WorldWideScience

Sample records for bragg peak location

  1. BRAGG-PEAK LOCATION EMPLOYING A MAXIMUM-ENTROPY FORMALISM

    OpenAIRE

    Lehmann, M.; Robinson, T.; Wilkins, S.

    1986-01-01

    The maximum entropy method has been tried on simulated data from a small 2-dimensional position-sensitive detector. Constraints were introduced to account for smoothness and the fact that only one peak was found within the frame of the recording. Analysis of a large number of weak Bragg peaks with I/σ(I) < 9 and of different size and background showed the method to give virtually bias-free results. The computing time is sufficiently low to allow real time use on measurements of a single Bragg...

  2. Are Bragg Peaks Gaussian?

    OpenAIRE

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure....

  3. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  4. Degradation of the Bragg peak due to inhomogeneities.

    Science.gov (United States)

    Urie, M; Goitein, M; Holley, W R; Chen, G T

    1986-01-01

    The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles. PMID:3952143

  5. Bragg-peak spectroscopy of low-energy heavy ions

    International Nuclear Information System (INIS)

    A small axial ionization chamber with the electric field lines parallel to the particle trajectory (Bragg ionization chamber) allowing the determination of the nuclear charge and the energy of low energetic low mass heavy ions (E/A approximately 0.8 - 2.0 MeV/amu) is presented together with an adapted shaping amplifier. Using the usual technique of pulse shaping with a long and a short time constant the energy and the Bragg peak resolutions for projectiles between 24He and 1632S were determined. With commercially available low purity n-pentane purified from water and oxygene by a threefold destillation an energy resolution of ΔE/E = 1% and a charge resolving power of Z/ΔZ = 47 are attainable for 41.4 MeV 28Si ions elastically scattered from 197Au. No significant pulse height defect is observable for the energy determination of particles with Z <= 17. (author)

  6. Variable Depth Bragg Peak Method for Single Event Effects Testing

    Science.gov (United States)

    Buchner, S.; Kanyogoro, N.; Foster, C.; O'Neill, P.

    2011-01-01

    Traditionally, accelerator SEE testing is accomplished by removing the tops of packages so that the IC chips are accessible to heavy ions. However, ICs in some advanced packages cannot be de-lidded so a different approach is used that involves grinding and/or chemically etching away part of the package and the chip from the back side. The parts are then tested from the back side with ions having sufficient range to reach the sensitive volume. More recently, the entire silicon substrate in an SOI/SRAM was removed, making it possible to use low-energy ions with shorter ranges. Where removal of part of the package is not possible, facilities at Michigan State, NASA Space Radiation Laboratory, GANIL (France) and GSI (Germany) offer high-energy heavy ions with long ranges so that the ions can reach the devices' sensitive volumes without much change in the LET. Unfortunately, a run will typically involve only one ion species having a single energy and LET due to the long time it takes to tune a new energy. The Variable Depth Bragg Peak (VDBP) method is similar to the above method in that it involves the use of high-energy heavy ions that are able to pass through the packaging material and reach the device, obviating the need to remove the package. However, the method provides a broad range of LETs from a single ion by inserting degraders in the beam that modify the ion energy and, therefore, the LET. The crux of the method involves establishing a fiduciary point for degrader thickness, i.e., where the Bragg peak is located precisely at the sensitive volume in the device, for which the measured SEU cross-section and the ion LET are both also maxima and can be calculated using a Monte-Carlo program, TRIM. Once the fiduciary point has been established, calibrated high density polyethylene (HDPE) degraders are inserted into or removed from the beam to vary the ion LET at the device in a known manner. After each change of degrader thickness, the SEU cross-section is measured

  7. Cosmic Microwave Background Acoustic Peak Locations

    CERN Document Server

    Pan, Zhen; Mulroe, Brigid; Narimani, Ali

    2016-01-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and twelve extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g., that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 degrees out of phase. However, there are large differences in expectations for extrema locations from simple analytic models vs. numerical calculations. Here we quantitatively explore the origin of these differences in gravitational potential tr...

  8. Cosmic microwave background acoustic peak locations

    Science.gov (United States)

    Pan, Z.; Knox, L.; Mulroe, B.; Narimani, A.

    2016-07-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and 12 extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g. that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 deg out of phase. However, there are large differences in expectations for extrema locations from simple analytic models versus numerical calculations. Here, we quantitatively explore the origin of these differences in gravitational potential transients, neutrino free-streaming, the breakdown of tight coupling, the shape of the primordial power spectrum, details of the geometric projection from three to two dimensions, and the thickness of the last scattering surface. We also compare the peak locations determined from Planck measurements to expectations under the Λ cold dark matter model. Taking into account how the peak locations were determined, we find them to be in agreement.

  9. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging

    OpenAIRE

    Stephan Kellnberger; Walter Assmann; Sebastian Lehrack; Sabine Reinhardt; Peter Thirolf; Daniel Queirós; George Sergiadis; Günther Dollinger; Katia Parodi; Vasilis Ntziachristos

    2016-01-01

    Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based ...

  10. Practical biological spread-out Bragg peak design of carbon beam

    OpenAIRE

    Kim, Chang Hyeuk; Lee, Hwa-Ryun; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated fo...

  11. Extending Bragg peak of heavy ion beam and melanoma cell inactivation measurement

    Institute of Scientific and Technical Information of China (English)

    LiQiang; WeiZeng-Quan; 等

    1998-01-01

    A rotating range modulator was designed and manufactured.which is applied to extend Bragg peak of heavy ion beam.Bragg curves of 75MeV/u 16O and 75MeV/u 12C ion beams through this range modulator were measured respectively and two evident spread-out Bragg peaks corresponding to the modulated beams above are shown.In addition,inactivation effect of the modulated 75MeV/u 16O ion beam at nine different penetration depths on melanoma cells(B16) was measured.Results indicate that lethal effects at the spread-out Bragg peak region are larger than at the plateau of the particle beam entrance.

  12. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image

    Science.gov (United States)

    Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  13. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image.

    Science.gov (United States)

    Patch, S K; Kireeff Covo, M; Jackson, A; Qadadha, Y M; Campbell, K S; Albright, R A; Bloemhard, P; Donoghue, A P; Siero, C R; Gimpel, T L; Small, S M; Ninemire, B F; Johnson, M B; Phair, L

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in [Formula: see text]. The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm. PMID:27385261

  14. Heavy ion induced damage to plasmid DNA: plateau region vs. spread out Bragg-peak

    Science.gov (United States)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlathölter, T.

    2011-08-01

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage contribution increasing towards the Bragg peak. Therefore, 12C ions at the spread-out Bragg peak (dose averaged LET∞ = 189 ± 15 keV/ μm) and in the plateau region of the Bragg curve (LET = 40 keV/ μm) were employed and the radical scavenger concentration in the plasmid solution was varied to quantify the indirect effect. In order to minimize the influence of 12C break-up fragments, a relatively low initial energy of 90 MeV/nucleon was employed for the carbon ions. DNA damage has been quantified by subsequent electrophoresis on agarose gels. We find that strand breaks due to both indirect and direct effects are systematically higher in the plateau region as compared to the Bragg peak region with the difference being smallest at high scavenging capacities. In view of the fact that the relative biological effectiveness for many biological endpoints is maximum at the Bragg peak our findings imply that DNA damage at the Bragg peak is qualitatively most severe.

  15. Heavy ion induced damage to plasmid DNA: plateau region vs. spread out Bragg-peak

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.M.; Van Goethem, M.J.; Van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.; Schlatholtera, T. [KVI University of Groningen, Zernikelaan 25, 9747AA Groningen (Netherlands)

    2011-08-15

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage contribution increasing towards the Bragg peak. Therefore, {sup 12}C ions at the spread-out Bragg peak (dose averaged LET{sub {infinity} }= (189 {+-} 15) keV/{mu}m) and in the plateau region of the Bragg curve (LET = 40 keV/{mu}m) were employed and the radical scavenger concentration in the plasmid solution was varied to quantify the indirect effect. In order to minimize the influence of {sup 12}C break-up fragments, a relatively low initial energy of 90 MeV/nucleon was employed for the carbon ions. DNA damage has been quantified by subsequent electrophoresis on agarose gels. We find that strand breaks due to both indirect and direct effects are systematically higher in the plateau region as compared to the Bragg peak region with the difference being smallest at high scavenging capacities. In view of the fact that the relative biological effectiveness for many biological endpoints is maximum at the Bragg peak our findings imply that DNA damage at the Bragg peak is qualitatively most severe. (authors)

  16. Heavy ion induced damage to plasmid DNA: plateau region vs. spread out Bragg-peak

    International Nuclear Information System (INIS)

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage contribution increasing towards the Bragg peak. Therefore, 12C ions at the spread-out Bragg peak (dose averaged LET∞ = (189 ± 15) keV/μm) and in the plateau region of the Bragg curve (LET = 40 keV/μm) were employed and the radical scavenger concentration in the plasmid solution was varied to quantify the indirect effect. In order to minimize the influence of 12C break-up fragments, a relatively low initial energy of 90 MeV/nucleon was employed for the carbon ions. DNA damage has been quantified by subsequent electrophoresis on agarose gels. We find that strand breaks due to both indirect and direct effects are systematically higher in the plateau region as compared to the Bragg peak region with the difference being smallest at high scavenging capacities. In view of the fact that the relative biological effectiveness for many biological endpoints is maximum at the Bragg peak our findings imply that DNA damage at the Bragg peak is qualitatively most severe. (authors)

  17. Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis

    NARCIS (Netherlands)

    Sulyanova, Elena A.; Shabalin, Anatoly; Zozulya, Alexey V.; Meijer, Janne-Mieke; Dzhigaev, Dmitry; Gorobtsov, Oleg; Kurta, Ruslan P.; Lazarev, Sergey; Lorenz, Ulf; Singer, Andrej; Yefanov, Oleksandr; Zaluzhnyy, Ivan; Besedin, Ilya; Sprung, Michael; Petukhov, A. V.; Vartanyants, Ivan A.

    2015-01-01

    In situ X-ray diffraction studies of structural evolution of colloidal crystal films formed by polystyrene spherical particles upon incremental heating are reported. The Bragg peak parameters, such as peak position, integrated intensity, and radial and azimuthal widths were analyzed as a function of

  18. Dose ratio proton radiography using the proximal side of the Bragg peak

    OpenAIRE

    Doolan, P. J.; Royle, G; Gibson, A.; Lu, H-M; Prieels, D.; Bentefour, E. H.

    2015-01-01

    Purpose: In recent years there has been a movement towards single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method, in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp fall-off. We investigate the limits and applicability of the dose rat...

  19. Peak detection in fiber Bragg grating using a fast phase correlation algorithm

    Science.gov (United States)

    Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F.

    2014-05-01

    Fiber Bragg grating sensing principle is based on the exact tracking of the peak wavelength location. Several peak detection techniques have already been proposed in literature. Among these, conventional peak detection (CPD) methods such as the maximum detection algorithm (MDA), do not achieve very high precision and accuracy, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. On the other hand, recently proposed algorithms, like the cross-correlation demodulation algorithm (CCA), are more precise and accurate but require higher computational effort. To overcome these limitations, we developed a novel fast phase correlation algorithm (FPC) which performs as well as the CCA, being at the same time considerably faster. This paper presents the FPC technique and analyzes its performances for different SNR and wavelength resolutions. Using simulations and experiments, we compared the FPC with the MDA and CCA algorithms. The FPC detection capabilities were as precise and accurate as those of the CCA and considerably better than those of the CPD. The FPC computational time was up to 50 times lower than CCA, making the FPC a valid candidate for future implementation in real-time systems.

  20. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    NARCIS (Netherlands)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T.

    2010-01-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with (12)C ions under spread-out Bragg peak conditions

  1. Dosimetric response of radiochromic films to protons of low energies in the Bragg peak region

    Science.gov (United States)

    Battaglia, M. C.; Schardt, D.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Quesada, J. M.; Lallena, A. M.; Miras, H.; Guirado, D.

    2016-06-01

    One of the major advantages of proton or ion beams, applied in cancer treatment, is their excellent depth-dose profile exhibiting a low dose in the entrance channel and a distinct dose maximum (Bragg peak) near the end of range in tissue. In the region of the Bragg peak, where the protons or ions are almost stopped, experimental studies with low-energy particle beams and thin biological samples may contribute valuable information on the biological effectiveness in the stopping region. Such experiments, however, require beam optimization and special dosimetry techniques for determining the absolute dose and dose homogeneity for very thin biological samples. At the National Centre of Accelerators in Seville, one of the beam lines at the 3 MV Tandem Accelerator was equipped with a scattering device, a special parallel-plate ionization chamber with very thin electrode foils and target holders for cell cultures. In this work, we present the calibration in absolute dose of EBT3 films [Gafchromic radiotherapy films, http://www.ashland.com/products/gafchromic-radiotherapy-films] for proton energies in the region of the Bragg peak, where the linear energy transfer increases and becomes more significant for radiobiology studies, as well as the response of the EBT3 films for different proton energy values. To irradiate the films in the Bragg peak region, the energy of the beam was degraded passively, by interposing Mylar foils of variable thickness to place the Bragg peak inside the active layer of the film. The results obtained for the beam degraded in Mylar foils are compared with the dose calculated by means of the measurement of the beam fluence with an ionization chamber and the energy loss predicted by srim2008 code.

  2. Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis

    OpenAIRE

    Sulyanova, Elena; Shabalin, Anatoly; Yefanov, Oleksandr; Zaluzhnyy, Ivan; Besedin, Ilya; Sprung, Michael; Petukhov, Andrei; Vartaniants, Ivan; Zozulya, Alexey; Meijer, Janne-Mieke; Dzhigaev, Dmitry; Gorobtsov, Oleg; Kurta, Ruslan; Lazarev, Sergey; Lorenz, Ulf

    2015-01-01

    In situ X-ray diffraction studies of structural evolution of colloidal crystal films formed by polystyrene spherical particles upon incremental heating are reported. The Bragg peak parameters, such as peak position, integrated intensity, and radial and azimuthal widths were analyzed as a function of temperature. A quantitative study of colloidal crystal lattice distortions and mosaic spread as a function of temperature was carried out using Williamson–Hall plots based on mosaic block model. T...

  3. Measurements of Ion Stopping Around the Bragg Peak in High-Energy-Density Plasmas.

    Science.gov (United States)

    Frenje, J A; Grabowski, P E; Li, C K; Séguin, F H; Zylstra, A B; Gatu Johnson, M; Petrasso, R D; Glebov, V Yu; Sangster, T C

    2015-11-13

    For the first time, quantitative measurements of ion stopping at energies around the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T(e)) and electron number density (n(e)) in the range of 0.5-4.0 keV and 3×10(22) to 3×10(23) cm(-3) have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T(e) with n(e). The importance of including quantum diffraction is also demonstrated in the stopping-power modeling of high-energy-density plasmas. PMID:26613448

  4. The mass dependence of the signal peak height of a Bragg-curve ionization chamber

    International Nuclear Information System (INIS)

    The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required. (orig.)

  5. The mass dependence of the signal peak height of a Bragg-curve ionization chamber

    Science.gov (United States)

    Shenhav, N. J.; Stelzer, H.

    1985-01-01

    The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required.

  6. Practical biological spread-out Bragg peak design of carbon beam

    CERN Document Server

    Kim, Chang Hyeuk; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated for each slice at the target region. To generate appropriate biological SOBP, a set of weighting factor, which is a power function in terms of energy step, was applied to the obtained each physical dose. The designed biological SOBP showed 1.34 % of uniformity.

  7. Dose ratio proton radiography using the proximal side of the Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P. J., E-mail: paul.doolan.09@ucl.ac.uk; Royle, G.; Gibson, A. [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Lu, H.-M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Prieels, D.; Bentefour, E. H. [Ion Beam Applications (IBA), 3 Chemin du Cyclotron, Louvain la Neuve B-1348 (Belgium)

    2015-04-15

    Purpose: In recent years, there has been a movement toward single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp falloff. The authors investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak, the authors generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, the authors were able to generate lookup graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these lookup graphs, the authors investigated the applicability of the technique for a range of patient treatment sites. The authors validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation, it was found that, for a pediatric brain, it is possible to use the technique to image a region with a

  8. Performance analysis of peak tracking techniques for fiber Bragg grating interrogation systems

    OpenAIRE

    Olivero, Massimo; Tosi, Daniele; Perrone, Guido

    2012-01-01

    In this paper, we propose a spectral correlation-based technique for tracking the wavelength shift of a fiber Bragg grating. We compared this approach, by means of a Monte Carlo numerical simulation, to the typical peak tracking techniques applied in classic interrogation systems. As result, we obtained a considerable gain in terms of noise tolerance (about 20 dB), which can be further incremented by selecting large-bandwidth gratings. This permits to increase the power budget of a fiber Brag...

  9. Focused radiation hepatitis after Bragg-peak proton therapy for hepatocellular carcinoma: CT findings

    International Nuclear Information System (INIS)

    Radiation hepatitis is clearly demonstrated by noncontrast and contrast enhanced CT following radiotherapy for liver diseases. Radiation hepatitis is dependent on dose distribution and is usually demonstrated as nonsegmental bandlike lesion after photon therapy. We report a case of focused, oval-shaped radiation hepatitis that was induced by photon therapy. The attenuation difference was localized in a high-dose area caused by Bragg-peak proton therapy. 17 refs., 2 figs

  10. Facility Location with Double-peaked Preferences

    DEFF Research Database (Denmark)

    Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie;

    2015-01-01

    ; this makes the problem essentially more challenging. As our main contribution, we present a simple truthful-in-expectation mechanism that achieves an approximation ratio of 1+b=c for both the social and the maximum, cost, where b is the distance of the agent from the peak and c is the minimum cost of...

  11. Conical Correlations, Bragg Peaks, and Transverse Flow Deflections in Jet Tomography

    OpenAIRE

    Betz, Barbara; Noronha, Jorge; Torrieri, Giorgio; Gyulassy, Miklos; Rischke, Dirk H.

    2009-01-01

    We use (3+1)-dimensional ideal hydrodynamics to describe a variety of different jet energy loss scenarios for a jet propagating through an opaque medium. The conical correlations obtained for fully stopped jets, revealing a Bragg peak, are discussed as well as results from pQCD and AdS/CFT. Moreover, we investigate transverse flow deflection. It is demonstrated that a double-peaked away-side structure can be formed due to the different contributions of several possible jet trajectories throug...

  12. Conical Correlations, Bragg Peaks, and Transverse Flow Deflections in Jet Tomography

    CERN Document Server

    Betz, Barbara; Torrieri, Giorgio; Gyulassy, Miklos; Rischke, Dirk H

    2009-01-01

    We use (3+1)-dimensional ideal hydrodynamics to describe a variety of different jet energy loss scenarios for a jet propagating through an opaque medium. The conical correlations obtained for fully stopped jets, revealing a Bragg peak, are discussed as well as results from pQCD and AdS/CFT. Moreover, we investigate transverse flow deflection. It is demonstrated that a double-peaked away-side structure can be formed due to the different contributions of several possible jet trajectories through an expanding medium.

  13. Cell inactivation and induction of DNA double strand breaks by heavy ions near the bragg peak

    International Nuclear Information System (INIS)

    CHO-K1 cells were irradiated with protons and C, N, and O ions near the Bragg peak at the Medium Energy Beam (MEXP) Course. C, N, O ions were transported to MEXP course at 6 MeV/n and led into air, and then irradiated to the cells. Ion energy (or the LETs) was selected by changing the distance between the beam exit and the sample position. For protons, the ion energy was decreased to 4.3 MeV from 6 MeV by controlling linac accelerators. For measurement of cell inactivation, 4.3 MeV protons were decreased its energy by air as an absorber to 3.4, 2.6, and 2.0 and cell inactivation cross-section (σ) was higher with low energy protons. For N ion, the σ values were obtained at two different positions of Bragg curves, which showed lower σ at higher LET. These may be due to drastic thin down of ion track radius at near the Bragg peak. (author)

  14. Fate of the Peak Effect in a Type-II Superconductor: Multicriticality in the Bragg-Glass Transition

    OpenAIRE

    Park, S R; S.M. CHOI; Dender, D. C.; Lynn, J. W.; Ling, X. S.

    2003-01-01

    We have used small-angle-neutron-scattering (SANS) and ac magnetic susceptibility to investigate the global magnetic field H vs temperature T phase diagram of a single crystal Nb in which a first-order transition of Bragg-glass melting (disordering), a peak effect, and surface superconductivity are all observable. It was found that the disappearance of the peak effect is directly related to a multicritical behavior in the Bragg-glass transition. Four characteristic phase boundary lines have b...

  15. Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres

    Science.gov (United States)

    Faustov, A. V.; Gusarov, A. I.; Mégret, P.; Wuilpart, M.; Kinet, D.; Zhukov, A. V.; Novikov, S. G.; Svetukhin, V. V.; Fotiadi, A. A.

    2016-02-01

    We report the first observation of a significant gamma radiation-induced blue shift of the reflection/transmission peak of fibre Bragg gratings inscribed into pure-silica core fibres via multiphoton absorption of femtosecond pulses. At a total dose of ~100 kGy, the shift is ~20 pm. The observed effect is attributable to the ionising radiation-induced decrease in the density of the silica glass when the rate of colour centre formation is slow. We present results of experimental measurements that provide the key parameters of the dynamics of the gratings for remote dosimetry and temperature sensing.

  16. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging.

    Science.gov (United States)

    Kellnberger, Stephan; Assmann, Walter; Lehrack, Sebastian; Reinhardt, Sabine; Thirolf, Peter; Queirós, Daniel; Sergiadis, George; Dollinger, Günther; Parodi, Katia; Ntziachristos, Vasilis

    2016-01-01

    Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based on detection of ion induced ultrasound waves as a technique to provide feedback on the ion beam profile. We demonstrate for 20 MeV protons that ion range imaging is possible with submillimeter accuracy and can be combined with clinical ultrasound and optoacoustic tomography of similar precision. Our results indicate a simple and direct possibility to correlate, in-vivo and in real-time, the conventional ultrasound echo of the tumor region with ionoacoustic tomography. Combined with optoacoustic tomography it offers a well suited pre-clinical imaging system. PMID:27384505

  17. Improvement on peak-to-trough ratio of sampled fiber Bragg gratings with multiple phase shifts

    Institute of Scientific and Technical Information of China (English)

    Bin Xie; Wei Pan; Bin Luo; Xihua Zou

    2008-01-01

    Via a cascaded structure, the peak-to-trough ratio is considerably improved for sampled fiber Bragg gratings (SFBGs) based on multiple-phase-shift (MPS) technique. This cascaded filter is composed of two identical SFBGs which are inserted with the increasing or decreasing arrangement of phase shifts.With this inverse arrangement of MPS in grating design, the phase fluctuation of individual SFBG can be compensated, and as a result an excellent phase matching condition is realized. In this way, the peak-to-trough ratio in reflection spectra is improved from 6 to 12 dB when multiplication factor m = 4, and from 5 dB to 10 dB when m=8.

  18. WE-D-BRF-02: Acoustic Signal From the Bragg Peak for Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, S; Assmann, W; Fink, A; Thirolf, P; Parodi, K [Ludwig-Maximilians University, Chair for Medical Physics, Munich (Germany); Kellnberger, S; Omar, M; Ntziachristos, V [Technical University Munich, Chair for Biological Imaging, Munich (Germany); Helmholtz Center Munich, Institute for Biological and Medical Imaging, Neuherberg (Germany); Gaebisch, C [Munich University of Applied Science, Institute for Micro- and Nano-technology, Munich (Germany); Moser, M; Dollinger, G [Universitaet der Bundeswehr, Institute for Applied Physics and Instrumentation, Neubiberg (Germany); Sergiadis, G [Signal Processing and Biomedical Technology Unit, Aristotle University, Thessaloniki (Greece)

    2014-06-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams. Aim of this work is to study the feasibility of determining the ion range with sub-mm accuracy by use of high frequency ultrasonic (US) transducers and to image the Bragg peak by tomography. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity, length and repetition rate. The acoustic signal of single proton pulses was measured by different PZT-based US detectors (3.5 MHz and 10 MHz central frequencies). For tomography a 64 channel US detector array was used and moved along the ion track by a remotely controlled motor stage. Results: A clear signal of the Bragg peak was visible for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Range measurements were reproducible within +/− 20 micrometer and agreed well with Geant4 simulations. The tomographic reconstruction does not only allow to measure the ion range but also the beam spot size at the Bragg peak position. Conclusion: Range verification by acoustic means is a promising new technique for treatment modalities where the tumor can be localized by US imaging. Further improvement of sensitivity is required to account for higher attenuation of the US signal in tissue, as well as lower energy density in the Bragg peak in realistic treatment cases due to higher particle energy and larger spot sizes. Nevertheless, the acoustic range verification approach could offer the possibility of combining anatomical US imaging with Bragg Peak imaging in the near future. The work was funded by the DFG cluster of excellence Munich Centre for Advanced Photonics (MAP)

  19. WE-D-BRF-02: Acoustic Signal From the Bragg Peak for Range Verification in Proton Therapy

    International Nuclear Information System (INIS)

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams. Aim of this work is to study the feasibility of determining the ion range with sub-mm accuracy by use of high frequency ultrasonic (US) transducers and to image the Bragg peak by tomography. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity, length and repetition rate. The acoustic signal of single proton pulses was measured by different PZT-based US detectors (3.5 MHz and 10 MHz central frequencies). For tomography a 64 channel US detector array was used and moved along the ion track by a remotely controlled motor stage. Results: A clear signal of the Bragg peak was visible for an energy deposition as low as 1012 eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Range measurements were reproducible within +/− 20 micrometer and agreed well with Geant4 simulations. The tomographic reconstruction does not only allow to measure the ion range but also the beam spot size at the Bragg peak position. Conclusion: Range verification by acoustic means is a promising new technique for treatment modalities where the tumor can be localized by US imaging. Further improvement of sensitivity is required to account for higher attenuation of the US signal in tissue, as well as lower energy density in the Bragg peak in realistic treatment cases due to higher particle energy and larger spot sizes. Nevertheless, the acoustic range verification approach could offer the possibility of combining anatomical US imaging with Bragg Peak imaging in the near future. The work was funded by the DFG cluster of excellence Munich Centre for Advanced Photonics (MAP)

  20. Peak wavelength interrogation of fiber Bragg grating sensors during impact events

    International Nuclear Information System (INIS)

    In this paper, we embed fiber Bragg grating (FBG) sensors in graphite fiber–epoxy woven composite laminates to detect evolving damage modes. The peak wavelengths of the FBG sensors are interrogated at 625 and 295 kHz, while the laminates are subjected to 11.0 J low-velocity impact events. It is demonstrated that 295 kHz interrogation is sufficient for accurately collecting the dynamic response of the sensors. The FBG sensors embedded at the laminate midplanes successfully reconstructed the global laminate response to impact. The maximum and full width at half-maximum (FWHM) for the relative strain histories demonstrated the same trends as the maximum and FWHM of the contact force histories measured from the impactor. More noise was present in the strain histories obtained from the FBG sensors than the contact force histories, as the embedded FBGs were sensitive to local perturbations in the stress state. The FBG sensors embedded below the midplane of the laminate were closer to the damage regions and measured complex strain histories. In one case, this strain history revealed the presence of delamination

  1. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    Science.gov (United States)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlathölter, T.

    2010-10-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with 12C ions under spread-out Bragg peak conditions (densely ionizing) and with 137Cs γ-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for γ-photons than for 12C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for γ-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For 12C induced damage, the fraction of SSB and DSB that is unaffected by radical scavengers and thus due to direct effect is quantified.

  2. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.M.; Van Goethem, M.J.; Van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T. [KVI, University of Groningen, Groningen (Netherlands)

    2010-10-15

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with {sup 12}C ions under spread-out Bragg peak conditions (densely ionizing) and with {sup 137}Cs {gamma}-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for {gamma}-photons than for {sup 12}C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for {gamma}-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For {sup 12}C induced damage, the fraction of SSB (single strand break) and DSB (double strand break) that is unaffected by radical scavengers and thus due to direct effect is quantified. (authors)

  3. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    International Nuclear Information System (INIS)

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with 12C ions under spread-out Bragg peak conditions (densely ionizing) and with 137Cs γ-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for γ-photons than for 12C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for γ-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For 12C induced damage, the fraction of SSB (single strand break) and DSB (double strand break) that is unaffected by radical scavengers and thus due to direct effect is quantified. (authors)

  4. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

    OpenAIRE

    Aleksander Paterno; Hypolito Kalinowski; Lucas Negri; Ademir Nied

    2011-01-01

    This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displ...

  5. In Search of Multi-Peaked Reflective Spectrum with Optic Fiber Bragg Grating Sensor for Dynamic Strain Measurement

    Science.gov (United States)

    Tai, Hsiang

    2006-01-01

    In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an ideal static laboratory environment, the presence of vibration or often disturbance always exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a non-unique determination of strain value. In this report we attempt to investigate the origin of this phenomenon by physical arguments and simple numerical simulation. We postulate that the fiber gratings execute small amplitude transverse vibrations changing the optical path in which the reflected light traverses slightly and non-uniformly. Ultimately, this causes the multi-peak reflected spectrum.

  6. Operation manual for EDXRDDA - a software package for Bragg peak analysis of energy dispersive powder X-ray diffraction data

    International Nuclear Information System (INIS)

    EDXRDDA is a software package for analysis of raw data for energy dispersive x-ray diffraction from powder samples. It resolves the spectra into individual peaks by a constrained non-linear least squares method (Hughes and Sexton, 1988). The profile function adopted is the Gaussian/Lorentzian product with the mixing ratio refinable in the program. The program is implemented on an IBM PC and is highly interactive with extensive plotting facilities. This report is a user's guide for running the program. In the first step after inputting the spectra, the full spectra is plotted on the screen. The user then chooses a portion of this for peak resolution. The initial guess for the peak intensity, peak position are input with the help of a cursor or a mouse. Upto twenty peaks can be fitted at a time in an interval of 500 channels. For overlapping peaks, various constraints can be applied. Bragg peaks and fluorescence peaks with different half widths can be handled simultaneously. The program on execution produces a look up table which contains the refined values of the peak position, half width, peak intensity, integrated intensity, and their error estimates of each peak. The program is very general and can also be used for curve fitting of data from many other experiments. (author). 2 refs., 7 figs., 2 appendices

  7. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    Science.gov (United States)

    Jia, S. Bijan; Romano, F.; Cirrone, Giuseppe A. P.; Cuttone, G.; Hadizadeh, M. H.; Mowlavi, A. A.; Raffaele, L.

    2016-01-01

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  8. Temperature Dependence of the Bragg Peak-Intensity Close to the α-Incommensurate-β Transition in Quartz

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2014-01-01

    Full Text Available Quartz as a mineral has a stable crystalline phase at room temperature and atmospheric pressure; at low temperatures it is in the α phase and when it is heated up, it transforms into the β phase through the intermediate (incommensurate phase within the temperature interval of nearly 1.3 K at around 847 K. The order parameter Q occurs due to a tilting of SiO4 tetrahedra around the threefold axis, which can be related to variation of the peak-intensity with the temperature in quartz. In this study, we analyze the temperature dependence of the Bragg peak-intensity measured through the α-β transition in quartz, as obtained from the literature according to a power-law formula. From our analysis, we deduce the values of the critical exponent β for the order parameter (Bragg peak-intensity for the α-incommensurate (IC-β transition. Our β values indicate that the β-IC phase transition is of a second order and that the IC-α phase transition is of a weak first order, as also reported in the literature.

  9. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

    Science.gov (United States)

    Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander

    2011-01-01

    This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806

  10. Real time monitoring of the Bragg-peak position in ion therapy by means of single photon detection

    OpenAIRE

    Testa, M.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Le Foulher, F.; Ray, C.; Testa, E; Freud, N.; Létang, J.M.; Richard, M.-H.; Karkar, S.; Plescak, R.; Schardt, D.

    2010-01-01

    For real-time monitoring of the longitudinal position of the Bragg-peak during an ion therapy treatment, a novel non-invasive technique has been recently proposed that exploits the detection of prompt -rays issued from nuclear fragmentation. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the carbon ion range and the prompt...

  11. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

    Directory of Open Access Journals (Sweden)

    Aleksander Paterno

    2011-03-01

    Full Text Available This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented.

  12. Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

    OpenAIRE

    Chaudhary, Pankaj; I Marshall, Thomas; Perozziello, Francesca M; Manti, Lorenzo; Currell, Frederick J.; Hanton, Fiona; McMahon, Stephen J; Kavanagh, Joy N.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Prise, Kevin M.; SCHETTINO, Giuseppe

    2014-01-01

    iological optimization of proton therapy critically depends on detailed evaluation of relative biological effectiveness (RBE) variations along the Bragg curve. The clinically accepted RBE value of 1.1 is an oversimplification, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak. We observed significant cell killing RBE variations dependent on beam modulation, intrinsic radiosensitivity, and LET in agreement with the LEM predicted valu...

  13. SLR data screening; location of peak of data distribution

    Science.gov (United States)

    Sinclair, Andrew T.

    1993-01-01

    At the 5th Laser Ranging Instrumentation Workshop held at Herstmonceux in 1984, consideration was given to the formation of on-site normal points by laser stations, and an algorithm was formulated. The algorithm included a recommendation that an iterated 3.0 x rms rejection criterion should be used to screen the data, and that arithmetic means should be formed within the normal point bins of the retained data. From Sept. 1990 onwards, this algorithm and screening criterion have been brought into effect by various laser stations for forming on-site normal points, and small variants of the algorithm are used by most analysis centers for forming normal points from full-rate data, although the data screening criterion they use ranges from about 2.5 to 3.0 x rms. At the CSTG Satellite Laser Ranging (SLR) Subcommission, a working group was set up in Mar. 1991 to review the recommended screening procedure. This paper has been influenced by the discussions of this working group, although the views expressed are primarily those of this author. The main thrust of this paper is that, particularly for single photon systems, a more important issue than data screening is the determination of the peak of a data distribution and hence, the determination of the bias of the peak from the mean. Several methods of determining the peak are discussed.

  14. The locations of halo formation and the peaks formalism

    CERN Document Server

    Hahn, Oliver

    2013-01-01

    We investigate a fundamental problem of structure formation: predicting the mass function of collapsed, virialized structures from the properties of the Lagrangian density field. In this paper, we focus on structure formation from a perturbation spectrum with a small-scale cut-off (as in warm dark matter cosmologies) in which the number of density peaks - and the resulting number of virialized objects - is finite. This power spectrum cut-off results in a strong suppression of low mass objects, providing additional leverage to rigorously test which perturbations collapse and to what mass. We find that all haloes are consistent with forming near peaks of the initial density field. The density of a proto-halo depends strongly on the ellipticity of the Lagrangian velocity shear field, but not on its prolateness. We demonstrate that, while standard excursion set theory with correlated steps completely fails to reproduce the mass function, the inclusion of the peaks constraint leads to the correct number of haloes ...

  15. Temperature Dependence of the Bragg Peak-Intensity Close to the -Incommensurate- Transition in Quartz

    OpenAIRE

    Hamit Yurtseven; Koray Kaymazlar

    2014-01-01

    Quartz as a mineral has a stable crystalline phase at room temperature and atmospheric pressure; at low temperatures it is in the α phase and when it is heated up, it transforms into the β phase through the intermediate (incommensurate) phase within the temperature interval of nearly 1.3 K at around 847 K. The order parameter Q occurs due to a tilting of SiO4 tetrahedra around the threefold axis, which can be related to variation of the peak-intensity with the temperature in quartz. In this ...

  16. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  17. Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak

    OpenAIRE

    Marshall, Thomas; Chaudhary, Pankaj; Michaelidesova, Anna; Vachelova, Jana; Davidkova, Marie; Vondracek, Vladimir; SCHETTINO, Giuseppe; Prise, Kevin

    2016-01-01

    Purpose: To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited.Methods and Ma...

  18. Distribution of Micronuclei in Human Fibroblasts across the Bragg Curve of Light and Heavy Ions

    Science.gov (United States)

    Hada, M.; Lacy, S.; Gridley, D. S.; Rusek, A.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    The space environment consists of energetic particles of varying mass and energy, and understanding the :biological Bragg curve" is essential in optimizing shielding effectiveness against space radiation induced biological impacts. The "biological Bragg curve" is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. Previously, we studied the induction of micronuclei (MN) across the Bragg curve of energetic Fe and Si ions, and observed no increased yield of MN at the location of the Bragg peak. However, the ratio of mono- to bi-nucleated cells, which indicates inhibition of cell progression, was found higher at the Bragg peak location in comparison to the plateau region of the Bragg curve. Here, we report the induction of MN in normal human fibroblast cells across the Bragg curve of incident protons generated at Loma Linda University. Similar to Si and Fe ions, the ratio of mono- to bi-nucleated cells showed a clear spike as the protons reached the Bragg peak. Unlike the two heavy ions, however, the MN yield also increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak of heavy, but not light ions are more likely to go through reproductive death and not be evaluated for micronuclei.

  19. Designing a ridge filter based on a mouse foot skin reaction to spread out Bragg-peaks for carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: Carbon-ion radiotherapy uses spread-out Bragg peaks (SOBP) to produce uniform biological effects within a target volume. The relative biological effectiveness is determined by the in vitro cell kill after a single dose is employed to design the SOBP. A question remains as to whether biological effects for in vivo tissues after fractionated doses are also uniform within the SOBP. Material and methods: Mouse foot skin was irradiated with fractionated doses of carbon ions at various linear energy transfer (LET) values. A new ridge filter was designed based on alpha and beta values for each LET to cause moderate skin reaction, and was studied concerning its uniformity. Results: The reciprocal total doses of intermediate-LET carbon ions and of reference gamma rays linearly increased with an increase of a dose per fraction in Fe-plots. As the single total dose of higher LET run off linearity, data obtained from 2 to 6 fractions were used to design a new ridge filter. The physical dose distribution of the new ridge filter was almost identical to, and indistinguishable from, the ridge filter designed based on the in vitro cell kill. Conclusions: The LET dependence of alpha is a principle of the biological factor to be used for designing spread-out Bragg peaks of carbon-ion radiotherapy

  20. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation.

    Science.gov (United States)

    Averbeck, Nicole B; Topsch, Jana; Scholz, Michael; Kraft-Weyrather, Wilma; Durante, Marco; Taucher-Scholz, Gisela

    2016-01-01

    Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed. PMID:26904506

  1. Efficient rejoining of DNA double-strand breaks despite increased cell-killing effectiveness following spread-out Bragg peak carbon-ion irradiation

    Directory of Open Access Journals (Sweden)

    Nicole Bernadette Averbeck

    2016-02-01

    Full Text Available Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE in the tumor target-volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double strand breaks (DSBs are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg Peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed.

  2. The Bragg-peak studies in CR-39 SSNTD on the basis of many-hit model for track etch rates

    International Nuclear Information System (INIS)

    Etching rates along tracks of protons and lithium ions with energies in the Bragg peak region were explored. The energy losses in this region, especially for protons of low energies, are of particular interest from the physical as well as biological points of view. The microscopic track etch rate, VT, is studied using the many-hit model in its first approximation assuming that VT is a function of the restricted energy loss (RELω). The ions multiple scattering and straggling effects on the average experimental VT values are corrected by shifting the calculated RELω values along the track, until its maximum coincides with that of the VT. The fitting of least square differences between calculated and experimental VT values is used in order to determine the many-hit model registration parameters for the detector under investigation

  3. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    Science.gov (United States)

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean

  4. Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Pankaj; Marshall, Thomas I. [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Belfast (United Kingdom); Perozziello, Francesca M.; Manti, Lorenzo [Department of Physics, University of Naples Federico II and INFN Naples Section University of Naples, Naples (Italy); Currell, Frederick J.; Hanton, Fiona [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast (United Kingdom); McMahon, Stephen J.; Kavanagh, Joy N. [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Belfast (United Kingdom); Cirrone, Giuseppe Antonio Pablo; Romano, Francesco [Istituto Nazionale di Fisica Nucleare, LNS, Catania (Italy); Prise, Kevin M., E-mail: k.prise@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Belfast (United Kingdom); Schettino, Giuseppe [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Belfast (United Kingdom); National Physical Laboratory, Teddington (United Kingdom)

    2014-09-01

    Purpose: The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. Methods and Materials: Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). Results: We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. Conclusions: The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning.

  5. Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

    International Nuclear Information System (INIS)

    Purpose: The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. Methods and Materials: Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). Results: We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. Conclusions: The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning

  6. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Hopfgartner, J; Vynckier, S; Palmans, H

    2016-06-21

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination. PMID:27224547

  7. R.b.e. and o.e.r of extended-Bragg-peak helium ions: survival and development of rat embryos

    International Nuclear Information System (INIS)

    Rats were exposed under aerobic or hypoxic conditions to 200 to 1200 rads of 60Co gamma-rays or extended-Bragg-peak helium ions on the eighth day of gestation. Uterine contents were examined on the twentieth day of gestation. At the 50 per cent embryonic survival level, helium ion r.b.e. was 1.0 (aerobic) and 1.2 (hypoxic). Maximum attainable gamma-ray and helium-ion o.e.r.s. were 2.2 and 1.7 respectively, indicating an oxygen-effect gain (o.e.g.) of 1.2. At the 10 per cent survival level helium ion r.b.e. was 1.1 (aerobic) and 1.4 (hypoxic). Gamma-ray and helium-ion o.e.r.s. were 2.0 and 1.5 respectively, indicating a helium ion o.e.g. of 1.3. These data demonstrate that the small fraction of high-LET radiation present in this helium ion beam has a negligible effect on the aerobic r.b.e., but lowered the effectiveness o.e.r. of the beam approximately 25 per cent relative to that of gamma-rays. Helium ions were significantly more effective than gamma-rays in killing embryos under hypoxic conditions, in producing congenital abnormalities under aerobic conditions, and in stunting foetal growth under both conditions. (author)

  8. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam

    Science.gov (United States)

    Rossomme, S.; Hopfgartner, J.; Vynckier, S.; Palmans, H.

    2016-06-01

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.

  9. RBE and OER within the spread-out Bragg peak for proton beam therapy. In vitro study at the Proton Medical Research Center at the University of Tsukuba

    International Nuclear Information System (INIS)

    There are few reports on the biological homogeneity within the spread-out Bragg peak (SOBP) of proton beams. Therefore, to evaluate the relative biological effectiveness (RBE) and the oxygen enhancement ratio (OER), human salivary gland tumor (HSG) cells were irradiated at the plateau position (position A) and three different positions within a 6-cm-wide SOBP (position B, 26 mm proximal to the middle; position C, middle; position D, 26 mm distal to the middle) using 155-MeV/n proton beams under both normoxic and hypoxic conditions at the Proton Medical Research Center, University of Tsukuba, Japan. The RBE to the plateau region (RBEplateau) and the OER value were calculated from the doses corresponding to 10% survival data. Under the normoxic condition, the RBEplateau was 1.00, 0.99 and 1.09 for positions B, C and D, respectively. Under the hypoxic condition, the RBEplateau was 1.10, 1.06 and 1.12 for positions B, C and D, respectively. The OER was 2.84, 2.60, 2.63 and 2.76 for positions A, B, C and D, respectively. There were no significant differences in either the RBEplateau or the OER between these three positions within the SOBP. In conclusion, biological homogeneity need not necessarily be taken into account for treatment planning for proton beam therapy at the University of Tsukuba. (author)

  10. Bragg Curve Spectroscopy

    International Nuclear Information System (INIS)

    An alternative utilization is presented for the gaseous ionization chamber in the detection of energetic heavy ions, which is called Bragg Curve Spectroscopy (BCS). Conceptually, BCS involves using the maximum data available from the Bragg curve of the stopping heavy ion (HI) for purposes of identifying the particle and measuring its energy. A detector has been designed that measures the Bragg curve with high precision. From the Bragg curve the range from the length of the track, the total energy from the integral of the specific ionization over the track, the dE/dx from the specific ionization at the beginning of the track, and the Bragg peak from the maximum of the specific ionization of the HI are determined. This last signal measures the atomic number, Z, of the HI unambiguously

  11. Irradiation of biological molecules (DNA and RNA bases) by proton impact in the velocity range of the Bragg peak (20-150 keV/amu)

    International Nuclear Information System (INIS)

    The aim of this work was to study the ionization of DNA and RNA base molecules by proton impact at energies between 20 and 150 keV/amu. The experiments developed over the course of this project made it possible not only to study the fragmentation of uracil, thymine, adenine, and cytosine, but also to measure absolute cross sections for different ionization processes initiated by proton interactions with these important biological molecules. Firstly, the experimental system enabled the contributions of two key ionization processes to be separated: direct ionization and electron capture. The corresponding mass spectra were measured and analyzed on an event-by-event basis. For uracil, the branching ratios for these two processes were measured as function of the projectile velocity. Secondly, we have developed a system to measure absolute cross sections for the electron capture process. The production rate of neutral atoms compared to protons was measured for the four biological molecules: uracil, cytosine, thymine, and adenine at different vaporization temperatures. This production rate varies as a function of the thickness of the target jet traversed by the protons. Accordingly, a deposit experiment was developed in order to characterize the density of molecules in the targeted gas jets. Theoretical and experimental study of the total effusion and density-profile of the gaseous molecular beams enabled us to deduce the thickness of the target jets traversed by the protons. Thus it was possible to determine absolute cross sections for the ionization of each of the four isolated biological molecules by 80 keV protons impact. To our knowledge, this work provides the first experimental absolute cross sections for DNA and RNA base ionization processes initiated by proton impact in the velocity range corresponding to the Bragg peak. (author)

  12. Unraveling the mystery of enhanced cell-killing effect around the Bragg peak region of a double irradiation source 9C-ion beam

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; Y. Furusawa; M. Kanazawa; A. Kitagawa

    2005-01-01

    An enhanced cell-killing effect at the penetration depths around the Bragg peak of a β-delayed particle decay 9C-ion beam has been observed in our preceding radiobiological experiments in comparison with a therapeutic 12C beam under the same conditions, and RBE values of the 9C beam were revealed to be higher than those of the comparative 12C beam by a factor of up to 2. This study is aimed at investigating the biophysical mechanisms underlying the important experimental phenomenon. First of all, a model for calculating the stopping probability density of the experimentally applied 9C beam is worked out, where all determinants such as the initial momentum spread of the 9C beam, the fluence attenuation with penetration depth due to the projectile-target nuclear reaction and the energy straggling effect are taken into account. On the basis of the calculated 9C-ion stopping distribution, it has been found that the area corresponding to the enhanced cell-killing effect of the 9C beam appears at the stopping region of the incident 9C ions. The stopping 9C-ion density in depth, then, is derived from the calculated probability density. Moreover, taking entrance dose 1 Gy for the 9C beam as an example, the average stopping 9C-ion numbers per cell at various depths are deduced. Meanwhile, the mean lethal damage events induced by the 9C and comparative 12C beams at the depths with almost equal dose-averaged LETs are derived from the measured cell surviving fractions at these depths for the 9C and 12C beams. Under the condition of the same absorbed doses, there are indeed good agreements between the average stopping 9C-ion number pre cell and the difference of the mean lethal damage events between the 9C and 12C beams at the depths of similar dose-averaged LETs. It can be inferred that if a 9C ion comes to rest in a cell, the cell would undergo dying. In view of the decay property of 9C nuclide, clustered damage would be caused in the cell by the emitted low-energy particles

  13. Monomer consumption in MAGIC-type polymer gels in the Bragg-peak of proton beams observed by volume selective 1H MR-spectroscopy (MRS): proof of principle for high resolution MRS-methodology with a sensitive rf-detector

    International Nuclear Information System (INIS)

    Mono-energetic proton and heavy ion beams for tumour therapy feature high dose gradients laterally and at its penetration depth, characterized by the Bragg-peak. The 3-dimensional dosimetry of such Hadron particle beams poses high demands on the spatial resolution of the imaging methodology and linearity of the polymer gel dose response in a wide dose range and at high linear energy transfer (LET). In almost all polymer gels the Bragg-peak dose response is therefore quenched. Volume selective MR-spectroscopy is in principle capable of delivering information on the polymerization process. We here present the MR-methodology to obtain MR-spectroscopic (MRS) data on the monomer consumption at the very small voxel volumes necessary for resolving e.g. the Bragg-peak area. Using additional hardware components, i.e. a strong gradient system and a very sensitive rf-detector at a high field human 7T scanner, MR-microimaging and MRS with 600 μm depth resolution can be implemented at very short measurement time. The vinyl groups of methacrylic acid in a MAGIC-type polymer gel can be resolved by volume selective MRS. The complete monomer consumption in the Bragg-peak due to polymerization is demonstrated selectively in the Bragg-peak indicating one main reason for Bragg-peak quenching in the investigated polymer gel.

  14. DNA double-strand break and apoptosis induction in human lymphocytes in different cycle cell phases by 60Co gamma rays and Bragg peak protons of a medical beam

    International Nuclear Information System (INIS)

    A comparative analysis is made of the regularities in the formation of DNA double-strand break and apoptosis induction in peripheral human blood lymphocytes in different cell cycle phases after 60Co gamma and extended Bragg peak proton irradiation. It is shown that the formation of apoptotic cells in a lymphocyte population increases linearly in all the cell cycle stages after proton irradiation. The maximal DNA double-strand break and apoptosis yield in lymphocytes is observed in the S phase of the cell cycle

  15. 一种用于光纤布拉格光栅传感的自适应寻峰算法%An adaptive peak algorithm used in optical fiber Bragg grating sensing

    Institute of Scientific and Technical Information of China (English)

    沈漫; 董雷; 于本化; 宋珂; 任广; 熊岩; 印新达

    2014-01-01

    针对现有的寻峰算法适用范围窄、需要预先设定参数的缺点,在现有的寻峰算法的基础上,提出一种自适应寻峰算法。当所分析的数据的幅度与时间尺度发生变化时,自适应算法可以自动调整窗口与门限阈值,正确的找到峰值。与现有的寻峰算法相比,该算法无需设定参数、简单可靠、适应范围广。为验证算法,对不同条件下光纤布拉格光栅的反射谱进行分析。结果表明,这种新的自适应寻峰算法能准确寻峰,适用于光纤布拉格光栅传感系统的解调。%In view of the existing peak detecting algorithms which have a narrow scope of application and must be preset with some parameters,an adaptive peak detecting algorithm based on existing peak detecting algorithms has been proposed.It adjusts the window and threshold automatically and finds the peaks correctly when the amplitude and time scale of data to be analyzed change.It has no parameter to set and it is simpler,more reliable and has a wider adaptation compared to existing peak detecting algorithms. Reflection spectrums of Bragg Grating acquired under different situation have been analyzed to validate the algorithm. The result shows that the new adaptive algorithm detects peaks accurately and it’s suitable for demodulation of fiber Bragg gratings sensing system.

  16. Karakterisasi Fiber Bragg Grating (FBG) Untuk Pengembangan Sistem Sensor Strain Tanah

    OpenAIRE

    Sinuhaji, Depi Santi

    2010-01-01

    Fiber Bragg Grating (FBG) is a periodic change of refractive index which is the length of optical fiber. Has been developed Fiber Bragg Grating (FBG)-based laser diodes for monitoring landslide-prone areas. This sensor has been developed because high sensitivity and is not affected by electromagnetic induction that can be placed at a distance from the location where the power supply and monitor. FBG transmission peak will shift when the grating is change resulting from a change in temperature...

  17. Origin of TSL peaks located at 200-250 K in UV-irradiated PbWO4 crystals

    International Nuclear Information System (INIS)

    Thermally stimulated luminescence (TSL) was studied for many PbWO4 crystals after their selective irradiation at 80-220 K in the 3.4-5.0 eV energy range to clarify the origin of the defects responsible for the TSL peaks located in the 200-250 K range. The conclusion is made that both in PbWO4 and PbWO4:Mo crystals the total TSL intensity and the intensity ratio of various TSL peaks are mainly determined by the concentration and type of oxygen and lead vacancies which depend on the crystal preparation and annealing conditions and on the concentration of trivalent rare-earth impurity ions. The TSL peak near 200 K is ascribed to {Pb+-WO3} centers and the peak in the 210-230 K range, to the electron centers, containing oxygen vacancies of the type of WO2 and WO. Only the 250 K peak arises from electron MoO43- centers. Thermally stimulated processes are accompanied with the green G(II) emission

  18. Analysis of Peak-detection Algorithms in Fiber Bragg Grating by Different Sampling Methods%不同采样方式下光纤布喇格光栅反射谱寻峰算法的分析

    Institute of Scientific and Technical Information of China (English)

    余有龙; 王雪微; 王浩

    2012-01-01

    Three peak-detection algorithms ( cubic spline interpolation differential method, Gauss polynomial, Gaussian fitting algorithm) for fiber Bragg grating reflection spectrum were analyzed and compared. It is demonstrated that Gaussian fitting algorithm produces the lowest error under the same sampling conditions; when the uniform sampling number is 250, the errors of three peak-detection algorithms are respectively 3. 4 pm,13.0 pm and 2. 6 pm. The idea of non-uniform data sampling method to search peak was proposed. Sample the actual FBG reflection spectrum with uniform and non-uniform sampling method, and search peak using the three peak-detection algorithms respectively. It can be concluded that the error of a certain algorithm by non-uniform sampling is lower than by uniform sampling method; when the sampling number is 250. FBG peak error of Gaussian fitting algorithm under non-uniform sampling method is reduced by 38. 46% than uniform sampling method.%对光纤布喇格光栅反射谱的三种寻峰算法(三次样条插值数值微分法、高斯-多项式拟合法和高斯拟合法)进行了分析和比较;相同采样情况下,得出了高斯拟合法确定的峰值准确度最高的结论;采样点数为250的均匀采样中,三种算法寻峰结果对实际值的误差分别为:3.4pm、13.0 pm和2.6 pm.引入了非均匀数据采集的寻峰思路,分别应用三种寻峰法对实际光栅的反射谱分别进行均匀采集和非均匀采集.结果表明,对于相同寻峰方法在非均匀数据采集下获得的峰值更精确,采样点数为250时,高斯拟合法寻峰时非均匀采集对应的误差比均匀采集减少了38.46%.

  19. A neural network for the Bragg synthetic curves recognition

    International Nuclear Information System (INIS)

    A ionization chamber was employed named Bragg curve spectroscopy. The Bragg peak amplitude is a monotone growing function of Z, which permits to identify elements through their measurement. A better technique for this measurement is to improve the use of neural networks with the purpose of the identification of the Bragg curve. (Author)

  20. Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt γ-ray measurements

    International Nuclear Information System (INIS)

    By means of a time-of-flight technique, we measured the longitudinal profile of prompt γ-rays emitted by 73 MeV/u 13C ions irradiating a polymethyl methacrylate target. This technique allowed us to minimize the shielding against neutrons and scattered γ-rays, and to correlate prompt gamma emission to the ion path. This correlation, together with a high counting rate, paves the way toward real-time monitoring of the longitudinal dose profile during ion therapy treatments. Moreover, the time correlation between the prompt gamma detection and the transverse position of the incident ions measured by a beam monitor can provide real-time three dimensional control of the irradiation

  1. Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt $\\gamma$-ray measurements

    OpenAIRE

    Testa, E; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F.; Poizat, J.-C.; Ray, C.; Testa, M.; Freud, N.; Létang, J.-M.

    2008-01-01

    to be published in Applied Physics Letters By means of a time-of-flight technique, we measured the longitudinal profile of prompt $\\gamma$-rays emitted by 73 MeV/u $^{13}$C ions irradiating a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered $\\gamma$-rays, and to correlate prompt gamma emission to the ion path. This correlation, together with a high counting rate, paves the way toward real-time monitoring of the longitudinal dose profile during...

  2. Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt $\\gamma$-ray measurements

    CERN Document Server

    Testa, E; Chevallier, M; Dauvergne, D; Foulher, F Le; Poizat, J -C; Ray, C; Testa, M; Freud, N; Létang, J -M

    2008-01-01

    By means of a time-of-flight technique, we measured the longitudinal profile of prompt $\\gamma$-rays emitted by 73 MeV/u $^{13}$C ions irradiating a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered $\\gamma$-rays, and to correlate prompt gamma emission to the ion path. This correlation, together with a high counting rate, paves the way toward real-time monitoring of the longitudinal dose profile during ion therapy treatments. Moreover, the time correlation between the prompt gamma detection and the transverse position of the incident ions measured by a beam monitor can provide real-time 3D control of the irradiation.

  3. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    Science.gov (United States)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  4. Using backup generators for meeting peak electricity demand: a sensitivity analysis on emission controls, location, and health endpoints.

    Science.gov (United States)

    Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B

    2010-05-01

    Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls. PMID:20480851

  5. Results from a Bragg Curve Spectrometer

    International Nuclear Information System (INIS)

    The Bragg Curve Spectrometer (BCS) is an ionization chamber long enough to stop particles of interest. Particles enter through the cathode window and leave an ionization track parallel to the electric field. The ionization electrons drift through a Frisch grid and are collected on an anode. The anode current, as a function of time, is split and used as input for two amplifiers, one with a long integration time constant for energy measurement, and one with a short time constant to pick off the maximum ionization or Bragg peak. The Bragg peak, which is proportional to the nuclear charge, is used for particle identification. We have constructed and tested several versions of the BCS. The results are described

  6. Results from a Bragg curve spectrometer

    Science.gov (United States)

    Leach, D. D.; Davis, K. J.

    The Bragg Curve Spectrometer (BCS) is an ionization chamber long enough to stop particles of interest. Particles enter through the cathode window and leave an ionization track parallel to the electric field. The ionization electrons drift through a Frisch grid and are collected on an anode. The anode current, as a function of time, is split and used as input for two amplifiers, one with a long integration time constant for energy measurement, and one with a short time constant to pick off the maximum ionization or Bragg peak. The Bragg peak, which is proportional to the nuclear charge, is used for particle identification. Several versions of the BCS have been constructed and tested. The results are described.

  7. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    Science.gov (United States)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground level were transported until Europe at rather high altitudes. This is consistent with 137Cs activity levels and 133Xe observations performed at the tropopause level thanks to aircraft

  8. Bragg grating rogue wave

    CERN Document Server

    Degasperis, Antonio; Aceves, Alejandro B

    2015-01-01

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.

  9. Bragg grating rogue wave

    Energy Technology Data Exchange (ETDEWEB)

    Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)

    2015-06-12

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.

  10. Fiber Bragg Grating Based Thermometry

    CERN Document Server

    Ahmed, Zeeshan; Guthrie, William; Quintavalle, John

    2016-01-01

    In recent years there has been considerable interest in developing photonic temperature sensors such as the Fiber Bragg gratings (FBG) as an alternative to resistance thermometry. In this study we examine the thermal response of FBGs over the temperature range of 233 K to 393 K. We demonstrate, in a hermetically sealed dry Argon environment, that FBG devices show a quadratic dependence on temperature with expanded uncertainties (k = 2) of ~500 mK. Our measurements indicate that the combined measurement uncertainty is dominated by uncertainty in determining the peak center fitting and by thermal aging of polyimide coated fibers.

  11. Physical and optical characteristics of atmospheric aerosols during ICARB at Manora Peak, Nainital: A sparsely inhabited, high-altitude location in the Himalayas

    Indian Academy of Sciences (India)

    U C Dumka; K Krishna Moorthy; P Pant; P Hegde; Ram Sagar; K Pandey

    2008-07-01

    Collocated measurements of the optical and physical properties of columnar and near-surface aerosols were carried out from Manora Peak, Nainital (a sparsely inhabited, high altitude location, ∼2km above mean sea level, in the Himalayas), during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). Under this, observational data of spectral aerosol optical depths (AOD), mass concentration of aerosol black carbon (B), mass concentration () and number concentration () of composite (total) aerosols near the surface and meteorological parameters were collected during the period February 15 to April 30, 2006. Though very low (> 0.1 at 500 nm) AODs were observed during clear days, as much as a fourfold increase was seen on hazy days. The Ångström exponent (), deduced from the spectral AODs, revealed high values during clear days, while on hazy days was low; with an overall mean value of 0.69 ± 0.06 for the campaign period. BC mass concentration varied between 0.36 and 2.87 g m−3 and contributed in the range 0.7 to 1.8% to the total aerosol mass. Total aerosol number concentration and BC mass concentration showed diurnal variation with a midnight and early morning minimum and a late afternoon maximum; a pattern quite opposite to that seen in low altitude stations. These are attributed to the dynamics of the atmospheric boundary layer.

  12. Fiber Bragg Grating Filter High Temperature Sensors

    Science.gov (United States)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  13. Sensitivity of contact-free fiber Bragg grating sensor to ultrasonic Lamb wave

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Peters, Kara; Wells, Brian; Bradford, Philip

    2016-04-01

    Networks of fiber Bragg grating (FBG) sensors can serve as structural health monitoring (SHM) systems for large-scale structures based on the collection of ultrasonic waves. The demodulation of structural Lamb waves requires a high signal-to-noise ratio because Lamb waves have a low amplitude. This paper investigates the signal transfer between Lamb waves propagating in an aluminum plate collected by an optical fiber containing a FBG. The fiber is bonded to the plate at locations away from the FBG. The Lamb waves are converted into longitudinal and flexural traveling waves propagating along the optical fiber, which are then transmitted to the Bragg grating. The signal wave amplitude is measured for different distances between the bond location and the Bragg grating. Bonding the optical fiber away from the FBG location and closer to the signal source produces a significant increase in signal amplitude, here measured to be 5.1 times that of bonding the Bragg grating itself. The arrival time of the different measured wave coupling paths are also calculated theoretically, verifying the source of the measured signals. The effect of the bond length to Lamb wavelength ratio is investigated, showing a peak response as the bond length is reduced compared to the wavelength. This study demonstrates that coupling Lamb waves into guided traveling waves in an optical fiber away from the FBG increases the signal-to-noise ratio of Lamb wave detection, as compared to direct transfer of the Lamb wave to the optical fiber at the location of the FBG.

  14. Sampled phase-shift fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    Xu Wang(王旭); Chongxiu Yu(余重秀); Zhihui Yu(于志辉); Qiang Wu(吴强)

    2004-01-01

    A phase-shift fiber Bragg grating (FBG) with sampling is proposed to generate a multi-channel bandpass filter in the background of multi-channel stopbands. The sampled noire fiber gratings are analyzed by Fourier transform theory first, and then simulation and experiment are performed, the results show that transmission peaks are opened in every reflective channel, the spectrum shape of every channel is identical.It can be used to fabricate multi-wavelength distributed feedback (DFB) fiber laser.

  15. Supersymmetric Bragg gratings

    International Nuclear Information System (INIS)

    The supersymmetric (SUSY) structure of coupled-mode equations that describe scattering of optical waves in one-dimensional Bragg gratings is highlighted. This property can find applications to the synthesis of special Bragg filters and distributed-feedback (DFB) optical cavities. In particular, multiple SUSY (Darboux–Crum) transformations can be used to synthesize DFB filters with any desired number of resonances at target frequencies. As an example, we describe the design of a DFB structure with a set of equally-spaced resonances, i.e. a frequency comb transmission filter. (paper)

  16. Double Bragg Interferometry.

    Science.gov (United States)

    Ahlers, H; Müntinga, H; Wenzlawski, A; Krutzik, M; Tackmann, G; Abend, S; Gaaloul, N; Giese, E; Roura, A; Kuhl, R; Lämmerzahl, C; Peters, A; Windpassinger, P; Sengstock, K; Schleich, W P; Ertmer, W; Rasel, E M

    2016-04-29

    We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity. PMID:27176520

  17. Silicon graphene Bragg gratings

    OpenAIRE

    Capmany, Jose; Domenech, David; Munoz, Pascual

    2013-01-01

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  18. Flexible nanofiber-coupled hybrid plasmonic Bragg grating.

    Science.gov (United States)

    Liu, Sheng; Zhou, Linjie; Xu, Jian; Wang, Xinyi; Chen, Jianping

    2016-05-01

    We report a hybrid plasmonic Bragg grating composed of a nanofiber coupled with orthogonally oriented metal strips. Numerical simulations are performed to study the transmission and reflection spectra of the grating. It shows that the TM polarization has much stronger Bragg reflection due to the excitation of hybrid plasmonic modes. The dependence of reflection peaks on several key device parameters is analyzed. Light propagation simulation further reveals that both fundamental and first-order TM modes are excited upon Bragg reflection, leading to two separate peaks in the spectrum. We implement the prototype device by attaching a nanofiber onto the surface of an array of sub-micrometer-wide metal strips. The main reflection peak is measured to have a 3-dB bandwidth of 15 nm and out-of-band rejection of more than 30 dB. The effects of nanofiber radius, alignment angle and coupling length on the device performance are also experimentally investigated. PMID:27137547

  19. Observation of sub-Bragg diffraction of waves in crystals

    CERN Document Server

    Huisman, Simon R; Hartsuiker, Alex; Woldering, Léon A; Mosk, Allard P; Vos, Willem L

    2011-01-01

    We investigate the diffraction conditions and associated formation of stopgaps for waves in crystals with different Bravais lattices. We identify a prominent stopgap in high-symmetry directions that occurs at a frequency below the ubiquitous first-order Bragg condition. This sub-Bragg diffraction condition is demonstrated by reflectance spectroscopy on two-dimensional photonic crystals with a centred rectangular lattice, revealing prominent diffraction peaks for both the sub-Bragg and first-order Bragg condition. These results have implications for wave propagation in 2 of the 5 two-dimensional Bravais lattices and 7 out of 14 three-dimensional Bravais lattices, such as centred rectangular, triangular, hexagonal and body-centred cubic.

  20. Ground effects on magnetooptic Bragg cells

    Institute of Scientific and Technical Information of China (English)

    WEN Feng; WU BaoJian; QIU Kun

    2008-01-01

    Propagation equation of magnetostatic waves in an arbitrarily magnetized yttrium-iron-garnet/gadolinium-gallium-garnet waveguide coated with perfect metal planes is obtained using the method of the surface magnetic permeability. And ground effects on magnetooptic Bragg cells are investigated with the magnetooptic coupled-mode theory. Theoretical analysis indicates that, diffraction efficiency of guided optical waves can be improved by adjusting the spacing of the metal plane from the ferrite film, and ground effects on the diffraction efficiency will be enhanced using an appropriately tilted bias magnetic field. In the metal clad waveguide system, the magnetostatic wave frequency at which the diffraction efficiency peak is obtained corresponds to the "zero-dispersion" point. Performance of RF spectrum analyzers in this system can also be improved by comparing with the case of the sandwich waveguide. Therefore, magnetooptic Bragg cells with the metal clad waveguide are potential applications to the microwave communication and optical signal processing.

  1. Bragg Curve Counter for primary beam monitor

    International Nuclear Information System (INIS)

    The prototype Bragg Curve Counter (BCC) has been tested by α-source (241Am) with a continuous gas flow system (P-10: 90% Ar+10% CH4, at 300Torr). Two types of the Frisch grid were prepared for the BCC. One was made of expanded metal meshes, which consist of 175 meshes/inch2 with a 100μmt nickel sheet. The other was made of a 1mm pitch wire with φ 50 μm of the tungsten. The shape of Bragg peak signal was compared each other. It was found that the energy spectrum obtained by the wire grid is a little sharper than that obtained by the meshes grid. However the meshes grid is superior than the wire grid so far as handling and durability are concerned. (author)

  2. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    OpenAIRE

    Zheng WenJun; Fei GuangTao; Wang Biao; Zhang Li

    2009-01-01

    Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR) using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  3. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Zheng WenJun

    2009-01-01

    Full Text Available Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  4. Bragg reflection program

    International Nuclear Information System (INIS)

    This user's guide to the Bragg Reflection Program (BRP) is in the nature of an informal report. The general purpose of BRP is to scan a series of Bragg reflections automatically in order to obtain profiles and integrated intensities. The program is used in conjunction with the SUPERVISOR and READ packages, and the procedures for using it are similar to those for the Triple-Axis Control program. All the general features of the system, SUPERVISOR and READ packages as described in the Spectrometer Control Systems User's Guide are preserved. The presentation assumes that the reader is familiar with these. Sections are given on the READ package, execution and use, error messages, and output. A few sample problems are shown. (1 figure) (U.S.)

  5. Fabrication and optical characterization of Bragg resonance luminescence porous silicon

    Science.gov (United States)

    Park, Mi-Ae; Sohn, Honglae

    2016-01-01

    The synthesis and characterization of Bragg resonance luminescence porous silicon (BRL PS) exhibiting both optical reflectivity and strong narrow visible photoluminescence (PL) prepared from highly doped n-type silicon wafers through the electrochemical etching are reported. BRL PS showing the luminescence at 702 nm with an excitation wavelength of 400 nm was prepared by applying the current of 360 mA cm-2 for 1.6 s and 75 mA cm-2 for 3.6 s with 50 repeats in etching solution of 1:1 volume mixture of absolute ethanol and aqueous 48% HF. BRL PS exhibited sharp PL peak which reached full width at half maximum of 14 nm, originated from the result of Bragg resonance in PS multilayer. The sharp PL peak at 702 nm of BRL PS is the second-order transmitted luminescence peak by Bragg resonance phenomenon. The simultaneous measurement of reflectivity and luminescence in the BRL PS under an exposure to a vapor flux of acetone showed that a narrow transmitted luminescence based on Bragg resonance in BRL PS quenched as well as the red-shifted by 37 nm of reflection wavelength was observed. A dramatic quenching PL of BRL PS compare to that of the monolayer PS, is probably due to the Bragg resonance effect on luminescence.

  6. Performance of a Bragg curve detector for heavy ion identification

    International Nuclear Information System (INIS)

    By using Bragg curve spectroscopy, one can measure atomic number and energy of high energy heavy ions stopping in a gas-filled ionization chamber with longitudinal electric field. In this paper, we report on the results obtained with an isobutane filled detector. An energy resolution of 0.8% fwhm and a Z resolution of 2.7% fwhm were achieved for elastically scattered 300 MeV 40Ar ions. We study the Bragg peak amplitude dependence on the energy of the incoming ions, a dependence presumably due to the Frisch grid screening inefficiency. The corrected Bragg peak spectrum of inelastically scattered 300 MeV 40Ar ions exhibits a satisfactory Z separation around Z = 18. (orig.)

  7. Performance of a Bragg curve detector for heavy ion identification

    Science.gov (United States)

    Asselineau, J. M.; Duchon, J.; L'Haridon, M.; Mosrin, P.; Regimbart, R.; Tamain, B.

    1982-12-01

    By using Bragg curve spectroscopy, one can measure atomic number and energy of high energy heavy ions stopping in a gas-filled ionization chamber with longitudinal electric field. In this paper, we report on the results obtained with an isobutane filled detector. An energy resolution of 0.8% fwhm and a Z resolution of 2.7% fwhm were achieved for elastically scattered 300 MeV 40Ar ions. We study the Bragg peak amplitude dependence on the energy of the incoming ions, a dependence presumably due to the Frisch grid screening inefficiency. The corrected Bragg peak spectrum of inelastically scattered 300 MeV 40Ar ions exhibits a satisfactory Z separation around Z=18.

  8. Computer programs for locating and fitting full energie peak in γ-ray spectra. Test and rules for an estimation of the main results

    International Nuclear Information System (INIS)

    After the different interlaboratory tests on gamma spectrum analysis organised by the 'Laboratoire de Metrologie des Rayonnements Ionisants' and by the International Atomic Energy Agency, it looked useful to manage a same type of intercomparison with the different supplies of Data acquisition and Analysis systems including mini-ordinator or microprocessor. Four spectrum have been chosen between those of the interlaboratory tests. The test dealt with the investigation of total absorption peaks of different levels in a complex spectrum and the calculation of their main parameters. Four supplies participed in the intercomparison with their own logicial. The result allow to suggest a few tests in order to try a new logicial, or to compare results with standards

  9. Location, Location, Location!

    Science.gov (United States)

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  10. Dynamic gate algorithm for multimode fiber Bragg grating sensor systems

    DEFF Research Database (Denmark)

    Ganziy, Denis; Jespersen, O.; Woyessa, Getinet;

    2015-01-01

    -to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg...

  11. High-sensitivity temperature sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber

    Institute of Scientific and Technical Information of China (English)

    Xusheng Cheng; Weiwei Qiu; Wenxuan Wu; Yanhua Luo; Xiujie Tian; Qijin Zhang; Bing Zhu

    2011-01-01

    @@ A single-mode polymer optical fiber (POF) with highly photosensitive core doped with benzil dimethyl ketal (BDK) is fabricated and used for writing Bragg grating through the two-beam interference method. The Bragg wavelength of the grating is about 1570 nm, while the full-width at half-maximum (FWHM) of the reflection peak is 0.3 nm. The temperature response of POF Bragg grating is theoretically analyzed and experimentally measured in contrast to silica optical fiber Bragg grating (FBG). The result shows that the temperature character of POF Bragg grating is negative, which is opposite to the silica optical FBG. The absolute value of the temperature response of POF Bragg grating is one order of magnitude higher than that of the silica optical FBG, making POF Bragg grating appear to be very attractive for constructing temperature sensors with high resolution.%A single-mode polymer optical fiber (POF) with highly photosensitive core doped with benzil dimethyl ketal (BDK) is fabricated and used for writing Bragg grating through the two-beam interference method. The Bragg wavelength of the grating is about 1570 nm, while the full-width at half-maximum (FWHM) of the reflection peak is 0.3 nm. The temperature response of POF Bragg grating is theoretically analyzed and experimentally measured in contrast to silica optical fiber Bragg grating (FBG). The result shows that the temperature character of POF Bragg grating is negative, which is opposite to the silica optical FBG. The absolute value of the temperature response of POF Bragg grating is one order of magnitude higher than that of the silica optical FBG, making POF Bragg grating appear to be very attractive for constructing temperature sensors with high resolution.

  12. Numerical Simulation of Bragg Reflection Based on Linear Waves Propagation over A Series of Rectangular Seabed

    Institute of Scientific and Technical Information of China (English)

    Chih-Chung WEN; Li-Hung TSAI

    2008-01-01

    A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.

  13. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  14. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave.

    Science.gov (United States)

    Wen, Biyang; Li, Ke

    2016-01-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity. PMID:27531469

  15. Growth and characterization of nitride-based distributed Bragg reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Carsten; Dartsch, Heiko; Aschenbrenner, Timo; Figge, Stephan; Hommel, Detlef [Section Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen (Germany)

    2011-08-15

    We report on a systematic study concerning the realization of nitride-based distributed Bragg reflectors (DBRs) for opto-electronic applications in the near-UV to visible spectral range. Different material combinations are used in order to find an optimized trade-off concerning peak reflectivity, stop band width, and strain state of the Bragg mirrors. For the high refractive index material GaN is used in all cases, while for the low index material a layer of either AlGaN or AlInN, respectively, or a AlN/(In)GaN short-period superlattice (SL) is employed. The best peak reflectivity of 97% at a wavelength of 495 nm is achieved for a lattice matched Bragg reflector based on the GaN/AlInN material combination. Transmission electron microscopy image of a 30-fold distributed Bragg reflector consisting of AlInN (dark) and GaN (bright) layers. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. 'Peak oil' or 'peak demand'?

    International Nuclear Information System (INIS)

    This article reports a workshop which addressed several energy issues like the objectives and constraints of energy mix scenarios, the differences between the approaches in different countries, the cost of new technologies implemented for this purposes, how these technologies will be developed and marketed, which will be the environmental and societal acceptability of these technical choices. Different aspects and issues have been more precisely presented and discussed: the peak oil, development of shale gases and their cost (will non conventional hydrocarbons modify the peak oil and be socially accepted?), energy efficiency (its benefits, its reality in France and other countries, its position in front of the challenge of energy transition), and strategies in the transport sector (challenges for mobility, evolution towards a model of sustainable mobility)

  17. Photoluminescence and X-ray Diffraction of Distributed Bragg Reflector

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LI Yong-da; LIU Wen-li; LU Bin; JU Guo-xian; ZHANG Yong-ming; HAO Yong-qin; SU Wei; ZHONG Jing-chang

    2004-01-01

    Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double- crystal X- ray diffraction measurement. The expected high quality epitaxial DBR structure was verified. In the X- ray double- crystal rocking curves of DBR the zeroth- order peak, the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed. The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.

  18. Analysis of Sampled Fiber Bragg Grating Based on the Photonic Crystal Theory

    Institute of Scientific and Technical Information of China (English)

    ZHU Dan-dan

    2009-01-01

    One of the most basic characteristics of photonic crystal is frequency band gap.When defects are introduced into the periodic photonic crystal,a number of defect modes appear in the stop band.In this paper,we exploit transfer matrix method based on photonic crystal theory,and assume the sampled fiber Bragg grating as one-dimensional dual photonic crystal with a large size defect.Characteristics of the sampled fiber Bragg grating are analyzed.Experimental results show that the sampled fiber Bragg grating has many reflective peaks.Its reflectivity,center wavelength,reflective peak intervals and band width all change with the grating parameters,including grating length,duty ratio of the material with high dielectric constant,and index modulation depth and period.Results agree with the conventional couple mode theory which can be used when analyzing other characteristics of the sampled fiber Bragg grating or applying it into practice.

  19. Fabrication of Dual-Wavelength Fiber Bragg Grating with a Longitudinal Stretch

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; ZHANG Dong-sheng; ZHANG Wei-gang; KAI Gui-yun; DONG Xiao-yi

    2006-01-01

    A method of fabricating dual-wavelength fiber Bragg grating with a uniform phase mask is demonstrated.Theoretical analysis and numerical simulation using Matrix method arc given.The moving exposing technique is adopted.Good control over the grating's reflectivity and the separation of the two Bragg wavelengths is enabled by adjusting the stretch,the length of the grating,and the exposure.A grating with two equal transmission peaks of 19.5 dB is obtained by using this method,and the separation of the two Bragg wavelengths is 0.78 nm.

  20. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method

    Directory of Open Access Journals (Sweden)

    Abdallah Ikhlef

    2012-01-01

    Full Text Available This paper presents the modeling and simulation of an optical fiber Bragg grating for maximum reflectivity, minimum side lobe. Gating length represents as one of the critical parameters in contributing to a high performance fiber Bragg grating. The reflection spectra and side lobes strength were analyzed with different lengths .The side lobes have been suppressed using raised cosine apodization while maintaining the peak reflectivity. Such simulations are based on solving coupled mode equations by transfer matrix method.

  1. Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing

    OpenAIRE

    Lim, J; Yang, QP; Jones, BE; Jackson, PR

    2002-01-01

    Multimode fiber optic Bragg grating sensors for strain and temperature measurements using correlation signal processing methods have been developed. Two multimode Bragg grating sensors were fabricated in 62/125 m graded-index silica multimode fiber; the first sensor was produced by the holographic method and the second sensor by the phase mask technique. The sensors have signal reflectivity of approximately 35% at peak wavelengths of 835 nm and 859 nm, respectively. Strain testing...

  2. A temperature insensitive Bragg grating sensor - using orthogonal polar polarisation modes for in situ temperature compensation

    OpenAIRE

    Parker, R M; J.C.Gates; Grossel, M. C.; P.G.R.Smith

    2010-01-01

    An exposed Bragg grating incorporated into a planar waveguide forms an optical device that acts as a refractive index sensor. The exposed evanescent field causes the Bragg peak to be sensitive to the refractive index of its surroundings and can be used to detect changes in this environment. The method reported is able to provide accurate temperature compensation by applying a scaling factor derived from measurement of the birefringence of the transverse electric (TE) and transverse magnetic (...

  3. 100 GHz electrically tunable planar Bragg gratings via liquid crystal overlay

    OpenAIRE

    Adikan, F.R.Mahamd; J.C.Gates; Snow, B.D.; Dyadyusha, A.; Major, H.E.; Gawith, C.B.E.; Kaczmarek, M.; P.G.R.Smith

    2007-01-01

    We demonstrate 114GHz electrically tunable liquid crystal Bragg gratings using 170Vpp voltage. The devices were made using direct UV grating writing and use evanescent coupling into an electrically tuned nematic liquid crystal. Reconfigurable integrated optical devices are essential in today's dense and complex telecommunication meshes. A commonly employed component on the silica platform fulfilling the above role is a planar Bragg grating. The ability to tune the reflection peak of these gra...

  4. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method

    OpenAIRE

    Abdallah Ikhlef; Rachida Hedara; Mohamed Chikh-Bled

    2012-01-01

    This paper presents the modeling and simulation of an optical fiber Bragg grating for maximum reflectivity, minimum side lobe. Gating length represents as one of the critical parameters in contributing to a high performance fiber Bragg grating. The reflection spectra and side lobes strength were analyzed with different lengths .The side lobes have been suppressed using raised cosine apodization while maintaining the peak reflectivity. Such simulations are based on ...

  5. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren;

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  6. Boron-doped superlattices and Bragg mirrors in diamond

    OpenAIRE

    Fiori, Alexandre; Bousquet, Jessica; Eon, David; Omnès, Franck; Bellet-Amalric, E.; Bustarret, Etienne

    2014-01-01

    International audience A periodic modulation of the boron doping level of single crystal diamond multilayers over more than three orders of magnitude during epitaxial growth by microwave plasma-enhanced chemical vapor deposition is shown to yield Bragg mirrors in the visible. The thicknesses and doping level of the individual layers were controlled by in situ spectroscopic ellipsometry, enabling to tune the reflec-tance peak to the wavelength range of diamond color centers, such as NV 0 or...

  7. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan

    2004-09-01

    Full Text Available During summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these

  8. Highly tunable Terahertz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides

    OpenAIRE

    Kangwen Li; Xunpeng Ma; Zuyin Zhang; Lina Wang; Haifeng Hu; Yun Xu; Guofeng Song

    2013-01-01

    A highly tunable terahertz (THz) filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides is proposed and demonstrated numerically by means of the Finite Element Method. The results reveal that a sharp peak with high Q-value presents in the band gap of Bragg grating waveguide with a defect, and the position of the sharp peak can be modified greatly by changing the intensity of the transverse magnetic field applied to the device. Compared to the situ...

  9. Magnetocaloric Studies of the Peak Effect in Nb

    OpenAIRE

    Daniilidis, N. D.; Dimitrov, I. K.; Mitrovic, V F; Elbaum, C.; Ling, X. S.

    2006-01-01

    We report a magnetocaloric study of the peak effect and Bragg glass transition in a Nb single crystal. The thermomagnetic effects due to vortex flow into and out of the sample are measured. The magnetocaloric signature of the peak effect anomaly is identified. It is found that the peak effect disappears in magnetocaloric measurements at fields significantly higher than those reported in previous ac-susceptometry measurements. Investigation of the superconducting to normal transition reveals t...

  10. Hale Central Peak

    Science.gov (United States)

    2004-01-01

    19 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the mountains that make up the central peak region of Hale Crater, located near 35.8oS, 36.5oW. Dark, smooth-surfaced sand dunes are seen to be climbing up the mountainous slopes. The central peak of a crater consists of rock brought up during the impact from below the crater floor. This autumn image is illuminated from the upper left and covers an area approximately 3 km (1.9 mi) across.

  11. A novel dual-wavelength fiber Bragg grating and its application in fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    姜莉; 张东生; 董兴法; 开桂云; 董孝义

    2004-01-01

    A novel method for fabricating dual-wavelength fiber Bragg gratings (FBGs) by using one phase mask is developed. The method is based on a double-exposure technique. Our technique lends itself to writing gratings with controllable reflectivity and separation of two Bragg wavelengths. A grating with two equal transmission peaks of 20.25 dB is obtained by this method and the separation of the two Bragg wavelengths is about 0.8 nm. With the grating, we demonstrate a dual-wavelength erbium-doped fiber ring laser whose interval of the two peaks is 0.8 nm. The laser's peak powers can get 3.1 mW above and have a good stability.

  12. Dynamic gate algorithm for multimode fiber Bragg grating sensor systems.

    Science.gov (United States)

    Ganziy, D; Jespersen, O; Woyessa, G; Rose, B; Bang, O

    2015-06-20

    We propose a novel dynamic gate algorithm (DGA) for precise and accurate peak detection. The algorithm uses a threshold-determined detection window and center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of the signal-to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg gratings. PMID:26193010

  13. Numerical Analysis of Thermal Dependence of the Spectral Response of Polymer Optical Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Hisham K. Hisham

    2016-06-01

    Full Text Available The thermal dependence of the spectral response (i.e. transmission, reflection and time delay (r responses of uniform polymer optical fiber (POF Bragg gratings has been investigated. In addition to the temperature dependence, the effects of grating strength (kLg and fiber index modulation (n have been investigated. Besides high capability of tunable wavelength due to the unique large and negative thermo-optic coefficient of POF, the spectral response for POF Bragg gratings show high stability and larger spectrum bandwidth with temperature variation compare with the silica optical fiber (SOF Bragg gratings, especially with the increase of the kLg value. It was found that by increasing kLg, the peak reflectance value increases and the bandwidth of the Bragg reflector become narrower. Also it’s shown by increasing the kLg value, r deceasing significantly and reach its minimum value at the designed wavelength (B. Furthermore, the r for POF Bragg gratings is less than that for SOF Bragg gratings at the same value of kLg. Also it’s found that the peak reflectivity value increases to around 60% when the n value increases from 110-4 to 510-4.

  14. Two-Dimensional Cavity Resonant Modes of Si Based Bragg Reflection Ridge Waveguide

    Institute of Scientific and Technical Information of China (English)

    CHEN San; Lu Hong-Yan; CHEN Kun-Ji; XU Jun; MA Zhong-Yuan; LI Wei; HUANG Xin-Fan

    2011-01-01

    @@ Si-based ridge-waveguides with Bragg reflectors are fabricated based on our method.Three resonant peaks could be obviously identified from the photoluminescence spectra, and field patterns of these resonant peaks, simulated by the finite difference time domain (FDTD) method, confirm that these peaks originate from cavity resonances.The resonant wavelengths and spatial angular distribution are given by the resonant models, which agree well with the experimental data.Experimentally, a simple method is proposed to testify the experimental and theoretical results.Such devices based on Bragg reflectors may have potential applications in light-emitting diodes, lasers and integrated photonic circuits.%Si-based ridge-waveguides with Bragg reflectors are fabricated based on our method. Three resonant peaks could be obviously identified from the photoluminescence spectra, and field patterns of these resonant peaks, simulated by the finite difference time domain (FDTD) method, confirm that these peaks originate from cavity resonances. The resonant wavelengths and spatial angular distribution are given by the resonant models, which agree well with the experimental data. Experimentally, a simple method is proposed to testify the experimental and theoretical results. Such devices based on Bragg reflectors may have potential applications in light-emitting diodes, lasers and integrated photonic circuits.

  15. Fiber Bragg Grating Based Thermometry

    OpenAIRE

    Ahmed, Zeeshan; Filla, James; Guthrie, William; Quintavalle, John

    2016-01-01

    In recent years there has been considerable interest in developing photonic temperature sensors such as the Fiber Bragg gratings (FBG) as an alternative to resistance thermometry. In this study we examine the thermal response of FBGs over the temperature range of 233 K to 393 K. We demonstrate, in a hermetically sealed dry Argon environment, that FBG devices show a quadratic dependence on temperature with expanded uncertainties (k = 2) of ~500 mK. Our measurements indicate that the combined m...

  16. BESSY Bragg-Fresnel multilayer beam monitors

    International Nuclear Information System (INIS)

    X-ray optical systems based on Bragg-Fresnel multilayer components imaging an electron beam in a storage ring with microm resolution are presented. Design concepts are compared to alternative methods, and the aberrations and limits of Bragg-Fresnel multilayer optics are discussed. Experimental results of imaging the BESSY 1 source with sub 10 microm resolution are presented and the development of a compact Bragg-Fresnel multilayer telescope as a BESSY 2 standard beam monitor is described

  17. Characteristics of Bragg Gratings in All-Solid Photonic Bandgap Fiber

    Institute of Scientific and Technical Information of China (English)

    Bai-Ou Guan; Zhi Wang; Yang Zhang; Da Chen

    2008-01-01

    We report on fiber Bragg gratings in all-solid photonie bandgap fiber that was composed of a triangular array of high-index Ge-doped rods in pure silica background with fluorine-doped index-depressed layer surrounding the Ge-doped rod. Fiber Bragg gratings were photowritten with 193 nm ArF excimer laser and characterized for their response to strain, temperature, bending, and torsion. These gratings couple light from the forward core mode to not only backward core mode but also backward rod modes. This results in multiple resonance peaks in the reflection spectrum. All resonance wavelengths exhibited the same temperature and strain response with coefficient similar to that of Bragg gratings in standard single-mode fiber. The strength of the resonance peaks corresponding to the backward rod modes showed high sensitivity to bending and torsion.

  18. The Bragg Crystal Spectrometer for AXAF

    International Nuclear Information System (INIS)

    MIT's High Resolution X-ray Spectroscopy investigation on AXAF involves two complementary dispersive instruments, a Bragg Crystal Spectrometer (BCS) and a High Energy Transmission Grating Spectrometer (HETGS). The overall goal of the investigation is to study the physical conditions in celestial sources by means of detailed measurements of their X-ray spectra. High spectral resolution measurements can be used to perform diagnostics of emitting and absorbing matter, leading to knowledge of temperature, ionization state, elemental abundance, density and optical depth. The Bragg Crystal Spectrometer gives resolving powers of 200-2000 over the energy band 0.5-8 keV and resolving powers of 50-70 over 0.14-0.5 keV. The effective collecting areas in a typical scanning observation are 4-60 cm/sup 2/, and the minimum detectable line flux is 4-30 X 10/sup -6/ photons cm/sup -2/ s/sup -1/. The BCS will be located at the AXAF focal plane. The instrument consists of 10 curved diffractors each of which has a quasi-toroidal geometry, two types of imaging proportional counters optimized for low background (one sealed and one flow), an internal monitor counter that can be inserted into the beam to measure total source flux, a mechanical system that maintains Rowland circle geometry and an appropriate command and data system. The BCS is an upgraded and improved version of the Focal Plane Crystal Spectrometer flown on the Einstein Observatory. It will be used to measure the strengths of individual lines from both point and extended objects in order to apply plasma diagnostic techniques to the study of cosmic X-ray sources

  19. Momentum distribution dynamics of a Tonks-Girardeau gas: Bragg reflections of a quantum many-body wavepacket

    OpenAIRE

    Pezer, R.; Buljan, H.

    2006-01-01

    The dynamics of the momentum distribution and the reduced single-particle density matrix (RSPDM) of a Tonks-Girardeau (TG) gas is studied in the context of Bragg-reflections of a many-body wavepacket. We find strong suppression of a Bragg-reflection peak for a dense TG wavepacket; our observation illustrates dependence of the momentum distribution on the interactions/wavefunction symmetry. The momentum distribution is calculated with a fast algorithm based on a formula expressing the RSPDM vi...

  20. Silica Bridge Impact on Hollow-core Bragg Fiber Transmission Properties

    DEFF Research Database (Denmark)

    Poli, F.; Foroni, M.; Giovanelli, D.;

    2007-01-01

    The silica bridges impact on the hollow-core Bragg fiber guiding properties is investigated. Results demonstrate that silica nanosupports are responsible for the surface mode presence, which causes the peaks experimentally measured in the transmission spectrum. © 2006 Optical Society of America....

  1. Intensity Modulation of Hybrid Soliton Pulsed Source with Fibre Bragg Grating External Cavity

    Institute of Scientific and Technical Information of China (English)

    Nuran Dogru; M.Sadettin Ozyazici

    2004-01-01

    Resonance peak spectral splitting (RPSS) in the intensity modulation of a hybrid soliton pulsed source, where fibre Bragg gratings are used as an external cavity, can be suppressed by introducing a suitable linear chirp rate in a Gaussian apodized grating. Antireflection-coated reflectivity and gain suppression factor does not strongly affect the RPSS.

  2. New aspects in the Bragg Glass-Disordered phase transition: an analysis based on the 3rd harmonics of the AC magnetic susceptibility

    OpenAIRE

    Adesso*, M. G.; Flukiger, R.; Giamarchi, T.; Goldacker, W.; H.; Kupfer; Pace, S.; Polichetti, M.; Uglietti, D.

    2007-01-01

    We analyse the phase transition between the Bragg Glass and the Disordered phase in the vortex lattice in type-II superconductors, both by analytical computations and experimental investigations. It is known that if the Peak Effect can be detected, a Bragg Glass/Disordered phase transition takes place. We show that, in some conditions, this transition can occur without the observation of the Peak Effect Phenomenon. We introduce a method based on the 3rd harmonics of the AC magnetic susceptibi...

  3. High order Bragg grating microfluidic dye laser

    DEFF Research Database (Denmark)

    Balslev, Søren; Kristensen, Anders

    2004-01-01

    We demonstrate a single mode distributed feedback liquid dye laser, based on a short 133 'rd order Bragg grating defined in a single polymer layer between two glass substrates.......We demonstrate a single mode distributed feedback liquid dye laser, based on a short 133 'rd order Bragg grating defined in a single polymer layer between two glass substrates....

  4. OPTIMIZATION OF INTRAGRATING SENSING USING FIBER BRAGG GRATING

    OpenAIRE

    B.B.PADHY; HAFTAY ABADI GEBRU; SANDIPAN M.NALAWADE

    2011-01-01

    Linearly Chirped Fiber Bragg Gratings (FBGs) have been optimized and investigated for intragrating sensing. The side lobes have been suppressed using Gaussian apodization while maintaining the peak reflectivity and the bandwidth of the reflected signal. We have achieved a chirp rate of 0.5 to 2 nm/mm for intragrating sensing.Average thermal sensitivity of 11.55 pm/ oC is obtained which is higher than uniform FBGs. We have achieved novel characteristics of linearly chirped FBGs under the effec...

  5. OPTIMIZATION OF INTRAGRATING SENSING USING FIBER BRAGG GRATING

    Directory of Open Access Journals (Sweden)

    B.B.PADHY

    2011-01-01

    Full Text Available Linearly Chirped Fiber Bragg Gratings (FBGs have been optimized and investigated for intragrating sensing. The side lobes have been suppressed using Gaussian apodization while maintaining the peak reflectivity and the bandwidth of the reflected signal. We have achieved a chirp rate of 0.5 to 2 nm/mm for intragrating sensing.Average thermal sensitivity of 11.55 pm/ oC is obtained which is higher than uniform FBGs. We have achieved novel characteristics of linearly chirped FBGs under the effect of non-monotonic physical parameter distribution fields for excellent spectral response profile for intragrating sensing.

  6. Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme

    Science.gov (United States)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2016-08-01

    We describe a Bragg grating with a phase shift section and a sampled grating scheme that converts input polarization to orthogonal polarization. A very narrow polarization-independent wavelength peak can be generated by phase shift structures and polarization-independent multiple diffraction peaks by sampled gratings. The characteristics of the device were examined by transfer matrix and finite-difference time-domain methods.

  7. 100 GHz electrically tunable planar Bragg grating via nematic liquid crystal overlay towards reconfigurable WDM networks

    OpenAIRE

    Adikan, Faisal Rafiq Mahamd; Gates, James C.; Major, Huw E.; Gawith, Corin B.E.; Smith, Peter G. R.; Dyadyusha, Andriy; Kaczmarek, Malgosia; Sparrow, Ian J.G.

    2007-01-01

    Novel liquid crystal-based integrated optical devices with >140GHz electrical tuning are presented for application towards reconfigurable wavelength division multiplexing (WDM) networks. Initial results with Bragg wavelength tuning covering five 25GHz WDM channel spacing have been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electro-patterned ITO-covered glass electrodes placed 60?m apart. These prototype devices were fabricated using direct UV grating writing, with an...

  8. Anomalous thermal dynamics of Bragg gratings inscribed in germanosilicate optical fiber

    OpenAIRE

    Rahman, A.; Madhav, Venu K; B. Srinivasan; S. Asokan

    2009-01-01

    An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to s...

  9. Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering

    OpenAIRE

    Corcovilos, T. A.; Baur, S. K.; Hitchcock, J. M.; Mueller, E. J.; Hulet, R. G.

    2009-01-01

    Antiferromagnetism of ultracold fermions in an optical lattice can be detected by Bragg diffraction of light, in analogy to the diffraction of neutrons from solid state materials. A finite sublattice magnetization will lead to a Bragg peak from the (1/2 1/2 1/2) crystal plane with an intensity depending on details of the atomic states, the frequency and polarization of the probe beam, the direction and magnitude of the sublattice magnetization, and the finite optical density of the sample. Ac...

  10. Reflectivity and Braggs Wavelength in FBG

    Directory of Open Access Journals (Sweden)

    Dinesh Arora

    2011-12-01

    Full Text Available We have presented an analytical model of splitters based on Fiber Bragg grating used to detect a Bragg wavelength from the number of wavelengths which are traveling in an optical fiber. The number of grids and grating length can be used as a wavelength shifter.This paper presents experimental results that are used to show the effect of number of grids and the length of the grating on the Bragg wavelength and reflectivity of Fiber Bragg Grating (FBG. The pitch of grating is directly proportional to the grating length and inversely proportional to number of grids. When the grating length is fixed and the number of grids is increased, the Bragg wavelength decreases and reflectivity increases. This increase in reflectivity is very small. Further when the number of grids was kept constant and the grating length was increased the Bragg wavelength increases. The effect of this increase in grating length on reflectivity is a very small. In our model, the effectiveness of the grating in extracting the Braggs wavelength is nearly 100%.

  11. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  12. A Bragg beam splitter for hard x-ray free-electron lasers.

    Science.gov (United States)

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications. PMID:23481739

  13. Development of tilted fibre Bragg gratings using highly coherent 255 nm radiation

    Indian Academy of Sciences (India)

    O Prakash; J Kumar; R Mahakud; U Kumbhkar; S V Nakhe; S K Dixit

    2014-02-01

    This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 nm radiation, obtained from the second harmonic generation (SHG) of copper vapour laser (CVL). The transmission and reflection spectra of the tilted fibre Bragg gratings (TFBG) were studied for the tilt angles of 0° (normal FBG), 1°, 3° and 4° between the fibre axis and the interference fringe plane. It was observed that as the angle of fibre axis and phase mask increased, the main Bragg peak shifted towards the higher wavelength and transmission dip decreased. The transmission dip of the cladding mode first increased and then decreased after reaching a maximum with the increase in the tilt angle.

  14. BESSY Bragg-Fresnel multilayer beam monitors

    International Nuclear Information System (INIS)

    X-ray optical systems based on Bragg-Fresnel multilayer components imaging an electron beam in a storage ring with μm resolution are presented. Design concepts are compared to alternative methods, and the aberrations and limits of Bragg-Fresnel multilayer optics are discussed. Experimental results of imaging the BESSY I source with sub-10-μm resolution are presented, and the development of a compact Bragg-Fresnel multilayer telescope as a BESSY II standard beam monitor is described. copyright 1996 American Institute of Physics

  15. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    Science.gov (United States)

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-06-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks.

  16. Determination of the polarization of Bragg-reflected gamma rays by means of the Mössbauer effect

    DEFF Research Database (Denmark)

    Olsen, J.

    1969-01-01

    Recoil-free 14.4 keV gamma rays from 57Fe are reflected from an aluminium single crystal. By measurements of the intensities of the peaks in the Mössbauer spectra the polarization at different Bragg angles is determined.......Recoil-free 14.4 keV gamma rays from 57Fe are reflected from an aluminium single crystal. By measurements of the intensities of the peaks in the Mössbauer spectra the polarization at different Bragg angles is determined....

  17. Improved Phase-Mask Fabrication of Fiber Bragg Gratings

    Science.gov (United States)

    Grant, Joseph; Wang, Ying; Sharma, Anup

    2004-01-01

    An improved method of fabrication of Bragg gratings in optical fibers combines the best features of two prior methods: one that involves the use of a phase mask and one that involves interference between the two coherent laser beams. The improved method affords flexibility for tailoring Bragg wavelengths and bandwidths over wide ranges. A Bragg grating in an optical fiber is a periodic longitudinal variation in the index of refraction of the fiber core. The spatial period (Bragg wavelength) is chosen to obtain enhanced reflection of light of a given wavelength that would otherwise propagate relatively unimpeded along the core. Optionally, the spatial period of the index modulation can be made to vary gradually along the grating (such a grating is said to be chirped ) in order to obtain enhanced reflection across a wavelength band, the width of which is determined by the difference between the maximum and minimum Bragg wavelengths. In the present method as in both prior methods, a Bragg grating is formed by exposing an optical fiber to an ultraviolet-light interference field. The Bragg grating coincides with the pattern of exposure of the fiber core to ultraviolet light; in other words, the Bragg grating coincides with the interference fringes. Hence, the problem of tailoring the Bragg wavelength and bandwidth is largely one of tailoring the interference pattern and the placement of the fiber in the interference pattern. In the prior two-beam interferometric method, a single laser beam is split into two beams, which are subsequently recombined to produce an interference pattern at the location of an optical fiber. In the prior phase-mask method, a phase mask is used to diffract a laser beam mainly into two first orders, the interference between which creates the pattern to which an optical fiber is exposed. The prior two-beam interferometric method offers the advantage that the period of the interference pattern can be adjusted to produce gratings over a wide range

  18. Strain imaging by Bragg edge neutron transmission

    CERN Document Server

    Santisteban, J R; Fitzpatrick, M E; Steuwer, A; Withers, P J; Daymond, M R; Johnson, M W; Rhodes, N; Schooneveld, E M

    2002-01-01

    The Bragg edges appearing in the transmitted time-of-flight spectra of polycrystalline materials have been recorded using a two-dimensional array of detectors. Subsequent analysis has enabled maps of the elastic strain to be produced.

  19. Critical points in the Bragg glass phase of a weakly pinned crystal of Ca3Rh4Sn13

    Indian Academy of Sciences (India)

    S Sarkar; A D Thakur; C V Tomy; G Balakrishnan; D McK Paul; S Ramakrishnan; A K Grover

    2006-01-01

    New experimental data are presented on the scan rate dependence of the magnetization hysteresis width () (∝ critical current density c()) in isothermal - scans in a weakly pinned single crystal of Ca3Rh4Sn13, which displays second magnetization peak (SMP) anomaly as distinct from the peak effect (PE). We observe an interesting modulation in the field dependence of a parameter which purports to measure the dynamical annealing of the disordered bundles of vortices injected through the sample edges towards the destined equilibrium vortex state at a given . These data, in conjunction with the earlier observations made while studying the thermomagnetic history dependence in c() in the tracing of the minor hysteresis loops, imply that the partially disordered state heals towards the more ordered state between the peak field of the SMP anomaly and the onset field of the PE. The vortex phase diagram in the given crystal of Ca3Rh4Sn13 has been updated in the context of the notion of the phase coexistence of the ordered and disordered regions between the onset field of the SMP anomaly and the spinodal line located just prior to the irreversibility line. A multi-critical point and a critical point in the (, ) region of the Bragg glass phase have been marked in this phase diagram and the observed behavior is discussed in the light of recent data on multi-critical point in the vortex phase diagram in a single crystal of Nb.

  20. Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry.

    Science.gov (United States)

    Ou, Yiwen; Zhou, Ciming; Qian, Li; Fan, Dian; Cheng, Chunfu; Guo, Huiyong

    2015-11-30

    We demonstrate interrogation of a large-capacity sensor array with nearly identical weak fiber Bragg gratings (FBGs) based on frequency-shifted interferometry (FSI). In contrast to time-division multiplexing, FSI uses continuous-wave light and therefore requires no pulse modulation or high-speed detection/acquisition. FSI utilizes a frequency shifter in the Sagnac interferometer to encode sensor location information into the relative phase between the clock-wise and counter-clockwise propagating lightwaves. Sixty-five weak FBGs with reflectivities in the range of -31 ~-34 dB and with near identical peak reflection wavelengths around 1555 nm at room temperature were interrogated simultaneously. Temperature sensing was conducted and the average measurement accuracy of the peak wavelengths was ± 3.9 pm, corresponding to a temperature resolution of ± 0.4 °C. Our theoretical analysis taking into account of detector noise, fiber loss, and sensor cross-talk noise shows that there exists an optimal reflectivity that maximizes multiplexing capacity. The multiplexing capacity can reach 3000 with the corresponding sensing range of 30 km, when the peak reflectivity of each grating is -40 dB, the sensor separation 10 m and the source power 14 mW. Experimental results and theoretical analysis reveal that FSI has distinct cost and speed advantages in multiplexing large-scale FBG networks. PMID:26698773

  1. Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.

    2004-01-01

    Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer

  2. Mode characteristics of hollow core Bragg fiber

    Institute of Scientific and Technical Information of China (English)

    Minning Ji; Zhidong Shi; Qiang Guo

    2005-01-01

    Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TE02 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.

  3. Principles of Bragg-Fresnel multilayer optics

    OpenAIRE

    Aristov, V. V.; Erko, A.I.; Martynov, V.V.

    1988-01-01

    The paper describes the principles and theoretical models of new X-ray optical elements based on the behaviour of Bragg-Fresnel diffraction. The use of volume diffraction permits one to achieve better spatial resolution compared with conventional plane optics and bending mirrors. The construction of Bragg-Fresnel elements combines the advantages of high-resolution Fresnel optics with stability of multilayer mirrors.

  4. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  5. Reflectivity and Braggs Wavelength in FBG

    Directory of Open Access Journals (Sweden)

    Dinesh Arora, Dr.Jai Prakash, Hardeep Singh & Dr.Amit Wason

    2011-12-01

    Full Text Available We have presented an analytical model of splitters based on Fiber Bragg Grating used to detect a Braggwavelength from the number of wavelengths which are traveling in an optical fiber. The number of gridsand grating length can be used as a wavelength shifter. This paper presents experimental results that areused to show the effect of number of grids, the length of the grating on the Bragg wavelength andreflectivity of Fiber Bragg Grating (FBG. The pitch of grating is directly proportional to the grating lengthand inversely proportional to number of grids. When the grating length is fixed and the number of grids isincreased, the Bragg wavelength decreases resulting in increased reflectivity. This increased reflectivity isvery small. Further when the number of grids is kept constant and the grating length is increased theBragg wavelength increases. The effect of this increase in grating length on reflectivity is a very small. Inour model, the effectiveness of the grating in extracting the Braggs wavelength is nearly 100%.

  6. Numerical analysis of the harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of a phase mask with a variable phase step height.

    Science.gov (United States)

    Osuch, Tomasz

    2016-02-01

    The influence of the complex interference patterns created by a phase mask with variable diffraction efficiency in apodized fiber Bragg grating (FBGs) formation on their reflectance spectra is studied. The effect of the significant contributions of the zeroth and higher (m>±1) diffraction orders on the Bragg wavelength peak and its harmonic components is analyzed numerically. The results obtained for Gaussian and tanh apodization profiles are compared with similar data calculated for a uniform grating. It is demonstrated that when an apodized FBG is written using a phase mask with variable diffraction efficiency, significant enhancement of the harmonic components and a reduction of the Bragg wavelength peak in the grating spectral response are observed. This is particularly noticeable for the Gaussian apodization profile due to the substantial contributions of phase mask sections with relatively small phase steps in the FBG formation. PMID:26831768

  7. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor

    OpenAIRE

    Ricchiuti, Amelia Lavinia; Hervás Peralta, Javier; Barrera Vilar, David; Sales Maicas, Salvador; Capmany Francoy, José

    2014-01-01

    A system to interrogate photonic sensors based on a very weak fiber Bragg grating cascade fiber is presented and experimentally validated and dedicated to detecting the presence and location of a spot event. The distributed sensor proposed consists of a 5-m-long fiber, containing 500 9-mm-long Bragg gratings with a grating separation of 10.21 mm. The principle of operation is based on a technique used to analyze microwave photonics filters. The detection of spot events along the sensor is ...

  8. Using Dual-wavelength Fiber Bragg Gratings for Temperature and Strain Sensing at Cryogenic Temperature

    Science.gov (United States)

    Wu, Meng-Chou; Prosser, William H.; Rogowski, Robert S.; DeHaven, Stanton L.

    2003-01-01

    By using dual-wavelength fiber-optic Bragg gratings, a new technique has been developed for sensing both temperature and strain simultaneously in cryogenic temperature range. Two Bragg gratings with different wavelengths were inscribed at the same location in an optical fiber to form a dual-wavelength sensor. By measuring the wavelength shifts that resulted from the fiber being subjected to different temperatures and strains, the wavelength-dependent thermo-optic coefficients and photoelastic coefficients of the fiber were determined. These coefficients were used to construct the elements of the K matrix, which enables to determine inversely the strain and temperature changes by measuring the wavelength shifts of the dual-wavelength Bragg grating. In this study, measurements were made over the temperature range from room temperature down to about 10 K, addressing much of the low temperature range of cryogenic tanks. A structure transition of the optical fiber during the temperature change was found from about 70 K to 140 K. This transition caused splitting of the waveforms characterizing the Bragg gratings, and the determination of wavelength shifts was consequently complicated. Several alternatives are proposed to resolve this problem. The effectiveness and sensitivities of these measurements in different temperature ranges are discussed. The separation of two wavelengths for the dual-wavelength Bragg grating has been widened to increase the sensitivities of measurement; however, this separation can still be covered in the scanning range from single scanning laser.

  9. Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

    Science.gov (United States)

    Wu, Meng-Chou; Prosser, William H.

    2003-01-01

    A new technique has been developed for sensing both temperature and strain simultaneously by using dual-wavelength fiber-optic Bragg gratings. Two Bragg gratings with different wavelengths were inscribed at the same location in an optical fiber to form a sensor. By measuring the wavelength shifts that resulted from the fiber being subjected to different temperatures and strains, the wavelength-dependent thermo-optic coefficients and photoelastic coefficients of the fiber were determined. This enables the simultaneous measurement of temperature and strain. In this study, measurements were made over the temperature range from room temperature down to about 10 K, addressing much of the low temperature range of cryogenic tanks. A structure transition of the optical fiber during the temperature change was found. This transition caused splitting of the waveforms characterizing the Bragg gratings, and the determination of wavelength shifts was consequently complicated. The effectiveness and sensitivities of these measurements in different temperature ranges are also discussed.

  10. Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions

    Science.gov (United States)

    Degraeve, S.; Granger, C.; Dubus, B.; Vasseur, J. O.; Pham Thi, M.; Hladky-Hennion, A.-C.

    2014-05-01

    An homogeneous piezoelectric rod is shown to exhibit Bragg band gaps when an electrical boundary condition is applied periodically with the help of metallic electrodes. An analytical model is developed which formulation depends on the applied electric boundary condition and reveals that Bragg band gaps occurring in this very peculiar phononic crystal are related to the electric charge located on the electrodes. Moreover, via an accurate boundary condition (electrodes connected in short circuit, in open circuit, or through an external capacitance), full tunability of the Bragg band gaps can be achieved. Measurements of ultrasonic transmission present an overall excellent agreement with the theoretical results. This phononic crystal can be easily manufactured and presents many potential applications as frequency filters especially for radio frequency telecommunications.

  11. Peak flow meter (image)

    Science.gov (United States)

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  12. A strain-induced birefringent double-clad fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Lijun Li; Lei Sun; Wande Fan; Zhi Wang; Jianhua Luo; Shenggui Fu; Shuzhong Yuan; Xiaoyi Dong

    2005-01-01

    @@ A strain-induced birefringence double-clad (DC) fiber Bragg grating (FBG) is proposed and demonstrated.The grating is fabricated in the core of rectangular inner cladding double clad fiber by using phase mask method. By applying lateral strain on the grating, the birefringence is induced. In order to detect the birefringent effect of the grating, we use it as the output mirror of a laser. When lateral strain is applied,the grating becomes birefringent. Therefore, one reflection peak of double-clad fiber Bragg grating becomes two peaks and the laser also lases in two wavelengths. The wavelength spacing of the laser can be tuned from 0 to 0.8 nm. The absolute wavelengths for the two polarizations can be tuned 1.2 and 2.0 nm,respectively.

  13. Enhancement of QDs' fluorescence based on porous silicon Bragg mirror

    International Nuclear Information System (INIS)

    We fabricated a new porous silicon photonic device which is a special multi-layer porous silicon including two different single layer porous silicon and a porous silicon Bragg mirror, and investigated the influence of porous silicon Bragg mirror's structure on the fluorescence intensity of quantum dots (QDs) which infiltrated into porous silicon device, and CdSe/ZnS QDs we used emit at 605 nm and 625 nm respectively. By immersing porous silicon samples in QDs solution, QDs were successfully infiltrated into porous silicon devices which have high reflection band at or beyond fluorescence peak. Experimental results show that the fluorescence intensity of QDs which infiltrated into the first layer of porous silicon device can be enhanced when fluorescence peak falls into the high reflection band of porous silicon device

  14. Effect of interstitial air holes on Bragg gratings in photonic crystal fibre with a Ge-doped core

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui-Jia; Li Shu-Guang; Hou Lan-Tian

    2009-01-01

    The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using thc beam propagation method (BPM). It is shown that the interstitial air holes (IAHs) can make Bragg resonance wavelength λ3 shift a little towards short wavelengths and incrcase λB - λ1 (the wavelength spacing between the main peak with Bragg resonance wavelength λB and the first side peak with wavelength λ1) and the coupling coefficient κ of Bragg resonance. Moreover, when the ratio of air hole diameter (d) to pitch (A),d/A, is small, IAHs can suppress the cladding mode resonance. When d/A is large, IAHs increase the number of mode that could strongly interact with the fundamental mode. By comparing the transmission spectral characteristics of PCF-based fibrc Bragg grating (FBG) with IAHs with those without IAtIs at the same air-filling fraction, it is clarified that the change of transmission spectral characteristics of PCF-based FBG with IAHs is not due to a simple change in air-filling fraction. It is also closely related to the distribution of interstitial air holes.

  15. Measurement of ultracold neutrons produced by using Doppler-shifted Bragg reflection at a pulsed-neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Brun, T.O.; Carpenter, J.M.; Krohn, V.E.; Ringo, G.R.; Cronin, J.W.; Dombeck, T.W.; Lynn, J.W.; Werner, S.A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm/sup 3/.

  16. Inverse-Gaussian-Apodized Fiber Bragg Grating for Dual Wavelength Lasing

    CERN Document Server

    Lin, Bo; Tjin, Swee Chuan; Tang, Dingyuan; Hao, Jianzhong; Tay, Chia Meng; Liang, Sheng

    2010-01-01

    A fiber Bragg grating (FBG) with an inverse-Gaussian apodization function is proposed and fabricated. It is shown that such a FBG possesses easily controllable dual-wavelength narrow transmission peaks. Incorporating such a FBG filter in a fiber laser with a linear cavity, stable dual-wavelength emission with 0.146 nm wavelength spacing is obtained. It provides a simple and low cost approach of achieving the dual-wavelength fiber laser operation.

  17. Time division multiplexing of 106 weak fiber Bragg gratings using a ring cavity configuration

    Science.gov (United States)

    Wang, Zhi; Wen, Hongqiao; Luo, Zhihui; Dai, Yutang

    2016-06-01

    A time division multiplexing of 106 weak fibers Bragg gratings (FBGs) based on a ring resonant-cavity is demonstrated. A semiconductor optical amplifier is connected in the cavity to function as an amplifier as well as a switch. The 106 weak FBGs are written along a SMF-28 fiber in serial with peak reflectivity of about -30 dB and equal separations of 5 m. The crosstalk and spectral distortion are investigated through both theoretical analysis and experiments.

  18. Post-Impact Fatigue Damage Monitoring Using Fiber Bragg Grating Sensors

    OpenAIRE

    Chow-Shing Shin; Shien-Kuei Liaw; Shi-Wei Yang

    2014-01-01

    It has been shown that impact damage to composite materials can be revealed by embedded Fiber Bragg Gratings (FBG) as a broadening and splitting of the latter’s characteristic narrow peak reflected spectrum. The current work further subjected the impact damaged composite to cyclic loading and found that the FBG spectrum gradually submerged into a rise of background intensity as internal damages progressed. By skipping the impact, directing the impact to positions away from the FBG and examin...

  19. Impact of hydrogen-induced effects on optical fiber Bragg gratings

    Science.gov (United States)

    Martelli, Cicero; Mendez, Alexis; Triques, Adriana L. C.; Braga, Arthur M. B.; Canning, John; Cook, Kevin; Llerena, Roberth; Takahashi, Victor

    2011-05-01

    The effects induced by low and high pressure ingression of hydrogen on UV-written germanium doped silica optical fiber Bragg gratings-at room and high temperature-are studied and discussed. Results show that at elevated temperatures (>150 °C), an immediate and permanent shift of the peak grating reflectivity is induced and proportional to the hydrogen concentration (10 pm/AtmH2), whilst at room temperature most of the grating spectrum changes are transient and mostly reversible.

  20. POLICRYPS-based electrically switchable Bragg reflector.

    Science.gov (United States)

    De Sio, Luciano; Tabiryan, Nelson; Bunning, Timothy J

    2015-12-14

    The formation and characterization of a switchable volume reflective element fabricated from a polymer liquid crystal (LC) polymer slice (POLICRYPS) structure by holographic photopolymerization at high temperature (65 °C) using a photosensitive/nematic liquid crystal prepolymer mixture is reported. The submicron Bragg structure formed consists of periodic continuous polymeric walls separated by periodic LC channels. The phase separated NLC self-aligns in a homeotropic alignment between the polymer walls as indicated by polarizing optical microscopy analysis (Maltese cross). The resulting periodic grating structure results in a Bragg reflection notch upon illumination with white light due to the periodic variation in refractive index. Electro-optical experiments realized through in-plane electrodes and temperature experiments confirm that the multilayer structure acts as a Bragg mirror whose reflection efficiency can be controlled by either a small (~3V/µm) electric field or temperature. PMID:26699059

  1. Microwave Bragg-scattering zone-axis-pattern analysis

    CERN Document Server

    Fraundorf, P; Garver, W; Freeman, M; Proctor, D

    2013-01-01

    Louis deBroglie's connection between momentum and spatial-frequency vectors is perhaps most viscerally-experienced via the real-time access that electron-diffraction provides to transverse slices of a crystal's reciprocal lattice. The classic introductory (and/or advanced) physics lab-experiment on microwave Bragg-scattering can with a bit of re-arrangement also give students access to "zone-axis-pattern" slices through the 3D spatial-frequency (i.e. reciprocal) lattice of a ball-bearing crystal. In this paper we show how data from the standard experimental set up can be used to generate zone-axis-patterns oriented down the crystal rotation-axis. This may be used to give students direct experience with crystal shape-transforms (which help to explain anomalous peaks), as well as to the complementary relation between non-Cartesian basis-vectors in direct and reciprocal (co-vector) space.

  2. Wavefront distortion optimized with volume Bragg gratings in photothermorefractive glass.

    Science.gov (United States)

    Gao, Fan; Zhang, Xiang; Sun, Xiaojie; Yuan, Xiao

    2016-03-15

    The wavefront characteristics in 2D angular filtering on the basis of two orthogonal transmitting volume Bragg gratings (VBGs) is presented. The experimental results show that middle-high frequency wavefront distortions are efficiently suppressed with VBGs. The peak-valley value of the beam at a wavelength of 1053 nm reduces from 2.075λ to 0.209λ, and the root mean square value reduces from 0.207λ to 0.041λ. The wavefront power spectrum density shows that the wavefront distribution of the beam in medium and high frequencies is corrected by the VBGs. Additionally, the far-field distribution and focusing properties of the beam are improved. The beam Strehl ratio increases from 0.43 to 0.96, and the encircled energy improves from 95% energy at 4.01 mrad to 95% energy at 1.26 mrad. PMID:26977639

  3. Fiber Bragg grating demodulation through innovative numerical procedures

    Science.gov (United States)

    Dinardo, Giuseppe; Vacca, Gaetano

    2016-01-01

    The aim of this article is to introduce an innovative algorithm for the calculation of the shift of the maximum reflectivity wavelength of a Fiber Bragg Grating experiencing an applied strain. An accurate and precise evaluation of the FBG spectrum displacement is crucial for determining the amount of the physical quantity inducing such perturbations. The proposed method is based on the Fast Fourier Transform based Cross Correlation function. Such method is compared to Least Squares Fitting (LSF) and the centroid algorithms, pointing out remarkable improvements in accuracy, precision, and time consumption performance. In addition, a further improvement of the proposed algorithm is introduced. It consists in an iteratively performed Cross Correlation algorithm. It has been proved that such improvement leads to estimations characterized by better accuracy and precision, thanks also to a considerable reduction of the peak-locking effect due to the FBG spectral resolution.

  4. Bragg diffraction and the Iron crust of Neutron Stars

    CERN Document Server

    Llanes-Estrada, Felipe J

    2009-01-01

    If neutron stars have a thin atomic crystalline-iron crust, they must diffract X-rays of appropriate wavelength. So that the diffracted beam is visible from Earth, the illuminating source must be very intense and near the reflecting star. An example is a binary system with two neutron stars, one of them inert, the other an X-ray pulsar, in close orbit. The observable to be searched for is a secondary peak added (quasi-) periodically to the main X-ray pulse. The distinguishing feature of this secondary is that it appears at wavelengths related by simple integer numbers, lambda, lambda/2, lambda/3... lambda/n because of Bragg's diffraction law.

  5. BRAGG-FRESNEL OPTICS AND SUPERMIRRORS

    OpenAIRE

    A. Erko; Vidal, B.

    1996-01-01

    The main principles and some applications of Bragg-Fresnel multilayer optics and X-ray supermirrors are described. An elliptical Bragg-Fresnel multilayer lens (BFML), designed and fabricated in the IMT RAS has been used for 2-dimensional focusing of the white X-ray synchrotron beam. For the beam energy of about 12 KeV the spot size checked with the knife edge method was about 1 mm. Applications of BFML and supermirrors in x-ray imaging are discussed.

  6. Sangac interferometer on the holographic bragg grating

    CERN Document Server

    Tikhonov, E A

    2015-01-01

    The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.

  7. Forecasting peak ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R.W.; Layton, A.P.

    1983-01-01

    Box-Jenkins (1970) time series models are used to predict peak afternoon O3 levels. Data sets from three monitoring stations in Brisbane, Queensland, Australia, are used in the analysis, one of the stations being inner-city and the others being outer-city. It is found that univariate models using only the peak O3 data-set at a site to predict future peak O3 levels are unsatisfactory. However bivariate models using peak O3 data from one site to predict peak O3 levels at another site yield good results. However it is clear that these results only arise because the O3 is formed in a well mixed layer over the region leading to a high degree of correlation between O3 peaks throughout the region. 15 references.

  8. Demonstration of 100 GHz electrically tunable liquid-crystal Bragg gratings for application in dynamic optical networks

    OpenAIRE

    Adikan, F.R.Mahamd; J.C.Gates; Dyadyusha, A.; Major, H.E.; Gawith, C.B.E.; Sparrow, I.J.G.; Emmerson, G.D.; Kaczmarek, M.; P.G.R.Smith

    2007-01-01

    We demonstrate liquid crystal-based integrated optical devices with >140GHz electrical tuning for potential applications in dynamic optical networks. Bragg wavelength tuning covering five 25GHz WDM channel spacings has been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electro-patterned ITO-covered glass electrodes placed 60?m apart. This tunability range was limited only by the initial grating strength and supply voltage level. We also observed two distinct threshold b...

  9. Neutron Back- and Front-Face Bragg Diffraction on a Thin Si Single Crystal Excited by Ultrasound

    OpenAIRE

    Raitman, E.; Gavrilov, V.; D. Mjasischev; Ju. Ekmanis; Hoser, A.; Hoffmann, T.

    2015-01-01

    In this research project, we measured and analyzed the spatial distribution of neutron beam Bragg diffracted from the front- and back-faces of thin Si single crystal undergoing on ultrasound excitation. For the perfect crystal, it is shown that when the acoustic wave amplitude is increased, the front-face peak position remains unchanged and its value grows linearly. The values of ultrasound wave amplitude were determined. The back-face peak becomes asymmetric and tends to ...

  10. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mehdi Shadaram

    2010-10-01

    Full Text Available In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  11. Low-noise on-chip frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides

    CERN Document Server

    Agha, Imad; Thurston, Bryce; Srinivasan, Kartik

    2012-01-01

    Low-noise, tunable wavelength-conversion through non-degenerate four-wave mixing Bragg scattering in SiNx waveguides is experimentally demonstrated. Finite element method simulations of waveguide dispersion are used with the split-step Fourier method to predict device performance, and indicate a strong dependence of the conversion efficiency on phase matching, which is controlled by the waveguide geometry. Two 1550 nm wavelength band pulsed pumps are used to achieve tunable conversion of a 980 nm signal over a range of 5 nm with a peak conversion efficiency of \\approx 5 %. The demonstrated Bragg scattering process is suitable for frequency conversion of quantum states of light.

  12. Femtosecond laser pulse written Volume Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Richter Daniel

    2013-11-01

    Full Text Available Femtosecond laser pulses can be applied for structuring a wide range of ransparent materials. Here we want to show how to use this ability to realize Volume-Bragg-Gratings in various- mainly non-photosensitive - glasses. We will further present the characteristics of the realized gratings and a few elected applications that have been realized.

  13. Modal analysis of Bragg onion resonators

    OpenAIRE

    Xu, Yong; Liang, Wei; Yariv, Amnon; Fleming, James G.; Lin, Shawn-Yu

    2004-01-01

    From analysis of the high Q modes in a Bragg onion resonator with an omnidirectional reflector cladding, we establish a close analogy between such a resonator and a spherical hollow cavity in perfect metal. We demonstrate that onion resonators are ideal for applications that require a large spontaneous-emission factor ß, such as thresholdless lasers and single-photon devices.

  14. Efficient iterative technique for designing bragg gratings

    DEFF Research Database (Denmark)

    Plougmann, Nikolai; Kristensen, Martin

    2004-01-01

    We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings....

  15. Analysis of the dependence of the guided mode field distribution on the silica bridges in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Selleri, S.; Poli, F.; Foroni, M.;

    2007-01-01

    The guiding properties of fabricated air-silica Bragg fibers with different geometric characteristics have been numerically investigated through a modal solver based on the finite element method. The method has been used to compute the dispersion curves, the loss spectra and the field distribution...... of the modes sustained by the Bragg fibers under investigation. In particular, the silica bridge influence on the fundamental mode has been analyzed, by considering structures with different cross sections, that is an ideal Bragg fiber, without the silica nonosupports, a squared air-hole one and...... responsible of the loss peaks in the fiber transmission spectra, also experimentally measured. Surface modes are mainly localized in the regions of the cladding where the bridge supports join the cladding rings, forming silica islands where the field can focuses....

  16. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  17. Fiber Bragg grating (FBG) sensors used in coal mines

    Science.gov (United States)

    Wang, Jinyu; Liu, Tongyu; Song, Guangdong; Xie, Hongjing; Li, Lianqing; Deng, Xiaolin; Gong, Zhijie

    2014-06-01

    The fiber Bragg grating (FBG) strain sensors were used for on-line monitoring of the stress variation of the lined wall in the gateway retained along the goaf of No. 3203 coal mining face in Dongtan Mine. The results showed that the FBG strain sensor with the wide measuring range could measure the stress variation accurately during the support process of the gateway retained along the goaf and could provide the basis to further optimize the support structure and to determine the support plan of the gateway retained along the goaf. The FBG micro-seismic sensors were used in Xinglong Mine to detect the micro-seismic signal. The signals were well received and analyzed to determine the location and energy level of the source of the micro-seismic event warning. The FBG sensors and detecting system show a significant potential for micro-seismic detection and geological disasters detection.

  18. Remote (250 km Fiber Bragg Grating Multiplexing System

    Directory of Open Access Journals (Sweden)

    Manuel Lopez-Amo

    2011-09-01

    Full Text Available We propose and demonstrate two ultra-long range fiber Bragg grating (FBG sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system.

  19. Pure Bending Characteristic of Tilted Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Yin-Ping Miao; Hai-Bin Zhou; Qi-Da Zhao

    2008-01-01

    a novel structure of the pure macro-bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.

  20. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth

    Science.gov (United States)

    Francis, Z.; Seif, E.; Incerti, S.; Champion, C.; Karamitros, M.; Bernal, M. A.; Ivanchenko, V. N.; Mantero, A.; Tran, H. N.; El Bitar, Z.

    2014-12-01

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu-1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam.

  1. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth

    International Nuclear Information System (INIS)

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu−1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam. (paper)

  2. An analytical solution to proton Bragg peak deflection in a magnetic field.

    Science.gov (United States)

    Wolf, Russell; Bortfeld, Thomas

    2012-09-01

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1 cm and above) even in relatively small magnetic fields of 0.5 T. However, the curved path of a proton beam in a magnetic field is easily predictable and it should be possible to account for this in treatment planning. PMID:22892827

  3. An analytical solution to proton Bragg peak deflection in a magnetic field

    International Nuclear Information System (INIS)

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1 cm and above) even in relatively small magnetic fields of 0.5 T. However, the curved path of a proton beam in a magnetic field is easily predictable and it should be possible to account for this in treatment planning. (note)

  4. An analytical solution to proton Bragg peak deflection in a magnetic field

    Science.gov (United States)

    Wolf, Russell; Bortfeld, Thomas

    2012-09-01

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1 cm and above) even in relatively small magnetic fields of 0.5 T. However, the curved path of a proton beam in a magnetic field is easily predictable and it should be possible to account for this in treatment planning.

  5. Heavy ion induced damage to plasmid DNA : plateau region vs. spread out Bragg-peak

    NARCIS (Netherlands)

    Dang, H.M.; van Goethem, M.J.; van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.A.; Schlathölter, T.A.

    2011-01-01

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage contri

  6. Epistemic and systematic uncertainties in Monte Carlo simulation: an investigation in proton Bragg peak simulation

    OpenAIRE

    Maria Grazia PiaINFN Sezione di Genova; Marcia BegalliState University Rio de Janeiro; Anton LechnerVienna University of Technology; Lina QuintieriINFN Laboratori Nazionali di Frascati; Paolo SaraccoINFN Sezione di Genova

    2014-01-01

    The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.

  7. Fragmentation of alpha- and beta-alanine molecules by ions at Bragg-peak energies

    NARCIS (Netherlands)

    Bari, S.; Sobocinski, P.; Postma, J.; Alvarado, F.; Hoekstra, R.; Bernigaud, V.; Manil, B.; Rangama, J.; Huber, B.; Schlathoelter, T.

    2008-01-01

    The interaction of keV He(+), He(2+), and O(5+) ions with isolated alpha and beta isomers of the amino acid alanine was studied by means of high resolution coincidence time-of-flight mass spectrometry. We observed a strong isomer dependence of characteristic fragmentation channels which manifests in

  8. Epistemic and systematic uncertainties in Monte Carlo simulation: an investigation in proton Bragg peak simulation

    CERN Document Server

    Pia, Maria Grazia; Lechner, Anton; Quintieri, Lina; Saracco, Paolo

    2010-01-01

    The issue of how epistemic uncertainties affect the outcome of Monte Carlo simulation is discussed by means of a concrete use case: the simulation of the longitudinal energy deposition profile of low energy protons. A variety of electromagnetic and hadronic physics models is investigated, and their effects are analyzed. Possible systematic effects are highlighted. The results identify requirements for experimental measurements capable of reducing epistemic uncertainties in the physics models.

  9. Bragg peak prediction from quantitative proton computed tomography using different path estimates

    OpenAIRE

    Dongxu WANG; Mackie, T. Rockwell; Wolfgang A. Tomé

    2011-01-01

    This paper characterizes the performance of the straight-line path (SLP) and cubic spline path (CSP) as path estimates used in reconstruction of proton computed tomography (pCT). The GEANT4 Monte Carlo simulation toolkit is employed to simulate the imaging phantom and proton projections. SLP, CSP and the most-probable path (MPP) are constructed based on the entrance and exit information of each proton. The physical deviations of SLP, CSP and MPP from the real path are calculated. Using a cond...

  10. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica;

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, the...... dispersion curves, associated to the transition of the fundamental mode into a surface one. It has been shown that surface modes are responsible of the sharp loss peaks, also experimentally measured, which pollute the loss spectrum of the fundamental mode and of the higher-order ones. Then, the influence on...... the guiding properties of each geometric characteristic in the hollow-core Bragg fiber cross-section has been deeply investigated, thus showing which parameter it is better to change in order to properly modify the loss values or its spectral behaviour. Moreover, in order to improve the loss...

  11. Terahertz Photonic Crystal Quantum Cascade Laser Coupled to a Second Order Bragg Vertical Extractor

    International Nuclear Information System (INIS)

    Full text: Few approaches for surface emitting THz Quantum cascade Lasers (QCL) demonstrated the lasing of a second-order Bragg metallic grating patterned on top of a ridge or a surface emitting photonic crystal (PhC). PhC band-edge lasers with improved performance compared to Fabry-Perot lasers have already been reported. In this work a surface emitting band edge 2D PhC QCL is presented, using a second-order Bragg grating as a boundary condition. We show single mode devices operating around 3.1 THz with a maximum operating temperature of 125 K in pulsed operation, 100 K in CW, a far-field divergence of less than 20° or up to 12 mW of peak output power. (author)

  12. Ion implanted Bragg endash Fresnel lens

    International Nuclear Information System (INIS)

    We have investigated the feasibility of widening the bandpath of the Bragg endash Fresnel optical element through the use of ion implantation. The focusing properties of Bragg endash Fresnel lenses (BFLs) were studied as a function of the implantation dose and energy. An enhancement of the focus intensity of up to 15% was found, which is less than expected. Due to the complicated scattering of the low energy ions inside the micrometer- and submicrometer-sized crystal features that make up the BFL relief, the implantation technology destroys the peripheral zones of the BFL more than it increases the intensity in the focus. Nevertheless we believe that high energy implantation can be successfully used to modify the BFL reflectivity, especially in the case of nearly backscattering reflection. copyright 1996 American Institute of Physics

  13. Study on position sensitive Bragg detector

    International Nuclear Information System (INIS)

    A position sensitive Bragg Curve Spectroscopy (PS-BCS) for heavy ion identification is introduced. The position signal is extracted via an auxiliary grid (P grid) between the anode and the Frisch grid. The position is determined by the wires. The charge division method have been used for position read-out. The test results of the detector with 252Cf α source have shown a position resolution ΔX<9 mm

  14. Improvement of soybean variety 'Bragg' through mutagenesis

    International Nuclear Information System (INIS)

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M2, a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M2 and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T214' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  15. Fort Bragg Embraces Groundbreaking Heat Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  16. Microwave photonics filtering technique for interrogating long weak fiber Bragg grating sensors

    OpenAIRE

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thévenaz, Luc; Capmany, José

    2014-01-01

    A system to interrogate photonic sensors based on long weak fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to measure the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long weak FBGs are used as quasi-distributed sensors. Several events can be detected along the FBG device with a spatial accuracy under 1 mm using a modulator and a photo-detector (PD) with a...

  17. The peak oil debate

    OpenAIRE

    Graefe, Laurel

    2009-01-01

    For the past half-century, a debate has raged over when "peak oil" will occur—the point at which output can no longer increase and production begins to level off or gradually decline. Determining how long the oil supply will last has become even more pressing because the world’s energy supply still relies heavily on oil, and global energy demand is expected to rise steeply over the next twenty years. ; This article seeks to bring the peak oil debate into focus. The author notes that a number ...

  18. Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides.

    Science.gov (United States)

    Zou, Zhi; Zhou, Linjie; Wang, Minjuan; Wu, Kan; Chen, Jianping

    2016-06-13

    We demonstrate spiral integrated Bragg gratings (IBGs) in 60-nm-thick strip waveguides on the silicon-on-insulator (SOI) platform. The length of the spiral IBG is 2 mm, occupying an area of 147 × 141 μm2 with a minimum bending radius of 20 μm. Experiments show that the spiral IBGs exhibit a single narrow transparent peak with a Q-factor of 1 × 105 in a broad stopband, induced by the phase shift of the S-junction at the spiral center. This phenomenon is analogous to the electromagnetically induced transparency (EIT) effect. The transparent peak can periodically shift in the stopband upon heating of the S-junction using a TiN-based heater on top. The peak transmittance and Q-factor are dependent on the reflectivity of the spiral IBG. The transparent peak can be completely eliminated under a certain tuning power, and the spiral IBG hence behaves as a bandstop optical filter. The bandwidth is 0.94 nm and the extinction ratio is as high as 43 dB. The stopband can also be shifted by heating the Bragg gratings using a separate TiN heater. The experimental results agree well with the modeling results based on the transfer matrix method. PMID:27410302

  19. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...

  20. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  1. Measurement of Temperature and Residual Strain during Fatigue of a CFRP Composite Using Fiber Bragg Grating Sensors

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiaoyan; LIN Yuchi; WANG Wei

    2009-01-01

    Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thermocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3 ℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0 ℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10-5-2×10-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.

  2. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors.

    Science.gov (United States)

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-01-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface. PMID:27363290

  3. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    Science.gov (United States)

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

  4. On the trail of double peak hydrographs

    Science.gov (United States)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent

    2016-04-01

    and the plateau) equally contribute to the generation of delayed peaks in double peak hydrographs. We found evidence of catchment storage being a dominant control on the delayed peak activation. The amount of this storage threshold was consistent over a 3-year period. Hillslopes were connected to the stream at low discharge values, whereas the plateau contribution to discharge was significant when storage reached a certain threshold value. The latter seems to trigger the generation of the delayed peak in the double peak events. We also observed a non-linear relationship between storage and discharge, which leads to hysteretic relationships between both variables. During single peak hydrographs and first peaks in double peak hydrographs discharge increases faster and peaks before catchment storage, resulting in counter-clockwise hysteretic loops. This was explained by the fact that these runoff peaks are generated by precipitation falling directly into the stream or near stream locations, and/or by the contribution of water flowing through preferential flowpaths that quickly reached the stream network. When catchment storage exceeded the threshold for the generation of double peak hydrographs, events showed clockwise hysteretic loops. It is the stored water in the catchment that will peak first and consequently generate the delayed peak in the hydrograph as a result of the capacity exceedance of a subsurface storage.

  5. Single-pulse coherent anti-Stokes Raman spectroscopy via fiber Bragg grating

    Science.gov (United States)

    Oh, Seung Ryeol; Park, Joo Hyun; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2016-03-01

    Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.

  6. Highly tunable Terahertz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides

    Directory of Open Access Journals (Sweden)

    Kangwen Li

    2013-06-01

    Full Text Available A highly tunable terahertz (THz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides is proposed and demonstrated numerically by means of the Finite Element Method. The results reveal that a sharp peak with high Q-value presents in the band gap of Bragg grating waveguide with a defect, and the position of the sharp peak can be modified greatly by changing the intensity of the transverse magnetic field applied to the device. Compared to the situation without magnetic field applied, the shift of the filtered frequency (wavelength reaches up to 36.1 GHz (11.4 μm when 1 T magnetic field is applied. In addition, a simple model to predict the filtered frequency and an effective way to improve the Q-value of the filter are proposed by this paper.

  7. Fiber Bragg grating writing technique for multimode optical fibers providing stimulation of few-mode effects in measurement systems

    Science.gov (United States)

    Bourdine, Anton V.; Vasilets, Alexander A.; Burdin, Vladimir A.; Morozov, Oleg G.; Nureev, Ilnur I.; Kuznetzov, Artem A.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Minaeva, Alina Y.; Sevruk, Nikita L.

    2016-03-01

    This work is concerned with fiber Bragg grating (FBG) writing technique developed for graded-index multimode optical fibers applied in measurement systems based on a few-mode effects. We present some results of experimental approbation of proposed technique with Bragg wavelength 1310 and 1550 nm on samples of graded-index multimode optical fibers 50/125 of both new-generations Cat. OM2+/OM3 and old Cat. OM2 with preliminary measured refractive index profiles. While the first group fibers of Cat. OM2+/OM3 was characterized by almost ideal smooth graded refractive index profile and some fiber profile samples of this group contains thin central peak, the second fiber group profiles of Cat. OM2 differ by great central core defects representing dip or thick peak. Results of described FBG spectral response measurements under excitation of laser pigtailed by single-mode fiber are represented.

  8. Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays

    Directory of Open Access Journals (Sweden)

    Ander Montero

    2013-09-01

    Full Text Available Impact detection in aeronautical structures allows predicting their future reliability and performance. An impact can produce microscopic fissures that could evolve into fractures or even the total collapse of the structure, so it is important to know the location and severity of each impact. For this purpose, optical fibers with Bragg gratings are used to analyze each impact and the vibrations generated by them. In this paper it is proven that optical fibers with Bragg gratings can be used to detect impacts, and also that a high-frequency interrogator is necessary to collect valuable information about the impacts. The use of two interrogators constitutes the main novelty of this paper.

  9. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  10. Spatially Resolved Analysis of Bragg Selectivity

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  11. Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multi-beam pulsed laser deposition

    OpenAIRE

    Sloyan, Katherine A.; May-Smith, Timothy C.; Zervas, Michalis N.; Eason, Robert W.

    2012-01-01

    Crystalline Bragg reflectors are of interest for high power, high temperature and integrated applications. We demonstrate the automated growth of such structures by shuttered multi-beam Pulsed Laser Deposition (PLD). Geometries include 145 layer stacks exhibiting >99.5% reflection and ? phase-shifted designs. A crystalline grating strength-apodized sample was grown by mixing plumes to obtain layers with custom refractive indices. Peak reflection wavelength was tuneable with incident position,...

  12. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland; Rasmussen, Inga; Rasmussen, H.E.

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  13. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland;

    1998-01-01

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  14. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio; Nielsen, Kristian; Rasmussen, Henrik K.; Khan, L.; Webb, D.J.; Kalli, K.; Bang, Ole

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  15. PMMA mPOF Bragg gratings written in less than 10 min

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Markos, Christos;

    2014-01-01

    Fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using the UV Phase Mask technique is a time consuming process requiring about 40 minutes to inscribe a grating in an undoped fiber. Here we demonstrate the FBG inscription with the writing times shorter than 10...... min. By careful alligning and increasing the beam intensity in the core of the fiber, writing times as short as 6 minutes and 50 second were achieved. The FBGs were written in a 125 μm PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as...

  16. All-fiber amplifier similariton laser based on a fiber Bragg grating filter.

    Science.gov (United States)

    Olivier, Michel; Gagnon, Mathieu; Duval, Simon; Bernier, Martin; Piché, Michel

    2015-12-01

    This article presents, for the first time to our knowledge, an all-fiber amplifier similariton laser based on a fiber Bragg grating filter. The laser emits 2.9 nJ pulses at a wavelength of 1554 nm with a repetition rate of 31 MHz. The dechirped pulses have a duration of 89 fs. The characteristic features of the pulse profile and spectrum along with the dynamics of the laser are highlighted in representative simulations. These simulations also address the effect of the filter shape and detuning with respect to the gain spectral peak. PMID:26625073

  17. X-ray Raman scattering with Bragg diffraction in a La-based superlattice

    OpenAIRE

    André, Jean-Michel; Jonnard, Philippe; Bonnelle, Christiane; O. Filatova, E.; Michaelsen, C.; Wiesmann, J

    2005-01-01

    11 pages The non-dispersed soft x-ray emission from a La/B4C periodic multilayer irradiated by monochromatic x-rays has been measured as a function of the incident photon energy in the 125-200 eV range for different scattering angles. We have observed a scattered intensity peak at incident energies which shift towards the low-energy side as the value of the scattering angle increases. These observations are interpreted as Raman scattering by the 5p level of lanthanum assisted by Bragg diff...

  18. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Markos, Christos;

    2014-01-01

    We demonstrate fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using UV Phase Mask technique with writing times shorter than 10 min. The shortest writing time was 6 minutes and 50 seconds and the longest writing time was 8 min and 50 sec. The FBGs were...... written in a 125 x00B5;m PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as 26 dB. We also demonstrate how the writing dynamics depends on the intensity of the writing beam....

  19. Application of Fiber Bragg Grating for Determining Positions of Gas Absorption Lines

    Institute of Scientific and Technical Information of China (English)

    韩文念; 汪曣; 马凤; 刘琨; 贾大功; 刘铁根; 张红霞

    2010-01-01

    Fiber Bragg grating(FBG) is used as a wavelength reference device to calibrate the position of gas absorption peak in the intracavity absorption gas sensor(ICAGS) based on erbium-doped fiberring laser.This system can detect both the reflectance spectrum of FBGs and absorption spectrum of measured gas during a single wavelength sweeping process by linearly varying the driving voltage of optic filter.The voltages corresponding to center wavelength positions of four FBGs in the spectrum are determined through ...

  20. Experimental and theoretical analysis of fiber Bragg gratings under Transverse Force to a Small Grating Section

    Institute of Scientific and Technical Information of China (English)

    WU Fei; LI Li-xin; LI Ya-pin; LI Zhi-quan

    2005-01-01

    Fiber Bragg grating under transverse force on a small grating section is studied by numerical simulation and experimentation. A numerical simulation based on the transfer matrix method is used to calculate the consequent changes in reflected spectrum. The reflected spectra of the FBG subjected to the transverse force split into two main peaks, and the split point shifted linearly and periodically versus the applied force. The split point is shifted in the bandwidth with the period of 11N, and the sensitivity of the split point wavelength shift versus the applied force is 0.05 nm/N in one period. The experimental results show good agreement with the simulation analysis.

  1. Collective Location

    OpenAIRE

    Jayet, Hubert

    1997-01-01

    We analyse location of a group whose members differ in their preference ordering among sites while collective action calls for a common location. The possible locations are Pareto-efficient and individually rational outcomes of a cooperative game with strategic combinations defined by the members' locations. Only members located on the same site engage in collective action. The solutions' set of this game is determined and the example of a small firm whose members leave in different places il...

  2. The Economics of Peak Oil

    OpenAIRE

    Holland, Stephen

    2011-01-01

    Peak oil” refers to the future decline in world production of crude oil and to the accompanying potentially calamitous effects. The peak oil literature typically rejects economic analysis. This chapter, following Holland (2008), argues that economic analysis is indeed appropriate for analyzing oil scarcity since standard economic models can replicate the observed peaks in oil production. Moreover, the emphasis on peak oil is misplaced since peaking is not a good indicator of scarcity, peak o...

  3. The Physical Meanings of 5 Basic Parameters for an X-Ray Diffraction Peak and Their Application

    Institute of Scientific and Technical Information of China (English)

    周健; 王河锦

    2003-01-01

    This paper derives the physical meanings of peak position, peak width and height ofan X-ray diffraction peak from the analyses of the Bragg's equation, the Scherrer' s formula andthe principle of peak intensity calculation. The geometric characteristics of an asymmetric peakare clarified by means of experiment. The relationships between neak shape and domain size/lattice strain have been verified by geological events. Therefore this paper integrates the physicalmeanings of all 5 basic parameters for an X-ray diffraction peak. Applications of these 5 parame-ters are exemplified.

  4. Peak reading detector circuit

    International Nuclear Information System (INIS)

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB)

  5. New design for temperature–strain discrimination using fiber Bragg gratings embedded in laminated composites

    International Nuclear Information System (INIS)

    A new smart structure based on fiber Bragg gratings (FBGs) embedded into composite laminates for temperature and strain simultaneous measurement has been designed and experimentally tested. Two holes have been drilled at preset locations in the composite plate to create different strain sensitivities at different locations. The proposed design has been compared to three reference sensing heads also based on embedding FBGs into composite materials. Experimental results agree remarkably well with mechanical simulations and validate all the tested designs for the temperature–strain discrimination. Based on the same principle, another sensing head with a long single FBG embedded has also been designed and experimentally tested, obtaining temperature independent strain measurement. (paper)

  6. Fano resonances in integrated silicon Bragg reflectors for sensing applications.

    Science.gov (United States)

    Chang, Chia-Ming; Solgaard, Olav

    2013-11-01

    We investigate theoretically and experimentally Fano resonances in integrated silicon Bragg reflectors. These asymmetric resonances are obtained by interference between light reflected from the Bragg waveguide and from the end facet. The Bragg reflectors were designed and modeled using the 1D transfer matrix method, and they were fabricated in standard silicon wafers using a CMOS-compatible process. The results show that the shape and asymmetry of the Fano resonances depend on the relative phase of the reflected light from the Bragg reflectors and end facet. This phase relationship can be controlled to optimize the lineshapes for sensing applications. Temperature sensing in these integrated Bragg reflectors are experimentally demonstrated with a temperature sensitivity of 77 pm/°C based on the thermo-optic effect of silicon. PMID:24216944

  7. Perimeter security alarm system based on fiber Bragg grating

    Science.gov (United States)

    Zhang, Cui; Wang, Lixin

    2010-11-01

    With the development of the society and economy and the improvement of living standards, people need more and more pressing security. Perimeter security alarm system is widely regarded as the first line of defense. A highly sensitive Fiber Bragg grating (FBG) vibration sensor based on the theory of the string vibration, combined with neural network adaptive dynamic programming algorithm for the perimeter security alarm system make the detection intelligently. Intelligent information processing unit identify the true cause of the vibration of the invasion or the natural environment by analyzing the frequency of vibration signals, energy, amplitude and duration. Compared with traditional perimeter security alarm systems, such as infrared perimeter security system and electric fence system, FBG perimeter security alarm system takes outdoor passive structures, free of electromagnetic interference, transmission distance through optical fiber can be as long as 20 km It is able to detect the location of event within short period of time (high-speed response, less than 3 second).This system can locate the fiber cable's breaking sites and alarm automatically if the cable were be cut. And the system can prevent effectively the false alarm from small animals, birds, strong wind, scattering things, snowfalls and vibration of sensor line itself. It can also be integrated into other security systems. This system can be widely used in variety fields such as military bases, nuclear sites, airports, warehouses, prisons, residence community etc. It will be a new force of perimeter security technology.

  8. A Report on Educational Partnerships Supporting the Galileo Centre at Banded Peak School in Rocky View School Division.

    Science.gov (United States)

    Jacobsen, D. Michele; Gladstone, Brenda

    This report describes the school-business partnerships that have contributed to the success of the Galileo Center at Banded Peak School in Bragg Creek, Alberta, in its first full year of operation. It summarizes partnership activities and initiatives that have been implemented in the school and suggests directions for future linkages. The need for…

  9. Phase transition between the Bragg Glass and a disordered Phase in Nb3Sn, detected by 3rd harmonics of the AC magnetic susceptibility

    OpenAIRE

    Adesso, Maria G.; Uglietti, Davide; Flukiger, Rene; Polichetti, Massimiliano; Pace, Sandro

    2005-01-01

    We report additional experimental evidences about the presence of an universal behavior in the Field-Temperature Phase Diagram of Type II Superconductors. This behavior is characterized by a phase transition in the vortex matter between the disordered and the Bragg Glass phase. The experimental detection of a Peak Effect phenomenon has been proved to be strictly connected to the existence of this phase transition. In this paper, we show the first observation of a Peak Effect in the compound N...

  10. Resonant Bragg quantum wells in hybrid photonic crystals: optical properties and applications

    Science.gov (United States)

    Schiumarini, D.; D'Andrea, A.; Tomassini, N.

    2016-03-01

    The exciton-polariton propagation in resonant hybrid periodic stacks of isotropic/anisotropic layers, with misaligned in-plane anisotropy and Bragg photon frequency in resonance with Wannier exciton of 2D quantum wells is studied by self-consistent theory and in the effective mass approximation. The optical tailoring of this new class of resonant Bragg reflectors, where the structural periodicity of a multi-layer drives the in-plane optical \\hat{C}-axis orientation, is computed for symmetric and asymmetric elementary cells by conserving strong radiation-matter coupling and photonic band-gaps. The optical response computation, on a finite cluster of N-asymmetric elementary cells, shows anomalous exciton-polariton propagation and absorbance properties strongly dependent on the incident wave polarizations. Finally, the behaviour of the so-called intermediate dispersion curves, close to the unperturbed exciton resonance, and located between upper and lower branches of the first band gap, is studied as a function of the in-plane \\hat{C}-axis orientation. This latter optical property is promising for storing exciton-polariton impulses in this kind of Bragg reflector.

  11. Efficient interpretation algorithm for embedded Bragg gratings for damage detection in composites

    Science.gov (United States)

    Prabhugoud, Mohanraj; Peters, Kara J.

    2003-07-01

    The goal of a structural health monitoring system is to detect, locate, and identify damages in a structure during its lifetime. The concept of structural health monitoring is particularly important for fiber reinforced composites due to the complexity of the possible failure mechanisms. The goal of this work is to simulate the response of optical fiber Bragg grating sensors to multi-component loading for their implementation in structural health monitoring algorithms for composites. A simulation method is presented to determine the effects of axial, bending and shear loading on an embedded optical fiber Bragg grating sensor. The effect of fiber bending on the Bragg grating sensor is experimentally verified by embedding the sensor in a solid cone, clamped at the base and subjected to a point load at the apex. Next, a numerically efficient method to calculate the response of sensors embedded in a unidirectional composite is developed using both finite element analysis and optimal shear-lag theory and taking into account the above effects. The limitations of the optimal shear-lag theory are derived through comparison with the finite element results. The application of this method is demonstrated through a numerical example, simulating the response of sensors embedded in one fiber layer to a transverse crack.

  12. Blood pressure manometer using a twin Bragg grating Fabry-Perot interferometer

    Science.gov (United States)

    van Brakel, Adriaan; Swart, Pieter L.; Chtcherbakov, Anatoli A.; Shlyagin, Mikhail G.

    2005-02-01

    We propose the use of optical fiber Bragg gratings in a non-invasive blood pressure waveform monitor. Bragg gratings can be written in a Fabry-Perot interferometric configuration to yield a method of strain measurement that has both a high resolution and a wide unambiguous range. This fiber Bragg grating Fabry-Perot interferometer (FBGI) can be used as a sensor to detect strain resulting from blood pressure applied to the walls of an artery situated near the patient"s skin. Strain measurements taken on the skin surface, typically over the radial artery at the wrist, are encoded as phase shifts of the FBGI signal. These phase shifts may be obtained by the analytic representation of the interferometer signal in the wavelength domain or by Fourier analysis in the frequency domain. For the proof of concept a realistic physical model was constructed to simulate pressure conditions at the actual sensor location. The operation of the device is demonstrated by measurements of pressure-pulse waveforms obtained in real-time. This sensor was also successfully tested on human patients, and these results are also presented. Since it yields continuous readings of blood pressure non-invasively, further application of the optical manometer may yield an alternative to conventional sphygmomanometry.

  13. Research of fiber Bragg grating geophone based on cantilever beam

    Science.gov (United States)

    Wang, Liang; Chen, Shao-hua; Tao, Guo; Lu, Gui-wu; Zhao, Kun

    2009-07-01

    Along with the development of seismic exploration, the demand of frequency, dynamic range, precision and resolution ration is increased. However, the traditional geophone has disadvantages of narrower bandwidth, lower dynamic range and resolution, and cannot meet the new needs of seismic exploration. Geophone technology is a choke point, which constrains the development of petroleum prospecting in recent years. Fiber Bragg Grating seism demodulation technology is the newest kind of seism demodulation technology. The sensing probe of the Fiber Bragg Grating geophone is made up of Fiber Bragg Gating. The information which it collects is embodied by wavelength. The modulation-demodulation is accomplished by Fiber Bragg Gating geophone directly. In this paper, we design different size Fiber Bragg Grating geophones based on the transmission properties of Fiber Bragg Grating and cantilever beam method. Beryllium bronze and stainless steel are chosen as the elastic beam and shell materials, respectively. The parameters such as response function and sensitivity are given theoretically. In addition, we have simulated the transmission characteristics of Fiber Bragg Grating geophone by virtue of finite element analysis. The influences of wavelength, mass block, fiber length on the characteristics of geophones are discussed in detail, and finally the appropriate structural parameters are presented.

  14. A ballistic motion disrupted by Bragg reflections

    CERN Document Server

    Clark, Jeremy Thane

    2012-01-01

    I study a Lindblad dynamics modeling a quantum test particle in a Dirac comb that collides with particles from a background gas. The main result is a homogenization theorem in a semi-classical limiting regime involving large mass for the test particle and a rescaling for the strength and period of the Dirac comb. Over the time interval considered, the particle would exhibit essentially ballistic motion if either the singular periodic potential or the kicks from the gas were removed. However, the particle behaves diffusively when both sources of forcing are present. The conversion of the motion from ballistic to diffusive is generated by occasional Bragg reflections that result when the test particle's momentum is driven through a collision near an element of the half-spaced reciprocal lattice of the Dirac comb.

  15. Fiber Bragg gratings for microwave photonics subsystems.

    Science.gov (United States)

    Wang, Chao; Yao, Jianping

    2013-09-23

    Microwave photonics (MWP) is an emerging filed in which photonic technologies are employed to enable and enhance functionalities in microwave systems which are usually very challenging to fulfill directly in the microwave domain. Various photonic devices have been used to achieve the functions. A fiber Bragg grating (FBG) is one of the key components in microwave photonics systems due to its unique features such as flexible spectral characteristics, low loss, light weight, compact footprint, and inherent compatibility with other fiber-optic devices. In this paper, we discuss the recent development in employing FBGs for various microwave photonics subsystems, with an emphasis on subsystems for microwave photonic signal processing and microwave arbitrary waveform generation. The limitations and potential solutions are also discussed. PMID:24104174

  16. Solgel grating waveguides for distributed Bragg reflector lasers.

    Science.gov (United States)

    Fardad, M A; Luo, H; Beregovski, Y; Fallahi, M

    1999-04-01

    Solgel grating waveguides and their application to the fabrication of external-cavity distributed Bragg reflector (DBR) lasers are demonstrated. A new composition of aluminosilicate material is developed for the fabrication of single-mode waveguides and Bragg reflectors. An average loss of <0.2 dB/cm is measured in the single-mode waveguides at 1550 nm. The reflectors show filtering greater than 97% near 1530 nm, with a bandwidth of ~0.6 nm . The Bragg reflectors are used as feedback resonators for DBR lasers. Single-mode lasing with a sidemode suppression of better than 25 dB is demonstrated. PMID:18071539

  17. Modeling Component-based Bragg gratings Application: tunable lasers

    Directory of Open Access Journals (Sweden)

    Hedara Rachida

    2011-09-01

    Full Text Available The principal function of a grating Bragg is filtering, which can be used in optical fibers based component and active or passive semi conductors based component, as well as telecommunication systems. Their ideal use is with lasers with fiber, amplifiers with fiber or Laser diodes. In this work, we are going to show the principal results obtained during the analysis of various types of grating Bragg by the method of the coupled modes. We then present the operation of DBR are tunable. The use of Bragg gratings in a laser provides single-mode sources, agile wavelength. The use of sampled grating increases the tuning range.

  18. X-ray diffraction at Bragg angles around π/2

    International Nuclear Information System (INIS)

    X-ray diffraction at Bragg angles around π/2 is studied from the theoretical and experimental points of view. The proposed corrections to the dynamical theory in the θβ ≅ π/2 cases, has been reviewed showing the equivalence between two formalisms leading to a corrected expression for the dependence of the angular parameter y with the angle of incidence. An expression for y valid in the conventional and θ β ≅ π/2 cases has been obtained. A general expression for Bragg law and for energy resolution after a Bragg diffraction was also deduced. (author)

  19. Thermally tunable integrated planar Bragg-grating stabilized diode laser

    Science.gov (United States)

    Lynch, S. G.; Gates, J. C.; Berry, S. A.; Holmes, C.; Smith, P. G. R.

    2015-03-01

    A pair of external cavity diode lasers are fabricated using an integrated planar Bragg grating. The planar waveguide and Bragg reflector is UV-written within a glass-on-silicon chip. Intensity isolated, continuous wavelength tuning at > 1kHz modulation rate is acheived using micro-heating elements fabricated directly over the Bragg grating. Low RIN (<140dB) and low linewidth (δν ~ 200 kHz) operation is found using a heterodyne measurement. We demonstrate the lasers operating in phase-locked loop configuration where one laser is frequency-offset locked to the other.

  20. Dispersion blue-shift in an aperiodic Bragg reflection waveguide

    Science.gov (United States)

    Fesenko, Volodymyr I.; Tuz, Vladimir R.

    2016-04-01

    A particular feature of an aperiodic design of cladding of Bragg reflection waveguides to demonstrate a dispersion blue-shift is elucidated. It is made on the basis of a comparative study of dispersion characteristics of both periodic and aperiodic configurations of Bragg mirrors in the waveguide system, wherein for the aperiodic configuration three procedures for layers alternating, namely Fibonacci, Thue-Morse and Kolakoski substitutional rules are considered. It was found out that, in a Bragg reflection waveguide with any considered aperiodic cladding, dispersion curves of guided modes appear to be shifted to shorter wavelengths compared to the periodic configuration regardless of the modes polarization.

  1. Dispersion blue-shift in an aperiodic Bragg reflection waveguide

    CERN Document Server

    Fesenko, Volodymyr I

    2016-01-01

    A particular feature of an aperiodic design of cladding of Bragg reflection waveguides to demonstrate a dispersion blue-shift is elucidated. It is made on the basis of a comparative study of dispersion characteristics of both periodic and aperiodic configurations of Bragg mirrors in the waveguide system, wherein for the aperiodic configuration three procedures for layers alternating, namely Fibonacci, Thue-Morse and Kolakoski substitutional rules are considered. It was found out that, in a Bragg reflection waveguide with any considered aperiodic cladding, dispersion curves of guided modes appear to be shifted to shorter wavelengths compared to the periodic configuration regardless of the modes polarization.

  2. Resonantly enhanced Bragg-scattering spectroscopy of an atomic transition

    Science.gov (United States)

    Yang, Xudong; Qiao, Cuifang; Li, Chuanliang; Chen, Fenghua

    2016-07-01

    A novel resonantly enhanced Bragg-scattering (REBS) spectroscopy from a population difference grating (PDG) is reported. The PDG is formed by a standing-wave (SW) pump field, which periodically modulates the space population distributions of two levels in the 87Rb D1 line. Then, a probe beam, having identical frequency and orthogonal polarization with the SW pump field, is Bragg-scattered by the PDG. The research achievement shows that the Bragg-scattered light is strongest at an atomic transition, and forms an REBS spectrum with a high signal-to-noise ratio and sub-natural linewidth. The observed REBS can be applied in precise frequency measurements.

  3. Characteristics of light polarization in magneto-optic fiber Bragg gratings with linear birefringence

    Institute of Scientific and Technical Information of China (English)

    Baojian Wu; Chongzhen Li; Kun Qiu; Liwei Cheng

    2011-01-01

    @@ The coupling between guided optical waves in magneto-optic fiber Bragg gratings (MFBGs) with linear birefringence is investigated using the eigen-mode and coupled-mode approaches. The relationship between the polarization-dependent loss (PDL) and the eigen states of polarization (SOPs) in the MFBGs is discussed. Only the MFBGs with low linear birefringence are applied to the peak PDL-based magnetic field measurement, after which the linear dynamic range is determined using the relative magnitude of linear and magnetically induced circular birefringence. In this letter, a theoretical model is presented to explain the experimental results and help develop novel MFBG-based devices.%The coupling between guided optical waves in magneto-optic fiber Bragg gratings (MFBGs) with linear birefringence is investigated using the eigen-mode and coupled-mode approaches. The relationship between the polarization-dependent loss (PDL) and the eigen states of polarization (SOPs) in the MFBGs is discussed. Only the MFBGs with low linear birefringence are applied to the peak PDL-based magnetic field measurement, after which the linear dynamic range is determined using the relative magnitude of linear and magnetically induced circular birefringence. In this letter, a theoretical model is presented to explain the experimental results and help develop novel MFBG-based devices.

  4. Library Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Carnegie Library of Pittsburgh locations including address, coordinates, phone number, square footage, and standard operating hours.

  5. Accuracy of needle position measurements using fiber Bragg gratings.

    Science.gov (United States)

    Henken, Kirsten; Van Gerwen, Dennis; Dankelman, Jenny; Van Den Dobbelsteen, John

    2012-11-01

    Accurate placement of the needle tip is essential in percutaneous therapies such as radiofrequency ablation (RFA) of liver tumors. Use of a robotic system for navigating the needle could improve the targeting accuracy. Real-time information on the needle tip position is needed, since a needle deflects during insertion in tissue. Needle shape can be reconstructed based on strain measurements within the needle. In the current experiment we determined the accuracy with which the needle tip position can be derived from strain measurements using Fiber Bragg Gratings (FBGs). Three glass fibers equipped with two FBGs each were incorporated in a needle. The needle was clamped at one end and deformed by applying static radial displacements at one or two locations. The FBG output was used for offline estimation of the needle shape and tip position. During deflections of the needle tip up to 12.5 mm, the tip position was estimated with a mean accuracy of 0.89 mm (std 0.42 mm). Adding a second deflection resulted in an error of 1.32 mm (std 0.48 mm). This accuracy is appropriate for applications such as RFA of liver tumors. The results further show that the accuracy can be improved by optimizing the placement of FBGs. PMID:22455615

  6. Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating

    Science.gov (United States)

    Qi, Yanhui; Sun, Jiang; Kang, Zexin; Ma, Lin; Jin, Wenxing; Jian, Shuisheng

    2016-05-01

    We propose a backward-pump transverse mode fiber laser to generate optical beams based on few-mode fiber Bragg grating. The grating as a transverse mode filter possesses several reflection peaks by adjusting the core-offset. The transverse mode fiber laser operates at extremely low thresholds which are about 20, 16.5 and 16 mW corresponding to different operation wavelengths of 1560.98, 1562.32 and 1563.76 nm, respectively. The optical signal to noise ratios are about 72, 75.5 and 75.8 dB, when the pump power is fixed at 100 mW, respectively. The effectively exciting modes corresponding to each reflection peak interfere with each other. Different optical beams can be achieved by changing the operating wavelength or changing the state of PC. The device maybe find its applications such as sensing, transporting or manipulating microscopic particles.

  7. Temperature-Insensitive Chemical Sensor with Twin Bragg Gratings in an Optical Fibre

    Institute of Scientific and Technical Information of China (English)

    SANG Xin-Zhu; YU Chong-Xiu; YAN Bin-Bin; MA Jian-Xin; MENG Zhao-Fang; Mayteevarunyoo T.; LU Nai-Guang

    2006-01-01

    To reduce temperature sensitivity of the fibre Bragg grating (FBG) chemical sensor, a simple method is proposed by measuring the peak wavelength difference between an etched FBG and an un-etched one in an optical fibre.Thermal characteristics and chemical sensitivity of the sensor are experimentally investigated. The experimental results indicate that the etched FBG and the rest one have almost the same thermal response, and concentration changes of the surrounding chemical solutions can be detected by measuring the peak wavelength difference between them. The sensor has been used to measure the concentrations of propylene glycol solutions and sugar solutions, and it could detect 0.7% and 0.45% concentration changes for them with an optical spectrum analyser in resolution of 10pm.

  8. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    Science.gov (United States)

    Zhao, Xiaobo; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlogl, Udo

    2016-02-01

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  9. Deep ultraviolet distributed Bragg reflectors based on graded composition AlGaN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, Gordie, E-mail: gbrummer@bu.edu [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States); Photonics Center, Boston University, Boston, Massachusetts 02215 (United States); Nothern, Denis [Photonics Center, Boston University, Boston, Massachusetts 02215 (United States); Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215 (United States); Nikiforov, A. Yu. [Photonics Center, Boston University, Boston, Massachusetts 02215 (United States); Moustakas, T. D., E-mail: tdm@bu.edu [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States); Photonics Center, Boston University, Boston, Massachusetts 02215 (United States); Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215 (United States)

    2015-06-01

    Distributed Bragg reflectors (DBRs) with peak reflectivity at approximately 280 nm, based on compositionally graded Al{sub x}Ga{sub 1−x}N alloys, were grown on 6H-SiC substrates by plasma-assisted molecular beam epitaxy. DBRs with square, sinusoidal, triangular, and sawtooth composition profiles were designed with the transfer matrix method. The crystal structure of these DBRs was studied with high-resolution x-ray diffraction of the (1{sup ¯}015) reciprocal lattice point. The periodicity of the DBR profiles was confirmed with cross-sectional Z-contrast scanning transmission electron microscopy. The peak reflectance of these DBRs with 15.5 periods varies from 77% to 56% with corresponding full width at half maximum of 17–14 nm. Coupled mode analysis was used to explain the dependence of the reflectivity characteristics on the profile of the graded composition.

  10. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    KAUST Repository

    Zhao, Xiaobo

    2016-02-19

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  11. Make peak flow a habit!

    Science.gov (United States)

    Checking your peak flow is one of the best ways to control your asthma and to keep it from getting worse. Asthma attacks ... Most times, they build slowly. Checking your peak flow can tell you if an attack is coming, ...

  12. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    International Nuclear Information System (INIS)

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 deg. C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible

  13. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    The subject of this ph.d. thesis is the fabrication of Bragg gratings in optical waveguides. During the study Bragg gratings were written in both planar waveguides and optical fibers using pulsed or continuous-wave lasers operating in the ultraviolet (UV) range. The main result is the development...... half the periodicity of the index modulation profile in the Bragg grating. A phase shift in the grating is realized by shifting the UV irradiance from one polarization to the other during the grating inscription. The amplitude of the modulation can also be varied continuously by changing the ration...... phase shifts were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the...

  14. Bragg Reflection of Waves by Different Shapes of Artificial Bars

    Institute of Scientific and Technical Information of China (English)

    许泰文; 张宪国; 蔡立宏

    2002-01-01

    Experiments are performed in a wave flume to demonstrate the Bragg reflection of linear gravity waves by artificialbars. Three different artificial bars with rectangular, triangular and rectified cosinoidal shapes are placed discretely on theseabed for measurement of the Bragg reflection. A series of experimental conditions including the number of bars, the pe-riodic bar spacing, the water depth and various wave conditions are tested. Key parameters influencing the Bragg reso-nances are investigated. The experimental data are compared with the values from both theoretical and numerical models.Some key parameters have proved to be effective in describing the primary resonances. Predictive equations of the charac-teristics for the Bragg reflection are proposed in this paper.

  15. Bragg-Fresnel optics: New field of applications

    International Nuclear Information System (INIS)

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 108-109 photons/sec in an energy bandwidth of 10-4-10-6 and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging

  16. Structural Health Monitoring Using Fiber Bragg Grating Sensor Matrix Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Bragg Grating had been identified as very important elements, especially for strain measurements in smart structures. In many applications, arrays of FBG...

  17. Bragg-Fresnel optics: New field of applications

    Energy Technology Data Exchange (ETDEWEB)

    Snigirev, A. [ESRF, Grenoble (France)

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  18. The localized surface plasmon resonances based on a Bragg reflector

    Science.gov (United States)

    Wang, Jie; Liu, Yumin; Yu, Zhongyuan; Ye, Chunwei; Lv, Hongbo; Shu, Changgan

    2014-09-01

    In this paper, we present the theoretical analysis on how the wavelength of the localized surface plasmon resonances of gold nanoparticle can lead shift for the resonance wavelength. In our results, we calculate the scattering cross-section, the absorption cross-section and the field enhancement due to the nanoparticle. Numerical simulation were done using the finite element method (FEM). The work that we do here is different from the previous work because we use the Bragg reflector as a substrate. The Bragg reflector has a property of high reflectivity in some certain frequency bandwidth because of its periodic structure. The coherence interference of the Bragg reflector contributes to the plasmon resonances and results in some special character for a wide variety application, from sensing to photovoltaic. The periodic number of the Bragg reflector substrate and shapes of the nanoparticles are also discussed that result in a shift of the resonance wavelength.

  19. Time/Wavelength Fiber Bragg Grating Multiplexing Sensor Array

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.

  20. Numerical Analysis of Fiber Bragg Grating and Long Period Fiber Grating Undergoing Linear and Quadratic Temperature Change

    Institute of Scientific and Technical Information of China (English)

    YUAN Yinquan; DING Liyun

    2009-01-01

    The coupled-mode equations for fiber Bragg grating(FBG)and long period fiber grating(LPFG)undergoing linear and quadratic temperature change were given.The effects of tem-perature gradient and quadratic temperature change on the reflectivity spectrum of fiber Braggs grating and the transmission spectrum of long period fiber grating were investigated using the numerical simulation,and the dependence relationships of the central wavelength shift,the full-width-at-half-maximum,and the peak intensity upon temperature gradient were also obtained.These relation-ships may be used to design a novel fiber optical sensor which can simultaneously measure the tem-perature and temperature gradient.

  1. Theoretical and experimental investigation of the mode-spacing of fiber Bragg grating Fabry-Perot cavity

    Institute of Scientific and Technical Information of China (English)

    Wenhua Ren; Peilin Tao; Zhongwei Tan; Yan Liu; Shuisheng Jian

    2009-01-01

    The mode-spacing of the fiber Bragg grating Fabry-Perot(FBG F-P)cavity is calculated by using the effective cavity length which contains the effective length of the FBG.The expression of the effective length,defined by using the phase-time delay,is obtained and simplified as a function of the peak reflectivity at the Bragg wavelength,the band edges,and the first zero-reflectivity wavelength.The effective length is discussed from the energy penetration depth point of view.Three FBG F-P cavities are fabricated in order to validate the effective length approach.The experimental data fits well with the theoretical predictions.The limitation of this method is also pointed out and the improved approach is proposed.

  2. Fibre Bragg Grating Components for Filtering, Switching and Lasing

    OpenAIRE

    Yu, Zhangwei

    2008-01-01

    Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers. First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode the...

  3. Photonic scanning receiver using an electrically tuned fiber Bragg grating.

    Science.gov (United States)

    Rugeland, P; Yu, Z; Sterner, C; Tarasenko, O; Tengstrand, G; Margulis, W

    2009-12-15

    A 5-cm-long electrically tuned fiber Bragg grating is used to filter a microwave signal on an optical carrier at 1.55 mum. A chirped distributed-feedback structure is employed, with a transmission bandwidth of 54 MHz and relative optical carrier rejection of >30 dB for rf frequencies >2 GHz. The rapid monotonic sweep of the Bragg wavelength is translated into a fast-frequency sweep for rf analysis. PMID:20016616

  4. A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings

    International Nuclear Information System (INIS)

    This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated. (paper)

  5. Remote fiber optic switch powered by light for robust interrogation of fiber Bragg grating sensor networks

    International Nuclear Information System (INIS)

    In this work, a remote fiber optic switch powered by light is demonstrated experimentally. This fiber optic switch is powered by a photovoltaic power converter illuminated by a Raman laser. The switch can operate at distances up to 100 km. This switch is used to develop a remote resilient fiber Bragg grating (FBG) multiplexing network interrogated by a commercial FBG interrogator. In the proposed set-up the switch selects the branch of the FBG network located 50 km away from the interrogation unit in order to enable a two-way interrogation path for each sensor to prevent connection failures or fiber breakages. (paper)

  6. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    Science.gov (United States)

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes. PMID:24514329

  7. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

    OpenAIRE

    Ricchiuti, Amelia Lavinia; Barrera Vilar, David; Sales Maicas, Salvador; Thevenaz, Luc; Capmany Francoy, José

    2013-01-01

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-dete...

  8. HF-based clad etching of fibre Bragg grating and its utilization in concentration sensing of laser dye in dye–ethanol solution

    Indian Academy of Sciences (India)

    J Kumar; R Mahakud; O Prakash; S K Dixit

    2014-02-01

    This paper presents a fiber Bragg grating (FBG) based sensor to study the concentration of laser dye in dye–ethanol solution. The FBG used in this experiment is indigenously developed using 255 nm UV radiations from copper vapour laser. The cladding of the FBG was partially removed using HF-based etching to make FBG sensitive to changes in the surrounding refractive index. The experimental results on the shift of the Bragg peak wavelength with HF etching and different dye concentration in ethanol are presented. The Bragg wavelength shifted from 1534.670 nm to 1534.225 nm in 30 min and from this point to 1533.97 in the next 2 min. The clad-etched Bragg peak shifted almost linearly from 1534.056 nm to 1534.162 nm as surrounding dye concentration in ethanol changes from 0 mM to 1.5 mM. It was observed that sensitivity depends on the concentration of the solution and found to be 70 pm/mM.

  9. Decoupling approximation design using the peak to peak gain

    Science.gov (United States)

    Sultan, Cornel

    2013-04-01

    Linear system design for accurate decoupling approximation is examined using the peak to peak gain of the error system. The design problem consists in finding values of system parameters to ensure that this gain is small. For this purpose a computationally inexpensive upper bound on the peak to peak gain, namely the star norm, is minimized using a stochastic method. Examples of the methodology's application to tensegrity structures design are presented. Connections between the accuracy of the approximation, the damping matrix, and the natural frequencies of the system are examined, as well as decoupling in the context of open and closed loop control.

  10. Writing Bragg Gratings in Multicore Fibers.

    Science.gov (United States)

    Lindley, Emma Y; Min, Seong-Sik; Leon-Saval, Sergio G; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C; Bland-Hawthorn, Joss

    2016-01-01

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers. PMID:27167576

  11. Dynamic fiber Bragg grating sensing method

    Science.gov (United States)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  12. First order Bragg grating filters in silicon on insulator waveguides

    Science.gov (United States)

    Waugh, Peter Michael

    2008-08-01

    The subject of this project is the design; analysis, fabrication and characterisation of first order Bragg Grating optical filters in Silicon-on-Insulator (SOI) planar waveguides. It is envisaged that this work will result in the possibility of Bragg Grating filters for use in Silicon Photonics. It is the purpose of the work to create as far as is possible flat surface waveguides so as to facilitate Thermo-Optic tuning and also the incorporation into rib-waveguide Silicon Photonics. The spectral response of the shallow Bragg Gratings was modelled using Coupled Mode Theory (CMT) by way of RSoft Gratingmod TM. Also the effect of having a Bragg Grating with alternate layers of refractive index of 1.5 and 3.5 was simulated in order to verify that Silica and Silicon layered Bragg Gratings could be viable. A series of Bragg Gratings were patterned on 1.5 micron SOI at Philips in Eindhoven, Holland to investigate the variation of grating parameters with a) the period of the gratings b) the mark to space ratio of the gratings and c) the length of the region converted to Bragg Gratings (i.e. the number of grating period repetitions). One set of gratings were thermally oxidised at Philips in Eindhoven and another set were ion implanted with Oxygen ions at the Ion Beam Facility, University of Surrey, England. The gratings were tested and found to give transmission minima at approximately 1540 nanometres and both methods of creating flat surfaces were found to give similar minima. Atomic Force Microscopy was applied to the grating area of the as-implanted samples in the Advanced Technology Institute, University of Surrey, which were found to have surface undulations in the order of 60 nanometres.

  13. Theory and Application Research on the Porous Silicon Micro-optical Bragg Sensors%多孔硅基微型 Bragg 光学传感器的理论和应用研究

    Institute of Scientific and Technical Information of China (English)

    张冉; 李丹鹤

    2014-01-01

    In this thesis, the producibility of porous silicon-based micro-optical sensors is analyzed in theory. This illustrates that the use of alternative methods to change the current density can be obtained refractive index variation with depth alternating multilayer porous silicon structures as long as the appropriate corrosion conditions could be chosen, namely, the peak position of Bragg mirror reflectance spectrum can be adjustable. In this thesis, a theoretical model of Bragg reflector is put forward, the Prague center wavelength, FWHM and intensity reflectivity are calculated in theory, the conclusion could be reached on the ratio of high and low refractive index and the relationship between layer and intensity reflectivity. Finally, a brief introduction of the Bragg reflector in the gas / liquid sensors and optical micro-cavity applications is proposed in this thesis. A number of potential applications are existed in it.%对多孔硅基微型光学传感器的可制备性进行了理论分析,说明只要选择合适的腐蚀条件,采用交替改变电流密度的方法就可以得到折射率随深度交替变化的多层多孔硅结构,即 Bragg 反射镜,同时可实现了反射谱峰位可调。提出了Bragg 反射镜的理论模型,对其布拉格中心波长,半峰全宽以及光强反射率进行了理论计算,得出了高低折射率之比、层数与光强反射率之间的关系,并对实际情况进行了说明。最后,简单介绍了 Bragg 反射镜在气体/液体传感器及光学微腔中的应用,有一定的应用价值。

  14. Quantum theory of X-ray radiation at Bragg angles at channeling

    International Nuclear Information System (INIS)

    In the framework of quantum electrodynamics the theory of the new type of X-ray radiation from the channeled electrons in vicinity of the Bragg angle—Diffracted Channeling Radiation (DCR) is developed beyond the dipole approximation. The DCR occurs due to transitions of the channeled electrons from one transverse energy level to another with the diffraction of the emitted photon. It is demonstrated that dipole approximation is valid for the first order of diffraction DCR and not valid for higher orders of diffraction. On the basis of obtained equations for the first time it is theoretically shown that the angular distribution of the DCR is a system of very narrow ring-shaped peaks around of the Bragg direction. The calculations were performed taking into account the band structure of the transverse motion energy. - Highlights: • For the first time we developed theory of the DCR beyond the dipole approximation. • The applicability of the dipole approximation is considered. • Analytically shown that DCR angular distribution represents system of double rings. • In planar case angular distribution is not symmetrical with respect to X- and Y-axis

  15. High efficiency x-ray source based on inverse Compton scattering in an optical Bragg structure

    International Nuclear Information System (INIS)

    Existing x-ray sources based on inverse Compton scattering rely on free-space lasers and have modest efficiency due to the inherent limitation of maintaining their peak field intensity over a few Rayleigh lengths. Moreover, their typical interaction spots are tens of micrometres in diameter and they rely on large electron accelerators. We propose a new structure that mitigates many of these limiting factors by confining the interaction in an optical Bragg waveguide, specially designed to support a TEM mode within its sub-micrometre hollow core. This allows the e-beam-laser interaction to be as long as the waveguide itself, resulting in superior spectral quality of the emerging x-ray. Furthermore, the regular RF accelerator may be replaced by an optical Bragg accelerator. This two-stage design, from acceleration to x-ray emission, is expected to have a table-top size, and it is estimated to provide x-ray brightness of 3 x 1017 (photons s-1 mm-2 mrad-2/0.1%BW), while utilizing laser power several orders of magnitude smaller than comparable free-space sources.

  16. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing

    Science.gov (United States)

    Zhang, Hailiang; Wu, Zhifang; Shum, Perry Ping; Wang, Ruoxu; Quyen Dinh, Xuan; Fu, Songnian; Tong, Weijun; Tang, Ming

    2016-08-01

    We present the fabrication of fiber Bragg gratings (FBGs) in a trench-assisted heterogeneous multicore fiber (MCF). Two obviously different Bragg reflection peaks are obtained due to the slight difference of refractive indices between the center core and the outer cores. To investigate the reflections of the two FBGs simultaneously, only a segment of multimode fiber is inserted between the lead-in single mode fiber and the MCF. The experimental results confirm that the curvature sensitivity of the FBG in the outer core is a sinusoidal function of the bending orientation angle. The maximum linear curvature sensitivity is about 0.128 nm/m‑1. The cross sensitivity to temperature or externally applied axial strain can be eliminated by discriminating the different responses of FBGs inscribed in outer cores and the center core. Thus this MCF with FBGs can be utilized as a directional bending sensor. Moreover, the proposed sensor offers several advantages, such as low cost and flexibility in fabrication.

  17. Recent advances and prospects of Bragg-Fresnel optics

    International Nuclear Information System (INIS)

    Diffraction optics, i.e. Fresnel zone plates, holograms and diffraction gratings, has a limited application in the optical wavelength range. A decrease in wavelength to 100 nm and less changes conventional relationships between different types of optical elements owing to the change in the radiation-substance interaction since absorption starts to play a more important role as compared to refraction. Therefore at 1 nm approx lt λ approx lt 100 nm focusing elements may be fabricated only from thin membranes distinguished by an abrupt change of either absorption (amplitude zone plates) or transmitted wave phase (phase zone plates). In this wavelength range it is necessary that three-dimensional Bragg and Bragg-Fresnel elements should be used. Three-dimensional elements appear to be efficient for the whole short wavelength range 10-2 nm approx lt λ approx lt 100 nm. In doing so, the use of Bragg diffraction enables fabrication of high resolution gratings, radiation modulators and prisms. Thus, two- and three-dimensional diffraction elements form the basis for production of multifunctional x-ray optics in a wide wavelength range. It is essential that these elements can be reproduced in production quantities. Below is a summary of the results obtained at the Institute of Problems of Microelectronics Technology and High Purity Materials (IPMT) of the USSR Academy of Sciences in 1984-88. Emphasis is placed on Bragg- and Bragg-Fresnel elements that are fundamental for future x-ray optics. 15 refs., 2 figs., 1 tab

  18. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  19. Determination of gaussian peaks in gamma spectra by iterative regression

    International Nuclear Information System (INIS)

    The parameters of the peaks in gamma-ray spectra are determined by a simple iterative regression method. For each peak, the parameters are associated with a gaussian curve (3 parameters) located above a linear continuum (2 parameters). This method may produces the complete result of the calculation of statistical uncertainties and an accuracy higher than others methods. (author)

  20. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  1. The effects of the Bragg curve on the nuclear track formation in CR-39 polycarbonate, with the atomic force microscopy approach

    OpenAIRE

    C. Vázquez-López; B.E. Zendejas-Leal; R. Fragoso; J. I. Golzarri; Espinosa, G.

    2013-01-01

    The etching nuclear track parameters were analyzed, using atomic force microscopy (AFM), allowing the simulation of the nuclear track profiles evolution. For these experiments, CR-39 (LantrackTM) was chosen, because the excellent energy response to alpha particles. Due to the AFM limitations, it was necessary to reduce the incident particle energy in order to reach the Bragg peak region in the AFM scanning process. The different profile shapes of the etched tracks were clearly observed in the...

  2. Optical and structural properties of InAlN/GaN Bragg reflectors examined by transmission electron microscopy and electron energy loss spectroscopy

    OpenAIRE

    Eljarrat, A.; Gacevic, Zarko; Fernández-Garrido, Sergio; Calleja Pardo, Enrique; Magén, C.; Estradé, S.; Peiró, F.

    2011-01-01

    Molecular beam epitaxy growth of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs) with peak reflectivity centered around 400nm is reported including optical and transmission electron microscopy (TEM) measurements [1]. Good periodicity heterostructures with crack-free surfaces were confirmed, but, also a significant residual optical absorption below the bandgap was measured. The TEM characterization ascribes the origin of this problem to polymorfism and planar defe...

  3. Growth and characterization of lattice-matched InAlN/GaN Bragg reflectors grown by plasma-assisted Molecular Beam Epitaxy

    OpenAIRE

    Gacevic, Zarko; Fernández-Garrido, Sergio; Calleja Pardo, Enrique; Luna García de la Infanta, Esperanza; Trampert, Achim

    2009-01-01

    We demonstrate six to ten period lattice-matched In(0.18) Al(0.82) N/GaN distributed Bragg reflectors with peak reflectivity centred around 400 nm, grown by molecular beam epitaxy. Thanks to the well-tuned ternary alloy composition crack-free layers have been obtained as confirmed by both optical and scanning electron microscopy. In addition, crosssectional analysis by high resolution transmission electron microscopy reveals highly periodic structure with abrupt interfaces. When the number of...

  4. Temperature Compensation for Double Fiber Bragg Grating Sensors

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-cheng; LIU Jia; ZHENG Jian-bang

    2006-01-01

    A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis,the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained,and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that:in the strain range of 0~0.8 mm,the relation between the relative shift of Bragg wavelength and applied strain is linear,and the dispersion of double FBG wavelength at the range of -25 ℃~60 ℃ is 0~0.002 nm. The strain sensitivity of the displacement sensor configuration is 0.171 nm/με,and is nearly twice than that of single FC sensor.

  5. Tunable plasmonic Bragg reflector with different graphene nanoribbon widths

    Science.gov (United States)

    Zhuang, Huawei; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-09-01

    We propose and numerically analyze a Bragg reflector composed of periodically arranged graphene nanoribbon waveguides with different widths. Because of the unique property of the graphene edge mode, the effective index contrast used for the reflector can be obtained by designing graphene nanoribbons with different widths without changing the dielectric substrate structure. Good band stop filtering characteristics are shown at the band gap of the transmission spectrum by numerical simulation. The performance of the proposed Bragg reflector is analyzed in terms of different parameters, such as the chemical potential, the number of periods, and the size of the unit cell. The proposed Bragg reflector will be expected to have important potential applications in the highly integrated SPP-based photonic devices.

  6. A plating method for metal coating of fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Yulong Li; Hua Zhang; Yan Feng; Gang Peng

    2009-01-01

    We present a method for metal coating optical fiber and in-fiber Bragg grating. The technology process which is based on electroless plating and electroplating method is described in detail. The fiber is firstly coated with a thin copper or nickel plate with electroless plating method. Then, a thicker nickel plate is coated on the surface of the conductive layer. Under the optimum conditions, the surfaces of chemical plating and electroplating coatings are all smooth and compact. There is no visible defect found in the cross-section. Using this two-step metallization method, the in-fiber Bragg grating can be well protected and its thermal sensitivity can be enhanced. After the metallization process, the fiber sensor is successfully embedded in the 42CrMo steel by brazing method. Thus a smart metal structure is achieved. The embedding results show that the plating method for metallization protection of in-fiber Bragg grating is effective.

  7. Holographic Bragg gratings: measurements and examination diffraction parameters

    CERN Document Server

    Tikhonov, E A

    2015-01-01

    Measurement and analysis of diffraction parameters of thick transmission holographic phase gratings recorded on PHC-488 photopolymer are presented. Precision determination of the spatial grating period is executed by Bragg angle measurement for two precisely known wavelengths in the first diffraction order and also by Bragg angle measurement on one wavelength in the first and second diffraction orders. Determination of actual grating thickness and depths of spatial modulation of a holographic recording, which are responsible for their main optical characteristics, is carried out with the application of H. Kogelnik 2-wave coupled model. Calculated and experimental Bragg angles in two orthogonal orientated planes of linear polarized laser light were used to confirm theoretical model with experimental results. Extreme values of the diffraction parameters, efficiency and spectral resolution, important for holographic phase grating applications are analyzed.

  8. Using maximum spectrum of continuous wavelet transform for demodulation of an overlapped spectrum in a fiber Bragg grating sensor network.

    Science.gov (United States)

    Hu, Ying; Mo, Wenqin; Dong, Kaifeng; Jin, Fang; Song, Junlei

    2016-06-10

    The maximum spectrum of the continuous wavelet transform (MSCWT) is proposed to demodulate the central wavelengths for the overlapped spectrum in a serial fiber Bragg grating (FBG) sensing system. We describe the operation principle of the MSCWT method. Moreover, the influence of the interval gap between two FBG wavelengths, 3 dB bandwidths, and optical powers of the reflected spectra are discussed. The simulation and experimental results indicate that the MSCWT can resolve an overlapped spectrum and decode the central wavelength with high accuracy. More importantly, the proposed peak detection method can enhance the sensing capacity of a wavelength division multiplexing FBG sensor network. PMID:27409024

  9. Molecular beam epitaxy growth of MgZnSSe/ZnSSe Bragg mirrors controlled by in situ optical reflectometry.

    OpenAIRE

    Hegarty, John

    1995-01-01

    PUBLISHED In situ optical reflectometry at the wavelength of 488 nm was employed to control the growth of MgZnSSe/ZnSSe Bragg mirror stacks for the blue-green spectral region. 10- and 20-period layer structures of MgZnSSe/ZnSSe were grown on GaAs ~100! epilayers by molecular beam epitaxy. A room-temperature peak reflectance of 86% was obtained for the 20-period structure at the central wavelength of 474 nm. The results show that, in general, in situ optical monitoring of growth...

  10. Analysis and Performance Evaluation of an All-Fiber Wide Range Interrogation System for a Bragg Grating Sensor Array

    OpenAIRE

    Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2009-01-01

    Analysis and performance evaluation of a macro-bend ¯ber based interrogation system for a Bragg grating sensor array is presented. Due to the characteristic properties of the macro-bend ¯ber ¯lter such as polarization and temperature dependence and the total noise associated with the ratiometric system, a best ¯t ratio slope is required to interrogate multiple FBGs whose peak wavelengths are spread over a wide wavelength range, rather than the optimal slope for individual FBG. In this paper f...

  11. Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode

    OpenAIRE

    Teh, Peh Siong; Alam, Shaif-ul; Shepherd, David P.; Richardson, David J

    2014-01-01

    We report the generation of transform-limited, ~18 ps optical pulses from a fiber Bragg grating (FBG) stabilized semiconductor laser diode. Up to 7.2 pJ of pulse energy and a peak power of 400mW were achieved when operating at a repetition frequency of 832.6 MHz, a multiple of the cavity (diode + FBG) free spectral range (FSR). A small detuning in the repetition frequency resulted in broader optical pulses. We have shown experimentally the transition from a gain-switched regime of operation t...

  12. Optic fiber hydrogen sensor based on high-low reflectivity Bragg gratings and WO3-Pd-Pt multilayer films

    Science.gov (United States)

    Dai, Jixiang; Yang, Minghong; Li, Zhi; Wang, Gaopeng; Huang, Chujia; Qi, Chongjie; Dai, Yutang; Wen, Xiaoyan; Cheng, Cheng; Guo, Huiyong

    2015-09-01

    A novel optic fiber hydrogen sensor is proposed in this paper. Two Bragg gratings with different reflectivity were written in single mode fiber with phase mask method by 248 nm excimer laser. The end-face of singe mode fiber was deposited with WO3-Pd-Pt multilayer films as sensing element. The peak intensity of low reflectivity FBG is employed for hydrogen characterization, while that of high reflectivity FBG is used as reference. The experimental results show the hydrogen sensor still has good repeatability when the optic intensity in the fiber is only 1/3 of its initial value. The hydrogen sensor has great potential in measurement of hydrogen concentration.

  13. Post-Impact Fatigue Damage Monitoring Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Chow-Shing Shin

    2014-03-01

    Full Text Available It has been shown that impact damage to composite materials can be revealed by embedded Fiber Bragg Gratings (FBG as a broadening and splitting of the latter’s characteristic narrow peak reflected spectrum. The current work further subjected the impact damaged composite to cyclic loading and found that the FBG spectrum gradually submerged into a rise of background intensity as internal damages progressed. By skipping the impact, directing the impact to positions away from the FBG and examining the extracted fibers, we concluded that the above change is not a result of deterioration/damage of the sensor. It is caused solely by the damages initiated in the composite by the impact and aggravated by fatigue loading. Evolution of the grating spectrum may therefore be used to monitor qualitatively the development of the incurred damages.

  14. Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence

    CERN Document Server

    Dixit, Mukul

    2007-01-01

    The Pockels effect can increase the effective birefringence of ambichiral, electro--optic rejection filters made of materials with a $\\bar{4}2m$ point group symmetry, when a dc electric field is applied parallel to the axis of nonhomogeneity. The reflectances and the transmittances of such an ambichiral structure for obliquely incident plane waves is solvable through a boundary-value problem that is formulated using the frequency-domain Maxwell equations, the constitutive equations that contain the Pockels effect, and standard algebraic techniques for handling 4x4 matrix ordinary differential equations. The Bragg resonance peaks, for different circular-polarized-incidence conditions, blueshift as the angle of incidence increases. These blueshifts are unaffected by the sign of the dc electric field.

  15. A novel oil level monitoring sensor based on string tilted fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    JIANG Qi

    2011-01-01

    In this paper, we present a novel oil level monitoring sensor based on string tilted fiber Bragg grating (TFBG). The mea- surement range and sensitivity of oil level monitoring can be modulated via changing the length and number of string tilted fiber gratings. The transmission spectrum of string TFBGs immersed in oil changes obviously with the oil level variation. Experiments are conducted on three 2 crn-length serial TFBGs with the same tilted angle of 10°. A sensitivity of 3.28 dB/cm in the string TFBG sensor is achieved with good linearity by means of TFBG spectrum characteristic with peak-low value. The cladding mode transmission power and the amplitude of high order cladding mode resonance are nearly linear to the oil level variation. This kind of sensor is insensitive to temperature and attributed to be employed in extremely harsh environ- ment oil monitoring.

  16. Online reflectivity measurement of an ultra-weak fiber Bragg grating array

    International Nuclear Information System (INIS)

    An online measurement method is introduced to ensure the reflectivity of an arbitrary grating in a large-scale ultra-weak fiber Bragg grating (FBG) array. The measurement errors were investigated by theoretical analysis and experiment. In the proposed method, the reflected spectrum of one single FBG was addressed and obtained from the grating array by time domain interrogation, and the FBG reflectivity was calculated by the reference of the end-face reflection in anhydrous ethanol. A measurement error of less than 0.5 dB and a 20 dB dynamic range were obtained in a larger-scale array of 1000 FBGs with an average peak reflectivity of −43 dB, which demonstrated the feasibility of this online measurement method. (paper)

  17. Frequency doubling of a passively mode-locked monolithic distributed Bragg reflector diode laser.

    Science.gov (United States)

    Jedrzejczyk, D; Prziwarka, T; Klehr, A; Brox, O; Wenzel, H; Paschke, K; Erbert, G

    2014-05-20

    In this work, frequency doubling of a passively mode-locked 3.5 mm long monolithic distributed Bragg reflector diode laser is investigated experimentally. At 1064 nm, optical pulses with a duration of 12.4 ps are generated at a repetition rate of 13 GHz and a peak power of 825 mW, resulting in an average power of 133 mW. Second-harmonic generation is carried out in a periodically poled MgO-doped LiNbO₃ ridge waveguide at a normalized nonlinear conversion efficiency of 930%/W. A maximum average second-harmonic power of 40.9 mW, corresponding to a pulse energy of 3.15 pJ, is reached in the experiment at an opto-optical conversion efficiency of 30.8%. The normalized nonlinear conversion efficiency in mode-locked operation is more than 2 times larger compared to continuous-wave operation. PMID:24922212

  18. Temperature sensor based on dual fiber Bragg gratings

    OpenAIRE

    Ekestam, Henrik; Larsson, Jim

    2015-01-01

    The objective of the project was to examine if it was possible to develop a low-cost temperature sensor using dual fiber Bragg gratings (FBGs). The intention was to use one FBG as a reference and let the other FBG function as the sensor. The study shows that it is possible to characterize the temperature sensitivity of each FBG and use the reference to sweep over the applicable spectrum to find the Bragg-wavelength of the sensor. This could be done measuring only the total intensity instead o...

  19. A novel optical filter of fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    LI; Xiaolu; JIANG; Yuesong

    2006-01-01

    A theory of a novel optical filter of drawing the fiber Bragg grating by the heated elastic sheet is advanced. Based on the heat conduction equation, a set of functions of temperature and thermal expansion on the heated elastic sheet are calculated. And the most displacement of the heated elastic sheet is also described. Finally the expression of the reflected Bragg wavelength deviation in terms of the thermal power density of heat-source is deduced. The physics feasibility of these conclusions mentioned above is proved. It is a potential value for the novel optical filter to research.

  20. Bridge pier scour measurement by means of Bragg grating arrays

    Directory of Open Access Journals (Sweden)

    Manzoni S.

    2010-06-01

    Full Text Available This paper deals with a new method to measure scour level at bridge piers. The proposed technique is based on an array of Bragg grating temperature sensors, heated by an electrical circuit. The Bragg gratings in water sense a lower temperature than those buried in the river bed, because of the different heat scattering principles in the two situations. Furthermore the response of each sensor is slower if it is buried in the bed, with respect to the case it is in water. The paper presents laboratory tests, showing the method effectiveness and reliability, and it explains the advantages with respect to other more traditional methodologies to measure scour level.

  1. Bragg grating chemical sensor with hydrogel as sensitive element

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)

    2004-01-01

    A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.

  2. Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions

    Science.gov (United States)

    Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)

    2001-01-01

    A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.

  3. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    Science.gov (United States)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    Fiber optic (FO) strain sensors are a promising new technology for in-situ landslide monitoring. General performance advantages include high resolution, fast sampling rate, and insensitivity to electrical disturbances. Here we describe a new FO monitoring system based on long-gage fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. We highlight the advantages and disadvantages of the system, describe relevant first results, and compare FO data to that from traditional instruments already installed on site. The Randa rock slope has been the subject of intensive research since its failure in 1991. Around 5 million cubic meters of rock remains unstable today, moving at rates up to 20 mm / year. Traditional in-situ monitoring techniques have been employed to understand the mechanics and driving forces of the currently unstable rock mass, however these investigations are limited by the resolution and low sampling rate of the sensors. The new FO monitoring system has micro-strain resolution and offers the capability to detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: fully-embedded borehole sensors encased in grout at depths of 38, 40, and 68 m, and surface extensometers spanning active tension cracks. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous measurements are logged every 5 minutes. Since installation in August 2008, the FO monitoring system has been operational 90% of the time. Time series deformation data show movement rates consistent with previous borehole extensometer surveys. Accelerated displacements following installation are likely related to long-term curing and dewatering of the grout. A number of interesting transients have been recorded, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new

  4. Peak Oil and other threatening peaks-Chimeras without substance

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian, E-mail: marian@radetzki.bi [Lulea University of Technology (Sweden)

    2010-11-15

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  5. Peak Oil and other threatening peaks. Chimeras without substance

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian [Luleaa University of Technology (Sweden)

    2010-11-15

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth. (author)

  6. Peak Oil and other threatening peaks-Chimeras without substance

    International Nuclear Information System (INIS)

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  7. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    OpenAIRE

    Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...

  8. Transmission comb of a distributed Bragg reflector induced by two surface dielectric gratings

    CERN Document Server

    Zhao, Xiaobo; Zhang, Yongyou

    2015-01-01

    With transfer matrix theory, we study the transmission of a distributed Bragg reflector (DBR) with two dielectric gratings on top and on the bottom. Owing to the diffraction of the two gratings, the transmission shows a comb-like spectrum which red shifts with increasing the grating period during the forbidden band of the DBR. The number density of the comb peaks increases with increasing the number of the DBR cells, while the ratio of the average full width at half maximum (FWHM) of the transmission peaks in the transmission comb to the corresponding average free spectral range, being about 0.04 and 0.02 for the TE and TM incident waves, is almost invariant. The average FWHM of the TM waves is about half of the TE waves, and both they could be narrower than 0.1 nm. In addition, the transmission comb peaks of the TE and TM waves can be fully separated during certain waveband. We further prove that the transmission comb is robust against the randomness of the heights of the DBR layers, even when a 15\\% randomn...

  9. Fiber Bragg grating based sensor for measuring temperature of in vivo lesion

    Science.gov (United States)

    Mao, Xianhui; Niu, Chunhui; Lu, Yong

    2011-05-01

    Because of the heat-resistant difference between the cancer cell and the normal cell, the normal cell can resistant higher temperature than cancer cell does. Clinical experiments showed that microwave or ultrasonic can effectively cure cancer. But since there is strong electromagnetic interference, the conventional temperature sensor will find itself hard to get the accurate temperature. So it is necessary to find a feasible sensor to measure the temperature. Fiber optic grating (FBG) sensor is excellent candidate for measuring temperature of in vivo lesion. In this paper, the investigation on the application of an optical fiber sensor in the field of biomedical engineering was introduced. The main objective of our investigation has been to develop a novel senor based on FBG to measure the temperature of in vivo lesion. Based on the Bragg equation, the temperature sensing properties of fiber optic grating was studied and the affection of central wavelength on the FBG sensing sensitivities have also been analyzed. In order to reduce the error of the FBG sensors system, it is necessary to adopt a good demodulation algorithm to calculate peak wavelength. An experimental system was set up which to test feasibility of the sensor. Among some of the peak detection algorithms, tested by experimental measuring system, the peak detection method by the Gaussian nonlinear curve fitting was finally adopted and the test results showed that the temperature measuring system based on the FBG was in the accuracy of 0.1°C.

  10. Rational solitons in deep nonlinear optical Bragg grating

    NARCIS (Netherlands)

    Alatas, H.; Iskandar, A.A.; Tjia, M.O.; Valkering, T.P.

    2006-01-01

    We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the

  11. The Wavelength Shifting and Temperature Athermalization of Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    Yu; e; Kong

    2003-01-01

    The wavelength shifting properties and the temperature athermalization technology of fiber Bragg grating (FBG) were studied in this paper, and then two different athermalization methods were introduced. The research shows that FBG with athermalization by applying the substrate with negative coefficient of thermal expansion is effective and can be used in many fields.

  12. A Bragg curve ionization chamber for acceleration mass spectrometry

    International Nuclear Information System (INIS)

    An ionization chamber based on the Bragg curve spectrometry method to be used as the final detector in a accelerator mass spectrometry system is described. The first tests with a Cl beam give energy resolution of 1% and Z resolving power of 72 at Z=17

  13. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  14. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  15. Crystal clear the autobiographies of Sir Lawrence and Lady Bragg

    CERN Document Server

    Thomson, Patience

    2015-01-01

    The main body of this book contains the hitherto unpublished autobiographies of both William Lawrence Bragg, an innovative scientist who won the Nobel Prize for Physics in 1915, and his wife, Alice, a Mayor of Cambridge and National Chairman of Marriage Guidance. Their autobiographies give unusual insights into the lives and times of two distinguished people and the real personalities behind their public appearance.

  16. Linearized Bragg grating assisted electro-optic modulator.

    Science.gov (United States)

    Khurgin, Jacob B; Morton, Paul A

    2014-12-15

    We propose a new linearized electro-optic modulator in which linearization is achieved by modulating the index of a Bragg grating reflector placed in the arm(s) of a Michelson Interferometer. This grating-assisted Michelson (GAMI) modulator can operate as either an intensity or amplitude modulator, and is shown to significantly improve the linearity of microwave photonics links. PMID:25503037

  17. Laser sensor with Bragg gratings of fiber optics to physics parameter measuring

    International Nuclear Information System (INIS)

    We present the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980nm, an 4.23 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength increases their temperature which can be used as a sensor element. The laser generation thus shows that the Bragg grating is increasing their temperature. We used a Peltier cell for to change gradually the temperature. (Author)

  18. Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism

    Science.gov (United States)

    Wu, Liangying; Pei, Li; Liu, Chao; Wang, Jianshuai

    2016-05-01

    In this study, the V-I transmission matrix (V-I TM) is proposed to analyze the tunable single phase shift (SPS) and multiple phase shifts (MPS) inserted in a linearly chirped fiber Bragg grating (LCFBG). According to the simulation results, the peaks appear on the transmission spectrum, when the phase shifts are induced in the LCFBG. With the increase of the phase shift, the center wavelength of the peak moves toward long wavelength region. A remarkable degree of bilateral symmetry can be found as characteristic of the depth of peaks. The maximum depth caused by inserted π-shift is the symmetric axis. Moreover, when MPS are inserted simultaneously, the appeared peaks are independent and the variation tendency of each peak is the same with that caused by SPS. The experiment of phase shift induced by a piezoelectric transducer (PZT) verifies the correctness of the simulation, and a narrow bandwidth of 0.028 nm is acquired.

  19. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system for use in aerospace and automotive health monitoring systems

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Panahi, Allan; Lopatin, Craig

    2007-09-01

    Fiber Bragg grating sensors (FBGs) have gained rapid acceptance in aerospace and automotive structural health monitoring applications for the measurement of strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky and heavy bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense) microchip technology. The hybrid InOSense microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  20. Spectrometer with CMOS demodulation of fiber optic Bragg grating sensors

    Science.gov (United States)

    Christiansen, Martin Brokner

    A CMOS imager based spectrometer is developed to interrogate a network containing a large number of Bragg grating sensors. The spectrometer uses a Prism-Grating- Prism (PGP) to spectrally separate serially multiplexed Bragg reflections on a single fiber. As a result, each Bragg grating produces a discrete spot on the CMOS imager that shifts horizontally as the Bragg grating experiences changes in strain or temperature. The reflected wavelength of the spot can be determined by finding the center of the spot produced. The use of a randomly addressable CMOS imager enables a flexible sampling rate. Some fibers can be interrogated at a high sampling rate while others can be interrogated at a low sampling rate. However, the use of a CMOS imager leads to several unique problems in terms of signal processing. These include a logarithmic pixel response, a low signal-to-noise ratio, a long pixel time constant, and software issues. The expected capabilities of the CMOS imager based spectrometer are determined with a theoretical model. The theoretical model tests three algorithms for determining the center of the spot: single row centroid, single row parabolic fit, and entire spot centroid. The theoretical results are compared to laboratory test data and field test data. The CMOS based spectrometer is capable of interrogating many optical fibers, and in the configuration tested, the fiber bundle consisted of 23 fibers. Using this system, a single fiber can be interrogated from 778 nm to 852 nm at 2100 Hz or multiple fibers can be interrogated over the same wavelength so that the total number of fiber interrogations is up to 2100 per second. The reflected Bragg wavelength can be determined within +/-3pm, corresponding to a +/-3μɛ uncertainty.

  1. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range

    OpenAIRE

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Märk, T.D.

    2010-01-01

    We present experimental results for 80 keV proton impact ionization of nucleobases (adenine, cytosine, thymine and uracil) based on an event by event analysis of the different ions produced combined with an absolute target density determination. We are able to disentangle in detail the various proton ionization channels from mass analyzed product ion signals in coincidence with the charge-analyzed projectile. Thus, for the first time, cross sections and fragmentation patterns are compared for...

  2. Hubbert's Peak -- A Physicist's View

    Science.gov (United States)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  3. Discriminate Modelling of Peak and Off-Peak Motorway Capacity

    Directory of Open Access Journals (Sweden)

    Hashim Mohammed Alhassan

    2013-02-01

    Full Text Available Traffic theory is concerned with the movement of discrete objects in real time over a finite network in 2 Dimensions. It is compatible with or dependent on fundamental diagram of traffic. Without question traffic flow is an essential quantitative parameter that is used in planning, designs and roadway improvements.  Road capacity is significant because it is an important indicator of road performance and can point road managers in the right road maintenance and traffic management direction. In this paper four direct empirical capacity measurement methods have been considered. To test the efficacy of each method, data for peak period, off-peak and transition to peak have been used. The headway and the volume methods lack predictive capability and are suitable only for current assessment of flow rates.  The product limit method is weak in its predictive capability in view of the arbitrariness in the selection of the capacity value. It is also an extreme value method; hence not all volume data can be used with this method. The fundamental diagram method has good predictive capability and furnishes capacity values consistent with the standard of the facility. Unlike other methods, it does not rely on bottleneck conditions to deliver the capacity value.  The paper concluded that each method is uniquely suited to prevailing conditions and can be so employed.

  4. Outreach Plans for Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  5. Measuring nonlocal Lagrangian peak bias

    CERN Document Server

    Biagetti, Matteo; Desjacques, Vincent; Paranjape, Aseem

    2013-01-01

    In the Lagrangian approach to halo clustering, nonlocal bias can be generated either in the initial conditions or by the subsequent gravitational motions. Here, we investigate nonlocal Lagrangian bias contributions involving gradients of the linear density field, for which we have predictions from the excursion set peak formalism. We reformulate this approach in order to explicitly take into account the variable describing the crossing of the collapse barrier. This enables us to write down a bias expansion which includes all the bias terms, including the nonlocal ones. Having checked that the model furnishes a reasonable fit to the halo mass function, we extend the 1-point cross-correlation technique of Musso, Paranjape & Sheth (2012) to bias contributions that are chi-squared distributed. We validate the method with numerical realizations of peaks of Gaussian random fields before applying it to N-body simulations. We focus on the lowest (quadratic) order nonlocal bias factors predicted by the excursion s...

  6. OER and RBE for negative pion beams of different peak widths

    International Nuclear Information System (INIS)

    Experimental data on survival curves for pion beams of different peak widths under aerobic and hypoxic conditions are reported. Metabolic depletion of oxygen by the Chinese hamster cells line (V79) was used to obtain hypoxia. The results indicate that the RBE at the beam entrance (plateau) is approximately 1.0. When the Bragg peaks were broadened to widths of 1.3, 7.8, and 10.5 cm (at the 80% dose level), the RBE (50% cell survival) at the peak centres was 1.7, 1.6, and 1.2, respectively. The OER at the entrance was 2.4 compared with about 2.9 for X rays. The OER was independent of the survival level at which it was measured. The OER at the peak centres at widths of 1.3, 7.8 and 10.5 cm was 2.1, 2.4 and 2.2, respectively. These results indicate that, although the RBE at the centre of the 10.5 cm wide peak was significantly lower than at the centres of the 1.3 and 7.8 cm peaks, the OER values are similar for all peak widths used in this study. (author)

  7. Simultaneous temperature and refractive index measurement of liquid using a local micro-structured fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Ye Cao; Yinfei Yang; Xiufeng Yang; Zhengrong Tong

    2012-01-01

    An alternative solution for the simultaneous measurement of temperature and refractive index is presented. A local micro-structured fiber Bragg grating (LMSFBG) is formed as the sensing head, in which a standard grating is etched by HF. According to the phase shift theory, the main spectral change of the LMSFBG is the formation of a narrow allowed band, which is strongly dependent on the etching features and the surrounding refractive index. As such, the temperature and refractive index measurements can be achieved by the shifts of the double peaks and narrow allowed band, and their fitting linearity coefficients are 0.996 and 0.994, respectively. Thus, the reflection and transmission peaks of the LMSFBG have a good linear relationship with temperature and refractive index.%An alternative solution for the simultaneous measurement of temperature and refractive index is presented.A local micro-structured fiber Bragg grating (LMSFBG) is formed as the sensing head,in which a standard grating is etched by HF.According to the phase shift theory,the main spectral change of the LMSFBG is the formation of a narrow allowed band,which is strongly dependent on the etching features and the surrounding refractive index.As such,the temperature and refractive index measurements can be achieved by the shifts of the double peaks and narrow allowed band,and their fitting linearity coefficients are 0.996 and 0.994,respectively.Thus,the reflection and transmission peaks of the LMSFBG have a good linear relationship with temperature and refractive index.

  8. Causality and the Doppler Peaks

    OpenAIRE

    Turok, Neil

    1996-01-01

    Could cosmic structure have formed by the action of causal physics within the standard hot big bang, or was a prior period of inflation required? Recently there has been some discussion of whether causal sources could reproduce the pattern of Doppler peaks of the standard scale-invariant adiabatic theory. This paper gives a rigorous definition of causality, and a causal decomposition of a general source. I present an example of a simple causal source which mimics the standard adiabatic theory...

  9. Power peaking nuclear reliability factors

    International Nuclear Information System (INIS)

    The Calculational Nuclear Reliability Factor (CNRF) assigned to the limiting power density calculated in reactor design has been determined. The CNRF is presented as a function of the relative power density of the fuel assembly and its radial local. In addition, the Measurement Nuclear Reliability Factor (MNRF) for the measured peak hot pellet power in the core has been evaluated. This MNRF is also presented as a function of the relative power density and radial local within the fuel assembly

  10. Optical characterization of MEMS-based multiple air-dielectric blue-spectrum distributed Bragg reflectors

    Science.gov (United States)

    Ghaderi, M.; Ayerden, N. P.; de Graaf, G.; Wolffenbuttel, R. F.

    2015-05-01

    The optical performance of a distributed Bragg reflector (DBR) is typically the determining factor in many optical MEMS devices and is mainly limited by the number of the periods (number of layers) and the refractive index contrast (RIC) of the materials used. The number of suitable available materials is limited and implementing a large number of periods increases the process complexity. Using air as a low-index material improves the RIC by almost 50% as compared with most conventional layer combinations and hence provides a higher optical performance at a given number of layers. This paper presents the design, fabrication, and optical characterization of multiple air-SiO2 Bragg reflectors with two airgap layers designed for the visible spectrum. Alternate polysilicon deposition and silicon-dioxide growth on the wafers followed by the selective etching of polysilicon layers in a TMAH-based solution results in a layer stack according to the optical design. However, unlike the conventional MEMS processes, fabrication of a blue-band airdielectric DBR demands several sacrificial layers in the range of 100 nm. Therefore, a successful release of the membrane after wet-etching is critical to the successful performance of the device. In this study, several DBRs with two periods have been fabricated using a CO2 supercritical drying process. The wide-area reflection measurements showed a peak reflectance of 65% and an FWHM of about 100 nm for a DBR centered at 500 nm. DBRs centered on 400 nm gave a much wider spectral response. This paper presents preliminary optical characterization results and discusses the challenges for a reflector design in the blue-visible range.

  11. Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation.

    Science.gov (United States)

    Sima, C; Gates, J C; Rogers, H L; Mennea, P L; Holmes, C; Zervas, M N; Smith, P G R

    2013-07-01

    A direct UV grating writing technique based on phase-controlled interferometry is proposed and demonstrated in a silica-on-silicon platform, with a wider wavelength detuning range than any previously reported UV writing technology. Electro-optic phase modulation of one beam in the interferometer is used to manipulate the fringe pattern and thus control the parameters of the Bragg gratings and waveguides. Various grating structures with refractive index apodization, phase shifts and index contrasts of up to 0.8 × 10(-3) have been demonstrated. The method offers significant time/energy efficiency as well as simplified optical layout and fabrication process. We have shown Bragg gratings can be made from 1200 nm to 1900 nm exclusively under software control and the maximum peak grating reflectivity only decreases by 3 dBover a 250 nm (~32 THz) bandwidth. PMID:23842361

  12. Broad-area detection of structural irregularities in composites using fibre Bragg gratings

    Science.gov (United States)

    Davis, Claire E.; Norman, Patrick; Moss, Scott; Ratcliffe, Colin; Crane, Roger

    2010-04-01

    The Structural Irregularity and Damage Evaluation Routine (SIDER) is a broadband vibration-based technique that uses features in complex curvature operating shapes to locate damage and other areas with structural stiffness variations. It is designed for the inspection of large-scale composite structures not amenable to more conventional inspection methods. The current SIDER methodology relies on impact excitation at a series of grid points on the structure and records the response using a small number of accelerometers to determine the operational curvature shapes. This paper reports on a modification to the SIDER technique whereby the acceleration measurements are replaced with in-plane strain measurements using Fibre Bragg Gratings (FBGs). One of the major challenges associated with using Bragg gratings for this type of response measurement is that the strains induced by structural vibrations tend to be low, particularly at higher frequencies. This paper also reports on the development of an intensity-based, swept wavelength interrogation system to facilitate these measurements. The modified SIDER system was evaluated on an E-glass/vinyl ester composite test beam containing a machined notch. The measurements accurately detected the presence and location of the notch. The distributive capacity of FBGs means that these sensors have the potential to replace the excitation grid with a measurement grid, allowing for single point or environmental excitation. The spatially separated measurements of strain can be used to provide the curvature shapes directly. This change in approach could potentially transition SIDER from an interval-based, broad-area inspection tool to an in-service structural health monitoring system.

  13. Evaluation of peak-fitting software for gamma spectrum analysis

    International Nuclear Information System (INIS)

    In all applications of gamma-ray spectroscopy, one of the most important and delicate parts of the data analysis is the fitting of the gamma-ray spectra, where information as the number of counts, the position of the centroid and the width, for instance, are associated with each peak of each spectrum. There's a huge choice of computer programs that perform this type of analysis, and the most commonly used in routine work are the ones that automatically locate and fit the peaks; this fit can be made in several different ways - the most common ways are to fit a Gaussian function to each peak or simply to integrate the area under the peak, but some software go far beyond and include several small corrections to the simple Gaussian peak function, in order to compensate for secondary effects. In this work several gamma-ray spectroscopy software are compared in the task of finding and fitting the gamma-ray peaks in spectra taken with standard sources of 137Cs, 60Co, 133Ba and 152Eu. The results show that all of the automatic software can be properly used in the task of finding and fitting peaks, with the exception of GammaVision; also, it was possible to verify that the automatic peak-fitting software did perform as well as - and sometimes even better than - a manual peak-fitting software. (author)

  14. Study of the noise in the magnetization data across the second magnetization peak and peak effect region in Ca3Rh4Sn13

    International Nuclear Information System (INIS)

    Highlights: • We observe second magnetization peak (SMP) and peak effect (PE) in Ca3Rh4Sn13. • First measurement of noise in magnetization data across the SMP and the PE regions. • 1/f Nature of the noise is observed deep inside the Bragg glass phase. • One low resonant frequency is observed across the SMP region. • Two sets of resonant frequencies are observed in the PE region. - Abstract: In this report we make an attempt to understand the spectral fluctuations in noise in magnetization data for a single crystal of Ca3Rh4Sn13, which exhibit both the phenomena of second magnetization peak (SMP) and peak effect (PE). We find the signatures of 1/f1.8 noise deep inside the mixed phase of this superconductor. Further across the SMP region a single resonance frequency appears in the power spectra and it persists till the superconducting to normal phase boundary. While crossing the PE anomaly another set of resonance peaks in the low frequency range emerges which is distinctly different from the one which appeared in the SMP, indicating the underlying difference in the origin and nature of the SMP and PE phenomenon

  15. Andreev-Bragg Reflection from an Amperian Superconductor

    Science.gov (United States)

    Baireuther, P.; Hyart, T.; Tarasinski, B.; Beenakker, C. W. J.

    2015-08-01

    We show how an electrical measurement can detect the pairing of electrons on the same side of the Fermi surface (Amperian pairing), recently proposed by Patrick Lee for the pseudogap phase of high-Tc cuprate superconductors. Bragg scattering from the pair-density wave introduces odd multiples of 2 kF momentum shifts when an electron incident from a normal metal is Andreev reflected as a hole. These Andreev-Bragg reflections can be detected in a three-terminal device, containing a ballistic Y junction between normal leads (1, 2) and the superconductor. The cross-conductance d I1/d V2 has the opposite sign for Amperian pairing than it has either in the normal state or for the usual BCS pairing.

  16. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor); Mohanchandra, Panduranga K. (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  17. Self-aligned Coupled Waveguide Distributed Bragg Reflector Lasers

    Institute of Scientific and Technical Information of China (English)

    LIU Guoli; WANG Wei; ZHU Hongliang; ZHANG Jingyuan; HU Xiaohua; LU Yu; ZHANG Jing

    2002-01-01

    A novel self-aligned coupled waveguide (SACW) multi-quantum-well (MQW) distributed Bragg reflector (DBR) laser is proposed and demonstrated for the first time. By selectively removing the MQW layer and leaving the low SCH/SACW layer the Bragg grating is partially formed on this layer. By optimizing the thickness of the low SCH/SACW layer, a~80% coupling efficiency between the MQW gain region and the passive region are obtained. The typical threshold current of the SACW DBR laser is 39 mA, the slope efficiency can reach to 0.2 mW/mA and the output power is more than 20 mW with a more than 30dB side mode suppression ratio.

  18. Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram

    2005-01-01

    Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.

  19. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole;

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  20. Andreev-Bragg Reflection from an Amperian Superconductor.

    Science.gov (United States)

    Baireuther, P; Hyart, T; Tarasinski, B; Beenakker, C W J

    2015-08-28

    We show how an electrical measurement can detect the pairing of electrons on the same side of the Fermi surface (Amperian pairing), recently proposed by Patrick Lee for the pseudogap phase of high-Tc cuprate superconductors. Bragg scattering from the pair-density wave introduces odd multiples of 2k(F) momentum shifts when an electron incident from a normal metal is Andreev reflected as a hole. These Andreev-Bragg reflections can be detected in a three-terminal device, containing a ballistic Y junction between normal leads (1, 2) and the superconductor. The cross-conductance dI1/dV2 has the opposite sign for Amperian pairing than it has either in the normal state or for the usual BCS pairing. PMID:26371674

  1. Planar Bragg Grating Sensors—Fabrication and Applications: A Review

    Directory of Open Access Journals (Sweden)

    I. J. G. Sparrow

    2009-01-01

    Full Text Available We discuss the background and technology of planar Bragg grating sensors, reviewing their development and describing the latest developments. The physical operating principles are discussed, relating device operation to user requirements. Recent performance of such devices includes a planar Bragg grating sensor design which allows refractive index resolution of 1.9×10−6 RIU and temperature resolution of 0.03∘C. This sensor design is incorporated into industrialised applications allowing the sensor to be used for real time sensing in intrinsically safe, high-pressure pipelines, or for insertion probe applications such as fermentation. Initial data demonstrating the ability to identify solvents and monitor long term industrial processes is presented. A brief review of the technology used to fabricate the sensors is given along with examples of the flexibility afforded by the technique.

  2. Fiber Bragg grating strain sensors for marine engineering

    Science.gov (United States)

    Wang, Tingting; Yuan, Zilin; Gong, Yuan; Wu, Yu; Rao, Yunjiang; Wei, Lili; Guo, Peng; Wang, Junpu; Wan, Fu

    2013-09-01

    For the health monitoring of the offshore drilling platform in the salt-fog environment, three nonmetallic materials, i.e., silica, FR-4 epoxy board and sheet molding compound (SMC), with the good anti-corrosion ability were chosen as the packaging materials for the fiber Bragg grating (FBG) strain sensors. By selecting a highly sensitive structure of the fiber Bragg grating strain sensor, the performances of the sensors with three materials were investigated both numerically and experimentally. The strain sensitivities were 3.76 pm/μɛ, 3.02 pm/μɛ and 3.03 pm/μɛ, respectively. The linearity was better than 0.998. It provides useful information for developing sensors for the marine engineering.

  3. Drivers of peak sales for pharmaceutical brands

    NARCIS (Netherlands)

    Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.

    2010-01-01

    Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.

  4. Arrival Times of Gravitational Radiation Peaks for Binary Inspiral

    CERN Document Server

    Price, Richard H

    2016-01-01

    Modeling of gravitational waves (GWs) from binary black hole inspiral brings together early post-Newtonian waveforms and late quasinormal ringing waveforms. Attempts to bridge the two limits without recourse to numerical relativity involve predicting the time of the peak GW amplitude. This prediction will require solving the question of why the peak of the "source," i.e., the peak of the binary angular velocity, does not correspond to the peak of the GW amplitude. We show here that this offset can be understood as due to the existence two distinct components of the radiation: the "direct" radiation analogous to that in flat spacetime, and "scattered" radiation associated with curved spacetime. The time dependence of these two components, and of their relative phases determines the location of the peak amplitude. We use a highly simplified model to clarify the twocomponent nature of the source, then demonstrate that the explanation is valid also for an extreme mass ratio binary inspiral.

  5. Measuring conditions for second order X-ray Bragg-spectrometry

    International Nuclear Information System (INIS)

    The KL2,3 (α)1,2-lines of 19K, the L3M4,5 (α)1,2-lines of 48Cd, and the M5N6,7 (α)1,2-lines of 92U are lines of comparable energy in the region of approximately 3 keV. In none of these cases were we able to resolve the three doublets when recording the spectra in first order Bragg spectrometry using a PET crystal as the dispersing element. For the purpose of enhancing the resolving power of the spectrometer, the three α spectra were recorded in second order reflection, thereby transferring the lines into another spectral region dominated by X-ray quanta of half the energy. In order to achieve high net peak intensities as well as a high peak-to-background ratio and, consequently, a high level of detection capability, the discriminator settings should be optimized quite carefully. In this manner, we were able to resolve the three α doublets and estimate α2/α1 intensity ratios. Inexplicably, current monographs, e.g., by Goldstein et al, do not contain any indications about the rational use of high order spectrometry. Only a few rather old monographs contain some hints in this regard

  6. Application of Fiber Bragg Grating for Determining Positions of Gas Absorption Lines

    Institute of Scientific and Technical Information of China (English)

    HAN Wennian; WANG Yan; MA Feng; LIU Kun; JIA Dagong; LIU Tiegen; ZHANG Hongxia

    2010-01-01

    Fiber Bragg grating(FBG)is used as a wavelength reference device to calibrate the position of gas absorption peak in the intracavity absorption gas sensor(ICAGS)based on erbium-doped fiberring laser.This system can detect both the reflectance spectrum of FBGs and absorption spectrum of measured gas during a single wavelength sweeping process by linearly varying the driving voltage of optic filter.The voltages corresponding to center wavelength positions of four FBGs in the spectrum are determined through Gaussian peak fitting.Then,the wavelengths of gas absorption lines are deduced from the correspondence between driving voltage and wavelength obtained by quadratic curve fitting.The maximum error of wavelength of acetylene absorption lines between experimental results and those from HITRAN database is 0.106 nm and the resolving accuracy of two adjacent absorption lines is about93.593%.By using this method,ICAGS can theoretically recognize the measured gas type and monitor multi-gas components.

  7. Sensitivity Enhancement for Fiber Bragg Grating Sensors by Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Jiangbing Du

    2015-04-01

    Full Text Available All-optical signal processing based on four wave mixing (FWM in a highly nonlinear fiber (HNLF to enhance the sensitivity of a fiber sensor is demonstrated and comprehensively reviewed in this paper. The principle is based on the frequency chirp magnification (FCM by FWM. Degenerated FWM, cascaded two-stage FWM and pump-pulsed FWM with optical parametric amplification (OPA are experimentally utilized for magnifying the frequency chirp. By using the pump pulse modulation to increase the peak power, OPA can be induced with the use of a dispersion-optimized HNLF. Therefore, ultra-highly efficient FWM can be realized due to the high peak power and OPA. By using the fiber Bragg grating (FBG laser as the FWM pump, the wavelength drift of the FBG can thus be magnified due to the FCM. We obtain a sensing performance of 13.3 pm/με strain sensitivity and 141.2 pm/°C temperature sensitivity for a conventional FBG, which has an intrinsic strain sensitivity of only ~1 pm/με and an intrinsic temperature sensitivity of only ~10 pm/°C, respectively.

  8. Photonic crystal distributed feedback fiber lasers with Bragg gratings

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based on...... standard step index fibers. This makes possible realization of fiber lasers with a low pump threshold (small mode area), and fiber lasers suitable for high-power applications (large mode area)...

  9. DESIGN AND SIMULATION OF FIBER BRAGG GRATING BASED SENSORS

    OpenAIRE

    MOHAMED M. SALEH; RIADH K. A. Al-ANI; ILHAM K. ONEES

    2014-01-01

    In this paper the temperature and strain sensing principle of FBG based sensors are design & simulated by using Optigrating software. Simulation tools provide valuable help in optimizing the design parameters.From the graphical simulations, it can be concluded that there is a linear relationship between the Bragg wavelength shift and the temperature as well as the strain change. Also different values of grating period due to increasing the value of shifted wavelength.

  10. Simulation of Novel Tunable Nonlinear Chirped Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-min; YU Zhong-yuan; ZHANG Xiao-guang; YU Li; YANG Bo-jun

    2003-01-01

    A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic field, the period of the grating can be changed with the strain imposed on it by the magnetostrictive effect .The chirped characteristics can be tuned by changing the magnetic filed which is very flexible in designing.

  11. Trial analysis of swine's periodontal ligament with Bragg grating sensors

    Science.gov (United States)

    Menegotto, G. F.; Grabarski, L.; Kalinowski, H. J.; Simões, J. A.

    2009-10-01

    In this work it is reported the measurement of the differential strain between the dental and bone tissues under effect of an applied load. Slices of swine mandible, containing the premolar tooth, are cut and measured in fresh condition. The strain is measured using fibre Bragg grating sensors glued to both tissues. In the measured range the results show a linear behaviour and confirm the importance of the periodontal ligament in the load transfer mechanism.

  12. Bragg optics computer codes for neutron scattering instrument design

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M.; Yelon, W.B.; Berliner, R.R. [Missouri Univ. Research Reactor, Columbia, MO (United States); Stoica, A.D. [Institute of Physics and Technology of Materials, Bucharest (Romania)

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  13. Large-momentum-transfer Bragg interferometer with strontium atoms

    CERN Document Server

    Mazzoni, T; Del Aguila, R; Salvi, L; Poli, N; Tino, G M

    2015-01-01

    We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravimeter with a sensitivity $\\delta g/g=4\\times 10^{-8}$. Thanks to the special characteristics of strontium atoms for precision measurements, this result opens a new way for experiments in fundamental and applied physics.

  14. Fiber Bragg Gratings Embedded in 3D-Printed Scaffolds

    CERN Document Server

    Liacouras, Peter; Choudhry, Khazar; Strouse, G F; Ahmed, Zeeshan

    2015-01-01

    In recent years there has been considerable interest in utilizing embedded fiber optic based sensors for fabricating smart materials. One of the primary motivations is to provide real-time information on the structural integrity of the material so as to enable proactive actions that prevent catastrophic failure. In this preliminary study we have examined the impact of embedding on the temperature-dependent response of fiber Bragg gratings.

  15. A new generation of multilayer Bragg-Fresnel lenses

    International Nuclear Information System (INIS)

    A new type of Bragg-Fresnel multilayer lens (BFML) have been fabricated at IMT RAS and tested at LURE. The idea to combine different diffraction orders of a zone plate in one focal spot introduced by Simpson and Michette has been realized in a BFML with extended aperture. Matching of the two diffraction orders, the first and third, into one focal plane increases the output flux by a factor of two and the spatial resolution in the same order of magnitude

  16. A high sensitive fiber Bragg grating cryogenic temperature sensor

    Institute of Scientific and Technical Information of China (English)

    Kuo Li; Zhen'an Zhou; Aichun Liu

    2009-01-01

    At cryogenic temperature, a fiber Bragg grating (FBG) temperature sensor with controllable sensitivity and variable measurement range is demonstrated by using bimetal configuration. In experiments, sensitivities of -51.2, -86.4, and -520 pm/K are achieved by varying the lengths of the metals. Measurement ranges of 293 - 290.5, 283 - 280.5, and 259 - 256.5 K are achieved by shortening the distance of the gap among the metals.

  17. Underwater Acoustic Sensors Based on Fiber Bragg Gratings

    OpenAIRE

    Giuseppe Parente; Giuseppe Lanza; Armando Laudati; Michele Giordano; Andrea Cusano; Stefania Campopiano; Antonello Cutolo

    2009-01-01

    We report on recent results obtained with a fiber optic hydrophone based on the intensity modulation of the laser light in a FBG (Fiber Bragg Grating) under the influence of the sound pressure. In order to control the behavior of the hydrophone in terms of sensitivity and bandwidth, FBGs have been coated with proper materials, characterized by different elastic modulus and shapes. In particular, new experiments have been carried out using a cylindrical geometry with two different coating, sho...

  18. Measurement of sensors with fiber Bragg gratings by laser interferometer

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Čížek, Martin; Řeřucha, Šimon; Číp, Ondřej

    Budva : University of Montenegro, 2013. s. 47. [ALT´13. Annual International Conference on Advanced Laser Technologies /21./. 16.09.2013-20.09.2013, Budva] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TA01010995; GA TA ČR(CZ) TA03010835 Institutional support: RVO:68081731 Keywords : fiber Bragg sensors * laser interferometry * optical spectrum analysis * fiber sensors Subject RIV: BH - Optics, Masers, Laser s

  19. Calibration of elongation of fiber Bragg gratings by laser interferometer

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Čížek, Martin; Holík, M.; Číp, Ondřej

    Bellingham : SPIE, 2013, 89161I:1-6. ISSN 0277-786X. [International Symposium on Precision Mechanical Measurements /6./. Guiyang (CN), 10.10.2013] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TA01010995; GA TA ČR(CZ) TA03010835; GA MV VG20132015124 Institutional support: RVO:68081731 Keywords : Fiber Bragg gratings * Interferometers * Laser s * Optical fibers * Buildings Subject RIV: BH - Optics, Masers, Laser s

  20. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  1. Synchrotron radiation focusing by a Bragg--Fresnel lens

    International Nuclear Information System (INIS)

    Since the discovery of x rays and until the present time the possibilities of their controlling and focusing have been widely discussed. In the hard spectrum region (λ∼1 A) the main focusing schemes are the following: geometrical focusing based on incoherent interaction of wave packets reflected by different regions of bending crystals and coherent (dynamic) focusing performed at the cost of the effect of refraction index angular dispersion near the exact Bragg angle value -θB. A main disadvantage of geometrical focusing is low spatial resolution (∼0.1 mm) and temperature stability. In the case of coherent focusing a main disadvantage is a narrow angular aperture (∼10 sec. of arc) at spatial resolution (∼1--10 μm). Recently, advances in the development of diffraction physics and microstructuring technology open up possibilities for fabricating effective focusing x-ray optical elements---Bragg--Fresnel lenses (BFL)---with high spatial resolution (∼0.1 μm) at a wide angular aperture and high temperature stability. The present paper describes the main principles of Bragg--Fresnel optics (BFO). It presents the results on the synchrotron experiment and on observation of focusing. In this work the peculiarities of BFL diffraction contrast formation are investigated and image transmission using a BFL is performed. Possibilities of developing x-ray optical schemes of ultrahigh resolution on the basis of BFL elements are also discussed

  2. Theoretical analysis of transmission characteristics for all fiber, multi-cavity Fabry-Perot filters based on fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    XU OU; LU ShaoHua; DONG XiaoWei; LI Bin; NING TiGang; JIAN ShuiSheng

    2008-01-01

    The characteristics of transmission spectra for the all fiber, multi-cavity FabryPerot (FP) configuration based on fiber Bragg gratings (FBG) are theoretically analyzed and modeled. The general transmission matrix function for the structure with any number of cavities is derived, and explicit expression of the power trans-mission coefficient for symmetrical two-cavity FP is presented. The general condi-tions for flat-top single resonant peak at the central wavelength in FBG stop band are derived and verified in the numerical simulation section. The transmission peaks of single-cavity and two-cavity FP structures are compared and discussed, and results show that compared to the single-cavity FP, flatness of the top and steepness at the edge of transmission peak can be improved by introducing one more cavity. The resonant transmission peak properties of two-cavity structure are investigated in detail for various values of cavity length and FBGs with different reflection characteristics, and the design guidelines for transmission-type filters are presented. The results show that the steepness of peak slope can be improved by increase of FBG reflectivities, and these kinds of filters can be used as nar-row-band single-channel selectors and multi-channel wavelength de-multiplexing by properly choosing the length of cavities and reflectivities of FBGs.

  3. The Sacramento Peak fast microphotometer

    Science.gov (United States)

    Arrambide, M. R.; Dunn, R. B.; Healy, A. W.; Porter, R.; Widener, A. L.; November, L. J.; Spence, G. E.

    1984-01-01

    The Sacramento Peak Observatory Fast Microphotometer translates an optical system that includes a laser and photodiode detector across the film to scan the Y direction. A stepping motor moves the film gate in the X direction. This arrangement affords high positional accuracy, low noise (0.002 RMS density units), modest speed (5000 points/second), large dynamic range (4.5 density units), high stability (0.005 density units), and low scattered light. The Fast Microphotometer is interfaced to the host computer by a 6502 microprocessor.

  4. Economic effects of peak oil

    International Nuclear Information System (INIS)

    Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.

  5. A Method to Discriminate Strain and Temperature in Fiber Bragg Grating Sensors

    OpenAIRE

    Chalapati, Madhan T; Pattnaik, PK; Selvarajan, A; T. Srinivas

    2005-01-01

    A significant limitation to the applications of fiber Bragg gratings (FBG) sensors is the sensitivity of the Bragg wavelength to both temperature and strain, complicating the independent measurement of these paremeters. In this letter, we explore a new method to discriminate strain and temperature in FBG sensors, which utilises the additioanl wavelength dependent phase introduced by Fiber Bragg grating written on sensing arm of Mach Zehnder Interferometer (MZI). The intensity variations of th...

  6. Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan; HE Xing-Fang; YUAN Jie; YIN Li-Qun; FANG Xiao-Yong; CAO Mao-Sheng

    2009-01-01

    We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating.

  7. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    Science.gov (United States)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  8. SPECTRAL CHARACTERISTIC OF UNIFORM FIBER BRAGG GRATING USING COUPLE MODE THEORY

    Directory of Open Access Journals (Sweden)

    JYOTSNA RANI MAHAPATRA, MANISHA CHATTOPADHYAY

    2013-08-01

    Full Text Available This paper presents spectral characteristic of Fiber Bragg Grating. Here the modeling and simulation of an optical fiber Bragg grating for reflectivity based on coupled mode theory is discussed in details. Grating length represent as one of the important parameters in contributing to a high performance Fiber Bragg Grating. The reflection spectrum is analyzed with different parameters like wavelength, grating lengths and induced index change

  9. Resonant Orbits and the High Velocity Peaks toward the Bulge

    Science.gov (United States)

    Molloy, Matthew; Smith, Martin C.; Evans, N. Wyn; Shen, Juntai

    2015-10-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape toward the Galactic center. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the Apache Point Observatory Galactic Evolution Experiment commissioning data. We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family and that stars on other higher order resonances can contribute to the peaks. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range {10}\\circ ≲ {θ }{bar}≲ 25^\\circ . However, some important questions about the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the deviations from symmetry between equivalent fields in the north and south. We show that the absence of a peak in surveys at higher latitudes is likely due to the combination of a less prominent peak and a lower number density of bar supporting orbits at these latitudes.

  10. A Phase-shifted Chirped Fiber Bragg Grating with Dual-wavelength Transmission%双波长啁啾相移光纤光栅

    Institute of Scientific and Technical Information of China (English)

    陈金林; 孙军强; 夏利; 刘爽

    2009-01-01

    理论研究并实验验证了一种含有两段π相移的啁啾相移光纤光栅.采用F矩阵对啁啾相移光纤光栅进行计算并分析了该光栅的谱特性.含有两段π相移的啁啾相移光纤光栅可以在普通啁啾光栅透射谱阻带中产生双波长透射峰,透射峰位置直接取决于光栅中π相移的位置,透射峰的线宽和透射峰的波长间隔没有关系,仅随着啁啾率的增大而增大.采用带相位掩模的逐点扫描法对含有两段π相移的双波长啁啾相移光栅进行了制作,获得波长间隔为8 nm的双波长透射谱的光栅器件.该光栅的消光比和3 dB谱线宽分别为20 dB和0.08 nm,实验结果和理论设计一致.%A phase-shifted chirped fiber Bragg grating with two π phase shifts was studied theoretically and experimentally.The grating was calculated by F matrix,based on which the properties of the spectra were analyzed.The phase-shifted chirped fiber Bragg grating has a transmission spectrum with dual-wavelength peaks.The wavelength position of the peaks is directly dependent on the position of the π phase shifts.The linewidth of the peaks increases only with the chirp of the grating,and is not related with the wavelength difference of the two peaks.Due to the local character of chirped fiber gratings,the design of the phase-shifted chirped fiber Bragg gratings is simple.A phase-shifted chirped fiber Bragg grating with two π phase shifts was fabricated by ultraviolet scanning with a phase mask.The wavelength difference,the extinction ratio,and the 3dB linewidth of the two peaks in the transmission spectrum are 8nm,20dB and 0.08nm,respectively,which agree with the theoretical design.

  11. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  12. Neutron beam instruments at the Bragg Institute, phase 2

    International Nuclear Information System (INIS)

    Full text: On 12 May 2009, the Minister for Innovation, Industry, Science and Research announced funding for the NBI2 Program as part of the Super Science - Future Industry initiative. The budget for the NBI2 Program is $37 million and it is scheduled to be completed within four years (1 July 2009 - 30 June 2013). The project builds on the previous successful Neutron Beam Instruments Project (2000-2007), which funded the original suite of 8 instruments, along with 2 subsequent instruments funded in other ways. NBI2 will feature a new split cold neutron guide (CG-2) with two end positions, three new instruments (a second small-angle neutron scattering machine, a high-resolution back-scattering spectrometer and a neutron radiography/tomography/imaging station) along with a substantial suite of sample-environment apparatus. On 27-28 August 2009, the Bragg Institute organised a NBI2 scoping workshop in which the key parameters of the new neutron instruments, guides and sample environments were defined [1]. The case for a second SANS machine rests on the overwhelming interest and demand from the domestic community in soft matter, structural biology, materials science, magnetism and superconductivity. A second SANS instrument will have many similarities with QUOKKA but it will be geared towards excelling in measuring a wider range of object sizes simultaneously, i.e. within a single experimental setting, enabled by a time-of-flight operation mode. This is very important for kinetic measurements, which is an emerging technique and essential in various science areas. Another key design feature will be the development of sophisticated sample environment techniques such as high magnetic fields and polarisation analysis along with the appropriate data analysis methods. The back-scattering spectrometer will open up spectroscopic studies at lower energies (longer times) than on the Pelican time-of-flight spectrometer, doubling the dynamic range in energy that can be accessed at

  13. Three-dimensional reconstruction of the size and shape of protein microcrystals using Bragg coherent diffractive imaging

    Science.gov (United States)

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; Phillips, N. W.; Hoxley, D.; Clark, J. N.; Harder, R. J.; Maxey, E.; Abbey, B.

    2016-05-01

    Three-dimensional imaging of protein crystals during x-ray diffraction experiments opens up a range of possibilities for optimizing crystal quality and gaining new insights into the fundamental processes that drive radiation damage. Obtaining this information at the appropriate length-scales however is extremely challenging. One approach that has been recently demonstrated as a promising avenue for characterizing the size and shape of protein crystals at nanometre length-scales is Bragg coherent diffractive imaging (BCDI). BCDI is a recently developed technique that is able to recover the phase of the continuous diffraction intensity signal around individual Bragg peaks. When data is collected at multiple points on a rocking curve, a reciprocal space map (RSM) can be assembled and then inverted using BCDI to obtain a three-dimensional image of the crystal. The first demonstration of two-dimensional biological BCDI was reported by Boutet et al on holoferritin, recently this work was extended to the study of radiation damage in micron-sized protein crystals. Here we present the first three-dimensional reconstructions of a Lysozyme protein crystal using BDI. The results are validated against RSM and transmission electron microscopy data and have implications for both radiation damage studies and for developing new approaches for structure retrieval from micron-sized protein crystals.

  14. Electric field dependent Electroreflectance of GaAs/AlGaAs multiple quantum well Bragg structure at second quantum state

    Science.gov (United States)

    Nakarmi, Mim; Shakya, Naresh; Chaldyshev, Vladimir

    Electroreflectance Spectroscopy was employed to study the effect of electric field on the excitonic transitions in a GaAs/AlGaAs multiple quantum well (MQW) Bragg structure. The sample used in this experiment consists of 60 periods of quantum well structures with GaAs well layer (~13 nm) and AlGaAs barrier layer (~94 nm), grown by molecular beam expitaxy on a semi-insulating GaAs substrate. The sample structure was designed to coincide the Bragg resonance peak with the x(e2-hh2) exciton transitions. We observed a significant enhancement of excitonic feature around the x(e2-hh2) exciton transition due to the double resonance along with the sharp features of x(e1-hh1) and x(e1-lh1) ground state exciton transitions by tuning the angle of incidence of the light. We will present the results on electric field dependent electroreflectance measurements of this structure and discuss the effect of electric field on the first and second energy states.

  15. Monte Carlo Simulation of the Crossover from Bose Glass to Bragg Glass Phase in Layered BSCCO with Columnar Defects

    CERN Document Server

    Queiroz, L M

    2016-01-01

    Monte Carlo simulations of layered BSCCO samples are used to investigate the behavior of vortex matter at low fields, particularly in connection with the possible occurrence of a Bragg glass (BrG) phase at low density of columnar defects, a phenomenon characterized by the prevalence of short-range over long-range order. In this dislocation-free topological phase the translational order correlation function displays a power law decay. For magnetic induction $B=0.1$ kG the analysis of the data for the first Bragg peak of the planar structure factor, the hexatic order parameter, and the Delaunay triangulation shows that, as the density of columnar defects is lowered, a \\textit{crossover} (or transition) from Bose glass to BrG phase takes place in this \\textit{highly anisotropic} high-T${}_c$ superconductor. Most importantly, an analysis of the 3D vortex-vortex correlation function in terms of the structure factor, calculated via a saddle point approach and the use of the numerical data as input, provides clear-c...

  16. Resonant Orbits and the High Velocity Peaks Towards the Bulge

    CERN Document Server

    Molloy, Matthew; Evans, N Wyn; Shen, Juntai

    2015-01-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. (2015). By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape towards the Galactic centre. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the APOGEE commissioning data (Nidever et al. 2012). We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range 10 < theta_bar < 25 (deg). However, some important questions about the nature of the peaks remain...

  17. Flood peaks and discharge summaries in the Delaware River basin

    Science.gov (United States)

    Vickers, A.A.; Farsett, Harry A.; Green, J. Wayne

    1981-01-01

    This report contains streamflow data from 299 continuous and partial-record gaging stations in the Delaware River basin. The location, drainage area, period of record, type of gage, and average flow (discharge) is given for each continuous station. Also included, are annual flood peak discharges and discharges above a selected base, annual and monthly mean discharges, and annual and monthly runoff. (USGS)

  18. Peak globalization. Climate change, oil depletion and global trade

    International Nuclear Information System (INIS)

    The global trade in goods depends upon reliable, inexpensive transportation of freight along complex and long-distance supply chains. Global warming and peak oil undermine globalization by their effects on both transportation costs and the reliable movement of freight. Countering the current geographic pattern of comparative advantage with higher transportation costs, climate change and peak oil will thus result in peak globalization, after which the volume of exports will decline as measured by ton-miles of freight. Policies designed to mitigate climate change and peak oil are very unlikely to change this result due to their late implementation, contradictory effects and insufficient magnitude. The implication is that supply chains will become shorter for most products and that production of goods will be located closer to where they are consumed. (author)

  19. Neurofeedback training for peak performance

    Directory of Open Access Journals (Sweden)

    Marek Graczyk

    2014-11-01

    Full Text Available [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs. [b]case study[/b]. The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. [b]conclusion[/b]. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  20. Peak Detection Using Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Omar Daoud

    2014-07-01

    Full Text Available A new work based-wavelet transform is designed to o vercome one of the main drawbacks that found in the present new technologies. Orthogonal Frequency Divi sion Multiplexing (OFDMis proposed in the literature to enhance the multimedia resolution. Ho wever, the high peak power (PAPR values will obstr uct such achievements. Therefore, a new proposition is found in this work, making use of the wavelet transforms methods, and it is divided into three ma in stages; de-noising stage, thresholding stage and then the replacement stage. In order to check the system stages validity; a mat hematical model has been built and its checked afte r using a MATLAB simulation. A simulated bit error ra te (BER achievement will be compared with our previously published work, where an enhancement fro m 8×10 -1 to be 5×10 -1 is achieved. Moreover, these results will be compared to the work found in the l iterature, where we have accomplished around 27% PAPR extra reduction. As a result, the BER performance has been improved for the same bandwidth occupancy. Moreover and due to the de-noise stage, the verification rate ha s been improved to reach 81%. This is in addition t o the noise immunity enhancement.

  1. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  2. Absorption correction of peak positions for neutron strain measurements

    International Nuclear Information System (INIS)

    In angle-dispersive neutron strain scanning the information about residual strain comes from the whole gauge volume that is defined by slits in the incoming and diffracted beams. Since the intensity of the neutron beam decreases with the amount of material it has travelled, neutrons diffracted from different locations within the gauge volume contribute with different intensities to the recorded diffraction peak. This can lead to peak shifts, and thus apparent strains. The magnitude of this peak shift depends mostly on the beam attenuation and the size of the gauge volume, but also on the sample geometry and position of the gauge volume within the sample. The peak shift plays a significant role when the size of the gauge volume becomes large because of peak broadening by the sample. An analytic expression for the peak shift was derived for a simple geometry to evaluate a numerical simulation. The numerical simulation was developed to quantify necessary corrections in detail. The attenuation-induced peak shift was demonstrated by measurements on a strain-free powder sample and the results were compared with the numerical predictions.

  3. Two density peaks in low magnetic field helicon plasma

    International Nuclear Information System (INIS)

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion

  4. Two density peaks in low magnetic field helicon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Liu, Z. W. [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600 (China); Chen, Q., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an (China)

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  5. Underwater Acoustic Sensors Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Giuseppe Parente

    2009-06-01

    Full Text Available We report on recent results obtained with a fiber optic hydrophone based on the intensity modulation of the laser light in a FBG (Fiber Bragg Grating under the influence of the sound pressure. In order to control the behavior of the hydrophone in terms of sensitivity and bandwidth, FBGs have been coated with proper materials, characterized by different elastic modulus and shapes. In particular, new experiments have been carried out using a cylindrical geometry with two different coating, showing that the sensitivity is not influenced by the shape but by the transversal dimension and the material characteristics of the coating.

  6. Weldable fibre Bragg grating sensors for steel bridge monitoring

    International Nuclear Information System (INIS)

    For applications related to the structural health monitoring of steel bridges, novel weldable strain and temperature sensors based on fibre Bragg gratings were developed. These sensors, which can be directly welded to metallic structures, reveal linear responses over typical required measurement ranges and stability over thousands of load and temperature cycles. Proper installation procedures and in-field mechanical protection were also developed and implemented. The significance of the developed sensors was demonstrated through the installation of a complete sensing network on a new circular pedestrian bridge in Aveiro, Portugal, where it was used for loading tests, and also for in-service monitoring of its structural health

  7. Application of the Transmission Bragg Gratings for Vibration Monitoring

    CERN Document Server

    Tikhonov, E A

    2010-01-01

    It is shown that the optical-electronic system consisted of the transmission Bragg grating, a laser and the intermediate sensitive to the vibrations mirror can detect the vibrations, when touched by them laser beam scan will exceed the angular divergence of the beam. The mathematical model of the sensor of the vibrations presented in the form of Taylor series describes the system response taking into account the operating point, in particular, describes the effect of the doubling of the modulation frequency response relative to the frequency of acting vibrations.

  8. On-Chip Silicon Waveguide Bragg Grating Photonic Temperature Sensor

    CERN Document Server

    Klimov, Nikolai N; Berger, Michaela; Ahmed, Zeeshan

    2015-01-01

    Resistance thermometry is a time-tested method for taking temperature measurements. In recent years fundamental limits to resistance-based approaches spurred considerable interest in developing photonic temperature sensors as a viable alternative. In this study we demonstrate that our photonic thermometer, which consists of a silicon waveguide integrated with a Bragg grating, can be used to measure temperature changes over the range from 5 C to 160 C with a combined expanded uncertainty [k = 2 ; 95% confidence level] of 1.25 degree C. The computational modeling of the sensor predicts the resonance wavelength and effective refractive index within 4% of the measured value.

  9. Bragg-Berry mirrors: reflective broadband q-plates

    CERN Document Server

    Rafayelyan, Mushegh

    2016-01-01

    We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and consequently foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.

  10. Microfiber-Based Bragg Gratings for Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Jun-Long Kou

    2012-06-01

    Full Text Available Microfiber-based Bragg gratings (MFBGs are an emerging concept in ultra-small optical fiber sensors. They have attracted great attention among researchers in the fiber sensing area because of their large evanescent field and compactness. In this review, the basic techniques for the fabrication of MFBGs are introduced first. Then, the sensing properties and applications of MFBGs are discussed, including measurement of refractive index (RI, temperature, and strain/force. Finally a summary of selected MFBG sensing elements from previous literature are tabulated.

  11. Passive Temperature-Compensating Technique for Microstructured Fiber Bragg Gratings

    CERN Document Server

    Huy, Minh Châu Phan; Dewynter, Véronique; Ferdinand, Pierre; Pagnoux, Dominique; Dussardier, Bernard; Blanc, Wilfried; 10.1109/JSEN.2008.926169

    2010-01-01

    The thermal drift of the characteristic wavelength of fiber Bragg gratings (FBGs) photowritten in the core of microstructured fibers (MOFs) is significantly reduced by inserting a liquid of suitable refractive index into their holes. For instance, the spectral range of variations is divided by a factor of 4 over a temperature range larger than 20\\degree C in a six-hole MOF, and the maximum sensitivity is reduced. Such passive FBG temperature compensation technique is of great interest for applications involving accurate sensing free of thermal effects.

  12. Underwater acoustic sensors based on fiber bragg gratings.

    Science.gov (United States)

    Campopiano, Stefania; Cutolo, Antonello; Cusano, Andrea; Giordano, Michele; Parente, Giuseppe; Lanza, Giuseppe; Laudati, Armando

    2009-01-01

    We report on recent results obtained with a fiber optic hydrophone based on the intensity modulation of the laser light in a FBG (Fiber Bragg Grating) under the influence of the sound pressure. In order to control the behavior of the hydrophone in terms of sensitivity and bandwidth, FBGs have been coated with proper materials, characterized by different elastic modulus and shapes. In particular, new experiments have been carried out using a cylindrical geometry with two different coating, showing that the sensitivity is not influenced by the shape but by the transversal dimension and the material characteristics of the coating. PMID:22408534

  13. A porous silicon Bragg grating waveguide by direct laser writing

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Ilaria; Iodice, Mario; Coppola, Giuseppe; Rendina, Ivo; De Stefano, Luca [National Council of Research, Institute for Microelectronic and Microsystems, Department of Naples, Via P Castellino 111, I-80131 Naples (Italy); Marino, Antigone [Department of Physics, ' Federico II' University of Naples, Via Cinthia, I-80126 Naples (Italy)], E-mail: ilaria.rea@na.imm.cnr.it

    2008-09-10

    We have designed, fabricated and characterized a porous silicon-based Bragg grating integrated in an optical waveguide, by using a low cost and fast technique, direct laser writing. A periodic optical structure with a pitch of 10 {mu}m, resonant in the near-infrared wavelength region, has been obtained. The simulated transmission spectra, calculated by the transfer matrix method and waveguide modal computation, are in good qualitative agreement with the experimental ones. The waveguide transmission losses have been quantified as 22 dB cm{sup -1}.

  14. A porous silicon Bragg grating waveguide by direct laser writing

    International Nuclear Information System (INIS)

    We have designed, fabricated and characterized a porous silicon-based Bragg grating integrated in an optical waveguide, by using a low cost and fast technique, direct laser writing. A periodic optical structure with a pitch of 10 μm, resonant in the near-infrared wavelength region, has been obtained. The simulated transmission spectra, calculated by the transfer matrix method and waveguide modal computation, are in good qualitative agreement with the experimental ones. The waveguide transmission losses have been quantified as 22 dB cm-1

  15. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    Science.gov (United States)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  16. Fiber-bragg grating-loop ringdown method and apparatus

    Science.gov (United States)

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  17. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    International Nuclear Information System (INIS)

    The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression.

  18. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    Science.gov (United States)

    Roig, Andres I.; Hight, Suzie K.; Minna, John D.; Shay, Jerry W.; Rusek, Adam; Story, Michael D.

    2012-01-01

    Purpose The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). Materials and methods 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Results Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. Conclusions These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression. PMID:20201648

  19. Optical Properties of High Sensitivity Fiber Bragg Grating on Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.

  20. Imaging of an undulator source by phase circular Bragg-Fresnel lenses

    OpenAIRE

    Hartman, Ya.; Tarazona, E; Elleaume, P.; Snigireva, I.; Snigirev, A.

    1994-01-01

    Focusing properties and heatload resistance of a Bragg-Fresnel lens placed in an undulator beam have been demonstrated. The electron beam at an undulator source has been imaged by two setups using Bragg-Fresnel lenses. The first setup is a two-lenses telescope and the second one consists of one circular BFL and an asymmetrically cut crystal.

  1. Imaging of an undulator source by phase circular Bragg-Fresnel lenses

    International Nuclear Information System (INIS)

    Focusing properties and heatload resistance of a Bragg-Fresnel lens placed in an undulator beam have been demonstrated. The electron beam at an undulator source has been imaged by two setups using Bragg-Fresnel lenses. The first setup is a two-lenses telescope and the second one consists of one circular BFL and an asymmetrically cut crystal. (orig.)

  2. Active Q-switching of a fiber laser using a modulated fiber Fabry-Perot filter and a fiber Bragg grating

    Science.gov (United States)

    Martínez Manuel, Rodolfo; Kaboko, J. J. M.; Shlyagin, M. G.

    2016-02-01

    We propose and demonstrate a simple and robust actively Q-switched erbium-doped fiber ring cavity laser. The Q-switching is based on dynamic spectral overlapping of two filters, namely a fiber Bragg grating-based filter and a fiber Fabry-Perot tunable filter. Using 3.5 m of erbium-doped fiber and a pump power of only 60 mW, Q-switched pulses with a peak power of 9.7 W and a pulse duration of 500 ns were obtained. A pulse repetition rate can be continuously varied from a single shot to a few KHz.

  3. Evidence of first-order transition between vortex glass and Bragg glass phases in high-$T_{\\rm c}$ superconductors with point pins: Monte Carlo simulations

    OpenAIRE

    Nonomura, Yoshihiko; Hu, Xiao

    2000-01-01

    Phase transition between the vortex glass and the Bragg glass phases in high-$T_{\\rm c}$ superconductors in $\\vec{B}\\parallel\\vec{c}$ is studied by Monte Carlo simulations in the presence of point pins. A finite latent heat and a $\\delta$-function peak of the specific heat are observed, which clearly indicates that this is a thermodynamic first-order phase transition. Values of the entropy jump and the Lindemann number are consistent with those of melting transitions. A large jump of the inte...

  4. Study of the magnetic order in a Co/Cr multilayer by magnetic Bragg diffraction at the Co 2p resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mirone, Alessandro E-mail: mirone@lure.u-psud.fr; Sacchi, Maurizio; Dudzik, Esther; Duerr, Hermann; Laan, Gerrit van der; Vaures, Annie; Petroff, Frederic

    2000-08-01

    We have measured the resonant scattering from an antiferromagnetic Co/Cr multilayer at photon energies close to the cobalt 2p{yields}3d transitions. The cobalt dielectric tensor has an anisotropic component, enhanced by resonance, which depends on the magnetic order and follows its modulation inside the sample. We have studied the vertical distribution of this component through the dependence of the reflectivity on the scattering angle. Using s-polarized light, we have observed the signature of the cobalt-cobalt antiferromagnetic coupling as an half-integer-order Bragg peak. Experimental results have been analyzed by numerical simulation.

  5. Packaging Effects on Fiber Bragg Grating Sensor Performance%光纤光珊的封装效果对其性能的影响

    Institute of Scientific and Technical Information of China (English)

    郝建忠; 高桥志郎; 蔡朝晖; 吴俊宏; 杨秀峰; 陈智浩; 吕超

    2006-01-01

    In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desiredtemperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.

  6. Fabrication of the Long Bragg Grating by Excimer Laser Micro Machining with High-Precision Positioning XXY Platform

    OpenAIRE

    Jian-Zhong Wu; Jian-Cin Chao; Jui-Yi Hu; Chia-Chin Chiang

    2014-01-01

    With the advancement of technology, the application of fiber Bragg grating is widely used as a Bragg grating sensor. Fiber Bragg grating is fabrication using excimer laser machining with the phase masker. The grating length is decided by the width of laser beam. In this paper, we proposed fabrication of the long Bragg grating by excimer Laser micro machining with a high-precision positioning XXY platform. The high-precision positioning XXY platform plays an important role for long FBG. It nee...

  7. Electrically conducting n-type AlGaN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Liu, Yuh-Shiuan; Haq, A. F. M. Saniul; Kao, Tsung-Ting; Mehta, Karan; Shen, Shyh-Chiang; Detchprohm, Theeradetch; Yoder, P. Douglas; Dupuis, Russell D.; Xie, Hongen; Ponce, Fernando A.

    2016-06-01

    We report an electrically conducting 40-pair silicon doped Al0.12Ga0.88N/GaN distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition on a silicon doped n-type GaN template. Due to the relatively small lattice mismatch between AlGaN and GaN, strain managing layers are not required for crack-free n-DBR growth. The DBR demonstrates a peak reflectivity of 91.6% at 368 nm with stopband of 11 nm. In addition, the 40-pair n-DBR shows the vertical resistance of 5.5 Ω, which corresponds to bulk resistivity of 0.52 Ω cm, near the maximum measured current of 100 mA.

  8. Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering

    Directory of Open Access Journals (Sweden)

    J. P. Morgan

    2012-06-01

    Full Text Available We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Qx to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

  9. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Stutzman, Marcy L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chen, Yiqiao [SVT Associates, Inc., Eden Prairie, MN (United States); Moy, Aaron [SVT Associates, Inc., Eden Prairie, MN (United States)

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  10. High brightness sub-nanosecond Q-switched laser using volume Bragg gratings

    Science.gov (United States)

    Anderson, Brian M.; Hale, Evan; Venus, George; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid

    2016-03-01

    The design of Q-switched lasers capable of producing pulse widths of 100's of picoseconds necessitates the cavity length be shorter than a few centimeters. Increasing the amount of energy extracted per pulse requires increasing the mode area of the resonator that for the same cavity length causes exciting higher order transverse modes and decreasing the brightness of the output radiation. To suppress the higher order modes of these multimode resonators while maintaining the compact cavity requires the use of intra-cavity angular filters. A novel Q-switched laser design is presented using transmitting Bragg gratings (TBGs) as angular filters to suppress the higher order transverse modes. The laser consists of a 5 mm thick slab of Nd:YAG, a 3 mm thick slab of Cr:YAG with a 20% transmission, one TBG aligned to suppress the higher order modes along the x-axis, and a 40% output coupler. The gratings are recorded in photo-thermo-refractive (PTR) glass, which has a high damage threshold that can withstand both the high peak powers and high average powers present within the resonator. Using a 4.1 mrad TBG in a 10.8 mm long resonator with an 800μm x 400 μm pump beam, a nearly diffraction limited beam quality of M2 = 1.3 is obtained in a 0.76 mJ pulse with a pulse width of 614 ps.

  11. Experimental study of steel welded joints localization with using fiber Bragg grating strain sensor

    Science.gov (United States)

    Harasim, Damian

    2015-12-01

    Optical sensing systems has a not weakening research and development in recent years. Because of its unique properties of being unsusceptible to electromagnetic interference, having wide range of operational temperature and having extreme small physical dimensions, optical fiber sensors has increasing acceptance. Fiber Bragg Gratings (FBG) is the most frequently used type of optical sensor types because of its huge multiplexing potential and potentiality of being embedded into composite material (e.g. in structural health monitoring) or attached into measured structure. Embedding or attaching FBG into an inhomogeneous environment, spectral characteristic of the sensing grating do not retain full symmetry, which is due to related differences in the distribution of the axial stress of the grating. When periodicity of the grating is constant, the peak of FBG reflection spectrum should be narrow and sharp. An inhomogeneous axial strain distribution will cause a distorsion in measured transmission or reflection spectrum. This paper shows an distorsions in FBG reflection spectrum measured from sensor attached on surface with welded joint. The sensor strain-to-wavelength shift processing characteristics obtained for homogeneous and welded steel samples were compared.

  12. Properties of an AlGaN/AlN distributed-Bragg-reflector structure

    International Nuclear Information System (INIS)

    An AlGaN/AlN distributed-Bragg-reflector (DBR) structure with a high Al content was grown by using plasma-assisted molecular beam epitaxy (PA-MBE). The properties of the sample were characterized by using the transmission electron microscopy, high-resolution X-ray diffraction, atomic force microscopy, and reflectivity spectrum measurements. The reciprocal space mapping analysis indicated that the strain in the AlGaN layers was partially relaxed. The morphology of the DBR exhibited a surface covered by grains (average size of about 130 nm), and the surface roughness was about 2 nm. The spectral measurements showed that the DBR structure presented a peak reflectivity of 68.8% at the center wavelength of 247 nm, which indicated that this DBR structure could work in the deep solar-blind UV region with acceptable reflectivity. However, the optical properties of the DBR structure were deteriorated by the fluctuation of the Al composition, non-uniformity of the layer thickness, the blurry, rough interface in the DBR structure, and so on.

  13. Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres

    International Nuclear Information System (INIS)

    Gauge factors of fibre Bragg grating (FBG)-based strain sensors that had been inscribed into three different types of optical fibres, which differ in core diameters and doping concentrations, were determined at room temperature with high accuracy. Repeated measurements were carried out with several samples of each type of fibre to allow statistical evaluations. For each type, the gauge factors were measured in two configurations: when the bare fibres were glued on a specimen at the location of the FBG and when they were vertically suspended and not bonded to any structure at the location of the FBG. By combining the results of both configurations, the strain transfer ratio of the gluing process and the strain-optic coefficient, peff, of the different types of fibres were determined. The strain-optic coefficient was found to vary up to 1.5% for the different types of optical fibres. The strain transfer ratio was obtained to be close to unity (>99%), showing the high quality of the gluing technique employed. The investigations demonstrate that highly accurate strain sensing is possible with fibre-optic strain sensors. The results are important for the development of accurate and reliable attaching techniques for coated sensor fibres and fibre-optic sensor patches. (paper)

  14. Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings

    Science.gov (United States)

    Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan

    2005-05-01

    Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.

  15. Slow Light Characteristics of Fiber Bragg Gratings%光纤Bragg光栅的慢光特性

    Institute of Scientific and Technical Information of China (English)

    尚云博

    2015-01-01

    研究了光栅长度和光栅周期对光纤Bragg光栅慢光的影响,并重点分析了优化后的慢光特性。结果表明:随着光栅长度的增大,慢光时延量整体呈现不断递增的趋势,且幅度较大,其慢光谱谐振峰两边的旁瓣加强,谱底变得非常平坦,但随着光栅周期的增大,慢光群时延量却呈现出递减的趋势,优化参数后得到了群速度为c/98的慢光。这些规律为设计新型的光纤Bragg光栅的慢光延迟器件提供理论参考。%The influence of grating length and grating period on slow light of fiber Bragg gratings was investi-gated and slow light after optimizing the parameters was presented emphatically. The results indicate that the slow light delay increases with grating length increasing and the degrees of the increasing. A certain bandwidth of reso-nance peaks on both sides of the side lobe and the peak top becomes extremely flattened. But the slow light delay decreases with grating period increasing. By optimizing the parameters,the maximum group velocity can be slowed to c/98. This provides theoretical basis for designing the slow light devices based on fiber Bragg gratings.

  16. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  17. A simple Bragg detector design for AMS and IBA applications

    Science.gov (United States)

    Müller, Arnold Milenko; Döbeli, Max; Seiler, Martin; Synal, Hans-Arno

    2015-08-01

    A new compact Bragg type gas ionization chamber (GIC) has been built for use as particle counter in AMS and IBA applications. The detector stands out due to its simple concept, which does not include a Frisch grid. Test experiments have been performed with ions in the mass range from He to Th and energies ranging from 30 keV to 2.5 MeV, in order to find optimal measurement conditions and to characterize the detector performance. For projectiles heavier than Al at energies below 2.5 MeV the obtained energy resolution is comparable with that of a state-of-the-art GIC with Frisch grid and clearly outperforms solid state detectors. Additionally the operation of this simplified Bragg GIC in the electron multiplication mode was investigated for the first time, which allows the detection of radiocarbon ions at energies below 50 keV with an energy resolution of the order of 10 keV.

  18. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  19. Multilayer Bragg Fresnel zone plate for coherent HHG radiation

    International Nuclear Information System (INIS)

    Coherent diffractive imaging in the (soft) X-ray regime is an emerging new lens-less X-ray microscopy technique with the future potential of molecular or even atomic resolution, because it is ultimately limited by the wavelength of the illuminating radiation and not by the imaging quality of the X-ray lens. However, this technique depends on the availability of coherent x-ray sources as well as optics for spectral filtering and focusing. We describe the development fabrication and testing of a reflective multilayer Bragg Fresnel phase zone plate for focusing coherent XUV radiation at 13 nm wavelength from a High Harmonic Generation source. This X-ray optical device serves for spectral filtering as well as sub-micron focusing of the HH spectrum in a single element for largely reduced losses. Large zone plate structures (conventional, spiral) matching the HH beam size are recorded by e-beam lithography in ultrathin HSQ e-beam resist and over-coated with a reflective Mo/Si multilayer by ion beam deposition. By accurately matching the groove depth of the diffractive structure to odd multiples of the quarter Bragg wavelength, the total diffraction efficiency can be improved by a factor of 4 theoretically compared to amplitude structures.

  20. Self-consistent electrodynamic scattering in the symmetric Bragg case

    International Nuclear Information System (INIS)

    We have analyzed the symmetric Bragg case, introducing a model of self consistent scattering for two elliptically polarized beams. The crystal is taken as a set of mathematical planes, each of them defined by a surface density of dipoles. We have considered the mesofield and the epifield differently from that of the Ewald's theory and, we assumed a plane of dipoles and the associated fields as a self consistent scattering unit. The exact analytical treatment when applied to any two neighbouring planes, results in a general and self consistent Bragg's equation, in terms of the amplitude and phase variations. The generalized solution for the set of N planes was obtained after introducing an absorption factor in the incident radiation, in two ways: (i) the analytical one, through a rule of field similarity, which says that the incidence occurs in both faces of the all crystal planes and also, through a matricial development with the Chebyshev polynomials; (ii) using the numerical solution we calculated, iteratively, the reflectivity, the reflection phase, the transmissivity, the transmission phase and the energy. The results are showed through reflection and transmission curves, which are characteristics as from kinematical as dynamical theories. The conservation of the energy results from the Ewald's self consistency principle is used. In the absorption case, the results show that it is not the only cause for the asymmetric form in the reflection curves. The model contains basic elements for a unified, microscope, self consistent, vectorial and exact formulation for interpretating the X ray diffraction in perfect crystals. (author)

  1. Self-heated fiber Bragg grating sensors for cryogenic environments

    Science.gov (United States)

    Chen, Tong; Swinehart, Philip R.; Maklad, Mokhtar S.; Buric, Michael P.; Chen, Kevin P.

    2010-04-01

    Cryogenic fuels are often considered as major energy alternatives to coal and petroleum based fuels. Safe and reliable sensor networks are required for on-demand, real-time fuel management in cryogenic environments. In this paper, a new sensor design is described that enhances the low-temperature performance of fiber sensors. FBGs inscribed in high attenuation fiber (HAF) are used to absorb in-fiber power light to raise the local sensor temperature in the cryogenic environment. When in-fiber power light is turned off, FBG sensors can serve as passive sensors to gauge temperature and stress in the cryogenic system. When the in-fiber power light is turned on, the heated sensors can be used to rapidly gauge fuel level and fuel leaks. In one example, a hydrogen gas sensor is demonstrated with a palladium-coated fiber Bragg grating (FBG). The low-temperature performance of the sensor was improved by heating the gratings as much as 200 K above the ambient temperature, and hydrogen concentration well below the 4% explosion limit was measured at 123K. In a second example, an array of four aluminum coated fiber Bragg gratings was used to measure liquid level in a cryogenic environment.

  2. A simple Bragg detector design for AMS and IBA applications

    International Nuclear Information System (INIS)

    A new compact Bragg type gas ionization chamber (GIC) has been built for use as particle counter in AMS and IBA applications. The detector stands out due to its simple concept, which does not include a Frisch grid. Test experiments have been performed with ions in the mass range from He to Th and energies ranging from 30 keV to 2.5 MeV, in order to find optimal measurement conditions and to characterize the detector performance. For projectiles heavier than Al at energies below 2.5 MeV the obtained energy resolution is comparable with that of a state-of-the-art GIC with Frisch grid and clearly outperforms solid state detectors. Additionally the operation of this simplified Bragg GIC in the electron multiplication mode was investigated for the first time, which allows the detection of radiocarbon ions at energies below 50 keV with an energy resolution of the order of 10 keV

  3. Pressure Transducer Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — Files are located here, defining the locations of the pressure transducers on the HIRENASD model. These locations also correspond to the locations that analysts...

  4. A Location Privacy Aware Friend Locator

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Thomsen, Jeppe Rishede; Saltenis, Simonas;

    2009-01-01

    A location-based service called friend-locator notifies a user if the user is geographically close to any of the user’s friends. Services of this kind are getting increasingly popular due to the penetration of GPS in mobile phones, but existing commercial friend-locator services require users to...... trade their location privacy for quality of service, limiting the attractiveness of the services. The challenge is to develop a communication-efficient solution such that (i) it detects proximity between a user and the user’s friends, (ii) any other party is not allowed to infer the location of the user...

  5. Generalized guidance equation for peaked quantum solitons and effective gravity

    OpenAIRE

    Durt, Thomas

    2016-01-01

    In this paper we consider a situation in which several quantum particles are located relatively far away from each other. We assume that each particle remains in a sharply localised state throughout time, a peaked soliton, due to the existence of some confinement mechanism, for instance a self-focusing non-linear interaction. In a previous work we showed that in this case there exist a class of solutions of the quantum dynamics such that at the zero order of perturbation the peaked quantum so...

  6. Peak-flow characteristics of Virginia streams

    Science.gov (United States)

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  7. Evaluation of Peak-Fitting Software for Gamma Spectrum Analysis

    CERN Document Server

    Zahn, Guilherme S; Moralles, Maurício

    2015-01-01

    In all applications of gamma-ray spectroscopy, one of the most important and delicate parts of the data analysis is the fitting of the gamma-ray spectra, where information as the number of counts, the position of the centroid and the width, for instance, are associated with each peak of each spectrum. There's a huge choice of computer programs that perform this type of analysis, and the most commonly used in routine work are the ones that automatically locate and fit the peaks; this fit can be made in several different ways -- the most common ways are to fit a Gaussian function to each peak or simply to integrate the area under the peak, but some software go far beyond and include several small corrections to the simple Gaussian peak function, in order to compensate for secondary effects. In this work several gamma-ray spectroscopy software are compared in the task of finding and fitting the gamma-ray peaks in spectra taken with standard sources of $^{137}$Cs, $^{60}$Co, $^{133}$Ba and $^{152}$Eu. The results...

  8. Detecting deformations in uncompacted strata by fiber Bragg grating sensors incorporated into GFRP

    Energy Technology Data Exchange (ETDEWEB)

    Chai, J.; Liu, J.X.; Qiu, B.A.; Li, Y.; Zhu, L.; Wei, S.M.; Wang, Z.P.; Zhang, G.W.; Yang, J.H. [Xian University of Science & Technology, Xian (China). School of Energy Engineering

    2011-01-15

    Coalfields based in east China, such as Huaibei, Datun, Xuzhou, Yanzhou, Yongxia and Huainan, have suffered paroxysmal shaft lining fracture and repeated deformation after repair in the last three decades. This phenomenon has required the development of fractured shaft lining repairing technology and a method for detecting rock strata settlement. It is proposed in this paper that, with the method of fiber Bragg grating sensor incorporated into GFRP, a sensing network of fiber Bragg grating wavelength division multiplexing (WDM)/spatial division multiplexing (SDM) mixing array composed of 18 fiber gratings is formed, and it is used for monitoring the settlement of uncompacted hydrous strata. It is the first time that the fiber Bragg grating sensing system is embedded into the 180-m deep uncompacted strata, and the field experiments are conducted at No. 3 Jingning Coal Mine. The layout of optical sensors, the fiber Bragg grating detecting system, the drilling of the borehole and the embedding method of fiber Bragg grating sensors are introduced. The monitoring results of fiber Bragg grating sensors are compared with groundwater level monitoring results. Engineering practice shows that the fiber Bragg grating sensors are working normally and they can be used to detect strain safely and stably.

  9. Location, Location, Location! A Classroom Demonstration of the Hotelling Model

    OpenAIRE

    Lisa R. Anderson; Beth A. Freeborn; Jessica Holmes; Mark Jeffreys; Dan Lass; Jack Soper

    2006-01-01

    This paper outlines a classroom experiment that complements the standard theoretical discussion of Hotelling's (1929) spatial competition model. The exercise provides students with a deeper understanding of the intuition behind competitive clustering, resolving the Bertrand paradox, and product positioning. Students act as street vendors operating within a “linear city.” Each student chooses a location, taking into account the locations of competitors and the transportation costs of customers...

  10. A fast response temperature sensor based on fiber Bragg grating

    International Nuclear Information System (INIS)

    Aimed at the requirement for a fast-response expendable ocean temperature sensor, this paper presents a new design scheme for an optic fiber sensor. Ocean temperature sensors require high sensitivity and high response speed, which must be up to milliseconds. The fiber Bragg grating (FBG) temperature sensor with high sensitivity has been declared in the last decade, but its response speed has been rarely reported. In this paper, a method is proposed which is to package an FBG with a metal tube. The response time of this sensor is 48.6 ms, which is an order of magnitude greater than that of an ordinary optical fiber temperature sensor. Temperature sensitivity is 27.6 pm/°C and the linearity is up to 0.9999. In addition, the sensor can be less than 15 mm. It offers a new way to detect ocean temperature. (paper)

  11. Humidity insensitive TOPAS polymer fiber Bragg grating sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Khan, Lutul; Webb, David J.;

    2011-01-01

    We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance...... wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both...... wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG....

  12. Prospects for solar axion searches with crystals via Bragg scattering

    International Nuclear Information System (INIS)

    A calculation of the expected signal due to Primakov coherent conversion of solar axions into photons via Bragg scattering in several solid-state detectors is presented and compared with present and future experimental sensitivities. The axion window ma > or approx. 0.03 eV (not accessible at present by other techniques) could be explored in the foreseeable future with crystal detectors to constrain the axion-photon coupling constant gaγγ below the latest bounds coming from helioseismology. On the contrary a positive signal in the sensitivity region of such devices would imply revisiting other more stringent astrophysical limits derived for the same range of the axion mass. The application of this technique to the COSME germanium detector which is taking data at the Canfranc Underground Laboratory leads to a 95% C.L. limit gaγγ ≤ 2.8 x 10-9 GeV-1

  13. Fiber Bragg grating strain sensor for hard rocks

    Science.gov (United States)

    Castro-Caicedo, Alvaro; Nieto-Callejas, María. J.; Torres, Pedro

    2015-09-01

    Strain is an important property to be measured in rock structures such as tunnels, slopes, dams, and mining. However, commercial surface mountable fiber Bragg grating (FBG) strain sensors are packaged in planar configuration, which is not appropriate for the irregular surface of the rocks since an unacceptable bonding layer fails to transfer the strain from the rock to the FBG. As a first approach to this problem, in this work we analyze packaged FBG sensors for cylindrical samples of hard rocks. A calibration process was carried out to evaluate the performance of the packaging and bonding layer as compared to electrical resistance strain gage methods. We show the importance of both packaging and bonding layer in FBG sensor technology for measuring strain in hard rocks.

  14. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained. (paper)

  15. Contact microphone using optical fibre Bragg grating technology

    International Nuclear Information System (INIS)

    A contact microphone using optical fibre Bragg grating has been developed. It enables one to listen and record a human voice and/or breathing by monitoring the vibration generated by the outer wall of the throat during speech. This system can have many applications such as detecting defects in vocal folds, measuring and monitoring the vibration and defection generated by intubations of a patient throat and other voice related problem, low level speaking recording and transmitting is also possible, the microphone can be also used to monitor breathing and the system can be used as a microphone in very harsh environments for example it would allow one to hear the patient during a cat scan

  16. Contact microphone using optical fibre Bragg grating technology

    Energy Technology Data Exchange (ETDEWEB)

    Bezombes, F A; Lalor, M J; Burton, D R [General Engineering Research Institute (GERI), Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool (United Kingdom)

    2007-07-15

    A contact microphone using optical fibre Bragg grating has been developed. It enables one to listen and record a human voice and/or breathing by monitoring the vibration generated by the outer wall of the throat during speech. This system can have many applications such as detecting defects in vocal folds, measuring and monitoring the vibration and defection generated by intubations of a patient throat and other voice related problem, low level speaking recording and transmitting is also possible, the microphone can be also used to monitor breathing and the system can be used as a microphone in very harsh environments for example it would allow one to hear the patient during a cat scan.

  17. Research of embedded fiber Bragg grating temperature sensor system

    Science.gov (United States)

    Hu, Ji; Wan, Shengpeng; Xie, Changlin; Zhang, Zhimin; Luo, Ningning; He, Shuai

    2010-10-01

    In this article, an embedded fiber Bragg grating temperature sensor system is proposed and researched. The demodulating system controls a Piezoelectric Ceramic (PZT) with sawteeth wave to scan the matching grating, then do photoelectric conversion using a detector, and use Digital Signal Processor (DSP) to find the max intensity. Meanwhile, use PZT drive voltage to control the central wavelength of sensor grating to demodulate. Then use the USB interface chip to realize the communication between DSP and the host computer, and send the collected data to the host computer. Finally, the real time temperature can be inquired and stored through the inquiring interface programmed by computer. The result demonstrates that this experimental system has the wave addressing range from 1540 to 1565 nm and the temperature resolution of 0.1°C.

  18. Focusing properties of ellipsoidal Bragg-Fresnel multilayer lenses

    International Nuclear Information System (INIS)

    Principles of calculation of the Bragg-Fresnel multilayer lenses (BFL) structure topology and the first results of test of ellipsoidal BFL using the Sibir'-1 synchrotron radiation source are presented. The picture of cross section of the rotation ellipsoids of the equal phase surfaces by the multilayer structure under the angle to the optical axis was used as the initial model of calculation of the BFL structure. As a result of this experiment, the pictures, reduced by a factor of 350, in the region of X-ray generation with 4.5 nm wavelength are obtained; focusing properties of ellipsoidal BFL with a circular form of a focal pit are demonstrated for the first time

  19. Fibre Bragg grating based accelerometer with extended bandwidth

    Science.gov (United States)

    Basumallick, Nandini; Biswas, Palas; Chakraborty, Rajib; Chakraborty, Sushanta; Dasgupta, Kamal; Bandyopadhyay, Somnath

    2016-03-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer.

  20. Notes on Evanescent Wave Bragg-Reflection Waveguides

    CERN Document Server

    Pressl, Benedikt

    2013-01-01

    We investigate an extended version of the Bragg reflection waveguide (BRW) with air gaps as one of the layers. This design has the potential of drastically simplifying the epitaxial structure for integrated nonlinear optical elements at the expense of more complicated structuring. This approach would afford much more flexibility for designing and varying BRW structures. Here, we discuss an extension of the established theory for BRW slabs and report our results of applying Marcatili's method for rectangular waveguides to the BRW case. With this analytic approach we can estimate the effective index of the modes orders of magnitudes faster than with full numerical techniques such as finite-difference time-domain (FDTD) or finite elements. Initial results are mixed; while phase-matched designs have been found, they currently have no significant advantage over other schemes.

  1. Modulational instability in a fibre and a fibre Bragg grating

    International Nuclear Information System (INIS)

    In this review article, we study the influence of cross-phase modulation, higher order nonlinear effects such as self-steepening, self-induced Raman scattering and higher order dispersion effects such as third and fourth order dispersion on cross-phase modulational instability for a highly elliptical birefringent optical fibre, and obtain the conditions for the occurrence of cross-phase modulational instability in the normal dispersion regime. In addition, we also consider the pulse propagation through a fibre Bragg grating structure where we investigate the occurrence of modulational instability at the two edges of the photonic bandgap as well as on the upper and lower branches of the dispersion curves. (review article)

  2. Femtosecond soliton diode on heterojunction Bragg-grating structure

    CERN Document Server

    Deng, Zhigui; Li, Hongji; Fu, Shenhe; Liu, Yikun; Xiang, Ying; Li, Yongyao

    2016-01-01

    We numerically propose a scheme for realizing an all-optical femtosecond soliton diode based on a tailored heterojunction Bragg grating, which is designed by two spatially asymmetric chirped cholesteric liquid crystals. Our simulations demonstrate that with the consideration of optical nonlinearity, not only the femtosecond diode effect with nonreciprocal transmission ratio up to 120 can be achieved, but also the optical pulse evolving into soliton which maintains its shape during propagation through the sample is observed. Further, the influence of pulse width and the carrier wavelength to the femtosecond diode effect is also discussed in detail. Our demonstrations might suggest a new direction for experimentally realizing the femtosecond soliton diode based on the cholesteric liquid crystals.

  3. Direct UV-written planar Bragg grating sensors

    International Nuclear Information System (INIS)

    Integrated photonics is a proven platform for physical and chemical sensing. It offers miniaturised solutions that are suited for use in extreme environments, including strong EM-fields, EM-pulses and contact with flammable materials, often far exceeding electronic sensors in this regard. This review looks into direct UV-written planar Bragg grating technology and its application to integrated photonic sensors. The platform has been demonstrated widely for measurement of physical properties such as temperature, pressure and strain. In addition, by using an evanescent interaction, refractive index can be measured allowing for chemical and biochemical detection. Further to this, the platform has recently been utilised in quantum information processing, where quantum gate operations and single photon detection has been shown. (topical review)

  4. Vibration measurement of electrical machines using integrated fibre Bragg gratings

    Science.gov (United States)

    Fabian, M.; Borg Bartolo, J.; Ams, M.; Gerada, C.; Sun, T.; Grattan, K. T. V.

    2015-09-01

    In this paper a method to track the rotating force vector set up within the air-gap of radial flux rotating electrical machines using fibre Bragg gratings is reported. The proposed technique offers the potential for simultaneous rotor speed and position monitoring. This specific sensor design, together with other FBG-based multi-parameter measurements, is aimed to create an all-optical sensor solution for electrical machines, reducing the component count of existing systems and addressing noise issues traditionally associated with electrical sensors used. In this work, an optical fibre sensor system has been successfully integrated into an off-the-shelf four-pole 11kW induction motor.

  5. Bragg-case section topography of growth defects in Si : Ge crystals

    International Nuclear Information System (INIS)

    The samples cut out from Si : Ge crystals with 3% and 1.2% of germanium were studied by means of synchrotron white beam Bragg-case section and projection topography as well as conventional transmission Lang topography. The obtained topographs revealed dominant contrast coming from the segregation of germanium. The use of Bragg-case section topography made possible to follow the shape of growth surfaces inside the crystal. The formation of contrast in Bragg-case section topographs for different orientation of growth surfaces with respect to the incident beam is discussed. The applied methods enabled also revealing growth surface instabilities occurring in some regions of Si : Ge crystals

  6. Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing.

    Science.gov (United States)

    Holmes, Christopher; Carpenter, Lewis G; Rogers, Helen L; Sparrow, Ian J G; Gates, James C; Smith, Peter G R

    2011-06-20

    A set of rapid prototyping techniques are combined to construct a laterally-tilted Bragg grating refractometer in a novel planar geometry. The tilted Bragg grating is fabricated in a silica-on-silicon planar substrate using a dual beam direct UV writing (DUW) technique. Lateral cladding mode confinement is subsequently achieved by physically micromachining two trenches either side of the direct UV written waveguide. The resulting device is demonstrated as an effective refractometer, displaying a comparable sensitivity to tilted Bragg gratings in a fiber optical geometry, but with the added advantages of planar integration. PMID:21716485

  7. New imaging using pulsed neutron sources imaging of crystalline structural information by Bragg edge transmission spectroscopy

    International Nuclear Information System (INIS)

    Neutron imaging at a pulsed neutron source can simultaneously give position-dependent neutron transmission spectra of a material. 'Bragg edge' transmission pattern appears at low energy region of the spectrum. Since the Bragg edge transmission spectrum includes various crystalline structural information, e.g., crystal structure, crystalline phase, crystallographic texture, crystallite size and strain, the pulsed neutron imaging using a two-dimensional area detector can non-destructively visualize such the information over the wide area of a material. In this article, principles, features and experimental examples of the Bragg edge transmission imaging that is expected as a new analysis tool for materials science are presented. (author)

  8. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  9. Simulation of Peak Flows Using Remote Sensing Systems

    Science.gov (United States)

    Magaña Hernández, F.; Ba, K. M.; Guerra-Cobián, V.

    2013-05-01

    In this study we utilized remotely sensed data (radar and satellite precipitation products) to simulate the peak discharges of some storm events of the Escondido River. This is a poorly gauged watershed located in Northern Mexico, in the State of Coahuila and is a sub-basin of Rio Bravo, known also as Río Grande. The radar data are from NOAA (Radar KDFX located in Laughlin Air Force Base, Texas). We used two satellite product estimates PERSIANN and CMORPH. These three estimated precipitation products have been compared using the hydrologic model HEC-HMS to simulate the peak discharge. The results of the simulations show the importance of the use of this type of data in hydrologic modeling.

  10. Is the baryon acoustic oscillation peak a cosmological standard ruler?

    OpenAIRE

    Roukema, Boudewijn F; Buchert, Thomas; Fujii, Hirokazu; Ostrowski, Jan J.

    2015-01-01

    In the standard model of cosmology, the Universe is static in comoving coordinates; expansion occurs homogeneously and is represented by a global scale factor. The baryon acoustic oscillation (BAO) peak location is a statistical tracer that represents, in the standard model, a fixed comoving-length standard ruler. Recent gravitational collapse should modify the metric, rendering the effective scale factor, and thus the BAO standard ruler, spatially inhomogeneous. Using the Sloan Digital Sky S...

  11. The Origin of Weak Lensing Convergence Peaks

    OpenAIRE

    Liu, Jia; Haiman, Zoltan

    2016-01-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on $\\Omega_m$ and $\\sigma_8$ are improved by a factor of up to ~ 2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational da...

  12. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings

    Science.gov (United States)

    Huang, Guojun; Wei, Changben; Chen, Shiyuan; Yang, Guowei

    2014-12-01

    We present an approach for structural damage reconstruction based on the reflection intensity spectra of fiber Bragg gratings (FBGs). Our approach incorporates the finite element method, transfer matrix (T-matrix), and genetic algorithm to solve the inverse photo-elastic problem of damage reconstruction, i.e. to identify the location, size, and shape of a defect. By introducing a parameterized characterization of the damage information, the inverse photo-elastic problem is reduced to an optimization problem, and a relevant computational scheme was developed. The scheme iteratively searches for the solution to the corresponding direct photo-elastic problem until the simulated and measured (or target) reflection intensity spectra of the FBGs near the defect coincide within a prescribed error. Proof-of-concept validations of our approach were performed numerically and experimentally using both holed and cracked plate samples as typical cases of plane-stress problems. The damage identifiability was simulated by changing the deployment of the FBG sensors, including the total number of sensors and their distance to the defect. Both the numerical and experimental results demonstrate that our approach is effective and promising. It provides us with a photo-elastic method for developing a remote, automatic damage-imaging technique that substantially improves damage identification for structural health monitoring.

  13. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings

    International Nuclear Information System (INIS)

    We present an approach for structural damage reconstruction based on the reflection intensity spectra of fiber Bragg gratings (FBGs). Our approach incorporates the finite element method, transfer matrix (T-matrix), and genetic algorithm to solve the inverse photo-elastic problem of damage reconstruction, i.e. to identify the location, size, and shape of a defect. By introducing a parameterized characterization of the damage information, the inverse photo-elastic problem is reduced to an optimization problem, and a relevant computational scheme was developed. The scheme iteratively searches for the solution to the corresponding direct photo-elastic problem until the simulated and measured (or target) reflection intensity spectra of the FBGs near the defect coincide within a prescribed error. Proof-of-concept validations of our approach were performed numerically and experimentally using both holed and cracked plate samples as typical cases of plane-stress problems. The damage identifiability was simulated by changing the deployment of the FBG sensors, including the total number of sensors and their distance to the defect. Both the numerical and experimental results demonstrate that our approach is effective and promising. It provides us with a photo-elastic method for developing a remote, automatic damage-imaging technique that substantially improves damage identification for structural health monitoring. (paper)

  14. Experimental Investigation on Acousto-ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    Science.gov (United States)

    Wang, Gag; Banks, Curtis E.

    2016-01-01

    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.

  15. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  16. Practical load management - Peak shaving using photovoltaics

    International Nuclear Information System (INIS)

    This article takes a look at how photovoltaic (PV) power generation can be used in a practical way to meet peak demands for electricity. Advice is provided on how photovoltaics can provide peak load 'shaving' through the correlation between its production and the peak loads encountered during the day. The situation regarding feed-in tariffs in Italy is discussed, as are further examples of installations in Germany and Austria. Further, an initiative of the American Southern California Edison utility is discussed which foresees the installation of large PV plant on the roofs of commercial premises to provide local generation of peak energy and thus relieve demands on their power transportation network.

  17. Location, Location, Location: Development of Spatiotemporal Sequence Learning in Infancy

    Science.gov (United States)

    Kirkham, Natasha Z.; Slemmer, Jonathan A.; Richardson, Daniel C.; Johnson, Scott P.

    2007-01-01

    We investigated infants' sensitivity to spatiotemporal structure. In Experiment 1, circles appeared in a statistically defined spatial pattern. At test 11-month-olds, but not 8-month-olds, looked longer at a novel spatial sequence. Experiment 2 presented different color/shape stimuli, but only the location sequence was violated during test;…

  18. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement

    Directory of Open Access Journals (Sweden)

    Umesh Sampath

    2015-07-01

    Full Text Available A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

  19. Fiber Bragg grating strain sensors for in situ analysis and monitoring of fiber-reinforced historical civil structures

    Science.gov (United States)

    Rossi, G. L.; Speranzini, E.

    2008-06-01

    The aim of this work is to develop and validate a measurement technique for investigating and analysing stress and strain on civil structures reinforced with carbon fibre composites. The proposed sensing elements are Bragg's fibre grating strain sensors. In order to verify the performances of the proposed method, a comparison was made with the results obtained using a laser Doppler vibrometer. The measurement technique was used to study two historical buildings still in use. The vault of the "Elmi - Pandolfi" building in Foligno, and the wooden floor of the "Siaz Building" in Trevi, both located in the province of Perugia, Italy. Both buildings were reinforced with Carbon Fibre Reinforced Plastic (CFRP) after an earthquake.

  20. Study on Dual Bragg Wavelength Fiber Grating and Its Tuning Scheme

    Institute of Scientific and Technical Information of China (English)

    Dong Xingfa; Fu Shenggui; Zhang Hao; Kai Guiyun; Dong Xiaoyi

    2003-01-01

    Because of package, a single FBG has dual Bragg wavelength. One is sensitive to stress and the other is sensitive to temperature. By using the special mechanism, the wavelengths can be tuned by stress and temperature respectively.

  1. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is based on successful results of Phase I project where it was shown that the use of volume Bragg gratings in PTR glass as selectors of transverse and...

  2. Impact of Saturable Gain/Loss on Bistability of Nonlinear Parity-Time Bragg Gratings

    CERN Document Server

    Phang, Sendy; Susanto, Hadi; Benson, Trevor M; Sewell, Phillip

    2014-01-01

    We report on the impact of realistic gain and loss models on the bistable operation of nonlinear parity-time Bragg gratings. In our model we include both dispersive and saturable gain and show that levels of gain/loss saturation can have significant impact on the bistable operation of a nonlinear PT Bragg grating based on GaAs material. The hysteresis of the nonlinear PT Bragg grating is analyzed for different levels of gain and loss and different saturation levels. We show that high saturation levels can improve the nonlinear operation by reducing the intensity at which the bistability occurs. However when the saturation intensity is low, saturation inhibits PT phenomena in a nonlinear PT Bragg grating.

  3. Fiber sensing system based on a bragg grating and optical time domain reflectometry

    OpenAIRE

    Chin, Sanghoon; Thévenaz, Luc

    2013-01-01

    Optic fiber sensor characterized in that the sensing fiber is provided with a continuous Bragg grating covering the entire fiber length which is dedicated to sensing and along which spatially resolved measurements are performed.

  4. Development of a Fibre Bragg Grating Sensor for Rock Deformation Monitoring

    Science.gov (United States)

    Kanopoulos, Patrick Paskalis

    This thesis examines the theoretical and experimental performance of a fibre Bragg grating sensor for static and dynamic strain measurement in hard rock. A literature review focuses on the fundamental theory of fibre Bragg gratings, various physical demodulation schemes used to interrogate Bragg sensors with an emphasis on charge coupled device spectrometry, as well as the aliasing behaviour of Bragg gratings as sensors. A coupled numerical-analytical analysis is conducted on various sensor configurations designed for borehole deployment in order to establish the response of the strain sensors under various strain conditions. The findings of an experimental investigation of two sensors subjected to uniaxial strain within a grout and a rock specimen are presented. The experimental data confirm the feasibility of using the proposed sensor as a part of an integrated optical strain sensing network.

  5. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    CERN Document Server

    Abbaneo, D; Abbrescia, M.; Abdelalim, A.A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F.R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M.M.; De Lentdecker, G.; De Oliveira, R.; De Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R.M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y.G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P.K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J.A.; Mitselmakher, G.; Mohanty, A.K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L.M.; Paolucci, P.; Park, I.; Passeggio, G.; Passamonti, L.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M.S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A.H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S.K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-01-01

    A novel approach which uses Fibre Bragg Grating (FBG) sensors has been utilised to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.

  6. Trends and future of fiber Bragg grating sensing technologies: tailored draw tower gratings (DTGs)

    Science.gov (United States)

    Lindner, E.; Hartung, A.; Hoh, D.; Chojetzki, C.; Schuster, K.; Bierlich, J.; Rothhardt, M.

    2014-05-01

    Today fiber Bragg gratings are commonly used in sensing technology as well as in telecommunications. Numerous requirements must be satisfied for their application as a sensor such as the number of sensors per system, the measurement resolution and repeatability, the sensor reusability as well as the sensor costs. In addition current challenges need to be met in the near future for sensing fibers to keep and extend their marketability such as the suitability for sterilization, hydrogen darkening or the separation of strain and temperature (or pressure and temperature). In this contribution we will give an outlook about trends and future of the fiber Bragg gratings in sensing technologies. Specifically, we will discuss how the use of draw tower grating technology enables the production of tailored Bragg grating sensing fibers, and we will present a method of separating strain and temperature by the use of a single Bragg grating only, avoiding the need for additional sensors to realize the commonly applied temperature compensation.

  7. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    Science.gov (United States)

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated. PMID:14503693

  8. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    Science.gov (United States)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abdelalim, A. A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; De Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Passamonti, L.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-07-01

    A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.

  9. Anomalous longitudinal mode hops in GaAs/AlGaAs distributed Bragg reflector lasers

    OpenAIRE

    Hofstetter, Daniel; Zappe, H. P.

    2008-01-01

    We investigate normal and anomalous longitudinal mode hops in GaAs/AlGaAs-based distributed Bragg reflector (DBR) lasers; anomalous mode hops are defined as those which move toward shorter wavelengths with increasing temperature, which is unexpected. The two-section DBR lasers discussed in this letter, consisting of a gain section and an unpumped Bragg reflector, typically exhibit one mode hop in a 10 K temperature range. Although the longer wavelength modes are expected to start lasing when ...

  10. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole;

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  11. An experimental approach to quantify strain transfer efficiency of fibre bragg grating sensors to host structures

    OpenAIRE

    C. Y. Wei; Ye, Chen-Chun; James, Stephen W.; Tatam, Ralph P.; Irving, Phil E.

    2001-01-01

    This paper developed a method to evaluate the strain transfer efficiency of fibre Bragg grating sensors to host structures. Various coatings were applied to fibre Bragg grating sensors after being fabricated. They were epoxy, silane agent and polypropylene, representing different surface properties. A neat epoxy resin plate was used as the host in which the coated fibre sensors were embedded in the central layer. The tensile strain output from the FBGs was compared with that...

  12. Numerical Analysis of Thermal Dependence of the Spectral Response of Polymer Optical Fiber Bragg Gratings

    OpenAIRE

    Hisham K. Hisham

    2016-01-01

    The thermal dependence of the spectral response (i.e. transmission, reflection and time delay (r) responses) of uniform polymer optical fiber (POF) Bragg gratings has been investigated. In addition to the temperature dependence, the effects of grating strength (kLg) and fiber index modulation (n) have been investigated. Besides high capability of tunable wavelength due to the unique large and negative thermo-optic coefficient of POF, the spectral response for POF Bragg gratings sh...

  13. Floquet-Bloch vs. Nicolson-Ross-Weir Extraction for Magneto-Dielectric Bragg Stacks

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav

    We extract and compare the permittivity and permeability from a dielectric and a magnetodielectric Bragg stack with the Floquet-Bloch (FB) method for the infinite stack and the Nicolson-Ross- Weir (NRW) method for the finite stack. While the extracted propagation constants are identical, the wave...... impedances are different. Moreover, the NRWmethod yields magnetic effects for the dielectric Bragg stack, while the FB method gives the expected vacuum permeability, also in the bandgab....

  14. Bragg transmission phase plates for the production of circularly polarized x-rays

    International Nuclear Information System (INIS)

    A thin-crystal Si (400) Bragg transmission x-ray phase plate has been constructed for the production of 5 to 12 keV circularly polarized x-rays. Using multiple beam diffraction from a GaAs crystal, a direct measurement of the degree of circular polarization as a function of off-Bragg position was made. These measurements indicated nearly complete circular polarization (|Pc| ≥ 0.95) and full helicity reversal on opposite sides of the rocking curve

  15. Fiber Bragg Gratings in Small-Core Ge-Doped Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    Yiping Wang; Hartmut Bartelt; Wolfgang Ecke; Reinhardt Willsch; Jens Kobelke; Michael Kautz; Sven Brueckner; Manfred Rothhardt

    2008-01-01

    This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot inter-ferometer. The responses of such FBGs to temper-ature, strain, bending, and transverse-loading were systematically investigated. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and trans-verse-loading. The bending and transverse- loading properties of the FBGs are sensitive to the fiber orientations.

  16. Efectos rotacionales en redes de Bragg en fibras ópticas

    OpenAIRE

    Arce Diego, José Luis; Muriel Fernández, Miguel Ángel; López Ruisánchez, Roberto; López Higuera, José Miguel

    1997-01-01

    The periodic mode coupling between the right and left circular polarization modes that is induced by a photoinduced fiber grating, with or without lineal birefringence, and with a magnetic field or a twist rate applied to it, is studied and analyzed through the use of the generalized coupled-mode theory. Several novel application of such devices as a fiber Bragg grating twist rate probe, a tuneable optical fiber based on twisted fiber Bragg grating, and an optical filter tuned by magnetic fie...

  17. Computer-Generated Holograms for Recording Multiple-Phase-Shifte Fiber Bragg Grating Corrugations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of fabricating multiple-phase-shifte fiber Bragg grating by CGHs is proposed. The authors present an example of such CGH by which a section multiple-phase-shifte fiber Bragg grating with two π/2 phase shifts and grating length L=21.2 μm was produced. The authors describe the production process and finally give an example of a reconstructed fiber grating with two phase-shifts.

  18. Temperature sensor based on injection fiber Bragg grating laser with wavelength and temporal domain demodulation

    Science.gov (United States)

    Li, Qi; Huang, Kaiqiang; Chen, Haiyan

    2015-08-01

    A novel temperature sensor based on injection fiber Bragg grating laser with wavelength and temporal domain demodulation is proposed and demonstrated experimentally. The proof of concept device consists of a DFB laser modulated by a RF signal as injection light, a fiber Bragg grating laser, an optical spectrum analyzer, and a digital oscilloscope. The dynamic range of the proposed sensor is explored. The results demonstrate the new concept of temperature sensors and the technical feasibility for temperature measurement.

  19. Comparison of spatial harmonics in infinite and finite Bragg stacks for metamaterial homogenization

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav

    2014-01-01

    Metamaterial homogenization may be based on the dominance of a single Floquet-Bloch spatial harmonic in an infinite periodic structure - with the dominance quantified in terms of the relative magnitude of the associated spatial harmonic Poynting vector. For the corresponding finite structure...... of the corresponding infinite Bragg stack. This is even the case for finite Bragg stacks having only two unit cells; thus, the number of unit cells does not influence the homogenizability of this type of configuration. ©...

  20. Origin of low-temperature shoulder internal friction peak of Snoek-Köster peak in a medium carbon high alloyed steel

    Science.gov (United States)

    Lu, Xianwen; Jin, Mingjiang; Zhao, Hongshan; Li, Wei; Jin, Xuejun

    2014-10-01

    A distinct internal friction peak located at the low-temperature shoulder of Snoek-Köster peak (LTS-SK) was found in Fe-0.39C-9.8Ni-1.56Si-2.0Mn steel and its evolution with respect to various aging treatments was investigated. The LTS-SK internal friction peak was found to occur when aged below 373 K. TEM observation confirmed that the ε-carbide precipitated beyond 373 K, providing an evidence that the LTS-SK peak cannot be caused by ε-carbide precipitation. The corresponding evolution on the S-K peak and thermoelectric power (TEP) illustrated that the carbon content in the solid solution decreases due to carbon atoms segregation on the surrounding dislocations during low-temperature aging. The origin of the LTS-SK peak is likely attributed to the interaction between the carbon atoms and twin boundaries in martensite.