulae. Three are small wisps attached to stars and are probably cometary-type reflection nebulae. The remaining nebula is a triangular wisp having an unusually red spectral energy distribution and showing no illuminating star on visual wavelength photographs. The western tip of this nebula coincides closely with the position of a recently reported infrared source. The nebula is probably one lobe of a bipolar nebula

  11. Small-scale kinematic structures in ring nebulae around Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Chu, Y.H.

    1988-01-01

    Four ring nebulas around galactic Wolf-Rayet stars have been observed with echelle spectrographs in the long-slit mode: NGC 2359, NGC 3199, NGC 6888, and RCW 58. The spatial resolution of these observations is seeing limited at about 1-3 arcsec, which is almost a two orders of magnitude improvement from the previous Fabry-Perot scanner observations. To avoid large geometric corrections, the slit positions were placed as close to the central stars as possible. The results show that the ejecta-type nebula RCW 58 is a clumpy shell expanding regularly at about 110 km/s, as opposed to the chaotic expansion concluded from the earlier Fabry-Perot observations. For the three windblown bubbles, NGC 2359, NGC 3199, and NGC 6888, the small-scale structures revealed in the echelle data can explain the apparently discrepant expansion velocities derived from the previous large-aperture Fabry-Perot observations. 20 references

  12. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    Energy Technology Data Exchange (ETDEWEB)

    Hillwig, Todd C.; Schaub, S. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Frew, David J. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bodman, Eva H. L., E-mail: todd.hillwig@valpo.edu [Southeastern Association for Research in Astronomy (SARA) (United States)

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  13. Magnetic fields and star formation: evidence from imaging polarimetry of the Serpens Reflection Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Draper, P W; Scarrott, S M

    1987-08-01

    CCD imaging of the Serpens bipolar reflection nebula shows it to be surrounded by dark material having spiral density structure. Multi-colour polarization mapping also reveals details of the surrounding magnetic field, indicating that this also has spiral structure. These observations are discussed along with current ideas about the role of magnetic fields during star formation. An interpretation involving the non-axisymmetric magnetically braked collapse of a protostellar cloud is proposed and a resulting magnetic field configuration is described which can account for the observations. Evidence is also discussed for the formation of a binary star system within the nebula, resulting from the fragmentation of a magnetized protostellar disc.

  14. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  15. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-03-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbor Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive-star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive-star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  16. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  17. On the formation of runaway stars BN and x in the Orion Nebula Cluster

    Science.gov (United States)

    Farias, J. P.; Tan, J. C.

    2018-05-01

    We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.

  18. The Crab Nebula

    International Nuclear Information System (INIS)

    Mitton, S.

    1979-01-01

    The subject is covered in chapters, as follows: A.D.1054, a star explodes (historical account of observations of the supernova of which the Crab Nebula is the remnant); the telescope takes over (discovery and subsequent observation of the Crab Nebula); the message of the fiery remnant (detailed structure and its interpretation); the invisible nebula (electromagnetic radiation from the Crab Nebula and its interpretation); a beacon in the night (the discovery of pulsars, with special reference to the pulsar in the Crab Nebula; observation and theory); the strange world of a neutron star (theory, prediction and observation); magnetic fields and energy flow from the pulsar (stellar magnetosphere; luminosity of the nebula); how does the pulsar pulse (observation; models to explain beaming); outburst and aftermath (types of supernovae and their evolution; nucleosynthesis); supernovae and their remnants (account of observations since early records); the Crab Nebula and modern astronomy. (U.K.)

  19. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  20. A SMOKING GUN IN THE CARINA NEBULA

    International Nuclear Information System (INIS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; Chu, You-Hua; White, Stephen M.; Strohmayer, Tod; Petre, Rob

    2009-01-01

    The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ∼30 years. The soft X-ray spectrum, consistent with kT ∼ 128 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicates that it is a ∼10 6 year old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitors of the neutron star and massive stars in the Carina Nebula, in particular η Car, are coeval. This result suggests that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star may be responsible for remnants of high-energy activity seen in multiple wavelengths.

  1. A Smoking Gun in the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  2. Outflows, dusty cores, and a burst of star formation in the North America and Pelican nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen (Germany); Probst, Ron [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, 640 North A' ohoku Place, Hilo, HI 96720 (United States); Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stringfellow, Guy S., E-mail: John.Bally@colorado.edu, E-mail: aginsburg@eso.org, E-mail: probst@noao.edu, E-mail: reipurth@ifa.hawaii.edu, E-mail: yshirley@as.arizona.edu, E-mail: Guy.Stringfellow@colorado.edu [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  3. IRAS 03063+5735: A BOWSHOCK NEBULA POWERED BY AN EARLY B STAR

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, Henry A.; Lundquist, Michael J.; Bhattacharjee, Anirban [Department of Physics and Astronomy, 1000 E. University Avenue, University of Wyoming Laramie, WY 82071 (United States); Kerton, C. R., E-mail: chipk@uwyo.edu, E-mail: mlundqui@uwyo.edu, E-mail: abhattac@uwyo.edu, E-mail: kerton@iastate.edu [Department of Physics and Astronomy, Iowa State University Ames, IA 50011 (United States)

    2012-03-15

    Mid-infrared images from the Spitzer Space Telescope Galactic Legacy Infrared MidPlane Survey Extraordinaire program reveal that the infrared source IRAS 03063+5735 is a bowshock nebula produced by an early B star, 2MASS 03101044+5747035. We present new optical spectra of this star, classify it as a B1.5 V, and determine a probable association with a molecular cloud complex at V{sub LSR} = -38 to -42 km s{sup -1} in the outer Galaxy near l = 140.{sup 0}59, b = -0.{sup 0}250. On the basis of spectroscopic parallax, we estimate a distance of 4.0 {+-} 1 kpc to both the bowshock nebula and the molecular complex. One plausible scenario is that this is a high-velocity runaway star impinging upon a molecular cloud. We identify the H II region and stellar cluster associated with IRAS 03064+5638 at a projected distance of 64 pc as one plausible birth site. The spectrophotometric distance and linkage to a molecular feature provides another piece of data helping to secure the ill-determined rotation curve in the outer Galaxy. As a by-product of spectral typing this star, we present empirical spectral diagnostic diagrams suitable for approximate spectral classification of O and B stars using He lines in the little-used yellow-red portion of the optical spectrum.

  4. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  5. G 2.4 + 1.4: a supernova remnant or ring nebula around a peculiar star

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1975-01-01

    G2.4+1.4 is a probable nonthermal radio source and an optical nebula which appears to be a supernova remnant (SNR). It also contains an O vi sequence star of great excitation. We present new radiofrequency continuum and (nil) H 92α observations, optical spectroscopy, and Fabry-Perot scanner observations of the nebula. The object distance (5 kpc), origin of gas kinematics (SNR expansion), and mode of excitation of the gas (photoexcitation and/or shock wave) remain uncertain. We discuss the possible roles of the O vi star as ''runaway'' in a SNR, as a source of photoexcitation, and as an ejector of a ''counterfeit'' SNR

  6. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  7. SALT reveals the barium central star of the planetary nebula Hen 2-39

    Science.gov (United States)

    Miszalski, B.; Boffin, H. M. J.; Jones, D.; Karakas, A. I.; Köppen, J.; Tyndall, A. A.; Mohamed, S. S.; Rodríguez-Gil, P.; Santander-García, M.

    2013-12-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here, we present evidence for a barium star in the PN Hen 2-39 (PN G283.8-04.2) as one of only a few known systems. The polluted giant is very similar to that found in WeBo 1 (PN G135.6+01.0). It is a cool (Teff = 4250 ± 150 K) giant enhanced in carbon ([C/H] = 0.42 ± 0.02 dex) and barium ([Ba/Fe] = 1.50 ± 0.25 dex). A spectral type of C-R3 C24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars; however, the barium enhancement and likely binary status mean that it is more likely to be a barium star with similar properties, rather than a true member of this class. An AGB star model of initial mass 1.8 M⊙ and a relatively large carbon pocket size can reproduce the observed abundances well, provided mass is transferred in a highly conservative way from the AGB star to the polluted star (e.g. wind Roche lobe overflow). It also shows signs of chromospheric activity and photometric variability with a possible rotation period of ˜5.5 d likely induced by wind accretion. The nebula exhibits an apparent ring morphology in keeping with the other PNe around barium stars (WeBo 1 and A 70) and shows a high degree of ionization implying the presence of an invisible hot pre-WD companion that will require confirmation with UV observations. In contrast to A 70, the nebular chemical abundance pattern is consistent with non-Type I PNe, in keeping with the

  8. The Toby Jug nebula (IC 2220): a bipolar and biconical nebula

    International Nuclear Information System (INIS)

    Perkins, H.G.; King, D.J.; Scarrott, S.M.

    1981-01-01

    An optical linear polarization map of IC 2220, the nebula surrounding the cool red giant HD 65750, is presented. The nebula appears to be bipolar and biconical in structure. The mass of the nebula is estimated to be 0.01 solar mass and is consistent with the nebula being formed from the current mass loss stage of the central star. (author)

  9. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  10. LMC X-1: A New Spectral Analysis of the O-star in the Binary and Surrounding Nebula

    Science.gov (United States)

    Hyde, E. A.; Russell, D. M.; Ritter, A.; Filipović, M. D.; Kaper, L.; Grieve, K.; O'Brien, A. N.

    2017-09-01

    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα imaging from the Wide Field Imager on the Max Planck Gesellschaft/European Southern Observatory 2.2 m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods used to obtain both radial velocities and fluxes. This provides an updated spatial velocity of ≃ 21.0 +/- 4.8 km s-1 for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of ˜60 M ⊙ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet-inflated nebula. For both wind- and jet-powered origins, this would represent one of the first radio detections of such a structure.

  11. Central stars of planetary nebulae: New spectral classifications and catalogue

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  12. Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula

    Science.gov (United States)

    Fernandes, Beatriz; Gregorio-Hetem, Jane

    Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as Hα emission and strong absorption on the Li I line.

  13. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  14. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    International Nuclear Information System (INIS)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W.; Reynolds, Stephen; An, Hongjun; Boggs, Steven; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Nynka, Melania; Markwardt, Craig; Zhang, William; Stern, Daniel

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band

  15. The Light and Dark Face of a Star-Forming Nebula

    Science.gov (United States)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see

  16. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  17. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  18. Evolutionary sequence of models of planetary nebulae

    International Nuclear Information System (INIS)

    Vil'koviskij, Eh.Ya.; Kondrat'eva, L.N.; Tambovtseva, L.V.

    1983-01-01

    The evolutionary sequences of model planetary nebulae of different masses have been calculated. The computed emission line intensities are compared with the observed ones by means of the parameter ''reduced size of the nebula'', Rsub(n). It is shown that the evolution tracks of Schonberner for the central stars are consistent with the observed data. Part of ionized mass Mi in any nebulae does not not exceed 0.3 b and in the average Msu(i) 3 years at actual values of radius Rsub(i) <0.025 ps. Then the luminosity growth slows down to the maximum temperature which central star reaches and decreases with sharp decrease of the star luminosity. At that, the radius of ionized zone of greater mass nebulae can even decrease, inspite of the constant expansion of the nebula. As a result nebulae of great masses having undergone the evolution can be included in the number of observed compact objects (Rsub(n) < 0.1 ps)

  19. MAGNETIC FIELD MEASUREMENTS OF T TAURI STARS IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Hao Yang; Johns-Krull, Christopher M.

    2011-01-01

    We present an analysis of high-resolution (R ∼ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age.

  20. A Tactile Carina Nebula

    Science.gov (United States)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  1. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Stassun, Keivan G.

    2012-01-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ∼50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days X /L bol ≈ –3.3). However, we find a significant positive correlation between L X /L bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  2. Roberts 22: a bipolar nebula with OH emission

    International Nuclear Information System (INIS)

    Allen, D.A.; Hyland, A.R.; Caswell, J.L.

    1980-01-01

    Roberts 22 is a bipolar reflection nebula illuminated by a hidden A2 Ie star. Most of its energy is radiated at infrared wavelengths. It also shows strong OH maser emission (OH 284.18 - 0.79) on the 1612 and 1665 MHz transitions, generally similar to the masers associated with M stars having infrared excesses. But the system contains no late-type star. This remarkable assemblage of attributes makes Roberts 22 unique; however, it is probably a key member of the newly-recognized population of bipolar nebulae. From an analysis of the properties of Roberts 22 some published interpretations of other bipolar nebulae are questioned, in particular the derivation of spectral types for their underlying stars by the assumption of photo-ionization of the gas, and their evolutionary description as proto-planetary nebulae. (author)

  3. Abell 48 - a rare WN-type central star of a planetary nebula

    Science.gov (United States)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  4. The Trifid Nebula: Stellar Sibling Rivalry

    Science.gov (United States)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  5. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  6. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    Science.gov (United States)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  7. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  8. The simplest models of the reflection nebulae

    International Nuclear Information System (INIS)

    Voshchinnikov, N.V.

    1977-01-01

    Some models of the reflection nebulue have been considered. The (U-B), (B-V) and (V-R) colors and the U, B, V and R polarization have been calculated for a model of a reflection nebula associated with a large dust cloud. For the cases in which the illuminating star is far from the surface of the cloud, the form of the nebula has been considered to be spherical. If the star is close to the surface of the cloud, a part of the nebura boundary has been considered to be flat. Single scattering within the homogeneous nebula has been assumed. All the calculations use the scattering by spheres as given by the Mie's theory. The effect of variations of chemical composition and size distribution function of the grains and the position of the illuminating star has been examined. Comparison of the theoretical results with the observations of the Merope nebula shows that the dirty ice grains with the refraction index m=1.30-0.02i and size parameter asub(o)=0.5μ represent satisfactorily the observation if the star is embedded 0.7 pc behind the front surface of the nebula

  9. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  10. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  11. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    Science.gov (United States)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  12. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  13. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  14. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  15. Spatiokinematical models of five planetary nebulae

    International Nuclear Information System (INIS)

    Sabbadin, F.

    1984-01-01

    The [OOOI] and Hα expansion velocity fields in the planetary nebulae NGC6058 and 6804 and the [OIII], Hα and [NII] expansion velocity fields in NGC6309, 6751 and 6818, were obtained from high dispersion spectra. Spatiokinematical models of the nebulae were derived assuming an expansion velocity of the gas proportional to the distance from the central star and using the expansion velocity-radius correlation previously given. The observational parameters of the nebulae (radius, mass and expansion velocity) and of the exciting stars (temperature, radius and luminosity) closely fit the suggested evolutionary model for this class of objects. (author)

  16. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    Science.gov (United States)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  17. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  18. The spectrum of HM Sagittae: a planetary nebula excited by a Wolf--Rayet star

    International Nuclear Information System (INIS)

    Brown, L.W.; Feibelman, W.A.; Hobbs, R.W.; Mccracken, C.W.

    1977-10-01

    Image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A

  19. The discovery of a highly polarized bipolar nebula

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Scarrott, S.M.; Menzies, J.

    1989-01-01

    During a search for the optical counterparts of IRAS sources whose flux peaks at 25 microns, a small faint bipolar nebula was discovered in Monoceros at the position of IRAS 07131-0147. The CCD images display the object's considerable structure. The central star seems relatively free of closeby nebulosity: the two lobes have a bow-tie structure with those parts nearest to the star consisting of series of small knots. The outer parts of the lobes seem to be made up of filaments streaming away from knots. On the basis of its optical spectrum, the central star was classified as a M5-6 giant. In the IRAS color classification scheme of Van der Veen and Habing (1988), the central star is VIb which indicates that there are distinct hot and cold components of circumstellar dust and that the mass loss process may have temporarily abated. Therefore, it is proposed that the object is in the post main sequence stage of evolution and is a protoplanetary nebulae. Young protoplanetary nebulae have totally obscured central stars illuminating reflective lobes whereas older ones such as M2-9 have lobes seen in emission from gas ionized by the central hot star which is clearly visible. Since the central object of IRAS07131-0147 is a relatively unobscured late type star and the lobes are seen only by reflection, it is suggested that this nebula is a protoplanetary nebula in an evolutionary stage intermediate between that of CRL2688 and M2-9

  20. Discovery of a parsec-scale bipolar nebula around MWC 349A

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.

    2012-05-01

    We report the discovery of a bipolar nebula around the peculiar emission-line star MWC 349A using archival Spitzer Space Telescope 24 μm data. The nebula extends over several arcminutes (up to 5 pc) and has the same orientation and geometry as the well-known subarcsecond-scale (~400 times smaller) bipolar radio nebula associated with this star. We discuss the physical relationship between MWC 349A and the nearby B0 III star MWC 349B and propose that both stars were members of a hierarchical triple system, which was ejected from the core of the Cyg OB2 association several Myr ago and recently was dissolved into a binary system (now MWC 349A) and a single unbound star (MWC 349B). Our proposal implies that MWC 349A is an evolved massive star (likely a luminous blue variable) in a binary system with a low-mass star. A possible origin of the bipolar nebula around MWC 349A is discussed.

  1. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre

  2. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  3. Proto-planetary nebulae. I. The extreme bipolar nebulae M2-9 and M1-91

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1991-01-01

    Results are presented on a long-slit optical spectroscopy measurements of the prototype bipolar planetary nebula M2-9 and the M1-91 bipolar nebula, performed in order to determine the nature of the morphology of the wings of these two nebulae. It is concluded that the overall bipolar morphologies of these nebulae might be due to the orbital motions of binaries, with the orbital angular momentum vector defining the axis of the nebula. Secondary symmetries in the nebulae, such as the point-symmetric knots in M1-91, could be due to other symmetries, such as the rotation axis of one of the individual stars or the polar axis of the accretion disk. 39 refs

  4. Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium

    International Nuclear Information System (INIS)

    Wood, P.; Bessell, M.S.; Fox, M.W.

    1983-01-01

    Infrared JHK magnitudes and low-dispersion red spectra have been obtained for 90 long-period variables (LPVs) in the Small and Large Magellanic Clouds. The LPVs fall into two distinct groups, core helium (or carbon) burning supergiants and stars on the asymptotic giant branch (AGB). The supergiants have small pulsation amplitudes in K ( or approx. =5 M/sub sun/ produce supernovae while less massive stars produce planetary nebulae with nebula masses from approx.0.1--2.1 M/sub sun/. The coreburning red supergiants appear highly overluminous for their pulsation mass, indicating that they have lost up to half their mass since the main-sequence phase

  5. The Boomerang Nebula: a highly polarized bipolar

    International Nuclear Information System (INIS)

    Taylor, K.N.R.; Scarrott, S.M.

    1980-01-01

    An optical linear polarization map of a bipolar nebula is presented. Polarizations of approximately 60 per cent are observed in the optically thin lobes. The map leads to a geometry of the object consisting of a central star with an equatorial disc of dust and optically thin lobes illuminated by the central star. The grains in the disc are aligned. The object is a protoplanetary nebula. (author)

  6. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  7. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  8. A spectroscopic atlas of post-AGB stars and planetary nebulae selected from the IRAS point source catalogue

    NARCIS (Netherlands)

    Suarez, O.; Garcia-Lario, P.; Manchado, A.; Manteiga, M.; Ulla, A.; Pottasch, S. R.

    2006-01-01

    Aims. We study the optical spectral properties of a sample of stars showing far infrared colours similar to those of well-known planetary nebulae. The large majority of them were unidentified sources or poorly known in the literature at the time when this spectroscopic survey started, some 15 years

  9. Observing nebulae

    CERN Document Server

    Griffiths, Martin

    2016-01-01

    This book enables anyone with suitable instruments to undertake an examination of nebulae and see or photograph them in detail. Nebulae, ethereal clouds of gas and dust, are among the most beautiful objects to view in the night sky. These star-forming regions are a common target for observers and photographers. Griffiths describes many of the brightest and best nebulae and includes some challenges for the more experienced observer. Readers learn the many interesting astrophysical properties of these clouds, which are an important subject of study in astronomy and astrobiology. Non-mathematical in approach, the text is easily accessible to anyone with an interest in the subject. A special feature is the inclusion of an observational guide to 70 objects personally observed or imaged by the author. The guide also includes photographs of each object for ease of identification along with their celestial coordinates, magnitudes and other pertinent information. Observing Nebulae provides a ready resource to allow an...

  10. A 'variable' stellar object in a variable blue nebula V-V 1-7

    International Nuclear Information System (INIS)

    Rao, N.K.; Gilra, D.P.

    1981-01-01

    V-V 1-7 is supposed to be one of the few planetary nebulae with Ao central stars and was included in the planetary-nebula catalogue as PK 235 + 1 0 1. The nebula was seen on the blue Palomar Observatory Sky Survey (POSS) print but not on the red print; as a result it was thought that it might be a reflection nebula. However, the symmetry of the nebula around the central star (HD 62001), and also the ultraviolet photometric variability of this central star led others to suggest that the nebula might be a nova shell. Subsequently it was found that the nebula V-V 1-7 has disappeared. It is not seen on any direct plate known to us except the POSS blue plate. In this paper the disappearance is reported (along with the nebula) of a stellar object, which appears within the 'nebular shell' of V-V 1-7 on the POSS blue plate, but not on the red plate. (author)

  11. The blue supergiant MN18 and its bipolar circumstellar nebula

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ≈21 kK. The star is highly reddened, E(B - V) ≈ 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L⊙ ≈ 5.42 ± 0.30, a mass-loss rate of ≈(2.8-4.5) × 10- 7 M⊙ yr- 1, and resides at a distance of ≈5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ≈17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  12. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  13. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  14. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  15. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    Science.gov (United States)

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  16. The Evolution of High-Mass Star-Forming Cores in the Nessie Nebula

    Science.gov (United States)

    Jackson, James; Rathborne, Jill; Sanhueza, Patricio; Whitaker, John Scott; Camarata, Matthew

    2013-04-01

    We aim to deduce the evolution of the ensemble properties of high-mass star-forming cores within a cluster-forming molecular clump. Two different theories of high-mass star-formation, "competitive accretion" and "monolithic collapse" make very different predictions for this evolution. In "competitive accretion" the clump will contain only low-mass cores in the early phases, and high-mass cores will be found in the later stages. In "monolithic collapse" high-mass cores are found early on, and the mass distribution of the cores will remain essentially unchanged. Both models predict cores to increase in temperature. We can classify evolutionary stage from Spitzer mid-IR images. We choose to study 6 cores in the Nessie nebula that span the complete range of protostellar evolution. Nessie is an ideal laboratory because all the cores are at the same distance and in the same Galactic environment.

  17. Properties of closed 3-braids and braid representations of links

    CERN Document Server

    Stoimenow, Alexander

    2017-01-01

    This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu’s normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties.

  18. Rosette nebula globules: Seahorse giving birth to a star

    Science.gov (United States)

    Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.

    2017-09-01

    Context. The Rosette nebula is an H II region ionized mainly by the stellar cluster NGC 2244. Elephant trunks, globules, and globulettes are seen at the interface where the H II region and the surrounding molecular shell meet. Aims: We have observed a field in the northwestern part of the Rosette nebula where we study the small globules protruding from the shell. Our aim is to measure their properties and study their star-formation history in continuation of our earlier study of the features of the region. Methods: We imaged the region in broadband near-infrared (NIR) JsHKs filters and narrowband H2 1-0 S(1), Pβ, and continuum filters using the SOFI camera at the ESO/NTT. The imaging was used to study the stellar population and surface brightness, create visual extinction maps, and locate star formation. Mid-infrared (MIR) Spitzer IRAC and WISE and optical NOT images were used to further study the star formation and the structure of the globules. The NIR and MIR observations indicate an outflow, which is confirmed with CO observations made with APEX. Results: The globules have mean number densities of 4.6 × 104 cm-3. Pβ is seen in absorption in the cores of the globules where we measure visual extinctions of 11-16 mag. The shell and the globules have bright rims in the observed bands. In the Ks band 20 to 40% of the emission is due to fluorescent emission in the 2.12 μmH2 line similar to the tiny dense globulettes we studied earlier in a nearby region. We identify several stellar NIR excess candidates and four of them are also detected in the Spitzer IRAC 8.0 μm image and studied further. We find an outflow with a cavity wall bright in the 2.124 μmH2 line and at 8.0 μm in one of the globules. The outflow originates from a Class I young stellar object (YSO) embedded deep inside the globule. An Hα image suggests the YSO drives a possible parsec-scale outflow. Despite the morphology of the globule, the outflow does not seem to run inside the dusty fingers

  19. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  20. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  1. HST images of dark giants as dark matter: Part.I The black cocoon stars of Carina Nebula region

    International Nuclear Information System (INIS)

    Celis, S.L.

    2001-01-01

    In an evolutionary scenario, the existence of isolated dark giant objects known as Post M latest spectral type stars (1) (or black cocoon stars) are in the last stage of their life and, as extremely advanced old age objects, they cease to be stars. The photographic images of Carina nebula taken by the Hubble Space Telescope (HST) have been used to detect the post M-Iatest stars as dark silhouettes. The luminosity attenuation equation of M late stars (1), A = αS 3 , points out the baryonic dark matter envelopes the oldest red giants that produce earlier dark giants. This equation says that when the red giant star finishes to produce baryonic dark matter, the central star is extinguishing and transforms into dark giants and dusty globules that disperse cool gaseous matter into the interstellar space. These old dark objects have a size from 400 to 600 astronomical units (AU). The advanced dark giants, the dusty dark giants, might not contain a star within the molecular cloud that envelops it. In this case, the dark giants might produce the smaller and less massive dark globules of the Thackeray's globules type (less than 4 solar masses) where, Reupurth et al. (2) found that these globules are now in an advanced stage of disintegration and they found no evidence of star formation in any of these objects. The high-resolution of the Hubble images allows: The observation of isolated dark giants, dusty globules with central dark giants, the observation of partial eclipses or transiting of giant stars and the estimation of linear and angular diameters (ionised cocoons) of giant stellar objects. The dark giants of the image are identified them as objects with observed angular diameter. The large quantity of dark giants in a small sector of the sky suggests that they are densely populated (population stars III) and ubiquitous in the galactic disc. They can be located in isolated form or associated in dense Conglomerations of dark giants. At the same time, conglomerates of

  2. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    Science.gov (United States)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  3. Faint planetary nebulae in the Magellanic Clouds - central star properties and nebular abundances for the Jacoby sample

    International Nuclear Information System (INIS)

    Henry, R.B.C.; Liebert, J.; Boroson, T.A.

    1989-01-01

    Forty-four of the LMC and SMC planetary nebulae contained in Jacoby's (1980) sample are studied. Spectrophotometric observations were used to infer the Stoy temperatures, luminosities, and radii of the central stars. For objects in which forbidden O III electron temperatures could be determined, the nebular abundances of He, N, O, and Ne were calculated and compared with values for giant H II regions for the relevant host galaxy. When the present abundance results were compared with previously published results for planetary nebulae in the LMC, SMC, and the Galaxy, a strong correlation was found for O/H versus Ne/H and strong anticorrelations were found for O/H versus forbidden O III temperature, and N/O versus O/H. 69 refs

  4. Chemical composition and origin of the Wolf-Rayet ring Nebula NGC 6888

    International Nuclear Information System (INIS)

    Kwitter, K.B.

    1981-01-01

    We have obtained spectrophotometric observations of NGC 6888, a ring nebula surrounding the Population I Wolf-Rayet star HD 192163, in order to determine the physical conditions and chemical abundances in this object. We conclude that NGC 6888 is enriched in nitrogen and helium by factors of about 9 and 2, respectively, compared with the Orion Nebula. This enrichment is a result of contamination of the ambient abundances by the nigrogen-rich and helium-rich wind from the central Wolf-rayet star. We have interpreted NGC 6888 as an interstellar bubble, according to recent theory, and calculate an approximate age for the nebula of 18,000 years. The fraction of nebular mass contributed by the central star can be estimated from published stellar abundances; we calculate that the stellar wind has provided approx.10% of the observed nebular mass. If this nebula is representative, then the total mass contributed to a ring nebula by stellar wind is small (< or approx. =1M/sub sun/). This suggests that mass loss from stars in the Wolf-Rayet phase does not play a significant role in the nitrogen and helium enrichment of the interstellar medium

  5. Continuous emission from the gaseous nebula beyond the Lyman limit

    International Nuclear Information System (INIS)

    Bolgova, G.T.; Khromov, G.S.

    1975-01-01

    Models of spherically-symmetric isothermic hydrogen nebula with an exciting star in the centre are considered. Spectra and energies of diffuse radiation of nebula and of direct radiation of its kernel are calculated in the Lyman continuum for the external boundary of the object. The spectrum of the diffuse radiation is shown to be to a great extent invariant in relation to all parameters of models except for Tsub(e). The total loss in energy of Lsub(c)-radiation of kernel through the external border of the ionized nebula, amounts to 20-30% in the average even at a considerable optical thickness of the object tausub(0). The greater part of this energy is transferred via direct ionizing radiation, though the relative contribution of the diffuse Lsub(c)-radiation of nebula reaches 30% at low temperatures of the exciting star and at large tausub(0). The results of this work may be applied to calculating the energy balance of the star-nebula system, the heating of dust particles and ionization of the neighbouring interstellar medium, and also for determining the conditions of observation of the far ultra-violet radiation of similar objects

  6. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  7. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  8. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  9. X-ray Emission from the Guitar Nebula

    OpenAIRE

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I. -A.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  10. X-Ray Emission from the Guitar Nebula

    Science.gov (United States)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  11. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  12. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  13. Polarization due to dust scattering in the planetary nebula Cn1-1

    International Nuclear Information System (INIS)

    Bhatt, H.C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula

  14. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  15. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  16. Single rotating stars and the formation of bipolar planetary nebula

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C. [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Manchado, A., E-mail: ggs@astrosen.unam.mx [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  17. Colorimetry of the diffuse nebulas S 156, S 157A, S 158, and NGC 7635

    International Nuclear Information System (INIS)

    Parsamian, E.S.; Petrosian, V.M.

    1984-01-01

    The results of a colorimetric investigation of the diffuse nebulas S 156, S 157A, S 158, and NGC 7635, which are excited by O stars, are presented. The nebulas S 156, S 157A, and NGC 7635 are very bright in U due to the presence in them of strong ultraviolet doublet forbidden O II 3727 A. These values correspond effectively to the monochromatic image of the nebulas at this wavelength. The measurements show that the B-V color index does not change significantly with distance from the star except for S 158, where a weak dependence is observed. The results indicate that the physical properties of these nebulas differ little. It is concluded that the gas masses in this association are remnants of star formation that have a common origin with the stars. The age of the association is estimated at 100,000-1,000,000 yr. 13 references

  18. Million-degree plasma pervading the extended Orion Nebula.

    Science.gov (United States)

    Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L

    2008-01-18

    Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.

  19. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  20. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  1. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    Science.gov (United States)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  2. Do stellar and nebular abundances in the Cocoon nebula agree?

    Science.gov (United States)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  3. The Wolf-Rayet nebula NGC 3199 - an interstellar snow plough?

    Science.gov (United States)

    Dyson, J. E.; Ghanbari, J.

    1989-12-01

    The Wolf-Rayet nebula NGC 3199 has a highly asymmetric morphology, with a very bright hemisphere near the exciting star HD 89358 and a much fainter and more extended other hemisphere. This nebula is modeled in terms of the distorted bubble produced by a moving star blowing a strong stellar wind into a surrounding uniform interstellar medium; this model is fitted to the morphology and observed kinematic data. The exciting star appears to be moving at about 60 km/s into local interstellar gas of density of about 10/cu cm, and has a mass-loss rate of about 0.000027 solar mass/yr. This latter mass-loss rate is in excellent agreement with observed mass-loss rates from Wolf-Rayet stars.

  4. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  5. Effects of mass and metallicity upon planetary nebula formation

    International Nuclear Information System (INIS)

    Papp, K.A.; Purton, C.R.; Kwok, S.

    1983-01-01

    We construct a parameterized function which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. Our analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebula in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy

  6. The structure, dynamics, and star formation rate of the Orion nebula cluster

    International Nuclear Information System (INIS)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-01-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t ff ). This implies a star formation efficiency per t ff of ε ff ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  7. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    Science.gov (United States)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  8. Spectral Identification of New Galactic cLBV and WR Stars

    Science.gov (United States)

    Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.

    2012-12-01

    We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.

  9. Physical conditions within the poly-polar nebula NGC 6302. 3

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J F; Canto, J [Universidad Nacional Autonoma de Mexico, Mexico City; Meaburn, J; Walsh, J R [Manchester Univ. (UK). Dept of Astronomy

    1982-06-01

    IUE observations of the ultraviolet emission lines and continuum from the wind-driven poly-polar nebula NGC 6302 have been combined with those obtained of the visible emission lines to investigate the physical parameters of the ionized gas. Several relationships consolidate the view that this nebula is predominantly ionized radiatively by a very hot central star. However, the 'poly-polar' appearance and complex, high velocity flows of ionized material from the nebular core strongly suggest the presence of an energetic stellar wind from the central, but obscured star.

  10. Nebulae and how to observe them

    CERN Document Server

    Coe, Steven

    2007-01-01

    This "Astronomers' Observing Guides" are designed for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. Nebulae are the places where the stars are born. For amateur astronomers, the many different kinds of nebulae vary from "easy" targets that can be seen with modest equipment under mediocre skies, to "challenging" objects that require experienced observers, large telescopes and excellent seeing. The concept of the book - and of the series - is to present an up-to-date detailed description and categorisation (part one); and then (part two) to consider how best to successfully observe and record the large range of astronomical objects that fall under the general heading of "nebulae". "Nebulae, and How to Observe Them" is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  11. The effects of mass and metallicity upon planetary nebula formation

    Science.gov (United States)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  12. Spatio-kinematic modelling: Testing the link between planetary nebulae and close binaries

    OpenAIRE

    Jones, David; Tyndall, Amy A.; Huckvale, Leo; Prouse, Barnabas; Lloyd, Myfanwy

    2011-01-01

    It is widely believed that central star binarity plays an important role in the formation and evolution of aspherical planetary nebulae, however observational support for this hypothesis is lacking. Here, we present the most recent results of a continuing programme to model the morphologies of all planetary nebulae known to host a close binary central star. Initially, this programme allows us to compare the inclination of the nebular symmetry axis to that of the binary plane, testing the theo...

  13. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  14. Complex molecules in the Orion Kleinmann-Low nebula

    Directory of Open Access Journals (Sweden)

    Despois D.

    2014-02-01

    Full Text Available In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.

  15. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, George H. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Marco, Orsola De [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Davies, James [Space Telescope Science Institute, Baltimore MD 21218 (United States); Lotarevich, I. [American Museum of Natural History, New York, NY (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Harrington, J. Patrick [University of Maryland, College Park, MD (United States); Lanz, Thierry, E-mail: gjacoby@lowell.edu, E-mail: orsola.demarco@mq.edu.au, E-mail: jdavies@stsci.edu, E-mail: heb11@psu.edu, E-mail: jph@astro.umd.edu, E-mail: thierry.lanz@oca.eu [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, F-06304 Nice (France)

    2017-02-10

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.

  16. Emergent Braided Matter of Quantum Geometry

    Directory of Open Access Journals (Sweden)

    Sundance Bilson-Thompson

    2012-03-01

    Full Text Available We review and present a few new results of the program of emergent matter as braid excitations of quantum geometry that is represented by braided ribbon networks. These networks are a generalisation of the spin networks proposed by Penrose and those in models of background independent quantum gravity theories, such as Loop Quantum Gravity and Spin Foam models. This program has been developed in two parallel but complimentary schemes, namely the trivalent and tetravalent schemes. The former studies the braids on trivalent braided ribbon networks, while the latter investigates the braids on tetravalent braided ribbon networks. Both schemes have been fruitful. The trivalent scheme has been quite successful at establishing a correspondence between braids and Standard Model particles, whereas the tetravalent scheme has naturally substantiated a rich, dynamical theory of interactions and propagation of braids, which is ruled by topological conservation laws. Some recent advances in the program indicate that the two schemes may converge to yield a fundamental theory of matter in quantum spacetime.

  17. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  18. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Herter, T. L.; Adams, J. D. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2014-04-20

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G

  19. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    International Nuclear Information System (INIS)

    Lau, R. M.; Herter, T. L.; Adams, J. D.; Morris, M. R.

    2014-01-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s –1 ) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M ☉ , and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10 5 L ☉ . Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ☉ . The total IR luminosity of the G0.120-0.048 nebula is

  20. The spatial distribution of infrared radiation from visible reflection nebulae

    Science.gov (United States)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  1. Braid foliations in low-dimensional topology

    CERN Document Server

    LaFountain, Douglas J

    2017-01-01

    This book is a self-contained introduction to braid foliation techniques, which is a theory developed to study knots, links and surfaces in general 3-manifolds and more specifically in contact 3-manifolds. With style and content accessible to beginning students interested in geometric topology, each chapter centers around a key theorem or theorems. The particular braid foliation techniques needed to prove these theorems are introduced in parallel, so that the reader has an immediate "take-home" for the techniques involved. The reader will learn that braid foliations provide a flexible toolbox capable of proving classical results such as Markov's theorem for closed braids and the transverse Markov theorem for transverse links, as well as recent results such as the generalized Jones conjecture for closed braids and the Legendrian grid number conjecture for Legendrian links. Connections are also made between the Dehornoy ordering of the braid groups and braid foliations on surfaces. All of this is accomplished w...

  2. Theoretical investigation into the existence of molecules in planetary nebulae

    International Nuclear Information System (INIS)

    Carlson, W.J.

    1980-01-01

    Calculations of chemical kinetic equilibrium molecular abundances in the neutral regions of planetary nebulae are presented. The development of these abundances during the expansion of the nebula is calculated. The physical parameters in the neutral regions following the formation of the nebula by the ejection of the envelope of a long peiod variable star have been taken from available dynamical models. Similarly, the temperature and luminosity of the central star as a function of time have been taken from available theoretical calculations. The thermal equilibrium has been solved independently. The temperatures in the shell and later in the condensations which develop are in the range from 30 to 250 K. Number densities range from 10 7 for the youngest model calculated to 2 x 10 4 for neutral condensations in a 10,000 year old nebula. It is shown that, for a typical nebula containing 0.2 Msub solar, molecules are expected to be the dominant form for only a short period early in the expansion phase. Subsequently, the condensations are not sufficiently optically thick to permit the continued existence of a preponderance of molecules. The molecular abundances in the later models are similar to those in diffuse interstellar clouds. The expectation arising from those results is that little molecular material will be injected into the interstellar medium by planetary nebulae. There is, however, a remarkable resemblance between the conditions in the model calculated at very early stages of the expansion and conditions deduced from observations for proto-planetary nebulae

  3. The planetary nebula IPHASXJ211420.0+434136 (Ou5): insights into common-envelope dynamical and chemical evolution

    OpenAIRE

    Corradi, R. L. M.; Rodriguez-Gil, P.; Jones, D.; Garcia-Rojas, J.; Mampaso, A.; Garcia-Alvarez, D.; Pursimo, T.; Eenmäe, T.; Liimets, T.; Miszalski, B.

    2014-01-01

    While analysing the images of the IPHAS H$\\alpha$ survey, we noticed that the central star of the candidate planetary nebula IPHASXJ211420.0+434136 (also named Ou5) was clearly variable. This is generally considered as an indication of binarity. To confirm it, we performed a photometric monitoring of the central star, and obtained images and spectra of the nebula. The nebular spectrum confirms that IPHASXJ211420.0+434136 is a planetary nebula of moderately high excitation. It has a remarkable...

  4. A compact planetary nebula around the hot white dwarf EGB 6/PG 0950 + 139

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, J.; Green, R.; Bond, H.E.; Holberg, J.B.; Wesemael, F. (Steward Observatory, Tucson, AZ (USA) Mount Wilson and Las Campanas Observatories, Pasadena, CA (USA) Kitt Peak National Observatory, Tucson, AZ (USA) Space Telescope Science Institute, Baltimore, MD (USA) Arizona Univ., Tucson (USA) Montreal Universite, Montreal (Canada))

    1989-11-01

    The remarkable central star (0950 + 139), a very hot DA/DAO white dwarf, of the planetary nebula EGB 6 is described. Follow-up observations relevant to the analyses of both the nebula and the stellar photosphere are presented. Three kinds of scenarios are discussed to account for the existence of this peculiar nebula, but none appears very promising. The first consideration is that the nebula was ejected from the white dwarf as a discret event. This hypothesis is heavily constrained by the nebular size, density, and expansion rate; by the low luminosity and radius of the star; and by the absence of evidence for variation in density-sensitive forbidden lines from 1978 to 1987. No plausible mechanism can cause the observed amount of mass to be lost directly from a white dwarf in a steady or sporadic wind, at outflow velocities orders of magnitude below the escape velocity. Final consideration is given to the possibility that the gas is lost from a close companion star, but there is no evidence that this is a close binary system. 45 refs.

  5. A compact planetary nebula around the hot white dwarf EGB 6/PG 0950 + 139

    Science.gov (United States)

    Liebert, James; Green, Richard; Bond, Howard E.; Holberg, J. B.; Wesemael, F.

    1989-01-01

    The remarkable central star (0950 + 139), a very hot DA/DAO white dwarf, of the planetary nebula EGB 6 is described. Follow-up observations relevant to the analyses of both the nebula and the stellar photosphere are presented. Three kinds of scenarios are discussed to account for the existence of this peculiar nebula, but none appears very promising. The first consideration is that the nebula was ejected from the white dwarf as a discret event. This hypothesis is heavily constrained by the nebular size, density, and expansion rate; by the low luminosity and radius of the star; and by the absence of evidence for variation in density-sensitive forbidden lines from 1978 to 1987. No plausible mechanism can cause the observed amount of mass to be lost directly from a white dwarf in a steady or sporadic wind, at outflow velocities orders of magnitude below the escape velocity. Final consideration is given to the possibility that the gas is lost from a close companion star, but there is no evidence that this is a close binary system.

  6. A compact planetary nebula around the hot white dwarf EGB 6/PG 0950 + 139

    International Nuclear Information System (INIS)

    Liebert, J.; Green, R.; Bond, H.E.; Holberg, J.B.; Wesemael, F.

    1989-01-01

    The remarkable central star (0950 + 139), a very hot DA/DAO white dwarf, of the planetary nebula EGB 6 is described. Follow-up observations relevant to the analyses of both the nebula and the stellar photosphere are presented. Three kinds of scenarios are discussed to account for the existence of this peculiar nebula, but none appears very promising. The first consideration is that the nebula was ejected from the white dwarf as a discret event. This hypothesis is heavily constrained by the nebular size, density, and expansion rate; by the low luminosity and radius of the star; and by the absence of evidence for variation in density-sensitive forbidden lines from 1978 to 1987. No plausible mechanism can cause the observed amount of mass to be lost directly from a white dwarf in a steady or sporadic wind, at outflow velocities orders of magnitude below the escape velocity. Final consideration is given to the possibility that the gas is lost from a close companion star, but there is no evidence that this is a close binary system. 45 refs

  7. An investigation of the Carina Nebula

    Science.gov (United States)

    Brooks, Kate J.

    2000-10-01

    It is well known that the radiation fields and stellar winds of massive stars can drastically affect the physical conditions, structure and chemistry of the giant molecular cloud (GMC) from which they formed. It is also thought that massive stars are at least partly responsible for triggering further star formation within a GMC. The details of this interaction, however, are not well understood and additional detailed study of massive star-forming regions is needed. This study has focused on a multi-wavelength investigation of the Carina Nebula. This is a spectacular massive star-forming region that contains two of the most massive star clusters in our galaxy, Trumpler 14 and Trumpler 16, and one of the most massive stars known -- η Car. The goal of this study has been to obtain information on the molecular gas, ionized gas and photodissociation regions (PDRs) from a collection of instruments which have the highest angular resolution and sensitivity available to date. The Mopra Telescope and the Swedish-ESO Submillimeter Telescope (SEST) were used to obtain a series of molecular line observations of the GMC between 150 and 230 GHz. Observations of H110α recombination-line emission at 4.874 GHz and the related continuum emission were obtained with the Australia Telescope Compact Array and used to study the ionized gas associated with the two HII regions, Car I and Car II. H2 1--0 S(1) (2.12 microns) and Brγ (2.16 microns) observations using the University of New South Wales Infrared Fabry-Perot (UNSWIRF) and 3.29 micron narrow-band observations obtained with the SPIREX/Abu thermal infrared camera were used to study the PDRs on the surface of molecular clumps in the Keyhole region, a dark optical feature in the vicinity of η Car. The results of these observations provide detailed information on the excitation conditions, kinematics and morphology of regions within the HII region/molecular cloud complex of the Carina Nebula. In addition, the results confirm that

  8. The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability

    Science.gov (United States)

    Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.

    2015-07-01

    We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.

  9. A second list of new planetary nebulae found on United Kingdom 1.2-m Schmidt telescope plates

    International Nuclear Information System (INIS)

    Longmore, A.J.; Tritton, S.B.

    1980-01-01

    Positions, photographs and descriptions are given for 11 new planetary nebulae discovered on United Kingdom Schmidt plates. One of the planetary nebulae has the highest galactic latitude of any known planetary, and may be associated with a magnitude 9 G5 star. Near-infrared (J,H,K) magnitudes are given for the star. (author)

  10. A PHOTOMETRICALLY AND MORPHOLOGICALLY VARIABLE INFRARED NEBULA IN L483

    International Nuclear Information System (INIS)

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-01-01

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H 2 knots are found nearly twice as far to the east of the source as to its west, and that H 2 emission extends farther east of the source than the previously known CO outflow.

  11. The extraordinary mass-loss bubble G2.4 + 1.4 and its central star

    International Nuclear Information System (INIS)

    Dopita, M.A.; Mcgregor, P.J.; Rawlings, S.J.; Lozinskaia, T.A.

    1990-01-01

    Data are presented on the WR 102 star and the surrounding nebula (G2.4 + 1.4). It is shown that WR 102 and the nebula are associated, the nebula being a mass-loss bubble powered by the central star. From a photoionization analysis of the surrounding nebula, the star was determined to have the following parameters: log T(ion) = 5.20 + or - 0.05; log (R/solar R) = about 0.05; and log (L/solar L) = 5.85 + or - 0.20. 42 refs

  12. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae

    Science.gov (United States)

    Corradi, Romano L. M.; García-Rojas, Jorge; Jones, David; Rodríguez-Gil, Pablo

    2015-04-01

    The discrepancy between abundances computed using optical recombination lines and collisionally excited lines is a major unresolved problem in nebular astrophysics. Here, we show that the largest abundance discrepancies are reached in planetary nebulae with close binary central stars. We illustrate this using deep spectroscopy of three nebulae with a post common-envelope (CE) binary star. Abell 46 and Ou 5 have O2+/H+ abundance discrepancy factors larger than 50, and as high as 300 in the inner regions of Abell 46. Abell 63 has a smaller discrepancy factor around 10, which is still above the typical values in ionized nebulae. Our spectroscopic analysis supports previous conclusions that, in addition to “standard” hot ({{T}e} ˜ 104 K) gas, there exists a colder ({{T}e} ˜ 103 K), ionized component that is highly enriched in heavy elements. These nebulae have low ionized masses, between 10-3 and 10-1 M⊙ depending on the adopted electron densities and temperatures. Since the much more massive red giant envelope is expected to be entirely ejected in the CE phase, the currently observed nebulae would be produced much later, during post-CE mass loss episodes when the envelope has already dispersed. These observations add constraints to the abundance discrepancy problem. We revise possible explanations. Some explanations are naturally linked to binarity such as, for instance, high-metallicity nova ejecta, but it is difficult at this stage to depict an evolutionary scenario consistent with all of the observed properties. We also introduce the hypothesis that these nebulae are the result of tidal destruction, accretion, and ejection of Jupiter-like planets.

  13. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E., E-mail: heb11@psu.edu [Current address: Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA. (United States)

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  14. On the nature of the symbiotic star BF Cygni

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S.J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star. 84 refs

  15. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  16. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    Science.gov (United States)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate

  17. Classification spectra of Sanduleak and Stephenson emission-line stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1978-01-01

    Low dispersion slit spectra of 89 emission-line stars are described; these stars were originally located and classified by Sanduleak and Stephenson in an objective-prism survey. The new data broadly confirm the classification scheme adopted by Sanduleak and Stephenson. In particular most of the large number of symbiotic stars they classified have been confirmed and others found. Many of these contain strong, broad emission bands in their red spectra. Two new Wolf-Rayet stars, one new planetary nebula and two new bipolar reflection nebulae involving hidden emission-line stars have been found. (author)

  18. Classification spectra of Sanduleak and Stephenson emission-line stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1978-09-01

    Low dispersion slit spectra of 89 emission-line stars are described; these stars were originally located and classified by Sanduleak and Stephenson in an objective-prism survey. The new data broadly confirm the classification scheme adopted by Sanduleak and Stephenson. In particular most of the large number of symbiotic stars they classified have been confirmed and others found. Many of these contain strong, broad emission bands in their red spectra. Two new Wolf-Rayet stars, one new planetary nebula and two new bipolar reflection nebulae involving hidden emission-line stars have been found.

  19. Central Stars of Planetary Nebulae in the SMC

    Science.gov (United States)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 3's program C056 we studied four Central Stars of Planetary Nebulae (CSPN) in the Small Magellanic Could. All FUSE observations have been successfully completed and have been reduced and analyzed. The observation of one object (SMP SMC 5) appeared to be off-target and no useful stellar flux was gathered. For another observation (SMP SMC 1) the voltage problems resulted in the loss of data from one of the SiC detectors, but we were still able to analyze the remaining data. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.4). The flux of these SMC post-AGB objects is at the threshold of FUSE S sensitivity, and the targets required many orbit-long exposures, each of which typically had low (target) count-rates. The background subtraction required special care during the reduction, and was done in a similar manner to our FUSE cycle 2 BOO1 objects. The resulting calibrated data from the different channels were compared in the overlapping regions for consistency. The final combined, extracted spectra of each target was then modeled to determine the stellar and nebular parameters. The FUSE spectra, combined with archival HST spectra, have been analyzed using stellar atmospheres codes such as TLUSTY and CMFGEN to derive photospheric and wind parameters of the central stars, and with ISM models to determine the amount and temperature of the surrounding atomic and molecular hydrogen. We have combined these results with those of our cycle 4 (D034) program (CSPN of the LMC) in Herald & Bianchi 2004a (paper in preparation, will be submitted to ApJ in June 2004). Two of the three SMC objects analyzed were found to have significantly lower stellar temperatures than had been predicted using nebular photoionization models, indicating either a hotter ionizing companion or the existence of strong shocks in the nebular environment. The analysis also revealed that

  20. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  1. Helium shell flashes and ionization of planetary nebulae. Pt. 2. FG Sge

    International Nuclear Information System (INIS)

    Tylenda, R.

    1980-01-01

    Theoretical models have been constructed to study time-dependent effects in the nebulae (He 1-5) associated with FG Sge. Two cases have been considered: recombination of an initially stationary nebula of moderate excitation (Case A), and nonequilibrium ionization (and subsequent recombination) of an initially neutral nebula by a thermal pulse in the central star (Case B). Comparison with the observed spectrum does not allow to distinguish definitely between both cases. There are slight indications that the present state of He 1-5 is better reproduced in Case B which is also preferable from the point of view of the present theoretical knowledge of observational appearances of helium shell flashes in planetary nebula nuclei. The nebula has a normal chemical composition. (author)

  2. Cable Braid Electromagnetic Penetration Model.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Langston, William L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, W. A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  3. A new look inside planetary nebula LoTr 5: a long-period binary with hints of a possible third component

    Science.gov (United States)

    Aller, A.; Lillo-Box, J.; Vučković, M.; Van Winckel, H.; Jones, D.; Montesinos, B.; Zorotovic, M.; Miranda, L. F.

    2018-05-01

    LoTr 5 is a planetary nebula with an unusual long-period binary central star. As far as we know, the pair consists of a rapidly rotating G-type star and a hot star, which is responsible for the ionization of the nebula. The rotation period of the G-type star is 5.95 d and the orbital period of the binary is now known to be ˜2700 d, one of the longest in central star of planetary nebulae. The spectrum of the G central star shows a complex H α double-peaked profile which varies with very short time-scales, also reported in other central stars of planetary nebulae and whose origin is still unknown. We present new radial velocity observations of the central star which allow us to confirm the orbital period for the long-period binary and discuss the possibility of a third component in the system at ˜129 d to the G star. This is complemented with the analysis of archival light curves from Super Wide Angle Search for Planets, All Sky Automated Survey, and Optical Monitoring Camera. From the spectral fitting of the G-type star, we obtain an effective temperature of Teff = 5410 ± 250 K and surface gravity of log g = 2.7 ± 0.5, consistent with both giant and subgiant stars. We also present a detailed analysis of the H α double-peaked profile and conclude that it does not present correlation with the rotation period and that the presence of an accretion disc via Roche lobe overflow is unlikely.

  4. DETAILED INTERSTELLAR POLARIMETRIC PROPERTIES OF THE PIPE NEBULA AT CORE SCALES

    International Nuclear Information System (INIS)

    Franco, G. A. P.; Alves, F. O.; Girart, J. M.

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12,000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival Two Micron All Sky Survey data, we estimate that the surveyed areas present total visual extinctions in the range 0.6 mag ≤ A V ≤ 4.6 mag. While the observed polarizations show a well-ordered large-scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one sees details that are characteristics of each core. Although many observed stars present degrees of polarization that are unusual for the common interstellar medium (ISM), our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic ISM. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. The Pipe nebula is certainly an interesting region to investigate the processes that prevailed during the initial phases of low-mass stellar formation.

  5. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    Science.gov (United States)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  6. The Herschel objects and how to observe them exploring sir William Herschel's star clusters, nebulae, and galaxies

    CERN Document Server

    Mullaney, James

    2007-01-01

    Deep-sky observers are always on the lookout for new observing challenges. "The Herschel Objects, and How to Observe them" offers an exciting opportunity to retrace the footsteps of Sir William Herschel, discoverer of Uranus and arguably the greatest visual observer and celestial explorer that ever lived!Following a biography of Herschel that details his life and the telescopes he used, this practical observer's guide lists all the most impressive of Herschel's star clusters, nebulae and galaxies.More than 600 of the brightest of the objects that Herschel observed are covered, and there are detailed descriptions and images of almost 200 of the very best Herschel objects for amateur astronomers.

  7. Polarimetric evidence against a collimated outflow in the Horsehead Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Gledhill, T M; Scarrott, S M

    1985-08-01

    Imaging polarimetry of the Horsehead Nebula in Orion shows that the 'jaw' region of the nebula, which includes a proposed collimated flow from a highly reddened star B33-6, is illuminated by a distant source, sigma Orionis, and not by B33-6. The polarization pattern also shows features which suggest the presence of magnetically aligned dust grains in the surrounding medium. The possible structure of the aligning field is discussed.

  8. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  9. Capacitor discharge process for welding braided cable

    Science.gov (United States)

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  10. Design Tools and Workflows for Braided Structures

    DEFF Research Database (Denmark)

    Vestartas, Petras; Heinrich, Mary Katherine; Zwierzycki, Mateusz

    2017-01-01

    the objectives and motivation for our exploration of braid within an architectural context and highlighting both the relevance of braid and current lack of suitable design modelling tools to support our approach. We briefly introduce the state-of-the-art in braid representation and present the characteristics...

  11. Spectral analysis of the Crab Pulsar and Nebula with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Loparco, F.

    2011-01-01

    The Crab Pulsar is a relatively young neutron star. The Pulsar is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was observed on Earth in the year 1054. The Crab Pulsar has been extensively observed in the gamma-ray energy band by the Large Area Telescope (LAT), the main instrument onboard the Fermi gamma-ray space telescope, during its first months of data taking. The LAT data have been used to reconstruct the fluxes and the energy spectra of the pulsed gamma-ray component and of the gamma-rays from the Nebula. The results on the pulsed component are in good agreement with the previous measurement from EGRET, while the results on the Nebula are consistent with the observations from Earth based telescopes.

  12. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G. [Instituto de Astronomía, Universidad Nacional Autónoma de México. Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico); Borisov, N.; Valyavin, G., E-mail: tere@astro.unam.mx, E-mail: dgonzalez@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: zhar@astro.unam.mx, E-mail: gag@astro.unam.mx, E-mail: borisov@sao.ru, E-mail: gvalyavin@gmail.com [Special Astrophysical Observatory of the RAS, 369167, Nizhny Arkhyz, Karachaevo-Cherkesia (Russian Federation)

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  13. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    International Nuclear Information System (INIS)

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G.

    2014-01-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s –1 and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10 4 yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s –1 . The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  14. Discovery of a Circumstellar Disk in the Lagoon Nebula

    Science.gov (United States)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  15. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    Science.gov (United States)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  16. Braids and coverings selected topics

    CERN Document Server

    Hansen, Vagn Lundsgaard

    1989-01-01

    This book is based on a graduate course taught by the author at the University of Maryland, USA. The lecture notes have been revised and augmented by examples. The work falls into two strands. The first two chapters develop the elementary theory of Artin Braid groups both geometrically and via homotopy theory, and discuss the link between knot theory and the combinatorics of braid groups through Markov's Theorem. The final two chapters give a detailed investigation of polynomial covering maps, which may be viewed as a homomorphism of the fundamental group of the base space into the Artin braid

  17. THE 'NESSIE' NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

    International Nuclear Information System (INIS)

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert

    2010-01-01

    The 'Nessie' Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1. 0 5 x 0. 0 01 or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within ±3.4 km s -1 , the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ∼4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the 'sausage' or 'varicose' fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the 'sausage' fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  18. The "Nessie" Nebula: Cluster Formation in a Filamentary Infrared Dark Cloud

    Science.gov (United States)

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert

    2010-08-01

    The "Nessie" Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1fdg5 × 0fdg01 or 80 pc × 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within ±3.4 km s-1, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ~4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the "sausage" or "varicose" fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the "sausage" fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  19. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  20. New Evidence for the Dynamical Decay of a Multiple System in the Orion Kleinmann–Low Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Robberto, M.; Gabellini, M. Giulia Ubeira; Ubeda, L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tan, J. C. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Andersen, M. [Gemini Observatory, Casilla 603, La Serena (Chile); Manara, C. F. [Scientific Support Office, Directorate of Science, European Space Research and Technology Centre, Keplerlaan 1, NL-2201 AZ Noordwijk (Netherlands); Platais, I., E-mail: kluhman@astro.psu.edu [Johns Hopkins University, Department of Physics and Astronomy, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2017-03-20

    We have measured astrometry for members of the Orion Nebula Cluster with images obtained in 2015 with the Wide Field Camera 3 on board the Hubble Space Telescope . By comparing those data to previous measurements with the Near-Infrared Camera and Multi-Object Spectrometer on Hubble in 1998, we have discovered that a star in the Kleinmann–Low Nebula, source x from Lonsdale et al., is moving with an unusually high proper motion of 29 mas yr{sup −1}, which corresponds to 55 km s{sup −1} at the distance of Orion. Previous radio observations have found that three other stars in the Kleinmann–Low Nebula (the Becklin–Neugebauer object and sources I and n) have high proper motions (5–14 mas yr{sup −1}) and were near a single location ∼540 years ago, and thus may have been members of a multiple system that dynamically decayed. The proper motion of source x is consistent with ejection from that same location 540 years ago, which provides strong evidence that the dynamical decay did occur and that the runaway star BN originated in the Kleinmann–Low Nebula rather than the nearby Trapezium cluster. However, our constraint on the motion of source n is significantly smaller than the most recent radio measurement, which indicates that it did not participate in the event that ejected the other three stars.

  1. Unit cell geometry of 3-D braided structures

    Science.gov (United States)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  2. A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Povich, Matthew S., E-mail: alexamic@lafayette.edu, E-mail: rjh314@lehigh.edu, E-mail: mcswain@lehigh.edu, E-mail: mspovich@cpp.edu [Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768 (United States)

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had high enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.

  3. Multiple star formation : chemistry, physics and coevality

    NARCIS (Netherlands)

    Murillo, Mejias N.M.

    2017-01-01

    Multiple stars, that is two or more stars composing a gravitationally bound system, are common in the universe.They are the cause of many interesting phenomena, from supernovae and planetary nebulae, to binary black hole mergers. Observations of main sequence stars, young stars and forming

  4. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

    Science.gov (United States)

    Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun

    2018-06-01

    A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

  5. The photometric and radial velocity variations of the central star of the planetary nebula 1C 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.; Kriner, A.

    1983-01-01

    This paper brings spectrographic (1979-82) and photometric (January 1983) observations of the central star of the planetary nebula IC 418. We include an improved description of the stellar spectrum. We have found a variable photospheric velocity field, which would imply a fluctuating mass outflow, probably mixed with orbital motion in a close binary system with a period of about 0.2 days. We have also found light variations, on a time scale of one or two hours, with an amplitude of 0.1 mag, which do not appear to be periodic. Our observations are not yet sufficient to rule out definetely the existence of non-radial pulsations; further observations are suggested. (author)

  6. Spatially extended K Iλ7699 emission in the nebula of VY CMa: kinematics and geometry

    Science.gov (United States)

    Smith, Nathan

    2004-04-01

    Long-slit echelle spectra reveal bright extended emission from the K Iλ7699 resonance line in the reflection nebula surrounding the extreme red supergiant VY Canis Majoris. The central star has long been known for its unusually bright K I emission lines, but this is the first report of intrinsic emission from K I in the nebula. The extended emission is not just a reflected spectrum of the star, but is due to resonant scattering by K atoms in the outer nebula itself, and is therefore a valuable probe of the kinematics and geometry of the circumstellar environment of VY CMa. Dramatic velocity structure is seen in the long-slit spectra, and most lines of sight through the nebula intersect multiple distinct velocity components. A faint `halo' at large distances from the star does appear to show a reflected spectrum, however, and suggests a systemic velocity of +40 km s-1 with respect to the Sun. The most striking feature is blueshifted emission from the filled interior of a large shell seen in images; the kinematic structure is reminiscent of a Hubble flow, and provides strong evidence for asymmetric and episodic mass loss due to localized eruptions on the stellar surface.

  7. Slingshot mechanism for clusters: Gas density regulates star density in the Orion Nebula Cluster (M42)

    Science.gov (United States)

    Stutz, Amelia M.

    2018-02-01

    We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central ∼0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, protocluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile ρstars(r) = 5755 M⊙ pc- 3 (1 + (r/a)2)- 5/2, where a = 0.36 pc. The gas density follows a cylindrical power law ρgas(R) = 25.9 M⊙ pc- 3 (R/pc)- 1.775. The stellar density profile dominates over the gas density profile inside r ∼ 1 pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at r ∼ a. This fact alone demonstrates that the protocluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar protocluster core is dynamically young, with an age of ∼2-3 Myr, a 1D velocity dispersion of σobs = 2.6 km s-1, and a crossing time of ∼0.55 Myr. This time-scale is almost identical to the gas filament oscillation time-scale estimated recently by Stutz & Gould. This provides strong evidence that the protocluster structure is regulated by the gas filament. The protocluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales ≳ a. The analysis presented here leads to a new suggestion that clusters form by an analogue of the 'slingshot mechanism' previously proposed for stars.

  8. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  9. The spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    Science.gov (United States)

    Dufour, Reginald J.; Parker, Robert A. R.; Henize, Karl G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought.

  10. Spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    International Nuclear Information System (INIS)

    Dufour, R.J.; Parker, R.A.R.; Henize, K.G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought. 34 references

  11. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    Energy Technology Data Exchange (ETDEWEB)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nagayama, Takumi; Sunada, Kazuyoshi [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujisawa, Kenta [Department of Physics and Informatics, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512 (Japan); Nakano, Makoto [Faculty of Education and Welfare Science, Oita University, Oita 870-1192 (Japan); Sekido, Mamoru, E-mail: james@milkyway.sci.kagoshima-u.ac.jp [Kashima Space Research Center, National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501 (Japan)

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  12. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  13. THE EVOLUTION OF THE KINEMATICS OF NEBULAR SHELLS IN PLANETARY NEBULAE IN THE MILKY WAY BULGE

    International Nuclear Information System (INIS)

    Richer, Michael G.; Lopez, Jose Alberto; Garcia-Diaz, Maria Teresa; Clark, David M.; Pereyra, Margarita; Diaz-Mendez, Enrique

    2010-01-01

    We study the line widths in the [O III]λ5007 and Hα lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) using the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high Hβ luminosities, but [O III]λ5007/Hβ 0.5. These planetary nebulae represent evolutionary phases preceding and following those of the objects studied by Richer et al. in 2008. Our sample of planetary nebulae with weak [O III]λ5007 has a line width distribution similar to that of the expansion velocities of the envelopes of asymptotic giant branch stars and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. The sample with strong He II λ4686 has a line width distribution indistinguishable from that of the more evolved objects from Richer et al., but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.

  14. Finite-time braiding exponents

    Science.gov (United States)

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  15. Multi-Wavelength Polarimetry of Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Roberto P. Mignani

    2018-03-01

    Full Text Available Isolated neutron stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10 12 – 10 15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetized, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarization signature. Measuring the neutron star polarization brings important information about the properties of their magnetosphere and of their highly magnetized environment. Being the most numerous class of isolated neutron stars, polarization measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarize multi-wavelength linear polarization measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

  16. Observable Signatures of Energy Release in Braided Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pontin, D. I. [University of Dundee, Nethergate, Dundee, DD1 4HN (United Kingdom); Janvier, M. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405, Orsay Cedex (France); Tiwari, S. K.; Winebarger, A. R.; Cirtain, J. W. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Galsgaard, K. [Niels Bohr Institute, Geological Museum Østervoldgade 5-7, DK-1350, Copenhagen K (Denmark)

    2017-03-10

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to the observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.

  17. CO-SPATIAL LONG-SLIT UV/OPTICAL SPECTRA OF TEN GALACTIC PLANETARY NEBULAE WITH HST/STIS. II. NEBULAR MODELS, CENTRAL STAR PROPERTIES, AND He+CNO SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R. B. C.; Miller, T. R. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Dufour, R. J. [Department of Space Physics and Astronomy, Rice University, Houston, TX 77251 (United States); Kwitter, K. B. [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States); Shaw, R. A. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Buell, J. F. [SUNY College of Technology at Alfred, Alfred, NY 14843 (United States); Corradi, R. L. M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2015-11-10

    The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well with the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.

  18. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  19. Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery.

    Science.gov (United States)

    Elsayed, Yahya; Lekakou, Constantina; Ranzani, Tommaso; Cianchetti, Matteo; Morino, Mario; Arezzo, Alberto; Menciassi, Arianna; Geng, Tao; Saaj, Chakravarthini M

    2015-01-01

    This paper investigates different types of crimped, braided sleeve used for a soft arm for robotic abdominal surgery, with the sleeve required to contain balloon expansion in the pneumatically actuating arm while it follows the required bending, elongation and diameter reduction of the arm. Three types of crimped, braided sleeves from PET (BraidPET) or nylon (BraidGreyNylon and BraidNylon, with different monofilament diameters) were fabricated and tested including geometrical and microstructural characterisation of the crimp and braid, mechanical tests and medical scratching tests for organ damage of domestic pigs. BraidPET caused some organ damage, sliding under normal force of 2-5 N; this was attributed to the high roughness of the braid pattern, the higher friction coefficient of polyethylene terephthalate (PET) compared to nylon, and the high frequency of the crimp peaks for this sleeve. No organ damage was observed for the BraidNylon, attributed to both the lower roughness of the braid pattern and the low friction coefficient of nylon. BraidNylon also required the lowest tensile force during its elongation to similar maximum strain as that of BraidPET, translating to low power requirements. BraidNylon is recommended for the crimped sleeve of the arm designed for robotic abdominal surgery.

  20. The chemical composition of three planetary nebulae in the Magellanic clouds

    International Nuclear Information System (INIS)

    Dufour, R.J.; Killen, R.M.

    1977-01-01

    Emission-line intensities in the planetary nebulae Henize 67 in the Small Magellanic Cloud (SMC) and Henize 97 and 153 in the LMC along with the small SMC H II regions Henize 9, 61, and 81 were measured from photographic image-tube spectra taken with the 1.5 m telescope at Cerro Tololo. The relative abundances of H, He, N, O, Ne, S, and Ar in the nebulae were estimated and compared with the compositions of galactic planetary nebulae and previously studied H II regions in the Clouds. The results show that (1) the N/O ratios in the planetary nebulae are substantially higher than found in the H II regions of each Cloud; (2) He/H approx. = 0.18 in the SMC planetary nebula, but seems normal (approx.0.10) in the two LMC planetaries; and (3) the compositions of the three small SMC H II regions are similar to that of larger SMC H II regions studied previously. It is concluded that the N/H values in the shells of planetary nebulae may not depend on the metal content of the progenitor star as much as recent theoretical models suggest and that the N content of the gas in the Magellanic Clouds arises primarily from sources other than planetary nebulae

  1. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  2. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  3. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    Science.gov (United States)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  4. Medium-resolution échelle spectroscopy of the Red Square Nebula, MWC 922

    Science.gov (United States)

    Wehres, N.; Ochsendorf, B. B.; Tielens, A. G. G. M.; Cox, N. L. J.; Kaper, L.; Bally, J.; Snow, T. P.

    2017-05-01

    Context. Medium-resolution échelle spectra of the Red Square Nebula surrounding the star MWC 922 are presented. The spectra have been obtained in 2010 and 2012 using the X-shooter spectrograph mounted on the Very Large Telescope (VLT) in Paranal, Chile. The spectrum covers a wavelength range between 300 nm-2.5 μm and shows that the nebula is rich in emission lines. Aims: We aim to identify the emission lines and use them as a tool to determine the physical and chemical characteristics of the nebula. The emission lines are also used to put constraints on the structure of the nebula and on the nature of the central stars. Methods: We analyzed and identified emission lines that indicated that the Red Square Nebula consists of a low density bipolar outflow, eminent in the broad emission component seen in [Fe II], as well as in P Cygni line profiles indicative of fast outflowing material. The narrow component in the [Fe II] lines is most likely formed in the photosphere of a surrounding disk. Some of the emission lines show a pronounced double peaked profile, such as Ca II, indicating an accretion disk in Keplerian rotation around the central star. [O I] emission lines are formed in the neutral atomic zone separating the ionized disk photosphere from the molecular gas in the interior of the disk, which is prominent in molecular CO emission in the near-IR. [N II] and [S II] emission clearly originates in a low density but fairly hot (7 000-10 000 K) nebular environment. H I recombination lines trace the extended nebula as well as the photosphere of the disk. Results: These findings put constraints on the evolution of the central objects in MWC 922. The Red Square shows strong similarities to the Red Rectangle Nebula, both in morphology and in its mid-IR spectroscopic characteristics. As for the Red Rectangle, the observed morphology of the nebula reflects mass-loss in a binary system. Specifically, we attribute the biconical morphology and the associated rung

  5. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  6. The trace of the CNO cycle in the ring nebula NGC 6888

    Energy Technology Data Exchange (ETDEWEB)

    Mesa-Delgado, A. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Esteban, C.; García-Rojas, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Reyes-Pérez, J.; Morisset, C. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70264, Méx. D. F. 04510 (Mexico); Bresolin, F., E-mail: amesad@astro.puc.cl [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-04-20

    We present new results on the chemical composition of the Galactic ring nebula NGC 6888 surrounding the WN6(h) star WR136. The data are based on deep spectroscopical observations taken with the High Dispersion Spectrograph at the 8.2 m Subaru Telescope. The spectra cover the optical range from 3700 to 7400 Å. The effect of the CNO cycle is well-identified in the abundances of He, N, and O, while elements not involved in the synthesis such as Ar, S, and Fe present values consistent with the solar vicinity and the ambient gas. The major achievement of this work is the first detection of the faint C II λ4267 recombination line in a Wolf-Rayet nebula. This allows us to estimate the C abundance in NGC 6888 and therefore investigate for the first time the trace of the CNO cycle in a ring nebula around a Wolf-Rayet star. Although the detection of the C II line has a low signal-to-noise ratio, the C abundance seems to be higher than the predictions of recent stellar evolution models of massive stars. The Ne abundance also shows a puzzling pattern with an abundance of about 0.5 dex lower than the solar vicinity, which may be related to the action of the NeNa cycle. Attending to the constraints imposed by the dynamical timescale and the He/H and N/O ratios of the nebula, the comparison with stellar evolution models indicates that the initial mass of the stellar progenitor of NGC 6888 is between 25 M {sub ☉} and 40 M {sub ☉}.

  7. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle

    NARCIS (Netherlands)

    Waters, LBFM; Waelkens, C; van Winckel, H; Molster, FJ; Tielens, AGGM; van Loon, JT; Morris, PW; Cami, J; Bouwman, J; de Koter, A; de Jong, T; de Graauw, T

    1998-01-01

    The Red Rectangle(1) is the prototype of a class of carbon-rich reflection nebulae surrounding low-mass stars in the final stages of evolution. The central star of this nebula has ejected most of its layers (during the red-giant phase), which now form the surrounding cloud, and is rapidly evolving

  8. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  9. Carbon stars with alpha-C:H emission

    Science.gov (United States)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  10. The Orion Nebula: The Jewel in the Sword

    Science.gov (United States)

    2001-01-01

    Orion the Hunter is perhaps the best known constellation in the sky, well placed in the evening at this time of the year for observers in both the northern and southern hemispheres, and instantly recognisable. And for astronomers, Orion is surely one of the most important constellations, as it contains one of the nearest and most active stellar nurseries in the Milky Way, the galaxy in which we live. Here tens of thousands of new stars have formed within the past ten million years or so - a very short span of time in astronomical terms. For comparison: our own Sun is now 4,600 million years old and has not yet reached half-age. Reduced to a human time-scale, star formation in Orion would have been going on for just one month as compared to the Sun's 40 years. Just below Orion's belt, the hilt of his sword holds a great jewel in the sky, the beautiful Orion Nebula . Bright enough to be seen with the naked eye, a small telescope or even binoculars show the nebula to be a few tens of light-years' wide complex of gas and dust, illuminated by several massive and hot stars at its core, the famous Trapezium stars . However, the heart of this nebula also conceals a secret from the casual observer. There are in fact about one thousand very young stars about one million years old within the so-called Trapezium Cluster , crowded into a space less than the distance between the Sun and its nearest neighbour stars. The cluster is very hard to observe in visible light, but is clearly seen in the above spectacular image of this area ( ESO PR 03a/01 ), obtained in December 1999 by Mark McCaughrean (Astrophysical Institute Potsdam, Germany) and his collaborators [1] with the infrared multi-mode ISAAC instrument on the ESO Very Large Telescope (VLT) at Paranal (Chile). Many details are seen in the new ISAAC image ESO PR Photo 03b/01 ESO PR Photo 03b/01 [Preview - JPEG: 400 x 589 pix - 62k] [Normal - JPEG: 800 x 1178 pix - 648k] [Hires - JPEG: 1957 x 2881 pix - 2.7M] ESO PR Photo 03c

  11. Photoionization modeling of Magellanic Cloud planetary nebulae. I

    Science.gov (United States)

    Dopita, M. A.; Meatheringham, S. J.

    1991-01-01

    The results of self-consistent photoionization modeling of 38 Magellanic Cloud PNe are presented and used to construct an H-R diagram for the central stars and to obtain both the nebular chemical abundances and the physical parameters of the nebulae. T(eff)s derived from nebular excitation analysis are in agreement with temperatures derived by the classical Zanstra method. There is a linear correlation between log T(eff) and the excitation class. The majority of the central stars in the sample with optically thick nebulae have masses between 0.55 and 0.7 solar mass and are observed during their hydrogen-burning excursion toward high temperatures. Optically thin objects are found scattered throughout the H-R diagram, but tend to have a somewhat smaller mean mass. Type I PN are found to have high core masses and to lie on the descending branch of the evolutionary tracks. The nebular mass of the optically thick objects is closely related to the nebular radius, and PN with nebular masses over one solar are observed.

  12. Prediction of the yarn trajectories on complex braided preforms

    NARCIS (Netherlands)

    Kessels, J.F.A.; Kessels, J.F.A.; Akkerman, Remko

    2002-01-01

    Braiding can be used to manufacture preforms for resin transfer moulding (RTM). With braiding, many yarns are used, non-geodesic yarn paths are possible, and the interlaced structure of braids provides typical mechanical properties such as high impact strength. Previously, several models were

  13. Numerical investigations of the mechanical properties of braided vascular stents.

    Science.gov (United States)

    Fu, Wenyu; Xia, Qixiao; Yan, Ruobing; Qiao, Aike

    2018-01-01

    Braided stents, such as Pipeline Embolization Device (PED; ev3 Neurovascular, Irvine, CA, USA), are commonly used to treat cerebral aneurysms. However, little information is available on the compression and bending characteristics of such stents. This paper investigates how geometrical parameters of braided stents influence their radial compression and bending characteristics. Six groups of braided stent models with different braiding angles, numbers of wires and wire diameters are constructed. Parametric analyses of these models are conducted using Abaqus/Explicit software. The numerical results of a finite element analysis are validated by comparison with data of theoretical analysis. The results show that the radial stiffness is not uniform along the longitudinal direction of the stent. When the braiding angle increases from 30° to 75°, the minimum radial deformation decreases from 0.85 mm to 0.0325 mm (at a pressure of 500 Pa, for 24 braided wires). When the wire diameter increases from 0.026 mm to 0.052 mm, the minimum radial deformation decreases from 0.65 mm to 0.055 mm (at a pressure of 500 Pa and a braiding angle of 60°, for 24 braided wires). Frictions don't affect stent diameter and its axial length when braided stent is crimping, but the friction must be considered when it is related to the radial pressure required for compression the braided stent. Compared with commonly used intracranial stents, a braided stent with geometrical parameters close to PED stent has a smaller radial stiffness but a considerably greater longitudinal flexibility. The results of this analysis of braided stents can help in the design and selection of flow diverter stents for clinical treatment of cerebral aneurysms.

  14. Structural Characterization of Hexagonal Braiding Architecture Aided by 3D Printing

    Directory of Open Access Journals (Sweden)

    Li Zhengning

    2018-01-01

    Full Text Available Hexagonal braiding method has the advantages of high shape compatibility, interlacing density and high volume fraction. Based on hexagonal braiding method, a hexagonal preform was braided. Then, by following the characteristics of repeatability and concentricity of hexagonal braided preform, the printed geometry structure was got in order to understand and optimize geometric structure to make it more compact like the braided geometric structure. Finally, the unit cells were defined with hexagonal prism to analyze the micro-geometric structure of hexagonal braided preform.

  15. Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula

    Science.gov (United States)

    Gregorio-Hetem, Jane

    2015-08-01

    A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296

  16. Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

    Science.gov (United States)

    Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang

    2018-04-01

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar

  17. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula

  18. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  19. Hot Gas in the Wolf–Rayet Nebula NGC 3199

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A.; Chu, Y.-H. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Marston, A. P. [European Space Agency/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada E-18008 (Spain); Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States)

    2017-09-01

    The Wolf–Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (i) regions close to the optical arc present nitrogen-rich gas enhanced by the stellar wind from WR 18 and (ii) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 10{sup 6} K and n {sub e} = 0.3 cm{sup −3} with an X-ray luminosity in the 0.3–3.0 keV energy range of L {sub X} = 2.6 × 10{sup 34} erg s{sup −1}. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.

  20. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860, Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Manchado, A. [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C., E-mail: ggs@astrosen.unam.mx [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  1. Bi-orderings on pure braided Thompson's groups

    OpenAIRE

    Burillo, Jose; Gonzalez-Meneses, Juan

    2006-01-01

    In this paper it is proved that the pure braided Thompson’s group BF admits a bi-order, analog to the bi-order of the pure braid groups. Ministerio de Educación y Ciencia Fondo Europeo de Desarrollo Regional

  2. Designing ecological flows to gravely braided rivers in alpine environments

    Science.gov (United States)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  3. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  4. X-ray observations of two lunar occultations of the Crab Nebula

    International Nuclear Information System (INIS)

    Ku, W.H.M.

    1976-01-01

    The x-ray source in the Crab nebula was observed during two lunar occultations. The combined results of the two scans of the nebula indicate that the spatial distribution of the X-ray flux from the nebula is centered on a region 10'' to 15'' NW of the pulsar. The half-intensity size, as measured by the FWHM of the best Gaussian representation of each strip flux distribution, is 46.7'' +- 1.5'' along p.a. = 300 0 , and is 42'' +- 2'' along p.a. = 255 0 . A closer examination of the size of the nebular emission region measured along p.a. = 300 0 reveals that the size decreases significantly with increasing photon energy. A power-law function with an exponent of γ = -0.148 +- 0.012 characterizes the optical (approximately 2 eV) to X-ray (approximately 50 keV) size measurements well, but it fails to predict the observed sizes of the radio nebula. Power-law spectral indices derived for different regions of the nebula support this finding. These results are interpreted in terms of existing theoretical models for the motion of electrons in the nebula. The data obtained on 28 December 1974 also provide strong evidence for the existence of a low-luminosity soft X-ray component more than 60'' W of the pulsar. Such emission was not detected in data from the first scan, but the upper limit derived from those data is consistent with the existence of a soft extended source. Several plausible explanations for the origin of this radiation are considered including the interesting possibility of thermal emission from a supernova remnant shell. Data obtained near the time of emergence of the pulsar for both observations are examined for possible flux contribution from a discrete steady radiation source. The null result allows an upper limit of 4.7 x 10 6 0 K (99 percent confidence) to be established on the surface temperature of the neutron star associated with NP 0532. This result is used to set limits on some physical parameters of a neutron star

  5. Braids as a representation space of SU(5)

    Science.gov (United States)

    Cartin, Daniel

    2015-06-01

    The standard model of particle physics provides very accurate predictions of phenomena occurring at the sub-atomic level, but the reason for the choice of symmetry group and the large number of particles considered elementary is still unknown. Along the lines of previous preon models positing a substructure to explain these aspects, Bilson-Thompson showed how the first family of elementary particles is realized as the crossings of braids made of three strands, with charges resulting from twists of those strands with certain conditions; in this topological model, there are only two distinct neutrino states. Modeling the particles as braids implies these braids must be the representation space of a Lie algebra, giving the symmetries of the standard model. In this paper, this representation is made explicit, obtaining the raising operators associated with the Lie algebra of SU(5), one of the earliest grand unified theories. Because the braids form a group, the action of these operators are braids themselves, leading to their identification as gauge bosons. Possible choices for the other two families are also given. Although this realization of particles as braids is lacking a dynamical framework, it is very suggestive, especially when considered as a natural method of adding matter to loop quantum gravity.

  6. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  7. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  8. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  9. Formation of planetary nebulae with close binary nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Livio, M; Salzman, J; Shaviv, G [Tel Aviv Univ. (Israel). Dept. of Physics and Astronomy

    1979-07-01

    A model for the formation of planetary nebulae with a close binary as a nucleus is presented. The model is based on mass loss instability at L/sub 2/. The instability is demonstrated. The conditions on the mass loss are formulated and analysed. The observational consequence of the model is described briefly and its relation to symbiotic stars and cataclysmic binaries discussed.

  10. Braiding simulation for TRM preforms (CD-ROM)

    NARCIS (Netherlands)

    Akkerman, Remko; Villa Rodriguez, B.H.

    2006-01-01

    Braiding is a manufacturing process that is increasingly being used to manufacture pre-forms for Resin Transfer Moulding. A fast simulation method is presented for the prediction of the fibre distribution on complex braided parts and complex kinetic situations (e.g. changes in velocity,

  11. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.

    Science.gov (United States)

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M

    2015-03-05

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  12. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  13. On braid monodromy factorizations

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France); Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation)

    2003-06-30

    We introduce and develop a language of semigroups over the braid groups to study the braid monodromy factorizations (bmf's) of plane algebraic curves and other related objects. As an application, we give a new proof of Orevkov's theorem on the realization of bmf's over a disc by algebraic curves and show that the complexity of such a realization cannot be bounded in terms of the types of factors of the bmf. We also prove that the type of a bmf distinguishes Hurwitz curves with singularities of inseparable type up to H-isotopy and J-holomorphic cuspidal curves in CP{sup 2} up to symplectic isotopy.

  14. On braid monodromy factorizations

    International Nuclear Information System (INIS)

    Kharlamov, V M; Kulikov, Vik S

    2003-01-01

    We introduce and develop a language of semigroups over the braid groups to study the braid monodromy factorizations (bmf's) of plane algebraic curves and other related objects. As an application, we give a new proof of Orevkov's theorem on the realization of bmf's over a disc by algebraic curves and show that the complexity of such a realization cannot be bounded in terms of the types of factors of the bmf. We also prove that the type of a bmf distinguishes Hurwitz curves with singularities of inseparable type up to H-isotopy and J-holomorphic cuspidal curves in CP 2 up to symplectic isotopy

  15. Abundances in Planetary Nebulae: an Autopsy of Low and Intermediate Mass Stars

    Science.gov (United States)

    Buell, James Francis

    In this work we report on the results of synthetic thermally pulsing asymptotic giant branch models (TP-AGB) and compare the results to the abundance ratios in a sample of planetary nebulae. We use updated the input parameters for mass-loss, the stellar luminosity, and dredge-up. We calculated models with masses between 0.8 solar masses and 8 solar masses. We also calculated models with (Fe/H) between -2.5 and 0.3. The effect of the first, second, and third dredge-up as well as hot-bottom burning are reported on. The analysis of a sample of Galactic bulge and disk planetary nebulae is also reported on.

  16. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  17. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  18. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    Science.gov (United States)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  19. GBT, VLA Team Up to Produce New Image of Orion Nebula

    Science.gov (United States)

    2002-01-01

    Combining the best features of the National Science Foundation's (NSF) new Robert C. Byrd Green Bank Telescope (GBT) in West Virginia with those of the NSF's Very Large Array (VLA) in New Mexico, astronomers have produced a vastly improved radio image of the Orion Nebula and developed a valuable new technique for studying star formation and other astrophysical processes. GBT-VLA Image of Orion Nebula GBT-VLA Image of Orion Nebula "Our GBT image of the Orion Nebula is the best image ever produced with a single-dish radio telescope and it illustrates the superb performance of this new telescope," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "By combining data from the GBT with that from the VLA, we get an image that reflects reality far better than images from the separate telescopes could do," she added. Shepherd worked with Ron Maddalena from NRAO in Green Bank and Joe McMullin, from NRAO in Socorro. The astronomers presented their work to the American Astronomical Society meeting in Washington, DC. Single-dish radio telescopes such as the GBT, dedicated in 2000, are able to capture the large-scale structure of objects such as the Orion Nebula. However, they are unable to discern the fine detail revealed by multi-antenna arrays such as the VLA. Conversely, a VLA-like array is "blind" to the larger-scale structures. Combining the data from both types of radio telescopes to produce an image showing both large- and small-scale structures in the same celestial object has been a difficult, laborious task. "We are developing new observing techniques and software to make this task much easier and quicker," said McMullin. "We now have achieved in hours what used to take months or even longer to do, but we are producing an observational tool that will allow astronomers to make much higher-fidelity images that will greatly improve our understanding of several important astronomical processes," McMullin added. For this observation

  20. Modelling of Damage Evolution in Braided Composites: Recent Developments

    Science.gov (United States)

    Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong

    2017-12-01

    Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.

  1. The gas-to-dust ratio in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1974-01-01

    About sixty spectra have been obtained using an image tube with the nebular spectrograph of the Asiago 122cm reflector, in a position W-E from north of the Trapezium across the star P 1925 into the bay area of the Orion Nebula. Twenty-five spectra have been selected for accurate measurements of the Hβ intensity and of the electron density by the [S II] 6730/6716 intensity line ratio. The results are interpreted in terms of well-mixed gas and dust, not only in the central bright regions, but even in the bay area, where the coefficient of dust extinction counted per electron is found to be larger than in the bright centre of the nebula

  2. Observations of the polarization of the radiation of R-association stars

    International Nuclear Information System (INIS)

    Pavlova, L.A.; Rspaev, F.K.

    1987-01-01

    New observations have been made of the polarization parameters of the radiation of stars in the reflection nebulas in the regions of Cas, Per R1, Ser, CMa R1. Some stars with variable polarization have been found. For some stars, the parameters of the intrinsic circumstellar polarization have been calculated with allowance for the interstellar component using Serkowski's method. The connection between the polarization vector and the structure of the nebulas is considered. For the region CMa R1 a local magnetic field with a scale determined by the size of the association is identified

  3. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    International Nuclear Information System (INIS)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-01-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essential kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references

  4. Braided artificial muscles: modeling and experimental validation

    Science.gov (United States)

    Dragan, Liliana; Cioban, Horia

    2009-01-01

    The paper presents a few graphical modalities for constructing the double helical braid, which is the basis for the braided artificial pneumatic muscles, by using specialized software applications. This represents the first stage in achieving the method of finite element analysis of this type of linear pneumatic actuator.

  5. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    Energy Technology Data Exchange (ETDEWEB)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 106 Pleasant Street S.E., Minneapolis, MN 55455 (United States); Helton, L. A. [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Evans, A. [Astrophysics Group, Lennard Jones Laboratory, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Keller, L. D. [Department of Physics and Astronomy, 264 Center for Natural Sciences, Ithaca College, Ithaca, NY 14850 (United States); Hinkle, K. H. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Jura, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Lebzelter, T. [Institute for Astrophysics (IfA), University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lisse, C. M. [Solar System Exploration Branch, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Rushton, M. T. [Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, Bucharest, 040557 (Romania); Mizrachi, J., E-mail: arneson@astro.umn.edu [Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-07-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  6. Ultraviolet colors of subdwarf O stars

    International Nuclear Information System (INIS)

    Wesselius, P.R.

    1978-01-01

    The group of subdwarf O stars consisting of field stars and some central stars of old planetary nebulae does occupy an interesting place in the HR diagram. Greenstein and Sargent (1974) have tried to establish this place, and conclude that especially the hottest ones need ultraviolet data to improve the values of effective temperature and absolute luminosity. The author therefore observed some twenty sdO stars in the far ultraviolet using the spectrophotometer in the Netherlands' satellite ANS. (Auth.)

  7. Braid-plain dynamics and bank erosion along the Matanuska River, Alaska

    Science.gov (United States)

    Curran, J. H.

    2009-12-01

    Braid-plain activity and geomorphic features in the Matanuska River in southcentral Alaska between 1949 and 2006 were examined to support a bank erosion hazard assessment. The glacial Matanuska River drains 6,500 km2 and is braided for 85 percent of its 150 km course, which parallels a major highway and flows through the towns of Sutton and Palmer, Alaska. The historical braid plain was defined as the envelope of areas with active channels, unvegetated bars, or vegetated bars with evidence of channels since 1949 and delineated in a GIS from 1949, 1962, and 2006 aerial orthoimagery. We created a strip map of bank height and composition (primarily bedrock and unconsolidated sediment) at braid-plain margins and outlined valley bottom features (terraces and tributary fans) adjacent to the braid plain to assess erodibility. Braid-plain dynamism has created a mosaic of extensive lightly vegetated bars interspersed with forested bars in strips along the banks and in small mid-channel positions. Abandoned channels filled with groundwater or tributary streamflow have created clearwater side channels within these bars that serve as the primary spawning location for chum, sockeye, and coho salmon in the Matanuska River basin. Erosion magnitudes for the periods 1949-1962 and 1962-2006 were computed as braid-plain expansion at transects across the historical braid-plain boundaries. Episodic, spatially distributed erosion and the antiquity of some eroded surfaces suggests that average annual erosion rates at a location are not adequate for assessing future erosion at that location in a braid plain. Lateral expansion caused bank erosion of 100 -275 m at 20 locations over the full period, about half at tributary fans and most occurring in a single time period. Minor growth of tributary fans constricted the braid plain, and emerging terraces have the potential to shrink the braid plain. Eroded banks included undated but pre-historic fluvial terraces and tributary fans. Where

  8. HM Sagittae - a most remarkable star

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The author summarises recent observations of HM Sagittae, a symbiotic star that displays activity in every spectral band from X-ray to radio. He concludes that it is best described as a binary system consisting of a late M giant and a hot compact object which is similar to central stars of planetary nebulae. The presence of a wind from the M giant implies that Roche-lobe overflow is not a necessary condition for mass transfer. The complex structure of the circumstellar nebula is possibly the result of wind interactions. The ongoing spectral evolution of HM Sge after its recent outburst makes it an ideal candidate to test models of the symbiotic phenomenon. (Auth.)

  9. Massive runaway stars in the Small Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  10. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  11. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris

    Science.gov (United States)

    Smith, Nathan; Humphreys, Roberta M.; Davidson, Kris; Gehrz, Robert D.; Schuster, M. T.; Krautter, Joachim

    2001-02-01

    We present HST/WFPC2 images plus ground-based infrared images and photometry of the very luminous OH/IR star VY Canis Majoris. Our WFPC2 data show a complex distribution of knots and filamentary arcs in the asymmetric reflection nebula around the obscured central star. The reflection arcs may result from multiple, asymmetric ejection episodes due to localized events on VY CMa's surface. Such events probably involve magnetic fields and convection, by analogy with solar activity. Surface photometry indicates that the star may have experienced enhanced mass loss over the past 1000 yr. We also demonstrate that the apparent asymmetry of the nebula results from a combination of high extinction and backscattering by dust grains. Thermal-infrared images reveal a more symmetric distribution, elongated along a nearly east-west direction. VY CMa probably has a flattened disklike distribution of dust with a northeast-southwest polar axis and may be experiencing activity analogous to solar prominences. The presence of an axis of symmetry raises interesting questions for a star the size of Saturn's orbit. Magnetic fields and surface activity may play an important role in VY CMa's mass-loss history. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. A study of the compact nebulae VV 8 and M3-27

    International Nuclear Information System (INIS)

    Adams, T.F.

    1975-01-01

    New photometric observations of the lines and continuum in the compact nebulae VV 8 and M3-27 are presented. The data for VV 8 are very similar to those obtained by O'Dell nearly 10 years ago. Both nebulae have high electron densities and are self-absorbed in Hα. Parameters describing the physical conditions are estimated using the observed Balmer and O iii line strengths. By comparing the observations with suitable models for young planetary nebulae, the abundances of helium, oxygen, and neon are shown to be normal. The N ii lines are stronger than predicted. The continuum in M3-27 is shown to be in good agreement with theory, while the continuum in VV 8 in the visible and infrared is much brighter than predicted. The similarity between the line spectra and inferred properties of the nebulae suggests that the optical continuum in VV 8 is unrelated to the nebula, and may come from a late-type companion in a binary. Serious difficulties remain, however, concerning the absolute magnitude and color of the companion in the binary model. Some implications of Zipoy's shell star model are also examined

  13. Spectrum and the structure of the bipolar nebula S 106

    Energy Technology Data Exchange (ETDEWEB)

    Solf, J [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany, F.R.)

    1980-12-01

    Optically the compact region S 106 appears as a bipolar nebula with the exciting stellar source located between the lobes and embedded in a flat disk of material of high visual extinction. Associated with the nebula is a massive molecular cloud exhibiting a rotating disk-like structure, the axis of rotation being observed in the same direction as the bipolar axis of the nebula. We analyse new optical and near-infrared spectra obtained with an image-tube spectrograph. The emission line spectrum of both lobes resembles that of the Orion nebula and indicates high electron density throughout. The nebular continuum discovered in both lobes is interpreted as originating from an early-type stellar source between the lobes, and scattered by dust particles coexisting with the ionized gas within the lobes. The Hsub(..cap alpha..) radial velocity field indicates supersonic motion of ionized material flowing radially outward through the lobes. The shape and kinematic structure of the lobes are in qualitative agreement with the predictions of the champagne model of Tenorio-Tagle (1979) applied to the case of star formation near the center of a disk-shaped dense cloud.

  14. Static Modeling for Commercial Braided Pneumatic Muscle Actuators

    Directory of Open Access Journals (Sweden)

    Jun Zhong

    2014-05-01

    Full Text Available An enhanced model is proposed to describe static property of commercial braided pneumatic muscle actuators by including several important influencing factors. Elasticity of elastomer tube is considered and Ogden strain energy function is employed to describe its strain energy density. During pressurized process, small deformation of fiber occurs and is calculated using force balancing principle. Frictional forces within muscles are studied, which consist of friction within braid and that between bladder and braid. Isobaric experiments are performed and results verify the validity of the model.

  15. Symbiotic star H1-36

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed.

  16. A COMPREHENSIVE SEARCH FOR STELLAR BOWSHOCK NEBULAE IN THE MILKY WAY: A CATALOG OF 709 MID-INFRARED SELECTED CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.; Andrews, Julian E.; Munari, Stephan A.; Olivier, Grace M.; Sorber, Rebecca L.; Wernke, Heather N.; Dale, Daniel A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States); Povich, Matthew S.; Dixon, Don M. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States)

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μ m Spitzer Space Telescope or 22 μ m Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μ m or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” stars potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μ m bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.

  17. Mass loss from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Willis, A.J.

    1982-01-01

    Recent results relating to the stellar winds and mass loss rates of the WR stars are reviewed, emphasising new data and their interpretation acquired at UV, IR and Radio wavelengths. The subject is discussed under the headings: physical and chemical properties of WR stars (effective temperatures and radiative luminosities; masses; chemical abundances); velocity, ionisation and excitation structure of WR winds; mass loss rates of WR stars; mass loss properties of WR stars in the LMC; comparisons with theoretical models of mass loss; ring nebulae around WR stars; conclusions. (author)

  18. Image of the Eta Carinae Nebula Taken by the High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  19. Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group

    International Nuclear Information System (INIS)

    Majid, S.

    1993-01-01

    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups U q (g). They have the same FRT generators l ± but a matrix braided-coproduct ΔL=LxL, where L=l + Sl - , and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BM 1 (2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(U q (sl 2 )) (also known as the 'quantum Lorentz group') is the semidirect product as an algebra of two copies of U q (sl 2 ), and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-limits as doubles of the Lie algebras of Poisson Lie groups. (orig.)

  20. Forming H-shaped and barrel-shaped nebulae with interacting jets

    Science.gov (United States)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  1. The Wolf-Rayet stars in 30 Doradus

    International Nuclear Information System (INIS)

    Melnick, J.

    1982-01-01

    The second brightest giant HII region in the sky is the 30 Doradus nebula in the LMC. This cluster contains many WR stars and may be one of the best objects where general ideas about the origin and evolution of WR stars can be tested. The author briefly describes observations of WR stars in 30 Doradus and discusses the implications for Wolf-Rayet evolutionary theories. (Auth.)

  2. High Resolution Representation and Simulation of Braiding Patterns

    DEFF Research Database (Denmark)

    Zwierzycki, Mateusz; Vestartas, Petras; Heinrich, Mary Katherine

    2017-01-01

    a contemporary architectural context. Within the flora robotica project, complex braided structures are a core element of the architectural vision, driving a need for generalized braid design modeling tools that can support fabrication. Due to limited availability of existing suitable tools, this interest...

  3. Planetary nebulae and their central stars

    International Nuclear Information System (INIS)

    Kaler, J.B.

    1985-01-01

    The present review is devoted primarily to galactic planetaries, while Ford (1983) provides an extensive review of the rapidly expanding study of the extragalactic type. Nebular parameters and observations are discussed, taking into account discovery, distance, motion, structure, spectrophotometry, and nebular properties. It is pointed out that post-AGB, or prewhite dwarf, stars are not as well known as their nebular progeny. Of the fundamental data regarding the central stars, the magnitudes are particularly important. They are used for both temperature and luminosity determinations. Attention is also given to temperatures and luminosities, and the characteristics of the spectra. Questions concerning the evolutionary process are also explored and aspects of observed distribution and evolution are considered. 259 references

  4. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  5. Braiding simulation and slip evaluation for arbitrary mandrels

    NARCIS (Netherlands)

    Akkerman, Remko; Villa Rodriguez, B.H.; Villa Rodriguez, Lasimir Hadir; Cueto, E; Chinesta, F

    2007-01-01

    Braiding is a manufacturing process that is increasingly being used to manufacture pre-forms for Resin Transfer Moulding. A fast simulation method is presented for the prediction of the fibre distribution on complex braided parts and complex kinetic situations (e.g. changes in velocity,

  6. IRC -10414: a bow-shock-producing red supergiant star

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T.

    2014-01-01

    Most runaway OB stars, like the majority of massive stars residing in their parent clusters, go through the red supergiant (RSG) phase during their lifetimes. Nonetheless, although many dozens of massive runaways were found to be associated with bow shocks, only two RSG bow-shock-producing stars, Betelgeuse and μ Cep, are known to date. In this paper, we report the discovery of an arc-like nebula around the late M-type star IRC -10414 using the SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC -10414 with the Southern African Large Telescope (SALT) showed that it is a M7 supergiant, which supports previous claims on the RSG nature of this star based on observations of its maser emission. This was reinforced by our new radio- and (sub)millimetre-wavelength molecular line observations made with the Atacama Pathfinder Experiment 12-m telescope and the Effelsberg 100-m radio telescope, respectively. The SALT spectrum of the nebula indicates that its emission is the result of shock excitation. This finding along with the arc-like shape of the nebula and an estimate of the space velocity of IRC -10414 (≈70 ± 20 km s-1) imply the bow shock interpretation for the nebula. Thus, IRC -10414 represents the third case of a bow-shock-producing RSG and the first one with a bow shock visible at optical wavelengths. We discuss the smooth appearance of the bow shocks around IRC -10414 and Betelgeuse and propose that one of the necessary conditions for stability of bow shocks generated by RSGs is the ionization of the stellar wind. Possible ionization sources of the wind of IRC -10414 are proposed and discussed.

  7. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  8. MOLECULAR CLOUDS IN THE TRIFID NEBULA M20: POSSIBLE EVIDENCE FOR A CLOUD-CLOUD COLLISION IN TRIGGERING THE FORMATION OF THE FIRST GENERATION STARS

    International Nuclear Information System (INIS)

    Torii, K.; Enokiya, R.; Sano, H.; Yoshiike, S.; Hanaoka, N.; Ohama, A.; Furukawa, N.; Dawson, J. R.; Moribe, N.; Oishi, K.; Nakashima, Y.; Okuda, T.; Yamamoto, H.; Kawamura, A.; Mizuno, N.; Onishi, T.; Fukui, Y.; Maezawa, H.; Mizuno, A.

    2011-01-01

    A large-scale study of the molecular clouds toward the Trifid Nebula, M20, has been made in the J = 2-1 and J = 1-0 transitions of 12 CO and 13 CO. M20 is ionized predominantly by an O7.5 star HD164492. The study has revealed that there are two molecular components at separate velocities peaked toward the center of M20 and that their temperatures-30-50 K as derived by a large velocity gradient analysis-are significantly higher than the 10 K of their surroundings. We identify the two clouds as the parent clouds of the first generation stars in M20. The mass of each cloud is estimated to be ∼10 3 M sun and their separation velocity is ∼8 km s -1 over ∼1-2 pc. We find that the total mass of stars and molecular gas in M20 is less than ∼3.2 x 10 3 M sun , which is too small by an order of magnitude to gravitationally bind the system. We argue that the formation of the first generation stars, including the main ionizing O7.5 star, was triggered by the collision between the two clouds in a short timescale of ∼1 Myr, a second example alongside Westerlund 2, where a super-star cluster may have been formed due to cloud-cloud collision triggering.

  9. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. II. MODELING THE CENTRAL STARS OF NGC 6026 AND NGC 6337

    International Nuclear Information System (INIS)

    Hillwig, Todd C.; Bond, Howard E.; Afsar, Melike; De Marco, Orsola

    2010-01-01

    Close-binary central stars of planetary nebulae (CSPNe) provide an opportunity to explore the evolution of PNe, their shaping, and the evolution of binary systems undergoing a common-envelope phase. Here, we present the results of time-resolved photometry of the binary central stars (CSs) of the PNe NGC 6026 and NGC 6337 as well as time-resolved spectroscopy of the CS of NGC 6026. The results of a period analysis give an orbital period of 0.528086(4) days for NGC 6026 and a photometric period of 0.1734742(5) days for NGC 6337. In the case of NGC 6337, it appears that the photometric period reflects the orbital period and that the variability is the result of the irradiated hemisphere of a cool companion. The inclination of the thin PN ring is nearly face-on. Our modeled inclination range for the close central binary includes nearly face-on alignments and provides evidence for a direct binary-nebular shaping connection. For NGC 6026, however, the radial-velocity curve shows that the orbital period is twice the photometric period. In this case, the photometric variability is due to an ellipsoidal effect in which the CS nearly fills its Roche lobe and the companion is most likely a hot white dwarf. NGC 6026 then is the third PN with a confirmed central binary where the companion is compact. Based on the data and modeling using a Wilson-Devinney code, we discuss the physical parameters of the two systems and how they relate to the known sample of close-binary CSs, which comprise 15%-20% of all PNe.

  10. Characterization and manufacture of braided composites for large commercial aircraft structures

    Science.gov (United States)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  11. Topological chaos, braiding and bifurcation of almost-cyclic sets.

    Science.gov (United States)

    Grover, Piyush; Ross, Shane D; Stremler, Mark A; Kumar, Pankaj

    2012-12-01

    In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.

  12. THE TWO CENTRAL STARS OF NGC 1514: CAN THEY ACTUALLY BE RELATED?

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Roberto H.; Kudritzki, Rolf-Peter [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Urbaneja, Miguel A., E-mail: mendez@ifa.hawaii.edu [Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, A-6020 Innsbruck (Austria)

    2016-10-01

    The central star of the planetary nebula NGC 1514 is among the visually brightest central stars in the sky ( V = 9.5). It has long been known to show a composite spectrum, consisting of an A-type star and a much hotter star responsible for the ionization of the surrounding nebula. These two stars have always been assumed to form a binary system. High-resolution spectrograms obtained with Espadons at the Canada–France–Hawaii Telescope on Maunakea have allowed us to measure good radial velocities for both stars: they differ by 13 ± 2 km s{sup −1}. The stellar velocities were unchanged after 500 days. We have also estimated the metallicity of the cooler star. Combining these data with other information available in the literature, we conclude that, unless all the published nebular radial velocities are systematically wrong, the cooler star is just a chance alignment, and the two stars are not orbiting each other. The cooler star cannot have played any role in the formation of NGC 1514.

  13. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  14. A Model for the Dynamical and Ionization Structure of Planetary Nebula IC 418

    Directory of Open Access Journals (Sweden)

    J. Ghanbari

    1997-04-01

    Full Text Available   The interacting two winds model and a spherical density distribution function are introduced to study the dynamical and ionization structure of the planetary nebula IC 418. A fast wind with a mechanical luminousity  2/34×1034erg.s-1 of interacts with a super wind with a mass-loss rate of  2×10-5M(°yr-1 and  a velocity of 10 , and produces a dense and luminous medium.   In this model, the expansion velocities of OI and HI lines are predicted to be 11 and 10.5kms-1 , respectively. The calculated dynamical time-scale 1033yr for the nebula is in good agreement with the evolution time of the central star after the interaction of the two winds. Our calculations give a luminosity  0.05M(°of for the central star

  15. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  16. NEW CANDIDATE ERUPTIVE YOUNG STARS IN LYNDS 1340

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A.; Szegedi-Elek, E. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Apai, D. [Department of Astronomy and Department of Planetary Sciences, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); O' Linger-Luscusk, J. [California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125 (United States); Stecklum, B. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Wolf-Chase, G., E-mail: kun@konkoly.hu [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States)

    2014-11-10

    We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L {sub ☉} < L {sub bol} < 59 L {sub ☉}. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our Hα survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and Hα images, as well as the Spitzer Infrared Array Camera 4.5 μm images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.

  17. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  18. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  19. The ALMA early science view of FUor/EXor objects - IV. Misaligned outflows in the complex star-forming environment of V1647 Ori and McNeil's Nebula

    Science.gov (United States)

    Principe, David A.; Cieza, Lucas; Hales, Antonio; Zurlo, Alice; Williams, Jonathan; Ruíz-Rodríguez, Dary; Canovas, Hector; Casassus, Simon; Mužić, Koraljka; Perez, Sebastian; Tobin, John J.; Zhu, Zhaohuan

    2018-01-01

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-main sequence star. Dust continuum and the (J = 2 - 1) 12CO, 13CO, C18O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17°+6-9 and total disc mass of Mdisc of ∼0.1 M⊙. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ∼11 700 and 17 200 yr. These outflows are misaligned suggesting disc precession over ∼5500 yr as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ∼2 km s-1, similar in velocity to that of other FUor objects presented in this series, but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an 'arm' of material to a large unresolved structure located ∼20 arcsec to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation, which may relate to its classification as both a FUor and EXor type object.

  20. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed

  1. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    Science.gov (United States)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  2. Proposed Entanglement Swapping in Continuous Variable Systems via Braiding

    International Nuclear Information System (INIS)

    Su Hongyi; Chen Jingling; Deng Dongling; Wu Chunfeng

    2010-01-01

    We study entanglement swapping in continuous variable systems by using braiding transformations. It is found that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realized based on the braiding operators. (general)

  3. Core reilforced braided composite armour as a substitute to steel in concrete reinforcement

    OpenAIRE

    Fangueiro, Raúl; Sousa, Guilherme José Miranda de; Araújo, Mário Duarte de; Pereira, C. Gonilho; Jalali, Said

    2006-01-01

    This paper presents the work that is being done at the University of Minho concerning the development of brainded rods concrete reinforcement. Several samples of core reinforced braided fabrics have been produced varying the type of braided fabric (core reinforced and hybrid), the linear density of the core reinforcing yarns and the type of braiding structure (with or without ribs). The tensile properties of braided fabrics has also been analysed. Core reinforced braided composites rods were ...

  4. Probing the Molecular Outflows of the Coldest Known Object in the Universe: The Boomerang Nebula

    Science.gov (United States)

    Sahai, Raghvendra; Vlemmings, W.; Nyman, L. A.; Huggins, P.

    2012-05-01

    The Boomerang Nebula is the coldest known object in the Universe, and an extreme member of the class of Pre-Planetary Nebulae, objects which represent a short-lived transitional phase between the AGB and Planetary Nebula evolutionary stages. The Boomerang's estimated prodigious mass-loss rate (0.001 solar masses/year) and low-luminosity (300 Lsun) lack an explanation in terms of current paradigms for dusty mass-loss and standard evolutionary theory of intermediate-mass stars. Single-dish CO J=1-0 observations (with a 45 arcsec beam) show that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. We report on our high-resolution ALMA mapping of the CO lines in this ultra-cold nebula to determine the origin of these extreme conditions and robustly confirm current estimates of the fundamental physical properties of its ultra-cold outflow.

  5. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Andrews, J. E. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Lee, J. C.; Sabbi, E.; Ubeda, L.; Bright, S. N.; Whitmore, B. C.; Aloisi, A. [Space Telescope Science Institute, Baltimore, MD (United States); Kim, H. [Department of Astronomy, The University of Texas at Austin, Austin, TX (United States); Thilker, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, E. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Mink, S. E. de [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam (Netherlands); Chandar, R., E-mail: calzetti@astro.umass.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); and others

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  6. An Analysis of Spectra in the Red Rectangle Nebula Frédéric Zagury

    Indian Academy of Sciences (India)

    If the preceding paper emphasized the importance of atmospheric extinction for our understanding of ...... paper, the authors address several problems which concern the star system at the center of the nebula ... 1981), on-going research being ...

  7. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    Science.gov (United States)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  8. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  9. A D'-type symbiotic binary in the planetary nebula SMP LMC 88

    Science.gov (United States)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Miszalski, Brent; Kozłowski, Szymon; Udalski, Andrzej

    2018-05-01

    SMP LMC 88 is one of the planetary nebulae (PNe) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083 Å. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D'-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the orbital variability of Galactic D'-type SySt with its low amplitude and sinusoidal light-curve shape. The SySt classification is also supported by the He I diagnostic diagram.

  10. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  11. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  12. Orion infrared nebula/molecular cloud

    International Nuclear Information System (INIS)

    Zuckerman, B.; Palmer, P.

    1975-01-01

    Observational and theoretical studies of the Orion Nebula and the associated molecular clouds have greatly increased our understanding of this and other regions in which star formation is taking place. Fundamental questions remain unanswered; and in this Letter we address three of them: (1) the chemical composition of the molecular cloud, (2) its internal motions, and (3) the role of magnetic fields in its evolution. We show that the gas phase chemistry and internal motions in one part of the cloud are distinctly different from those in the rest of the cloud, and two recent estimates of the magnetic field strengths are very uncertain. (auth)

  13. Mapping Excitation in the Inner Regions of the Planetary Nebula NGC 5189 Using HST WFC3 Imaging

    Science.gov (United States)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, W. Peter; Montez, Rodolfo, Jr.

    2018-01-01

    The planetary nebula (PN) NGC 5189 around a Wolf–Rayet [WO] central star demonstrates one of the most remarkable complex morphologies among PNe with many multiscale structures, showing evidence of multiple outbursts from an asymptotic giant branch (AGB) progenitor. In this study, we use multiwavelength Hubble Space Telescope Wide Field Camera 3 observations to study the morphology of the inner 0.3 pc × 0.2 pc region surrounding the central binary that appears to be a relic of a more recent outburst of the progenitor AGB star. We applied diagnostic diagrams based on emission-line ratios of Hα λ6563, [O III] λ5007, and [S II] λ λ 6716,6731 images to identify the location and morphology of low-ionization structures within the inner nebula. We distinguished two inner, low-ionization envelopes from the ionized gas, within a radius of 55 arcsec (∼0.15 pc) extending from the central star: a large envelope expanding toward the northeast, and its smaller counterpart envelope in the opposite direction toward the southwest of the nebula. These low-ionization envelopes are surrounded by a highly ionized gaseous environment. We believe that these low-ionization expanding envelopes are a result of a powerful outburst from the post-AGB star that created shocked wind regions as they propagate through the previously expelled material along a symmetric axis. Our diagnostic mapping using high-angular resolution line-emission imaging can provide a novel approach to detection of low-ionization regions in other PNe, especially those showing a complex multiscale morphology.

  14. Conformal geometry and invariants of 3-strand Brownian braids

    International Nuclear Information System (INIS)

    Nechaev, Sergei; Voituriez, Raphael

    2005-01-01

    We propose a simple geometrical construction of topological invariants of 3-strand Brownian braids viewed as world lines of 3 particles performing independent Brownian motions in the complex plane z. Our construction is based on the properties of conformal maps of doubly-punctured plane z to the universal covering surface. The special attention is paid to the case of indistinguishable particles. Our method of conformal maps allows us to investigate the statistical properties of the topological complexity of a bunch of 3-strand Brownian braids and to compute the expectation value of the irreducible braid length in the non-Abelian case

  15. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  16. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  17. Observations of star-forming regions with the Midcourse Space Experiment

    NARCIS (Netherlands)

    Kraemer, KE; Shipman, RF; Price, SD; Mizuno, DR; Kuchar, T; Carey, SJ

    We have imaged seven nearby star-forming regions, the Rosette Nebula, the Orion Nebula, W3, the Pleiades, G300.2-16.8, S263, and G159.6-18.5, with the Spatial Infrared Imaging Telescope on the Midcourse Space Experiment (MSX) satellite at 1800 resolution at 8.3, 12.1, 14.7, and 21.3 mum. The large

  18. A new mechanical stellar wind feedback model for the Rosette Nebula

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  19. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA

    International Nuclear Information System (INIS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Beltran, M. T.; Morata, O.; Masque, J. M.; Busquet, G.; Sanchez-Monge, A.; Estalella, R.; Franco, G. A. P.

    2010-01-01

    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star formation efficiency which makes it a good laboratory in which to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary and appears to be threaded by a uniform magnetic field at scales of a few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster-forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30 m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace the densest regions better than previous Two Micron All Sky Survey (2MASS) extinction maps, while 2MASS extinction maps trace the diffuse gas better. The properties of the cores derived from dust emission show average radii of ∼0.09 pc, densities of ∼1.3x10 5 cm -3 , and core masses of ∼2.5 M sun . Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission with CS detections in the whole sample. Two of them, cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.

  20. Planetary nebulae: 20 years of Hubble inquiry

    Science.gov (United States)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  1. Braid My Hair - Randy Owen sings out for sick children

    Science.gov (United States)

    ... Issue Past Issues Braid My Hair - Randy Owen sings out for sick children Past Issues / Spring 2008 ... to it. Former Alabama lead singer Randy Owen sings his new song, "Braid My Hair." Photo courtesy ...

  2. VLA observations of a highly symmetric OH maser in a bipolar nebula

    International Nuclear Information System (INIS)

    Morris, M.; Bowers, P.F.; Turner, B.E.

    1982-01-01

    The Very Large Array was used to map 1667 MHz OH maser emission from the bipolar nebula OH 231.8+4.2 at 23 distinct velocities within the unusual, 100 km s -1 wide profile. The source is large (approx.10''equivalent3 x 10 17 cm) and well resolved, and displays ordered large-scale velocity gradients. At most velocities, the maser maps display an unmistakable symmetry about the bipolar axis defined by the optical and infrared reflection nebulae. Most of the data can be accounted for by an axisymmetric model in which the measuring OH is concentrated toward the system's equatorial plane and is expanding radially away from the central star. The observation of complete rings of maser emission at some velocities, however, shows that the maser is also present at high latitudes above the equatorial plane. A model which incorporates these features plus other known aspects of bipolar nebulae is presented and discussed

  3. DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A

    Energy Technology Data Exchange (ETDEWEB)

    Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia)

    2015-12-10

    We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid with collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.

  4. Hydrological regime as key to the morpho-texture and activity of braided streams

    Science.gov (United States)

    Storz-Peretz, Y.; Laronne, J. B.

    2012-04-01

    Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow

  5. Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.

    Science.gov (United States)

    Lee, Dominic J

    2014-06-01

    In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.

  6. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    Science.gov (United States)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  7. THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hawley, Steven A. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Liebert, James [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Munari, Ulisse, E-mail: heb11@psu.edu [INAF Astronomical Observatory of Padova, via dell’Osservatorio 8, I-36012 Asiago (VI) (Italy)

    2016-08-01

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot. We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.

  8. THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY

    International Nuclear Information System (INIS)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.; Hawley, Steven A.; Liebert, James; Munari, Ulisse

    2016-01-01

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot. We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.

  9. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  10. THE LINE POLARIZATION WITHIN A GIANT Lyα NEBULA

    International Nuclear Information System (INIS)

    Prescott, Moire K. M.; Smith, Paul S.; Schmidt, Gary D.; Dey, Arjun

    2011-01-01

    Recent theoretical work has suggested that Lyα nebulae could be substantially polarized in the Lyα emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyα polarization measurements for a giant Lyα nebula at z∼ 2.656. We do not detect any significant linear polarization of the Lyα emission: P Lyα = 2.6% ± 2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyα (e.g., from the nearby active galactic nucleus, AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyα nebulae.

  11. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    Science.gov (United States)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations

  12. Detection of C60 and C70 in a young planetary nebula.

    Science.gov (United States)

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-03

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.

  13. Imperfect Dark Energy from Kinetic Gravity Braiding

    CERN Document Server

    Deffayet, Cedric; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energ...

  14. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    Science.gov (United States)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  15. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  16. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  17. The star-forming cores in the centre of the Trifid nebula (M 20): from Herschel to the near-infrared

    Science.gov (United States)

    Tapia, M.; Persi, P.; Román-Zúñiga, C.; Elia, D.; Giovannelli, F.; Sabau-Graziati, L.

    2018-04-01

    A new detailed infrared (IR) study of eight star-forming dense condensations (TCs) in M 20, the Trifid nebula, is presented. The aim is to determine the physical properties of the dust in such globules and establish the presence and properties of their embedded protostellar and/or young stellar population. For this, we analysed new Herschel far-IR and Calar Alto near-IR images of the region, combined with Spitzer Infrared Array Camera (Spitzer/IRAC) archival observations. We confirm the presence of several young stellar objects (YSOs), most with mid-IR colours of Class II sources in all but one of the observed cores. Five TCs are dominated in the far-IR by Class I sources with bolometric luminosities between 100 and 500 L⊙. We report the discovery of a possible counterjet to HH 399 and its protostellar engine inside the photodissociation region TC2, as well as a bipolar outflow system, signposted by symmetric H2 emission knots, embedded in TC3. The present results are compatible with previous suggestions that star formation has been active in the region for some 3 × 105 yr, and that the most recent events in some of these TCs may have been triggered by the expansion of the H II region. We also obtained a revised value for the distance to M 20 of 2.0 ± 0.1 kpc.

  18. Model planetary nebulae: the effect of shadowed filaments on low ionization potential ion radiation

    International Nuclear Information System (INIS)

    Katz, A.

    1977-01-01

    Previous homogeneous model planetary nebulae calculations No. 4 have yielded emission strengths for low ionization potential No. 4 ions which are considerably lower than those observed. Several attempts were to correct this problem by the inclusion of optically thin condensations, the use of energy flux distributions from stellar model calculations instead of blackbody spectrum stars, and the inclusion of dust in the nebulae. The effect that shadowed filaments have on the ionization and thermal structure of model nebulae and the resultant line strengths are considered. These radial filaments are shielded from the direct stellar ionizing radiation by optically thick condensations in the nebula. Theoretical observational evidence exists for the presence of condensations and filaments. Since the only source of ionizing photons in the shadowed filaments is due to diffuse photons produced by recombination, ions of lower ionization potential are expected to exist there in greater numbers than those found in the rest of the nebula. This leads to increased line strengths from these ions and increases their values to match the observational values. It is shown that these line strengths in the filaments increase by over one to two orders of magnitude relative to values found in homogeneous models. This results in an increase of approximately one order of magnitude for these lines when contributions from both components of the nebula are considered. The parameters that determine the exact value of the increase are the radial location of the filaments in the nebula and the fraction of the nebular volume occupied by the filaments

  19. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  20. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces.

    Science.gov (United States)

    Lee, Dominic J O'

    2015-04-15

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.

  1. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces

    International Nuclear Information System (INIS)

    Lee, Dominic J

    2015-01-01

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev–Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments. (paper)

  2. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    Science.gov (United States)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  3. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    Science.gov (United States)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  4. Far-infrared data for symbiotic stars. II. The IRAS survey observations

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Fernandez-Castro, T.; Stencel, R.E.

    1988-01-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell. 42 references

  5. Central star of NGC 1360: a spectroscopic binary within a planetary nebula

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H; Niemela, V S [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1977-02-01

    CPD - 26/sup 0/389, a hot subdwarf at the centre of the planetary nebula NGC 1360, is shown to be a single-lined spectroscopic binary with a period of about 8 day. The primary (visible) component appears to be less massive than its companion, and the total stellar mass of the system is presumably below one solar mass.

  6. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  7. Mechanical Behavior of Three-Dimensional Braided Nickel-Based Superalloys Synthesized via Pack Cementation

    Science.gov (United States)

    Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.

  8. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  9. Abundances in planetary nebulae: NGC 1535, NGC 6629, He2-108, and Tc1

    NARCIS (Netherlands)

    Pottasch, S. R.; Surendiranath, R.; Bernard-Salas, J.

    Context. Models have been made of stars of a given mass that produce planetary nebulae that usually begin on the AGB (although they may begin earlier) and run to the white dwarf stage. While these models cover the so-called dredge-up phases when nuclear reactions occur and the newly formed products

  10. Abundances in planetary nebulae : NGC1535, NGC6629, He2-108, and Tc1

    NARCIS (Netherlands)

    Pottasch, S. R.; Surendiranath, R.; Bernard-Salas, J.

    Context. Models have been made of stars of a given mass that produce planetary nebulae that usually begin on the AGB (although they may begin earlier) and run to the white dwarf stage. While these models cover the so-called dredge-up phases when nuclear reactions occur and the newly formed products

  11. The offset dependent behavior of narrow optical emission features in the Red Rectangle proto-planetary nebula

    NARCIS (Netherlands)

    Wehres, N.; Linnartz, H.; Van Winckel, H.; Tielens, A. G. G. M.

    Context. The Red Rectangle proto-planetary nebula provides a unique laboratory to study the physical conditions and chemical processes in stellar outflows. Snapshots of the ongoing chemical evolution are obtained by monitoring spectra as function of the offset from the central star. Aims. The focus

  12. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    Science.gov (United States)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  13. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  14. Chemistry in the final stages of stellar evolution: Millimeter and submillimeter observations of supergiants and planetary nebulae

    Science.gov (United States)

    Edwards, Jessica Louise

    High mass loss rates in evolved stars make them the major contributors to recycling processed material back into the interstellar medium. This mass loss creates large circumstellar shells, rich in molecular material. This dissertation presents millimeter and submillimeter studies of the end stages of low mass and high mass stars in order to probe their molecular content in more detail. In low mass stars, the molecular material is carried on into the planetary nebula (PN) stage. Observations of CS, HCO+, and CO in planetary nebulae (PNe) of various post-asymptotic giant branch ages have shown that molecular abundances in these objects do not significantly vary with age, as previously thought. More detailed observations of the slightly oxygen-rich PN NGC 6537 resulted in the detection of CN, HCN, HNC, CCH, CS, SO, H 2CO, HCO+ and N2H+, as well as numerous 13C isotopologues. Observations of the middle-aged PN M2-48 showed the presence of CN, HCN, HNC, CS, SO, SO2, SiO, HCO+, N2H+, and several 13C isotopologues. These observations represent the first detections of CS, SO, SO2, and SiO in any planetary nebula. The implications of these observations are discussed. A 1 mm spectral survey of the supergiant star NML Cygni has been carried out with the Arizona Radio Observatory Submillimeter Telescope resulting in the observation of 102 emission features arising from 17 different molecules and 4 unidentified features. The line profiles observed in this circumstellar shell are asymmetric and vary between different molecules, akin to what has been seen in another supergiant, VY Canis Majoris. The non-LTE radiative transfer code ESCAPADE has been used to model molecular abundances in the various asymmetric outflows of VY Canis Majoris, showing just how chemically and kinematically complex these supergiant circumstellar envelopes really are.

  15. OH+ emission from cometary knots in planetary nebulae

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.

    2018-05-01

    We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.

  16. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  17. Symplectomorphisms and discrete braid invariants

    NARCIS (Netherlands)

    Czechowski, Aleksander; Vandervorst, Robert

    2017-01-01

    Area and orientation preserving diffeomorphisms of the standard 2-disc, referred to as symplectomorphisms of D2, allow decompositions in terms of positive twist diffeomorphisms. Using the latter decomposition, we utilize the Conley index theory of discrete braid classes as introduced in Ghrist et

  18. Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood

    Science.gov (United States)

    Arnott, Luke

    2012-01-01

    "Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…

  19. Higher dimensional unitary braid matrices: Construction, associated structures and entanglements

    International Nuclear Information System (INIS)

    Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.

    2007-03-01

    We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)

  20. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  1. Instability and star evolution

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.

    1981-01-01

    The observational data are discussed which testify that the phenomena of dynamical instability of stars and stellar systems are definite manifestations of their evolution. The study of these phenomena has shown that the instability is a regular phase of stellar evolution. It has resulted in the recognition of the most important regularities of the process of star formation concerning its nature. This became possible due to the discovery in 1947 of stellar associations in our Galaxy. The results of the study of the dynamical instability of stellar associations contradict the predictions of classical hypothesis of stellar condensation. These data supplied a basis for a new hypothesis on the formation of stars and nebulae by the decay of superdense protostars [ru

  2. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. A HOT GAP AROUND JUPITER'S ORBIT IN THE SOLAR NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Turner, N. J.; Choukroun, M.; Castillo-Rogez, J.; Bryden, G., E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-04-01

    The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically thin gap in the nebula. Using Monte Carlo radiative transfer calculations, we show that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much farther from the star or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids.

  4. Physics and chemistry of the solar nebula.

    Science.gov (United States)

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  5. Stellar Feedback in Massive Star-Forming Regions

    Science.gov (United States)

    Baldwin, Jack; Pellegrini, Eric; Ferland, Gary; Murray, Norm; Hanson, Margaret

    2008-02-01

    Star formation rates and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study in the two nearest giant star-forming regions to nail down the physics that produces the 10-20 parsec bubbles seen to surround young massive clusters in the Milky Way. This will determine if and how the clusters disrupt their natal giant molecular clouds (GMCs). Here we request 4 nights on the Blanco telescope to obtain dense grids of optical long-slit spectra criss-crossing each nebula. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3000 different spots in each nebula. From this we can determine a number of dynamically important quantities, such as the gas density and temperature, hence pressure in and around these bubbles. These quantities can be compared to the dynamical (gravitationally induced) pressure, and the radiation pressure. All can be employed in dynamical models for the evolution of a GMC under the influence of an embedded massive star cluster. This research will elucidate the detailed workings of the star-forming regions which dominate the star formation rate in the Milky Way, and also will steadily improve our calibration and understanding of more distant, less well-resolved objects such as ULIRGS, Lyman break, and submillimeter galaxies.

  6. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    Science.gov (United States)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  7. THE SHAPING EFFECT OF COLLIMATED FAST OUTFLOWS IN THE EGG NEBULA

    International Nuclear Information System (INIS)

    Dinh-V-Trung; Lim, Jeremy

    2009-01-01

    We present high angular resolution observations of the HC 3 N J = 5-4 line from the Egg nebula, which is the archetype of proto-planetary nebulae (PPNs). We find that the HC 3 N emission in the approaching and receding portion of the envelope traces a clumpy hollow shell, similar to that seen in normal carbon-rich envelopes. Near the systemic velocity, the hollow shell is fragmented into several large blobs or arcs with missing portions correspond spatially to locations of previously reported high-velocity outflows in the Egg nebula. This provides direct evidence for the disruption of the slowly expanding envelope ejected during the AGB phase by the collimated fast outflows initiated during the transition to the PPN phase. From modeling the HC 3 N distribution, we could reproduce qualitatively the spatial kinematics of the HC 3 N J = 5-4 emission using a HC 3 N shell with two pairs of cavities cleared by the collimated high-velocity outflows along the polar direction and in the equatorial plane. We infer a relatively high abundance of HC 3 N/H 2 ∼ 3 x 10 -6 for an estimated mass-loss rate of 3 x 10 -5 M sun yr -1 in the HC 3 N shell. The high abundance of HC 3 N and the presence of some weaker J = 5-4 emission in the vicinity of the central post-AGB star suggest an unusually efficient formation of this molecule in the Egg nebula.

  8. An original approach to the mathematical concept of graph from braid crafts

    Directory of Open Access Journals (Sweden)

    Albanese Veronica

    2016-01-01

    Full Text Available In previous researches we found that a community of Argentinean artisans models its own practices of braiding using graphs. Inspired by these findings, we designed an educational activity to introduce the concept of graphs. The study of graphs helps students to develop combinatorial and systematic thinking as well as skills to model reality and abstract and generalize patterns from particular situations. The tasks proposed aim to construct the concept of graphs, then identify characteristics that allow some graphs to be models of braids and finally use them to invent more graphs for new braids. The activity performed in a secondary school teachers’ educational course, had quite satisfactory results due to the number of braids invented and the small amount of mistakes made by the participants.

  9. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  10. IUE observations of new A star candidate proto-planetary systems

    Science.gov (United States)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  11. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    Science.gov (United States)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  12. Evolutionary effects of mass loss in low-mass stars

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    The effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 solar masses) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed. (Auth.)

  13. The WO Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1982-01-01

    Sanduleak (1971) has listed five stars, not apparently associated with planetary nebulae, which show very strong O VI 3811.34 A emission. He pointed out that two of them are in the Magellanic Clouds and have absolute magnitudes comparable to those of classical (Population I) Wolf-Rayet stars. O VI emission is known to occur in some classical Wolf-Rayet stars, but not with the extreme strength shown by the Sanduleak stars. The authors have obtained absolute optical spectrophotometry (3100 - 7400 A) of all five of these stars, using the UCL Image Photon Counting System and RGO Spectrograph on the Anglo-Australian Telescope. Their relative flux distributions are shown. Inspection shows that Sand 1 is very lightly reddened, Sand 2 and 3 have intermediate reddening, and Sand 4 and 5 are heavily reddened. IUE ultraviolet spectrophotometry has been obtained of the first three stars; Sand 4 and 5 are too heavily reddened for IUE spectra to be feasible. (Auth.)

  14. Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel-bed river

    Science.gov (United States)

    Wheaton, Joseph M.; Brasington, James; Darby, Stephen E.; Kasprak, Alan; Sear, David; Vericat, Damiá

    2013-06-01

    flume-based research on braided channels has revealed four classic mechanisms that produce braiding: central bar development, chute cutoff, lobe dissection, and transverse bar conversion. The importance of these braiding mechanisms relative to other morphodynamic mechanisms in shaping braided rivers has not yet been investigated in the field. Here we exploit repeat topographic surveys of the braided River Feshie (UK) to explore the morphodynamic signatures of different mechanisms of change in sediment storage. Our results indicate that, when combined, the four classic braiding mechanisms do indeed account for the majority of volumetric change in storage in the study reach (61% total). Chute cutoff, traditionally thought of as an erosional braiding mechanism, appears to be the most common braiding mechanism in the study river, but was more the result of deposition during the construction of diagonal bars than it was the erosion of the chute. Three of the four classic mechanisms appeared to be largely net aggradational in nature, whereas secondary mechanisms (including bank erosion, channel incision, and bar sculpting) were primarily net erosional. Although the role of readily erodible banks in facilitating braiding is often conceptualized, we show that bank erosion is as or more important a mechanism in changes in sediment storage than most of the braiding mechanisms, and is the most important "secondary" mechanism (17% of total change). The results of this study provide one of the first field tests of the relative importance of braiding mechanisms observed in flume settings.

  15. He 2-104 - A symbiotic proto-planetary nebula?

    International Nuclear Information System (INIS)

    Schwarz, H.E.; Aspin, C.; Lutz, J.H.

    1989-01-01

    CCD observations are presented for He 2-104, an object previously classified as both PN and symbiotic star, which show that this is in fact a protoplanetary nebula (PPN) with a dynamical age of about 800 yr. The presence of highly collimated jets, extending over 75 arcsec on the sky, combined with an energy distribution showing a hot as well as a cool component, indicates that He 2-104 is a binary PPN. Since the primary is probably a Mira with a 400-d period (as reported by Whitelock, 1988), it is proposed that the system is a symbiotic PPN. 16 refs

  16. Determining the Location of the Snowline in an Externally-Photoevaporated Solar Nebula

    Science.gov (United States)

    Kalyaan, Anusha; Desch, Steven

    2015-11-01

    The water snowline in the solar nebula, the point beyond which water exists abundantly as ice, is often taken to lie at 2.7 AU from the Sun, where temperatures are ~170 K, the sublimation point of water [1,2]. While superficially consistent with the spatial distribution of (wet) C-type and (dry) S-type asteroids between 2-3AU [3], most disk models place the snowline closer to ~1AU [4]. Aside from temperature, radial transport and outward diffusion of water vapor, and the inward drift of ices also determine where the snowline is [5,6]. Over many Myr, a steady cycling of water inward and outward across the T=170 K line balance out, with an enhanced ice abundance outside creating the ‘snowline’[2]. But external effects like photoevaporation of the nebula by nearby massive stars can potentially shift this balance, lead to net outward water vapor transport from the inner nebula [7,8], pushing the snowline beyond T=170 K, thus giving rise to water-poor planets.To test this hypothesis, we have first built a 1+1D protoplanetary disk evolution model, incorporating viscosity due to the magnetorotational instability with a non-uniform turbulent viscosity α across disk radius r, ionization equilibrium with dust, and external photoevaporation [8]. Our simulation results suggest that the structure of the photoevaporated solar nebula with a non-uniform α(r) was more complex than previously thought, with the following features: (i) very steep Σ profile (Σ(r)=Σ0 r-p, where slope p = 3-5, > pMMSN=1.5) due to the varying α(r), that is further steepened by the effect of dust and photoevaporation, and (ii) transition radius (where net disk mass flow changes from inward flow to outward) that is present very close to the star (~3AU). We apply these new results to study the distribution of water in the solar nebula. References: [1] Hayashi, C., (1981) PThP.Supp. 70, 35-53 [2] Stevenson,D., & Lunine,J., (1988) Icarus 75, 146-155 [3] Gradie, J., & Tedesco, E.,(1982) Science 216

  17. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  18. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  19. The filamentary nebulae S 188

    International Nuclear Information System (INIS)

    Rosado, M.; Kwitter, K.B.

    1982-01-01

    The crescent shaped nebula S 188 is identified as a planetary nebula (PN) of Peimbert's Type I on the basis of its observed nebula spectrum. New FP interferometric work allows to determine the systemic motion of this nebula. The derived kinematical distance exceeds Cudworth's distance estimate supporting the idea that Peimbert's Type I PNs have larger ejected masses than typical PNs. A discussion about the origin of its non-spherical shape is also given. (author)

  20. Imperfect dark energy from kinetic gravity braiding

    Energy Technology Data Exchange (ETDEWEB)

    Deffayet, Cédric [AstroParticule and Cosmologie, UMR7164-CNRS, Université Denis Diderot-Paris 7, CEA, Observatoire de Paris, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Pujolàs, Oriol [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Sawicki, Ignacy; Vikman, Alexander, E-mail: deffayet@iap.fr, E-mail: oriol.pujolas@cern.ch, E-mail: ignacy.sawicki@nyu.edu, E-mail: alexander.vikman@nyu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  1. Imperfect dark energy from kinetic gravity braiding

    International Nuclear Information System (INIS)

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime

  2. ERUPTIVE VARIABLE STARS AND OUTFLOWS IN SERPENS NW

    Energy Technology Data Exchange (ETDEWEB)

    Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf; Watermann, Ramon; Lemke, Roland, E-mail: hodapp@ifa.hawaii.edu [Ruhr Universitaet Bochum, Astronomisches Institut, Universitaetsstrasse 150, D-44801 Bochum (Germany)

    2012-01-01

    We study the outflow activity, photometric variability, and morphology of three very young stellar objects in the Serpens NW star-forming region: OO Serpentis, EC 37 (V370 Ser), and EC 53 (V371 Ser). High spatial resolution Keck/NIRC2 laser guide star adaptive optics images obtained in 2007 and 2009 in broadband K and in a narrowband filter centered on the 1-0 S(1) emission line of H{sub 2} allow us to identify the outflows from all three objects. We also present new, seeing-limited data on the photometric evolution of the OO Ser reflection nebula and re-analyze previously published data. We find that OO Ser declined in brightness from its outburst peak in 1995 to about 2003, but that this decline has recently stopped and actually reversed itself in some areas of the reflection nebula. The morphology and proper motions of the shock fronts MHO 2218 near EC 37 suggest that they all originate in EC 37 and that this is an outflow seen nearly along its axis. We identify an H{sub 2} jet emerging from the cometary nebula EC 53. The star illuminating EC 53 is periodically variable with a period of 543 days and has a close-by, non-variable companion at a projected distance of 92 AU. We argue that the periodic variability is the result of accretion instabilities triggered by another very close, not directly observable, binary companion and that EC 53 can be understood in the model of a multiple system developing into a hierarchical configuration.

  3. Bipolar nebulae and type I planetary nebulae

    International Nuclear Information System (INIS)

    Calvet, N.; Peimbert, M.

    1983-01-01

    It is suggested that the bipolar nature of PN of type I can be explained in terms of their relatively massive progenitors (Msub(i) 2.4 Msub(o)), that had to lose an appreciable fraction of their mass and angular momentum during their planetary nebulae stage. The following objects are discussed in relation with this suggestion: NGC 6302, NGC 2346, NGC 2440, CRL 618, Mz-3 and M2-9. It is found that CRL 618 is overbundant in N/O by a factor of 5-10 relative to the Orion Nebula. (author)

  4. SHORT- AND LONG-TERM RADIO VARIABILITY OF YOUNG STARS IN THE ORION NEBULA CLUSTER AND MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Rivilla, V. M.; Martín-Pintado, J.; Chandler, C. J.; Sanz-Forcada, J.; Jiménez-Serra, I.; Forbrich, J.

    2015-01-01

    We have used the Karl G. Jansky Very Large Array (VLA) to carry out multi-epoch radio continuum monitoring of the Orion Nebula Cluster (ONC) and the background Orion Molecular Cloud (OMC; 3 epochs at Q band and 11 epochs at Ka band). Our new observations reveal the presence of 19 radio sources, mainly concentrated in the Trapezium Cluster and the Orion Hot Core (OHC) regions. With the exception of the Becklin–Neugebauer object and source C (which we identify here as dust emission associated with a proplyd) the sources all show radio variability between the different epochs. We have found tentative evidence of variability in the emission from the massive object related to source I. Our observations also confirm radio flux density variations of a factor >2 on timescales of hours to days in five sources. One of these flaring sources, OHC-E, has been detected for the first time. We conclude that the radio emission can be attributed to two different components: (i) highly variable (flaring) non-thermal radio gyrosynchrotron emission produced by electrons accelerated in the magnetospheres of pre-main-sequence low-mass stars and (ii) thermal emission due to free–free radiation from ionized gas and/or heated dust around embedded massive objects and proplyds. Combining our sample with other radio monitoring at 8.3 GHz and the X-ray catalog provided by Chandra, we have studied the properties of the entire sample of radio/X-ray stars in the ONC/OMC region (51 sources). We have found several hints of a relation between the X-ray activity and the mechanisms responsible for (at least some fraction of) the radio emission. We have estimated a radio flaring rate of ∼0.14 flares day −1 in the dense stellar cluster embedded in the OHC region. This suggests that radio flares are more common events during the first stages of stellar evolution than previously thought. The advent of improved sensitivity with the new VLA and ALMA will dramatically increase the number of stars in

  5. Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes

    Science.gov (United States)

    Gorantla, Pranay; Sensarma, Rajdeep

    2018-05-01

    Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.

  6. A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo

    2018-06-01

    In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.

  7. Design and Testing of Braided Composite Fan Case Materials and Components

    Science.gov (United States)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  8. Wolf-Rayet stars and galactic structure

    International Nuclear Information System (INIS)

    Stenholm, B.

    1975-01-01

    A 15 0 wide strip along the galactic equator between longitudes 250 0 and 360 0 has been searched for Wolf-Rayet stars. Six new WR stars and four new planetary nebulae have been found. Seven stars earlier listed as WR stars have been rejected as such. The new WR stars in the 'Luminous Stars in the Southern Milky Way' are discussed. A sample of 154 WR stars has been treated statistically. For the distribution in longitude, comparisons are made with OB stars and classical cepheids. The differences in distribution are thought to be an age effect. An effort to explain the empty interval towards the anticentre is made. The distribution in latitude is compared with young clusters and long-period cepheids. The physical plane formed by these objects is tilted about one degree to the galactic plane and the tilt is upwards in the Cygnus direction. This result is also received by a least squares solution of the objects when given in rectangular coordinates. The WR star sample is regarded as fairly complete up to a distance of 5 kpc. (orig.) [de

  9. Large scale structures in the kinetic gravity braiding model that can be unbraided

    International Nuclear Information System (INIS)

    Kimura, Rampei; Yamamoto, Kazuhiro

    2011-01-01

    We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation in the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey

  10. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  11. DENSE CORES IN THE PIPE NEBULA: AN IMPROVED CORE MASS FUNCTION

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Lada, C. J.; Muench, A. A.; Alves, J. F.; Kainulainen, J.; Lombardi, M.

    2009-01-01

    In this paper, we derive an improved core mass function (CMF) for the Pipe Nebula from a detailed comparison between measurements of visual extinction and molecular-line emission. We have compiled a refined sample of 201 dense cores toward the Pipe Nebula using a two-dimensional threshold identification algorithm informed by recent simulations of dense core populations. Measurements of radial velocities using complimentary C 18 O (1-0) observations enable us to cull out from this sample those 43 extinction peaks that are either not associated with dense gas or are not physically associated with the Pipe Nebula. Moreover, we use the derived C 18 O central velocities to differentiate between single cores with internal structure and blends of two or more physically distinct cores, superposed along the same line of sight. We then are able to produce a more robust dense core sample for future follow-up studies and a more reliable CMF than was possible previously. We confirm earlier indications that the CMF for the Pipe Nebula departs from a single power-law-like form with a break or knee at M ∼ 2.7 ± 1.3 M sun . Moreover, we also confirm that the CMF exhibits a similar shape to the stellar initial mass function (IMF), but is scaled to higher masses by a factor of ∼4.5. We interpret this difference in scaling to be a measure of the star formation efficiency (22% ± 8%). This supports earlier suggestions that the stellar IMF may originate more or less directly from the CMF.

  12. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    OpenAIRE

    Kepler, S. O.; Pelisoli, Ingrid; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J.; Eisenstein, Daniel J.; Valois, A. Dean M.; Amaral, Larissa A.

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmospherewhite dwarf stars (DAs) and helium atmospherewhite dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra (DQs). We found one central star of a planetary nebula, one ultracompact helium binary (AM ...

  13. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  14. Some Proxy Signature and Designated verifier Signature Schemes over Braid Groups

    OpenAIRE

    Lal, Sunder; Verma, Vandani

    2009-01-01

    Braids groups provide an alternative to number theoretic public cryptography and can be implemented quite efficiently. The paper proposes five signature schemes: Proxy Signature, Designated Verifier, Bi-Designated Verifier, Designated Verifier Proxy Signature And Bi-Designated Verifier Proxy Signature scheme based on braid groups. We also discuss the security aspects of each of the proposed schemes.

  15. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  16. Search for molecular outflows associated with peculiar nebulosities and regions of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Torrelles, J M; Rodriguez, L F; Canto, J; Marcaide, J; Gyulbudaghian, A L

    1983-01-01

    We surveyed an extensive list of peculiar nebulosities and regions of star formation searching for conspicuous cases of high-velocity carbon monoxide emission. We detected an apparently isotropic outflow associated with the star-forming region GL 2591. Among the other sources surveyed, the cometary nebula GM 24 is of interest since it is located in a very hot molecular spot where formation of massive stars took place recently.

  17. Common Envelope Evolution: Implications for Post-AGB Stars and Planetary Nebulae

    Science.gov (United States)

    Nordhaus, J.

    2017-10-01

    Common envelopes (CE) are of broad interest as they represent one method by which binaries with initially long-period orbits of a few years can be converted into short-period orbits of a few hours. Despite their importance, the brief lifetimes of CE phases make them difficult to directly observe. Nevertheless, CE interactions are potentially common, can produce a diverse array of nebular shapes, and can accommodate current post-AGB and planetary nebula outflow constraints. Here, I discuss ongoing theoretical and computational work on CEs and speculate on what lies ahead for determining accurate outcomes of this elusive phase of evolution.

  18. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  19. New Galactic Candidate Luminous Blue Variables and Wolf-Rayet Stars

    Science.gov (United States)

    Stringfellow, Guy S.; Gvaramadze, Vasilii V.; Beletsky, Yuri; Kniazev, Alexei Y.

    2012-04-01

    We have undertaken a near-infrared spectral survey of stars associated with compact mid-IR shells recently revealed by the MIPSGAL (24 μm) and GLIMPSE (8 μm) Spitzer surveys, whose morphologies are typical of circumstellar shells produced by massive evolved stars. Through spectral similarity with known Luminous Blue Variable (LBV) and Wolf-Rayet (WR) stars, a large population of candidate LBVs (cLBVs) and a smaller number of new WR stars are being discovered. This significantly increases the Galactic cLBV population and confirms that nebulae are inherent to most (if not all) objects of this class.

  20. Tablet-woven and tabby-woven braids from the Czech late medieval archaeological findings

    Czech Academy of Sciences Publication Activity Database

    Březinová, Helena

    2010-01-01

    Roč. 23, - (2010), s. 47-51 ISSN 0860-0007 Institutional research plan: CEZ:AV0Z80020508 Keywords : textile fragments * tablet -woven braids * tabby-woven braids * late medieval Subject RIV: AC - Archeology, Anthropology, Ethnology

  1. NuSTAR study of hard X-ray morphology and spectroscopy of PWN G21.5-0.9

    DEFF Research Database (Denmark)

    Nynka, Melania; Hailey, Charles J.; Reynolds, Stephen P.

    2014-01-01

    We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5-0.9. We detect integrated emission from the nebula up to similar to 40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by Nu...

  2. Computing representative networks for braided rivers

    NARCIS (Netherlands)

    Kleinhans, M.; van Kreveld, M.J.; Ophelders, T.A.E.; Sonke, W.M.; Speckmann, B.; Verbeek, K.A.B.; Aronov, Boris; Katz, Matthew

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  3. Computing Representative Networks for Braided Rivers

    NARCIS (Netherlands)

    Kleinhans, Maarten; van Kreveld, M.J.; Ophelders, Tim; Sonke, Willem; Speckmann, Bettina; Verbeek, Kevin

    2017-01-01

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  4. Registration of H2O and SiO masers in the Calabash Nebula to confirm the planetary nebula paradigm

    Science.gov (United States)

    Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, S. H.; Choi, Y. K.; Youngjoo, Y.

    2018-05-01

    We report on the astrometric registration of very long baseline interferometry images of the SiO and H2O masers in OH 231.8+4.2, the iconic proto-planetary nebula also known as the Calabash nebula, using the Korean VLBI Network and source frequency phase referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the asymptotic giant branch star, driving the bilobe structure with the water masers in the outflow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38 ± 2 yr. The combination of this result with the distance allows a full 3D reconstruction and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly ongoing. Therefore, we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and there must be multiple epochs of ejection to drive the macro-scale structure.

  5. The peculiar isolated neutron star in the Carina Nebula. Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    Science.gov (United States)

    Pires, A. M.; Motch, C.; Turolla, R.; Schwope, A.; Pilia, M.; Treves, A.; Popov, S. B.; Janot-Pacheco, E.

    2012-08-01

    While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) - which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available γ-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (NH = 2.6 × 1021 cm-2), has a spectrum that is both thermal and soft, with kT∞ = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3σ, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and σ = 0.14 keV (1σ). Furthermore, the optical counterpart is fainter than mV = 27 (2σ) and no γ-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6 ms, at the 4σ confidence level. We interpret

  6. VizieR Online Data Catalog: Catalogue of Galactic Planetary Nebulae (Kohoutek, 2001)

    Science.gov (United States)

    Kohoutek, L.

    2001-05-01

    The "Catalogue of Galactic Planetary Nebulae (Version 2000)" appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question "what is a planetary nebula" is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Donnees, Strasbourg and at Hamburg Observatory via internet. (15 data files).

  7. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    Science.gov (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  8. Asymmetric Planetary Nebulae VI: the conference summary

    Science.gov (United States)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  9. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  10. Braiding transformation, entanglement swapping, and Berry phase in entanglement space

    International Nuclear Information System (INIS)

    Chen Jingling; Ge Molin; Xue Kang

    2007-01-01

    We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space

  11. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...... of the PWN softens away from the central pulsar B1509−58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models.We find non-monotonic structure in the variation with distance of spectral hardness within 50...... of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the NH map.We discuss possible origins...

  12. A Shocking Solar Nebula?

    OpenAIRE

    Liffman, Kurt

    2009-01-01

    It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...

  13. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  14. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  15. The Herschel Planetary Nebula Survey (HerPlaNS): A Comprehensive Dusty Photoionization Model of NGC6781.

    Science.gov (United States)

    Otsuka, Masaaki; Ueta, Toshiya; van Hoof, Peter A M; Sahai, Raghvendra; Aleman, Isabel; Zijlstra, Albert A; Chu, You-Hua; Villaver, Eva; Leal-Ferreira, Marcelo L; Kastner, Joel; Szczerba, Ryszard; Exter, Katrina M

    2017-08-01

    We perform a comprehensive analysis of the planetary nebula (PN) NGC 6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 M ⊙ initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicates high-excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 M ⊙ ) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 M ⊙ initial-mass star. A significant fraction of the total mass (about 70%) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H + regions.

  16. THE YOUNG INTERSTELLAR BUBBLE WITHIN THE ROSETTE NEBULA

    International Nuclear Information System (INIS)

    Bruhweiler, F. C.; Bourdin, M. O.; Freire Ferrero, R.; Gull, T. R.

    2010-01-01

    We use high-resolution International Ultraviolet Explorer (IUE) data and the interstellar (IS) features of highly ionized Si IV and C IV seen toward the young, bright OB stars of NGC 2244 in the core of the Rosette Nebula to study the physics of young IS bubbles. Two discrete velocity components in Si IV and C IV are seen toward stars in the 6.2 pc radius central cavity, while only a single velocity component is seen toward those stars in the surrounding H II region, at the perimeter and external to this cavity. The central region shows characteristics of a very young, windblown bubble. The shell around the central hot cavity is expanding at 56 km s -1 with respect to the embedded OB stars, while the surrounding H II region of the Rosette is expanding at ∼13 km s -1 . Even though these stars are quite young (∼2-4 Myr), both the radius and expansion velocity of the 6.2 pc inner shell point to a far younger age; t age ∼ 6.4 x 10 4 years. These results represent a strong contradiction to theory and present modeling, where much larger bubbles are predicted around individual O stars and O associations. Specifically, the results for this small bubble and its deduced age extend the 'missing wind luminosity problem' to young evolving bubbles. These results indicate that OB star winds mix the surrounding H II regions and the wind kinetic energy is converted to turbulence and radiated away in the dense H II regions. These winds do not form hot, adiabatically expanding cavities. True IS bubbles appear only to form at later evolutionary times, perhaps triggered by increased mass loss rates or discrete ejection events. Means for rectifying discrepancies between theory and observations are discussed.

  17. Braided Composite Technologies for Rotorcraft Structures

    Science.gov (United States)

    Jessie, Nathan

    2015-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  18. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  19. NICMOS PEERS INTO HEART OF DYING STAR

    Science.gov (United States)

    2002-01-01

    The Egg Nebula, also known as CRL 2688, is shown on the left as it appears in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) and on the right as it appears in infrared light with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Since infrared light is invisible to humans, the NICMOS image has been assigned colors to distinguish different wavelengths: blue corresponds to starlight reflected by dust particles, and red corresponds to heat radiation emitted by hot molecular hydrogen. Objects like the Egg Nebula are helping astronomers understand how stars like our Sun expel carbon and nitrogen -- elements crucial for life -- into space. Studies on the Egg Nebula show that these dying stars eject matter at high speeds along a preferred axis and may even have multiple jet-like outflows. The signature of the collision between this fast-moving material and the slower outflowing shells is the glow of hydrogen molecules captured in the NICMOS image. The distance between the tip of each jet is approximately 200 times the diameter of our solar system (out to Pluto's orbit). Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider, Dean Hines (University of Arizona); Raghvendra Sahai (Jet Propulsion Laboratory); NICMOS Instrument Definition Team; and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  20. Olivier Chesneau's Work on Low Mass Stars

    Science.gov (United States)

    Lagadec, E.

    2015-12-01

    During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optical interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.

  1. Central Star Properties and C-N-O Abundances in Eight Galactic Planetary Nebulae from New HST/STIS Observations

    Science.gov (United States)

    Henry, Richard B. C.; Balick, Bruce; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Corradi, Romano

    2015-01-01

    We present detailed photoionization models of eight Galactic planetary nebulae (IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, NGC7662, & PB6) based on recently obtained HST STIS spectra. Our interim goal is to infer Teff, luminosity, and current and progenitor masses for each central star, while the ultimate goal is to constrain published stellar evolution models which predict nebular CNO abundances. The models were produced by using the code CLOUDY to match closely the measured line strengths derived from high-quality HST STIS spectra (see poster by Dufour et al., this session) extending in wavelength from 1150-10270 Angstroms. The models assumed a blackbody SED. Variable input parameters included Teff, a radially constant nebular density, a filling factor, and elemental abundances. For the eight PNs we found a birth mass range of 1.5-2.9 Msun, a range in log(L/Lsun) of 3.10-3.88, and a Teff range of 51-150k K. Finally, we compare CNO abundances of the eight successful models with PN abundances of these same elements that are predicted by published stellar evolution models. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO12600.

  2. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska

    Science.gov (United States)

    Skelly, Raymond L.; Bristow, Charlie S.; Ethridge, Frank G.

    2003-05-01

    Architecture of recent channel-belt deposits of the Niobrara River, northeast Nebraska, USA, records the response of a sandy braided river to rapid base-level rise. Up to 3 m of aggradation has occurred within the lower 14 km of the Niobrara River since the mid-1950s as a result of base-level rise at the confluence of the Niobrara and Missouri Rivers. Aerial photographs and channel surveys indicate that the lower Niobrara has evolved from a relatively deep, stable channel with large, bank-attached braid bars to a relatively shallow, aggrading channel with braid bars and smaller secondary channels. Architecture of channel-belt deposits associated with the recent aggradation has been defined using ground-penetrating radar (GPR) and vibracores. The channel-belt deposits exhibit a series of amalgamated channel fills and braid bar complexes (i.e., macroforms). Radar facies identified in the GPR data represent architectural elements of the braid bar complexes, large and small bedforms [two-dimensional (2-D) and three-dimensional (3-D) dunes], and channels. Individual braid bars appear to consist of basal high-flow and upper low-flow components. Preservation of the complete, high-flow bar geometry is generally incomplete due to frequent migration of smaller scale, secondary channels within the channel belt (i.e., braided channel network) at low discharges. The large-scale stratification of the braid bar deposits is dominated by cross-channel and upstream accretion. Elements of downstream accretion are also recognized. These accretion geometries have not been documented previously in similar sandy braided rivers. Braid bar deposits with low-flow modification (e.g., incision by secondary channels) are recognized in the deeper portions of the deposits imaged by GPR. Preservation of braid bars, with both high- and low-flow components, is a result of the rapid base-level rise and channel-bed aggradation experienced by the Niobrara River over the past 45 years. Recent avulsion

  3. Circumnebular neutral hydrogen in planetary nebulae

    International Nuclear Information System (INIS)

    Taylor, A.R.; Gussie, G.T.; Pottasch, S.R.

    1990-01-01

    Centimeter line observations of six compact planetary nebulae are reported. Circumnebular atomic hydrogen absorption has been observed in NGC 6790, NGC 6886, IC 418, IC 5117, and BD +30 deg 3639, while H I was not observed to a high upper limit in NGC 6741. Hydrogen was also detected in emission from BD +30 deg 3639. The expansion velocities of the circumnebular envelopes are similar to the expansion velocities observed for the ionized nebula. The optical depth of circumnebular H I appears to decrease with increasing linear radius of the ionized nebulae, indicating that these nebulae are ionization bounded and that the amount of atomic hydrogen decreases as young nebulas evolve. 28 refs

  4. Nearby Hot Stars May Change Our View of Distant Sources

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    As if it werent enough that quasars distant and bright nuclei of galaxies twinkle of their own accord due to internal processes, nature also provides another complication: these distant radio sources can also appear to twinkle because of intervening material between them and us. A new study has identified a possible source for the material getting in the way.Unexplained VariabilityA Spitzer infrared view of the Helix nebula, which contains ionized streamers of gas extending radially outward from the central star. [NASA/JPL-Caltech/Univ. of Ariz.]Distant quasars occasionally display extreme scintillation, twinkling with variability timescales shorter than a day. This intra-day variability is much greater than we can account for with standard models of the interstellar medium lying between the quasar and us. So what could cause this extreme scattering instead?The first clue to this mystery came from the discovery of strong variability in the radio source PKS 1322110. In setting up follow-up observations of this object, Mark Walker (Manly Astrophysics, Australia) and collaborators noticed that, in the plane of the sky, PKS 1322110 lies very near the bright star Spica. Could this be coincidence, or might this bright foreground star have something to do with the extreme scattering observed?Diagram explaining the source of the intra-day radio source variability as intervening filaments surrounding a hot star. [M. Walker/CSIRO/Manly Astrophysics]Swarms of ClumpsWalker and collaborators put forward a hypothesis: perhaps the ultraviolet photons of nearby hot stars ionize plasma around them, which in turn causes the extreme scattering of the distant background sources.As a model, the authors consider the Helix Nebula, in which a hot, evolved star is surrounded by cool globules of molecular hydrogen gas. The radiation from the star hits these molecular clumps, dragging them into long radial streamers and ionizing their outer skins.Though the molecular clumps in the Helix

  5. Version 2000 of the Catalogue of Galactic Planetary Nebulae

    Science.gov (United States)

    Kohoutek, L.

    2001-11-01

    The ``Catalogue of Galactic Planetary Nebulae (Version 2000)'' appears in Abhandlungen aus der Hamburger Sternwarte, Band XII in the year 2001. It is a continuation of CGPN(1967) and contains 1510 objects classified as galactic PNe up to the end of 1999. The lists of possible pre-PNe and possible post-PNe are also given. The catalogue is restricted only to the data belonging to the location and identification of the objects. It gives identification charts of PNe discovered since 1965 (published in the supplements to CGPN) and those charts of objects discovered earlier, which have wrong or uncertain identification. The question ``what is a planetary nebula'' is discussed and the typical values of PNe and of their central stars are summarized. Short statistics about the discoveries of PNe are given. The catalogue is also available in the Centre de Données, Strasbourg and at Hamburg Observatory via internet. The Catalogue is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/378/843

  6. Layer Construction of 3D Topological States and String Braiding Statistics

    Directory of Open Access Journals (Sweden)

    Chao-Ming Jian

    2014-12-01

    Full Text Available While the topological order in two dimensions has been studied extensively since the discovery of the integer and fractional quantum Hall systems, topological states in three spatial dimensions are much less understood. In this paper, we propose a general formalism for constructing a large class of three-dimensional topological states by stacking layers of 2D topological states and introducing coupling between them. Using this construction, different types of topological states can be obtained, including those with only surface topological order and no bulk topological quasiparticles, and those with topological order both in the bulk and at the surface. For both classes of states, we study its generic properties and present several explicit examples. As an interesting consequence of this construction, we obtain example systems with nontrivial braiding statistics between string excitations. In addition to studying the string-string braiding in the example system, we propose a topological field-theory description for the layer-constructed systems, which captures not only the string-particle braiding statistics but also the string-string braiding statistics when the coupling is twisted. Last, we provide a proof of a general identity for Abelian string statistics and discuss an example system with non-Abelian strings.

  7. Lots of Small Stars Born in Starburst Region

    Science.gov (United States)

    1999-10-01

    Decisive Study of NGC 3603 with the VLT and ISAAC An international group of astronomers [1] has used the ESO Very Large Telescope (VLT) at Paranal (Chile) to perform unique observations of an interstellar nebula in which stars are currently being born. Thanks to the excellent imaging properties of the first of the four 8.2-m VLT Unit Telescopes, ANTU, they were able to demonstrate, for the first time, the presence of large numbers of small and relatively light, new-born stars in NGC 3603, a well-known "starburst" region in the Milky Way Galaxy . Until now, it has only been possible to observe brighter and much heavier stars in such nebulae. The new observations show that stars of all masses are being born together in the same starburst event, a fundamental result for our understanding of the very complex process of star formation. Background of the project The present research programme was granted observing time with VLT ANTU in April 1999. Its general aim is to investigate collective, massive star formation, in particular the coalescence of high- and low-mass stars in the violent environments of starburst regions . These are areas in which the processes that lead to the birth of new stars are particularly active just now. Several fundamental questions arise in this context. A very basic one is whether low-mass stars form at all in such environments. And if so, do they form together with the most massive stars in a starburst event or do they form at different times, before or after or perhaps on different timescales? Are low-mass stars born with any "preferred" mass that may possibly give further clues to the ongoing processes? All of this is most important in order to understand the detailed mechanisms of star formation. Most current theoretical scenarios explain how single stars form in an isolated, contracting gas cloud, but most stars in the Universe did not form in that simple way. Once some massive stars have formed in some place and start to shine, they

  8. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  9. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  10. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  11. The Integral Field View of the Orion Nebula

    Directory of Open Access Journals (Sweden)

    Adal Mesa-Delgado

    2014-01-01

    Full Text Available This paper reviews the major advances achieved in the Orion Nebula through the use of integral field spectroscopy (IFS. Since the early work of Vasconcelos and collaborators in 2005, this technique has facilitated the investigation of global properties of the nebula and its morphology, providing new clues to better constrain its 3D structure. IFS has led to the discovery of shock-heated zones at the leading working surfaces of prominent Herbig-Haro objects as well as the first attempt to determine the chemical composition of Orion protoplanetary disks, also known as proplyds. The analysis of these morphologies using IFS has given us new insights into the abundance discrepancy problem, a long-standing and unresolved issue that casts doubt on the reliability of current methods used for the determination of metallicities in the universe from the analysis of H II regions. Results imply that high-density clumps and high-velocity flows may play an active role in the production of such discrepancies. Future investigations based on the large-scale IFS mosaic of Orion will be very valuable for exploring how the integrated effect of small-scale structures may have impact at larger scales in the framework of star-forming regions.

  12. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  13. A NEW Hα EMISSION-LINE SURVEY IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Szegedi-Elek, E.; Kun, M.; Pál, A.; Balázs, L. G.; Reipurth, B.; Willman, M.

    2013-01-01

    We present results from an Hα emission line survey in a 1 deg 2 area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph 2 on the 2.2 m telescope of the University of Hawaii. We identified 587 stars with Hα emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Hα surveys. We determined the equivalent width (EW) of the line and, based on this, classified 372 stars as classical T Tauri stars (CTTSs) and 187 as weak-line T Tauri stars (WTTSs). Simultaneous r', i' photometry indicates a limiting magnitude of r' ∼ 20 mag, but the sample is incomplete at r' > 17 mag. The surface distribution of the Hα emission stars reveals a clustered population and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Hα line. We found that the typical amplitudes of the variability are not greater than a factor of two to three in most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the EW and other properties of the stars. Based on literature data, we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples

  14. A NEW Hα EMISSION-LINE SURVEY IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Szegedi-Elek, E.; Kun, M.; Pál, A.; Balázs, L. G. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Reipurth, B.; Willman, M., E-mail: eelza@konkoly.hu [Institute for Astronomy, University of Hawaii at Manoa, 640 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-10-01

    We present results from an Hα emission line survey in a 1 deg{sup 2} area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph 2 on the 2.2 m telescope of the University of Hawaii. We identified 587 stars with Hα emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Hα surveys. We determined the equivalent width (EW) of the line and, based on this, classified 372 stars as classical T Tauri stars (CTTSs) and 187 as weak-line T Tauri stars (WTTSs). Simultaneous r', i' photometry indicates a limiting magnitude of r' ∼ 20 mag, but the sample is incomplete at r' > 17 mag. The surface distribution of the Hα emission stars reveals a clustered population and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Hα line. We found that the typical amplitudes of the variability are not greater than a factor of two to three in most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the EW and other properties of the stars. Based on literature data, we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples.

  15. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  16. Do all Planetary Nebulae result from Common Envelopes?

    Science.gov (United States)

    De Marco, O.; Moe, M.; Herwig, F.; Politano, M.

    2005-12-01

    The common envelope interaction is responsible for evolved close binaries. Some of these binaries reside in the middle of planetary nebulae (PN). Conventional wisdom has it that only about 10% of all PN contain close binary central stars. Recent observational results, however, strongly suggest that most or even all PN are in close binary systems. Interestingly, our population synthesis calculations predict that the number of post-common envelope PN is in agreement with the total number of PN in the Galaxy. On the other hand, if all stars (single and in binaries) with mass between ˜1-8 M⊙ eject a PN, there would be 10-20 times many more PN in the galaxy than observed. This theoretical result is in agreement with the observations in suggesting that binary interactions play a functional rather than marginal role in the creation of PN. FH acknowledges funds from the U.S. Dept. of Energy, under contract W-7405-ENG-36 to Los Alamos National Laboratory. MP gratefully acknowledges NSF grant AST-0328484 to Marquette University.

  17. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  18. Investigation on the Yarn Squeezing Effect of Three Dimensional Full Five Directional Braided Composites

    Science.gov (United States)

    Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan

    2018-04-01

    The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.

  19. Processing NASA Earth Science Data on Nebula Cloud

    Science.gov (United States)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  20. Bundles of spider silk, braided into sutures, resist basic cyclic tests: potential use for flexor tendon repair.

    Directory of Open Access Journals (Sweden)

    Kathleen Hennecke

    Full Text Available Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials.

  1. The Processing Design of Jute Spun Yarn/PLA Braided Composite by Pultrusion Molding

    Directory of Open Access Journals (Sweden)

    Anin Memon

    2013-01-01

    Full Text Available Prevalently, the light has been shed on the green composite from the viewpoint of environmental protection. Jute fibers are natural fibers superior due to light weight, low cost, and being environmentally friendly corresponding to the green composite materials. Meticulously, fibers of polylactic acid (PLA thermoplastic biopolymer were used as the resin fibers. In this study, the fabrication of tubular jute spun yarn/PLA braided composite by pultrusion molding was presented. The intermediate materials were prepared by commingled technique. The braiding technique manufactured preform which had jute fiber diagonally oriented at certain angles with the glass fiber inserted into the braiding yarns along the longitudinal direction. The braided preforms were pulled through a heated die where the consolidation flow took place due to reduced matrix viscosity and pressure. The pultrusion experiments were done with jute/PLA commingled yarns and combined with glass fiber yarns to fabricate the tubular composite. Impregnation quality was evaluated by microscope observation of the pultruded cross-sections. The flexural mechanical properties of the pultruded were measured by four-point bending test.

  2. Theory of equilibria of elastic 2-braids with interstrand interaction

    Science.gov (United States)

    Starostin, E. L.; van der Heijden, G. H. M.

    2014-03-01

    Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.

  3. Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements

    Science.gov (United States)

    Cassen, Patrick; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) tinder equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by the composition of Cl meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou (Meteoritics 9, 69-94, 1974, and Wasson and co-authors in subsequent papers) suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce the observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed, The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the

  4. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michaela; Nickeler, Dieter H. [Astronomický ústav, Akademie věd České republiky, v.v.i., Fričova 298, 251 65 Ondřejov (Czech Republic); Liimets, Tiina [Tartu Observatory, 61602 Tõravere, Tartumaa (Estonia); Cappa, Cristina E.; Duronea, Nicolas U. [Instituto Argentino de Radioastronomía, CONICET, CCT-La Plata, C.C.5., 1894, Villa Elisa (Argentina); Cidale, Lydia S.; Arias, Maria L. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900, La Plata (Argentina); Gunawan, Diah S.; Maravelias, Grigoris; Curé, Michel [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Casilla 5030, Valparaíso (Chile); Oksala, Mary E. [California Lutheran University, Department of Physics, Thousand Oaks, CA 91360 (United States); Fernandes, Marcelo Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil); Santander-García, Miguel, E-mail: michaela.kraus@asu.cas.cz [Observatorio Astronómico Nacional (IGN), C/Alfonso XII 3, E-28014, Madrid (Spain)

    2017-11-01

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.

  5. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    International Nuclear Information System (INIS)

    Kraus, Michaela; Nickeler, Dieter H.; Liimets, Tiina; Cappa, Cristina E.; Duronea, Nicolas U.; Cidale, Lydia S.; Arias, Maria L.; Gunawan, Diah S.; Maravelias, Grigoris; Curé, Michel; Oksala, Mary E.; Fernandes, Marcelo Borges; Santander-García, Miguel

    2017-01-01

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.

  6. Fusion and braiding in W-algebra extended conformal theories

    International Nuclear Information System (INIS)

    Bilal, A.

    1990-01-01

    We define the chiral conformal blocks of integer-spin extended (W-algebra) conformal theories by the fusion of elementary ones. The braid group representation matrices which realize the exchange algebra are computed. They are shown to coincide with the Boltzmann weights - in a certain limit of the spectral parameter - of the critical face models of Jimbo et al. In the unitary cases, where the extended conformal theories can be realized as cosets g k + g 1 /g k+1 , we relate the braiding matrices of the former to those of the g WZW models. In this article we restrict ourselves to the case corresponding to symmetric tensor representations of A n . (orig.)

  7. B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), τ Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  8. M2-9 - a planetary nebula with an eruptive nucleus?

    International Nuclear Information System (INIS)

    Balick, B.

    1989-01-01

    M2-9 is a striking bipolar, or butterfly, planetary nebula (PN) whose nuclear spectrum is uncharacteristic of PN nuclei. Narrow lines ranging in ionization from O I, Fe II, forbidden Fe II, and Si II through forbidden O III are observed in the stellar spectrum. The H-alpha emission line has wings extending nearly 11,000 km/s at the base, and there is a deep self-absorption feature near the H-alpha line peak at the same velocity as nebular gas observed in one of the two bipolar lobes. The spectrum of M2-9's nucleus is more similar to the slow nova RR Tel, some symbiotic stars, and Seyfert (type 1.9) galactic nuclei than the central stars of most other PNs. Although its morphology, size, and nebular spectrum share many similarities with other PNs, M2-9 may not share a common evolutionary history with that class of objects. 31 references

  9. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC

    1999-01-01

    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  10. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  11. A search for photometric and spectroscopic evolutionary changes in the young planetary nebula Vy 2-2

    Science.gov (United States)

    Arkhipova, V. P.; Burlak, M. A.; Esipov, V. F.; Ikonnikova, N. P.; Komissarova, G. V.

    2017-12-01

    The results of long-term photometric and spectroscopic observations of the young compact planetary nebula Vy 2-2 (PNG 045.4-02.7) are presented. The UBV photometry in 1990-2016 has revealed a slight brightness trend in the yearly averaged data, most pronounced in the V band. We have measured the relative fluxes of optical emission lines on the spectrograms taken with the 1.25-m telescope at the Southern Station of the SAI MSU in 1999-2016, estimated the absolute flux in the Hβ line to be F(H β) = (2.1 ± 0.4) × 10-12 erg cm-2 s-1, and determined the interstellar extinction constant c(Hβ) = 1.8. The electron temperature and density in the nebula have been estimated from diagnostic line ratios: Te = (10-12) × 103 K and Ne ≥ 105 cm-3. To detect any possible evolutionary changes, we have compared the new observations with the archival data obtained over the entire history of spectroscopic observations of Vy 2-2. No significant changes in the relative intensities of the strongest emission lines and the integrated flux in the H β line exceeding the observational errors have been found. We have revealed a tendency for the intensity ratio F(λ4363)/F(λ4959) to decrease with time, which may be related to a decrease in the electron density in the nebula. Based on our photometric and spectroscopic data, we have estimated the luminosity of the central star of Vy 2-2, which corresponds to the evolutionary tracks for the most massive post-AGB stars of the O-rich sequence.

  12. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    Science.gov (United States)

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  13. ANALYSIS OF ELASTIC DEFORMATION OF BRAIDED TUBULAR STRUCTURES FOR MEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Mehmet Emin YÜKSEKKAYA

    2001-02-01

    Full Text Available In this study, self-expanding stents were fabricated and analyzed. These stents are in the form of 3-D tubular braided structures made of polymeric materials. This type of structures is used in medicine to open clogged artheries and veins by exerting radial force. The amount of radial force exerted into the membrane should not give any damage to the veins. Therefore, the geometry of the three dimensional tubular braided fabric is analyzed to give an optimum radial force for medical applications.

  14. Experimental Investigation on Low-velocity Impact and Compression After Impact Properties of Three-dimensional Five-directional Braided Composites

    Directory of Open Access Journals (Sweden)

    YAN Shi

    2017-12-01

    Full Text Available The low-velocity impact and compression after impact (CAI properties of three-dimensional (3D five-directional carbon fiber/epoxy resin braided composites were experimentally investigated. Specimens prepared with different braiding angles were tested at the same impact energy level. Residual post-impact mechanical properties of the different configurations were characterized by compression after impact tests. Results show that the specimens with bigger braiding angle sustain higher peak loads, and smaller impact damage area, mainly attributes to a more compact space construction. The CAI strength and damage mechanism are found to be mainly dependent on the axial support of the braiding fiber tows. With the increase of braiding angle, the CAI strength decreases, and the damage mode of the composites is changed from transverse fracture to shear failure.

  15. The interaction of the halo around the butterfly planetary nebula NGC 650-1 with the interstellar medium

    Science.gov (United States)

    Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Olguín, L.; Gómez-Muñoz, M. A.; Sabin, L.; Vázquez, R.; Akras, S.; Ramírez Vélez, J. C.; Chávez, M.

    2018-03-01

    With its bright and wide equatorial waist seen almost edge-on (`the butterfly body') and the faint and broad bipolar extensions (`the butterfly wings'), NGC 650-1 is the archetypical example of bipolar planetary nebula (PN) with butterfly morphology. We present here deep high-resolution broad- and narrow-band optical images that expose the rich and intricate fine structure of this bipolar PN, with small-scale bubble-like features and collimated outflows. A SHAPE spatio-kinematic model indicates that NGC 650-1 has a broad central torus with an inclination angle of 75° with respect to the line of sight, whereas that of the bipolar lobes, which are clearly seen in the position-velocity maps, is 85°. Large field of view deep images show, for first time, an arc-like diffuse envelope in low- and high-excitation emission lines located up to 180 arcsec towards the east-south-east of the central star, well outside the main nebula. This morphological component is confirmed by Spitzer MIPS and WISE infrared imaging, as well as by long-slit low- and high-dispersion optical spectroscopic observations. Hubble Space Telescope images of NGC 650-1 obtained at two different epochs ˜14 yr apart reveal the proper motion of the central star along this direction. We propose that this motion of the star through the interstellar medium compresses the remnant material of a slow asymptotic giant branch wind, producing this bow-shock-like feature.

  16. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Araya, E. D.; Brown, J. E. [Western Illinois University, Physics Department, 1 University Circle, Macomb, IL 61455 (United States); Olmi, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Ortiz, J. Morales [University of Puerto Rico, Río Piedras Campus, Physical Sciences Department, P.O. Box 23323, San Juan, PR 00931 (United States); Hofner, P.; Creech-Eakman, M. J. [New Mexico Institute of Mining and Technology, Physics Department, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58089 Morelia, Michoacán (Mexico); Linz, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  17. The occurrence of peculiar stars in open clusters

    International Nuclear Information System (INIS)

    Abt, H.A.; Levato, H.

    1978-01-01

    The authors have classified on the MK system a total of 455 stars in 12 open clusters and associations. The classification is based on wide (1.2 mm) spectra of two reciprocal dispersions (39, 128 A mm -1 ) obtained with the Kitt Peak 2.1 m and 90 cm reflectors respectively. The higher dispersion is necessary to show the subtle peculiarities found in some stars. The clusters are the Orion Nebula cluster, Orion OB1 association, Lacerta OB1 association, IC 2602, IC 4665, Pleiades, M39, M34, NGC 2516, NGC 6633, NGC 6475, and Coma. (Auth.)

  18. Is the dissociation of coronene in stellar winds a source of molecular hydrogen? application to the HD 44179 nebula

    Science.gov (United States)

    Champeaux, J.-P.; Moretto-Capelle, P.; Cafarelli, P.; Deville, C.; Sence, M.; Casta, R.

    2014-06-01

    The physical interactions of polycyclic aromatic hydrocarbons (PAHs) with stellar particular radiation are key to understanding the life cycle of PAHs, their abundance and their role in the complex astrochemistry of the interstellar medium. In this context, we present experimental results on the ionization/fragmentation of isolated coronene by a 100-keV proton, reproducing interactions between stellar winds and PAH molecules in the star's environment. In particular, we show, without ambiguity, that such ionization/fragmentation induces intense dehydrogenation processes for which the loss of even numbers of hydrogen atoms and the detection of CH_2+ cations as a possible H2 precursor strongly suggest the formation of H2 neutral molecules along a scenario revealed by a quantum chemical calculation. We have evaluated the H2 emission cross-section from the coronene/proton interaction at 100 and 1.6 keV to be 2.97 × 10-16 and 3.3 × 10-16 cm2, respectively. A qualitative discussion on the formation rate of H2 in the HD 44179 Red Rectangle (RR) nebula leads to the conclusion that such processes could be very efficient, especially inside planetary nebulae rich in PAH molecules interacting with high proton mass-loss rate stars (such as post-asymptotic giant branch stars) or high velocity jets produced by an accretion disc.

  19. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    Science.gov (United States)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  20. Braid group and anyons on an annulus and a torus

    International Nuclear Information System (INIS)

    Hatsugai, Y.; Kohmoto, M.; Wu Yongshi

    1992-01-01

    We present an examination of anyons on a cylinder (or annulus) starting from a braid group analysis. The rule for putting anyons on a lattice has to be modified when the periodic boundary condition is imposed on one direction. In contrast to the annulus, one extra restriction is needed for the cylinder geometry to recover its symmetry. The mean-field (MF) treatment is found to be good until level crossing occurs, and to be better if one starts from the hard-core boson rather than fermion. We also present a construction of anyons on a torus starting from a braid group analysis. The rules of Wen, Dagotto and Fradkin for putting anyons on a torus are reproduced and supplemented. The representation of the braid group is characterized by the anyon statistics θ and the magnetic fluxes Φ x and Φ y threading through the holes. It is shown that the anyon system has a smaller period in Φ x and Φ y than the natural period 1. We perform numerical calculations to investigate the spectral flow and find interesting features in understanding the Fractional Quantum Hall (FQH) effect. (orig.)

  1. IUE observations of interstellar Si IV and C IV lines observed in the spectra of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Smith, L.J.; Willis, A.J.; Wilson, R.

    1980-01-01

    Recent IUE observations of Wolf-Rayet stars show narrow absorption lines in the highly ionized species of Si IV and C IV. The strengths of these 'interstellar' Si IV and C IV lines observed in the spectra of 10 WR stars and two other early-type stars are compared. Of the WR sample, six stars exhibit very strong Si IV and C IV lines (Wsub(lambda) approximately 0.3 to 0.5 A) whilst the other four stars show much weaker lines (Wsub(lambda) approximately 0.1 A). There is no correlation between the strengths of these lines with either stellar distance or colour excess. The weaker absorptions may arise in the individual stellar H II regions, the observed strengths being consistent with those expected for stars with Tsub(eff) = 30 000 K. Five of the other stars which exhibit very strong absorptions lie in the line of sight to active interstellar regions (Cygnus and Carina nebulae) and it is considered probable that, in addition to their H II region components, the bulk of the strong Si IV and C IV absorptions originate in hot gas associated with these active regions. In the case of the WN5 star HD 50896 violet-displaced components are observed in the interstellar lines of low ionization species. These are thought to be produced in the ring nebula S308 surrounding HD 50896. (author)

  2. Pulsed field losses in metal-filled superconducting multifilamentary braids

    International Nuclear Information System (INIS)

    McInturff, A.D.; Dahl, P.F.; Sampson, W.B.

    1972-01-01

    Work on the application of metallic filters to insulate and bond individual multifilamentary wires into a fully transposed conductor is summarized. As has been reported in earlier papers, conductors of this type have performed excellently in low-frequency pulsed magnets, but become coupled at relatively low values of db/dt, leading to high potential losses. Data are presented on metallic and intermetallic insulated braids showing excellent performance and exhibiting losses comparable to those of organically insulated braid for rise times less than 10 kG/s. These conductors are also able to achieve 90 percent of short sample critical current at db/dt 200 kG/s, although their losses are significantly higher at these high rates of field change

  3. Braid group representation on quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com [Department of Computational Sciences, Bandung Institute of Technology (Indonesia); Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id [Algebra Research Group, Bandung Institute of Technology (Indonesia)

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  4. Massive Star Formation: Accreting from Companion X. Chen1 ...

    Indian Academy of Sciences (India)

    Abstract. We report the possible accretion from companion in the mas- sive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO ...

  5. Wolf-Rayet Stars

    Science.gov (United States)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  6. The first symbiotic stars from the LAMOST survey

    International Nuclear Information System (INIS)

    Li, Jiao; Chen, Xue-Fei; Han, Zhan-Wen; Mikołajewska, Joanna; Luo, A-Li; Wu, Yue; Yang, Ming; Rebassa-Mansergas, Alberto; Hou, Yong-Hui; Wang, Yue-Fei; Zhang, Yong

    2015-01-01

    Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star. (paper)

  7. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    International Nuclear Information System (INIS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H 2 . We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H 2 , He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions

  8. Emission lines of [K V] in the optical spectra of gaseous nebulae.

    Science.gov (United States)

    Keenan, Francis P; Aller, Lawrence H; Espey, Brian R; Exter, Katrina M; Hyung, Siek; Keenan, Michael T C; Pollacco, Don L; Ryans, Robert S I

    2002-04-02

    Recent R-matrix calculations of electron impact excitation rates in K v are used to derive the nebular emission line ratio R = I(4122.6 A)/I(4163.3 A) as a function of electron density (N(e)). This ratio is found to be very sensitive to changes in N(e) over the density range 10(3) to 10(6) cm(-3), but does not vary significantly with electron temperature, and hence in principle should provide an excellent optical N(e) diagnostic for the high-excitation zones of nebulae. The observed value of R for the planetary nebula NGC 7027, measured from a spectrum obtained with the Hamilton Echelle spectrograph on the 3-m Shane Telescope, implies a density in excellent agreement with that derived from [Ne iv], formed in the same region of the nebula as [K v]. This observation provides observational support for the accuracy of the theoretical [K v] line ratios, and hence the atomic data on which they are based. However, the analysis of a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope, reveals that the [K v] 4122.6 A line in this object is badly blended with Fe ii 4122.6 A. Hence, the [K v] diagnostic may not be used for astrophysical sources that show a strong Fe ii emission line spectrum.

  9. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  10. MULTIPLE FAST MOLECULAR OUTFLOWS IN THE PRE-PLANETARY NEBULA CRL 618

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Huang, Po-Sheng [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sánchez Contreras, Carmen [Astrobiology Center (CSIC-INTA), ESAC Campus, E-28691 Villanueva de la Canada, Madrid (Spain); Tay, Jeremy Jian Hao [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-11-01

    CRL 618 is a well-studied pre-planetary nebula. It has multiple highly collimated optical lobes, fast molecular outflows along the optical lobes, and an extended molecular envelope that consists of a dense torus in the equator and a tenuous round halo. Here we present our observations of this source in CO J = 3-2 and HCN J = 4-3 obtained with the Submillimeter Array at up to ∼0.''3 resolutions. We spatially resolve the fast molecular outflow region previously detected in CO near the central star and find it to be composed of multiple outflows that have similar dynamical ages and are oriented along the different optical lobes. We also detect fast molecular outflows further away from the central star near the tips of the extended optical lobes and a pair of equatorial outflows inside the dense torus. We find that two episodes of bullet ejections in different directions are needed, one producing the fast molecular outflows near the central star and one producing the fast molecular outflows near the tips of the extended optical lobes. One possibility to launch these bullets is a magneto-rotational explosion of the stellar envelope.

  11. Star's death and rebirth. White dwarfs, supernovae, pulsars, black holes

    Energy Technology Data Exchange (ETDEWEB)

    Otzen Petersen, J [Copenhagen Univ. (Denmark)

    1975-01-01

    The evolution of a star from a main sequence star of approximately solar mass, first to a red giant, thereafter to a white dwarf is described in detail. The evolution of more massive stars to supernovae, neutron stars and pulsars is then discussed with special reference to the Crab Nebula. Black holes and X-ray sources are also discussed, in this case with reference to the Cygnus X-1 system. In conclusion, it is pointed out that after their active phase white dwarfs, neutron stars and black holes may exist as dead bodies in space, and only be observeable through their gravitational fields. It is possible that a great number of such bodies may exist, and contribute to the stability of galaxies, also possibly facilitating the explanation of the galaxies' red shifts by means of simple universe models.

  12. SERENDIPITOUS DETECTION OF X-RAY EMISSION FROM THE HOT BORN-AGAIN CENTRAL STAR OF THE PLANETARY NEBULA K 1-16

    Energy Technology Data Exchange (ETDEWEB)

    Montez, Rodolfo Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Kastner, Joel H., E-mail: rodolfo.montez.jr@gmail.com, E-mail: jhk@cis.rit.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2013-03-20

    We report the serendipitous detection of point-like X-ray emission from the hot, PG1159-type central star of the planetary nebula (CSPN) K 1-16 by the XMM-Newton and Chandra X-Ray Observatories. The CSPN lies superimposed on a galaxy cluster that includes an X-ray-bright quasar, but we have successfully isolated the CSPN X-ray emission from the strong diffuse background contributed by the quasar and intracluster gas. We have modeled the XMM-Newton and Chandra X-ray data, taking advantage of the contrasting detection efficiencies of the two observatories to better constrain the low-energy spectral response of Chandra's Advanced CCD Imaging Spectrometer. We find that the CSPN X-ray spectrum is well characterized by the combination of a non-local thermodynamic equilibrium model atmosphere with T{sub *} {approx} 135 kK and a carbon-rich, optically thin thermal plasma with T{sub X} {approx} 1 MK. These results for X-ray emission from the K 1-16 CSPN, combined with those obtained for other PG1159-type objects, lend support to the 'born-again' scenario for Wolf-Rayet and PG1159 CSPNe, wherein a late helium shell flash dredges up carbon-rich intershell material and ejects this material into the circumstellar environment.

  13. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  14. The Search for Binaries in Post-Asymptotic Giant Branch Stars: Do Binary Companions Shape the Nebulae?

    Directory of Open Access Journals (Sweden)

    Bruce J. Hrivnak

    2012-03-01

    Full Text Available Binary companions are often invoked to explain the axial and point symmetry seen in the majority of planetary nebulae and proto-planetary nebulae (PPNs. To explore this hypothesis, we have undertaken a long-term (20 year study of light and velocity variations in PPNs. From the photometric study of 24 PPNs, we find that all vary in brightness, and from a subset of 12 carbon-rich PPNs of F-G spectral type we find periods of 35-155 days, with the cooler having the longer periods. The variations are seen to be due to pulsation; no photometric evidence for binarity is seen. A radial velocity study of a sub-sample of seven of the brightest of these shows that they all vary with the pulsation periods. Only one shows evidence of a longer-term variation that we tentatively identify as being due to a binary companion. We conclude that the present evidence for the binary nature of these PPNs is meager and that any undetected companions of these PPNs must be of low mass ( 30 years.

  15. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  16. The Beginning of Variable star astronomy in Hungary

    Science.gov (United States)

    Zsoldos, Endre

    Variable star astronomy began in Hungary as elsewhere: new objects have been recognized in the sky. Comets appeared in 16th - 17th century chronicles. The first mention of the new star of 1572 seems to be the "Prognosticon" of Wilhelm Misocacus, printed in 1578. New stars were discussed in the 17th century by Jesuits as well as Protestants. The work of Jacob Schnitzler is especially interesting from this point. The Cartesians dealt with new stars with less enthusiasm, they hardly mentioned them. The beginning of the 19th century saw the development of science in Hungarian, variable stars, however, were left out. The birth of variable star astronomy might be linked to the Ógyalla Observatory, originally a private observatory of Miklós Konkoly Thege. The 1885 supernova in the Andromeda Nebula were observed there, as well as the spectra of a few interesting variable stars. Theoretical astrophysics also has its beginnings in Ógyalla through the work of Radó Kövesligethy. Professional variable star astronomy started here in the early 20th century through the work of Antal Tass

  17. Large quantum Fourier transforms are never exactly realized by braiding conformal blocks

    International Nuclear Information System (INIS)

    Freedman, Michael H.; Wang, Zhenghan

    2007-01-01

    Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set {U(2), controlled-NOT}, the discrete Fourier transforms F N =(ω ij ) NxN , i,j=0,1,...,N-1, ω=e 2πi at ∼sol∼ at N , can be realized exactly by quantum circuits of size O(n 2 ), n=ln N, and so can the discrete sine or cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms F N and the discrete sine or cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that an approximation is unavoidable in the implementation of Fourier transforms by braiding conformal blocks

  18. Review of solar nebula models

    International Nuclear Information System (INIS)

    Wood, J.A.; Morfill, G.E.

    1988-01-01

    The major changes that have occurred in thinking about protosolar nebula models are discussed. The concept favored by astrophysicists for the last decade, that of a viscous accretion-disk nebula, is examined. The properties of recent accretion-disk models that are most relevant to chondrite-forming processes are noted. 27 references

  19. Exploring Sulfur & Argon Abundances in Planetary Nebulae as Metallicity- Indicator Surrogates for Iron in the Interstellar Medium

    Science.gov (United States)

    Kwitter, Karen B.; Henry, Richard C.

    1999-02-01

    Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.

  20. Kinematic evidence for feedback-driven star formation in NGC 1893

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  1. A 'FIREWORK' OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)

    International Nuclear Information System (INIS)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Viti, S.; Wesson, R.; Smith, M. D.; Zijlstra, A. A.

    2009-01-01

    We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H 2 v = 1 → 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H 2 surface brightness in the inner ring: H 2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H 2 formation and destruction rates, H 2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.

  2. An earlier explosion date for the Crab Nebula supernova

    Science.gov (United States)

    Abt, Helmut A.; Fountain, John W.

    2018-04-01

    The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.

  3. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  4. A-type central stars of planetary nebulae. 2. The central stars of NGC 2346, He 2-36 and NGC 3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1978-12-01

    Spectrograms, scanner, uvby and ANS ultraviolet measurements of the central stars of NGC 2346, He 2-36 and NGC 3132 are analysed. The observations suggest that the first one is a foreground horizontal-branch star, and the second is above the horizontal branch, presumably in a rapid evolutionary phase. Both objects are probably variable. The central star of NGC 3132 is a slightly evolved main-sequence star with a hot visual companion. The evolutionary status of this system is briefly discussed.

  5. Young planetary nebula with OH molecules - NGC 6302

    International Nuclear Information System (INIS)

    Payne, H.E.; Phillips, J.A.; Terzian, Y.

    1988-01-01

    The results of a sensitive survey of planetary nebulae in all four ground-state OH lines are reported. The results confirm that evolved planetary nebulas are not OH sources in general. However, one interesting object was not detected: an OH 1612 MHz maser in the young planetary nebula NGC 6302. This nebula may be in a brief evolutionary stage, similar to the young and compact planetary nebula Vy 2-2, where OH has already been detected. In addition, the results of further observations of NGC 6302 are reported, including VLA observations of the 1612 MHz line and continuum emission and detections of rotationally excited OH lines at 5-cm wavelength in absorption. 28 references

  6. Broad Halpha Wing Formation in the Planetary Nebula IC 4997.

    Science.gov (United States)

    Lee; Hyung

    2000-02-10

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.

  7. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-01-01

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the 13 CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  8. Mass loss from the proto-sun: Formation and evolution of the solar nebula

    International Nuclear Information System (INIS)

    Trivedi, B.M.P.

    1984-01-01

    We consider the formation and evolution of the solar nebula in the light of observations of T Tauri stars, oxygen-isotopic anomalies in meteorites, and the mass and angular momentum distribution in the present solar system. It is argued that the solar nebula formed from the mass lost by the proto-Sun. The outflow of initially partially ionized material in the presence of a strong proto-solar magnetic field would lead to the transfer of angular momentum from the central Sun to the outflowing matter. This explains the present angular momentum distribution between the Sun and the planetary system. When the outflowing matter cooled sufficiently, to less than 2000 K, approx. l0 12 cm from the Sun, the material would neutralize, and the magnetic field would then decouple from the outflowing matter. Further motion would be governed by the gravitational field of the proto-Sun, the gas pressure, and the centrifugal force. When these forces balance, the radial flow would stop, and a rotating solar nebula would form. Chemical condensation would occur in the outflowing matter when suitable pressure-temperature conditions would develop. The condensation of the refractory mineral Al 2 O 3 would start at a distance of approx.2 x l0 12 cm from the Sun, where the pressure would be approx. 3 x l0 8 atm, and temperature approx. l450 K. The condensation sequence of other lower temperature minerals would follow this. All the refractory minerals and iron would condense within the orbit of the planet Mercury. All the volatiles would condense before the outflowing matter crossed the asteroid region. The grains would move to the outer part of the nebula along with the outflowing gas

  9. Neutron stars: Observational diversity and evolution

    Science.gov (United States)

    Safi-Harb, S.

    2017-12-01

    Ever since the discovery of the Crab and Vela pulsars in their respective Supernova Remnants, our understanding of how neutron stars manifest themselves observationally has been dramatically shaped by the surge of discoveries and dedicated studies across the electromagnetic spectrum, particularly in the high-energy band. The growing diversity of neutron stars includes the highly magnetized neutron stars (magnetars) and the Central Compact Objects shining in X-rays and mostly lacking pulsar wind nebulae. These two subclasses of high-energy objects, however, seem to be characterized by anomalously high or anomalously low surface magnetic fields (thus dubbed as ‘magnetars’ and ‘anti-magnetars’, respectively), and have pulsar characteristic ages that are often much offset from their associated SNRs’ ages. In addition, some neutron stars act ‘schizophrenic’ in that they occasionally display properties that seem common to more than one of the defined subclasses. I review the growing diversity of neutron stars from an observational perspective, then highlight recent and on-going theoretical and observational work attempting to address this diversity, particularly in light of their magnetic field evolution, energy loss mechanisms, and supernova progenitors’ studies.

  10. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  11. Contraction of the solar nebula

    International Nuclear Information System (INIS)

    Rawal, J.J.

    1984-01-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection is operative and brings about the halt at various stages of contraction. It is found that the radius of the contracting solar nebula follows the Titius-Bode law. The consequences of the relation are also discussed. The aim is to attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it. (Auth.)

  12. Interim report on visioning. BRAID, EC FP7 Coordinated action project 248485, deliverable D4.1

    NARCIS (Netherlands)

    Afsarmanesh, H.; Brielmann, M.S.

    2010-01-01

    The ageing population of Europe is growing very fast. The Bridging Research in Ageing and ICT Development (BRAID) project aims at approaching this phenomenon and many of its arisen challenges. BRAID develops a comprehensive RTD roadmap for "ageing well" which identifies advanced ICT-based approaches

  13. Half-megasecond Chandra spectral imaging of the hot circumgalactic nebula around quasar MRK 231

    International Nuclear Information System (INIS)

    Veilleux, S.; Teng, S. H.; Rupke, D. S. N.; Maiolino, R.; Sturm, E.

    2014-01-01

    A deep 400 ks ACIS-S observation of the nearest quasar known, Mrk 231, is combined with archival 120 ks data to carry out the first ever spatially resolved spectral analysis of a hot X-ray-emitting circumgalactic nebula around a quasar. The 65 × 50 kpc X-ray nebula shares no resemblance with the tidal debris seen at optical wavelengths. One notable exception is the small tidal arc ∼3.5 kpc south of the nucleus where excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are detected, consistent with star formation and its associated alpha-element enhancement, respectively. An X-ray shadow is also detected at the location of the 15 kpc northern tidal tail. The hard X-ray continuum emission within ∼6 kpc of the center is consistent with being due entirely to the bright central active galactic nucleus. The soft X-ray spectrum of the outer (≳6 kpc) portion of the nebula is best described as the sum of two thermal components with temperatures ∼3 and ∼8 million K and spatially uniform super-solar alpha-element abundances, relative to iron. This result implies enhanced star formation activity over ∼10 8 yr, accompanied by redistribution of the metals on a large scale. The low-temperature thermal component is not present within ∼6 kpc of the nucleus, suggesting extra heating in this region from the circumnuclear starburst, the central quasar, or the optically identified ≳3 kpc quasar-driven outflow. The soft X-ray emission is weaker in the western quadrant, coincident with a deficit of Hα and some of the largest columns of neutral gas outflowing from the nucleus. Shocks may heat the gas to high temperatures at this location, consistent with the tentative ∼2σ detection of extended Fe XXV 6.7 keV line emission.

  14. Angular diameters of Magellanic Cloud plantary nebulae. I. Speckle interferometry

    International Nuclear Information System (INIS)

    Wood, P.R.; Bessell, M.S.; Dopita, M.A.

    1986-01-01

    Speckle interferometric angular diameters of Magellanic Cloud planetary nebulae are presented. The mass of ionized gas in each nebula has been derived from the angular diameter and published H-beta line fluxes; the derives masses range from less than 0.006 to more than 0.19 solar mass. The planetary nebulae observed were the brightest in the Magellanic Clouds; consequently, they are all relatively small, young, bright, and dense. They are almost certainly only partially ionized, so that the masses derived for the ionized parts of the nebula are lower limits to the total nebula mass. The properties of the Magellanic Cloud nebulae are compared with those of planetary nebulae at the galactic center. 27 references

  15. The Pelican Nebula and its Vicinity: a New Look at Stellar Population in the Cloud and around It

    Science.gov (United States)

    Boyle, Richard P.; Janusz, R.; Vrba, F. J.; Straizys, V.; Laugalys, V.; Kazlauskas, A.; Stott, J.; Philip, A. G. D.

    2011-01-01

    A region of active star formation is located in the complex of dust and molecular clouds known as the Pelican Nebula and the dark cloud L935. In this paper we describe the results of our investigation in the area bounded by the coordinates (2000) RA 20h50m - 20h54m and DEC +44d20m - 44m55d. Our CCD photometry in the Vilnius seven-color system, obtained on the 1.8 m Vatican Advanced Technology Telescope, Mt. Graham, and the 1 m telescope of the USNO Flagstaff Station, is used to classify stars down to V = 17 mag in spectral and luminosity classes. The interstellar extinction values and distances to these stars are determined. Additionally, the data from the 2MASS, MegaCam, IPHAS and Spitzer surveys are analyzed. We present star population maps in the foreground and background of the complex and within it. The known and newly identified YSOs in the area are tabulated.

  16. PSR J2124-3358: A Bow Shock Nebula with an X-ray Tail

    Science.gov (United States)

    Chatterjee, S.; Gaensler, B. M.; Vigelius, M.; Cordes, J. M.; Arzoumanian, Z.; Stappers, B.; Ghavamian, P.; Melatos, A.

    2005-12-01

    As neutron stars move supersonically through the interstellar medium, their relativistic winds are confined by the ram pressure of the interstellar medium. The outer shocked layers may emit in Hα , producing a visible bow shock nebula, while the confined relativistic wind may produce radio or X-ray emission. The Hα bow shock nebula powered by the recycled pulsar J2124-3358 is asymmetric about the velocity vector and shows a marked kink. In recent observations with the Chandra X-ray Observatory, we have detected a long, curved X-ray tail associated with the pulsar. The tail is not aligned with the pulsar velocity, but is confined within the optical bow shock. The X-ray spectrum of the tail is well-fit by a power law, consistent with synchrotron emission from the wind termination shock and the post-shock flow. The presence of Hα and X-ray emission allows us to trace both the external ambient medium and the confined wind. In magnetohydrodynamic simulations, we verify that a bulk flow and non-uniformities in the ambient medium can produce the observed shape of the nebula, possibly in combination with an anisotropic pulsar wind. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO5-6075X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  17. Hitomi X-ray Observation of the Pulsar Wind Nebula G21.5$-$0.9

    OpenAIRE

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra

    2018-01-01

    We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5$-$0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager (SXI) and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the...

  18. A new ejecta shell surrounding a Wolf-Rayet star in the LMC

    Science.gov (United States)

    Garnett, Donald R.; Chu, You-Hua

    1994-01-01

    We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.

  19. Is stellar multiplicity universal? Tight stellar binaries in the Orion Nebula Cluster

    Science.gov (United States)

    Duchêne, Gaspard; Lacour, S.; Moraux, E.; Goodwin, S.; Bouvier, J.

    2018-05-01

    We present a survey for the tightest visual binaries among 0.3-2 M⊙ members the Orion Nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0{^''.}025-0{^''.}15 companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10-60 au range of 21^{+8}_{-5}%, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disk-bearing targets, this indicates that disk disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60 au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the cluster's dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the galactic field. It thus appears that most field stars formed in regions that differ from well-studied SFRs in the Solar neighborhood, possibly due to changes in core fragmentation on Gyr timescales.

  20. Braid group, knot theory and statistical mechanics II

    CERN Document Server

    Yang Chen Ning

    1994-01-01

    The present volume is an updated version of the book edited by C N Yang and M L Ge on the topics of braid groups and knot theory, which are related to statistical mechanics. This book is based on the 1989 volume but has new material included and new contributors.