WorldWideScience

Sample records for bradykinin

  1. Bradykinin : Inflammatory Product of the Coagulation System

    NARCIS (Netherlands)

    Hofman, Zonne; de Maat, Steven; Hack, C. Erik; Maas, Coen

    2016-01-01

    Episodic and recurrent local cutaneous or mucosal swelling are key features of angioedema. The vasoactive agents histamine and bradykinin are highly implicated as mediators of these swelling attacks. It is challenging to assess the contribution of bradykinin to the clinical expression of angioedema,

  2. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    Science.gov (United States)

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  3. Bradykinin and its role in osteoarthritis

    Directory of Open Access Journals (Sweden)

    L. De Falco

    2013-07-01

    Full Text Available Osteoarthritis (OA, the most common joint disorder, is a disease involving all the articular structures. It presents both degenerative and inflammatory aspects. Recently, the important role of Bradykinin (BK, a phlogistic mediator, has been proposed in the pathophysiology of OA. In our review, we summarized the currently available information on the mechanisms of action of BK in OA by linking its B2 receptors. Then, we analyzed the data about the effects of BK in synoviocytes and chondrocytes cultures. Furthermore, we described the action of B2 receptor antagonists (Icatibant and Fasitibant, presenting them as new promising symptom-anddisease- modifying agents in the treatment of OA. However, more in vitro, animal model and clinical studies, are needed to better understand the mechanisms of action as well as the efficacy and tolerability of the B2 receptor antagonists in OA.

  4. Theoretical study of the human bradykinin-bradykinin B2 receptor complex.

    Science.gov (United States)

    Gieldon, Artur; Lopez, Jakob J; Glaubitz, Clemens; Schwalbe, Harald

    2008-10-13

    The interaction of bradykinin (BK) with the bradykinin B2 receptor (B2R) was analyzed by using molecular modeling (MM) and molecular dynamics (MD) simulations. A homology model for B2R has been generated and the recently determined receptor-bound solid-state NMR spectroscopic structure of BK (Lopez et al., Angew. Chem. 2008, 120, 1692-1695; Angew. Chem. Int. Ed. 2008, 47, 1668-1671) has been modeled into the binding pocket of the receptor to probe the putative ligand-receptor interface. The experimental hormone structure fitted well into the binding pocket of the receptor model and remained stable during the MD simulation. We propose a parallel orientation of the side chains for Arg1 and Arg9 in BK that is bound to B2R. The MD simulation study also allows the conformational changes that lead to the activated form of B2R to be analyzed. The hydrogen bond between N140 (3.35) and W283 (6.48) is the key interaction that keeps the receptor in its inactive form. This hydrogen bond is broken during the MD simulation due to rotation of transmembrane helix 3 (TM3) and is replaced by a new hydrogen bond between W283 (6.48) and N324 (7.45). We propose that this interaction is specific for the activated form of the bradykinin B2 receptor. Additionally, we compared and discussed our putative model in the context of the structural model of the partially activated rhodopsin (Rh*) and with the known biochemical and structural data.

  5. Effect of Montelukast on bradykinin-induced contraction of isolated tracheal smooth muscle of guinea pig

    Directory of Open Access Journals (Sweden)

    A Noor

    2011-01-01

    Conclusion: It is concluded that montelukast significantly inhibits, in a dose-dependent manner, the bradykinin-induced contraction of the guinea pig tracheal smooth muscle, and alludes to an interaction between the bradykinin and leukotriene mediators.

  6. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?

    NARCIS (Netherlands)

    W.W. Batenburg (Wendy); R. Popp (Rudiger); I. Fleming (Ingrid); R. de Vries (René); I.M. Garrelds (Ingrid); P.R. Saxena (Pramod Ranjan); A.H.J. Danser (Jan)

    2004-01-01

    textabstract1. To investigate whether S-nitrosothiols, in addition to NO, mediate bradykinin-induced vasorelaxation, porcine coronary microarteries (PCMAs) were mounted in myographs. 2. Following preconstriction, concentration-response curves (CRCs) were constructed to bradykinin,

  7. Effects of chlorobutanol and bradykinin on myocardial excitation.

    Science.gov (United States)

    Hermsmeyer, K; Aprigliano, O

    1976-02-01

    The negative inotropic effect of a commonly used formulation of bradykinin (Sandoz BRS-640) was found to be due to chlorobutanol, a constituent of the preparation. Solutions containing up to 100 mug of crystalline bradykinin/ml had no effect on tension or action-potential shape. Chlorobutanol (500 mug/ml) caused a 30% decrease in contraction amplitude and a 20% increase in action-potential duration. Chlorobutanol lowered conduction velocity and induced conduction failure and automaticity within isolated ventricular muscle strips. Chlorobutanol affected neither positive nor negative treppe. We conclude that bradykinin has no direct action on toad, frog, or rat myocardium. However, chlorobutanol does have direct effects on myocardial cells, acting on the cell membrane and decreasing isometric tension produced by the heart.

  8. Bradykinin release avoids high molecular weight kininogen endocytosis.

    Directory of Open Access Journals (Sweden)

    Igor Z Damasceno

    Full Text Available Human H-kininogen (120 kDa plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type and CHO-745 (mutant deficient in proteoglycans biosynthesis cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular

  9. Effects of bradykinin B2 receptor stimulation at submucosal ganglia from rat distal colon.

    Science.gov (United States)

    Avemary, Janine; Diener, Martin

    2010-02-10

    Bradykinin acts as an inflammatory mediator in the gut. In the present study we characterized bradykinin-induced changes in the intracellular calcium concentration ([Ca(2+)](i)) in whole-mount submucosal preparations from rat distal colon and examined the bradykinin receptors and subsequent signalling cascades involved. Bradykinin (2.10(-10)-2.10(-7)mol/l) evoked a concentration-dependent increase in [Ca(2+)](i) in about 90% of the investigated neurones. This Ca(2+) response was abolished by the bradykinin B(2) receptor antagonist HOE 140. The B(2) receptor agonist [Hyp(3)]-bradykinin mimicked the kinin response. In contrast, the B(1) receptor antagonist [des-Arg(10)]-HOE 140 and the B(1) receptor agonist bradykinin fragment 1-8 were ineffective. Immunohistochemical experiments confirmed the presence of bradykinin B(2) receptors in submucosal neurones. The effect of bradykinin on [Ca(2+)](i) was not mediated by a release of prostaglandins, as it was resistant against the cyclooxygenase inhibitor indomethacin. Blocking of G(q/11) proteins with YM-254890 suppressed the action of bradykinin, revealing that neuronal bradykinin B(2) receptors are coupled to this G protein. However, the subsequent signalling cascade differed from the classical phospholipase C signalling pathway, as the bradykinin response was resistant against the phospholipase C inhibitor U-73221, the ryanodine receptor antagonist dehydroryanodine, and only marginally sensitive against the blocker of IP(3)-receptors xestospongin C. Vice versa, the effect of bradykinin was nearly completely dependent on the presence of external Ca(2+) and could be reduced by lanthanum, a blocker of voltage-operated Ca(2+) channels, suggesting that the bradykinin-induced Ca(2+) response is achieved by an influx from the extracellular space via voltage-operated Ca(2+) channels.

  10. Bradykinin promotes migration and invasion of human immortalized trophoblasts

    Directory of Open Access Journals (Sweden)

    Lisboa Francisco

    2011-07-01

    Full Text Available Abstract Having demonstrated that the bradykinin B2 receptor (B2R is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8, modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies.

  11. The mechanism of action of two bradykinin-potentiating peptides on isolated smooth muscle.

    Science.gov (United States)

    Ufkes, J G; Aarsen, P N; van der Meer, C

    1977-07-15

    Bradykinin-induced contractions in the guinea-pig ileum were potentiated by the peptides A-VI-5 (Val-Glu-Ser-Ser-Lys) and BPP5a (Pyr-Lys-Trp-Ala-Pro), while the contractions induced by other agonists were not affected. Neither peptide added alone caused any response. Previous addition of the peptides shortened the latent period following the addition of bradykinin to a value corresponding to the contraction height with an equivalent dose of bradykinin added alone. Bradykinin in contact with a piece of ileum was inactivated at a relatively slow rate. This inactivation was not inhibited by either A-VI-5 or BPP5a in doses causing potentiation. Suppression of the cholinergic activity by cooling, atropine, morphine or tetrodotoxin did not influence the potentiating activity. Addition of the peptides at the moment a submaximal contraction due to bradykinin had been fully established, increased the contraction height within seconds. The two peptides caused a parallel shift to the left of the dose-effect curve of bradykinin, whereas the maximum bradykinin effect remained unchanged. It is concluded that sensitization of bradykinin receptors due to an increased affinity of the receptor for bradykinin is the hypothesis which best fits the experimental findings.

  12. The bradykinin B2 receptor in the early immune response against Listeria infection

    NARCIS (Netherlands)

    Kaman, W.E.; Wolterink, A.F.W.M.; Bader, M.; Boele, L.C.L.; Kleij, D. van der

    2009-01-01

    The endogenous danger signal bradykinin was recently found implicated in the development of immunity against parasites via dendritic cells. We here report an essential role of the B2 (B2R) bradykinin receptor in the early immune response against Listeria infection. Mice deficient in B2R (B2R-/- mice

  13. Modulation of bradykinin-induced gastric-cardiovascular reflexes by histamine.

    Science.gov (United States)

    Stebbins, C L; Stahl, G L; Theodossy, S J; Longhurst, J C

    1992-01-01

    Both histamine and bradykinin induce gastric-cardiovascular reflexes and are released during several pathophysiological conditions. This study examined the possibility that histamine modulates the magnitude of the reflex response to stimulation by bradykinin. Thus in chloralose anesthetized cats, the cardiovascular response to stimulation of the gastric serosa with 1 microgram/ml bradykinin was monitored before and after topical application of 100 micrograms/ml histamine (n = 6) or 1 mg/ml diphenhydramine (H1-receptor antagonist) and histamine (n = 5). After application of histamine, bradykinin-induced increases in mean arterial pressure and left ventricular pressure were attenuated by 23 and 27%, respectively. Conversely, when the H1-receptors on the serosal surface of the stomach were blocked (n = 5) before application of histamine, the pressor response to bradykinin was augmented by 26%. To determine the afferents that might contribute to the attenuating effect of histamine, we recorded single unit activity in 14 A delta and 21 C visceral afferent fibers in response to bradykinin stimulation before and after histamine stimulation. We observed that the impulse activity of 10 of the A delta and 14 of the C fibers to bradykinin stimulation was reduced after treatment with histamine. These results suggest that histamine induces an inhibitory effect on the nerve endings of visceral A delta and C fibers to the action of bradykinin through an H1-receptor mechanism. This inhibitory effect attenuates the magnitude of the consequent cardiovascular reflex response.

  14. Bradykinin and histamine-induced cytosolic calcium increase in capillary endothelial cells of bovine adrenal medulla.

    Science.gov (United States)

    Vinet, Raúl; Cortés, Magdalena P; Alvarez, Rocío; Delpiano, Marco A

    2014-09-01

    We have assessed the effect of bradykinin and histamine on the cytosolic free calcium concentration ([Ca(2+)]i ) of bovine adrenal medulla capillary endothelial cells (BAMCECs). To measure [Ca(2+)]i changes in BAMCECs the intracellular fluorescent probe, fluo-3 AM, was used. Bradykinin (3 µM) produced a transient monophasic increase in [Ca(2+)]i , which was depressed by B1650 (0.1 µM), a B2-bradykinin receptor antagonist (D-Arg-[Hyp(3), Thi(5,8) , D-Phe(7)]-Bradykinin). Similarly, increase in [Ca(2+)]i induced by histamine was also depressed by tripolidine (0.1 µM), an H1-histamine receptor antagonist. [Ca(2+)]i increase induced by both agonists was unaffected in the absence of extracellular Ca(2+) or presence of antagonists of voltage operated Ca(2+) channels (VOCCs). Thapsigargin (1 µM) did not abolish the increase of [Ca(2+)]i produced by bradykinin, but abolished that of histamine. In contrast, caffeine (100 µM), abolished the [Ca(2+)]i response induced by bradykinin (3 µM), but did not affect the [Ca(2+)]i increase induced by histamine (100 µM). The results indicate the presence of B2 bradykinin- and H1 histamine-receptors in BAMCECs. Liberation of Ca(2+) induced by both agonists occurs through 2 different intracellular mechanisms. While bradykinin activates a sarco(endo) plasmic reticulum (SER) containing a SER Ca(2+) -ATPase (SERCA) thapsigargin-insensitive, histamine activates a SER containing a SERCA thapsigargin-sensitive. We suggest that the increase in [Ca(2+)]i induced by bradykinin and histamine could be of physiological relevance, modulating adrenal gland microcirculation.

  15. Duration and distribution of experimental muscular hyperalgesia in humans following combined infusions of serotonin and bradykinin

    DEFF Research Database (Denmark)

    Babenko, Victor; Svensson, Peter; Graven-Nielsen, Thomas;

    2000-01-01

    -infusions interval of 3 min. Infusions of isotonic saline (NaCl, 0.9%) were given as control. Pain intensity was continuously scored on a visual analogue scale (VAS), and subjects drew the distribution of the pain areas on an anatomical map. Pressure pain thresholds (PPTs) were assessed with an electronic algometer....... In addition, PPTs were significantly decreased (Peffect of bradykinin in producing experimental muscle pain and muscle hyperalgesia to mechanical stimuli. The combination of serotonin and bradykinin can produce muscle...

  16. Multiple bradykinin-related peptides from the capture web of the spider Nephila clavipes (Araneae, Tetragnatidae).

    Science.gov (United States)

    Volsi, Evelyn C F R; Mendes, Maria Anita; Marques, Maurício Ribeiro; dos Santos, Lucilene Delazari; Santos, Keity Souza; de Souza, Bibiana Monson; Babieri, Eduardo Feltran; Palma, Mario Sergio

    2006-04-01

    Three bradykinin-related peptides (nephilakinins-I to -III) and bradykinin itself were isolated from the aqueous washing extract of the capture web of the spider Nephila clavipes by gel permeation chromatography on a Sephacryl S-100 column, followed by chromatography in a Hi-Trap Sephadex-G25 Superfine column. The novel peptides occurred in low concentrations and were sequenced through ESI-MS/MS analysis: nephilakinin-I (G-P-N-P-G-F-S-P-F-R-NH2), nephilakinin-II (E-A-P-P-G-F-S-P-F-R-NH2) and nephilakinin-III (P-S-P-P-G-F-S-P-F-R-NH2). Synthetic peptides replicated the novel bradykinin-related peptides, which were submitted to biological characterizations. Nephilakinins were shown to cause constriction on isolated rat ileum preparations and relaxation on rat duodenum muscle preparations at amounts higher than bradykinin; apparently these peptides constitute B2-type agonists of ileal and duodenal smooth muscles. All peptides including the bradykinin were moderately lethal to honeybees. These bradykinin peptides may be related to the predation of insects by the webs of N. clavipes.

  17. Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation.

    Science.gov (United States)

    Pillat, Micheli M; Lameu, Claudiana; Trujillo, Cleber A; Glaser, Talita; Cappellari, Angélica R; Negraes, Priscilla D; Battastini, Ana M O; Schwindt, Telma T; Muotri, Alysson R; Ulrich, Henning

    2016-09-15

    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neuron-generating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67(+) cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation.

  18. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P muscular activity increases the interstitial concentrations...... of bradykinin and adenosine in both skeletal muscle and the connective tissue around its adjacent tendon. These findings support a role for bradykinin and adenosine in exercise-induced hyperaemia in skeletal muscle and suggest that bradykinin and adenosine are potential regulators of blood flow in peritendinous...

  19. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Gérard Jean-Louis

    2010-07-01

    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  20. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction

    Directory of Open Access Journals (Sweden)

    Čokić Vladan P.

    2014-01-01

    Full Text Available Introduction. Hydroxycarbamide, used in therapy of hemoglobinopathies, enhances nitric oxide (NO production both in primary human umbilical vein endothelial cells (HUVECs and human bone marrow endothelial cell line (TrHBMEC. Moreover, NO increases γ-globin and fetal hemoglobin levels in human erythroid progenitors. Objective. In order to find out whether simple physiologic stimulation of NO production by components of hematopoietic microenvironment can increase γ-globin gene expression, the effects of NO-inducer bradykinin were examined in endothelial cells. Methods. The study was performed in co-cultures of human erythroid progenitors, TrHBMEC and HUVECs by ozone-based chemiluminescent determination of NO and real-time quantitative RT-PCR. Results. In accordance with previous reports, the endogenous factor bradykinin increased endothelial cell production of NO in a dose- and time-dependent manner (0.1-0.6 μM up to 30 minutes. This induction of NO in HUVECs and TrHBMEC by bradykinin was blocked by competitive inhibitors of NO synthase (NOS, demonstrating NOS-dependence. It has been shown that bradykinin significantly reduced endothelial NOS (eNOS mRNA level and eNOS/Я-actin ratio in HUVEC (by twofold. In addition, bradykinin failed to increase γ-globin mRNA expression in erythroid progenitors only, as well as in co-culture studies of erythroid progenitors with TrHBMEC and HUVEC after 24 hours of treatment. Furthermore, bradykinin did not induce γ/β globin ratio in erythroid progenitors in co-cultures with HUVEC. Conclusion. Bradykinin mediated eNOS activation leads to short time and low NO production in endothelial cells, insufficient to induce γ-globin gene expression. These results emphasized the significance of elevated and extended NO production in augmentation of γ-globin gene expression. [Projekat Ministarstva nauke Republike Srbije, br. 175053

  1. Advanced Modelling and Functional Characterization of B2 Bradykinin Receptor

    Directory of Open Access Journals (Sweden)

    Muhammad Saad Khan

    2015-06-01

    Full Text Available Hereditary angioedema (giant hives is an autosomal dominant malady characterized by repetitive episodes of probably life-threatening angioedema due to a partial deficiency of C1 inhibitor. B2 Bradykinin Receptor's (BKRB2 amino acid sequence is deposited within UniProt under accession number P30411. The Physicochemical properties of BKRB2 sequence are determined by using ProtParam. BKRB2's secondary structure was predicted through PROTEUS. Pfam domain was used for functional characterization of BKRB2. PSI-BLAST was used to find homologs of known structure. Modelling by satisfaction of spatial restraints, either uses distance geometry or optimization techniques to satisfy spatial restraints performed by MODELLER. The quality of the generated model was evaluated with PROCHECK by Ramachandran plot analysis. Validation of the generated models was further performed by WHAT IF. ProSA was used for the analysis of Z-scores and energy plots. The 3D structures of the modeled proteins were analyzed using UCSF Chimera. Clustal Omega is used for multiple sequence alignment that uses seeded guide trees and HMM profile-profile techniques to generate alignments.

  2. Cysteinyl leukotrienes mediate the response of submucosal ganglia from rat colon to bradykinin.

    Science.gov (United States)

    Rehn, Matthias; Diener, Martin

    2012-04-15

    The aim of the present study was to find out the mechanism by which the inflammatory mediator, bradykinin, induces an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in enteric neurons. For this purpose, ganglia in the isolated submucosa from rat colon were loaded with the Ca(2+)-sensitive dye, fura-2, and were exposed to bradykinin (2·10(-8)mol/l). Under control conditions, the kinin evoked a transient increase in [Ca(2+)](i). Preincubation with quinacrine or arachidonyltrifluoromethylketone (AACOCF(3)), i.e. blockers of cytosolic phospholipase A(2), prevented the raise of [Ca(2+)](i). This inhibition was mimicked by 5,8,11,14-eicosatetrayonic acid (ETYA), an inhibitor of cyclooxygenases as well as lipoxygenases, and by BWA4C, a selective inhibitor of lipoxygenases, whereas indomethacin was ineffective, suggesting the mediation of the kinin response by a lipoxygenase metabolite. Indeed, a leukotriene, leukotriene D(4) (LTD(4)), mimicked the effect of bradykinin. The LTD(4) receptor blocker, MK-571, inhibited the increase in [Ca(2+)](i) evoked by LTD(4) and by bradykinin. Consequently, bradykinin receptors in submucosal ganglia from rat colon are coupled to a stimulation of phospholipase A(2), the release of arachidonic acid and the production of LTD(4), which seems to be finally responsible for the change in the cytosolic Ca(2+) concentration.

  3. Bradykinin-induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate.

    Science.gov (United States)

    Dixon, C M; Barnes, P J

    1989-01-01

    1. The effects of inhaled nedocromil sodium and sodium cromoglycate on bradykinin-induced bronchoconstriction have been studied in a double-blind, placebo controlled study, in eight mild asthmatic subjects. 2. The subjects attended on four occasions. Fifteen minutes after drug pre-treatment a bradykinin challenge was performed. Increasing concentrations were inhaled until a greater than 40% fall in expiratory flow at 30% of vital capacity from a partial flow volume manoeuvre (V p30) was demonstrated. 3. Inhaled bradykinin (0.06-8.0 mg ml-1) caused dose-related bronchoconstriction with the geometric mean cumulative dose causing a 40% fall in V p30 (PD40) of 0.035 (95% CI: 0.02-0.07) mumol, after placebo inhalation, which was similar to that measured before the trial (0.04: 0.02-0.09 mumol). 4. Both nedocromil sodium (4 mg) and sodium cromoglycate (10 mg) gave significant protection (P less than 0.05) against bradykinin-induced bronchoconstriction (PD40 0.37: 0.19-0.72 mumol after nedocromil sodium and 0.22: 0.11-0.49 after sodium cromoglycate). 5. Since bradykinin-induced bronchoconstriction is probably neurally mediated we conclude that both nedocromil sodium and sodium cromoglycate have an action on neural pathways which may be useful in the control of asthma symptoms. PMID:2547408

  4. Bradykinin augments EGF-induced airway smooth muscle proliferation by activation of conventional protein kinase C isoenzymes

    NARCIS (Netherlands)

    Gosens, R; Bromhaar, MMG; Maarsingh, H; ten Damme, A; Meurs, H; Zaagsma, J; Nelemans, SA

    2006-01-01

    This study aims to investigate the effects of bradykinin, alone and in combination with growth factors on proliferation of cultured bovine tracheal smooth muscle cells. Bradykinin did not induce mitogenic responses by itself, but concentration-dependently augmented growth factor-induced [H-3]thymidi

  5. Specific immunotherapy with mugwort pollen allergoid reduce bradykinin release into the nasal fluid

    Science.gov (United States)

    Grzanka, Alicja; Jawor, Barbara; Czecior, Eugeniusz

    2016-01-01

    Introduction A pathomechanism of allergic rhinitis is complex. A neurogenic mechanism seems to play a significant role in this phenomenon. Aim The evaluation of influence of specific immunotherapy of mugwort pollen allergic patients on the bradykinin concentration in the nasal lavage fluid. Material and methods The study included 22 seasonal allergic rhinitis patients. Thirty persons with monovalent allergy to mugwort pollen, confirmed with skin prick tests and allergen-specific immunoglobulin E, underwent a 3-year-long allergen immunotherapy with the mugwort extract (Allergovit, Allergopharma, Germany). The control group was composed of 9 persons with polyvalent sensitivity to pollen, who were treated with pharmacotherapy. Before the allergen-specific immunotherapy (AIT) and in subsequent years before the pollen seasons, a provocation allergen test with the mugwort extract was performed, together with collection of nasal fluids, where bradykinin concentration was determined according to Proud method. Results There were similar levels of bradykinin in both groups at baseline prior to therapy (AIT group: 584.0 ±87.2 vs. controls 606.3 ±106.5 pg/ml) and changes after allergen challenge 1112.4 ±334.8 vs. 1013.3 ±305.9 pg/ml as well. The bradykinin concentration in nasal lavage fluid after mugwort challenge in 1 year was lower in the AIT group (824.1 ±184.2 pg/ml vs. 1000.4 ±411.5 pg/l; p < 005) with a further significant decrease after the 2nd and 3rd year of specific immunotherapy. Significant reduction of symptoms and medications use was observed in hyposensitized patients. Conclusions A decreased level of bradykinin as a result of AIT suggests that some of the symptomatic benefits of AIT may be related to the reduced release of bradykinin into nasal secretions. These values correlate with clinical improvement within the course of treatment. PMID:27605897

  6. [Treatment of drugs-associated non-hereditary angioedema mediated by bradykinin].

    Science.gov (United States)

    Muller, Yannick; Harr, Thomas

    2016-01-13

    Angioedema is a deep intradermal or sub-cutaneous edema, which can be mediated by histamine, bradykinin or mixture of both components. The aims of this review are to describe the clinical approach and diagnosis of non-hereditary bradykinin-mediated angioedema induced by drugs such as: angiotensin-converting inhibitor, sartan, gliptins, rapamycin or some thrombolytic reagents and renin inhibitors. Furthermore, we will discuss the drug management of these angioedema, which is mainly based on C1 inhibitor concentrate or icatibant administration.

  7. Enzymatic assays for the diagnosis of bradykinin-dependent angioedema.

    Directory of Open Access Journals (Sweden)

    Federica Defendi

    Full Text Available BACKGROUND: The kinins (primarily bradykinin, BK represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE, HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH. Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE. We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE. METHODS: The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC were used to calculate the diagnostic performance of the assays. RESULTS: Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min(-1⋅mL(-1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1% and for men (6.6 nmol·min(-1⋅mL(-1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%. CONCLUSION: The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and -unrelated AE.

  8. TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries

    Institute of Scientific and Technical Information of China (English)

    Cui-ling LIU; Yu HUANG; Ching-yuen NGAI; Yuk-ki LEUNG; Xiao-qiang YAO

    2006-01-01

    Aim: To test the possible involvement of TRPC3 in agonist-induced relaxation and flow-induced vasodilation in rat small mesenteric arteries. Methods: Male Sprague-Dawley rats were used in the present study. After 72 h-treatment of antisense oligo via tail vein injection, isometric tension and isobaric diameter measurement were carried out with isolated mesenteric artery segments by using either a Pressure Myograph or a Multi Myograph system. Endothelial [Ca2+]i changes were measured with a MetaFluor imaging system in response to flow or to 30 nmol/L bradykinin. Results: Immunohistochemical study showed that the 72 h-treatment of antisense oligo via tail vein injection markedly decreased the TRPC3 expression in mesenteric arteries, indicating the effectiveness of the antisense oligo. Isometric tension and isobaric diameter measurement showed that, although the antisense oligo treatment did not affect histamine-, ATP-, and CPA-induced relaxation, it did reduce the magnitude of flow-induced vasodilation by approximately 13% and decreased bradykinin-induced vascular relaxation with its EC50 value raised by nearly 3-fold. Endothelial [Ca2+]i measurement revealed that treatment of the arteries with antisense oligos significantly attenuated the magnitude of endothelial [Ca2+]i rise in response to flow and to 30 nmol/L bradykinin. Conclusion: The results suggest that TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries probably by mediating the Ca2+ influx into endothelial cells.

  9. ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin

    NARCIS (Netherlands)

    R.M. Wösten-van Asperen; R. Lutter (Rene); J.J. Haitsma; M.P. Merkus; J.B. van Woensel; C.M. van der Loos; S. Florquin (Sandrine); B.F. Lachmann (Burkhard); A.P. Bos (Albert)

    2008-01-01

    textabstractVentilator-induced lung injury is characterised by inflammation and apoptosis, but the underlying mechanisms are poorly understood. The present study proposed a role for angiotensin-converting enzyme (ACE) via angiotensin II (Ang II) and/or bradykinin in acute lung injury. The authors as

  10. A novel assay to diagnose hereditary angioedema utilizing inhibition of bradykinin-forming enzymes

    DEFF Research Database (Denmark)

    Joseph, Kusumam; Bains, Sonia; Tholanikunnel, Baby G

    2015-01-01

    BACKGROUND: Hereditary angioedema types I and II are caused by a functional deficiency of C1 inhibitor (C1-INH) leading to overproduction of bradykinin. The current functional diagnostic assays employ inhibition of activated C1s, however, an alternative, more physiologic method, is desirable...

  11. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Directory of Open Access Journals (Sweden)

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  12. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state.

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    Full Text Available BACKGROUND: Cell senescence is central to a large body of age related pathology, and accordingly, cardiomyocytes senescence is involved in many age related cardiovascular diseases. In consideration of that, delaying cardiomyocytes senescence is of great importance to control clinical cardiovascular diseases. Previous study indicated that bradykinin (BK protected endothelial cells from senescence induced by oxidative stress. However, the effects of bradykinin on cardiomyocytes senescence remain to be elucidated. In this study, we investigated the effect of bradykinin on H2O2-induced H9C2 cells senescence. METHODS AND RESULTS: Bradykinin pretreatment decreased the senescence induced by H2O2 in cultured H9C2 cells in a dose dependent manner. Interestingly, 1 nmol/L of BK almost completely inhibited the increase in senescent cell number and p21 expression induced by H2O2. Since H2O2 induces senescence through superoxide-induced DNA damage, we also observed the DNA damage by comet assay, and BK markedly reduced DNA damage induced by H2O2, and moreover, BK treatment significantly prevented reactive oxygen species (ROS production in H9C2 cells treated with H2O2. Importantly, when co-incubated with bradykinin B2 receptor antagonist HOE-140 or eNOS inhibitor N-methyl-L-arginine acetate salt (L-NAME, the protective effects of bradykinin on H9C2 senescence were totally blocked. Furthermore, BK administration significantly prevented the increase in nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity characterized by increased ROS generation and gp91 expression and increased translocation of p47 and p67 to the membrane and the decrease in superoxide dismutase (SOD activity and expression induced by H2O2 in H9C2 cells, which was dependent on BK B2 receptor mediated nitric oxide (NO release. CONCLUSIONS: Bradykinin, acting through BK B2 receptor induced NO release, upregulated antioxidant Cu/Zn-SOD and Mn-SOD activity and expression while

  13. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effe... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunctional effects... of bradykinin on glial cells in relation to potentialanti-inflammatory effects. Authors Nod...cts. Noda M, Sasaki K, Ifuku M, Wada K. Neurochem Int. 2007 Jul-Sep;51(2-4):185-91.

  14. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    Science.gov (United States)

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  15. Two new bradykinin-related peptides from the venom of the social wasp Protopolybia exigua (Saussure).

    Science.gov (United States)

    Mendes, Maria Anita; Palma, Mario Sergio

    2006-11-01

    Two bradykinin-related peptides (Protopolybiakinin-I and Protopolybiakinin-II) were isolated from the venom of the social wasp Protopolybia exigua by RP-HPLC, and sequenced by Edman degradation method. Peptide sequences of Protopolybiakinin-I and Protopolybiakinin-II were DKNKKPIRVGGRRPPGFTR-OH and DKNKKPIWMAGFPGFTPIR-OH, respectively. Synthetic peptides with identical sequences to the bradykinin-related peptides and their biological functions were characterized. Protopolybiakinin-I caused less potent constriction of the isolated rat ileum muscles than bradykinin (BK). In addition, it caused degranulation of mast cells which was seven times more potent than BK. This peptide causes algesic effects due to the direct activation of B(2)-receptors. Protopolybiakinin-II is not an agonist of rat ileum muscle and had no algesic effects. However, Protopolybiakinin-II was found to be 10 times more potent as a mast cell degranulator than BK. The amino acid sequence of Protopolybiakinin-I is the longest among the known wasp kinins.

  16. Lys-[Leu8,des-Arg9]-bradykinin blocks lipopolysaccharide-induced SHR aorta hyperpolarization by inhibition of Ca(++)- and ATP-dependent K+ channels.

    Science.gov (United States)

    Farias, Nelson C; Feres, Teresa; Paiva, Antonio C M; Paiva, Therezinha B

    2004-09-13

    The mediators involved in the hyperpolarizing effects of lipopolysaccharide and of the bradykinin B1 receptor agonist des-Arg9-bradykinin on the rat aorta were investigated by comparing the responses of aortic rings of spontaneously hypertensive and normotensive Wistar rats. Endothelized rings from hypertensive rats were hyperpolarized by des-Arg9-bradykinin and lipopolysaccharide, whereas de-endothelized rings responded to lipopolysaccharide but not to des-Arg9-bradykinin. In endothelized preparations, the responses to des-Arg9-bradykinin were inhibited by Nomega-nitro-L-arginine and iberiotoxin. De-endothelized ring responses to lipopolysaccharide were inhibited by iberiotoxin, glibenclamide and B1 antagonist Lys-[Leu8,des-Arg9]-bradykinin. This antagonist also inhibited hyperpolarization by des-Arg9-bradykinin and by the á2-adrenoceptor agonist, brimonidine. Our results indicate that Ca(2+)-sensitive K+ channels are the final mediators of the responses to des-Arg9-bradykinin, whereas both Ca(2+)- and ATP-sensitive K+ channels mediate the responses to lipopolysaccharide. The inhibitory effects of Lys-[Leu8,des-Arg9]-bradykinin is due to a direct action on Ca(2+)- and ATP-sensitive potassium channels.

  17. Effects of the intra-arterial injection of bradykinin into the limbs, upon the activity of mesencephalic reticular units.

    Science.gov (United States)

    Lombard, M C; Guilbaud, G; Besson, J M

    1975-02-01

    The changes in firing rate of mesencephalic reticular units after intra-arterial injection into the limbs of a potent nociceptive agent, bradykinin, were studied in cats (unanesthetized, immobilized with flaxedil and hyperventilated). 30 per cent of the d35 studied cells were affected, 56 per cent were excited, 23 per cent inhibited and 5 per cent had mixed effects. Among the 75 excited cells, the activation of 16 of them seemed to related to the arousa- processes (group A); for 56 cells the increase seemed dire-tly dependent on the nociceptive stimulation itself (group B). The changes of firing rate were repruducible; their latencies and durations were of the same order as the latencies and duration of the nociceptive reactions and painful sensation s, which have been obtained in animals and men after bradykinin injections. The modifications induced by bradykinin administration were suppressed by Ketamin and Thiopental.

  18. Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    2015-11-01

    Full Text Available Background/Aims: Bradykinin has been shown to exert a variety of protective effects against vascular injury, and to reduce the levels of several factors involved in the coagulation cascade. A key determinant of thrombin generation is tissue factor (TF. However, whether bradykinin can regulate TF expression remains to be investigated. Methods: To study the effect of bradykinin on TF expression, we used Lipopolysaccharides (LPS to induce TF expression in human umbilical vein endothelial cells and monocytes. Transcript levels were determined by RT-PCR, protein abundance by Western blotting. In the in vivo study, bradykinin and equal saline were intraperitoneally injected into mice for three days ahead of inferior cava vein ligation that we took to induce thrombus formation, after which bradykinin and saline were injected for another two days. Eventually, the mice were sacrificed and tissues were harvested for tests. Results: Exogenous bradykinin markedly inhibited TF expression in mRNA and protein level induced by LPS in a dose-dependent manner. Moreover, the NO synthase antagonist L-NAME and PI3K inhibitor LY294002 dramatically abolished the inhibitory effects of bradykinin on tissue factor expression. PI3K/Akt signaling pathway activation induced by bradykinin administration reduced the activity of GSK-3ß and MAPK, and reduced NF-κB level in the nucleus, thereby inhibiting TF expression. Consistent with this, intraperitoneal injection of C57/BL6 mice with bradykinin also inhibited the thrombus formation induced by ligation of inferior vena cava. Conclusion: Bradykinin suppressed TF protein expression in human umbilical vein endothelial cells and monocytes in vitro; in line with this, it inhibits thrombus formation induced by ligation of inferior vena cava in vivo.

  19. A liver metalloendopeptidase which degrades the circulating hypotensive peptide hormones bradykinin and atrial natriuretic peptide

    Directory of Open Access Journals (Sweden)

    Carvalho K.M.

    1999-01-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM and for atrial natriuretic peptide (Km = 5 µM suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.

  20. Bradykinin may be involved in neuropeptide Y-induced diuresis, natriuresis, and calciuresis.

    Science.gov (United States)

    Bischoff, A; Rascher, W; Michel, M C

    1998-10-01

    Neuropeptide Y (NPY) can cause diuresis, natriuresis, and calciuresis in rats independently of the pressure-natriuresis mechanism (A. Bischoff and M. C. Michel. Pflügers Arch. 435: 443-453, 1998). Because this is seen in systemic but not intrarenal NPY infusion, we have investigated the possible mediator of tubular NPY effects in anesthetized rats. In the present study, infusion of NPY (2 micrograms . kg-1 . min-1) enhanced renovascular resistance by approximately 8 mmHg . ml-1 . min and enhanced urine and sodium excretion by approximately 450 microliter/15 min and approximately 60-85 micromol/15 min, respectively. Acute renal denervation did not alter renovascular or tubular NPY effects, indicating that a neuronally released mediator is not involved. Treatment with the angiotensin II-receptor antagonist losartan prevented the decline of the renovascular response with time but did not modify tubular NPY effects. The bradykinin B2-receptor antagonist icatibant accelerated the decline of the renovascular NPY effects with time; concomitantly, it attenuated NPY-induced diuresis and natriuresis and abolished NPY-induced calciuresis. The converting-enzyme inhibitor ramiprilat prevented the decline of the renovascular response with time; concomitantly, it magnified the NPY-induced diuresis, natriuresis, and calciuresis. We conclude that bradykinin may be involved in NPY-induced diuresis, natriuresis, and, in particular, calciuresis.

  1. 蛇毒舒缓激肽增强肽%Snake venom bradykinin potentiating peptide

    Institute of Scientific and Technical Information of China (English)

    李旭慧; 权燕敏; 吴晓莎; 杨章民

    2013-01-01

    舒缓激肽增强肽(bradykinin potentiating peptide,BPP)是广泛分布于蝰科(主要是蝮亚科)蛇毒中的一类小分子生物活性肽.BPP具有增强舒缓激肽以及抑制血管紧张素Ⅰ转化酶(angiotensin-Ⅰ converting enzyme,ACE)活性的双重毒理学作用,是造成被毒蛇咬伤时血压骤降的主要组分,也是降压药开博通(Captopril)的天然模式分子.本文简要综述了蛇毒BPP分布与种类、结构和生物学功能等方面的研究进展.%Bradykinin potentiating peptides (BPPs) represent a class of short chain peptides with multiple biological activities,which are distributed widely in the snake venoms of Viperidae (mainly Crotalinae).BPPs can potentiate the actions of bradykinin,and can inhibit the activity of angiotensin-Ⅰ converting enzyme (peptidyl-dipeptidase A) 1 (ACE).The cooperative effects lead to lower the blood pressure in snakebite envenomation,and make it possible to be a natural lead for the anti-hypertension drug (Captopril) design.Here,we briefly review the recent advances in snake venom BPPs,including their distribution,variety,structure and biological functions.

  2. Effect of forskolin on alterations of vascular permeability induced with bradykinin, prostaglandin E1, adenosine, histamine and carrageenin in rats.

    Science.gov (United States)

    Sugio, K; Daly, J W

    1983-07-01

    The effect of the diterpene forskolin on vascular permeability alone and in combination with bradykinin, prostaglandin E1, adenosine or histamine has been investigated in rats. Vascular permeability in rat skin was measured using [125I]-labelled bovine serum albumin ([125I]BSA) as a tracer. In addition, the effect of forskolin on footpad edema induced by the injection of a mixture of 2% carrageenin was determined. Forskolin caused a marked potentiation of the increase in vascular permeability in rat skin elicited by the intradermal injection of histamine or bradykinin. However, forskolin caused a significant suppression of the prostaglandin E1-induced vascular permeability response and at a low concentration suppressed the response to adenosine. Forskolin greatly potentiated the footpad edema induced with carrageenin in rats. Intravenous administration of the enzyme bromelain, which reduces plasma kininogen levels, inhibited the footpad edema induced with carrageenin or with a mixture of carrageenin and forskolin. Parenteral administration of a prostaglandin synthetase inhibitor, indomethacin, suppressed the footpad edema induced with carrageenin, but did not inhibit the footpad edema induced with a mixture of carrageenin and forskolin. An antihistamine, cyproheptadine, had no effect on carrageenin-induced footpad edema either in the presence or absence of forskolin. These results suggest that both bradykinin and prostaglandins are essential for the development of carrageenin-induced footpad edema and that bradykinin plays an important role in the potentiative effect of forskolin on footpad edema induced with carrageenin in rats.

  3. Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations

    NARCIS (Netherlands)

    de Maat, Steven; Björkqvist, Jenny; Suffritti, Chiara; Wiesenekker, Chantal P.; Nagtegaal, Willem; Koekman, Arnold; van Dooremalen, Sanne; Pasterkamp, Gerard; de Groot, Philip G.; Cicardi, Marco; Renné, Thomas; Maas, Coen

    2016-01-01

    BACKGROUND: Patients with angioedema experience unpredictable attacks of tissue swelling in which bradykinin is implicated. Several distinct mutations in Factor XII (FXII) are associated with hereditary angioedema (HAE) in the presence of normal C1 esterase inhibitor activity (FXII-HAE). The underly

  4. INVIVO EFFECT OF BRADYKININ DURING ISCHEMIA AND REPERFUSION - IMPROVED ELECTRICAL STABILITY 2 WEEKS AFTER MYOCARDIAL-INFARCTION IN THE PIG

    NARCIS (Netherlands)

    TOBE, TJM; DELANGEN, CDJ; TIO, RA; BEL, KJ; MOOK, PH; WESSELING, H

    1991-01-01

    In this study, the effect of bradykinin or saline infusion during ischemia and reperfusion on electrical stability, 2 weeks after myocardial infarction, was assessed. Acute myocardial infarction was induced in 21 pigs by a transluminal occlusion of the left coronary artery with a catheter balloon, i

  5. Bradykinin and its gly sup 6 analogue are substrates of cyclophilin: A fluorine-19 magnetization transfer study

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E.; Davis, D.G. (NIEHS, NC (USA)); Vavrek, R.J.; Stewart, J.M. (Univ. of Colorado Health Sciences Center, Denver, CO (USA)); Handschumacher, R.E. (Yale Univ., New Haven, CT (USA))

    1990-11-01

    Fluorine-19 magnetization transfer experiments have been used to determine the rates of cis/trans isomerization about the X-Pro{sup 7} peptide bond in (p-fluoro-Phe{sup 8})bradykinin and its Gly{sup 6} analogue. The measurements were carried out both prior to and after the addition of cyclophilin, which has recently been shown to have peptidyl-proline cis/trans isomerase activity and is the apparent target enzyme of the immunosuppressive agent cyclosporin A. Magnetization transfer measurements over the temperature range 40-75 {degree}C in the absence of enzyme give activation energies of 22.8 and 23.0 kcal/mol for (p-fluoro-Phe{sup 8})bradykinin and its Gly{sup 6} analogue, respectively. The values for the uncatalyzed cis {r arrow} trans rate constant, k{sub c}, are determined by extrapolation to be 4.8 {times} 10{sup {minus}2} and 2.1 {times} 10{sup {minus}2} s{sup {minus}1} for the two peptides at 25 {degree}C. The enzyme-catalyzed enhancement of the cis/trans interconversion rate was proportional to added cyclophilin concentration and was strongly sequence specific, with bradykinin a much better substrate than (Gly{sup 6})bradykinin. At a peptide concentration of 2.2 mM, the catalytic activity expressed as k{sub c} per micromolar cyclophilin was determined to be 1.2 s{sup {minus}1}/{mu}M for (p-fluoro-Phe{sup 8})bradykinin and 0.13 s{sup {minus}1}/{mu}M for the Gly{sup 6}analogue. The increased cis {r arrow} trans interconversion rates were strongly inhibited by cyclosporin A and the 6-(methylalanine) derivative, which bind to cyclophilin, but not by the 1-(tetrahydrofurfuryl) derivative of cyclosporin that binds weakly.

  6. Role of non-nitric oxide non-prostaglandin endothelium-derived relaxing factor(s in bradykinin vasodilation

    Directory of Open Access Journals (Sweden)

    A.C. Resende

    1998-09-01

    Full Text Available The most conspicuous effect of bradykinin following its administration into the systemic circulation is a transient hypotension due to vasodilation. In the present study most of the available evidence regarding the mechanisms involved in bradykinin-induced arterial vasodilation is reviewed. It has become firmly established that in most species vasodilation in response to bradykinin is mediated by the release of endothelial relaxing factors following the activation of B2-receptors. Although in some cases the action of bradykinin is entirely mediated by the endothelial release of nitric oxide (NO and/or prostacyclin (PGI2, a large amount of evidence has been accumulated during the last 10 years indicating that a non-NO/PGI2 factor accounts for bradykinin-induced vasodilation in a wide variety of perfused vascular beds and isolated small arteries from several species including humans. Since the effect of the non-NO/PGI2 endothelium-derived relaxing factor is practically abolished by disrupting the K+ electrochemical gradient together with the fact that bradykinin causes endothelium-dependent hyperpolarization of vascular smooth muscle cells, the action of such factor has been attributed to the opening of K+ channels in these cells. The pharmacological characteristics of these channels are not uniform among the different blood vessels in which they have been examined. Although there is some evidence indicating a role for KCa or KV channels, our findings in the mesenteric bed together with other reports indicate that the K+ channels involved do not correspond exactly to any of those already described. In addition, the chemical identity of such hyperpolarizing factor is still a matter of controversy. The postulated main contenders are epoxyeicosatrienoic acids or endocannabinoid agonists for the CB1-receptors. Based on the available reports and on data from our laboratory in the rat mesenteric bed, we conclude that the NO/PGI2-independent endothelium

  7. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    (Ca)) conductance are involved in regulation of endothelium-dependent vasodilation in retinal arterioles was investigated. METHODS: Porcine retinal arterioles (diameter approximately 112 microm, N = 119) were mounted in microvascular myographs for isometric tension recordings. The arterioles were contracted......(Ca) channels contribute to NO-mediated relaxation induced by bradykinin and NS309 and, hence, may play an important role in retinal arterial endothelial function....

  8. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    Science.gov (United States)

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.

  9. Lotus corniculatus regulates the inflammation induced by bradykinin in a murine model of pleurisy.

    Science.gov (United States)

    Pereira, Diana Ana; Dalmarco, Juliana Bastos; Wisniewski, Alberto; Simionatto, Edésio Luiz; Pizzolatti, Moacir Geraldo; Fröde, Tânia Silvia

    2011-03-23

    This study evaluated the anti-inflammatory efficacy of the crude extract (CE), the fractions derived from hexane (HEX), ethyl acetate (AcOEt), n-butanol (BuOH), and aqueous (Aq) and isolated compounds (oleanolic acid or kaempferitrin) obtained from the aerial parts of Lotus corniculatus var. São Gabriel in mice with bradykinin-induced pleurisy. Swiss mice were used for the In Vivo experiments. Inflammatory parameters [leukocytes; exudate concentrations; myeloperoxidase and adenosine-deaminase activities, and nitric oxide and interleukin-17 levels] were evaluated 4 h after pleurisy induction. The crude extract of Lotus corniculatus, its derived fractions, and isolated compounds inhibited leukocytes and the exudate. This inhibitory effect was associated with decreased of myeloperoxidase and adenosine-deaminase activities, nitric oxide products, and IL-17A levels. Lotus corniculatus presented important anti-inflammatory action by inhibiting leukocyte influx and exudate concentrations. This effect was directly related to the inhibition of nitric oxide and interleukinin17 levels. Oleanolic acid and kaempferitrin can account for these anti-inflammatory effects.

  10. Pharmacologic Targets and Prototype Therapeutics in the Kallikrein-Kinin System: Bradykinin Receptor Agonists or Antagonists

    Directory of Open Access Journals (Sweden)

    J. N. Sharma

    2006-01-01

    Full Text Available The kallikrein-kinin system (KKS is a complex system produced in various organs. This system includes kininogen (precursor for kinin, kallikreins, and pharmacologically active bradykinin (BK, which is considered to be proinflammatory and/or cardioprotective. It is a proinflammatory polypeptide that is involved in many pathological conditions and can cause pain, inflammation, increased vascular permeability, vasodilation, contraction of various smooth muscles, as well as cell proliferation. On the other hand, it has been shown that BK has cardioprotective effects, as all components of KKS are located in the cardiac muscles. Numerous observations have indicated that decreased activity of this system may lead to cardiovascular diseases, such as hypertension, cardiac failure, and myocardial infarction. BK acts on two receptors, B1 and B2, which are linked physiologically through their natural stimuli and their common participation in a variety of inflammatory responses. Recently, numerous BK antagonists have been developed in order to treat several diseases that are due to excessive BK formation. Although BK has many beneficial effects, it has been recognized to have some undesirable effects that can be reversed with BK antagonists. In addition, products of this system have multiple interactions with other important metabolic pathways, such as the renin-angiotensin system.

  11. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine-lysine-bradykinin

  12. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  13. Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom.

    Science.gov (United States)

    Higuchi, S; Murayama, N; Saguchi, K; Ohi, H; Fujita, Y; Camargo, A C; Ogawa, T; Deshimaru, M; Ohno, M

    1999-10-15

    Cloning of cDNAs encoding bradykinin-potentiating peptides (BPPs)-C-type natriuretic peptide (CNP) precursor or its homologue was performed for cDNA libraries of Bothrops jararaca (South American snake), Trimeresurus flavoviridis, Trimeresurus gramineus and Agkistrodon halys blomhoffi (Asian snakes), all belonging to Crotalinae subfamily. Each cDNA library was constructed from the venom glands of a single snake to preclude ambiguity by intraspecies variation in venom components. Thirteen positive clones derived from B. jararaca were divided into two types depending on restriction sites. Differences in the nucleotide sequence arise at three locations and two of them accompanied amino acid conversions. Despite the differences, both types of cDNA clones encode the BPP-CNP precursor of 256 amino acid residues. Sequence analysis demonstrated that cDNA clones from three Asian snakes encode homologues of the BPP-CNP precursor from B. jararaca. In a precursor polypeptide, a signal sequence (approximately 25 aa) at the N-terminus is followed by sequences of BPP or the analogue (5-13 aa) with flanking spacer sequences (indefinite number of aa), an intervening linker sequence (approximately 144 aa) with unidentified function, and a CNP sequence (22 aa) with a preceding processing signal sequence (10 aa). cDNA clones from A. halys blomhoffi encode two distinct peptides in place of BPP, and T. flavoviridis and T. gramineus were shown to have considerably different sequences in the BPP domain from those known as BPP sequences. The present results provide evidence for a wide distribution of the orthologous gene expressing a series of bioactive peptides among Crotalinae subfamily.

  14. Bradykinin is degraded in hypoxic lungs and does not affect epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Brodovich, H.; Kay, J.; Coates, G.

    1985-10-01

    To investigate the effect of intravenous infusions of bradykinin (BK) on the permeability of the hypoxic pulmonary epithelium to small solutes, experiments (n = 7) were performed in yearling sheep with chronic vascular catheters. Sheep were anesthetized, intubated, paralyzed, and ventilated. After establishing stable and normal base-line pulmonary hemodynamics and blood gas tensions, the lungs were insufflated with a submicronic aerosol of technetium-/sup 99m/-labeled diethylenetriaminepentaacetate (/sup 99m/Tc-DTPA, mol wt = 492). Radioactivity arising from the right hemithorax was measured by an NaI probe with a parallel-holed collimator. The base-line pulmonary clearance rate (k) for /sup 99m/Tc-DTPA was 0.51 +/- 0.09% (SE)/min, while the sheep were ventilated with a fractional concentration of inspired O2 (FIO2) of 0.5 (arterial partial pressure of O2 (PaO2) = 196 +/- 11.4 (SE) Torr). Clearance of 99mTc-DTPA was unaffected by hypoxia alone or BK infusions in nonhypoxic lungs. The combination of an intravenous infusion of BK at either 1.2 (n = 3) or 2.4 micrograms . kg-1 . min-1 (n = 4) and alveolar hypoxia (FIO2 = 0.11, PaO2 = 28 +/- 1.6 (SE) Torr) did not affect pulmonary clearance of 99mTc-DTPA (k = 0.43 +/- 0.08% (SE)/min). In contrast, a 0.05-ml/kg intravenous infusion of oleic acid increased clearance 10-fold in one sheep. During combined hypoxia and BK infusion the pulmonary arterial BK concentration (radioimmunoassay) increased from 0.82 +/- 0.16 (SE) to 7.05 +/- 1.86 ng/ml (P less than 0.001), but the systemic arterial concentrations were unchanged (0.67 +/- 0.19 (SE) to 0.66 +/- 0.09 ng/ml).

  15. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  16. Expression of HER2 and bradykinin B1 receptors in precursor lesions of gallbladder carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cesar Toledo; Carola E Matus; Ximena Barraza; Pamela Arroyo; Pamela Ehrenfeld; Carlos D Figueroa; Kanti D Bhoola; Maeva del Pozo; Maria T Poblete

    2012-01-01

    AIM:TO determine the expression of HER2 and bradykinin B1 receptors (B1R) in the two pathogenic models of gallbladder cancer:the metaplasia-dysplasia-carcinoma and the adenoma-carcinoma pathways.METHODS:Receptor proteins were visualized by immunohistochemistry on 5-μm sections of paraffin-embedded tissue.Expression of both receptors was studied in biopsy samples from 92 patients (6 males and 86 females; age ranging from 28 to 86 years,mean 56 years).High HER2 expression in specimens was additionally investigated by fluorescence in situ hybridization.Cell proliferation in each sample was assessed by using the Ki-67 proliferation marker.RESULTS:HER2 receptor protein was absent in adenomas and in normal gallbladder epithelium.On the contrary,there was intense staining for HER2 on the basolateral membrane of epithelial cells of intestinal metaplasia (22/24; 91.7%) and carcinoma in situ (9/10;90%),the lesions that displayed a significantly high proliferation index.Protein up-regulation of HER2 in the epithelium with metaplasia or carcinoma in situ was not accompanied by HER2 gene amplification.A similar result was observed in invasive carcinomas (0/12).The B1R distribution pattern mirrored that of HER2 except that B1R was additionally observed in the adenomas.The B1R appeared either as cytoplasmic dots or labelingon the apical cell membrane of the cells composing the epithelia with intestinal metaplasia (24/24; 100%) and carcinoma in situ (10/10; 100%) and in the epithelial cells of adenomas.In contrast,both HER2 (4/12; 33%)and B1R (1/12; 8.3%) showed a low expression in invasive gallbladder carcinomas.CONCLUSION:The up-regulation of HER2 and B1R in precursor lesions of gallbladder carcinoma suggests cross-talk between these two receptors that may be of importance in the modulation of cell proliferation in gallbladder carcinogenesis.

  17. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases.

    Science.gov (United States)

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2015-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  18. Activation of ERK, JNK, Akt, and G-protein coupled signaling by hybrid angiotensin II AT1/bradykinin B2 receptors expressed in HEK-293 cells

    DEFF Research Database (Denmark)

    Yu, Jun; Lubinsky, David; Tsomaia, Natia;

    2007-01-01

    Bradykinin (BK) and angiotensin II (AngII) often have opposite roles in cardiovascular diseases. Our aim here was to construct hybrid receptors which bind AngII but signal as BK. Various sequences of the intracellular face of the AngII type I receptor, AT1R, were replaced with corresponding...

  19. Electrophysiological responses to bradykinin and microinjected inositol polyphosphates in neuroblastoma cells : Possible role of inositol 1,3,4-trisphosphate in altering membrane potential

    NARCIS (Netherlands)

    Tertoolen, L.G.J.; Tilly, B.C.; Irvine, R.F.; Molenaar, W.H.

    1987-01-01

    Addition of bradykinin to mouse N1E-115 neuroblastoma cells evokes a rapid but transient rise in cytoplasmic free Ca2+ concentration ([Ca2+]i). The [Ca2+]i rise is accompanied by a transient membrane hyperpolarization, due to a several-fold increase in K+ conductance, followed by a prolonged depolar

  20. Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions

    Science.gov (United States)

    Xiang, Jie; Wang, Hui; Ma, Chengbang; Zhou, Mei; Wu, Yuxin; Wang, Lei; Guo, Shaodong; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors. PMID:27690099

  1. Peptide IC-20, encoded by skin kininogen-1 of the European yellow-bellied toad, Bombina variegata, antagonizes bradykinin-induced arterial smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2011-01-01

    Full Text Available Objectives: The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata, in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues. Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.

  2. Bowman-Birk protease inhibitor from Vigna unguiculata seeds enhances the action of bradykinin-related peptides.

    Science.gov (United States)

    da Cunha Morales Álvares, Alice; Schwartz, Elisabeth Ferroni; Amaral, Nathalia Oda; Trindade, Neidiane Rosa; Pedrino, Gustavo Rodrigues; Silva, Luciano Paulino; de Freitas, Sonia Maria

    2014-10-30

    The hydrolysis of bradykinin (Bk) by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI) and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M-1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus) ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ.

  3. Effects of Bradykinin B2 Receptor Blockade on Infarct Size and Hemodynamics after Myocardial Infarction in Enalapril-treated Rats

    Institute of Scientific and Technical Information of China (English)

    Haizhu Zhang; Changcong Cui; Kexin Du; Jian Liu

    2008-01-01

    Objectives To study the effects of bradykinin (BK) B2 receptor blockade on infarct size and hemodynamics after myocardial infarction (MI) in rats with angiotensin-converting enzyme (ACE) inhibition therapy.Methods MI was produced by ligating the left coronary artery.The effects of enalapril(500μg/kg·day),enalapril(500μg/kg·day) with BK B2 receptor antagonist Hoe-140(500μg/kg·day),angiotensin Ⅱ(Ang Ⅱ) type 1(AT1) receptor antagonist losartan (3 mg/kg·day) on infarct size,left ventricular systolic pressure(LVSP),cardiac output index (CI) and stroke volume index (SVI) were observed in rats after MI.Treatments were started on the 2nd day after MI and continued for another 6 weeks.Results Enalapril reduced infarct size and improved CI and SVI compared with the untreated MI group (P<0.05 ),and these effects of enalapril were significantly blunted by concomitant treatment with Hoe-140 (P<0.05).Losartan was less effective than enalapril.LVSP were unchanged in the three treatment groups.Conclusions BK can reduce infract size and improve hemodynamics in rats following MI.The cardioprotective effects of ACEI partly result from the action of BK exerted through the B2 receptor.

  4. Interaction between bradykinin potentiating nonapeptide (BPP9a) and {beta}-cyclodextrin: A structural and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Lula, Ivana; De Sousa, Frederico B. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Denadai, Angelo M.L. [Centro Federal de Educacao Tecnologica de Minas Gerais, CEFET-MG, Campus VII, 35.183-006, Timoteo, MG (Brazil); Ferreira de Lima, Guilherme; Duarte, Helio Anderson [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Mares Guia, Thiago R. dos [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Faljoni-Alario, Adelaide [Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, 05508-900, Sao Paulo, SP (Brazil); Santoro, Marcelo M. [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Camargo, Antonio C.M. de [Center for Applied Toxinology CAT-CEPID, Laboratorio Especial de Toxicologia Aplicada, Instituto Butantan, 05503-900, Sao Paulo, SP (Brazil); Santos, Robson A.S. dos [Departamento de Fisiologia e Biofisica, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); and others

    2012-02-01

    Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between {beta}-cyclodextrin ({beta}CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with {beta}CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the {beta}CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that {beta}CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 Degree-Sign C, pH 7.2) showed higher stability of peptide in presence of {beta}CD. This {beta}CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. Highlights: Black-Right-Pointing-Pointer Cd and NMR showed evidences for the existence of more than one structure in solution. Black-Right-Pointing-Pointer Complexation with {beta}CD reduces the conformational rigidity of the peptide. Black-Right-Pointing-Pointer {beta}CD cavity recognize Trp and/or Pro segments of BPP9a. Black-Right-Pointing-Pointer Interactions involving disaggregation of BPP9a assemblies and binding with {beta}CD.

  5. Bradykinin modulates potassium and calcium currents in neuroblastoma hybrid cells via different pertussis toxin-insensitive pathways.

    Science.gov (United States)

    Wilk-Blaszczak, M A; Gutowski, S; Sternweis, P C; Belardetti, F

    1994-01-01

    In NG108-15 cells, bradykinin (BK) activates a potassium current (IK,BK) and inhibits the voltage-dependent calcium current (ICa,V). BK also stimulates a phosphatidylinositol-specific phospholipase C (PI-PLC). The subsequent release of inositol 1,4,5-trisphosphate and increase in intracellular calcium contribute to IK,BK, through activation of a calcium-dependent potassium current. In membranes from these cells, stimulation of PI-PLC by BK is mediated by Gq and/or G11, two homologous, pertussis toxin-insensitive G proteins. Here, we have investigated the role of Gq/11 in the electrical responses to BK. GTP gamma S mimicked and occluded both actions of BK, and both effects were insensitive to pertussis toxin. Perfusion of an anti-Gq/11 alpha antibody into the pipette suppressed IK,BK, but not the inhibition of ICa,V by BK. Thus, BK couples to IK,BK via Gq/11, but coupling to ICa,V is most likely via a different, pertussis toxin-insensitive G protein.

  6. Altered cardiac bradykinin metabolism in experimental diabetes caused by the variations of angiotensin-converting enzyme and other peptidases.

    Science.gov (United States)

    Adam, Albert; Leclair, Patrick; Montpas, Nicolas; Koumbadinga, Gérémy Abdull; Bachelard, Hélène; Marceau, François

    2010-04-01

    The peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP) mediate most of the kinin catabolism in normal cardiac tissue and are the molecular targets of inhibitory drugs that favorably influence diabetic complications. We studied the variations of those kininases in the myocardium of rats in experimental diabetes. ACE and NEP activities were significantly decreased in heart membranes 4-8weeks post-streptozotocin (STZ) injection. However, insulin-dependent diabetes did not modify significantly bradykinin (BK) half-life (t(1/2)) while the effect of both ACE (enalaprilat) and ACE and NEP (omapatrilat) inhibitors on BK degradation progressively decreased, which may be explained by the upregulation of other unidentified metallopeptidase(s). In vivo insulin treatment restored the activities of both ACE and NEP. ACE and NEP activities were significantly higher in hearts of young Zucker rats than in those of Sprague-Dawley rats. BK t(1/2) and the effects of peptidase inhibitors on t(1/2) varied accordingly. It is concluded that kininase activities are subjected to large and opposite variations in rat cardiac tissue in type I and II diabetes models. A number of tissue or molecular factors may determine these variations, such as remodeling of cardiac tissue, ectoenzyme shedding to the extracellular fluid and the pathologic regulation of peptidase gene expression.

  7. Design, synthesis and evaluation of (18)F-labeled bradykinin B1 receptor-targeting small molecules for PET imaging.

    Science.gov (United States)

    Zhang, Zhengxing; Kuo, Hsiou-Ting; Lau, Joseph; Jenni, Silvia; Zhang, Chengcheng; Zeisler, Jutta; Bénard, François; Lin, Kuo-Shyan

    2016-08-15

    Two fluorine-18 ((18)F) labeled bradykinin B1 receptor (B1R)-targeting small molecules, (18)F-Z02035 and (18)F-Z02165, were synthesized and evaluated for imaging with positron emission tomography (PET). Z02035 and Z02165 were derived from potent antagonists, and showed high binding affinity (0.93±0.44 and 2.80±0.50nM, respectively) to B1R. (18)F-Z02035 and (18)F-Z02165 were prepared by coupling 2-[(18)F]fluoroethyl tosylate with their respective precursors, and were obtained in 10±5 (n=4) and 22±14% (n=3), respectively, decay-corrected radiochemical yield with >99% radiochemical purity. (18)F-Z02035 and (18)F-Z02165 exhibited moderate lipophilicity (LogD7.4=1.10 and 0.59, respectively), and were stable in mouse plasma. PET imaging and biodistribution studies in mice showed that both tracers enabled visualization of the B1R-positive HEK293T::hB1R tumor xenografts with better contrast than control B1R-negative HEK293T tumors. Our data indicate that small molecule antagonists can be used as pharmacophores for the design of B1R-targeting PET tracers.

  8. Risk of bradykinin B2 receptor -58T/C gene polymorphism on hypertension: A meta-analysis.

    Science.gov (United States)

    Luo, Kaiping; Yang, Pingping; Xu, Gaosi

    2016-08-01

    The risk of bradykinin B2 receptor (BDKRB2)-58T/C gene polymorphism on hypertension remains controversial. The Cochrane Library, Chinese Biomedical Database, EBSCO, Embase, ISI, MEDLINE, and PubMed were retrieved, and relevant articles were selected. The significant association between BDKRB2 -58T/C gene polymorphism and risk of hypertension were found under C-allele comparison (odds ratio (OR): 1.22, 95% confidential intervals (CI): 1.05-1.42), recessive model (OR: 1.32, 95% CI: 1.07-1.64), dominant model (OR: 0.74, 95% CI: 0.58-0.94), homozygote model (OR: 1.66, 95% CI: 1.11-2.47) and heterozygote model (OR: 1.23, 95% CI: 1.06-1.43). The magnitude of the association between the BDKRB2-58T/C gene polymorphism and risk of hypertension was substantiated in Asians under C-allele comparison (OR: 1.24, 95% CI: 1.04-1.49), recessive model (OR: 1.39, 95% CI: 1.04-1.86), dominant model (OR: 0.72, 95% CI: 0.56-0.93), homozygote model (OR: 1.78, 95% CI: 1.09-2.90) and heterozygote model (OR: 1.26, 95% CI: 1.07-1.49). No publication bias was found in the meta-analysis. The meta-analysis suggested -58C allele and -58CC genotype increase the risk of hypertension in Asians and African-Americans. Inversely, -58TT genotype decreases the risk of hypertension in Asians and African-Americans.

  9. The relationship of Bradykinin B2 receptor gene variation with obesity, hypertension and lipid variables in obese patients

    Directory of Open Access Journals (Sweden)

    Nur Bakir

    2014-11-01

    Full Text Available Objective. This study examined the association of C-58T genotypes with obesity/hypertension related parameters and serum lipids in obese (n=108 and non-obese (n=80 patients. Materials and methods. Bradykinin receptor (B2R C-58T genotypes were determined by PCR–RFLP. Results. B2R gene C-58T frequencies for T/T (homozygous wild type, T/C (heterozygous and C/C (homozygous polymorphic genotypes for obese and non-obese patients were respectively: 36.1%, 37.5%; 45.4%, 52.5% and 18.5%, 10%. Obese patients using diuretic medication had lower C/C genotype frequency compared to T/T and T/C genotypes. Total cholesterol (T-Chol (p=0.035 levels were found to be associated with B2R C-58T polymorphism, where the T/T genotype had higher total cholesterol levels compared to the T/C genotype in obese patients. Non-obese patients using oral antidiabetic medication had higher C/C genotype frequency than that of T/T and T/C genotypes. Waist circumference (p=0.016 and diastolic blood pressure (p=0.01 levels were elevated in the non-obese subjects with the C/C genotype compared to T/C and T/T. Conclusion. Although B2R C-58T gene polymorphism was not found to be effective on obesity with logistic regression analysis in the whole study population in obese subjects, the T-Chol decreasing effect of the B2R gene C allele and the higher waist circumference measurements in the non-obese subjects may indicate there may be a link between B2R gene C-58T polymorphism and obesity in study populations of higher numbers.

  10. Icatibant, an inhibitor of bradykinin receptor 2, for hereditary angioedema attacks: prospective experimental single-cohort study

    Directory of Open Access Journals (Sweden)

    Regis Albuquerque Campos

    Full Text Available CONTEXT AND OBJECTIVE: Hereditary angioedema (HAE with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil.DESIGN AND SETTING: Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients.METHODS: Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored.RESULTS: 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age. The symptoms were: subcutaneous edema (22/24; abdominal pain (15/24 and upper airway obstruction (10/24. The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%; 10-20 (5/24; 20.8%; 20-30 (8/24; 33.4%; 30-60 (5/24; 20.8%; and 2 hours (1/24; 4.3%. The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6.CONCLUSION: HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.

  11. The inhibition of kallikrein-bradykinin pathway may be useful in the reduction of allergic reactions during honeybee venom immunotherapy

    Directory of Open Access Journals (Sweden)

    Ervin Ç. Mingomataj

    2009-05-01

    Full Text Available "nVenom immunotherapy (VIT protects patients with hymenoptera venom anaphylaxis from subsequent potentially life-threatening reactions. The most important side effects during VIT are systemic anaphylactic reactions (SAR, which are more prevalent during honeybee VIT. Despite the demonstrated diversity with regard to venom compounds, previous publications did not mention the plausible reason that can justify the difference of SAR frequency between honeybee and wasps. On the other hand, pre-treatment with H1-blocking antihistamines reduces the frequency and intensity of local and mild systemic anaphylactic reactions during VIT, but not appropriately moderate adverse reactions such as abdominal pain or angioedematous reactions, which can occur more prevalently also during honeybee VIT. In contrast to hymenoptera venom (HV anaphylaxis, these symptoms are very common during hereditary angioedema (HAE. In addition, in some patients who repeatedly experienced anaphylactic reactions during hyposensitization with HV are reported significantly lower renin, angiotensinogen I, and angiotensinogen II plasma levels. These facts may indicate that during honeybee VIT could be occurred a defective implication of renin-angiotensin system. This may be possible, because among hymenoptera, only the HV contains the antigen melittin, a potent kallikrein activator. These effects during honeybee VIT are similar to the HAE, because melittin-induced kallikrein activation on the first hand, as well as the implication of complement classical pathway during HAE on the second one, can lead both to increased bradykinin (BK secretion, plasma extravasation, and therefore to the occurrence of angioedema and abdominal symptoms. Consequently, the clinical effectiveness of BK receptor and generator blockers such as icatibant, ecallantide or NPC 18884, shown recently during the treatment of HAE attacks and acetic acid-induced abdominal constrictions in mice, may lead to the hypothesis

  12. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  13. Cleavage of kininogen and subsequent bradykinin release by the complement component: mannose-binding lectin-associated serine protease (MASP-1.

    Directory of Open Access Journals (Sweden)

    József Dobó

    Full Text Available Bradykinin (BK, generated from high-molecular-weight kininogen (HK is the major mediator of swelling attacks in hereditary angioedema (HAE, a disease associated with C1-inhibitor deficiency. Plasma kallikrein, activated by factor XIIa, is responsible for most of HK cleavage. However other proteases, which activate during episodes of angioedema, might also contribute to BK production. The lectin pathway of the complement system activates after infection and oxidative stress on endothelial cells generating active serine proteases: MASP-1 and MASP-2. Our aim was to study whether activated MASPs are able to digest HK to release BK. Initially we were trying to find potential new substrates of MASP-1 in human plasma by differential gel electrophoresis, and we identified kininogen cleavage products by this proteomic approach. As a control, MASP-2 was included in the study in addition to MASP-1 and kallikrein. The proteolytic cleavage of HK by MASPs was followed by SDS-PAGE, and BK release was detected by HPLC. We showed that MASP-1 was able to cleave HK resulting in BK production. MASP-2 could also cleave HK but could not release BK. The cleavage pattern of MASPs is similar but not strictly identical to that of kallikrein. The catalytic efficiency of HK cleavage by a recombinant version of MASP-1 and MASP-2 was about 4.0×10(2 and 2.7×10(2 M(-1 s(-1, respectively. C1-inhibitor, the major inhibitor of factor XIIa and kallikrein, also prevented the cleavage of HK by MASPs. In all, a new factor XII- and kallikrein-independent mechanism of bradykinin production by MASP-1 was demonstrated, which may contribute to the pro-inflammatory effect of the lectin pathway of complement and to the elevated bradykinin levels in HAE patients.

  14. Identification of bradykinin: related peptides from Phyllomedusa nordestina skin secretion using electrospray ionization tandem mass spectrometry after a single-step liquid chromatography

    Directory of Open Access Journals (Sweden)

    K Conceição

    2009-01-01

    Full Text Available Amphibian skin secretions are a source of potential new drugs with medical and biotechnological applications. Rich in peptides produced by holocrine-type serous glands in the integument, these secretions play different roles, either in the regulation of physiological skin functions or in the defense against predators or microorganisms. The aim of the present work was to identify novel peptides with bradykinin-like structure and/or activity present in the skin of Phyllomedusa nordestina. In order to achieve this goal, the crude skin secretion of this frog was pre-fractionated by solid phase extraction and separated by reversed-phase chromatography. The fractions were screened for low-molecular-mass peptides and sequenced by mass spectrometry. It was possible to identify three novel bradykinin-related peptides, namely: KPLWRL-NH2 (Pnor 3, RPLSWLPK (Pnor 5 and VPPKGVSM (Pnor 7 presenting vascular activities as assessed by intravital microscopy. Pnor 3 and Pnor 7 were able to induce vasodilation. On the other hand, Pnor 5 was a potent vasoconstrictor. These effects were reproduced by their synthetic analogues.

  15. The bradykinin B2 receptor induces multiple cellular responses leading to the proliferation of human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kramarenko II

    2012-07-01

    Full Text Available Inga I Kramarenko1, Thomas A Morinelli1,2, Marlene A Bunni1,2, John R Raymond Sr3, Maria N Garnovskaya11Department of Medicine (Nephrology Division, Medical University of South Carolina, Charleston, SC, USA; 2Medical and Research Services of the Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA; 3Medical College of Wisconsin, Milwaukee, WI, USABackground: The vasoactive peptide bradykinin (BK acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas.Purpose: In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells.Methods: The presence of mRNAs for BK B1 and BK B2 receptors in A498 cells was demonstrated by reverse transcription–polymerase chain reaction. To study BK signaling pathways, we employed fluorescent measurements of intracellular Ca2+, measured changes in extracellular pH as a reflection of Na+/H+ exchange (NHE with a Cytosensor microphysiometer, and assessed extracellular signal-regulated kinase (ERK activation by Western blotting.Results: Exposure to 100 nM of BK resulted in the rapid elevation of intracellular Ca2+, caused a ≥30% increase in NHE activity, and a ≥300% increase in ERK phosphorylation. All BK signals were blocked by HOE140, a BK B2 receptor antagonist, but not by a B1 receptor antagonist. Inhibitor studies suggest that BK-induced ERK activation requires phospholipase C and protein kinase C activities, and is Ca2+/calmodulin-dependent. The amiloride analog 5-(N-methyl-N-isobutyl-amiloride (MIA blocked short-term NHE activation and inhibited ERK phosphorylation, suggesting that NHE is critical for ERK activation by BK. BK induced an approximately 40% increase in the proliferation of A498 cells as assessed by bromodeoxyuridine uptake. This effect was blocked by the ERK inhibitor PD98059, and was dependent on NHE activity

  16. Renal and blood pressure phenotype in 18-mo-old bradykinin B2R(-/-)CRD mice.

    Science.gov (United States)

    Harrison-Bernard, Lisa M; Dipp, Susana; El-Dahr, Samir S

    2003-10-01

    Aberrant gene-environment interactions are implicated in the pathogenesis of congenital renal dysgenesis (CRD), a leading cause of renal failure in infants and children. We have recently developed an animal model of CRD that is caused by gestational salt stress (5% NaCl diet; HS) of bradykinin B2R null mice [B2R(-/-)CRD; El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, and Meleg-Smith S. Physiol Genomics 3: 121-131, 2000.]. Developing B2R(-/-)CRD mice exhibit tubular and glomerular cysts, stromal expansion, and loss of corticomedullary differentiation. In addition, B2R(-/-)CRD mice exhibit transient hypertension from 2 to 4 mo of age. The present study was designed to determine the long-term consequences of CRD on renal morphology and salt sensitivity of blood pressure in B2R(-/-)CRD mice. One-year- and 18-mo-old B2R(-/-)CRD mice exhibited stunted renal growth, glomerular cystic abnormalities, and collecting duct ectasia. Moreover, tumors of mesenchymal cell origin emerged in the dysplastic kidneys of 90% of 1-yr-old and 100% of 18-mo-old B2R(-/-)CRD mice but not in age-matched B2R(-/-) or wild-type mice. When challenged with an HS diet, 18-mo-old B2R(-/-)CRD exhibited a significant rise in systolic and diastolic blood pressures and more pronounced natriuresis and diuresis compared with salt-loaded 18-mo-old wild-type mice. Kidney aquaporin-2 expression was decreased by 50%, whereas renin, ANG type 1 receptor, and Na+-K+-ATPase levels were not different in B2R(-/-)CRD mice compared with controls. In conclusion, this study demonstrates that B2R(-/-)CRD mice exhibit permanent phenotypic and functional abnormalities in renal growth and differentiation. This novel model of human disease links gene-environment interactions with renal development and blood pressure homeostasis.

  17. Differential modulation of bradykinin-induced relaxation of endothelin-1 and phenylephrine contractions of rat aorta by antioxidants

    Institute of Scientific and Technical Information of China (English)

    Ogechukwu ANOZIE; Richonda ROSS; Adebayo O OYEKAN; Momoh A YAKUBU

    2007-01-01

    Aim: We tested the hypothesis that bradykinin (BK)-induced relaxation of phenylephrine (PE) and endothelin-1 (ET-1) contractions can be differentially modulated by reactive oxygen species (ROS). Methods: Aortic rings isolated from Sprague-Dawley rats were used for the study. The contribution of ROS to PE(1×10-9-1×10-5 mol/L)- and ET-1 (1×10-10-1×10-8 mol/L)-induced contractions and the influence of ROS in B K (1×10-9-1×10mol/L) relaxation of PE (1×10-7 mol/L) or ET-1 (1×10-9 mol/L)-induced tension was evaluated in the aorta in the presence or absence of the following antioxidants: catalase (CAT, 300 U/mL), superoxide dismutase (SOD, 300 U/mL), and vitamin C (1×10-4 mol/L). Results: Tension generated by ET-1 (1 × 10-9 mol/L) or PE (1 × 10-7 mol/L) was differentially relaxed by BK(1 × 10-5 mol/L), producing a maximal relaxation of 75 %±5 % and 35±4%, respectively.The BK (1×10-5 mol/L)-induced relaxation of PE (1×10-7 mol/L) tension was signifi-cantly enhanced from 35%±4% (control) to 56%±9%, 60%±5%, and 49%±6% by SOD, CAT, and vitamin C, respectively (P<0.05, n=8). However, the relaxation of ET-1 (1×10-9 mol/L) tension was significantly attenuated from 75%±5% (control)to 37%±9%, 63%±4%, and 39%±7% by SOD, CAT, and vitamin C, respectively(P<0.05, n=8). On the other hand, CAT had no effect on PE-induced tension, while SOD enhanced PE-induced tension (36%,P<0.05, n=10) and vitamin C attenuated(66%, P<0.05, n=8) the tension induced by PE. By contrast, SOD or vitamin C had no effect, but CAT attenuated (44%, P<0.05, n=9) the tension induced by ET-1.Conclusion: We have demonstrated that O2- and H2O2 differentially modulate BK relaxation in an agonist-specific manner. O2- attenuates BK-induced relaxation of PE contraction, but contributes to the relaxation of ET-1 contraction. O2- seems to inhibit PE contraction, while H2O2 contributes to ET-1-induced contraction. Thus,ROS differentially modulate vascular tone depending on the vasoactive agent that

  18. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    Science.gov (United States)

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  19. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men

    Directory of Open Access Journals (Sweden)

    Popadic Gacesa Jelena Z

    2012-11-01

    Full Text Available Abstract Background Bradykinin type 2 receptor (B2BRK genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. Methods In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m2 were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets. Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. Results Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm3 pre-training to 977.6 ± 140.9 cm3 after training, p9 allele compared to individuals with one or two +9 alleles (−9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p B2BRK genotype (−9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05. Conclusions We found that muscle morphological response to targeted training – hypertrophy – is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in young healthy non athletes was found. This finding could be relevant, not only in predicting individual muscle adaptation capacity to training or sarcopenia related to aging and inactivity, but also in

  20. Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles.

    Science.gov (United States)

    Wang, Xin; Yang, Chenchen; Zhang, Yajun; Zhen, Xu; Wu, Wei; Jiang, Xiqun

    2014-08-01

    Selectively activating tumor vessels to increase drug delivery and reduce interstitial fluid pressure of tumors is actively pursued. Here we developed a vasoactive peptide-decorated chitosan nanoparticles for enhancing drug accumulation and penetration in subcutaneous tumor and lung metastasis. The vasoactive peptide used here is bradykinin-potentiating peptide (BPP) containing 9 amino acid residues and the drug is bioreductively sensitive platinum(IV) compound which becomes cisplatin in intracellular reductive environments. Both peptide and drug are covalently linked with chitosan nanoparticles with a diameter of 120 nm. We demonstrate that BPP-decorated chitosan nanoparticles increase the tumorous vascular permeability and reduce the interstitial fluid pressure of tumor simultaneously, both of which improve the penetration of nanoparticles in tumor tissues. The in vivo biodistribution and tumor inhibition examinations demonstrate that the BPP-decorated nanoparticle formulation has more superior efficacy in enhancing drug accumulation in tumor, restraining tumor growth and prolonging the lifetime of tumor-bearing mice than free drug and non-decorated nanoparticle formulation. Meanwhile, the drug accumulation in the lung with metastasis reaches 17% and 20% injected dose per gram of lung for the chitosan nanoparticles without and with BPP decoration, respectively, which is 10-fold larger than that of free cisplatin. The examination of lung metastasis inhibition further indicates that BPP-decorated chitosan nanoparticle formulations can more effectively inhibit lung metastasis.

  1. L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells.

    Science.gov (United States)

    Toselli, Mauro; Taglietti, Vanni

    2005-05-01

    Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of G(q/11). In the present study we show that the Ca(2+) current flowing through L-type voltage-gated Ca(2+) channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca(2+) channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.

  2. High-level expression and purification of the human bradykinin B(2) receptor in a tetracycline-inducible stable HEK293S cell line.

    Science.gov (United States)

    Camponova, Paméla; Baud, Stéphanie; Mattras, Hélène; Duroux-Richard, Isabelle; Bonnafous, Jean-Claude; Marie, Jacky

    2007-10-01

    The B(2) bradykinin receptor belongs to the G-protein coupled receptor family. Development of new drugs for this important therapeutic target requires structural information on the receptor. The main goal of the present work was to overexpress the human B(2) receptor for future biophysical studies. Different tagged B(2) receptors were engineered and their properties were evaluated by transient expression in HEK293S cells. A B(2) receptor tagged with a hexahistidine at the N-terminus and a nonapeptide at the C-terminus was selected for high expression level and preserved ligand-binding characteristics. First, we generated a HEK293S stable cell line expressing the receptor constitutively at a level of 60pmol/mg of crude membrane protein. However, the decrease of expression level with cell passages led us to express the B(2) receptor in a HEK293S tetracycline-inducible stable cell line. Induction of expression of the B(2) receptor with tetracycline and sodium butyrate led to a level of 100pmol/mg of membrane protein, which is the highest level reported so far for this receptor. The expression level was stable with cell passages and the ligand-binding and signal transduction properties of the receptor were unaltered. The receptor was purified to near homogeneity by solubilization with n-dodecyl-beta-d-maltoside followed by a two-step purification procedure combining hydroxyapatite and immunoaffinity chromatography. Although the purified receptor is not functional, the purification of the B(2) receptor to near homogeneity from a stable cell line overexpressing this receptor pave the way for future structural studies of this receptor.

  3. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation.

    Directory of Open Access Journals (Sweden)

    Erika Terzuoli

    Full Text Available BACKGROUND: Bradykinin (BK induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects. METHODOLOGY: We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC and circulating pro-angiogenic cells (PACs, in producing cell permeability (paracellular flux, migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay and in vivo in mice (matrigel plug and in rat model of experimental osteoarthritis (OA. We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2, prostaglandin E-2 and vascular endothelial growth factor (VEGF. PRINCIPAL FINDINGS: HUVEC, exposed to BK (1-10 µM, showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor. CONCLUSION: This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.

  4. Acetylcholine and bradykinin enhance hypotension and affect the function of remodeled conduit arteries in SHR and SHR treated with nitric oxide donors

    Directory of Open Access Journals (Sweden)

    Gerová M.

    2005-01-01

    Full Text Available Discrepancy was found between enhanced hypotension and attenuated relaxation of conduit arteries in response to acetylcholine (ACh and bradykinin (BK in nitric oxide (NO-deficient hypertension. The question is whether a similar phenomenon occurs in spontaneously hypertensive rats (SHR with a different pathogenesis. Wistar rats, SHR, and SHR treated with NO donors [molsidomine (50 mg/kg or pentaerythritol tetranitrate (100 mg/kg, twice a day, by gavage] were studied. After 6 weeks of treatment systolic blood pressure (BP was increased significantly in experimental groups. Under anesthesia, the carotid artery was cannulated for BP recording and the jugular vein for drug administration. The iliac artery was used for in vitro studies and determination of geometry. Compared to control, SHR showed a significantly enhanced (P < 0.01 hypotensive response to ACh (1 and 10 µg, 87.9 ± 6.9 and 108.1 ± 5.1 vs 35.9 ± 4.7 and 64.0 ± 3.3 mmHg, and BK (100 µg, 106.7 ± 8.3 vs 53.3 ± 5.2 mmHg. SHR receiving NO donors yielded similar results. In contrast, maximum relaxation of the iliac artery in response to ACh was attenuated in SHR (12.1 ± 3.6 vs 74.2 ± 8.6% in controls, P < 0.01. Iliac artery inner diameter also increased (680 ± 46 vs 828 ± 28 µm in controls, P < 0.01. Wall thickness, wall cross-section area, wall thickness/inner diameter ratio increased significantly (P < 0.01. No differences were found in this respect among SHR and SHR treated with NO donors. These findings demonstrated enhanced hypotension and attenuated relaxation of the conduit artery in response to NO activators in SHR and in SHR treated with NO donors, a response similar to that found in NO-deficient hypertension.

  5. Injection of bradykinin or/and cyclosporine A to hippocampus induces Alzheimer-like phosphorylation of tau and abnormal behavior in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bradykinin (BK) is a calcium/calmodulin dependent protein kinase Ⅱ (CaMKⅡ) specific activator, and Cyclosporin A (CSA) is reported to suppress protein phosphotase (PP)-2B activity. In vitro studies have shown that CaMKⅡ and PP-2B play an important role in Alzheimer-like phosphorylation of microtube-associated protein tau. To reconstitute an animal model based on the imbalance of protein kinase (s) and protein phosphatase (s) seen in Alzheimer brain, we injected BK and/or CSA into rat hippocampus. The results from behavioral study showed that an obvious disturbance in learning and memory was seen with BK or BK plus CSA injected rats. Moreover, the behavior abnormality appeared earlier in aged rats than young adults of the same kind after the injection. On the other hand, no obvious dysfunction in living and behavior was observed with CSA alone injected rats. The results obtained by immunohistochemical assay indicated that the staining for M4\\, 12E8\\, PHF-1 and CaMKⅡ was stronger, and for Tau-1 was weaker in BK injected rats compared with Control group. It was also found that the binding of M4 and PHF-1 but not 12E8 to tau was significantly increased in CSA injected rats. As the same as BK injection, binding of Tau-1 to tau was decreased after CSA injection. The immunostaining for 12E8\\,PHF-1 and CaMKⅡ was increased, whereas for Tau-1\\, M4\\, and GSK-3 was decreased after combination injection of BK and CSA. In addition, the staining of PP-2B decreased in all the three models. To our knowledge, this is the first data shown in vivo that the activation of CaMKⅡ induces both Alzheimer-like tau phosphorylation and behavioral disturbance.

  6. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    Science.gov (United States)

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema.

  7. Novel Roles for Kv7 Channels in Shaping Histamine-Induced Contractions and Bradykinin-Dependent Relaxations in Pig Coronary Arteries.

    Science.gov (United States)

    Chen, Xingjuan; Li, Wennan; Hiett, S Christopher; Obukhov, Alexander G

    2016-01-01

    Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in "healthy" and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre-contracted CAs

  8. Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Monteiro

    2007-11-01

    Full Text Available Although the concept that dendritic cells (DCs recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R. Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.] in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i. showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+ T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86 is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired

  9. Compensatory function of bradykinin B1 receptor in the inhibitory effect of captopril on cardiomyocyte hypertrophy and cardiac fibroblast proliferation in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    ZOU Jun; REN Jiang-hua; FENG Dan; WANG Hong; XU Jiang

    2008-01-01

    Background Bradykinin(BK)acts mainly on two receptor subtypes:B1 and B2,and activation of B2 receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors(ACEi),however,the role that B1 receptor plays in ACEi has not been fully defined.We examined the role of B1 receptor in the inhibitory effect of ACE inhibitor captopril on rat cardiomyocyte hypertrophy and cardiac fibroblast proliferation induced by angiotensin Ⅱ(Ang Ⅱ) and explored its possible mechanism.Methods Neonatal cardiomyocytes and cardiac fibroblasts(CFs)were randomly treated with Ang Ⅱ,captopril,B2 receptor antagonist(HOE-140)and B1 receptor antagonist(des-Arg10,Leu9-kallidin)alone or in combination.Flow cytometry was used to evaluate cell cycle,size and protein content.Nitric oxide(NO)and intracellular cyclic guanosine monophosphate(cGMP)level were measured by colorimetry and radioimmunoassay.Results After the CFs and cardiomyocytes were incubated with 0.1 μmol/L Ang Ⅱ for 48 hours.the percentage of CFs in the S stage,cardiomyocytes size and protein content significantly increased(both P<0.01 vs control),and these increases were inhibited by 10 μmol/L captopril.However,NO and cGMP levels were significantly higher than that with Ang Ⅱ alone(both P<0.01).1 μmol/L HOE-140 or 0.1 μmol/L des-Arg10,Leu9-kallidin attenuated the effects of captopril,which was blunted further by blockade of both B1 and B2 receptors.Conclusions Acting via B2 receptor,BK contributes to the antihypertrophic and antiproliferative effects of captopril on cardiomyocytes and CFs.In the absence of B2 receptor,B1 receptor may act a compensatory mechanism for the B2 receptor and contribute to the inhibition of cardiomyocyte hypertrophy and CFs proliferation by captopril.NO and cGMP play an important role in the effect of B1 receptor.

  10. Site-directed mutagenesis at the human B2 receptor and molecular modelling to define the pharmacophore of non-peptide bradykinin receptor antagonists.

    Science.gov (United States)

    Meini, Stefania; Cucchi, Paola; Bellucci, Francesca; Catalani, Claudio; Faiella, Angela; Rotondaro, Luigi; Quartara, Laura; Giolitti, Alessandro; Maggi, Carlo Alberto

    2004-02-15

    Combining site-directed mutagenesis with information obtained from molecular modelling of the bradykinin (BK) human B2 receptor (hB2R) as derived from the bovine rhodopsin crystal structure [Science 289 (2000) 739], we previously defined a putative binding mode for the non-peptide B2 receptor antagonists, FR173657 and LF16-0687 [Can J Physiol Pharmacol 80 (2002) 303]. The present work is aimed to define the specific role of the quinoline moiety in the pharmacophore of these non-peptide antagonists. The effect of the mutations I110A, L114A (TM, transmembrane 3), W256A (TM6), F292A, Y295A and Y295F (TM7) was evaluated. None of the mutations affected the binding interaction of peptide ligands: the agonist BK and the peptide antagonist MEN 11270. The affinities in competing for [3H]-BK binding and in blocking the BK-induced IP production by the non-peptide antagonists LF16-0687 and FR173657 at the wild type and mutant receptors were analysed. While the affinities of LF16-0687 and FR173657 were crucially decreased at the I110A, Y295A, and Y295F mutants, the W256A mutation affected the affinity of the LF16-0687 only. The important contribution of the quinoline moiety was shown by the inability of an analogue of LF16-0687, lacking this moiety, to affect BK binding at the wild type receptor. On the other hand, the benzamidine group did not interact with mutated residues, since LF16-0687 analogues without this group or with an oxidated benzamidine displayed pairwise loss of affinity on wild type and mutated receptors. Further differences between FR173657 and LF16-0687 were highlighted at the I110 and Y295 mutants when comparing binding (pK(i)) and functional antagonist (pKB) affinity. First, the I110A mutation similarly impaired their binding affinity (250-fold), but at a less extent the antagonist potency of FR173657 only. Second, both the hydroxyl and the phenyl moieties of the Y295 residue had a specific role in the LF16-0687 interaction with the receptor, as

  11. Low molecular weight G-proteins of rho-family mediate relaxations to bradykinin in porcine coronary arteries%rho家族的小分子量G蛋白介导缓激肽引起的猪冠状动脉松弛

    Institute of Scientific and Technical Information of China (English)

    Toshiro SHIBANO; Paul M VANHOUTTE

    2003-01-01

    AIM: To determine whether or not low molecular G-proteins are involved in the endothelium-dependent relaxations to bradykinin. METHODS: The effects of botulinum ADP-ribosyltranferase C3 were studied in porcine coronary arteries and endothelial cells. RESULTS: Incubation of membrane fractions isolated from endothelial cells with the enzyme and 32p-NAD resulted in the ribosylation of the proteins with molecular weight of 24-25 kDa. Radio labelling of these proteins was suppressed in the presence of guanosine 5t-O-(3-thiotriphosphate) (GTP-yS), a hydrolysis-resistant analog of GTP. In the isolated arteries, ADP-ribosyltransferase C3 attenuated the relaxations tobradykinin during contractions with prostaglandin F2α in the presence of tween 80 (non ionic detergent), but not in the absence of tween 80. CONCLUSION: Low molecular weight G-proteins of the Rho family contribute to the mechanism of relaxation induced by bradykinin.

  12. 替莫唑胺联合小剂量缓激肽对延长胶质瘤大鼠生存期的观察%Observe effects of Temozolomide combined with low dose Bradykinin in prolonging survival time of rat with glioma

    Institute of Scientific and Technical Information of China (English)

    于倩; 宋飞; 刘贺; 白莉娜

    2012-01-01

    Objective To investigate the effect of Temozolomide combined with low dose Bradykinin for glioma therapy. Methods To use the stereotactic method to establish the C6 glioma model rats,and lest the glioma growth by MRI. Observerd the survival condition of the models treated with Temozolomide and Temozolomide with low dose Bradykinin,studied the survival times in different groups by statistical analysis. Resnlts Temozolomide could prolong the survival times of the models,and prolonged more signally after treated with low dose Bradykinin. Conclusion Temozolomide has curative effect for glioma,low dose Bradykinin can open blood brain barrier,temozolomide combined with low dose Bradykinin can treat glioma effectively,prolong the survival times of the rat models.%目的 探讨替莫唑胺联合小剂量缓激肽对胶质瘤的治疗作用.方法 立体定向法建立大鼠C6胶质瘤模型,MRI检测胶质瘤生长情况.观察常规使用替莫唑胺及替莫唑胺联合小剂量缓激肽后C6胶质瘤大鼠的生存情况,不同组别大鼠的生存期进行统计学分析.结果 替莫唑胺可以有效延长C6胶质瘤大鼠的生存期,联合小剂量缓激肽后C6胶质瘤大鼠的生存期延长更显著.结论 替莫唑胺对胶质瘤有治疗作用,小剂量缓激肽可以选择性开放血脑屏障,替莫唑胺联合小剂量缓激肽可以有效治疗胶质瘤,延长大鼠生存期.

  13. Study on the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse%三氯乙烯致敏小鼠肾脏免疫损伤中缓激肽及其受体B1R和B2R的表达水平

    Institute of Scientific and Technical Information of China (English)

    王慧; 张家祥; 李树龙; 查晚生; 王峰; 朱启星

    2015-01-01

    Objective To study the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse and discuss the pathogenesis of Dermatitis Medicamentosa-like of TCE (ODMLT).Methods On the first days,intradermal injection by 50% TCE and the amount of FCA mixture 100μl for initial sensitization;on 4,7,10 days,painted abdominal skin by 100 μl 50% TCE for three sensitization,on 17,19 days,painted on the back skin by 100 μl 30% TCE for initial excitation and the last challenge;24 h before each challenge,PKSI-527+TCE group received intraperitoneal injection by inhibitor PKSI-527 (50 mg/kg);solvent control group treat without TCE and sensitization and excitation reagent the same proportion of olive oil and acetone mixture,blank control group without any treatment.Before killing the mouse,renal weight and body weight were recorded.The renals and plasma were separated at 24 h,48 h,72 h and 7 d after the last challenge and observed pathological of the renals.Expression of B1R and B2R in renal were examined by immunofluorescence technique.Plasma were examined by ELISA for BK.Results The renal pathological examination revealed the apparent damage of TCE sensitized mice which compared to solvent control group showed obvious cellular infiltration,vacuolar degeneration of renal tubular epithelial cells.The renal damage of PKSI-527+TCE-sensitized groups which compared to the corresponding point of TCE-sensitized groups showed significantly reduced.The expression of BK in 24 h,48 h and 72 h TCE-sensitized groups were significant higher than solvent control group and related TCE non-sensitized groups (P<0.05) and 72 h point compared to the corresponding point of PKSI-527+TCE group was also increased,,the difference was statistically significant (P<0.05).The expression levels of B1R and B2R in the kidney in 24 h,48 h,72 h and 7 d TCE-sensitized groups were obviously higher than solvent control group and related TCE non

  14. The Story of Angioedema: from Quincke to Bradykinin.

    Science.gov (United States)

    Reshef, Avner; Kidon, Mona; Leibovich, Iris

    2016-10-01

    The term "swelling" has been used in the old scriptures to illustrate a change of normal figure and, as such, an expression of illness. It should be noted that in ancient times, human diseases were very often regarded a punishment from God. Hence, it is not surprising that one of the oldest tests for infidelity involved swelling as an inflicted punishment. The great Greek physician Hippocrates (377-460 BC), considered one of the most outstanding figures in the history of medicine and "Father of the Western Medicine," already used the term oídēma to describe swelling of organs. It took many centuries later until the first description of angioedema as a distinct medical entity was minted by Quinke in 1882. The historical progression in angioedema research has been characterized by intermittent "leaps" in interest and scientific achievements. As an example, it took 75 years from the accurate description of hereditary angioedema (HAE) by Osler (1888), until a group of researchers headed by Donaldson (1963) disclosed the central role of C1 inhibitor in angioedema pathophysiology. What followed was a result of a collective effort by many researchers and scientific groups who were able to elucidate the intricate connections between the implicated biochemical pathways. Still, scientific progress was hardly translated into effective therapy, and another 45 years had to elapse until the renewed interest in HAE was boosted by studies on the efficacy and safety of novel therapies about 10 years ago. In the twenty-first century, HAE ceased to be an "orphan disease" and its future is far more optimistic. It is better managed now by specialized angioedema centers, harmonized clinical guidelines, educational programs, laboratory services, and continued basic and clinical research. Patient associations worldwide are offering support and guidance, and governments and healthcare systems are gradually addressing patient and family needs.

  15. Bound biotin-neutravidin inducing steric hindrance used for controlling bioactivity of bradykinin linked with biotin%用生物素-中性抗生物素蛋白结合导致的位阻来控制连接生物素的缓激肽生物活性

    Institute of Scientific and Technical Information of China (English)

    张还黔; 筱原宽明; 顾宁; 佐夕木裕司; 穴昌彦

    2002-01-01

    缓激肽是一含有9个氨基酸残基的多肽,其残基序列为Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9-OH,在激肽释放酶的作用下, 从其大的前体多肽--激肽原而形成的.许多发病机理,如发炎、疼痛、哮喘等都与缓激肽有关. 它能与PC12细胞表面的受体作用,引起细胞器内的钙离子释放,在共焦显微镜下,通过观察钙指示剂Fluo-3荧光增加来监测缓激肽的生物活性.在这项研究中,利用固相肽合成方法合成了连接生物素的缓激肽,Biotin-Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9-OH,通过对其生物活性的研究发现:a.它能保持象天然的缓激肽那样的生物活性;b.由于中性抗生物素蛋白与连接的生物素的结合引起的空间位阻阻碍它与细胞表面受体的相互作用,从而抑制了它的生物活性;c.在有自由的生物素存在的条件下,自由生物素与连接生物素与中性抗生物素蛋白的竞争结合,能够使得与中性抗生物素蛋白结合的连接生物素的缓激肽从抗生物素蛋白上脱离,因而恢复其生物活性.因此,可利用生物素和抗生物素蛋白来控制连接生物素的缓激肽的生物活性.这对于研究生物体系中生物活性的结构相关性具有重要的意义.%iotin-linked bradykinin was synthesized by solid phase peptide synthesis for development of a functionalized peptide and study on structure-relevant bioactivity in biological system. In PC12 cell system, bioactivity of the synthetic peptide was evaluated and found to be controllable in the presence of neutravidin and free biotin. The controlling mechanism had been discussed and could be ascribed to steric hindrance induced by binding of neutravidin to the linked biotin. Moreover, influence of competitive binding between the free biotin and the linked biotin to the neutravidin had also investigated into and could be employed for switching the bioactivity on and off.

  16. Perfusion-independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts

    NARCIS (Netherlands)

    Rett, K; Maerker, E; Renn, W; vanGilst, W; Haering, HU

    1997-01-01

    Angiotensin-converting enzyme (ACE) inhibitor-stimulated glucose metabolism and perfusion in muscle tissue seem to be, at least in part, mediated by kinins. However, the relative contribution of direct metabolic or secondary hemodynamically induced effects is unclear, It was the aim of this study to

  17. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels;

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...

  18. Neurophysiological mechanisms of bradykinin-evokedmucosal chloride secretion in guinea pig small intestine

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    AIM To investigate the mechanism for bradykinin(BK) to stimulate intestinal secretomotor neurons andintestinal chloride secretion.METHODS: Muscle-stripped guinea pig ileal preparationswere mounted in Ussing flux chambers for therecording of short-circuit current (Isc ). Basal Isc andIsc stimulated by BK when preincubated with the BKreceptors antagonist and other chemicals were recordedusing the Ussing chamber system. Prostaglandin E2(PGE2) production in the intestine was determined byenzyme immunologic assay (EIA).RESULTS: Application of BK or B2 receptor (B2R) agonistsignificantly increased the baseline Isc compared to thecontrol. B2R antagonist, tetrodotoxin and scopolamine(blockade of muscarinic receptors) significantly suppressedthe increase in Isc evoked by BK. The BK-evokedIsc was suppressed by cyclooxygenase (COX)-1 or COX-2specific inhibitor as well as nonselective COX inhibitors.Preincubation of submucosa/mucosa preparations withBK for 10 min significantly increased PGE2 production andthis was abolished by the COX-1 and COX-2 inhibitors.The BK-evoked Isc was suppressed by nonselective EPreceptors and EP4 receptor antagonists, but selective EP1receptor antagonist did not have a significant effect onthe BK-evoked Isc . Inhibitors of PLC, PKC, calmodulin orCaMKⅡ failed to suppress BK-induced PGE2 production.CONCLUSION: The results suggest that BK stimulatesneurogenic chloride secretion in the guinea pig ileumby activating B2R, through COX increasing PGE2 production.The post-receptor transduction cascade includesactivation of PLC, PKC, CaMK, IP3 and MAPK.

  19. Factor XII-independent activation of the bradykinin-forming cascade

    DEFF Research Database (Denmark)

    Joseph, Kusumam; Tholanikunnel, Baby G; Bygum, Anette

    2013-01-01

    shock protein 90 leads to conversion of prekallikrein to kallikrein in a zinc-dependent reaction. OBJECTIVE: Our goal was to determine whether these reactions are demonstrable in plasma and distinguish them from activation through factor XII. METHODS: Plasma was incubated in polystyrene plates...... and assayed for kallikrein formation. C1-INH was removed from factor XII-deficient plasma by means of immunoadsorption. RESULTS: We demonstrate that prekallikrein-HK will activate to kallikrein in phosphate-containing buffers and that the rate is further accelerated on addition of heat shock protein 90....... Prolonged incubation of plasma deficient in both factor XII and C1-INH led to conversion of prekallikrein to kallikrein and cleavage of HK, as was seen in plasma from patients with hereditary angioedema but not plasma from healthy subjects. CONCLUSIONS: These results indicate that C1-INH stabilizes...

  20. Clinical similarities among bradykinin-mediated and mast cell-mediated subtypes of non-hereditary angioedema : a retrospective study

    NARCIS (Netherlands)

    Schulkes, Karlijn J G; van den Elzen, Mignon T.; Hack, Erik C.; Otten, Henderikus G; Bruijnzeel-Koomen, Carla A.F.M.; Knulst, André C.

    2015-01-01

    BACKGROUND: Non-hereditary angioedema (non-HAE) is characterized by local swelling due to self-limiting, subcutaneous or submucosal extravasation of fluid, and can be divided into three subtypes. These subtypes are believed to have different pathophysiological backgrounds and are referred to in rece

  1. The gender-specific role of polymorphisms from the fibrinolytic, renin-angiotensin, and bradykinin systems in determining plasma t-PA and PAI-I levels

    NARCIS (Netherlands)

    Asselbergs, Folkert W.; Williams, Scott M.; Hebert, Patricia R.; Coffey, Christopher S.; Hillege, Hans L.; Navis, Gerjan; Vaughan, Douglas E.; van Gilst, Wiek H.; Moore, Jason H.

    2006-01-01

    Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor I (PAI-I) directly influence thrombus formation and degradation and thus risk for arterial thrombosis. We report here results from a genetic analysis of plasma t-PA and PAI-I levels in a large population-based sample from the PR

  2. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment.

    Science.gov (United States)

    Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (Pdifferential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.

  3. Endothelin-1 shifts the mediator of bradykinin-induced relaxation from NO to H2 O2 in resistance arteries from patients with cardiovascular disease

    DEFF Research Database (Denmark)

    Leurgans, Thomas M; Bloksgaard, Maria; Brewer, Jonathan R;

    2016-01-01

    -activated K(+) -channels, but markedly blunted by catalase during ET-1-induced contraction. This catalase-sensitive relaxation was not modified by inhibitors of NADPH oxidases or allopurinol. Exogenous H2 O2 caused significantly larger relaxation of ET-1- than K(+) - or U46619-induced contraction...... in the presence of inhibitors of other endothelium-derived relaxing factors. Catalase-sensitive staining of cellular reactive oxygen species with CellROX Deep Red was significantly increased in presence of both 1 μM BK and 2 nM ET-1 but not either peptide alone. CONCLUSIONS AND IMPLICATIONS: In patient resistance...

  4. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nα-Bodipy]-des-Arg9-bradykinin

    Directory of Open Access Journals (Sweden)

    Gaudreau Pierrette

    2009-03-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines, bacterial endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK and selective antibodies. Methods Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.. Four days post-STZ treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also evaluated on thermal hyperalgesia. Results B1R was increased by 18-fold (mRNA and 2.7-fold (binding sites in the thoracic spinal cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand but displaced the B1R radioligand (IC50 = 5.3 nM. In comparison, IC50 values of B1R selective antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively. Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-treated rats but not in control rats. The B1R fluorescent agonist was co-localized with immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated rats. Conclusion The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in pain processes.

  5. Cardioprotective effects of SF pretreatment mediated by bradykinin on isolated rat heart%缓激肽介导的阿魏酸钠对离体大鼠心脏药理性预适应保护作用

    Institute of Scientific and Technical Information of China (English)

    刘季春; 高涛; 邵立建; 何明

    2006-01-01

    目的 探讨阿魏酸钠预处理对离体大鼠心脏缺血/再灌注损伤的保护作用及相关机制.方法 56只SD大鼠随机分为7组(n=8):正常对照(Con)组、缺血/再灌注损伤(I/R)组、缺血预适应(IP)组、阿魏酸钠(SF)组、卡托普利(CP)组、SF+CP组、SF+HOE140组.采用离体大鼠心脏Langendorff逆行灌注模型,观察各组缺血/再灌注前后心功能指标、SOD、GSH-Px活性、MDA含量的变化.结果 SF、CP或IP预处理与SF+ HOE140组、I/R组相比较,可明显改善心功能,心肌酶活力升高,MDA含量降低(P<0.05);但SF组、CP组、SF+CP 3组比较,组间差异无显著性(P>0.05).结论 SF的PIP保护机制至少部分由缓激肽介导,SF和CP不宜联合应用于临床心肌保护中.

  6. 缓激肽在遗传性血管性水肿发病机制中的作用%Role of Bradykinin in the Pathogenesis of Hereditary Angioedema

    Institute of Scientific and Technical Information of China (English)

    任华丽; 张宏誉

    2007-01-01

    目的 评价缓激肽在遗传性血管性水肿(HAE)发病过程中的作用.方法 应用放射免疫法测定23例HAE缓解期患者和40名健康志愿者的血浆缓激肽水平.结果 正常对照组和HAE缓解期患者的血浆缓激肽水平分别为(264.67 ± 124.54)和(308.82 ± 135.96)pg/ml,两组比较无统计学差异(P = 0.201).9例HAE患者急性期血浆缓激肽水平为(748.60 ± 249.64)pg/ml,较缓解期的(369.89 ± 212.29)pg/ml显著增高(P = 0.003).单侧肘部水肿患者的患侧血浆缓激肽水平高于健侧.1例服用血管紧张素转换酶抑制剂引起水肿的患者,水肿发作期血浆缓激肽水平为550.16 pg/ml,缓解期下降至326.16 pg/ml,但仍略高于正常对照.结论 缓激肽水平升高可能参与了HAE的发病过程.本研究建立了可用于临床研究的缓激肽测定方法,可应用于其他缓激肽参与疾病发病机制的研究.

  7. Gene : CBRC-GGOR-01-1364 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available bradykinin receptor B1 [Homo sapiens] sp|P46663|BKRB1_HUMAN RecName: Full=B1 bradykinin receptor; AltName: ...Full=BK-1 receptor; Short=B1R emb|CAB45650.1| bradykinin B1 receptor [Homo sapiens] dbj|BAC06112.1| seven tr...ansmembrane helix receptor [Homo sapiens] gb|AAH34705.1| Bradykinin receptor B1 [Homo sapi...ens] gb|AAP32296.1| bradykinin receptor B1 [Homo sapiens] gb|EAW81632.1| bradykinin receptor B1 [Homo sapi...1 [synthetic construct] dbj|BAF84659.1| unnamed protein product [Homo sapiens] 1e

  8. Role of inositol (1,4,5)trisphosphate in epidermal growth factor-induced Ca2+ signaling in A431 cells

    DEFF Research Database (Denmark)

    Hughes, A R; Bird, G S; Obie, J F;

    1991-01-01

    but significant Ca2+ signal after the addition of bradykinin. Experiments were designed to determine whether the Ca2+ response to epidermal growth factor after bradykinin results from mobilization of Ca2+ by an inositol 1,4,5-trisphosphate-independent mechanism. Epidermal growth factor stimulated additional...

  9. 滇产毛喉鞘蕊花提取成分对缓激肽诱导豚鼠肺微血管渗漏的影响%Effect of the Ingredients From Yunnan Native Plant Coleus Forskohlii on Bradykinin-induced Lung Microvascular Leakage in Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    强东进; 张敏; 陈国珍; 陈红娟; 周光宇; 杨为民

    2008-01-01

    目的 建立豚鼠肺微血管渗漏损伤模型,从动物水平上研究从滇产毛喉鞘蕊花提取的有效部位(CF-E,异佛司可林类似物的混合物)对微血管渗漏的影响,对其抗急性肺损伤(ALI)作用机理进行初步探讨.方法 静脉注射缓激肽诱导豚鼠肺微血管渗漏,然后静脉注射伊文思蓝(EB),通过测定肺组织中渗漏的EB含量,反映微血管渗漏程度.灌胃给予豚鼠CF-E,观察受试验品对微血管渗漏的影响.结果 缓激肽模型组的肺组织EB含量明显增加,证明缓激肽造成了豚鼠肺微血管渗漏反应;而CF-E低、中、高剂量组(50、100、200mg/kg)肺组织中EB含量显著低于模型组(P<0.01、P<0.05),显示CF-E对缓激肽造成的豚鼠微血管渗漏具有保护作用.结论 CF-E可明显降低缓激肽诱导的豚鼠肺微血管渗漏反应,提示其通过抑制肺微血管渗漏,抑制肺水肿,从而具有ALI作用.

  10. 脊髓NMDA受体对心包内注射缓激肽诱发大鼠心脏-躯体运动反射的调节作用%Modulation of NMDA receptor to rat cardiacsomatic motor reflex induced by intrapericardial bradykinin in spinal cord

    Institute of Scientific and Technical Information of China (English)

    韩曼; 孙娜; 刘晓华; 杜剑青

    2012-01-01

    目的:观察鞘内注射N-甲基-D-天门冬氨酸(NMDA)受体激动剂NMDA及拮抗剂5-甲基-二氢-丙环庚烯-亚胺马来酸(MK801)对心包内注射缓激肽(BK)诱发大鼠心脏-躯体运动反射(CMR)的影响,探讨脊髓水平的谷氨酸受体亚型-NMDA对心脏伤害性感受的调节作用.方法:26只雄性SD大鼠随机分为BK组(n=8)、BK+NMDA组(n=6)、BK+MK801组(n=6)及BK+ MK801+ NMDA组(n=6),观察大鼠心包内注射BK诱发的CMR及鞘内注射药物后CMR的变化,CMR以背斜方肌肌电(EMG)反应为观测指标.结果:心包内间隔40 min重复4次注射BK诱发的CMR无明显改变(P>0.05);鞘内注射NMDA后EMG由基础对照的100%增加到(149.86±8.54)%,注射前后EMG比较差异有统计学意义(P<0.05);鞘内注射MK801后EMG由基础对照的100%减少到(96.22±2.31)%,但注射前后EMG比较差异无统计学意义(P>0.05);鞘内联合注射MK801和NMDA,EMG由基础对照的100%增加到(103.09±4.13)%,但注射前后EMG比较差异无统计学意义(P>0.05).结论:心包内注射BK诱发的CMR具有可靠的重复性,脊髓水平的NMDA受体参与了CMR的调节.

  11. Renal Histological Changes and Down-regulation of Bradykinin B2 Receptor mRNA in Rat Remnant Kidney Model%大鼠残肾模型肾脏组织学和缓激肽B2受体mRNA表达的变化

    Institute of Scientific and Technical Information of China (English)

    凃玲; 邓娟娟; 万槐斌; 汪道文

    2006-01-01

    目的 研究大鼠残肾模型肾脏组织学和缓激肽B2受体(BKB2R)mRNA表达水平的变化.方法 24只雄性Wistar大鼠随机分成模型组和假手术组,每组12只.5/6肾切除术构建大鼠残肾模型.于造模前和造模后15、30、60、120 d分别检测大鼠尾动脉血压和血清肌酐水平.造模后1月和4月分别处死模型组和假手术组大鼠各6只,肾组织石蜡切片、PAS染色观察肾脏组织学改变,RT-real time PCR法检测肾组织BKB2R mRNA的表达水平.结果 模型组大鼠造模后15 d血压和血清肌酐水平即较造模前明显升高(均P<0.01),以后逐渐上升至120 d达高峰;造模后1月残肾已出现肾小球代偿肥大,系膜中度增生,肾组织BKB2R mRNA的表达水平下调,4月时残肾出现明显的肾小球硬化、肾小管坏死和肾间质纤维化,肾组织BKB2R mRNA的表达水平进一步下调(P<0.01).结论 残肾模型大鼠在造模后15d即出现明显的肾功能不全,随后进行性加重,肾组织BKB2R mRNA的表达水平则逐渐下调.

  12. Therapeutic management of hereditary angioedema due to C1 inhibitor deficiency.

    Science.gov (United States)

    Zanichelli, Andrea; Mansi, Marta; Periti, Giulia; Cicardi, Marco

    2013-05-01

    Hereditary angioedema (HAE) due to C1 inhibitor (C1-INH) deficiency is a rare genetic disease characterized by recurrent swellings of the subcutaneous and submucosal tissues that can manifest as cutaneous edema, abdominal pain and laryngeal edema with airway obstruction. These symptoms have a significant impact on patients' quality of life. The reduction in C1-INH function leads to uncontrolled activation of the contact system and generation of bradykinin, the mediator of increased vascular permeability and edema formation. In the past, few treatment options were available; however, several new therapies with proven efficacy have recently become available to treat and prevent HAE attacks, such as plasma-derived and recombinant C1-INHs that replace the deficient protein, bradykinin receptor antagonist (icatibant) that blocks bradykinin activity and kallikrein inhibitor (ecallantide) that prevents bradykinin release. Such therapies can improve disease outcome. This article reviews the therapeutic management of HAE, which involves the treatment of acute attacks and prophylaxis.

  13. "Epithelial Cell TRPV1-Mediated Airway Sensitivity as a Mechanism for Respiratory Symptoms Associated with Gulf War Illness?

    Science.gov (United States)

    2010-06-01

    the expression of neurotrophin, bradykinin, tachykinin, and cannabinoid receptors on the brushing airway epithelial cells at the mRNA and protein...bradykinin receptors , neurotrophin receptors , tachykinin receptors , and cannabinoid receptors will be measured by quantitative real-time RT-PCR in...of neurotrophin receptors , and the cannabinoid receptor , CNR2. We still need to design and test primers for the tachykinin receptors . We have

  14. Icatibant er en ny behandlingsmulighed ved livstruende angiotensinkonverterende enzym-inhibitor-udløst angioødem

    DEFF Research Database (Denmark)

    Fast, Søren; Henningsen, Emil; Bygum, Anette

    2011-01-01

    A 78 year-old woman with life-threatening angiotensin-converting enzyme inhibitor (ACE-i) induced angioedema was unresponsive to conventional treatment with corticosteroids, antihistamines and epinephrine. She was successfully treated with icatibant licensed for treatment of hereditary angioedema...... knowing that both conditions involve bradykinin induced activation of bradykinin B2 receptors. Randomised, controlled trials are warranted to document the efficacy of icatibant in ACE-i angioedema....

  15. The protective activity of noscapine on renal ischemia–reperfusion injury in male Wistar rat

    OpenAIRE

    Mehrangiz Khanmoradi; Seyyed Ali Mard; Nahid Aboutaleb; Malihe Nobakht; Masoud Mahmoudian

    2014-01-01

    Objective(s): Bradykinin is a part of the kinin-kallikrein system which is involved in ischemia-reperfusion injury via B1 and B2 receptors. Noscapine is a non-competitive antagonist of bradykinin receptors. Noscapine has been reported to to be able to protect some organs against ischemia-reperfusion injury but its effect on renal ischemia-reperfusion injury (RIR) in rats is unknown. Therefore, the present study was designed to evaluate the effect of noscapine on renal ischemia-reperfusion inj...

  16. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema......Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...

  17. Angiotensin Converting Enzyme-induced Angioedema - A Dangerous New Epidemic

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Mey, Kristianna; Bygum, Anette

    2013-01-01

    . The diagnosis is often delayed and traditional treatment usually ineffective. Complement C1 inhibitor concentrate and bradykinin receptor antagonists, normally used to treat patients with hereditary angioedema, have shown good results when used in patients with bradykinin-mediated angioedema. This review......Angioedema is a sudden localised and often asymmetric swelling of the skin or mucous membranes caused by transient increased endothelial permeability causing plasma extravasation. In the last decades the incidence of severe angioedema involving the upper airways and even fatal outcome due...

  18. Angioedema: Classification, management and emerging therapies for the perioperative physician

    Directory of Open Access Journals (Sweden)

    Lopa Misra

    2016-01-01

    Full Text Available Angioedema is a rare condition which manifests as sudden localised, non-pitting swelling of certain body parts including skin and mucous membranes. It is vital that anaesthesiologists understand this condition, as it may present suddenly in the perioperative period with airway compromise. To identify literature for this review, the authors searched the PubMed, Medline, Embase, Scopus and Web of Science databases for English language articles covering a 10-year period, 2006 through 2016. Angioedema can be either mast-cell mediated or bradykinin-induced. Older therapies for histaminergic symptoms are well known to anaesthesiologists (e.g., adrenaline, anti-histamines and steroids, whereas older therapies for bradykinin-induced symptoms include plasma and attenuated androgens. New classes of drugs for bradykinin-induced symptoms are now available, including anti-bradykinin, plasma kallikrein inhibitor and C1 esterase inhibitors. These can be used prophylactically or as rescue medications. Anaesthesiologists are in a unique position to coordinate perioperative care for this complex group of patients.

  19. ACE-inhibitor induced angio-oedema treated with complement C1-inhibitor concentrate

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Bygum, Anette

    2013-01-01

    severe angio-oedema of the tongue and floor of the mouth. He was successfully treated with complement C1-concentrate causing the swelling to regress within 20 min. This treatment option can be an effective alternative to bradykinin antagonists, which might not be available in the emergency room, or more...

  20. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Leusink, A.; Emst-de Vries, S.E. van; Heuvel, L.W. van den; Willems, P.H.G.M.; Smeitink, J.A.M.

    2006-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significant

  1. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Leusink, A.; Emst-de Vries, S.E. van; Heuvel, L.W. van den; Willems, P.H.G.M.; Smeitink, J.A.M.

    2005-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significant

  2. Dynamics of Ca2+i and pHi in Ehrlich ascites tumor cells after Ca2+-mobilizing agonists or exposure to hypertonic solution

    DEFF Research Database (Denmark)

    Pedersen, Stine F.; Jørgensen, Nanna K.; Hoffmann, Else Kay

    1998-01-01

    Intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi) were monitored in Ehrlich ascites tumor cells using Fura-2 or 2',7',-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), or both probes in combination. An increase in [Ca2+]i induced by thrombin or bradykinin, agonists...

  3. The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit.

    Science.gov (United States)

    Cinelli, Elenia; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2015-12-01

    We have previously shown that cough potentiation induced by intravenous administration of the AT1 receptor antagonist losartan is lower than that induced by the ACE inhibitor lisinopril in anesthetized and awake rabbits. Since losartan and lisinopril cross the blood-brain barrier, their central action on the cough reflex can be hypothesized. Mechanical stimulation of the tracheobronchial tree and citric acid inhalation were used to induce cough reflex responses in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of losartan (5mM), lisinopril (1mM), bradykinin (0.05 mM), HOE-140 (0.2mM, a bradykinin B2 receptor antagonist) and CP-99,994 (1mM, an NK1 receptor antagonist) were performed into the caudal nucleus tractus solitarii, the predominant site of termination of cough-related afferents. Lisinopril, but not losartan increased the cough number. This effect was reverted by HOE-140 or CP-99,994. Cough potentiation was also induced by bradykinin. The results support for the first time a central protussive action of lisinopril mediated by an accumulation of bradykinin and substance P.

  4. Treatment of HAE Attacks in the Icatibant Outcome Survey

    DEFF Research Database (Denmark)

    Hernández Fernandez de Rojas, Dolores; Ibañez, Ethel; Longhurst, Hilary;

    2015-01-01

    BACKGROUND: Icatibant, a selective bradykinin B2 receptor antagonist for the treatment of acute hereditary angio-oedema (HAE) attacks in adults, can be administered by health care professionals (HCPs) or self-administered. This analysis compared characteristics and outcomes of acute HAE attacks t...

  5. Analysis of characteristics associated with reinjection of icatibant

    DEFF Research Database (Denmark)

    Longhurst, Hilary J; Aberer, Werner; Bouillet, Laurence

    2015-01-01

    PURPOSE: Phase 3 icatibant trials showed that most hereditary angioedema (HAE) (C1 inhibitor deficiency) acute attacks were treated successfully with one injection of icatibant, a selective bradykinin B2 receptor antagonist. We conducted a post hoc analysis of icatibant reinjection for HAE type I...

  6. The Levels of the Lectin Pathway Serine Protease MASP-1 and Its Complex Formation with C1 Inhibitor Are Linked to the Severity of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Hansen, Cecilie Bo; Csuka, Dorottya; Munthe-Fog, Lea

    2015-01-01

    C1 inhibitor (C1-INH) is known to form complexes with the lectin complement pathway serine proteases MASP-1 and MASP-2. Deficiency of C1-INH is associated with hereditary angioedema (HAE), an autosomal inherited disease characterized by swelling attacks caused by elevated levels of bradykinin. MASP...

  7. Natural pathways for factor XII activation : Implications for hereditary angioedema

    NARCIS (Netherlands)

    Maat, S. de

    2016-01-01

    It is well known that the swelling of tissue (edema) that occurs during an inflammation is the result of local vascular leakage. While histamine is the most well-known mediator of vascular leakage, other mediators such as bradykinin have also shown to be of importance. The contact system is an enzym

  8. Diacylglycerol kinase counteracts protein kinase C-mediated inactivation of the EGF receptor

    NARCIS (Netherlands)

    Baal, van J.; Widt, de J.; Divecha, N.; Blitterswijk, van W.J.

    2012-01-01

    Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC)signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed b

  9. Incubation and Growth of Life Sciences, Medical and Biotechnology Businesses in Proteomics, Genomics, Medicine, and Dentistry

    Science.gov (United States)

    2007-04-01

    coli, Bacillus cereus , and Pseudomonas aeruginosa. These species include both Gram positive and Gram negative bacteria. Also obtained were two... Bacillus anthracis). Many different assay formats for detection of these agents and organisms have been tried including use of classical...toxicity when compared to other peptide toxins such as conotoxins. Bradykinin is a plasma kinin, which are normal constituents of blood , and are

  10. Medication for Military Aircrew: Current Use, Issues, and Strategies for Expanded Options (les medicaments pour les equipaes militaires: Consommation actuelle, questions et strategies pour des options elargies)

    Science.gov (United States)

    2001-06-01

    niacin 5. Optic nerve – toxic optic neuropathy - ethambutol, chloramphenicol, lithium Testing Visual Function Baseline testing is crucial, since early...from direct damage of the myocardium by the drug, such as with antineoplastic drugs, emetine, phenothiazines, lithium , or sympathomimetics, or due to...failure and diabetic nephropathy . Besides blocking the conversion of angiotensin I, ACE inhibitors also prevent the degradation of bradykinin and

  11. Normal Coagulation

    Science.gov (United States)

    2014-09-04

    clotting or inflam - mation. These include thrombin, histamine, acetylcholine, bradykinin, epinephrine, interleukins, shear stress, and vaso...humans include the liver, spleen, adipose tissue, and cells of the vasculature, including endothelial cells, smooth muscle cells, macrophages , and...1999. 225. Quax PH, et al: Protein and messenger RNA levels of plasminogen activators and inhibitors analyzed in 22 human tumor cell lines. Cancer

  12. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    Science.gov (United States)

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  13. The renin-angiotensin system and its blockers

    Directory of Open Access Journals (Sweden)

    Igić Rajko

    2014-01-01

    Full Text Available Research on the renin-angiotensin system (RAS has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well.

  14. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert® in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    Directory of Open Access Journals (Sweden)

    Thorbjørn Hermanrud

    2016-01-01

    Full Text Available Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature.

  15. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema.

    Science.gov (United States)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette; Rasmussen, Eva Rye

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE) of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature.

  16. A Case of angioedema : C1 inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Arijit Sinha

    2015-03-01

    Full Text Available Angioedema is rapid swelling (oedema of subcutaneous tissue involving dermis, mucosa and sub mucosal tissues. It may be IgE dependant, bradykinin mediated, complement mediated, non immunologic or idiopathic. It may be heriditory or acquired. In our case the child was suffering from recurrent episodes of angioedema and found to be due to C1 inhibitor deficiency. [Natl J Med Res 2015; 5(1.000: 89-90

  17. Peripheral Opioid Analgesia

    Science.gov (United States)

    1999-07-16

    noxious insult . These substances include serotonin. bradykinin. and histamine . Serotonin (5-hydroxylryptamine [5-HT]) is derived from platelets in...IL-IP) and substance P, releases histamine which increases Ca·" permeability resulting in the release of certain neuropeptides (Falus and Meretey...i.p. injection than by intracerebroventricular injection. The effects of delta, mu, and kappa opioid agonists were investigated by Stein et al

  18. On-line Electrogeneration of Copper-Peptide Complexes in Microspray Mass Spectrometry

    OpenAIRE

    Prudent, M; Girault, H H

    2008-01-01

    The interaction of copper ions with peptides was investigated by electrospray mass spectrometry. Two electrospray micro-emitters were compared, the first one with a platinum electrode using a copper(II) electrolyte solution containing a peptide sample, and the second one with a sacrificial copper anode in a water/methanol solution containing only a peptide (i.e., angiotensin III, bradykinin, or Leu-enkephalin). The former yielded mainly Cu2 complexes either with histidine residues or with th...

  19. Technical Ramifications of Inclusion of Toxins in the Chemical Weapons Convention (CWC), Supplement

    Science.gov (United States)

    1993-08-01

    UNCLASSIFIED) 2. Abraham, W.K., et al. "Airway Effects of Inhaled Bradykinin, Substance P, and Neurokinin A in Sheep." (U) (1991). J. Allergy Clin...Output of Vasoactive Intestinal Polypeptide in the Feline Colon." (U) (1991). Life Sci. 48:1037-1944. (UNCLASSIFIED) 17. Brown, R., et al...34Potent Vasoactive Properties of Endothelin 1 in Human Skin ." (U) (1991). J. Appl. Phys. 70:260-266. (UNCLASSIFIED) 27. Darlak, K., Benovitz, D.E

  20. An evidence-based review of the potential role of icatibant in the treatment of acute attacks in hereditary angioedema type I and II

    Directory of Open Access Journals (Sweden)

    Floccard B

    2012-09-01

    Full Text Available Bernard Floccard,1 Etienne Hautin,1 Laurence Bouillet,2 Brigitte Coppere,3 Bernard Allaouchiche11Département d'Anesthésie Réanimation, Centre de Référence des Angiœdèmes à Bradykinine, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, 2Clinique Universitaire de Médecine Interne, Centre National de Référence des Angiœdèmes à Bradykinine, CHU de Grenoble, Grenoble, 3Service de Médecine Interne, Centre de Référence des Angiœdèmes à Bradykinine, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, FranceIntroduction: Icatibant, a first-in-class B2 bradykinin receptor antagonist, appears to have a favorable efficacy and safety profile for the treatment of acute attacks of hereditary angioedema in adults.Aims: To update the evidence and provide an overview of the available data on icatibant.Evidence review: Peer reviewed articles published and listed in Medline Search and published updated guidelines for the treatment of acute attacks in hereditary angioedema type I and II in adults were reviewed. The validity and quality of evidence were evaluated.Place in therapy: Clinical evidence for the treatment of acute hereditary angioedema attacks with icatibant is strong. Approximately 10% of the patients require a second dose. No serious adverse reactions have been reported. The only significant side effects consistently registered by 90% of patients are transient local pain, swelling, and erythema at the local injection site.Conclusion: Subcutaneously administered 30 mg icatibant has been shown to be a safe and efficacious treatment in clinical trials. It is the only specific treatment authorized for self-administration by the subcutaneous route offering increased patient independence.Keywords: icatibant, hereditary angioedema, self-administration, acute attacks

  1. [Diagnosis of hereditary angioedema].

    Science.gov (United States)

    Bouillet, Laurence

    2015-01-01

    Hereditary angioedema is a rare disease, potentially life-threatening. It requires a specific treatment. Angioedema without wheals associated with abdominal attacks are very specific of this disease. Antigenemy and functional C1Inhibitor assays are necessary for the diagnosis. The hereditary angioedema with normal C1Inh (type III) is a diagnostic challenge. Bradykinin, secondary to kallikrein-kinin system activation is the key mediator of hereditary angioedema. Female are more symptomatic. Attacks can be induced by menstruations, pregnancies or contraceptive pills.

  2. Emerging concepts in the diagnosis and treatment of patients with undifferentiated angioedema

    OpenAIRE

    Bernstein, Jonathan A.; Moellman, Joseph

    2012-01-01

    Angioedema is a sudden, transient swelling of well-demarcated areas of the dermis, subcutaneous tissue, mucosa, and submucosal tissues that can occur with or without urticaria. Up to 25% of people in the US will experience an episode of urticaria or angioedema during their lifetime, and many will present to the emergency department with an acute attack. Most cases of angioedema are attributable to the vasoactive mediators histamine and bradykinin. Histamine-mediated (allergic) angioedema occu...

  3. The quantitative impact of the mesopore size on the mass transfer mechanism of the new 1.9 μm fully porous Titan-C18 particles II--analysis of biomolecules.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2015-05-01

    The kinetic performances of 3.0 × 100 mm columns packed with 1.9 μm Titan-C18 particles with average mesopore sizes of 80 Å and 120 Å were investigated quantitatively for the analysis of biomolecules. Large mesopores are expected to speed up the rate of diffusivity of high-molecular-weight compounds across the stationary phase and to generate higher plate counts at high velocities. The mass transfer mechanism of bradykinin acetate salt (1060 Da) and insulin (5733 Da) was determined over a range of flow rates from 0.025 to 1.0 mL/min. The pore diffusivities of these two biomolecules were accurately measured from the peak parking method. Even though the gain in column efficiency was not found significant for small molecules such as valerophenone (162 Da), enlarging the average pore size from 80 to 120 Å induces a measurable diminution of the reduced plate height, h, of bradykinin (from 17 to 11 or -35% at a reduced velocity of 50) and a significant reduction for insulin (from 43 to 12 or -72% at a reduced velocity of 90). Remarkably, while the increase of the column efficiency for bradykinin is consistent with a faster diffusivity of bradykinin across the 120 Å Titan-C18 particles, the higher column efficiencies measured for insulin are mostly due to a faster absorption kinetics into the 120 Å than that into the 80 Å Titan-C18 particles. This result is supported by the fact that the effective pore diffusivity of insulin is even slightly smaller across the 120 Å than that across the 80 Å 1.9μm Titan-C18 particles.

  4. Angiotensin-converting enzyme inhibition by lisinopril enhances liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    F.S. Ramalho

    2001-01-01

    Full Text Available Bradykinin has been reported to act as a growth factor for fibroblasts, mesangial cells and keratinocytes. Recently, we reported that bradykinin augments liver regeneration after partial hepatectomy in rats. Angiotensin-converting enzyme (ACE is also a powerful bradykinin-degrading enzyme. We have investigated the effect of ACE inhibition by lisinopril on liver regeneration after partial hepatectomy. Adult male Wistar rats underwent 70% partial hepatectomy (PH. The animals received lisinopril at a dose of 1 mg kg body weight-1 day-1, or saline solution, intraperitoneally, for 5 days before hepatectomy, and daily after surgery. Four to six animals from the lisinopril and saline groups were sacrificed at 12, 24, 36, 48, 72, and 120 h after PH. Liver regeneration was evaluated by immunohistochemical staining for proliferating cell nuclear antigen using the PC-10 monoclonal antibody. The value for the lisinopril-treated group was three-fold above the corresponding control at 12 h after PH (P<0.001, remaining elevated at approximately two-fold above control values at 24, 36, 48 (P<0.001, and at 72 h (P<0.01 after PH, but values did not reach statistical difference at 120 h after PH. Plasma ACE activity measured by radioenzymatic assay was significantly higher in the saline group than in the lisinopril-treated group (P<0.001, with 81% ACE inhibition. The present study shows that plasma ACE inhibition enhances liver regeneration after PH in rats. Since it was reported that bradykinin also augments liver regeneration after PH, this may explain the liver growth stimulating effect of ACE inhibitors.

  5. Management of angioedema without urticaria in the emergency department.

    Science.gov (United States)

    Pedrosa, Maria; Prieto-García, Alicia; Sala-Cunill, Anna

    2014-12-01

    Angioedema refers to a localized, transient swelling of the deep skin layers or the upper respiratory or gastrointestinal mucosa. It develops as a result of mainly two different vasoactive peptides, histamine or bradykinin. Pathophysiology, as well as treatment, is different in each case; nevertheless, the resulting signs and symptoms may be similar and difficult to distinguish. Angioedema may occur at any location. When the affected area involves the upper respiratory tract, both forms of angioedema can lead to an imminent upper airway obstruction and a life-threatening emergency. Emergency physicians must have a basic understanding of the pathophysiology underlying this process. Angioedema evaluation in the emergency department (ED) should aim to distinguish between histamine- and bradykinin-induced angioedema, in order to provide appropriate treatment to patients. However, diagnostic methods are not available at the ED setting, neither to confirm one mechanism or the other, nor to identify a cause. For this reason, the management of angioedema should rely on clinical data depending on the particular features of the episode and the patient in each case. The history-taking should be addressed to identify a possible etiology or triggering agent, recording complete information for an ulterior diagnostic study in the outpatient clinic. It is mandatory quickly to recognize and treat a potential life-threatening upper airway obstruction or anaphylaxis. This review focuses on the underlying mechanisms and management of histamine- and bradykinin-induced angioedema at the emergency department and provides an update on the currently available treatments.

  6. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species.

    Directory of Open Access Journals (Sweden)

    Manoranjan Sahoo

    2014-08-01

    Full Text Available Two distinct defense strategies can protect the host from infection: resistance is the ability to destroy the infectious agent, and tolerance is the ability to withstand infection by minimizing the negative impact it has on the host's health without directly affecting pathogen burden. Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and causes melioidosis. We have recently shown that inflammasome-triggered pyroptosis and IL-18 are equally important for resistance to B. pseudomallei, whereas IL-1β is deleterious. Here we show that the detrimental role of IL-1β during infection with B. pseudomallei (and closely related B. thailandensis is due to excessive recruitment of neutrophils to the lung and consequent tissue damage. Mice deficient in the potentially damaging enzyme neutrophil elastase were less susceptible than the wild type C57BL/6J mice to infection, although the bacterial burdens in organs and the extent of inflammation were comparable between C57BL/6J and elastase-deficient mice. In contrast, lung tissue damage and vascular leakage were drastically reduced in elastase-deficient mice compared to controls. Bradykinin levels were higher in C57BL/6 than in elastase-deficient mice; administration of a bradykinin antagonist protected mice from infection, suggesting that increased vascular permeability mediated by bradykinin is one of the mechanisms through which elastase decreases host tolerance to melioidosis. Collectively, these results demonstrate that absence of neutrophil elastase increases host tolerance, rather than resistance, to infection by minimizing host tissue damage.

  7. Novelties in the Diagnosis and Treatment of Angioedema.

    Science.gov (United States)

    Cicardi, M; Suffritti, C; Perego, F; Caccia, S

    2016-01-01

    Angioedema is defined as local, noninflammatory, self-limiting edema that is circumscribed owing to increased leakage of plasma from the capillaries located in the deep layers of the skin and the mucosae. Two mediators, histamine and bradykinin, account for most cases of angioedema. Angioedema can occur with wheals as a manifestation of urticaria, and this form is frequently allergic. In the present review, we discuss nonallergic angioedema without wheals, which can be divided into 3 acquired and 4 hereditary forms. Histamine is the mediator in acquired angioedema of unknown etiology (idiopathic histaminergic acquired angioedema), whereas in other forms the main mediator is bradykinin. Angioedema can be caused by C1-inhibitor deficiency (C1-INH-hereditary angioedema and C1-INH-acquired angioedema), mutations in coagulation factor XII (FXII-hereditary angioedema), and treatment with angiotensin-converting enzyme inhibitors (ACEI-acquired angioedema). Etiology remains unclear in acquired angioedema (idiopathic nonhistaminergic acquired angioedema) and in 1 type of hereditary angioedema (hereditary angioedema of unknown origin). Several treatments are licensed for hereditary C1-INH deficiency. Plasma-derived and recombinant C1-INHs, the bradykinin receptor blocker icatibant, and the plasma kallikrein inhibitor ecallantide have been approved for on-demand treatment to reverse angioedema symptoms. Attenuated androgen and plasma-derived C1-INH are approved for prophylaxis.

  8. Management of acute attacks of hereditary angioedema: potential role of icatibant

    Directory of Open Access Journals (Sweden)

    Hilary J Longhurst

    2010-09-01

    Full Text Available Hilary J LonghurstDepartment of Immunology, Barts and The London NHS Trust, London, UKAbstract: Icatibant (Firazyr® is a novel subcutaneous treatment recently licensed in the European Union for acute hereditary angioedema. Hereditary angioedema, resulting from inherited partial C1 inhibitor deficiency, is a disabling condition characterized by intermittent episodes of bradykinin-mediated angioedema. Icatibant blocks bradykinin B2 receptors, attenutating the episode. Randomized double-blind, placebo-controlled trials of icatibant, showed significant superiority over oral tranexamic acid in 74 European patients and a trend to improvement in a similar US trial comparing icatibant with placebo in 55 patients. Outcomes for several endpoints did not reach significance in the US trial, perhaps because of low participant numbers and confounding factors: a further trial is planned. Open label studies have shown benefit in multiple treatments for attacks at all sites. Approximately 10% of patients require a second dose for re-emergent symptoms, usually 10 to 27 hours after the initial treatment. Its subcutaneous route of administration, good tolerability and novel mode of action make icatibant a promising addition to the limited repertoire of treatments for hereditary angioedema.Keywords: hereditary angioedema, bradykinin, icatibant, C1 inhibitor deficiency

  9. Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease

    Science.gov (United States)

    Heaps, Cristine L.; Robles, Juan Carlos; Sarin, Vandana; Mattox, Mildred L.; Parker, Janet L.

    2014-01-01

    Objective Test the hypothesis that exercise training enhances sustained relaxation to persistent endothelium-dependent vasodilator exposure via increased nitric oxide contribution in small coronary arteries of control and ischemic hearts. Methods Yucatan swine were designated to a control group or a group in which an ameroid constrictor was placed around the proximal LCX. Subsequently, pigs from both groups were assigned to exercise (5 days/week; 16 weeks) or sedentary regimens. Coronary arteries (~100–350 μm) were isolated from control pigs and from both nonoccluded and collateral-dependent regions of chronically-occluded hearts. Results In arteries from control pigs, training significantly enhanced relaxation responses to increasing concentrations of bradykinin (10−10 to 10−7 M) and sustained relaxation to a single bradykinin concentration (30 nM), which were abolished by NOS inhibition. Training also significantly prolonged bradykinin-mediated relaxation in collateral-dependent arteries of occluded pigs, which was associated with more persistent increases in endothelial cellular Ca2+ levels, and reversed with NOS inhibition. Protein levels for eNOS and p-eNOS-(Ser1179), but not caveolin-1, Hsp90, or Akt, were significantly increased with occlusion, independent of training state. Conclusions Exercise training enhances sustained relaxation to endothelium-dependent agonist stimulation in small arteries of control and ischemic hearts by enhanced nitric oxide contribution and endothelial Ca2+ responses. PMID:24447072

  10. Angiotensin I-converting enzyme inhibitor peptides derived from the endostatin-containing NC1 fragment of human collagen XVIII.

    Science.gov (United States)

    Farias, Shirley L; Sabatini, Regiane A; Sampaio, Tatiana C; Hirata, Izaura Y; Cezari, Maria Helena S; Juliano, Maria A; Sturrock, Edward D; Carmona, Adriana K; Juliano, Luiz

    2006-05-01

    Extracellular matrix and soluble plasma proteins generate peptides that regulate biological activities such as cell growth, differentiation and migration. Bradykinin, a peptide released from kininogen by kallikreins, stimulates vasodilatation and endothelial cell proliferation. Various classes of substances can potentiate these biological actions of bradykinin. Among them, the best studied are bradykinin potentiating peptides (BPPs) derived from snake venom, which can also strongly inhibit angiotensin I-converting enzyme (ACE) activity. We identified and synthesized sequences resembling BPPs in the vicinity of potential proteolytic cleavage sites in the collagen XVIII molecule, close to endostatin. These peptides were screened as inhibitors of human recombinant wild-type ACE containing two intact functional domains; two full-length ACE mutants containing only a functional C- or N-domain catalytic site; and human testicular ACE, a natural form of the enzyme that only contains the C-domain. The BPP-like peptides inhibited ACE in the micromolar range and interacted preferentially with the C-domain. The proteolytic activity involved in the release of BPP-like peptides was studied in human serum and human umbilical-vein endothelial cells. The presence of enzymes able to release these peptides in blood led us to speculate on a physiological mechanism for the control of ACE activities.

  11. Angiotensin-(1-7): a bioactive fragment of the renin-angiotensin system.

    Science.gov (United States)

    Ferrario, C M; Iyer, S N

    1998-11-30

    Accumulating evidence suggests that angiotensin-(1-7) [Ang-(1-7)] is an important component of the renin-angiotensin system. As the most pleiotropic metabolite of angiotensin I (Ang I) it manifest actions which are most often the opposite of those described for angiotensin II (Ang II). Ang-(1-7) is produced from Ang I bypassing the prerequisite formation of Ang II. The generation of Ang-(1-7) is under the control of at least three enzymes, which include neprilysin, thimet oligopeptidase, and prolyl oligopeptidase depending on the tissue compartment. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. This suggests that there is a complex relationship between the enzymatic pathways forming angiotensin II and other various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. The antihypertensive actions of angiotensin-(1-7) are mediated by an angiotensin receptor that is distinct from the pharmacologically characterized AT1 or AT2 receptor subtypes. Ang-(1-7) mediates it antihypertensive effects by stimulating synthesis and release of vasodilator prostaglandins, and nitric oxide and potentiating the hypotensive effects of bradykinin.

  12. Differences in Vascular Nitric Oxide and Endothelium-Derived Hyperpolarizing Factor Bioavailability in African Americans and Whites

    Science.gov (United States)

    Ozkor, Muhiddin A; Rahman, Ayaz M; Murrow, Jonathan R; Kavtaradze, Nino; Lin, Ji; Manatunga, Amita; Hayek, Salim; Quyyumi, Arshed A

    2014-01-01

    Objectives Abnormalities in nitric oxide (NO) bioavailability have been reported in African Americans. Whether there are differences in endothelium-derived hyperpolarizing factor (EDHF) in addition to NO between African Americans and whites, and how these affect physiologic vasodilation remains unknown. We hypothesized that the bioavailability of vascular NO and EDHF, at rest and with pharmacologic and physiologic vasodilation, varies between white and African Americans. Approach and Results In 74 white and 86 African American subjects without known cardiovascular disease risk factors, forearm blood flow (FBF) was measured using plethysmography at rest and during inhibition of NO with NG-monomethyl-L-arginine (L-NMMA) and/or of K+Ca channels (EDHF) with tetraethylammonium (TEA). The reduction in resting FBF was greater with L-NMMA (p=0.019) and similar with TEA in whites compared to African Americans. Vasodilation with bradykinin, acetylcholine, and sodium nitroprusside was lower in African Americans compared to whites (all p<0.0001). Inhibition with L-NMMA was greater in whites compared to African Americans with bradykinin, acetylcholine, and exercise. Inhibition with TEA was lower in African Americans with bradykinin, but greater during exercise and with acetylcholine. Conclusions The contribution to both resting and stimulus-mediated vasodilator tone of NO is greater in whites compared to African Americans. EDHF partly compensates for the reduced NO release in exercise and acetylcholine-mediated vasodilation in African Americans. Preserved EDHF but reduced NO bioavailability and sensitivity characterizes the vasculature in healthy African Americans. PMID:24675657

  13. Towards understanding the kallikrein-kinin system: insights from measurement of kinin peptides

    Directory of Open Access Journals (Sweden)

    D.J. Campbell

    2000-06-01

    Full Text Available The kallikrein-kinin system is complex, with several bioactive peptides that are formed in many different compartments. Kinin peptides are implicated in many physiological and pathological processes including the regulation of blood pressure and sodium homeostasis, inflammatory processes, and the cardioprotective effects of preconditioning. We established a methodology for the measurement of individual kinin peptides in order to study the function of the kallikrein-kinin system. The levels of kinin peptides in tissues were higher than in blood, confirming the primary tissue localization of the kallikrein-kinin system. Moreover, the separate measurement of bradykinin and kallidin peptides in man demonstrated the differential regulation of the plasma and tissue kallikrein-kinin systems, respectively. Kinin peptide levels were increased in the heart of rats with myocardial infarction, in tissues of diabetic and spontaneously hypertensive rats, and in urine of patients with interstitial cystitis, suggesting a role for kinin peptides in the pathogenesis of these conditions. By contrast, blood levels of kallidin, but not bradykinin, peptides were suppressed in patients with severe cardiac failure, suggesting that the activity of the tissue kallikrein-kinin system may be suppressed in this condition. Both angiotensin converting enzyme (ACE and neutral endopeptidase (NEP inhibitors increased bradykinin peptide levels. ACE and NEP inhibitors had different effects on kinin peptide levels in blood, urine, and tissues, which may be accounted for by the differential contributions of ACE and NEP to kinin peptide metabolism in the multiple compartments in which kinin peptide generation occurs. Measurement of the levels of individual kinin peptides has given important information about the operation of the kallikrein-kinin system and its role in physiology and disease states.

  14. Endothelial dysfunction and decreased vascular responsiveness in the anterior cruciate ligament-deficient model of osteoarthritis.

    Science.gov (United States)

    Miller, Daniel; Forrester, Kevin; Hart, David A; Leonard, Catherine; Salo, Paul; Bray, Robert C

    2007-03-01

    Chronic inflammation associated with osteoarthritis (OA) may alter normal vascular responses and contribute to joint degradation. Vascular responses to vasoactive mediators were evaluated in the medial collateral ligament (MCL) of the anterior cruciate ligament (ACL)-deficient knee. Chronic joint instability and progressive OA were induced in rabbit knees by surgical transection of the ACL. Under halothane anesthesia, laser speckle perfusion imaging (LSPI) was used to measure MCL blood flow in unoperated control (n = 12) and 6-wk ACL-transected knees (n = 12). ACh, bradykinin, histamine, substance P (SP), and prostaglandin E(2) (PGE(2)) were applied to the MCL vasculature in topical boluses of 100 microl (dose range 10(-14) to 10(-8) mol). In normal joints, ACh, bradykinin, histamine, and PGE(2) evoked a dilatory response. Substance P caused a biphasic response that was dilatory from 10(-14) to 10(-11) mol and constricting at higher doses. In ACL-deficient knees, ACh, bradykinin, histamine, and SP decreased perfusion, whereas PGE(2) had a biphasic response that decreased perfusion at 10(-14) to 10(-11) mol and was dilatory at higher concentrations. Sodium nitroprusside increased perfusion in resting and phenylephrine-precontracted vessels with no significant differences between ACL-transected and control knees. Femoral artery occlusion and release increased perfusion by 74.3 +/- 11.1% in control knees but only by 25.8 +/- 4.4% in ACL-deficient knees. The altered responsiveness of the MCL vasculature to these inflammatory mediators may indicate endothelial dysfunction in the MCL, which may contribute to the progression and severity of OA and to the adaptation of the joint in an altered mechanical environment.

  15. A Decade of Change: Recent Developments in Pharmacotherapy of Hereditary Angioedema (HAE).

    Science.gov (United States)

    Bork, Konrad

    2016-10-01

    Hereditary angioedema (HAE) due to C1 esterase inhibitor (C1-INH) deficiency (HAE-C1-INH) is a rare but medically significant disease that can be associated with considerable morbidity and mortality. Research into the pathogenesis of HAE-C1-INH has expanded greatly in the last six decades and has led to new clinical trials with novel therapeutic agents and treatment strategies. Mechanisms of pharmacotherapy include (a) supplementing C1-INH, the missing serine-protease inhibitor in HAE; (b) inhibiting the activation of the contact system and the uncontrolled release of proteases in the kallikrein-kinin system, by blocking the production/function of its components; (c) inhibiting the fibrinolytic system by blocking the production/function of its components; and (d) inhibiting the function of bradykinin at the endothelial level. Strategies for managing HAE-C1-INH are aimed at treating acute attacks, or preventing attacks, through the use of prophylactic treatment. Available agents for treating acute attacks include plasma-derived C1-INH concentrates, a recombinant C1-INH, a bradykinin B2 receptor antagonist, and a plasma kallikrein inhibitor. Long-term prophylactic treatments include attenuated androgens, plasma-derived C1-INH concentrates, and anti-fibrinolytics. Plasma-derived C1-INH and a bradykinin B2 receptor antagonist are already approved for self-administration at home. The number of management options for HAE-C1-INH has increased considerably within the past decade, thus helping to alleviate the burden of this rare disease.

  16. Hereditary angioedema attacks resolve faster and are shorter after early icatibant treatment.

    Directory of Open Access Journals (Sweden)

    Marcus Maurer

    Full Text Available BACKGROUND: Attacks of hereditary angioedema (HAE are unpredictable and, if affecting the upper airway, can be lethal. Icatibant is used for physician- or patient self-administered symptomatic treatment of HAE attacks in adults. Its mode of action includes disruption of the bradykinin pathway via blockade of the bradykinin B(2 receptor. Early treatment is believed to shorten attack duration and prevent severe outcomes; however, evidence to support these benefits is lacking. OBJECTIVE: To examine the impact of timing of icatibant administration on the duration and resolution of HAE type I and II attacks. METHODS: The Icatibant Outcome Survey is an international, prospective, observational study for patients treated with icatibant. Data on timings and outcomes of icatibant treatment for HAE attacks were collected between July 2009-February 2012. A mixed-model of repeated measures was performed for 426 attacks in 136 HAE type I and II patients. RESULTS: Attack duration was significantly shorter in patients treated <1 hour of attack onset compared with those treated ≥ 1 hour (6.1 hours versus 16.8 hours [p<0.001]. Similar significant effects were observed for <2 hours versus ≥ 2 hours (7.2 hours versus 20.2 hours [p<0.001] and <5 hours versus ≥ 5 hours (8.0 hours versus 23.5 hours [p<0.001]. Treatment within 1 hour of attack onset also significantly reduced time to attack resolution (5.8 hours versus 8.8 hours [p<0.05]. Self-administrators were more likely to treat early and experience shorter attacks than those treated by a healthcare professional. CONCLUSION: Early blockade of the bradykinin B(2 receptor with icatibant, particularly within the first hour of attack onset, significantly reduced attack duration and time to attack resolution.

  17. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization.

    LENUS (Irish Health Repository)

    Walsh, Sarah K

    2012-01-31

    Preeclampsia is associated with widespread maternal vascular dysfunction, which is thought to be mediated by circulating factor(s). The aim of the study was to characterize vascular function in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia and to investigate the role of plasma factors in mediating any observed changes in vascular reactivity. Mean arterial blood pressure and vascular function were measured in RUPP and control rats. Mesenteric vessels from both virgin and pregnant rats were exposed for 1 hour or overnight to plasma from both RUPP and control rats and their vascular function assessed. RUPP rats were characterized by severe hypertension, restricted fetal growth, and reduced placental weight (P<0.001). Vasorelaxation was impaired in resistance vessels from RUPP compared with control rats (acetylcholine: R(max) 70+\\/-3 versus 92+\\/-1 [NP] and 93+\\/-3% [sham], P<0.01; bradykinin: 40+\\/-2 versus 62+\\/-2 [NP] and 59+\\/-4% [sham], P<0.001). Incubation of vessels from pregnant (but not virgin) animals with RUPP plasma overnight resulted in an attenuation of vasorelaxant responses (acetylcholine: 63+\\/-7 versus 86+\\/-2%, P<0.05; bradykinin: 35+\\/-5 versus 55+\\/-6%, P<0.001). The residual relaxant response in RUPP plasma-treated vessels was not further attenuated after treatment with N(omega)-nitro-l-arginine methyl ester (acetylcholine: 57+\\/-7 versus 63+\\/-7%, ns; bradykinin: 37+\\/-5 versus 35+\\/-5%, ns). The RUPP rat model is characterized by an impaired response to vasodilators which may be attributable to one or more circulating factors. This plasma-mediated endothelial dysfunction appears to be a pregnancy-dependent effect. Furthermore, nitric oxide-mediated vasorelaxation appears to be absent in RUPP plasma-treated vessels.

  18. Study on Alzheimer's disease model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is well known that the main brain lesion in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFT) and senile plaques (SP). The amount of NFT is positively correlated with clinical degree of dementia in AD. It is also well studied that the major component of NFT is abnormally hyperphosphorylated microtubule associated protein tau that is caused by an imbalance of protein kinase and protein phosphatase (PP). To reconstitute a specific AD model based on the above hypothesis, we have injected separately calcium calmodulin dependent protein kinase (CaMKKII) activator, bradykinin and PP-2B inhibitor, cyclosporin A into rat hippocampus in the present study. The results showed that the injection of bradykinin caused learning and memory deficient in rats as well as Alzheimer-like tau phosphorylation, including Ser-262/356, Thr-231/235 and Ser-396/404. On the other hand, the injection of cyclosporin A induced the same phosphorylation sites as above except Ser-262/356, however, it did not mimic rat behavior abnormality as bradykinin injection did. The data suggested that activating of CaMKII and the phosphorylation of Ser-262/356 at tau might responsible for the lesion of learning and memory in our model rats. We also incubated PP-2A and PP-1 inhibitor, okadaic acid with human neuroblastoma cell line (SH-SY5Y), and found that (1) inhibition of above PPs induced Alzheimer-like phosphorylation and accumulation of neurofilaments, and Alzheimer-like microtubule disruption, (2) melatonin showed certain protection of the cell from okadaic acid toxicity. The data obtained from this study is significant in AD specific model study.

  19. Ascorbic acid improves impaired venous and arterial endothelium dependent dilation in smokers

    Institute of Scientific and Technical Information of China (English)

    Márcio Gon(c)alves de SOUSA; Juan Carlos YUGAR-TOLEDO; Marcelo RUBIRA; Sílvia Elaine FERREIRA-MELO; Rodrigo PLENTZ; Deise BARBIERI; Fernanda CONSOLIM-COLOMBO; Maria Cláudia IRIGOYEN; Heitor MORENO Jr

    2005-01-01

    Aim: To compare the acute effects of ascorbic acid on vasodilation of veins and arteries in vivo. Methods: Twenty-six healthy non-smokers and 23 healthy moderate smokers were recruited in this study. The dorsal hand vein compliance technique and flow-mediated dilation were used. Dose-response curves to bradykinin and sodium nitroprusside were constructed to test the endothelium-dependent and -independent relaxation before and after acute infusion of ascorbic acid. Results: Smokers had an impaired venodilation with bradykinin compared with non-smokers (68.3%±13.2% vs 93.7%±20.1%, respectively; P<0.05). Ascorbic acid administration in the dorsal hand vein significantly increased the venodilation with bradykinin in smokers (68.3%± 13.2% vs 89.5%±6.3% before and after infusion, respectively; P<0.05) but not in non-smokers (93.7%±20.1% vs 86.4%±12.4% before and after infusion, respectively). Similarly, the arterial response in smokers had an impaired endothelium-dependent dilation compared with that in non-smokers (8.8%±2.7% vs 15.2%±2.3%, respectively; P<0.05) and ascorbic acid restored this response in smokers (8.8%±2.7% vs 18.7%±6.5% before and after infusion, respectively; P<0.05), but no difference was seen in non-smokers (15.2%±2.3% vs 14.0%±4.4% before and after infusion, respectively). The endothelium-independent dilation did not differ in both the groups studied. No important hemodynamic change was detected using the Portapress device. Conclusion: Smokers had impaired endothelium-dependent vasodilation responsiveness in both arterial and venous systems. Ascorbic acid restores this responsiveness in smokers.

  20. TNBS-induced inflammation modulates the function of one class of low-threshold rectal mechanoreceptors in the guinea pig.

    Science.gov (United States)

    Lynn, P A; Chen, B N; Zagorodnyuk, V P; Costa, M; Brookes, S J H

    2008-10-01

    The effects of trinitrobenzene sulfonic acid (TNBS)-induced inflammation on specialized, low-threshold, slowly adapting rectal mechanoreceptors were investigated in the guinea pig. Under isoflurane anesthesia, 300 microl saline or TNBS (15 mg/ml) in 30% ethanol was instilled 7 cm from the anal sphincter. Six or 30 days later, single unit extracellular recordings were made from rectal nerve trunks in flat-sheet in vitro preparations attached to a mechanical tissue stretcher. TNBS treatment caused macroscopic ulceration of the rectal mucosa at 6 days, which fully resolved by 30 days. Muscle contractility was unaffected by TNBS treatment. At 6 days posttreatment, responses of low-threshold rectal mechanoreceptors to circumferential stretch were increased, and the proportion of afferents responding with von Frey hair thresholds mechanoreceptor excitability in response to electrical stimulation were increased in TNBS-treated tissue, suggesting increased sensitivity of the mechanotransducer. Mechanoreceptor function at 30 days posttreatment was in most cases unchanged. The inflammatory mediator prostaglandin E(2) (1 microM) activated mechanoreceptors (6 days) in conjunction with contractile activity, but capsaicin (1 microM) failed to activate mechanoreceptors. Bradykinin (1 microM) activated mechanoreceptors independently of contractile activity and responses to stretch were increased in the presence of bradykinin. Both capsaicin and bradykinin activated unidentified stretch-insensitive afferents independently of contractile activity. Mechanoreceptor function is modulated at 6 days posttreatment but not at 30 days, suggesting a moderate increase in mechanoreceptor sensitivity in inflamed tissue but not after recovery. Other unclassified stretch-insensitive afferents are responsive to inflammatory mediators and capsaicin and may be involved in aspects of visceral sensation.

  1. Antispasmodic effects of hydroalcoholic extract of Marrubium vulgare on isolated tissues.

    Science.gov (United States)

    Schlemper, V; Ribas, A; Nicolau, M; Cechinel Filho, V

    1996-09-01

    Marrubium vulgare is a medicinal plant used in Brazil and in many countries in folk medicine against several diseases, including gastrointestinal disorders. In this study, we have evaluated the effects of hydroalcoholic extract of the roots and aerial parts of M. vulgare in several smooth muscle preparations in vitro. The results showed that this extract exert a significant antispasmodic activity which inhibits the action of some neurotransmitters, such as acetylcholine, bradykinin, prostaglandin E(2), histamine and oxytocin, with putative selectivity for cholinergic contractions. These findings support the popular use in folk medicine of this plant as an antispasmodic.

  2. Effects of staphylococcal enterotoxin B on rodent mast cells.

    OpenAIRE

    Komisar, J; Rivera, J.; Vega, A.; Tseng, J

    1992-01-01

    Staphylococcal enterotoxin B (SEB) was tested in rodent mast cell cultures for the release of serotonin. Both rat RBL-2H3 mast cells and murine peritoneal cells released serotonin after SEB stimulation in culture. Release of serotonin in RBL-2H3 cells depended on the concentration of SEB; an appreciable release was seen at 50 micrograms/ml. The release of serotonin was not due to cell death. Serotonin release could be enhanced by bradykinin but not by vasoactive intestinal peptide, substance ...

  3. Elevated muscle interstitial levels of pain-inducing substances in symptomatic muscles in patients with polymyalgia rheumatica

    DEFF Research Database (Denmark)

    Kreiner, Frederik; Galbo, Henrik

    2011-01-01

    Polymyalgia rheumatica (PMR) is characterized by aching proximal muscles and systemic inflammation. We explored the pain-eliciting mechanisms by measuring interstitial levels in muscle of potentially pain-inducing substances as well as local blood flow. Twenty glucocorticoid-naive patients...... with newly diagnosed PMR and 20 controls were examined before and after 14days of prednisolone (20mg/day). Concentrations of glutamate, prostaglandin E(2) (PGE(2)), bradykinin, serotonin, adenosine triphosphate, lactate, pyruvate, and potassium as well as extraction of (3)H(2)O were measured in symptomatic...

  4. Expression and function of calcium-activated potassium channels following in-stent restenosis in a porcine coronary artery model

    Directory of Open Access Journals (Sweden)

    Mais F. Absi

    2012-04-01

    Functional analysis using 1-EBIO and Bradykinin produced hyperpolarization of neointimal but not medial myocytes, which indicated the expression of functional endothelial SK3 and IKCa in the former and not in the latter. The expression of IKCa and SK3 within the neointimal layer suggested that some degree of recovery of both endothelial as well as smooth muscle regeneration had occurred. Future development of selective modulators of IKCa and SK3 channels may decrease the progression of ISR and improve coronary vascular function after stent placement, and is an area for future investigation.

  5. Hereditary angioedema: epidemiology, management, and role of icatibant

    Directory of Open Access Journals (Sweden)

    Ghazi A

    2013-05-01

    Full Text Available Aasia Ghazi, J Andrew GrantUniversity of Texas Medical Branch, Division of Allergy and Clinical Immunology, Galveston, TX, USAAbstract: Hereditary angioedema (HAE is an autosomal dominant, potentially life-threatening condition, manifesting as recurrent and self-limiting episodes of facial, laryngeal, genital, or peripheral swelling with abdominal pain secondary to intra-abdominal edema. The estimated prevalence of HAE in the general population is one individual per 50,000, with reported ranges from 1:10,000 to 1:150,000, without major sex or ethnic differences. Various treatment options for acute attacks and prophylaxis of HAE are authorized and available in the market, including plasma-derived (Berinert®, Cinryze®, and Cetor® and recombinant (Rhucin® and Ruconest™ C1 inhibitors, kallikrein inhibitor-ecallantide (Kalbitor®, and bradykinin B2 receptor antagonist-icatibant (Firazyr®. Some of these drugs are used only to treat HAE attacks, whereas others are only approved for prophylactic therapies and all of them have improved disease outcomes due to their different mechanisms of action. Bradykinin and its binding to B2 receptor have been demonstrated to be responsible for most of the symptoms of HAE. Thus icatibant (Firazyr®, a bradykinin B2 receptor antagonist, has proven to be an effective and more targeted treatment option and has been approved for the treatment of acute attacks of HAE. Rapid and stable relief from symptoms of cutaneous, abdominal, or laryngeal HAE attacks has been demonstrated by 30 mg of icatibant in Phase III clinical trials. Self-resolving mild to moderate local site reactions after subcutaneous injection of icatibant were observed. Icatibant is a new, safe, and effective treatment for acute attacks of HAE. HAE has been reported to result in enormous humanistic burden to patients, affecting both physical and mental health, with a negative impact on education, career, and work productivity, and with substantial

  6. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon.

    Science.gov (United States)

    Rehn, Matthias; Bader, Sandra; Bell, Anna; Diener, Martin

    2013-09-01

    We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Ca(v)) channels. As the types of Ca(v) channels used by this part of the enteric nervous system are unknown, the expression of various Ca(v) subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Ca(v)1.2, Ca(v)1.3 and Ca(v)2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Ca(v) channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca(2+)-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca(2+)-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped

  7. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

    DEFF Research Database (Denmark)

    Fuglsang, Anders; Rattray, Fergal; Nilsson, Dan

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus , were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test...... were pre-fed with milks fermented using two strains of Lactobacillus helveticus . An increased response to bradykinin (10 μg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise...

  8. Neprilysin inhibition to treat heart failure: a tale of science, serendipity, and second chances.

    Science.gov (United States)

    McMurray, John J V

    2015-03-01

    This review describes the role of neprilysin (also known as neutral endopeptidase or enkephalinase) in the degradation of natriuretic and other vasoactive peptides, including bradykinin and adrenomedullin. The initial development of neprilysin inhibitors, then angiotensin converting enzyme-neprilysin inhibitors and, most recently, the angiotensin receptor neprilysin inhibitor (ARNI) LCZ696 (sacubitril valsartan) as an extension of the nurohumoral basis for the treatment of heart failure is also summarised. Finally, the implications of the compelling benefits of LCZ696 compared with enalapril in the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF) is discussed.

  9. Preinfarction angina: old story initiates new attention

    Institute of Scientific and Technical Information of China (English)

    GE Jun-bo

    2012-01-01

    Since first report by Murry et al1 in 1986,the role of ischemia preconditioning before sustained coronary occlusion in protecting myocardium and reducing infarct size has been identified in animal studies.2-4 The mechanism underlying the endogenous cardioprotective effects of ischemia preconditioning is complex and may involve humoral,neural,or a combination of both,with different signaling pathwaysinvolving adenosine,bradykinin,protein kinases and K(ATP) channels.5,6 In humans,episodes of angina before acute myocardial infarction (AMI) may also confer a preconditioning or protective effect.

  10. Postangioedema attack skin blisters: an unusual presentation of hereditary angioedema.

    Science.gov (United States)

    Wiesen, Jonathan; Gonzalez-Estrada, Alexei; Auron, Moises

    2014-04-10

    Hereditary angioedema (HAE) is an autosomal dominant disorder characterised by attacks of self-limited swelling affecting extremities, face and intra-abdominal organs, most often caused by mutations in the C1-inhibitor gene with secondary Bradykinin-mediated increased vascular permeability. We describe a 36-year-old man with a history of HAE who presented with painful interdigital bullae secondary to an acute oedema exacerbation. Biopsy and cultures of the lesions were negative and they resolved spontaneously. It is important to highlight and recognise the development of oedema blisters after resolution of a flare of HAE (only 1 previous case report), and hence avoid unnecessary dermatological diagnostic workup and treatment.

  11. The Synthetic Strategy toward of ACE-Inhibitors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Angiotensin II is an important octapeptide which is responsible for the increase in blood pressure in three major mechanisms. It acts as a hormone to attack the receptor on the blood vessels, which cause strong vasoconstriction. It is also the major stimulus for release another hormone, aldolsterone, which promote the excretion of potassium ion and retention of sodium and waster. Both of the above effects increase the blood pressure. On the other hand, ACE (Angiotensin Converting Enzyme) catalyzes the hydrolysis of bradykinin that is a potent vasodilator. Therefore, the inhibitor of ACE can act as an efficient anti-hypertensive agent through multiple routes.

  12. The Synthetic Strategy toward of ACE-Inhibitors

    Institute of Scientific and Technical Information of China (English)

    CHANG; ChingYao

    2001-01-01

    Angiotensin II is an important octapeptide which is responsible for the increase in blood pressure in three major mechanisms. It acts as a hormone to attack the receptor on the blood vessels, which cause strong vasoconstriction. It is also the major stimulus for release another hormone, aldolsterone, which promote the excretion of potassium ion and retention of sodium and waster. Both of the above effects increase the blood pressure. On the other hand, ACE (Angiotensin Converting Enzyme) catalyzes the hydrolysis of bradykinin that is a potent vasodilator. Therefore, the inhibitor of ACE can act as an efficient anti-hypertensive agent through multiple routes.  ……

  13. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  14. Isolated oedema of the uvula induced by intense snoring and ACE inhibitor

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Mey, Kristianna; Bygum, Anette

    2014-01-01

    A case of snoring-induced angioedema of uvula is described in a patient who was treated with ACE inhibitor. The patient partially responded to complement C1-inhibitor concentrate and did not suffer any recurrences after the medication was withdrawn. When encountering a patient suffering from swel...... swellings of the orofacial area it should be considered whether the mechanism is mast-cell associated or not, as classical antiallergic treatment is ineffective in non-mast-cell-associated disease (ie, bradykinin-mediated angioedema). Other causes of uvular oedema are also discussed....

  15. Analysis of responses to kallidin, DABK, and DAK in feline hindlimb vascular bed.

    Science.gov (United States)

    Santiago, J A; Garrison, E A; Champion, H C; Smith, R E; Del Rio, O; Kadowitz, P J

    1995-12-01

    Responses to kallidin, des-Arg9-bradykinin (DABK), and des-Arg10-kallidin (DAK) were investigated in the hindlimb vascular bed of the cat under constant-flow conditions. Injections of kallidin, DABK, and DAK into the hindlimb perfusion circuit produced dose-dependent vasodilator responses in the hindlimb vascular bed. Vasodilator responses to kallidin and bradykinin (BK) were similar in magnitude and time course, and both peptides were approximately 100-fold more potent than DABK or DAK. Responses to kallidin were decreased by the kinin B2 antagonist, HOE 140, whereas responses to DABK and DAK were reduced by des-Arg9[Leu8]BK, a kinin B1-receptor antagonist. N omega-nitro-L-arginine methyl ester (L-NAME) reduced vasodilator responses to kallidin, DABK, and DAK, whereas meclofenamate, atropine, and U-37883A, a vascular selective ATP-sensitive K+ (K+ATP) channel-blocking agent, did not alter responses to the three peptides. These data suggest that both kinin B1 and B2 receptors are normally present in the hindlimb vascular bed. These data also suggest that kinin B1 and B2 receptor-mediated vasodilator responses are mediated by the release of nitric oxide and that the activation of K+ATP channels or muscarinic receptors, or the release of vasodilator prostaglandins play little if any role in mediating responses to kallidin, DABK, or DAK in the hindlimb vascular bed of the cat.

  16. Kinins as mediators of intestinal secretion.

    Science.gov (United States)

    Gaginella, T S; Kachur, J F

    1989-01-01

    Kinins are small peptides that have diverse biological actions. Concentrations of kinins in the nanomolar or subnanomolar range induce intestinal smooth muscle contraction and evoke mucosal electrolyte secretion. Hyperkininemia is associated with effects on gastrointestinal motility and intestinal mucosal inflammation. Bradykinin and kallidin are the predominant kinins with effects on the gastrointestinal tract of mammals. Bradykinin stimulates chloride ion secretion by the guinea pig and rabbit ileum, rabbit colon, rat colon and monolayers of human HCA-7 cells. Kinins directly or indirectly stimulate phospholipase A2 and phospholipase C. Cells in the lamina propria of the mucosa (e.g., fibroblasts, mast cells, leukocytes), by liberating cyclooxygenase and lipoxygenase metabolites of arachidonic acid, are involved in the kinin response; direct effects on epithelial cells cannot be ruled out, however. Antagonists now exist for kinin receptors. Based on studies with these antagonists in smooth muscle preparations, two subgroups of kinin receptor have been identified. The B2-type receptor appears to be responsible for both the contraction of ileal muscle and ileal secretion. Kinins are probably more important as pathophysiological rather than as physiological mediators. They may amplify the effect of inflammatory products that induce intestinal secretion. The precise involvement of kinins in clinical mucosal secretory states and diarrhea will require quantitative assessment of their levels during each phase of mucosal inflammation. Additional studies on the mechanism of action of kinins will be essential in designing therapy to mitigate the symptoms associated with mucosal inflammation.

  17. Antiinflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction extracted from the marine red algae Gracilaria caudata.

    Science.gov (United States)

    Chaves, Luciano de Sousa; Nicolau, Lucas Antonio Duarte; Silva, Renan Oliveira; Barros, Francisco Clark Nogueira; Freitas, Ana Lúcia Ponte; Aragão, Karoline Sabóia; Ribeiro, Ronaldo de Albuquerque; Souza, Marcellus Henrique Loiola Ponte; Barbosa, André Luiz dos Reis; Medeiros, Jand-Venes Rolim

    2013-02-01

    Many algal species contain relatively high concentrations of polysaccharide substances, a number of which have been shown to have anti-inflammatory and/or immunomodulatory activity. In this study, we evaluated the anti-inflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction (PLS) extracted from the algae Gracilaria caudata. The antiinflammatory activity of PLS was evaluated using several inflammatory agents (carrageenan, dextran, bradykinin, and histamine) to induce paw edema and peritonitis in Swiss mice. Samples of the paw tissue and peritoneal fluid were removed to determine myeloperoxidase (MPO) activity or TNF-α and IL-1β levels, respectively. Mechanical hypernociception was induced by subcutaneous injection of carrageenan into the plantar surface of the paw. Pretreatment of mice by intraperitoneal administration of PLS (2.5, 5, and 10 mg/kg) significantly and dose-dependently reduced carrageenan-induced paw edema (p < 0.05) compared to vehicle-treated mice. Similarly, PLS 10 mg/kg effectively inhibited edema induced by dextran and histamine; however, edema induced by bradykinin was unaffected by PLS. PLS 10 mg/kg inhibited total and differential peritoneal leukocyte counts following carrageenan-induced peritonitis. Furthermore, PLS reduced carrageenan-increased MPO activity in paws and reduced cytokine levels in the peritoneal cavity. Finally PLS pretreatment also reduced hypernociception 3-4 h after carrageenan. We conclude that PLS reduces the inflammatory response and hypernociception in mice by reducing neutrophil migration and cytokines concentration.

  18. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.; Townsley, C.

    1995-04-01

    DRE Suffield has initiated a research program to develop methods and equipment for field detection and laboratory identification of mid-spectrum agents, molecules of biological origin such as proteins, peptides and toxins. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defence interest: bradykinin, bradykinin fragment 1-5, substance P,ARG8-vasopressin, luteinizing hormone releasing hormone, bombesin, leucine enkephalin, methionine enkephalin, and oxytocin. Using a 50 micrometer x 47 cm capillary column, 22.5 kV separation voltage and a 100 mM pH 2.5 phosphate buffer, all nine peptide could separated in under 10 minutes. Three strategies, which could be used in a fully automated field detection and identification system, were demonstrated for the identification of unknown peptides: comparison of migration times, comparison of electrophoretic mobilities, and co-injection of multiple reference standards. These experiments demonstrate that a separation based analytical method such as capillary electrophoresis could form the basis of a generic detection system for mid-spectrum protein and peptide toxins.

  19. Muscularis mucosae contraction evokes colonic secretion via prostaglandin synthesis and nerve stimulation.

    Science.gov (United States)

    Percy, W H; Fromm, T H; Wangsness, C E

    2003-02-01

    This in vitro study tested the hypothesis that muscularis mucosae contractile activity contributes to rabbit colonic mucosal function by mechanisms other than simple mechanical deformation of the epithelium. Experiments were performed by using a technique that allows simultaneous recording of muscle activity and transmucosal potential difference, a measure of epithelial ion transport. ATP, bradykinin, histamine, PGE(2), PGF(1alpha), and PGF(2alpha) elicited muscularis mucosae contractions that were resistant to atropine and TTX. Only ATP-induced contractions were indomethacin sensitive, and only those to dimethylphenylpiperazinium iodide (DMPP) were reduced by atropine. All agonist-evoked increases in transmucosal potential difference were atropine resistant, and, with the exception of those to PGE(2), PGF(2alpha), and VIP, they were also TTX sensitive. Mucosal responses to ATP, bradykinin, and histamine were indomethacin sensitive, whereas those to DMPP, the prostaglandins, and VIP were not. When cyclooxygenase activity or the mucosal innervation was compromised, even maximal muscularis mucosae contractions did not produce large secretory responses. It is concluded that contraction-related prostaglandin synthesis and noncholinergic secretomotor neuron stimulation represent the physiological transduction mechanism through which muscularis mucosae motor activity is translated into mucosal secretion.

  20. New therapies for hereditary angioedema: disease outlook changes dramatically.

    Science.gov (United States)

    Frank, Michael M; Jiang, Haixiang

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease associated with episodic attacks of nonpitting edema that may affect any external or mucosal body surface. Attacks most often affect the extremities, causing local swelling, the GI tract, leading to severe abdominal pain, and the mouth and throat, at times causing asphyxiation. Most patients with HAE have low levels of the plasma serine protease inhibitor C1 inhibitor. The edema in these patients is caused by unregulated generation of bradykinin. Effective chronic therapy of patients with impeded androgens or plasmin inhibitors has been available for decades, but in the United States, we do not have therapy for acute attacks. Five companies have completed or are in the process of conducting phase 3 clinical trials, double-blind, placebo-controlled studies of products designed to terminate acute attacks or to be used in prophylaxis. Two companies, Lev Pharmaceuticals and CSL Behring, have preparations of C1 inhibitor purified from plasma that have been used in Europe for decades (trade names Cinryze and Berinert P, respectively). One company, Pharming, has developed a recombinant C1 inhibitor preparation. One company, Dyax, is testing a kallikrein inhibitor (ecallantide), and one company, Jerini, is completing testing of a bradykinin type 2 receptor antagonist (Icatibant). Although little has been published thus far, all of these products may prove effective. It is likely that HAE treatment will change dramatically within the next few years.

  1. The Extreme Anterior Domain Is an Essential Craniofacial Organizer Acting through Kinin-Kallikrein Signaling

    Directory of Open Access Journals (Sweden)

    Laura Jacox

    2014-07-01

    Full Text Available The extreme anterior domain (EAD is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC development and migration was abnormal after loss of function (LOF in the pathway genes kng, encoding Bradykinin (xBdk, carboxypeptidase-N (cpn, which cleaves Bradykinin, and neuronal nitric oxide synthase (nNOS. Consistent with a role for nitric oxide (NO in face formation, endogenous NO levels declined after LOF in pathway genes, but these were restored and a normal face formed after medial implantation of xBdk-beads into LOF embryos. Facial transplants demonstrated that Cpn function from within the EAD is necessary for the migration of first arch cranial NC into the face and for promoting mouth opening. The study identifies the EAD as an essential craniofacial organizer acting through Kinin-Kallikrein signaling.

  2. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity.

    Science.gov (United States)

    Giner-Larza, E M; Máñez, S; Recio, M C; Giner, R M; Prieto, J M; Cerdá-Nicolás, M; Ríos, J L

    2001-09-28

    One of the best known bioactive triterpenoids is oleanolic acid, a widespread 3-hydroxy-17-carboxy oleanane-type compound. In order to determine whether further oxidation of carbon 3 affects anti-inflammatory activity in mice, different tests were carried out on oleanolic acid and its 3-oxo-analogue oleanonic acid, which was obtained from Pistacia terebinthus galls. The last one showed activity on the ear oedema induced by 12-deoxyphorbol-13-phenylacetate (DPP), the dermatitis induced by multiple applications of 12-O-tetradecanoyl-13-acetate (TPA) and the paw oedemas induced by bradykinin and phospholipase A2. The production of leukotriene B4 from rat peritoneal leukocytes was reduced by oleanonic acid with an IC50 of 17 microM. Negligible differences were observed in the response of both triterpenes to DPP, bradykinin, and phospholipase A2, while oleanonic acid was more active on the dermatitis by TPA and on the in vitro leukotriene formation. In conclusion, the presence of a ketone at C-3 implies an increase in the inhibitory effects on models related to 5-lipoxygenase activity and on associated in vivo inflammatory processes.

  3. A novel effect of Noscapine on patients with massive ischemic stroke: A pseudo-randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Massoud Mahmoudian

    2015-03-01

    Full Text Available Massive ischemic stroke causes significant mortality and morbidity in stroke patients. The main treatments for massive ischemic stroke are recombinant tissue plasminogen activator (rtPA, craniotomy, and endovascular interventions. Due to destructive effects of bradykinin on the nervous system in ischemic stroke, it seems reasonable that using Noscapine as a Bradykinin antagonist may improve patients' outcome after ischemic stroke. The effect of Noscapine on massive ischemic stroke was shown by the previous pilot study by our group. This pseudo-randomized clinical trial study was designed to assess the result of the pilot study.Patients who had clinical symptoms or computed tomography scan indicative of massive stroke (in full middle cerebral artery territory were entered to the study. The cases received the drugs according to their turns in emergency ward (pseudo-randomized. The patient group received Noscapine, and the control group received common supportive treatments. The patients and data analyzer were blinded about the data. At the end of the study, to adjust confounding variables we used logistic regression.After 1-month follow-up, 16 patients in the control group and 11 patients in the case group expired (P = 0.193. Analyzing the data extracted from Rankin scale and Barthel index check lists, revealed no significant differences in the two groups.Despite the absence of significant statistical results in our study, the reduction rate of 16% for mortality rate in Noscapine recipients is clinically remarkable and motivates future studies with larger sample sizes.

  4. Somaclonal variation: a morphogenetic and biochemical analysis of Mandevilla velutina cultured cells

    Directory of Open Access Journals (Sweden)

    M. Maraschin

    2002-06-01

    Full Text Available Cell cultures of Mandevilla velutina have proved to be an interesting production system for biomass and secondary metabolites able to inhibit the hypotensive activity of bradykinin, a nonapeptide generated in plasma during tissue trauma. The crude ethyl acetate extract of cultured cells contains about 31- to 79-fold more potent anti-bradykinin compounds (e.g., velutinol A than that obtained with equivalent extracts of tubers. Somaclonal variation may be an explanation for the wide range of inhibitor activity found in the cell cultures. The heterogeneity concerning morphology, differentiation, carbon dissimilation, and velutinol A production in M. velutina cell cultures is reported. Cell cultures showed an asynchronous growth and cells in distinct developmental stages. Meristematic cells were found as the major type, with several morphological variations. Cell aggregates consisting only of meristematic cells, differentiated cells containing specialized cell structures such as functional chloroplasts (cytodifferentiation and cells with embryogenetic characteristics were observed. The time course for sucrose metabolism indicated cell populations with significant differences in growth and metabolic rates, with the highest biomass-producing cell line showing a cell cycle 60% shorter and a metabolic rate 33.6% higher than the control (F2 cell population. MALDI-TOF mass spectrometric analysis of velutinol A in selected cell lines demonstrated the existence of velutinol A producing and nonproducing somaclones. These results point to a high genetic heterogeneity in general and also in terms of secondary metabolite content.

  5. Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis

    Directory of Open Access Journals (Sweden)

    Aisha Munawar

    2014-02-01

    Full Text Available Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja, and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis. A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F cytotoxins, bradykinin-potentiating peptides (BPPs and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467 from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.

  6. Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency

    Directory of Open Access Journals (Sweden)

    Farkas H

    2011-05-01

    Full Text Available Henriette Farkas, Lilian Varga3rd Department of Internal Medicine, Semmelweis University, Budapest, HungaryAbstract: Hereditary angioedema (HAE resulting from the deficiency of the C1 inhibitor protein is a rare disease, characterized by paroxysms of edema formation in the subcutis and in the submucosa. Edema can cause obstruction of the upper airway, which may lead to suffocation. Prompt elimination of edema is necessary to save patients from this life-threatening condition. Essentially, these edematous attacks are related to the activation of the kinin-kallikrein system and the consequent release of bradykinin. Ecallantide (known as DX-88 previously, a potent and specific inhibitor of plasma kallikrein is an innovative medicinal product. This is the only agent approved recently by the FDA for all localizations of edematous HAE attacks. Its advantages include no risk of viral contamination, high selectivity, very rapid onset of action, good tolerability, and straightforward subcutaneous administration. Owing to the risk of anaphylaxis, ecallantide should be administered by a health care professional. A postmarketing survey to improve risk-assessment and risk-minimization has been launched. The results of these studies may lead to the approval of ecallantide for self-administration.Keywords: hereditary angioedema, C1-inhibitor deficiency, treatment, bradykinin, kallikrein inhibitor, subcutaneous administration

  7. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III.

    Science.gov (United States)

    Björkqvist, Jenny; de Maat, Steven; Lewandrowski, Urs; Di Gennaro, Antonio; Oschatz, Chris; Schönig, Kai; Nöthen, Markus M; Drouet, Christian; Braley, Hal; Nolte, Marc W; Sickmann, Albert; Panousis, Con; Maas, Coen; Renné, Thomas

    2015-08-03

    Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12-/- mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes.

  8. An overview of novel therapies for acute hereditary angioedema.

    Science.gov (United States)

    Firszt, Rafael; Frank, Michael M

    2010-12-01

    Hereditary angioedema is an episodic swelling disorder with autosomal dominant inheritance. Attacks are characterized by nonpitting edema of external or mucosal body surfaces. Patients often present with swelling of the extremities, abdominal pain, and swelling of the mouth and throat, which can at times lead to asphyxiation. The disease is caused by a mutation in the gene encoding the complement C1-inhibitor protein, which leads to unregulated production of bradykinin. Long-term therapy has depended on the use of attenuated androgens or plasmin inhibitors but in the US there was, until recently, no specific therapy for acute attacks. As well, many patients with hereditary angioedema in the US were either not adequately controlled on previously available therapies or required doses of medications that exposed them to the risk of serious adverse effects. Five companies have completed or are currently conducting phase III clinical trials in the development of specific therapies to terminate acute attacks or to be used as prophylaxis. These products are based on either replacement therapy with purified plasma-derived or recombinant C1-inhibitor, or inhibition of the kinin-generating pathways with a recombinant plasma kallikrein inhibitor or bradykinin type 2 receptor antagonist. Published studies thus far suggest that all of these products are likely to be effective. These new therapies will likely lead to a totally new approach in treating hereditary angioedema.

  9. Inflammatory Signals Enhance Piezo2-Mediated Mechanosensitive Currents

    Directory of Open Access Journals (Sweden)

    Adrienne E. Dubin

    2012-09-01

    Full Text Available Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK contributes to increased pain sensitivity (hyperalgesia to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA channel piezo2 (known as FAM38B present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2 activation in heterologous expression systems. Protein kinase A (PKA and protein kinase C (PKC agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia.

  10. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion.

    Science.gov (United States)

    de Oliveira, Ursula Castro; Candido, Denise Maria; Dorce, Valquíria Abrão Coronado; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2015-03-01

    Scorpion venom is a mixture of peptides, including antimicrobial, bradykinin-potentiating and anionic peptides and small to medium proteins, such as ion channel toxins, metalloproteinases and phospholipases that together cause severe clinical manifestation. Tityus bahiensis is the second most medically important scorpion species in Brazil and it is widely distributed in the country with the exception of the North Region. Here we sequenced and analyzed the transcripts from the venom glands of T. bahiensis, aiming at identifying and annotating venom gland expressed genes. A total of 116,027 long reads were generated by pyrosequencing and assembled in 2891 isotigs. An annotation process identified transcripts by similarity to known toxins, revealing that putative venom components represent 7.4% of gene expression. The major toxins identified are potassium and sodium channel toxins, whereas metalloproteinases showed an unexpected high abundance. Phylogenetic analysis of deduced metalloproteinases from T. bahiensis and other scorpions revealed a pattern of ancient and intraspecific gene expansions. Other venom molecules identified include antimicrobial, anionic and bradykinin-potentiating peptides, besides several putative new venom components. This report provides the first attempt to massively identify the venom components of this species and constitutes one of the few transcriptomic efforts on the genus Tityus.

  11. Anti-inflammatory activity of root of Alpinia galanga willd

    Directory of Open Access Journals (Sweden)

    Asim Kumar Ghosh

    2011-01-01

    Full Text Available Objective: The objective of the study is to evaluate the acute and chronic anti-inflammatory activities of root extract of Alpinia galanga in rodents. Materials and Methods: The study was carried out using albino rats of either sex (150-200 g. An extract of the root of A. galanga was prepared using absolute alcohol and distillation in a Soxhlet apparatus. The acute anti-inflammatory effects of this extract were evaluated using carrageenan-, bradykinin-, and 5-HT-induced rat paw edema. The chronic anti-inflammatory effects were evaluated using formaldehyde-induced rat paw edema. Results and Analysis: Inhibition of inflammation was seen to be 32.22% in carrageenan-induced, 37.70% in 5-HT-induced, and 35.21% in bradykinin-induced anti-inflammatory models. In chronic inflammatory model, a progressive inhibition of 34.73% (3 rd day, 37.50% (5 th day, 38.83% (7 th day, 44.66% (9 th day, 49.59% (11 th day, and 55.75% (13 th day was observed with study compound. The efficacy was comparable with the standard drugs. Conclusion: It can be thus concluded that A. galanga has anti-inflammatory properties and probably acts by blocking histaminic and serotonin pathways. It may be an effective alternative to NASAIDs and corticosteroid in inflammatory disorders.

  12. Preclinical characterization of recombinant human tissue kallikrein-1 as a novel treatment for type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Tadeusz Kolodka

    Full Text Available Modulation of the kallikrein-kinin system (KKS has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D. The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1, as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D.

  13. ALTERATION IN CONTRACTILE RESPONSE TO NORADRENALINE,5-HYDROXYTRYPTAMINE,SARAFOTOXIN 6c,AND ANGIOTENSINⅡIN RAT MESENTERIC ARTERY DURING ORGAN CULTURE

    Institute of Scientific and Technical Information of China (English)

    Cao Yongxiao(曹永孝); He Langchong(贺浪冲); Xu Cangbao(徐仓宝); EDVINSSON Lars

    2004-01-01

    Objective To compare the vasoconstrictive effects of 9 mediators on fresh and incubated mesenteric arteries of rats. Methods The superior mesenteric artery of rat was removed and the endothelium was denuded. The vessels were cut into 1 mm long cylindrical segments and subjected to organ culture for 24 hours. Fresh or incubated segments were immersed into tissue baths and the concentration-response curves were obtained by cumulative administration of the vasoconstrictors. Results In fresh mesenteric artery, endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), noradrenaline (NA), 5-carboxamidotryptamine (5-CT), and angiotensinⅡ (AngⅡ) induced potent and sustained constrictions in a concentration-dependent manner. The contraction induced by sarafotoxin 6c (S6c) was weak, while bradykinin (BK), des-Arg-bradykinin (DA-BK), and human urotensinⅡ (hUT-II) showed no detectable contraction. The concentraion-response curves in order of slopes was ET-1, NA, 5-HT, 5-CT, and AngⅡ. The order of the maximum contractions was ET-1>NA=5-HT=5-CT>AngⅡ>S6c. After organ culture, the concentration-response curves induced by S6c, NA, and 5-HT were significantly increased, while that induced by AngⅡ was decreased as comparing to fresh arteries. BK contracted the artery only weakly. Conclusion Organ culture changed the phenotypes towards an increased efficacy of NA, 5-HT, S6c, and a reduced efficacy of AngⅡ, which is in accordance with the results of pharmacological characterization in some human vascular disease.

  14. Estrogen-like effect of a Cimicifuga racemosa extract sub-fraction as assessed by in vivo, ex vivo and in vitro assays.

    Science.gov (United States)

    Bolle, P; Mastrangelo, S; Perrone, F; Evandri, M G

    2007-01-01

    Black cohosh (Cimicifuga racemosa) is used in the treatment of painful menstruation and menopausal symptoms. Data about the nature of the active compounds and mechanism(s) of action are still controversial, chiefly with respect to its estrogenic activity. This work aimed to assess the possible estrogenic activity of a commercial dry hydro-alcoholic extract of C. racemosa and its hydrophilic and lipophilic sub-fractions on in vivo, ex vivo, and in vitro assays. In a yeast estrogen screen, only the lipophilic sub-fraction was able to activate the human estrogen receptor alpha, with a lower potency but comparable efficacy to that of 17 beta-estradiol. Neither the total extract nor the lipophilic sub-fraction showed an in vivo uterotrophic effect in 21-day-old rats. Uterine tissues obtained ex vivo from C. racemosa treated animals were generally much less sensitive to oxytocin, prostaglandin F(2alpha,) and bradykinin than tissues obtained from estradiol valerate treated rats. The lipophilic sub-fraction, instead, induced a dose-dependent inhibitory activity on the in vitro response to oxytocin, prostaglandin F(2alpha,) and bradykinin of uterine horns from naïve 28-day-old rats, with a potency rate close to 1:30 of that of 17 beta-estradiol. Reported results confirm the effectiveness of C. racemosa in menstrual distress and further emphasize the possibility that lipophilic constituents bind to an as yet not identified estrogen receptor, likely inversely involved in inflammation.

  15. The inhibitory effect of magnolol on cutaneous permeability in mice is probably mediated by a nonselective vascular hyporeactivity to mediators.

    Science.gov (United States)

    Wang, J P; Raung, S L; Chen, C C; Kuo, J S; Teng, C M

    1993-12-01

    In the present study, we demonstrated the inhibitory effect of magnolol on the plasma leakage in passive cutaneous anaphylactic (PCA) reaction, neurogenic inflammation, dorsal skin and ear edema in mice. Hind-paw skin plasma extravasation caused by antidromic stimulation of the saphenous nerve was reduced in mice pretreated with magnolol, diphenydramine or methysergide, but not with indomethacin. Ear edema formation in the PCA reaction was reduced by magnolol in dose-dependent manner. In addition, histamine-, serotonin-, compound 48/80-, bradykinin- and substance P-induced ear edema in mice was also suppressed by magnolol. A dose- and time-dependency of the inhibitory effect of magnolol was demonstrated in histamine- and compound 48/80-induced dorsal skin edema. The maximal inhibitory effect produced by a single dose of magnolol (10 mg/kg) persisted for 1 h, and significant suppression lasted for at least 3 h. In compound 48/80-pretreated mice, the histamine content of the ear was greatly reduced. Bradykinin- and substance P-induced ear edema in compound 48/80-pretreated mice was less severe than that seen in normal mice, but was still significantly reduced by magnolol pretreatment. Moreover, the inhibitory effect of magnolol was more marked than that of diphenhydramine combined with methysergide. These results suggest that the inhibitory effect of magnolol on local edema formation probably occurs through a nonselective inhibition on vascular tissue to prevent the permeability change caused by various mediators.

  16. New treatments addressing the pathophysiology of hereditary angioedema

    Directory of Open Access Journals (Sweden)

    Davis Alvin E

    2008-04-01

    Full Text Available Abstract Hereditary angioedema is a serious medical condition caused by a deficiency of C1-inhibitor. The condition is the result of a defect in the gene controlling the synthesis of C1-inhibitor, which regulates the activity of a number of plasma cascade systems. Although the prevalence of hereditary angioedema is low – between 1:10,000 to 1:50,000 – the condition can result in considerable pain, debilitation, reduced quality of life, and even death in those afflicted. Hereditary angioedema presents clinically as cutaneous swelling of the extremities, face, genitals, and trunk, or painful swelling of the gastrointestinal mucosa. Angioedema of the upper airways is extremely serious and has resulted in death by asphyxiation. Subnormal levels of C1-inhibitor are associated with the inappropriate activation of a number of pathways – including, in particular, the complement and contact systems, and to some extent, the fibrinolysis and coagulation systems. Current findings indicate bradykinin, a product of contact system activation, as the primary mediator of angioedema in patients with C1-inhibitor deficiency. However, other systems may play a role in bradykinin's rapid and excessive generation by depleting available levels of C1-inhibitor. There are currently no effective therapies in the United States to treat acute attacks of hereditary angioedema, and currently available agents used to treat hereditary angioedema prophylactically are suboptimal. Five new agents are, however, in Phase III development. Three of these agents replace C1-inhibitor, directly addressing the underlying cause of hereditary angioedema and re-establishing regulatory control of all pathways and proteases involved in its pathogenesis. These agents include a nano-filtered C1-inhibitor replacement therapy, a pasteurized C1-inhibitor, and a recombinant C1-inhibitor isolated from the milk of transgenic rabbits. All C1-inhibitors are being investigated for acute angioedema

  17. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  18. Electrophysiological properties and chemosensitivity of guinea pig nodose ganglion neurons in vitro.

    Science.gov (United States)

    Undem, B J; Weinreich, D

    1993-07-01

    Conventional intracellular recording techniques were employed to obtain information on the electrophysiological and pharmacological characteristics of C-type neurons in the guinea pig nodose ganglia. Approximately 90% of the cell bodies gave rise to axons with conduction velocities consistent with C-fibers (0.9-1.1 m/s). The average resting membrane potential and input impedence was about -60 mV and 45 M sigma, respectively. Orthodromic electrical stimulation of the vagus nerve 20-30 mm caudal to the ganglion produced overshooting action potentials in the nodose neurons. The falling phase of the action potential was followed by a transient (50-300 ms) fast hyperpolarization (AHPfast). In 20% of C-type neurons the AHPfast was followed by a slowly developing, long-lasting afterhyperpolarization (AHPslow) that limited the ability of the neuron to fire action potentials at high frequency. The AHPslow magnitude was dependent on the number of spikes, had a reversal potential of -87 mV, and was abolished by 100 microM cadmium chloride, suggesting that it is produced by a calcium-dependent potassium current. In about 30% of the nodose neurons, hyperpolarizing current steps from resting potential produced a time- and voltage-dependent anomalous rectification in the electrotonic potential. External cesium (1 mM), but not barium (100 microM) reversibly blocked this effect. Single-electrode voltage-clamp measurements revealed a slowly developing inward current in these neurons that grows in magnitude with step hyperpolarizations from resting potential, and has an estimated reversal potential of about -44 mV. These properties suggest that this current is analogous to IH observed in many peripheral and central neurons. Autacoids including serotonin, histamine, several prostanoids, peptidoleukotriene, and bradykinin, were examined for their ability to affect the excitability of the nodose neurons. Serotonin was the only autacoid capable of depolarizing the membrane potential to

  19. [Acquired angioedema with C1-INH deficiency and accompanying chronic spontaneous urticaria in a patient with chronic lymphatic B cell leukemia].

    Science.gov (United States)

    Klossowski, N; Braun, S A; von Gruben, V; Losem, C; Plewe, D; Homey, B; Meller, S

    2015-10-01

    Acquired angioedema due to C1 inhibitor deficiency (C1-INH-AAE) is characterized by recurrent edema of the subcutaneous and/or submucosal tissue without wheals and negative family history of angioedema. Here, we present the case of a patient with a chronic lymphatic B cell leukemia who suffered from both C1-INH-AAE and chronic spontaneous urticaria. Oral corticosteroids, antihistamines, and the anti-IgE antibody omalizumab were applied to treat the chronic urticaria in combination with the plasma-derived C1 esterase inhibitor concentrate Berinert® and the bradykinin B2 receptor antagonist icatibant, but the symptoms did not improved significantly. Thus, polychemotherapy targeting the slow-growing lymphoproliferative disease including rituximab was initiated, which resulted in remission of both the urticaria and the angioedema.

  20. [DRUGS-INDUCED URTICARIA AND ANGIOEDEMA].

    Science.gov (United States)

    Braire-Bourrel, Marion; Augey, Frédéric; Doutre, Marie-Sylvie

    2015-09-01

    Drug-induced urticaria and/or angioedema is a frequent issue encountered in family medicine. A specific collection of the anamnesis and of the general context is very important to appreciate the involved mechanism, allergic or not, and potential cofactors. If in doubt about an allergic mechanism, tests will be conducted, mostly under a hospital setting. Bradykinin-mediated angioedema, so much rare than histamine-mediated one, has to be known, because it is potentially lethal. It is often iatrogenic (ACE inhibitors especially). At the end of the allergology work-up, a course of action is proposed to the patient and his family practitioner as far as the rechallenge of the drug is concerned, In case of non-allergic urticaria, much more frequent than allergy, taking the drug is possible with a premedication with antihistamines.

  1. What′s new in urticaria ?

    Directory of Open Access Journals (Sweden)

    Ghosh Sanjay

    2009-01-01

    Full Text Available Urticaria, a perplexing disease of ever-changing explanations, is being renovated almost everyday by newer facts and findings accumulated from different parts of the globe. Cost of the urticaria treatment gradually grows higher and higher whereas the ailment disturbs the quality of life very adversely. Disorder of coagulation cascade has recently thrown some new light into its mechanism. Non-allergic angioedema induced by bradykinin caused by genetic defects and ACE-inhibitors has also been noted. Role of H. pylori in the pathogenesis of urticaria has also been re-reviewed. Urticaria could sometimes mimic erythema multiforme and is termed urticaria multiforme. Skin biopsy showed features of vasculitis in good number of urticaria irrespective of clinical features. Contact sensitization showed positive results in certain cases thus proving contact urticaria. Topical clobetasol, systemic omalizumab and NB UVB have shown promising results in certain forms of urticaria.

  2. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents. Suffield memorandum No. 1463

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.

    1995-12-31

    Mid-spectrum biological warfare agents such as proteins, peptides, and toxins are often difficult to analyze and often require individually developed assay methods for detection and identification. In this regard, capillary electrophoresis is an important, emerging technique for separation and quantitation of peptides and proteins, providing separation efficiencies up to two orders of magnitude greater than high performance liquid chromatography. The technique can also analyze a broad range of compounds, has a simple instrument design which can be automated, and has low sample volume requirements. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defense interest including bradykinin, leucine enkephalin, and oxytocin. The paper demonstrates three strategies which could be used in a fully automated field detection and identification system for unknown peptides.

  3. Tender points are not sites of ongoing inflammation -in vivo evidence in patients with chronic tension-type headache

    DEFF Research Database (Denmark)

    Ashina, M; Stallknecht, Bente; Bendtsen, L

    2003-01-01

    Increased muscle tenderness is the most prominent finding in patients with tension-type headache, and it has recently been shown that muscle blood flow is diminished in response to static exercise in tender points in these patients. Although tenderness has been ascribed to local inflammation...... (ATP), glutamate, bradykinin and other metabolites in a tender point of patients with chronic tension-type headache, in the resting state as well as in response to static exercise, and to compare findings with measurements in a matched non-tender point of healthy controls. We recruited 16 patients...... with chronic tension-type headache and 17 healthy control subjects. Two microdialysis catheters were inserted into the trapezius muscle and dialysates were collected at rest, 15 and 30 min after start of static exercise (10% of maximal force) and 15 and 30 min after end of exercise. All samples were coded...

  4. Direct stimulation of angiotensin II type 2 receptor enhances spatial memory

    DEFF Research Database (Denmark)

    Jing, Fei; Mogi, Masaki; Sakata, Akiko

    2012-01-01

    We examined the possibility that direct stimulation of the angiotensin II type 2 (AT(2)) receptor by a newly generated direct AT(2) receptor agonist, Compound 21 (C21), enhances cognitive function. Treatment with C21 intraperitoneal injection for 2 weeks significantly enhanced cognitive function...... evaluated by the Morris water maze test in C57BL6 mice, but this effect was not observed in AT(2) receptor-deficient mice. However, C21-induced cognitive enhancement in C57BL6 mice was attenuated by coadministration of icatibant, a bradykinin B(2) receptor antagonist. Administration of C21 dose dependently...... cognitive decline in this model. These results suggest that a direct AT(2) receptor agonist, C21, enhances cognitive function at least owing to an increase in CBF, enhancement of f-EPSP, and neurite outgrowth in hippocampal neurons....

  5. On-line electrogeneration of copper-peptide complexes in microspray mass spectrometry.

    Science.gov (United States)

    Prudent, Michel; Girault, Hubert H

    2008-04-01

    The interaction of copper ions with peptides was investigated by electrospray mass spectrometry. Two electrospray micro-emitters were compared, the first one with a platinum electrode using a copper(II) electrolyte solution containing a peptide sample, and the second one with a sacrificial copper anode in a water/methanol solution containing only a peptide (i.e., angiotensin III, bradykinin, or Leu-enkephalin). The former yielded mainly Cu(2+) complexes either with histidine residues or with the peptide backbone (Cu(+) complexes can be also formed due to gas-phase reactions), whereas the latter can generate a mixture of both Cu(+) and Cu(2+) aqueous complexes that yield different complexation patterns. This study shows that electrospray emitters with soluble copper anodes enable the study of Cu(I)-peptide complexes in solution.

  6. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells.

    Science.gov (United States)

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W

    2000-08-11

    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  7. Baltikinin: A New Myotropic Tryptophyllin-3 Peptide Isolated from the Skin Secretion of the Purple-Sided Leaf Frog, Phyllomedusa baltea

    Directory of Open Access Journals (Sweden)

    Daning Shi

    2016-07-01

    Full Text Available Here we report the identification of a novel tryptophyllin-3 peptide with arterial smooth muscle relaxation activity from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea. This new peptide was named baltikinin and had the following primary structure, pGluDKPFGPPPIYPV, as determined by tandem mass spectrometry (MS/MS fragmentation sequencing and from cloned skin precursor-encoding cDNA. A synthetic replicate of baltikinin was found to have a similar potency to bradykinin in relaxing arterial smooth muscle (half maximal effective concentration (EC50 is 7.2 nM. These data illustrate how amphibian skin secretions can continue to provide novel potent peptides that act through functional targets in mammalian tissues.

  8. TRPA1.

    Science.gov (United States)

    García-Añoveros, J; Nagata, K

    2007-01-01

    The TRPA1 protein has up to 18 N-terminal and presumed cytoplasmic ankyrin repeats followed by the six membrane spanning and single pore-loop domains characteristic of all TRPs. In mice, TRPA1 is almost exclusively expressed in nociceptive neurons of peripheral ganglia and in all the mechanosensory epithelia of inner ear. In nociceptive neurons, TRPA1 mediates the response to the proalgesic bradykinin as well as the response to pungent irritants found in mustards and garlic, and probably also to those found in cinnamon and tear gas. The channel properties of TRPA1 are discussed and compared to those of sensory transducers. TRPA1 is well conserved across the animal kingdom, with likely orthologs from human to nematode, which suggest an ancestral role for this channel, probably in sensation.

  9. [Progress with management of hereditary angioedema].

    Science.gov (United States)

    Johnston, D T; Lode, H

    2013-03-21

    Hereditary angioedema (HAE) is a rare type of angioedema caused by a quantitative or functional deficit of C1 inhibitor (C1 INH) that leads to excess production of bradykinin, which can result in acute localized swelling attacks in the skin or mucous membranes of the mouth, head and neck, extremities, gastrointestinal (GI) tract, genitals, trunk, and larynx. Angioedema in the respiratorytract maycause airway obstruction; severe abdominal pain, vomiting, or diarrhea may occur in the GI tract. Patients with HAE may be diagnosed and managed by HAE specialists or by primary care physicians depending on individual circumstances. Proper treatment requires differentiation from other forms of angioedema. Patients with HAE who are managed appropriately with medications that treat and prevent atttacks may have a lower risk of death from laryngeal edema and a better quality of life. Less frequent attacks may allow them to attend work, school, and leisure activities more regularlyand be free of the pain and disfigurement of HAE attacks moreoften.

  10. Anaesthetic management of a patient with hereditary angioedema

    Directory of Open Access Journals (Sweden)

    Nergis Ataol

    2015-12-01

    Full Text Available Hereditary angioedema is a rare autosomal dominant disorder caused by reduced activity of the C1 esterase inhibitor. Patients with hereditary angioedema are clinically characterized by recurrent episodes of swelling of the extremities, face, trunk, airways and abdominal organs. Attacks may occur either spontaneously or following trauma, stress, surgery, infections and hormonal fluctuations. The most common cause of death is asphyxia related to laryngeal edema. Giving C1 esterase inhibitor is the most effective method of treatment. Also fresh frozen plasma, androgen steroids, quinine pathway inhibitors, antifibrinolytics and bradykinin receptor antagonists can be used as treatment. In this paper, the anesthetic management of a patient with hereditary angioedema undergoing inguinal hernia repair surgery is reported.

  11. Clinical presentation, pathophysiology, diagnosis, and treatment of acquired and hereditary angioedema: Exploring state-of-the-art therapies in RI.

    Science.gov (United States)

    Guo, Canting; Settipane, Russell A

    2016-06-01

    Hereditary and acquired angioedema are potentially life-threatening diseases characterized by spontaneous episodes of subcutaneous and submucosal swelling of face, lips, oral cavity, larynx, and GI tract. Hereditary angioedema (HAE) usually presents within the first and second decades of life, whereas acquired angioedema presents in adults after 40 years of age. These clinical symptoms together with reduced C1 inhibitor levels and/or activity can usually confirm the diagnosis. In recent years, multiple novel therapies for treating hereditary angioedema have emerged including C1 inhibitor concentrates, ecallantide/kallikrein inhibitor, and icatibant/bradykinin receptor antagonist. This article reviews the clinical presentation, diagnosis, treatment, and prophylaxis of HAE. Lastly, this article takes into consideration that, in reality, acute care treatment can often be limited by each hospital's formulary, included is a review of HAE treatments available at the nine major hospitals in Rhode Island. [Full article available at http://rimed.org/rimedicaljournal-2016-06.asp, free with no login].

  12. Angioedema Due to use of ACE-Inhibitor

    Directory of Open Access Journals (Sweden)

    Hulya Eyigor

    2014-03-01

    Full Text Available       Angioedema; which may be hereditary or non-hereditary, is defined as a sudden, severe, often in awkward, temporary swelling of skin, subcutaneous and mucous membranes of the face, tongue, lip, larynx, and gastrointestinal areas. Angiotensin Converting Enzyme (ACE inhibitor drugs are widely used in essential hypertension and congestive heart diseases and effective and safe drugs. Angioedema is quite rare due to the use of ACE inhibitors, the rate changes from 0.1 to 0.7% reported in the literature. The pathophysiology of angioedema induced by ACE inhibitors are not completely understood, this situation has been tought to be associated with an increased activity of bradykinin related vasodilatation, increased vascular permeability and interstitial edema. In this study, a case of 65-year-old male patient presented angioedema induced by lisinopril was presented and a very rare side effect of ACE inhibitor drugs was reviewed with the relevant literature.

  13. Decreased synthesis of serum carboxypeptidase N (SCPN) in familial SCPN deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.P.; Curd, J.G.; Hugli, T.E.

    1986-01-01

    Serum carboxypeptidase N (SCPN) is the primary inactivator of the C3a, C4a, and C5a anaphylatoxins as well as an inactivator of bradykinin. Thus, SCPN deficiency potentially could result in significant pathophysiologic consequences. Previous studies identified a deficient subject afflicted with frequent episodes of angioedema, and other family members also had SCPN deficiency. To delineate this abnormality further, the fractional catabolic rate (FRC) and enzyme synthesis were determined in three members of the afflicted kindred as well as in five normal persons following the infusion of homogeneous /sup 125/I-SCPN. The mean FCR and synthesis rates for SCPN in the normal subjects were 1.3%/hr and 20,793 U/kg/hr, respectively. Reduced synthesis was concluded to be primarily responsible for the low SCPN levels in the afflicted kindred. The high FRC of SCPN discourages attempted maintenance therapy with infusions of enriched SCPN preparations.

  14. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  15. Icatibant in the Treatment of Angiotensin-Converting Enzyme Inhibitor-Induced Angioedema

    Directory of Open Access Journals (Sweden)

    Neil H. Crooks

    2014-01-01

    Full Text Available We describe the case of a 75-year-old woman who presented with massive tongue and lip swelling secondary to angiotensin-converting enzyme inhibitor-induced angioedema. An awake fibre-optic intubation was performed because of impending airway obstruction. As there was no improvement in symptoms after 72 hours, the selective bradykinin B2 receptor antagonist icatibant (Firazyr was administered and the patient’s trachea was successfully extubated 36 hours later. To our knowledge this is the first documented case of icatibant being used for the treatment of angiotensin-converting enzyme inhibitor-induced angioedema in the United Kingdom and represents a novel therapeutic option in its management.

  16. Suprofen: the pharmacology and clinical efficacy of a new non-narcotic peripheral analgesic.

    Science.gov (United States)

    Tolman, E L; Rosenthale, M E; Capetola, R J; McGuire, J L

    1984-08-01

    Suprofen is a potent, peripherally-acting, non-narcotic analgesic agent. The mechanism of action of the compound involves inhibition of prostaglandin biosynthesis and, perhaps, direct antagonism of the peripheral, pain inducing actions of prostaglandins, bradykinin and other pain mediators. Suprofen at a dose of 200 mg appears to be equal or greater in efficacy as an analgesic modality than those of ibuprofen, propoxyphene, naproxen and diflunisal or a combination of 650 mg aspirin plus 60 mg codeine. Its clinical utility has been amply demonstrated in the treatment of a number of types of pain including general and orthopedic surgery, episiotomy, post-partum pain, dysmenorrhea, dental pain and musculoskeletal disorders. Suprofen represents a new class of orally effective nonnarcotic analgesics with potential for effective clinical use in the treatment of pain.

  17. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques.

    Science.gov (United States)

    Bocian, Aleksandra; Urbanik, Małgorzata; Hus, Konrad; Łyskowski, Andrzej; Petrilla, Vladimír; Andrejčáková, Zuzana; Petrillová, Monika; Legáth, Jaroslav

    2016-12-13

    Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A₂ and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5'-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  18. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques

    Directory of Open Access Journals (Sweden)

    Aleksandra Bocian

    2016-12-01

    Full Text Available Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5′-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  19. Angiotensin II receptor blocker-induced angioedema in the oral floor and epiglottis.

    Science.gov (United States)

    Shino, Masato; Takahashi, Katsumasa; Murata, Takaaki; Iida, Hideki; Yasuoka, Yoshihito; Furuya, Nobuhiko

    2011-01-01

    We report the rare case of angioedema (also known as Quincke edema), which was induced by valsartan, an angiotensin II receptor blocker (ARB). ARBs are a new class of antihypertensive agent that is developed to exclude the adverse effects of angiotensin-converting enzyme inhibitors. In theory, ARBs do not contribute to the occurrence of angioedema because they do not increase the serum level of bradykinin, the responsible substance for angioedema. However, some reports of ARB-induced angioedema have recently been published. In this study, we present the forth case and the first Asian case of angioedema due to valsartan, which is one of the ARBs. Otolaryngologist should be wary of the prescribing ARB and discontinue ARBs treatment soon, if angioedema is recognized.

  20. Long-term exposure to IL-1beta enhances Toll-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness

    DEFF Research Database (Denmark)

    Zhang, Yaping; Xu, Cang-Bao; Cardell, Lars-Olaf

    2009-01-01

    Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin......-time PCR-based cDNA array. The key gene expressions that were altered were verified by immunohistochemistry using confocal microscopy. Tracheal ring segment contractile responsiveness to the inflammatory mediator bradykinin was monitored using a sensitive myograph system. The results showed that after......-1beta (IL-1beta), induce AHR. However, the underlying intracellular signaling mechanisms that lead to AHR remain elusive. In order to see if the Toll-IL-1 receptor-mediated inflammatory signal pathways are involved in the development of AHR, the present study was designed to use a real-time PCR...

  1. Aloe vera

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.D.; Penneys, N.S.

    1988-04-01

    We review the scientific literature regarding the aloe vera plant and its products. Aloe vera is known to contain several pharmacologically active ingredients, including a carboxypeptidase that inactivates bradykinin in vitro, salicylates, and a substance(s) that inhibits thromboxane formation in vivo. Scientific studies exist that support an antibacterial and antifungal effect for substance(s) in aloe vera. Studies and case reports provide support for the use of aloe vera in the treatment of radiation ulcers and stasis ulcers in man and burn and frostbite injuries in animals. The evidence for a potential beneficial effect associated with the use of aloe vera is sufficient to warrant the design and implementation of well-controlled clinical trials. 27 references.

  2. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  3. Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms.

    Science.gov (United States)

    Berkout, Vadym D; Doroshenko, Vladimir M

    2008-12-01

    Fragmentation of phosphorylated peptide ions via interaction with electronically excited metastable argon atoms was studied in a linear trap - time-of-flight mass spectrometer. Doubly charged ions of phosphorylated peptides from an Enolase digest were produced by electrospray ionization and subjected to a metastable atom beam in the linear trap. The metastable argon atoms were generated using a glow-discharge source. An intensive series of c- and z- ions were observed in all cases, with the phosphorylation group intact. The formation of molecular radical cations with reduced charge indicated that an electron transfer from a highly excited metastable state of argon to the peptide cation occurred. Additionally, singly charged Bradykinin, Substance P and Fibrinopeptide A molecular ions were fragmented via interaction with electronically excited metastable helium atoms. The fragmentation mechanism was different in this case and involved Penning ionization.

  4. Pharmacological actions and acute toxicity of methyl- and phenyl-3-methoxy-4-hydroxy styryl ketones.

    Science.gov (United States)

    Singh, G B; Leach, G D; Atal, C K

    1987-06-01

    Some pharmacological actions and acute toxicity effects of methyl- and phenyl-3-methoxy-4-hydroxy styryl ketones have been described in experimental animals. The compounds antagonised the contractions evoked by a variety of agonists on several smooth muscle preparations in vitro. They produced inhibitory effects on spontaneously contracting uteri from pregnant rats and relaxant effects on pendular movements of rabbit duodenum and on dog intestinal movements in vivo. The compounds inhibited the castor oil induced diarrhoea in rat and propulsion of charcoal test meal in mice. Phenylbutazone showed similar effect on castor oil diarrhoea. The compounds failed to modify gestation period or parturition in pregnant rats. They antagonised bradykinin-induced bronchospasm in guinea pig. The compounds showed no significant effect on cardiovascular and respiratory systems: CNS and general behaviour were not affected even at high doses. Oral LD50 for both the compounds was greater than 2 g/kg.

  5. Monocytes form a vascular barrier and participate in vessel repair after brain injury

    Science.gov (United States)

    Glod, John; Kobiler, David; Noel, Martha; Koneru, Rajeth; Lehrer, Shoshana; Medina, Daniel; Maric, Dragan; Fine, Howard A.

    2006-01-01

    Subpopulations of bone marrow-derived cells can be induced to assume a number of endothelial properties in vitro. However, their ability to form a functional vascular barrier has not been demonstrated. We report that human CD14+ peripheral blood monocytes cultured under angiogenic conditions develop a number of phenotypic and functional properties similar to brain microvascular endothelial cells. These cells express the tight junction proteins zonula occludens 1 (ZO-1) and occludin and form a barrier with a transcellular electrical resistance (TCER) greater than 100 ohm cm2 and low permeability to 4 kDa and 20 kDa dextrans. The TCER of the cellular barrier is decreased by bradykinin and histamine. We also demonstrate that these cells associate with repairing vasculature in areas of brain and skin injury. Our data suggest that CD14+ peripheral blood monocytes participate in the repair of the vascular barrier after brain injury. PMID:16204319

  6. 内蒙古地区慢性牙周炎与ACE基因插入/缺失多态性关系的研究

    Institute of Scientific and Technical Information of China (English)

    周俊红; 秦文斌; 雎天林; 周立社

    2011-01-01

    @@ 慢性牙周炎(chronic periodontitis,CP)是一种侵犯牙周组织的慢性炎症性疾病.其发病是由多因素决定的.有研究表明,个体对牙周炎的易感程度主要是由遗传因素决定的[1,2].血管紧张素转换酶(angiotensin converting enzyme,ACE)是肾素-血管紧张素系统(renin-angiotensin system,RAS)的关键酶,它可使血管紧张素Ⅰ(angiotensinⅠ,AngⅠ)转化为血管紧张素Ⅱ(angiotensinⅡ,AngⅡ),而且ACE还可以降解缓激肽(bradykinin,BK)及其它重要多肽.近年国外学者提出AngⅡ有致炎症作用[3,4].

  7. 果糖及血管内皮生长因子引起仓鼠颊囊血浆外渗%Fructose diet and VEGF-induced plasma extravasation in hamster cheek pouch

    Institute of Scientific and Technical Information of China (English)

    Michel FELETOU; Michelle BOULANGER; Joanna STACZEK; Olivier BROUX; Jacques DUHAULT

    2003-01-01

    AIM: To determine in the hamster cheek pouch whether or not the changes in plasma extravasation induced byvascular endothelial growth factor (VEGF) could be affected by fructose diet. METHODS: Hamsters were sub-jected to control drinking water or to water containing fructose (10 %) for 18 weeks. RESULTS: The fructose dietinduced a small but significant increase in glycemia (0.80±0.11 and 1.09±0.15, n= 8 and 9 for control and fructose-treated animals, respectively, P<0.05). Bradykinin-induced plasma extravasation was not affected by the fructosediet while the effects of VEGF were markedly increased (maximal number of leakage sites: 76±20 and 126±55, n =8 and 9 for control and fructose-treated animals, respectively, P<0.01). CONCLUSION: Even moderate changesin glycemic levels can produce profound alteration in the VEGF response.

  8. Inhibitor and substrate binding by angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Wang, Xuemei; Wu, Shanshan; Xu, Dingguo;

    2011-01-01

    . In this work, we propose a model for an ACE Michaelis complex based on two known X-ray structures of inhibitor-enzyme complexes. Specifically, the human testis angiotensin-converting enzyme (tACE) complexed with two clinic drugs were first investigated using a combined quantum mechanical and molecular......Angiotensin-converting enzyme (ACE) is an important zinc-dependent hydrolase responsible for converting the inactive angiotensin I to the vasoconstrictor angiotensin II and for inactivating the vasodilator bradykinin. However, the substrate binding mode of ACE has not been completely understood...... mechanical (QM/MM) approach. The structural parameters obtained from the 550 ps molecular dynamics simulations are in excellent agreement with the X-ray structures, validating the QM/MM approach. Based on these structures, a model for the Michaelis complex was proposed and simulated using the same...

  9. [Increasing incidence of angioedema without urticaria--clinical features].

    Science.gov (United States)

    Marković, Asja Stipić; Janzeković, Martina

    2011-01-01

    The causes of angioedema (AE), a self-limited, localized swelling of subcutaneous tissue or mucosa unaccompanied by urticaria, are diverse. The commonly applied label of "allergic" is frequently wrong and standard anti-allergic therapy can be ineffective. Types of AE could be categorized according to mediators which mediate vascular leakage: bradykinin AE (hereditary, acquired, angiotensin-converting enzyme inhibitor (ACEi)-related), histamine AE (allergic etiology), and various mediators mediated AE (pseudoallergic reaction to non-steroidal anti-inflammatory drugs). Idiopathic AE is a poorly understood syndrome. The growing relevance of AE without urticaria has been highlighted; angioedema is the most common cause of hospital admission among all acute allergic diseases. The diagnosis of AE is based on the presence of family history (hereditary), absence of family history with the onset during or after the fourth decade of life (acquired C1lnh deficiency), and treatment with ACEi (ACEi-related angioedema). About 0.1%-0.7% of patients taking ACEi develop angioedema as a well-documented but still frequently unrecognized side effect of drugs. Laboratory diagnosis is enabled by measuring serum levels of C1lnh antigen or C1lnh function. Type 1 (hereditary angioedema (HAE) was diagnosed when both antigenic and functional levels of C1lnh were below 50% of normal, and type 2 when functional levels of C1lnh were low, along with antigenic levels normal or higher. ACEi-related AE is diagnosed when AE recurs during therapy and disappears upon withdrawal. Symptoms may appear several years after therapy introduction. Severe acute attacks should be treated with C1lnh concentrate and icatibant, a selective and specific antagonist of bradykinin B2 receptors. Prophylaxis with attenuated androgens (danazol, stanazolol, oxandrolone) is effective in preventing symptom development.

  10. The Kallikrein-Kinin-System in Experimental Chagas Disease: A Paradigm to Investigate the Impact of Inflammatory Edema on GPCR-mediated pathways of Host Cell Invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Julio eScharfstein

    2013-01-01

    Full Text Available Chronic chagasic myocarditis (CCM depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the Kallikrein-Kinin System (KKS. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a TLR2 ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK, in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK, which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R. Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs. Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the shingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NFB-inducible BKR (BK1R may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR and other GPCR partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac

  11. Changes in the molecular ion yield and fragmentation of peptides under various primary ions in ToF-SIMS and matrix-enhanced ToF-SIMS.

    Science.gov (United States)

    Körsgen, Martin; Tyler, Bonnie J; Pelster, Andreas; Lipinsky, Dieter; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-06-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a powerful technique for the nanoanalysis of biological samples, but improvements in sensitivity are needed in order to detect large biomolecules, such as peptides, on the individual cell level at physiological concentrations. Two promising options to improve the sensitivity of SIMS to large peptides are the use of cluster primary ions to increase desorption of intact molecules or the use of matrix-assisted laser desorption/ionization (MALDI) matrices to increase the ionization probability. In this paper, the authors have combined these two approaches in order to improve understanding of the interaction between ionization and fragmentation processes. The peptides bradykinin and melittin were prepared as neat monolayers on silicon, in a Dextran-40 matrix and in two common MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxy cinnamic acid (HCCA). ToF-SIMS spectra of these samples were collected using a range of small Bi cluster primary ions and large Ar cluster primary ions. The trends observed in the molecular ion yield and the [M+H](+)/C4H8N(+) ratio with primary ion cluster size were sample system dependent. The molecular ion yield of the bradykinin was maximized by using 30 keV Bi3 (+) primary ions in a DHB matrix but in the HCCA matrix, the maximum molecular ion yield was obtained by using 30 keV Bi7 (+) primary ions. In contrast, the molecular ion yield for melittin in both matrices was greatest using 20 keV Ar2000 (+) primary ions. Improvements in the molecular ion yield were only loosely correlated with a decrease in small fragment ions. The data indicate a complex interplay between desorption processes and ion formation processes which mean that the optimal analytical conditions depend on both the target analyte and the matrix.

  12. Characterization of the Kallikrein-Kinin System Post Chemical Neuronal Injury: An In Vitro Biochemical and Neuroproteomics Assessment.

    Directory of Open Access Journals (Sweden)

    Amaly Nokkari

    Full Text Available Traumatic Brain Injury (TBI is the result of a mechanical impact on the brain provoking mild, moderate or severe symptoms. It is acknowledged that TBI leads to apoptotic and necrotic cell death; however, the exact mechanism by which brain trauma leads to neural injury is not fully elucidated. Some studies have highlighted the pivotal role of the Kallikrein-Kinin System (KKS in brain trauma but the results are still controversial and inconclusive. In this study, we investigated both the expression and the role of Bradykinin 1 and 2 receptors (B1R and B2R, in mediating neuronal injury under chemical neurotoxicity paradigm in PC12 cell lines. The neuronal cell line PC12 was treated with the apoptotic drug Staurosporine (STS to induce cell death. Intracellular calcium release was evaluated by Fluo 4-AM staining and showed that inhibition of the B2R prevented calcium release following STS treatment. Differential analyses utilizing immunofluorescence, Western blot and Real-time Polymerase Chain Reaction revealed an upregulation of both bradykinin receptors occurring at 3h and 12h post-STS treatment, but with a higher induction of B2R compared to B1R. This implies that STS-mediated apoptosis in PC12 cells is mainly conducted through B2R and partly via B1R. Finally, a neuroproteomics approach was conducted to find relevant proteins associated to STS and KKS in PC12 cells. Neuroproteomics results confirmed the presence of an inflammatory response leading to cell death during apoptosis-mediated STS treatment; however, a "survival" capacity was shown following inhibition of B2R coupled with STS treatment. Our data suggest that B2R is a key player in the inflammatory pathway following STS-mediated apoptosis in PC12 cells and its inhibition may represent a potential therapeutic tool in TBI.

  13. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  14. Balanophora spicata and Lupeol Acetate Possess Antinociceptive and Anti-Inflammatory Activities In Vivo and In Vitro.

    Science.gov (United States)

    Chen, Yuh-Fung; Ching, Chien; Wu, Tian-Shung; Wu, Chi-Rei; Hsieh, Wen-Tsong; Tsai, Huei-Yann

    2012-01-01

    Aims of the present study were to investigate effects of Balanophora spicata (BS) on antinociception and anti-inflammation both in vivo and in vitro. Crude extract of BS inhibited vascular permeability induced by histamine, serotonin, bradykinin, and PGE(2), but not by PAF. Furthermore, BS crude extract, different layers (n-hexane, ethyl acetate, n-butanol, and water layer), and lupeol acetate had significant antinociceptive and anti-inflammatory effects on acetic acid-induced abdominal writhing response, formalin-induced licking behavior, carrageenan-, and serotonin-induced paw edema. The n-hexane layer had the most effective potency among all layers (IC50: 67.33 mg/kg on writhing response; IC50s: 34.2 mg/kg and 21.29 mg/kg on the early phase and late phase of formalin test, resp.). Additionally, lupeol acetate which was isolated from the n-hexane layer of BS effectively inhibited the acetic acid-induced writhing response (IC50: 28.32 mg/kg), formalin-induced licking behavior (IC50: 20.95 mg/kg), NO production (IC50: 4.102 μM), iNOS expression (IC50: 5.35 μM), and COX2 expression (IC50: 5.13 μM) in LPS-stimulated RAW 264.7 cells. In conclusion, BS has antinociceptive and anti-inflammatory effects which may be partially due to the inhibition of changes in vascular permeability induced by histamine, serotonin, bradykinin, and PGE(2) and the attenuation of iNOS and COX-2 expression.

  15. Balanophora spicata and Lupeol Acetate Possess Antinociceptive and Anti-Inflammatory Activities In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Yuh-Fung Chen

    2012-01-01

    Full Text Available Aims of the present study were to investigate effects of Balanophora spicata (BS on antinociception and anti-inflammation both in vivo and in vitro. Crude extract of BS inhibited vascular permeability induced by histamine, serotonin, bradykinin, and PGE2, but not by PAF. Furthermore, BS crude extract, different layers (n-hexane, ethyl acetate, n-butanol, and water layer, and lupeol acetate had significant antinociceptive and anti-inflammatory effects on acetic acid-induced abdominal writhing response, formalin-induced licking behavior, carrageenan-, and serotonin-induced paw edema. The n-hexane layer had the most effective potency among all layers (IC50: 67.33 mg/kg on writhing response; IC50s: 34.2 mg/kg and 21.29 mg/kg on the early phase and late phase of formalin test, resp.. Additionally, lupeol acetate which was isolated from the n-hexane layer of BS effectively inhibited the acetic acid-induced writhing response (IC50: 28.32 mg/kg, formalin-induced licking behavior (IC50: 20.95 mg/kg, NO production (IC50: 4.102 μM, iNOS expression (IC50: 5.35 μM, and COX2 expression (IC50: 5.13 μM in LPS-stimulated RAW 264.7 cells. In conclusion, BS has antinociceptive and anti-inflammatory effects which may be partially due to the inhibition of changes in vascular permeability induced by histamine, serotonin, bradykinin, and PGE2 and the attenuation of iNOS and COX-2 expression.

  16. Chapter 22: Hereditary and acquired angioedema.

    Science.gov (United States)

    Georgy, Mary S; Pongracic, Jacqueline A

    2012-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disorder defined by a deficiency of functional C1 esterase inhibitor (C1-INH). Acquired angioedema (AAE) is caused by either consumption (type 1) or inactivation (type 2) of CI-INH. Both HAE and AAE can be life-threatening. The screening test for both conditions is complement component C4, which is low to absent at times of angioedema or during quiescent periods. A useful test to differentiate HAE from AAE is C1q protein, which is normal in HAE and low in AAE. There are three types of HAE: type 1 HAE is most common, occurring in ∼85% of patients and characterized by decreased production of C1-INH, resulting in reduced functional activity to 5-30% of normal. In type 2, which occurs in 15% of cases, C1-INH is detectable in normal or elevated quantities but is dysfunctional. Finally, type 3, which is rare and almost exclusively occurs in women, is estrogen dependent and associated with normal CI-INH and C4 levels. One-third of these patients have a gain-of-function mutation in clotting factor XII leading to kallikrein-driven bradykinin production. Although the anabolic steroid, danazol, is useful in increasing the concentration of C4 and reducing the episodes of angioedema in HAE and AAE, it has expected adverse effects. Fortunately, disease-specific therapies are available and include C1-INH enzyme for i.v. infusion either acutely or empirically, ecallantide, an inhibitor of kallikrein, and icatibant, a bradykinin B2-receptor antagonist, both approved for acute angioedema and administered, subcutaneously.

  17. Progress in pharmacological and clinical study of icatibant, a new drug for the treatment of hereditary angioedema%治疗遗传性血管水肿新药艾替班特的药理作用与临床研究新进展

    Institute of Scientific and Technical Information of China (English)

    刘雪松; 刘冰洋; 王京晶; 宋冬梅

    2012-01-01

    Icatibant is a potent bradykinin B2 receptor antagonist for the treatment of acute attacks of hereditary angioedema (HAE) in 18-years-old and older adults. It is convenient for patients to self-administering icatibant upon recognition of HAE attack symptoms after training. References of in vitro and in vivo studies evaluating icatibant were obtained from MEDLINE to review the action mechanism, pharmacodynamics, pharmacokinetics, clinical evaluation, and safety of icatibant in the treatment of HAE. The key terms used in database searches were icatibant, bradykinin B2 receptor antagonist, hereditary angioedema and HAE. Icatibant is effective and generally well tolerated in patients with acute HAE attacks. However, more research is required to solidify icatibant therapy.%艾替班特作为缓激肽B2受体抑制剂,对18岁及以上成人遗传性血管水肿( HAE)急性发作具有很好的疗效,且不良反应较少,可由患者自助给药,便于携带及紧急情况下使用.本文利用MEDLINE对关键词艾替班特、缓激肽B2受体抑制剂和HAE进行检索,并对检索到的体外、体内试验结果进行综述,通过文献回顾了艾替班特在治疗HAE中的作用机制、药效学、药代动力学、临床评价和安全性,更多的研究有待进一步评价.

  18. Influence of dietary saturated fat intake on endothelial fibrinolytic capacity in adults.

    Science.gov (United States)

    Dow, Caitlin A; Stauffer, Brian L; Greiner, Jared J; DeSouza, Christopher A

    2014-09-01

    Approximately 50% of middle-aged and older adults in the United States regularly consume a diet high in saturated fat. High dietary saturated fat intake has been linked to promote atherothrombotic vascular disease. We tested the hypothesis that endothelial fibrinolytic function is diminished in middle-aged and older adults who habitually consume a diet high in saturated fat. Twenty-four healthy, sedentary middle-aged, and older adults (54 to 71 years) were studied: 10 (8 men and 2 women) with a dietary saturated fat intake saturated fat) of total calories and 14 (9 men and 5 women) with a dietary saturated fat intake ≥10% of total calories (high saturated fat). Net endothelial release of tissue-type plasminogen activator (t-PA), the primary activator of fibrinolysis, was determined, in vivo, in response to intrabrachial infusions of bradykinin (12.5 to 50.0 ng/100 ml tissue/min) and sodium nitroprusside (1.0 to 4.0 μg/100 ml tissue/min). Capacity of the endothelium to release t-PA in response to bradykinin was ∼30% less (p saturated fat group. Moreover, total amount of t-PA released was significantly less (∼30%) (201 ± 22 vs 274 ± 29 ng/100 ml tissue) in the adults who reported consuming a diet high in saturated fat. These results indicate that the capacity of the endothelium to release t-PA is lower in middle-aged and older adults who habitually consume a diet high in saturated fat. In conclusion, endothelial fibrinolytic dysfunction may underlie the increased atherothrombotic disease risk with a diet high in saturated fat.

  19. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways.

    Directory of Open Access Journals (Sweden)

    Eric J Zaccone

    Full Text Available The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3 and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4 coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1, it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ "cough receptors" such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli.

  20. Angiotensin II type 2 receptor expression after vascular injury: differing effects of angiotensin-converting enzyme inhibition and angiotensin receptor blockade.

    Science.gov (United States)

    Barker, Thomas A; Massett, Michael P; Korshunov, Vyacheslav A; Mohan, Amy M; Kennedy, Amy J; Berk, Bradford C

    2006-11-01

    It has been suggested that the effects of angiotensin II type 1 receptor (AT1R) blockers are in part because of angiotensin II type 2 receptor (AT2R) signaling. Interactions between the AT2R and kinins modulate cardiovascular function. Because AT2R expression increases after vascular injury, we hypothesized that the effects on vascular remodeling of the AT1R blocker valsartan and the ACE inhibitor benazepril require AT2R signaling through the bradykinin 1 and 2 receptors (B1R and B2R). To test this hypothesis, Brown Norway rats were assigned to 8 treatments (n=16): valsartan, valsartan+PD123319 (AT2R inhibitor), valsartan+des-arg9-[Leu8]-bradykinin (B1R inhibitor), valsartan+HOE140 (B2R inhibitor), benazepril, benazepril+HOE140, amlodipine, and vehicle. After 1 week of treatment, carotid balloon injury was performed. Two weeks later, carotids were harvested for morphometry and analysis of receptor expression by immunohistochemistry and Western blotting. Valsartan and benazepril significantly reduced the intima:media ratio compared with vehicle. Blockade of AT2R, B1R, or B2R in the presence of valsartan prevented the reduction seen with valsartan alone. B2R blockade inhibited the effect of benazepril. Injury increased AT1R, AT2R, B1R, and B2R expression. Treatment with valsartan but not benazepril significantly increased intima AT2R expression 2-fold compared with vehicle, which was not reversed by inhibition of AT2R, B1R, and B2R. Functionally, valsartan increased intimal cGMP levels compared with vehicle, and this increase was inhibited by blocking the AT2R, B1R, and B2R. Results suggest that AT2R expression and increased cGMP represent a molecular mechanism that differentiates AT1R blockers, such as valsartan, from angiotensin-converting enzyme inhibitors like benazepril.

  1. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides.

    Science.gov (United States)

    Zeng, Xian-Chun; Wang, Sanxia; Nie, Yao; Zhang, Lei; Luo, Xuesong

    2012-01-01

    BmKbpp is a novel cationic and α-helical peptide from the Chinese scorpion Mesobuthus martensii Karsch, of which function or biological activity has not been characterized so far. Here we showed that BmKbpp possesses strong antimicrobial activity against both Gram-positive and Gram-negative bacteria with a MIC range from 2.3 μM to 68.2 μM for the majority of tested bacteria. BmKbpp also inhibits the growth of tested fungi with an IC50 range from 0.2 μM to 3.1 μM. Because BmKbpp potently inhibits the growth of some antibiotics-resistant pathogens, and shows very weak hemolytic activity, it has considerable potentials for therapeutic applications. Moreover, we found that BmKbpp markedly inhibits the superoxide production in granulocytes or HL-60 cells at the concentrations of submicromolar level; this suggests that BmKbpp can act as a signaling molecule involving innate immune regulation at low concentrations. The C-terminal region of BmKbpp (BmKbpp-C) shows 72% similarity to the peptide K-12, a bradykinin-potentiating peptide. We found that both BmKbpp and BmKbpp-C possess bradykinin-potentiating activity, and the activity of BmKbpp-C is stronger than that of BmKbpp. PCR amplification for the genomic gene of BmBpp showed that it is not a continuous sequence in the genome; it suggests that BmKbpp could come from a recombination event in transcript level. Taken together, our data suggest that multi-functionalization of a single peptide, which is probably mediated by trans-splicing, could be a new mechanism for the functional diversification of scorpion venom peptides.

  2. Modulation of cutaneous inflammation by angiotensin-converting enzyme.

    Science.gov (United States)

    Scholzen, Thomas E; Ständer, Sonja; Riemann, Helge; Brzoska, Thomas; Luger, Thomas A

    2003-04-01

    Cutaneous neurogenic inflammation is a complex biological response of the host immune system to noxious stimuli. Present evidence suggests that zinc metalloproteases may play an important role in the regulation of neurogenic inflammation by controlling the local availability of neuropeptides, such as substance P (SP), that are capable of initiating or amplifying cutaneous inflammation after release from sensory nerves. To address the hypothesis that the dipeptidyl carboxypeptidase angiotensin-converting enzyme (ACE) is capable of modulating skin inflammation, we have analyzed murine allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD) using wild-type C57BL/6J (ACE(+/+)) or genetically engineered mice with a heterozygous deletion of somatic ACE (ACE(+/-)). In 2,4-dinitro-1-fluorobenzene-sensitized ACE(+/-) mice, ACD was significantly augmented in comparison to ACE(+/+) controls as determined by the degree of ear swelling after exposure to hapten. Likewise, systemic treatment of ACE(+/+) mice with the ACE inhibitor captopril before sensitization or elicitation of ACD significantly augmented the ACD response. In contrast, local damage and neuropeptide depletion of sensory nerves following capsaicin, injection of a bradykinin B(2), or a SP receptor antagonist before sensitization significantly inhibited the augmented effector phase of ACD in mice with functionally absent ACE. However, in contrast to ACD, the response to the irritant croton oil was not significantly altered in ACE(+/-) compared with ACE(+/+) mice. Thus, ACE by degrading bradykinin and SP significantly controls cutaneous inflammatory responses to allergens but not to irritants, which may explain the frequently observed exacerbation of inflammatory skin disease in patients under medication with ACE inhibitors.

  3. Upper thoracic respiratory interneurons integrate noxious somatic and visceral information in rats.

    Science.gov (United States)

    Qin, Chao; Chandler, Margaret J; Foreman, Robert D; Farber, Jay P

    2002-11-01

    The aim of this study was to determine if thoracic respiratory interneurons (TRINs) might receive peripheral noxious somatic and visceral inputs. Extracellular potentials of 78 respiration-related T(3) neurons, whose activity was driven by central respiratory output, were recorded from the intermediate zone in pentobarbital anesthetized, paralyzed, and ventilated male rats. These neurons were identified as interneurons by their locations and by the absence of antidromic activation from the cervical sympathetic trunk and cerebellum. Thoracic esophageal distension (ED) was produced by water inflation of a latex balloon (0.1-0.5 ml, 20 s). A catheter was placed in the pericardial sac to administer 0.2 ml bradykinin (10(-5) M) for noxious cardiac stimulation. Of 78 TRINs examined for ED, activity of 24 TRINs increased and activity of 8 TRINs decreased. Intrapericardial bradykinin increased activity in 26/65 TRINs tested and decreased activity in 5 TRINs. Seventy-four TRINs were tested for effects of brush, pressure, and pinch of the chest and upper back areas. No TRINs responded to brushing hair. Low-threshold responses to pressure were observed in 27 TRINs. Fourteen TRINs were wide dynamic range and 4 TRINs had high-threshold responses. Peripheral stimuli affected all types of TRINs, including inspiratory, expiratory, and biphasic neurons. Simultaneous phrenic recordings showed that effects of various somatic and visceral stimuli on TRINs were independent of central respiratory drive. Various somatovisceral and viscerovisceral patterns of input were observed in TRINs. The results suggested that TRINs participate in intraspinal processing and integration of nociceptive information from somatic fields and visceral organs.

  4. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    Science.gov (United States)

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  5. Effect of antihypertensive agents on stellate cells during liver regeneration in rats Efeito de agentes anti-hipertensivos sobre as células estreladas durante a regeneração hepática em ratos

    Directory of Open Access Journals (Sweden)

    Leandra N. Z. Ramalho

    2003-03-01

    Full Text Available BACKGROUND: Although most studies have focused on the hepatocytes, all the hepatic cells participate in the regenerative process, among them the stellate cells. The stellate cells are mesenchymal cells involved in local neurotransmission and paracrine regulation of several liver functions. Acute hepatic tissue loss promotes the proliferation and activation of stellate cells from a quiescent state to myofibroblast-like cells. AIM: Investigate the effects of antihypertensive agents on the stellate cell population during the liver regenerative phenomenon in rats. METHODS: Adult male Wistar rats received lisinopril, losartan, bradykinin, or saline solution in a proportional volume, intraperitoneally, before and after 70% partial hepatectomy. Animals from the experimental and saline groups were sacrificed at 36 hours after partial hepatectomy. The alpha-smooth muscle actin labelled stellate cells population was counted in the periportal and pericentral zones of the liver specimen. RESULTS: The labelled stellate cells were more numerous in the control group both in the periportal and pericentral zones at 36 hours after partial hepatectomy than at the other times. The population of stellate cells was significantly lower in the losartan group and higher in the bradykinin and lisinopril groups than in the control group. CONCLUSIONS: These results suggest that losartan can inhibit and bradykinin and lisinopril can stimulate the stellate cell population during liver regeneration in rats. These cells synthesize several substances to stimulate liver regeneration.RACIONAL: Embora a maioria dos estudos focalize os hepatócitos, todas as células hepáticas participam do processo regenerativo, entre elas as células estreladas, que são células mesenquimais envolvidas na regulação de uma série de funções hepáticas. A perda aguda de parênquima hepático induz proliferação e ativação destas células, a partir de estado de quiescência para fen

  6. Cigarette Smoking-Induced Cardiac Hypertrophy, Vascular Inflammation and Injury are Attenuated by Antioxidant Supplementation in An Animal Model

    Directory of Open Access Journals (Sweden)

    Moustafa Al Hariri

    2016-11-01

    Full Text Available BackgroundCardiovascular diseases are the leading causes of morbidity and mortality worldwide. Cigarette smoking remains a global health epidemic with associated detrimental effects on the cardiovascular system. In this work, we investigated the effects of cigarette smoke exposure on cardiovascular system in an animal model. The study then evaluated the effects of antioxidants (AO, represented by pomegranate juice, on cigarette smoke induced cardiovascular injury. This study aims at evaluating the effect of pomegranate juice supplementation on the cardiovascular system of an experimental rat model of smoke exposure.Methods Adult rats were divided into four different groups: Control, Cigarette smoking (CS, AO, and CS + AO. Cigarette smoke exposure was for 4 weeks (5 days of exposure/week and AO group received pomegranate juice while other groups received placebo. Assessment of cardiovascular injury was documented by assessing different parameters of cardiovascular injury mediators including: 1 cardiac hypertrophy, 2 oxidative stress (OS, 3 expression of inflammatory markers, 3 expression of Bradykinin receptor 1 (Bdkrb1, Bradykinin receptor 2 (Bdkrb2, and 4 altered expression expression of fibrotic/atherogenic markers [(Fibronectin (Fn1 and leptin receptor (ObR].ResultsData from this work demonstrated that cigarette smoke exposure induced cardiac hypertrophy, which was reduced upon administration of pomegranate in CS + AO group. Cigarette smoke exposure was associated with elevation in oxidative stress, significant increase in the expression of IL-1β, TNFα, Fn1 and ObR in rat’s aorta. In addition, an increase in aortic calcification was observed after one month of Cigarette smoke exposure. Furthermore, Cigarette smoke induced a significant up regulation in Bdkrb1 and Bdkrb2 expression levels. Finally, pomegranate supplementation exhibited cardiovascular protection assessed by the above findings and partly contributed to ameliorating cardiac

  7. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1.

    Science.gov (United States)

    Martino, Mary E B; Olsen, John C; Fulcher, Nanette B; Wolfgang, Matthew C; O'Neal, Wanda K; Ribeiro, Carla M P

    2009-05-29

    Inflamed cystic fibrosis (CF) human bronchial epithelia (HBE), or normal HBE exposed to supernatant from mucopurulent material (SMM) from CF airways, exhibit endoplasmic reticulum (ER)/Ca(2+) store expansion and amplified Ca(2+)-mediated inflammation. HBE inflammation triggers an unfolded protein response (UPR) coupled to mRNA splicing of X-box binding protein-1 (XBP-1). Because spliced XBP-1 (XBP-1s) promotes ER expansion in other cellular models, we hypothesized that XBP-1s is responsible for the ER/Ca(2+) store expansion in inflamed HBE. XBP-1s was increased in freshly isolated infected/inflamed CF in comparison with normal HBE. The link between airway epithelial inflammation, XBP-1s, and ER/Ca(2+) store expansion was then addressed in murine airways challenged with phosphate-buffered saline or Pseudomonas aeruginosa. P. aeruginosa-challenged mice exhibited airway epithelial ER/Ca(2+) store expansion, which correlated with airway inflammation. P. aeruginosa-induced airway inflammation triggered XBP-1s in ER stress-activated indicator (ERAI) mice. To evaluate the functional role of XBP-1s in airway inflammation linked to ER/Ca(2+) store expansion, control, XBP-1s, or dominant negative XBP-1 (DN-XBP-1) stably expressing 16HBE14o(-) cell lines were used. Studies with cells transfected with an unfolded protein response element (UPRE) luciferase reporter plasmid confirmed that the UPRE was activated or inhibited by expression of XBP-1s or DN-XBP-1, respectively. Expression of XBP-1s induced ER/Ca(2+) store expansion and potentiated bradykinin-increased interleukin (IL)-8 secretion, whereas expression of DN-XBP-1 inhibited bradykinin-dependent IL-8 secretion. In addition, expression of DN-XBP-1 blunted SMM-induced ER/Ca(2+) store expansion and SMM-induced IL-8 secretion. These findings suggest that, in inflamed HBE, XBP-1s is responsible for the ER/Ca(2+) store expansion that confers amplification of Ca(2+)-dependent inflammatory responses.

  8. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management.

    Science.gov (United States)

    Calvete, Juan J; Borges, Adolfo; Segura, Alvaro; Flores-Díaz, Marietta; Alape-Girón, Alberto; Gutiérrez, José María; Diez, Nardy; De Sousa, Leonardo; Kiriakos, Demetrio; Sánchez, Eladio; Faks, José G; Escolano, José; Sanz, Libia

    2009-03-06

    The taxonomic status of the medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela, which has been classified as Bothrops colombiensis, remains incertae cedis. To help resolving this question, the venom proteome of B. colombiensis was characterized by reverse-phase HPLC fractionation followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom contained proteins belonging to 8 types of families. PI Zn(2+)-metalloproteinases and K49 PLA(2) molecules comprise over 65% of the venom proteins. Other venom protein families comprised PIII Zn(2+)-metalloproteinases (11.3%), D49 PLA(2)s (10.2%), l-amino acid oxidase (5.7%), the medium-sized disintegrin colombistatin (5.6%), serine proteinases (1%), bradykinin-potentiating peptides (0.8%), a DC-fragment (0.5%), and a CRISP protein (0.1%). A comparison of the venom proteomes of B. colombiensis and B. atrox did not support the suggested synonymy between these two species. The closest homologues to B. colombiensis venom proteins appeared to be toxins from B. asper. A rough estimation of the similarity between the venoms of B. colombiensis and B. asper indicated that these species share approximately 65-70% of their venom proteomes. The close kinship of B. colombiensis and B. asper points at the ancestor of B. colombiensis as the founding Central American B. asper ancestor. This finding may be relevant for reconstructing the natural history and cladogenesis of Bothrops. Further, the virtually indistinguishable immunological crossreactivity of a Venezuelan ABC antiserum (raised against a mixture of B. colombiensis and Crotalus durissus cumanensis venoms) and the Costa Rican ICP polyvalent antivenom (generated against a mixture of B. asper, Crotalus simus, and Lachesis stenophrys venoms) towards the venoms of B. colombiensis and B. asper, supports this

  9. Angioedema hereditario: Guía de tratamiento Hereditary angioedema: A therapeutic guide

    Directory of Open Access Journals (Sweden)

    Alejandro Malbrán

    2012-04-01

    Full Text Available El angioedema hereditario (HAE es una enfermedad rara, autosómica dominante, caracterizada por episodios que comprometen la piel, el tracto gastrointestinal y la laringe. Tiene una mortalidad histórica por asfixia del 15 al 50%. Es producida por la deficiencia funcional del C1 inhibidor. La identificación de la bradiquinina como mediador principal ha estimulado el desarrollo de nuevos medicamentos para tratar la enfermedad. El tratamiento del HAE se establece en consensos internacionales. El desarrollo de guías para el tratamiento de la enfermedad permite ordenar el uso de procedimientos diagnósticos y drogas. Describimos aquí algunas características farmacológicas de los medicamentos utilizados en el tratamiento del HAE en la Argentina: el concentrado plasmático de C1 inhibidor, el antagonista de la bradiquinina, icatibant, el andrógeno atenuado danazol y los agentes anti-fibrinolíticos ácidos épsilon aminocaproico (EACA y tranexámico. Asimismo, se describe su forma de uso y del control de los eventos adversos más frecuentes, así como las recomendaciones del último consenso internacional, aplicables para conformar una primera guía de tratamiento del HAE en la Argentina.Hereditary angioedema (HAE is a rare autosomal dominant disease, characterized by episodes of edema involving the skin, gastrointestinal tract and larynx. HAE has a historical asphyxia mortality of 15% to 50%. It is the consequence of functional C1 inhibitor deficiency. The identification of bradykinin as the principal mediator of the disease has lead to the development of new drugs for its treatment. HAE management and treatment are agreed by international consensus decision. A therapeutic guide for the treatment of the disease is important to improve diagnosis and treatment. We here describe the pharmacology of drugs available for the treatment of HAE in Argentina: plasma derived C1 Inhibitor, the bradykinin antagonist: icatibant, the attenuated androgen

  10. Hereditary and acquired C1-inhibitor-dependent angioedema: from pathophysiology to treatment.

    Science.gov (United States)

    Zeerleder, Sacha; Levi, Marcel

    2016-01-01

    Uncontrolled generation of bradykinin (BK) due to insufficient levels of protease inhibitors controlling contact phase (CP) activation, increased activity of CP proteins, and/or inadequate degradation of BK into inactive peptides increases vascular permeability via BK-receptor 2 (BKR2) and results in subcutaneous and submucosal edema formation. Hereditary and acquired angioedema due to C1-inhibitor deficiency (C1-INH-HAE and -AAE) are diseases characterized by serious and potentially fatal attacks of subcutaneous and submucosal edemas of upper airways, facial structures, abdomen, and extremities, due to inadequate control of BK generation. A decreased activity of C1-inhibitor is the hallmark of C1-INH-HAE (types 1 and 2) due to a mutation in the C1-inhibitor gene, whereas the deficiency in C1-inhibitor in C1-INH-AAE is the result of autoimmune phenomena. In HAE with normal C1-inhibitor, a significant percentage of patients have an increased activity of factor XIIa due to a FXII mutation (FXII-HAE). Treatment of C1-inhibitor-dependent angioedema focuses on restoring control of BK generation by inhibition of CP proteases by correcting the balance between CP inhibitors and BK breakdown or by inhibition of BK-mediated effects at the BKR2 on endothelial cells. This review will address the pathophysiology, clinical picture, diagnosis and available treatment in C1-inhibitor-dependent angioedema focusing on BK-release and its regulation. Key Messages Inadequate control of bradykinin formation results in the formation of characteristic subcutaneous and submucosal edemas of the skin, upper airways, facial structures, abdomen and extremities as seen in hereditary and acquired C1-inhibitor-dependent angioedema. Diagnosis of hereditary and acquired C1-inhibitor-dependent angioedema may be troublesome as illustrated by the fact that there is a significant delay in diagnosis; a certain grade of suspicion is therefore crucial for quick diagnosis. Submucosal edema formation in

  11. Salmeterol and cytokines modulate inositol-phosphate signalling in Human airway smooth muscle cells via regulation at the receptor locus

    Directory of Open Access Journals (Sweden)

    Swan Caroline

    2007-09-01

    Full Text Available Abstract Background Airway hyper-responsiveness (AHR is a key feature of asthma and a causal relationship between airway inflammation and AHR has been identified. The aim of the current study was to clarify the effect of proinflammatory cytokines and asthma medication on primary human airway smooth muscle (ASM inositol phosphate (IPx signalling and define the regulatory loci involved. Methods Primary Human ASM cells were isolated from explants of trachealis muscle from individuals with no history of respiratory disease. The effect of cytokine or asthma medication on histamine or bradykinin induced IPx signalling was assessed by [3H] inositol incorporation. Quantitative Real Time PCR was used to measure mRNA levels of receptors and downstream signalling components. Transcriptional mechanisms were explored using a combination of 5'Rapid Amplification of cDNA Ends (5'RACE and promoter-reporter techniques. Results Treatment of Human ASM cells with IL-13, IFNγ or salmeterol for 24 hours lead to a modest augmentation of histamine induced IPx responses (144.3 +/- 9.3, 126.4 +/- 7.5 and 117.7 +/- 5.2%, p i.e. H1 Histamine Receptor (HRH1, B2 Bradykinin Receptor (BDKRB2, Gαq/11 and PLC-β1 identified that a significant induction of receptor mRNA (>2 fold was a feature of these responses explaining the cytokine and spasmogen specificity. The HRH1 and BDKRB2 promoter regions were mapped in ASM and promoter-reporter analyses identified that salmeterol can induce HRH1 (>2 fold and BDKRB2 (2–5 fold transcription. The effect of cytokines on HRH1 and BDKRB2 promoter-reporter expression suggested a more complex regulation of mRNA expression involving additional loci to the core promoter. Conclusion Our results indicate that the spasmogen specific receptor locus may be a key site of regulation determining the magnitude of spasmogen mediated ASM IPx responses during airway inflammation or following asthma medication. These data provide further insight into the

  12. Functional characterization of HUVEC-CS: Ca2+ signaling, ERK 1/2 activation, mitogenesis and vasodilator production.

    Science.gov (United States)

    Gifford, S M; Grummer, M A; Pierre, S A; Austin, J L; Zheng, J; Bird, I M

    2004-09-01

    While many endothelial cell lines exist, few are of human origin with characteristics close to the parent endothelial cell. We derived a subline (HUVEC-CS) of immortalized human umbilical vein endothelial cells (HUVEC-C) that proliferate in standard growth media and exhibit positive acetylated low-density lipoprotein (AcLDL) uptake, express eNOS, CD31 and ve-cadherin, and spontaneously form capillary-like structures when grown on Matrigel. HUVEC-CS also maintain endothelial cell characteristics at the level of mitogenesis, kinase activation and vasodilator production. Like primary HUVEC cells, HUVEC-CS express many of the key proteins necessary for vasodilator production, including epithelial nitric oxide synthase (eNOS), HSP 90, cav-1 and -2, cPLA2, and COX-1 and -2. Prostaglandin I synthase (PGIS) was not detectable by Western blot analysis, consistent with primary HUVEC in which PGI2 production is minimal. Receptors were detected for angiotensin II (AII), bradykinin, ATP and growth factors. ATP induced a dose- and time-dependent rise in the intracellular free Ca2+ concentration ([Ca2+]i). Initially, ATP stimulates P2Y receptors rather than P2X receptors, as demonstrated by the inability of ATP to initiate a Ca2+ response subsequent to emptying of the internal Ca2+ stores by thapsigargin. AII, bradykinin, epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) also caused a rise in [Ca2+]i in a subset of the cells. ATP, basic fibroblastic growth factor (bFGF), EGF and VEGF induced mitogenesis and caused a rise in ERK 2 activation within 10 min. L-Arginine to L-citrulline conversion assays showed that ATP, EGF and VEGF induced a significant rise in eNOS activity, and this correlates with an ability to induce Ca2+ mobilization and ERK 2 activation. In conclusion, HUVEC-CS are indeed endothelial cells and appear to be functionally very similar to primary HUVEC. These cells will prove a valuable tool for future studies in both basic and

  13. Characterization of kinin receptors by bioassays.

    Science.gov (United States)

    Gobeil, F; Regoli, D

    1994-08-01

    1. Using the classical pharmacological criteria recommended by Schild, namely the order of potency of selective agonists (e.g., bradykinin, desArg9-bradykinin, [Hyp3]BK and [Aib7]BK) and the apparent affinity of competitive antagonists (e.g., DArg[Hyp3,DPhe7,Leu8]BK and WIN 64338), we have attempted to characterize B2 receptor subtypes. It has been shown that vascular tissues (e.g., dog carotid and renal arteries, rabbit jugular vein and rabbit aorta) are very sensitive to kinin agonists and antagonists (pD2 and pA2 values for BK and HOE 140 on B2 receptors are 8.5-10.1 and 9.2-9.4, respectively, and for desArg9BK and desArg9[Leu8]BK on B1 receptors they are 7.3-8.6 and 7.3-7.8, respectively). Mechanisms of action of kinins differ between pharmacological preparations. Kinin may act directly on the smooth muscle (e.g., rabbit jugular vein and rabbit aorta) as well as indirectly through other endogenous mediators such as nitric oxide (EDRF) (e.g., dog carotid and renal arteries) and prostaglandins (e.g., dog renal artery). 2. Pharmacological analysis of rabbit jugular vein (RJV) and guinea pig ileum (GPI) has revealed different sensitivities to certain synthetic analogs of BK and to competitive B2 receptor antagonists between the two tissues. 3. Agonist order of potency ([Hyp3]BK > BK > [Aib7]BK) obtained for RJV differed from that obtained for GPI (BK > or = [Aib7]BK > [Hyp3]BK). Competitive antagonists such as DArg[Hyp3, DPhe7, Leu8]BK and WIN 64338 discriminate in favor of B2A (RJV) and B2B (GPI) receptor subtypes, respectively. These data demonstrate the existence of B2 receptor subtypes. Correlation between data obtained in the present study and those reported for binding to the human B2 receptor support the view that the human receptor is similar to that of the rabbit.

  14. Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation.

    Science.gov (United States)

    Guan, Shan-shan; Han, Wei-wei; Zhang, Hao; Wang, Song; Shan, Ya-ming

    2016-01-01

    Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin-angiotensin-aldosterone and kallikrein-kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson-Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain-AngII complex is more stable than the N-domain-AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.

  15. Molecular cloning of a novel tryptophyllin peptide from the skin of the orange-legged monkey frog, Phyllomedusa hypochondrialis.

    Science.gov (United States)

    Wang, Ran; Lin, Yangjun; Chen, Tianbao; Zhou, Mei; Wang, Lei; Shaw, Chris

    2014-06-01

    Tryptophyllins are a group of small (4-14 amino acids), heterogenous peptides, mostly from the skins of hylid frogs from the genera, Phyllomedusa and Litoria. To date, more than forty TPHs have been discovered in species from these two genera. Here, we describe the identification of a novel tryptophyllin type 3 peptide, PhT-3, from the extracts of skin of the orange-legged monkey frog, Phyllomedusa hypochondrialis, and molecular cloning of its precursor-encoding cDNA from a cDNA library constructed from the same skin sample. Full primary structural characterization was achieved using a combination of direct Edman degradation, mass spectrometry and deduction from cloned skin-derived cDNA. The open-reading frame of the precursor cDNA was found to consist of 63 amino acid residues. The mature peptide arising from this precursor contains a post-translationally modified N-terminal pyroglutamate (pGlu) residue, formed from acid-mediated cyclization of an N-terminal Gln (Q) residue, and with the structure: pGlu-Asp-Lys-Pro-Phe-Trp-Pro-Pro-Pro-Ile-Tyr-Pro-Met. Pharmacological assessment of a synthetic replicate of this peptide on phenylephrine preconstricted rat tail artery segments, revealed a reduction in relaxation induced by bradykinin. PhT-3 was also found to mediate antiproliferative effects on human prostate cancer cell lines.

  16. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    Science.gov (United States)

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2016-05-18

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  17. Effects of acrylic resin monomers on porcine coronary artery reactivity.

    Science.gov (United States)

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S

    2016-07-01

    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA.

  18. Reversal of diabetic vasculopathy in a rat model of type 1 diabetes by opiorphin-related peptides.

    Science.gov (United States)

    Calenda, Giulia; Tong, Yuehong; Kanika, Nirmala D; Tar, Moses T; Suadicani, Sylvia O; Zhang, Xinhua; Melman, Arnold; Rougeot, Catherine; Davies, Kelvin P

    2011-10-01

    Diabetes results in a myriad of vascular complications, often referred to as diabetic vasculopathy, which encompasses both microvascular [erectile dysfunction (ED), retinopathy, neuropathy, and nephropathy] and macrovascular complications (hypertension, coronary heart disease, and myocardial infarction). In diabetic animals and patients with ED, there is decreased opiorphin or opiorphin-related gene expression in corporal tissue. Both opiorphin and the rat homologous peptide sialorphin are found circulating in the plasma. In the present study, we investigated if diabetes induced changes in plasma sialorphin levels and if changes in these levels could modulate the biochemistry and physiology of vascular smooth muscle. We show that circulating sialorphin levels are reduced in a rat model of type I diabetes. Intracorporal injection of plasmids expressing sialorphin into diabetic rats restores sialorphin levels to those seen in the blood of nondiabetic animals and results in both improved erectile function and blood pressure. Sialorphin modulated the ability of C-type natriuretic peptide to relax both corporal and aortic smooth muscle strips and of bradykinin to regulate intracellular calcium levels in both corporal and aortic smooth muscle cells. We have previously shown that expression of genes encoding opiorphins is increased when erectile function is improved. Our findings thus suggest that by affecting circulating levels of opiorphin-related peptides, proper erectile function is not only an indicator but also a modulator of overall vascular health of a man.

  19. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs.

    Science.gov (United States)

    Ufnal, Marcin; Skrzypecki, Janusz

    2014-04-01

    Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure.

  20. Clinical endocrinology and metabolism. Receptors for gut peptides.

    Science.gov (United States)

    Harmar, Anthony J

    2004-12-01

    Most gut peptides exert their effects through G protein-coupled receptors, a family of about 700 membrane proteins, 87 of which are presently known to have peptide ligands. Three additional gut peptide receptors are not G protein-coupled receptors but regulate intracellular cyclic GMP accumulation. The aim of this review is to illustrate how the sequencing of the human genome and other recent advances in genomics has contributed to our understanding of the role of peptides and their receptors in gastrointestinal function. Recent discoveries include the identification of receptors for the peptides motilin and neuromedin U, and new physiological ligands for the PTH2 receptor, the CRF(2) receptor and the growth hormone secretagogue receptor. Knockout mice lacking specific peptide receptors or their ligands provide informative animal models in which to determine the functions of the numerous peptide-receptor systems in the gut and to predict which of them may be the most fruitful for drug development. Some peptide-receptor signalling systems may be more important in disease states than they are in normal physiology. For example, substance P, galanin, bradykinin and opioids play important roles in visceral pain and inflammation. Other peptides may have developmental roles: for example, disruption of endothelin-3 signalling prevents the normal development of the enteric nervous system and contributes to the pathogenesis of Hirschsprung disease.

  1. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    Science.gov (United States)

    Visch, Henk-Jan; Koopman, Werner J H; Leusink, Anouk; van Emst-de Vries, Sjenet E; van den Heuvel, Lambertus W P J; Willems, Peter H G M; Smeitink, Jan A M

    2006-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significantly reduced in primary skin fibroblasts from a patient with an isolated complex I deficiency. The present work addresses the mechanism(s) underlying this impaired response. Luminometry of fibroblasts from 6 healthy subjects and 14 genetically characterized patients expressing mitochondria targeted luciferase revealed that the Bk-induced increase in [ATP](M) was significantly, but to a variable degree, decreased in 10 patients. The same variation was observed for the increases in mitochondrial [Ca(2+)] ([Ca(2+)](M)), measured with mitochondria targeted aequorin, and cytosolic [Ca(2+)] ([Ca(2+)](C)), measured with fura-2, and for the Ca(2+) content of the endoplasmic reticulum (ER), calculated from the increase in [Ca(2+)](C) evoked by thapsigargin, an inhibitor of the ER Ca(2+) ATPase. Regression analysis revealed that the increase in [ATP](M) was directly proportional to the increases in [Ca(2+)](C) and [Ca(2+)](M) and to the ER Ca(2+) content. Our findings provide evidence that a pathological reduction in ER Ca(2+) content is the direct cause of the impaired Bk-induced increase in [ATP](M) in human complex I deficiency.

  2. Factor XII: a novel target for safe prevention of thrombosis and inflammation.

    Science.gov (United States)

    Kenne, E; Nickel, K F; Long, A T; Fuchs, T A; Stavrou, E X; Stahl, F R; Renné, T

    2015-12-01

    Plasma protein factor XII (FXII) activates the procoagulant and proinflammatory contact system that drives both the kallikrein-kinin system and the intrinsic pathway of coagulation. When zymogen FXII comes into contact with negatively charged surfaces, it auto-activates to the serine proteaseactivated FXII (FXIIa). Recently, various in vivo activators of FXII have been identified including heparin, misfolded protein aggregates, polyphosphate and nucleic acids. Murine models have established a central role of FXII in arterial and venous thrombosis. Despite its central function in thrombosis, deficiency in FXII does not impair haemostasis in animals and humans. In a preclinical cardiopulmonary bypass system in large animals, the FXIIa-blocking antibody 3F7 prevented thrombosis; however, in contrast to traditional anticoagulants, bleeding was not increased. In addition to its function in thrombosis, FXIIa initiates formation of the inflammatory mediator bradykinin. This mediator increases vascular leak, causes vasodilation, and induces chemotaxis with implications for septic, anaphylactic and allergic disease states. Therefore, targeting FXIIa appears to be a promising strategy for thromboprotection without associated bleeding risks but with anti-inflammatory properties.

  3. Analgesic and Anti-inflammatory Effects of Ginger Oil

    Institute of Scientific and Technical Information of China (English)

    JIA Yong-liang; XIE Qiang-min; ZHAO Jun-ming; ZHANG Lin-hui; SUN Bao-shan; BAO Meng-jing; LI Fen-fen; SHEN Jian; SHEN Hui-jun; ZHAO Yu-qing

    2011-01-01

    Objective Ginger (Zingiber officinale) is widely used as a spice in cooking and as a medicinal herb in traditional herbal medicine. The present study was to investigate the analgesic and anti-inflammatory activities of ginger oil in experimental animal models. Methods The analgesic effect of the oils was evaluated by the "acetic acid" and "hot-plate" test models of pain in mice. The anti-inflammatory effect of the oil was investigated in rats, using rat paw edema induced by carrageenan, adjuvant arthritis, and vascular permeability induced by bradykinin, arachidonic acid, and histamine. Indomethacin (1 mg/kg), Aspirin (0.5 g/kg) and Dexamethasone (2.5 mg/kg) were used respectively as reference drugs for comparison. Results The ginger oil (0.25-1.0 g/kg) produced significant analgesic effect against chemically- and thermally-induced nociceptive pain stimuli in mice (P < 0.05, 0.01). And the ginger oil (0.25-1.0 g/kg) also significantly inhibited carrageenan-induced paw edema, adjuvant arthritis, and inflammatory mediators-induced vascular permeability in rats (P < 0.05, 0.001). Conclusion These findings confirm that the ginger oil can be used to treat pain and chronic inflammation such as rheumatic arthritis.

  4. Global renal gene expression profiling analysis in B2-kinin receptor null mice: impact of diabetes.

    Directory of Open Access Journals (Sweden)

    Miran A Jaffa

    Full Text Available Diabetic nephropathy (DN, the leading cause of end-stage renal failure, is clinically manifested by albuminuria and a progressive decline in glomerular filtration rate. The risk factors and mechanisms that contribute to the development and progression of DN are still incompletely defined. To address the involvement of bradykinin B(2-receptors (B(2R in DN, we used a genome wide approach to study the effects of diabetes on differential renal gene expression profile in wild type and B(2R knockout (B(2R(-/- mice. Diabetes was induced with streptozotocin and plasma glucose levels and albumin excretion rate (AER were measured at predetermined times throughout the 23 week study period. Longitudinal analysis of AER indicated that diabetic B(2R(-/-D null mice had a significantly decreased AER levels compared to wild type B(2R(+/+D mice (P = 0.0005. Results from the global microarray study comparing gene expression profiles among four groups of mice respectively: (B(2R(+/+C, B(2R(+/+D, B(2R(-/-C and B(2R(-/-D highlighted the role of several altered pathological pathways in response to disruption of B(2R and to the diabetic state that included: endothelial injury, oxidative stress, insulin and lipid metabolism and inflammatory process with a marked alteration in the pro-apoptotic genes. The findings of the present study provide a global genomics view of biomarkers that highlight the mechanisms and putative pathways involved in DN.

  5. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae.

    Science.gov (United States)

    Abu Hasan, Zatul-'Iffah; Williams, Helen; Ismail, Nur M; Othman, Hidayatulfathi; Cozier, Gyles E; Acharya, K Ravi; Isaac, R Elwyn

    2017-03-27

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3(rd) instars showing greater resistance. Mortality was also high within 24 h of exposure of 1(st), 2(nd) and 3(rd) instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1(st) instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.

  6. Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp.

    Science.gov (United States)

    Vieira, Mônica L.; Naudin, Clément; Mörgelin, Matthias; Romero, Eliete C.; Nascimento, Ana Lucia T. O.; Herwald, Heiko

    2016-01-01

    Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease. PMID:27167223

  7. Sacubitril/valsartan in heart failure: latest evidence and place in therapy

    Science.gov (United States)

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk for HF progression and death. Sacubitril/valsartan (previously known as LCZ696) is a first-in-class medicine that contains a neprilysin (NEP) inhibitor (sacubitril) and an angiotensin II (Ang-II) receptor blocker (valsartan). NEP is an endopeptidase that metabolizes different vasoactive peptides including natriuretic peptides, bradykinin and Ang-II. In consequence, its inhibition increases mainly the levels of both, natriuretic peptides (promoting diuresis, natriuresis and vasodilatation) and Ang-II whose effects are blocked by the angiotensin receptor blocker, valsartan (reducing vasoconstriction and aldosterone release). Results from the 8442 patient PARADIGM-HF study showed in patients with New York Heart Association (NYHA) class II–IV and reduced ejection fraction treated with LCZ696 (versus enalapril), the following benefits: reduction of the risk of death from cardiovascular causes by 20%; reduction of HF hospitalizations by 21%; reduction of the risk of all-cause mortality by 16%. Overall there was a 20% risk reduction on the primary endpoint, composite measure of cardiovascular (CV) death or time to first HF hospitalization. PARADIGM-HF was stopped early after a median follow up of 27 months. Post hoc analyses of PARADIGM-HF as well as the place in therapy of sacubitril/valsartan, including future directions, are included in the present review. PMID:27803793

  8. Involvement of the renal kallikrein-kinin system in K(+)-induced diuresis and natriuresis in anesthetized rats.

    Science.gov (United States)

    Suzuki, T; Katori, M; Fujita, T; Kumagai, Y; Majima, M

    2000-07-07

    Intravenous infusion of a high-K(+) solution (67.5 mM KCl, 67.5 mM NaCl) to anesthetized rats increased urine volume by 47.6% after 60 min, compared with infusion of a Na(+) solution (135 mM NaCl). This treatment also increased urinary excretion of Na(+) by 32.2%, in parallel with an increase in excretion of K(+) or Cl(-). Urinary excretion of kallikrein increased within 60 min after the start of K(+) infusion. A bradykinin B(2) receptor antagonist, 8-[3-[N-[(E)-3-(6-acetamidopyridin-3-yl)acryloylglycyl]-N-me thylamino ]-2,6-dichlorobenzyloxy]-2-methylquinoline (FR173657; 1.0 mg/kg, i.v. ), inhibited the K(+)-induced diuresis and natriuresis by 41.0% and 26.7%, respectively. These results indicate that K(+) load induces diuresis and natriuresis through the renal kallikrein-kinin system in rats.

  9. Changing the treatment of heart failure with reduced ejection fraction: clinical use of sacubitril-valsartan combination

    Science.gov (United States)

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk of morbidity and mortality. Sacubitril valsartan (previously known as LCZ696) is a new oral agent approved for the treatment of symptomatic chronic heart failure in adults with reduced ejection fraction. It is described as the first in class angiotensin receptor neprilysin inhibitor (ARNI) since it incorporates the neprilysin inhibitor, sacubitril and the angiotensin II receptor antagonist, valsartan. Neprilysin is an endopeptidase that breaks down several vasoactive peptides including natriuretic peptides (NPs), bradykinin, endothelin and angiotensin II (Ang-II). Therefore, a natural consequence of its inhibition is an increase of plasmatic levels of both, NPs and Ang-II (with opposite biological actions). So, a combined inhibition of these both systems (Sacubitril / valsartan) may enhance the benefits of NPs effects in HF (natriuresis, diuresis, etc) while Ang-II receptor is inhibited (reducing vasoconstriction and aldosterone release). In a large clinical trial (PARADIGM-HF with 8442 patients), this new agent was found to significantly reduce cardiovascular and all cause mortality as well as hospitalizations due to HF (compared to enalapril). This manuscript reviews clinical evidence for sacubitril valsartan, dosing and cautions, future directions and its considered place in the therapy of HF with reduced ejection fraction. PMID:28133468

  10. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses

    Science.gov (United States)

    Li, Pengfei; Jackson, Glen P.

    2017-01-01

    1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.

  11. Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson’s Disease Cellular Model

    Directory of Open Access Journals (Sweden)

    Anna Niewiarowska-Sendo

    2016-01-01

    Full Text Available Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson’s disease (PD. A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors.

  12. The molecular concept of atheromatous plaques.

    Science.gov (United States)

    Thent, Zar Chi; Chakraborty, Chiranjib; Mahakkanukrauh, Pasuk; Kosai, Nik; Rajan, Reynu; Das, Srijit

    2016-05-02

    Recently, there are scientific attempts to devise new drugs in the biotechnology industry in order to treat various diseases including atherosclerosis. Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include macrophage inhibiting factor (MIF), leucocytes and P-selectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT2R) and ATP-activated purinergic receptor therapy are notable to mention. Future drugs may be designed aiming three signalling mechanisms of AT2R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3',5'-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system. In the present review, we discuss the molecular concept of the inflammatory process occurring inside the arterial wall. Better understanding of the vascular inflammatory processes and the cells involved in the formation of plaques, may prove to be beneficial for future diagnosis, clinical treatment and planning innovative novel anti-atherosclerotic drugs.

  13. Effects of fused hirudin on activity of thrombin and function of platelets

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; CHEN Shao-ping; CAI Zai-long; YANG Sheng-sheng; QIN Yong-wen

    2005-01-01

    Objective: To investigate whether fused hirudin peptide has both antithrombin and antiplatelet functions. Methods: The core region of fused hirudin was the C-terminal tail of hirudin(hirudin53-64),which could bind to the anion binding exosite (ABE) of thrombin.Arg-Pro-Pro-Gly-Phe(RPPGF) amino acid sequence,a metabolite of bradykinin,was added to the N-terminus of hirudin53-64.It bound to the active site of thrombin.Additionally,Arg-Gly-Asp(RGD)amino acid sequence,an inibitor of glycoprotein Ⅱb/Ⅲa( GP Ⅱb/Ⅲa) receptor,was linked to C-terminus of hirudin53-64.This 26-animo acid-fused hirudin peptide was artificially synthesized,purified and analysed. Results: Fused hirudin peptide significantly lengthened the activated partial thromboplastin time(APTT),thrombin time(TT)and prothrombin time(PT) and inhibited the amidolytic activity of thrombin.The ADP-induced platelet aggregation was markedly inhibited by fused hirudin peptide. Conclusion: Fused hirudin peptide has activity of antithrombin as well as antiplatelet.Therefore bifunctional anticoagulation peptide has capacity to target various components of haemostatic process and may become more powerful antithrombosis agent.

  14. Endothelium-derived hyperpolarizing factor mediated relaxations in pig coronary arteries do not involve Gi/o proteins

    Institute of Scientific and Technical Information of China (English)

    Kwok Fu Jacobus NG; Susan Wai Sum LEUNG; Picky Ying Keung MAN; Paul M VANHOUTTE

    2008-01-01

    Aim: Endothelium-dependent relaxations to certain neurohumoral substances are mediated by pertussis toxin-sensitive Gi/o protein. Our experiments were designed to determine the role, if any, of pertussis toxin-sensitive G-proteins in relaxations attributed to endothelium-derived hyperpolarizing factor (EDHF). Methods: Pig coronary arterial rings with endothelia were suspended in organ chambers filled with Krebs-Ringer bicarbonate solution maintained at 37℃ and continuously aerated with 95%O2 and 5% CO2. Isometric tension was measured during contractions to prostaglandin F2, in the presence of indomethacin and Nω-nitro-L-arginine methyl ester (L-NAME). Results: Thrombin, the thrombin re-ceptor-activating peptide SFLLRN, bradykinin, substance P, and calcimycin pro-duced dose-dependent relaxations. These relaxations were not inhibited by prior incubation with pertussis toxin, but were abolished upon the addition of charyb-dotoxin plus apamin. Relaxations to the α2-adrenergic agonist UK14304 and those to serotonin were abolished in the presence of indomethacin and L-NAME. Conclusion: Unlike nitric oxide-mediated relaxations, EDHF-mediated relax-ations of pig coronary arteries do not involve pertussis toxin-sensitive pathways and are Gi/o protein independent.

  15. Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrero

    2013-01-01

    Full Text Available The aim of this study was to analyze whether tyrosine phosphorylation in tumoral arteries may modulate their vascular response. To do this, mesenteric arteries supplying blood flow to colorectal tumors or to normal intestine were obtained during surgery and prepared for isometric tension recording in an organ bath. Increasing tyrosine phosphorylation with the phosphatase inhibitor, sodium orthovanadate produced arterial contraction which was lower in tumoral than in control arteries, whereas it reduced the contraction to noradrenaline in tumoral but not in control arteries and reduced the relaxation to bradykinin in control but not in tumoral arteries. Protein expression of VEGF-A and of the VEGF receptor FLT1 was similar in control and tumoral arteries, but expression of the VEGF receptor KDR was increased in tumoral compared with control arteries. This suggests that tyrosine phosphorylation may produce inhibition of the contraction in tumoral mesenteric arteries, which may increase blood flow to the tumor when tyrosine phosphorylation is increased by stimulation of VEGF receptors.

  16. Contribution of the Kallikrein/Kinin System to the Mediation of ConA-Induced Inflammatory Ascites.

    Science.gov (United States)

    Baintner, Károly

    2016-03-01

    Intraperitoneal administration of concanavalin A (ConA, 25 mg/kg b.w.), a cell-binding plant lectin was used for inducing inflammatory ascites, and potential inhibitors were tested in 1 h and 2.5 h experiments, i.e. still before the major influx of leucocytes. At the end of the experiment the peritoneal fluid was collected and measured. The ConA-induced ascites was significantly (p<0.01) and dose-dependently inhibited by icatibant (HOE-140), a synthetic polypeptide antagonist of bradykinin receptors. Aprotinin, a kallikrein inhibitor protein also had significant (p<0.01), but less marked inhibitory effect. L-NAME, an inhibitor of NO synthesis, and atropine methylnitrate, an anticholinergic compound, were ineffective. It is concluded, that the kallikrein/kinin system contributes to the mediation of the ConA-induced ascites by increasing subperitoneal vascular permeability, independent of the eventual vasodilation produced by NO. It is known, that membrane glycoproteins are aggregated by the tetravalent ConA and the resulting distortion of membrane structure may explain the activation of the labile prekallikrein. Complete inhibition of the ConA-induced ascites could not be achieved by aprotinin or icatibant, which indicates the involvement of additional mediators.

  17. D-glucosamine promotes transfection efficiency during electroporation.

    Science.gov (United States)

    Igawa, Kazunari; Ohara, Naoko; Kawakubo, Atsushi; Sugimoto, Kouji; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    D-Glucosamine is a useful medicament in various fields of medicine and dentistry. With respect to stability of the cell membrane, it has been reported that bradykinin-induced nociceptive responses are significantly suppressed by the direct application of D-glucosamine. Electroporation is usually used to effectively introduce foreign genes into tissue culture cells. Buffers for electroporation with or without D-glucosamine are used in experiments of transfection vectors. This is the first study to indirectly observe the stability and protection of the osteoblast membrane against both electric stress and gene uptake (the proton sponge hypothesis: osmotic rupture during endosomes prior to fusion with lysosomes) in electroporation with D-glucosamine application. The transfection efficiency was evaluated as the fluorescence intensity of the transfected green fluorescent protein (GFP) in the cultured cells (osteoblasts; NOS-1 cells). The transfection efficiency increased over 30% in the electroporation samples treated with D-glucosamine-supplemented buffer after one day. The membrane absorption of D-glucosamine is the primary mechanism of membrane stress induced by electric stress. This new function of D-glucosamine is useful and meaningful for developing more effective transformation procedures.

  18. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    Science.gov (United States)

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP.

  19. 'TRPing' synaptic ribbon function in the rat pineal gland: neuroendocrine regulation involves the capsaicin receptor TRPV1.

    Science.gov (United States)

    Reuss, Stefan; Disque-Kaiser, Ursula; Binzen, Uta; Greffrath, Wolfgang; Peschke, Elmar

    2010-01-01

    Synaptic ribbons (SRs) are presynaptic structures thought to regulate and facilitate multivesicular release. In the pineal gland, they display a circadian rhythm with higher levels at night paralleling melatonin synthesis. To gain more insight into the processes involved and the possible functions of these structures, a series of experiments were conducted in rodents. We studied the regional distribution of a molecular marker of pineal SRs, the kinesin motor KIF3A in the gland. Respective immunoreactivity was abundant in central regions of the gland where sympathetic fibers were less dense, and vice versa, revealing that intercellular communication between adjacent pinealocytes is enhanced under low sympathetic influence. KIF3A was found to be colocalized to the transient receptor potential channel of the vanilloid receptor family, subtype 1 (TRPV1). The TRPV1 agonist capsaicin increased melatonin secretion from perifused pineals in a dose-dependent manner that was blocked by the competitive TRPV1 antagonist capsazepine. No change in free intracellular calcium was observed in response to TRPV1 ligands applied to pinealocytes responding to norepinephrine, bradykinin and/or depolarization. These data clearly indicate that TRPV1 actively regulates pineal gland function.

  20. Sink or swim: a test of tadpole behavioral responses to predator cues and potential alarm pheromones from skin secretions.

    Science.gov (United States)

    Maag, Nino; Gehrer, Lukas; Woodhams, Douglas C

    2012-11-01

    Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication.

  1. Chick RGS2L demonstrates concentration-dependent selectivity for pertussis toxin-sensitive and -insensitive pathways that inhibit L-type Ca2+ channels.

    Science.gov (United States)

    Tosetti, Patrizia; Parente, Valeria; Taglietti, Vanni; Dunlap, Kathleen; Toselli, Mauro

    2003-05-15

    In neuronal cells, the influx of Ca2+ ions through voltage-dependent L-type calcium (L) channels couples excitation to multiple cellular functions. In addition to voltage, several neurotransmitters, hormones and cytokines regulate L channel gating via binding to G-protein-coupled receptors. Intracellular molecules that modify G-protein activity - such as regulator of G-protein-signalling (RGS) proteins - are therefore potential candidates for regulating Ca2+ influx through L channels. Here we show that a novel RGS2 splice variant from chick dorsal root ganglion (DRG) neurons, RGS2L, reduces bradykinin (BK)-mediated inhibition of neuronal L channels and accelerates recovery from inhibition. Chick RGS2 reduces the inhibition mediated by both the pertussis toxin (PTX)-sensitive (Gi/o-coupled) and the PTX-insensitive (presumably Gq/11-coupled) pathways. However, we demonstrate for the first time in a living cell that the extent of coupling to each pathway varies with RGS2L concentration. A low concentration of recombinant chick RGS2L (10 nM) preferentially reduces the inhibition mediated by the PTX-insensitive pathway, whereas a 100-fold higher concentration attenuates both PTX-sensitive- and PTX-insensitive-mediated components equally. Our data suggest that factors promoting RGS2L gene induction may regulate Ca2+ influx through L channels by recruiting low-affinity interactions with Gi/o that are absent at basal RGS2L levels.

  2. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  3. Successful treatment of acute hereditary angioedema attacks with self-administered icatibant in patients with venous access problems.

    Science.gov (United States)

    Wiednig, Michaela

    2013-04-25

    Hereditary angioedema is a rare and potentially fatal autosomal dominant disorder characterised by unpredictable skin, gastrointestinal tract or respiratory tract oedema. Plasma-derived C1-esterase inhibitors are effective in the prophylaxis or treatment of hereditary angioedema type I and II attacks, but must be administered intravenously. This may be problematic in patients with venous access difficulties. Icatibant, a bradykinin B2-receptor antagonist, is administered subcutaneously. In July 2008 icatibant received approval for healthcare professional-administered treatment of hereditary angioedema attacks in adults. In 2011 it received European Medicines Agency and US Food and Drug Administration licences for patient-administered treatment of hereditary angioedema attacks. Given these approvals, and with the appropriate training, icatibant could provide the opportunity for patients to self-administer treatment. This is one of the first long-term follow-up reports of patients with hereditary angioedema using self-administered icatibant. During follow-up, icatibant remained effective and patient satisfaction was high.

  4. Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management.

    Science.gov (United States)

    Bork, K; Davis-Lorton, M

    2013-02-01

    Hereditary angioedema due to C1-inhibitor deficiency (HAE-C1-INH) is a rare, autosomal-dominant disease. HAE-C1-INH is characterized by recurrent attacks of marked, diffuse, nonpitting and nonpruritic skin swellings, painful abdominal attacks, and laryngeal edema. The extremities and the gastrointestinal tract are most commonly affected. Swelling of the upper respiratory mucosa poses the greatest risk because death from asphyxiation can result from laryngealedema. HAE-C1-INH attacks are variable, unpredictable, and may be induced by a variety of stimuli, including stress or physical trauma. Because the clinical presentation of HAE-C1-INH is similar to other types of angioedema, the condition may be a challenge to diagnose. Accurate identification of HAE-C1-INH is critical in order to avoid asphyxiation by laryngeal edema and to improve the burden of disease. Based on an understanding of the underlying pathophysiology of IHAE-C1-INH, drugs targeted specifically to the disease, such as C1-inhibitor therapy, bradykinin B2-receptor antagonists, and kallikrein-inhibitors, have become available for both treatment and prevention of angioedema attacks. This article reviews the clinical features, differential diagnosis, and current approaches to management of HAE-C1-INH.

  5. Review of Select Practice Parameters, Evidence-Based Treatment Algorithms, and International Guidelines for Hereditary Angioedema.

    Science.gov (United States)

    Jose, Jaison; Zacharias, Jamie; Craig, Timothy

    2016-10-01

    Hereditary angioedema (HAE) is a rare bradykinin-mediated disease that is characterized by recurrent attacks of subcutaneous or submucosal edema, which can be life threatening. HAE affects all ethnic groups equally and does not differentiate between age, sex, or race. However, the availability of therapies varies amongst countries resulting in a lack of uniformity of care. Not only is there a disparity of medication availability, but since HAE is a rare disease, it is frequently overlooked and the diagnosis is missed. Even with diagnosis, treatment and management is often less than optimal. For these reasons, it is essential to have practice parameters and guidelines. In this chapter, we focus on recent guidelines. These guidelines deal with recognition, diagnosis, medical care, patient management, and assessment, all which are essential to provide optimal care to people with a rare and orphan disease. The intent of the guidelines, and thus this chapter, is to reduce morbidity and mortality, and restore a normal quality of life for the patient with HAE. We will review the guidelines from various regions of the world as well as international group recommendations. In addition, specific patient populations such as the pregnant, elderly, and juvenile require modified treatment regimens, and for this reason, we have included these data as well. The intent of this chapter is to aid the practitioner in holistic care of the patient with HAE in order to ultimately provide the best standard of care possible.

  6. Hereditary angioedema with normal C1-INH (HAE type III).

    Science.gov (United States)

    Riedl, Marc A

    2013-01-01

    Hereditary angioedema (HAE) with normal C1 inhibitor (C1-INH), also known as HAE type III, is a familial condition only clinically recognized within the past three decades. Similar to HAE from C1-INH deficiency (HAE types I and II), affected individuals experience unpredictable angioedema episodes of the skin, gastrointestinal tract, and airway. Unique clinical features of HAE with normal C1-INH include the predominance of affected women, frequent exacerbation by estrogen, and a prominence of angioedema that involves the face and oropharynx. The underlying pathophysiology of HAE with normal C1-INH is poorly understood, but indirect evidence points to contact pathway dysregulation with bradykinin-mediated angioedema. Currently, evaluation is complicated by a lack of confirmatory laboratory testing such that clinical criteria must often be used to make the diagnosis of HAE with normal C1-INH. Factor XII mutations have been identified in only a minority of persons affected by HAE with normal C1-INH, limiting the utility of such analysis. To date, no controlled clinical studies have examined the efficacy of therapeutic agents for HAE with normal C1-INH, although published evidence supports frequent clinical benefit with medications shown effective in HAE due to C1-INH deficiency.

  7. An update on the diagnosis and management of hereditary angioedema with abnormal C1 inhibitor.

    Science.gov (United States)

    Davis-Lorton, Mark

    2015-02-01

    Hereditary angioedema (HAE) is a rare genetic disease caused by a deficiency in functional C1-esterase inhibitor characterized by recurrent episodes of angioedema in the absence of associated urticaria. Subcutaneous swellings are experienced by virtually all patients with HAE, and dermatologists are likely to encounter this manifestation, requiring that they be knowledgeable about diagnosis and treatment options. Diagnosis of HAE is often delayed because several of the symptoms can mimic other disease states. Delays in diagnosis can lead to increased inappropriate treatment and decreased patient quality of life. Once a proper diagnosis is made, treatment needs to be targeted to the individual patient and includes on-demand therapy and an option for short- and long-term prophylaxis. On-demand therapy is required for all patients who are diagnosed with HAE and effective options include plasma-derived and recombinant C1 inhibitors, kallikrein inhibitors, and bradykinin B2-receptor antagonists. Options available for prophylaxis include plasma-derived C1 inhibitors, attenuated androgens, and antifibrinolytic agents, although the latter 2 options are associated with significant adverse events. This article reviews the diagnosis and options for effective management of patients with HAE.

  8. Tissue factor expression on the surface of monocytes from a patient with hereditary angioedema.

    Science.gov (United States)

    Iwamoto, Kazumasa; Morioke, Satoshi; Yanase, Yuhki; Uchida, Kazue; Hide, Michihiro

    2014-10-01

    Hereditary angioedema (HAE) presents as severe angioedema, which is mostly due to the C1 inhibitor (C1-INH) gene mutations. Environmental factors, minor trauma and oral contraceptives have been reported to induce angioedema attack, but the trigger may often be uncertain. Activated factor XII controlled by C1-INH facilitates bradykinin generation and also regulates coagulation cascade, but the relationship between edema formation and coagulation is still unclear. We have described a 35-year-old female patient with HAE, presenting with frequent angioedema attacks in the absence of an apparent triggering factor. She showed higher levels of FDP and D-dimer during angioedema than those in remission. In addition, tissue factor (TF), an initiator of the extrinsic coagulation cascade, was expressed on the surface of monocytes. It was significantly higher than that of monocytes from healthy controls and tends to further increase during attacks. The expression of TF on monocytes may play a role in the induction of angioedema attacks in HAE by activating the coagulation pathway in association with reduced functions of C1-INH.

  9. F12-46C/T polymorphism as modifier of the clinical phenotype of hereditary angioedema.

    Science.gov (United States)

    Speletas, M; Szilágyi, Á; Csuka, D; Koutsostathis, N; Psarros, F; Moldovan, D; Magerl, M; Kompoti, M; Varga, L; Maurer, M; Farkas, H; Germenis, A E

    2015-12-01

    The factors influencing the heterogeneous clinical manifestation of hereditary angioedema due to C1-INH deficiency (C1-INH-HAE) represent one of the oldest unsolved problems of the disease. Considering that factor XII (FXII) levels may affect bradykinin production, we investigated the contribution of the functional promoter polymorphism F12-46C/T in disease phenotype. We studied 258 C1-INH-HAE patients from 113 European families, and we explored possible associations of F12-46C/T with clinical features and the SERPING1 mutational status. Given that our cohort consisted of related subjects, we implemented generalized estimating equations (GEEs), an extension of the generalized linear model accounting for the within-subject correlation. F12-46C/T carriers exhibited a significantly delayed disease onset (P < 0.001) and did not need long-term treatment (P = 0.02). In a GEE linear regression model, the presence of F12-46C/T was significantly associated with a 7-year delay in disease onset (P < 0.0001) regardless of SERPING1 mutational status. It is concluded that F12-46C/T carriage acts as an independent modifier of C1-INH-HAE severity.

  10. Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist.

    Science.gov (United States)

    Blanchet, M-R; Israël-Assayag, E; Cormier, Y

    2005-07-01

    Nicotinic agonists, including 1,1-dimethyl-4-phenylpiperazinium (DMPP), have anti-inflammatory properties and in some instances smooth muscle relaxing effects. Since inflammation and airway smooth muscle contraction are two major components of asthma, the present authors investigated the effects of DMPP on airway inflammation and airway resistance in a mouse model of asthma. Mice were sensitised and challenged with ovalbumin (OVA) and treated either intraperitoneally or intranasally with DMPP. The effect of DMPP was tested on airway inflammation, airway resistance and on the increase of intracellular calcium in bronchial smooth muscle cells. DMPP given either during sensitisation, OVA challenges or throughout the protocol prevented lung inflammation and decreased the serum level of OVA specific immunoglobulin E. DMPP administration reduced the number of total cells, lymphocytes and eosinophils in the bronchoalveolar lavage (BAL) fluid. Intranasal DMPP administration was as effective as dexamethasone (DEXA) in reducing total cell count and eosinophil counts in BAL fluid. DMPP, but not DEXA, reduced tissue inflammation. Intranasal DMPP, given 10 min before the test, reduced airway responsiveness to metacholine. DMPP also reduced the increase in intracellular calcium in response to bradykinin. In conclusion, these results show that 1,1-dimethyl-4-phenylpiperazinium reduces lung inflammation and prevents airway hyperresponsiveness in the mouse model of asthma.

  11. PGI2 synthesis and excretion in dog kidney: evidence for renal PG compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R.M.; Nasjletti, A.; Heerdt, P.M.; Baer, P.G.

    1986-01-01

    To assess the concept of compartmentalization of renal prostaglandins (PG), we compared entry of PGE2 and the PGI2 metabolite 6-keto-PGF1 alpha into the renal vascular and tubular compartments, in sodium pentobarbital-anesthetized dogs. Renal arterial 6-keto-PGF1 alpha infusion increased both renal venous and urinary 6-keto-PGF1 alpha outflow. In contrast, renal arterial infusion of arachidonic acid (AA) or bradykinin (BK) increased renal venous 6-keto-PGF1 alpha outflow but had no effect on its urinary outflow. Both urinary and renal venous PGE2 outflows increased during AA or BK infusion. Ureteral stopped-flow studies revealed no postglomerular 6-keto-PGF1 alpha entry into tubular fluid. During renal arterial infusion of (3H)PGI2 and inulin, first-pass 3H clearance was 40% of inulin clearance; 35% of urinary 3H was 6-keto-PGF1 alpha, and two other urinary metabolites were found. During renal arterial infusion of (3H)6-keto-PGF1 alpha and inulin, first-pass 3H clearance was 150% of inulin clearance; 75% of urinary 3H was 6-keto-PGF1 alpha, and only one other metabolite was found. We conclude that in the dog PGE2 synthesized in the kidney enters directly into both the renal vascular and tubular compartments, but 6-keto-PGF1 alpha of renal origin enters directly into only the renal vascular compartment.

  12. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs. We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen, a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  13. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  14. Novel antitussive effect of suplatast tosilate in guinea pigs.

    Science.gov (United States)

    Zhou, Jian-Rong; Syono, Ryo-ichi; Fukumi, Syu-ichi; Kimoto, Kenji; Shirasaki, Tetsuya; Soeda, Fumio; Takahama, Kazuo

    2015-01-01

    We studied the antitussive effects of suplatast, a Th2 cytokine inhibitor, and compared them with the effects of codeine using an experimental cough model in guinea pigs. Suplatast and codeine dose-dependently inhibited cough caused by mechanical stimulation of the larynx, but they did not inhibit cough caused by mechanical stimulation of the bifurcation of the trachea. In guinea pigs with bronchitis, suplatast had an antitussive effect on cough caused by stimulation of the larynx, whereas codeine did not inhibit such cough. In SO2-exposed guinea pigs, suplatast tended to inhibit cough caused by mechanical stimulation of the tracheal bifurcation. Further, suplatast inhibited citric acid-induced cough augmented by pretreatment with an angiotensin-converting enzyme inhibitor, whereas codeine did not inhibit such cough. Suplatast also inhibited bradykinin-induced discharges of airway vagal afferent nerves and significantly inhibited 4-aminopyridine-induced discharges of airway vagal afferent nerves. These findings indicate that the antitussive effects of suplatast are mediated by a novel mechanism involving the peripheral nervous system.

  15. Transcriptome and proteome of the highly neurotoxic venom of Gloydius intermedius.

    Science.gov (United States)

    Yang, Zhang-Min; Yang, Yu-E; Chen, Yu; Cao, Jing; Zhang, Cui; Liu, Ling-Ling; Wang, Zhe-Zhi; Wang, Xu-Min; Wang, Ying-Ming; Tsai, Inn-Ho

    2015-12-01

    The venomics of Gloydius intermedius were investigated using expressed sequence tags (ESTs) analyses, 2D gel-electrophoresis combined with MALDI-TOF/TOF, and LC-MS/MS. A total of 1920 ESTs from the venom gland cDNA library were sequenced; 74% of them belonged to toxin-families. The four most abundant families among the toxin transcripts were: serine protease (SP, 36.2%), bradykinin potentiating peptide (25.3%), l-amino acid oxidase (LAAO, 13.1%), and phospholipase A2 (PLA2, 9.9%). Moreover, the full sequences of four PLA2s, eight SPs, cysteine-rich secretory protein (CRISP), C-type-lectin-like-protein (CTLP), hyaluronidase, metalloproteinase, and nerve growth factor were deduced from the cDNA sequences. Excluding the CRISP and hyaluronidase, most of the G. intermedius venom proteins bear 92-99% sequence identities to those of other pitviper venoms. The most abundant components are PLA2s (37%), SPs (20%) and LAAO (6%), while metalloproteinase, CTLP, and other components each account for intermedius and other hemorrhagic pitvipers. The bimorphism of hemorrhagic and neurotoxic venoms among Gloydius is confirmed; our results shed more lights on the co-evolution of both neurotoxicity and hypotension in some viperid venoms.

  16. A role for ion channels in perivascular glioma invasion.

    Science.gov (United States)

    Thompson, Emily G; Sontheimer, Harald

    2016-10-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuropeptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials.

  17. Genome-wide investigation of schizophrenia associated plasma Ndel1 enzyme activity.

    Science.gov (United States)

    Gadelha, Ary; Coleman, Jonathan; Breen, Gerome; Mazzoti, Diego Robles; Yonamine, Camila M; Pellegrino, Renata; Ota, Vanessa Kiyomi; Belangero, Sintia Iole; Glessner, Joseph; Sleiman, Patrick; Hakonarson, Hakon; Hayashi, Mirian A F; Bressan, Rodrigo A

    2016-04-01

    Ndel1 is a DISC1-interacting oligopeptidase that cleaves in vitro neuropeptides as neurotensin and bradykinin, and which has been associated with both neuronal migration and neurite outgrowth. We previously reported that plasma Ndel1 enzyme activity is lower in patients with schizophrenia (SCZ) compared to healthy controls (HCs). To our knowledge, no previous study has investigated the genetic factors associated with the plasma Ndel1 enzyme activity. In the current analyses, samples from 83 SCZ patients and 92 control subjects that were assayed for plasma Ndel1 enzyme activity were genotyped on Illumina Omni Express arrays. A genetic relationship matrix using genome-wide information was then used for ancestry correction, and association statistics were calculated genome-wide. Ndel1 enzyme activity was significantly lower in patients with SCZ (t=4.9; pCAMK1D, MAGI2, CCDC25, and GABGR3, at a level of suggestive significance (p<10(-6)), independent of the clinical status. Then, we performed a model to investigate the observed differences for case/control measures. 2 SNPs at region 1p22.2 reached the p<10(-7) level. ZFPM2 and MAD1L1 were the only two genes with more than one hit at 10(-6) order of p value. Therefore, Ndel1 enzyme activity is a complex trait influenced by many different genetic variants that may contribute to SCZ physiopathology.

  18. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension.

    Science.gov (United States)

    Katori, Makoto; Majima, Masataka

    2003-02-01

    The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.

  19. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    Science.gov (United States)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  20. Biological effects of exogenous adenosine 5 prime -triphosphate on cultured mammalian cells: Evidence for a receptor mechanism and its regulation by desensitization

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, F.A.

    1989-01-01

    Exogenous adenosine 5{prime}-triphosphate (ATP) mobilized intracellular calcium in human carcinoma A43l cells and in Swiss 3T3 and 3T6 mouse fibroblasts by increasing inositol trisphosphate similar to well down growth factors (platelet-derived growth factor (PDGF), epidermal growth factor (EGF), bradykinin (BK), serum). Calcium mobilization was examined by video imaging of fura-2 fluorescence is single cells, following the radioactive isotope {sup 45}Ca, and monitoring the decrease in fluorescence of cells loaded with chlortetracycline. Uridine 5{prime}-triphosphate, but not other nucleotides, mimicked ATP. Single-cell analysis revealed synchronous responses in 10 sec to ATP, BK or serum, while PDGF (3T3) and EGF (A431) produced slower signals with significant cell-to-cell variation. PDGF desensitized 3T3 cells to ATP and BK added 100 sec later but ATP or BK did not desensitized to PDGF. Homologous desensitization was seen with all agonists. Heterologous desensitization was also observed in A431 cells where ATP desensitized to serum, but serum did not to ATP. ATP-stimulated calcium entry was detected after 10 sec in A431 cells, but not in Swiss 3T6 cells. Entry started before significant efflux had occurred and did not fit the capacitance model of Putney. A 2-3 hr ATP pretreatment produced a homologous desensitization state that required 20 hr to disappear, probably due to down-regulation of the putative ATP receptors.

  1. Pharmacological properties of angiotensin II antagonists: Examining all the therapeutic implications

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2001-06-01

    Full Text Available Angiotensin II (Ang II, the effector peptide of the renin-angiotensin system (RAS, exerts a variety of actions in physiological blood pressure and body fluid regulation, and is implicated as a major pathogenic factor in the development of cardiovascular disease. Inhibition of the RAS, via treatment with the angiotensin-converting enzyme inhibitors (ACE-I, or more recently the Ang II AT1-receptor blockers (ARBs, has been used as a therapeutic approach to the treatment of hypertension and other cardiovascular dysfunction. Evidence from animal and clinical studies shows that the antihypertensive and overall organ-protective actions of the ARBs are similar to those of ACE-I. However, as the ARBs selectively block the AT1-receptor, which is responsible for the known cardiovascular actions of Ang II, leave the AT2-receptor unopposed and do not interfere with the breakdown of bradykinin, there is the potential for beneficial effects in hypertensive patients with cardiovascular diseases such as left ventricular hypertrophy. Furthermore, there may be additional benefits when the ARBs are combined with ACE-I in such patients. Animal studies contribute to the elucidation and understanding of the role of AT1- and AT2-receptors in the cardiovascular system, and may help in the design of clinical studies aimed at investigating the effects of ACE-I, ARBs, and their combination, on cardiovascular outcomes in hypertensive patients.

  2. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  3. Anti-Inflammatory and Analgesic Activities of a Novel Biflavonoid from Shells of Camellia oleifera

    Directory of Open Access Journals (Sweden)

    Yong Ye

    2012-09-01

    Full Text Available Shells are by-products of oil production from Camellia oleifera which have not been harnessed effectively. The purpose of this research is to isolate flavonoid from shells of Camellia oleifera and evaluate its anti-inflammatory and analgesic effects. The flavonoid was identified as bimolecular kaempferol structure by UV, MS, 1H NMR and 13C NMR spectra, which is a new biflavonoid and first found in Camellia oleifera. It showed dose-dependent anti-inflammatory activity by carrageenin-induced paw oedema in rats and croton oil induced ear inflammation in mice, and analgesic activity by hot plate test and acetic acid induced writhing. The mechanism of anti-inflammation of biflavonoid is related to both bradykinin and prostaglandins synthesis inhibition. The biflavonoid showed both central and peripheral analgesic effects different from aspirin, inhibition of the synthesis or action of prostaglandins may contribute to analgesic effect of biflavonoid. The biflavonoid significantly decreased malonaldehyde (MDA and increased superoxidase dismutase (SOD and Glutathione peroxidase (GSH-Px activity in serum (p < 0.01, revealed strong free radical scavenging activity in vivo. It indicates the biflavonoid can control inflammation and pain by eliminating free radical so as to inhibit the mediators and decrease the prostaglandins. The biflavonoid can be used as a prospective medicine for inflammation and pain.

  4. Wozu AT1-Rezeptorantagonisten?

    Directory of Open Access Journals (Sweden)

    Berent R

    2000-01-01

    Full Text Available ACE-Hemmer sind nun seit fast 20 Jahren im klinischen Einsatz. Ihre Effektivität in der Behandlung der arteriellen Hypertonie, der Herzinsuffizienz und bei nephrologischen Erkrankungen wurde durch eine große Zahl an randomisierten, prospektiven Studien belegt. Zusätzlich ist das Nebenwirkungsprofil (inklusive seltener Nebenwirkungen dieser Substanzklasse durch die langjährige Anwendung gut dokumentiert. Unter einer AT1-Rezeptorantagonistentherapie konnte bislang eindeutig gezeigt werden, daß das Auftreten von Nebenwirkungen, im speziellen des Reizhustens, deutlich seltener ist und im Placebobereich liegt, was die Compliance der Patienten sicherlich erhöht. Klinisch finden sich allerdings kaum Unterschiede in der Hämodynamik bei der Einnahme von ACE-Hemmern oder AT1-Rezeptorantagonisten. AT1-Rezeptorantagonisten blockieren sicherlich effektiver die AT1-rezeptorvermittelte Vasokonstriktion, währenddessen sich die ACE-Hemmerwirkung aus einer partiellen Abnahme der Angiotensin-II-Bildung und der Akkumulation von Bradykinin zusammensetzt. Aufgrund der derzeitigen Datenlage kann der AT1-Rezeptorantagonist nicht als Alternative zum ACE-Hemmer empfohlen werden, außer ein Absetzen des ACE-Hemmers ist wegen Nebenwirkungen notwendig. Auch die Kombinationstherapie, AT1-Rezeptorantagonist plus ACE-Hemmer, stellt zum jetzigen Zeitpunkt noch keine etablierte Therapie dar.

  5. Delayed onset muscle soreness: Involvement of neurotrophic factors.

    Science.gov (United States)

    Mizumura, Kazue; Taguchi, Toru

    2016-01-01

    Delayed-onset muscle soreness (DOMS) is quite a common consequence of unaccustomed strenuous exercise, especially exercise containing eccentric contraction (lengthening contraction, LC). Its typical sign is mechanical hyperalgesia (tenderness and movement related pain). Its cause has been commonly believed to be micro-damage of the muscle and subsequent inflammation. Here we present a brief historical overview of the damage-inflammation theory followed by a discussion of our new findings. Different from previous observations, we have observed mechanical hyperalgesia in rats 1-3 days after LC without any apparent microscopic damage of the muscle or signs of inflammation. With our model we have found that two pathways are involved in inducing mechanical hyperalgesia after LC: activation of the B2 bradykinin receptor-nerve growth factor (NGF) pathway and activation of the COX-2-glial cell line-derived neurotrophic factor (GDNF) pathway. These neurotrophic factors were produced by muscle fibers and/or satellite cells. This means that muscle fiber damage is not essential, although it is sufficient, for induction of DOMS, instead, NGF and GDNF produced by muscle fibers/satellite cells play crucial roles in DOMS.

  6. The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels.

    Science.gov (United States)

    Sampieri, Alicia; Diaz-Muñoz, Mauricio; Antaramian, Anaid; Vaca, Luis

    2005-07-01

    In the present study we have explored structural determinants of the functional interaction between skeletal muscle ryanodine receptor (RyR1) and transient receptor potential channel 1 (TRPC1) channels expressed in Chinese hamster ovary cells. We have illustrated a functional interaction between TRPC1 channels and RyR1 for the regulation of store-operated calcium entry (SOCE) initiated after releasing calcium from a caffeine-sensitive intracellular calcium pool. RNA interference experiments directed to reduce the amount of TRPC1 protein indicate that RyR1 associates to at least two different types of store-operated channels (SOCs), one dependent and one independent of TRPC1. In contrast, bradykinin-induced SOCE is completely dependent on the presence of TRPC1 protein, as we have previously illustrated. Removing the foot structure from RyR1 results in normal caffeine-induced release of calcium from internal stores but abolishes the activation of SOCE, indicating that this structure is require for functional coupling to SOCs. The footless RyR1 protein shows a different cellular localization when compared with wild type RyR1. The later protein shows a higher percentage of colocalization with FM-464, a marker of plasma membrane. The implications of the foot structure for the functional and physical coupling to TRPC and SOCs is discussed.

  7. Hypersensitive prostaglandin and thromboxane response to hormones in rabbit colitis

    Energy Technology Data Exchange (ETDEWEB)

    Zipser, R.D.; Patterson, J.B.; Kao, H.W.; Hauser, C.J.; Locke, R.

    1985-10-01

    Inflammation of the colon is associated with increased production of prostaglandins (PG) and thromboxanes (Tx), and these eicosanoids may contribute to the inflammatory, secretory, and motility dysfunctions in colitis. To evaluate the potential role of peptide hormones in the enhanced eicosanoid release, colitis was established in rabbits by a delayed-type hypersensitivity reaction to dinitrochlorobenzene and by an immune-complex-mediated reaction. PG and Tx were identified in the venous effluent of isolated perfused colons by radiochromatography after ( UC)arachidonic acid prelabeling, as well as by bioassay, and then quantitated by immunoassay. The two colitis models were morphologically similar. Basal release of PGE2, PGI2, and TxA2 was two- to threefold greater from colitis tissue than from control tissue. Bradykinin (BK) and angiotensin II (ANG II) increased release of UC-labeled eicosanoids, whereas several gastrointestinal hormones had no effect. In control colons, BK and ANG II increased PGE2 and PGI2 release (by about 2-fold) but did not alter TxA2. In contrast, BK and ANG II markedly exaggerated the release of eicosanoids in colitis. Since BK and possibly ANG II are increased at sites of inflammation, the hypersensitive eicosanoid response to these peptides may augment the eicosanoid-mediated manifestations of colitis.

  8. High precision measurement of electrical resistance across endothelial cell monolayers.

    Science.gov (United States)

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  9. Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis

    Indian Academy of Sciences (India)

    Jaeok Lee; Syamantak Majumder; Suvro Chatterjee; Kambadur Muralidhar

    2011-06-01

    The peptide fragments obtained by cathepsin digestion of purified buffalo prolactin (buPRL) monomer have been characterized using SDS-PAGE and FPLC with regard to size and pI. Their antiangiogenic activity was tested in chick embryo chorioallantoic membrane (CAM) assay and the human endothelial cells wound healing assay. Antiangiogenic activity was observed in cathepsin-cleaved fragments from buPRL. Further, a peptide sequence 45A-46Q-47G-48K-49G-50F-51I-52T-53M-54A-55L-56N-57S-58C, which matched with human somatostatin (hSST), a known antiangiogenic factor, was located in the second loop between the first and second α-helices in the threedimensional structure of buPRL, obtained by homology modelling. The synthetic peptide matching with SST sequence was found to exhibit antiangiogenic activity in both in vitro and ex vivo assays. It was also observed that all the peptides related to buPRL could antagonize the vascular endothelial growth factor (VEGF) and bradykinin (BK)-dependent production of endothelial nitric oxide (NO), which is a pre-requisite for endothelial tube formation. It is concluded therefore that an internal sequence in buPRL and peptide fragments derived from cathepsin-digested buPRL exhibit antiangiogenic activities.

  10. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    Science.gov (United States)

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context.

  11. Gliadins induce TNFalpha production through cAMP-dependent protein kinase A activation in intestinal cells (Caco-2).

    Science.gov (United States)

    Laparra Llopis, José Moisés; Sanz Herranz, Yolanda

    2010-06-01

    Celiac disease is an autoimmune enteropathy caused by a permanent intolerance to gliadins. In this study the effects of two gliadin-derived peptides (PA2, PQPQLPYPQPQLP and PA9, QLQPFPQPQLPY) on TNFalpha production by intestinal epithelial cells (Caco-2) and whether these effects were related to protein kinase A (PKA) and/or -C (PKC) activities have been evaluated. Caco-2 cell cultures were challenged with several sets of gliadin peptides solutions (0.25 mg/mL), with/without different activators of PKA or PKC, bradykinin (Brdkn) and pyrrolidine dithiocarbamate (PDTC). The gliadin-derived peptides assayed represent the two major immunodominant epitopes of the peptide 33-mer of alpha-gliadin (56-88) (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF). Both peptides induced the TNFalpha production triggering the inflammatory cell responses, the PA2 being more effective. The addition of the peptides in the presence of dibutyril cyclic AMP (cAMP), Brdkn or PDTC, inhibited the TNFalpha production. The PKC-activator phorbol 12-myristate 13-diacetate additionally increased the PA2- and PA9-induced TNFalpha production. These results link the gliadin-derived peptides induced TNFalpha production through cAMP-dependent PKA activation, where ion channels controlling calcium influx into cells could play a protective role, and requires NF-kappaB activation.

  12. Peptide Toxins in Solitary Wasp Venoms

    Science.gov (United States)

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  13. Peptide Toxins in Solitary Wasp Venoms

    Directory of Open Access Journals (Sweden)

    Katsuhiro Konno

    2016-04-01

    Full Text Available Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs, in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.

  14. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    Science.gov (United States)

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  15. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics

    Directory of Open Access Journals (Sweden)

    Syafiq Asnawi Zainal Abidin

    2016-10-01

    Full Text Available Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, ʟ-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.

  16. First Report of Eurycoma longifolia Jack Root Extract Causing Relaxation of Aortic Rings in Rats

    Science.gov (United States)

    2016-01-01

    Although Eurycoma longifolia has been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluated in vitro. Results showed that DCM-II reduced (p < 0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p < 0.05) while bradykinin- (BK-) induced relaxation enhanced (p < 0.001). In vitro, DCM-II inhibited (p < 0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediated via inhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.

  17. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    Directory of Open Access Journals (Sweden)

    Wender Nascimento Rouver

    Full Text Available The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM, castrated (CAST, castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group or supraphysiological dose (2.5 mg/kg/day, SUPRA group of testosterone for 15 days. Systolic blood pressure (SBP was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO, L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT. We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP.

  18. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  19. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry.

    Science.gov (United States)

    König, Simone; Kollas, Oliver; Dreisewerd, Klaus

    2007-07-15

    We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.

  20. A new approach for the study of gas-phase ion-ion reactions using electrospray ionization.

    Science.gov (United States)

    Ogorzalek Loo, R R; Udseth, H R; Smith, R D

    1992-10-01

    A simple flow reactor which facilitates the study and application of ion-ion and ion-molecule reactions at near atmospheric pressures is reported. Reactant ions were generated by electrospray ionization and discharge ionization methods, although any ionization sources amenable to atmospheric pressure may be used. Ions of opposite charge are generated in spatially separate ion sources and are swept into capillary inlets where the flows are merged and where reaction(s) can occur. Among the reactions investigated were the partial neutralization of multiply protonated polypeptides and proteins such as melittin, bradykinin, cytochrome c, and myoglobin by reaction with discharge-generated anions, the partial neutralization of multiply charged anions of oligodeoxyadenylic acid (d(pA)3) by reaction with discharge-generated cations, the partial neutralization of bovine A-chain insulin anions by reaction with myoglobin [M+nH](n+) ions, and the reaction of multiply protonated melittin with discharge-generated cations. The cation-anion reactions generally resulted in a shift to lower charge (higher mass-to-charge ratio) in the products' charge state distributions and the transfer of solvent molecules to the macromolecule products. Multiply protonated melittin was detected in a less highly solvated state with the positive discharge in operation.

  1. Plasma extravasation mediated by lipopolysaccharide-induction of kinin B1 receptors in rat tissues

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Wille

    2001-01-01

    Full Text Available The present study was performed to: (a evaluate the effects of kinin B1 (Sar{D-Phe8}-des-Arg9-BK; 10 nmol/kg and B2 (bradykinin (BK; 10 nmol/kg receptor agonists on plasma extravasation in selected rat tissues; (b determine the contribution of a lipopolysaccharide (LPS (100 μ g/kg to the effects triggered by B1 and B2 agonists; and (c characterize the selectivity of B1 ({Leu8}desArg9-BK; 10 nmol/kg and B2 (HOE 140; 10 nmol/kg antagonists as inhibitors of this kinin-induced phenomenon. B1 and B2 agonists were shown to increase plasma extravasation in the duodenum, ileum and also in the urinary bladder of the rat. LPS pretreatment enhanced the plasma extravasation mediated only by the B1 agonist in the duodenum, ileum, trachea, main and segmentar bronchi. These effects were prevented by the B1. but not the B2 antagonist. In normal rats, the B2 antagonist inhibited the effect of B2 agonist in all the tissues analyzed. However, in LPS-treated rats, the B2 antagonist was ineffective in the urinary bladder.

  2. Peripheral artery disease: potential role of ACE-inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Giuseppe Coppola

    2008-12-01

    Full Text Available Giuseppe Coppola, Giuseppe Romano, Egle Corrado, Rosa Maria Grisanti, Salvatore NovoDepartment of Internal Medicine, Cardiovascular and Nephro-Urological Diseases, Chair of Cardiovascular Disease, University of Palermo, Palermo, ItalyAbstract: Subjects with peripheral arterial disease (PAD of the lower limbs are at high risk for cardiovascular and cerebrovascular events and the prevalence of coronary artery disease in such patients is elevated. Recent studies have shown that regular use of cardiovascular medications, such as therapeutic and preventive agents for PAD patients, seems to be promising in reducing long-term mortality and morbidity. The angiotensin-converting-enzyme (ACE system plays an important role in the pathogenesis and progression of atherosclerosis, and ACE-inhibitors (ACE-I seem to have vasculoprotective and antiproliferative effects as well as a direct antiatherogenic effect. ACE-I also promote the degradation of bradykinin and the release of nitric oxide, a potent vasodilator; further, thay have shown important implications for vascular oxidative stress. Other studies have suggested that ACE-I may also improve endothelial dysfunction. ACE-I are useful for reducing the risk of cardiovascular events in clinical and subclinical PAD. Particularly, one agent of the class (ie, ramipril has shown in many studies to able to significantly reduce cardiovascular morbidity and mortality in patients with PAD.Keywords: atherosclerosis, peripheral arterial disease, endothelial dysfunction, ACE-inhibitors

  3. Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus.

    Science.gov (United States)

    Leung, Po Sing; Carlsson, Per-Ola

    2005-05-01

    Several regulatory systems are implicated in the regulation of islet function and beta cell mass. Of great interest in this context are some endocrine, paracrine/autocrine, and intracrine regulators. These include, to name but a few, the gut peptides, growth factors, prostaglandins, and some vasoactive mediators such as nitric oxide, bradykinins, endothelins, and angiotensins. Apart from its potent vasoconstrictor actions, the renin-angiotensin system (RAS) that generates angiotensin II has several novel functions-stimulation and inhibition of cell proliferation; induction of apoptosis; generation of reactive oxygen species; regulation of hormone secretion; and proinflammatory and profibrogenic actions. In the pancreas, recent evidence supports the presence of an islet RAS, which is subject to activation by islet transplantation and diabetes. Such a local islet RAS, if activated, may drive islet fibrosis and reduce islet blood flow, oxygen tension, and insulin biosynthesis. Moreover, activation of an islet RAS may drive the synthesis of reactive oxygen species, cause oxidative stress-induced beta cell dysfunction and apoptosis, and thus contribute to the islet dysfunction seen in type 2 diabetes and after islet transplantation. Blockade of the RAS could contribute to the development of novel therapeutic strategies in the prevention and treatment of patients with diabetes and in islet transplantation.

  4. Biochemical response and the effects of bariatric surgeries on type 2 diabetes

    Science.gov (United States)

    Allen, Roland; Hughes, Tyler; Lerd Ng, Jia; Ortiz, Roberto; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah

    2013-03-01

    A general method is introduced for calculating the biochemical response to pharmaceuticals, surgeries, or other medical interventions. This method is then applied in a simple model of the response to Roux-en-Y gastric bypass (RYGB) surgery in obese diabetic patients. We specifically address the amazing fact that glycemia correction is usually achieved immediately after RYGB surgery, long before there is any appreciable weight loss. Many studies indicate that this result is not due merely to caloric restriction, and it is usually attributed to an increase in glucagon-like peptide 1 (GLP-1) levels observed after the surgery. However, our model indicates that this mechanism alone is not sufficient to explain either the largest declines in glucose levels or the measured declines in the homeostatic model assessment insulin resistance (HOMA-IR). The most robust additional mechanism would be production of a factor which opens an insulin-independent pathway for glucose transport into cells, perhaps related to the well-established insulin-independent pathway associated with exercise. Potential candidates include bradykinin, a 9 amino acid peptide. If such a substance were found to exist, it would offer hope for medications which mimic the immediate beneficial effect of RYGB surgery. Supported by Qatar Biomedical Research Institute and Science Program at Texas A&M University at Qatar

  5. Microcirculation and venous ulcers: a review.

    Science.gov (United States)

    Pascarella, Luigi; Schönbein, Geert W Schmid; Bergan, John J

    2005-11-01

    Recent histological and immunocytochemical analyses of venous leg ulcers suggest that lesions observed in the different stages of chronic venous insufficiency (CVI) may be related to an inflammatory process. This inflammatory process leads to fibrosclerotic remodeling of the skin and then to ulceration. The vascular network of the most superficial layers of the skin appears to be the target of the inflammatory reaction. Hemodynamic forces such as venous hypertension, circulatory stasis, and modified conditions of shear stress appear to play an important role in an inflammatory reaction accompanied by leukocyte activation which clinically leads to CVI: venous dermatitis and venous ulceration. The leukocyte activation is accompanied by the expression of integrins and by synthesis and release of many inflammatory molecules, including proteolytic enzymes, leukotrienes, prostaglandin, bradykinin, free oxygen radicals, cytokines, and possibly other classes of inflammatory mediators. The inflammatory reaction perpetuates itself, leading to liposclerotic skin and subcutaneous tissue remodeling. In light of the mechanisms of venous ulcer formation cited above, therapy in the future might be directed against leukocyte activation in order to diminish the magnitude of the inflammatory response. With this in mind, the attention of many investigators has been drawn to two different drugs with an anti-inflammatory effect: pentoxifylline and flavonoids.

  6. What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders?

    Institute of Scientific and Technical Information of China (English)

    Maria; da; Graa; Naffah-Mazzacoratti; Telma; Luciana; Furtado; Gouveia; Priscila; Santos; Rodrigues; Simōes; Sandra; Regina; Perosa

    2014-01-01

    The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors(B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system(RAS) is an important blood pressure regulator and controls both sodium and water intake. AngⅡ is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngⅡ acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.

  7. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, M.S.; Baird, S.; Bailly, J.E. [Univ. of Ottawa, Ontario (Canada)] [and others

    1995-11-01

    We present the cloning and sequencing of the human gene for a novel G-protein coupled receptor (GPR4), from the critical myotonic dystrophy (DM) region on chromosome 19q13.3. The homologous porcine gene was isolated and sequenced as well. The genes of both species are intronless and contain an open reading frame encoding a protein of 362 amino acids. In human, two isoforms of GPR4 are expressed, differing in their 3{prime} untranslated region due to the use of alternate polyadenylation signals and measuring approximately 2.8 and 1.8 kb, respectively. Northern blot analysis showed that GPR4 is widely expressed, with higher levels in kidney, heart, and especially lung, where it is at least fivefold greater than in other tissues. Sequence analysis suggests that GPR4 is a peptide receptor and shares strongest homologies with purinergic receptors and receptors for angiotensin II, platelet activating factor, thrombin, and bradykinin. 25 refs., 3 figs., 1 tab.

  8. ACE-inhibition and angiotensin II receptor blockers in chronic heart failure: pathophysiological consideration of the unresolved battle.

    Science.gov (United States)

    Simko, F; Simko, J; Fabryova, M

    2003-05-01

    Reducing the effects of angiotensin II by blockade of AT1-receptors may be superior to inhibition of angiotensin II formation by angiotensin converting enzyme (ACE) inhibitors in chronic heart failure (CHF) patients. However, the results of several trials did not fulfil this expectation. In both ELITE II with symptomatic CHF patients and in OPTIMAAL involving high risk patients after acute myocardial infarction, angiotensin II type I (AT1) receptor blocker (ARB) losartan did not prove to be superior to captopril. There are several potential reasons, why ARBs did not fare better than ACE inhibitors. Although AT1-receptor blockade may block the effects of non-ACE pathways of tissue angiotensin II formation, no clinical evidence is available that a more powerful inhibition of the tissue renin-angiotensin system brings improved survival. The choice of patients for clinical trials of HF therapy is not based on the level of neurohumoral activation. Thus, the more effective attenuation of angiotensin II action with ARBs may not bring additional benefits. The potential antiremodeling effect of ARBs through the stimulation of AT2 receptors by angiotensin II could be counterbalanced by a failure of AT1-receptor blockers to enhance bradykinin, nitric oxide and prostacyclin formation with antigrowth properties. Although ACE-inhibitors seem to have slightly better results at present than AT1 blockers in the battle on heart failure patient, future trials will decide which is the definitive winner.

  9. Antiinflammatory Efficacy of Extracts of Latex of Calotropis procera Against Different Mediators of Inflammation

    Directory of Open Access Journals (Sweden)

    Soneera Arya

    2005-01-01

    Full Text Available The latex of the plant Calotropis procera has been reported to exhibit potent antiinflammatory activity against carrageenin and formalin that are known to release various mediators. In the present study, we have evaluated the efficacy of extracts prepared from the latex of C procera against inflammation induced by histamine, serotonin, compound 48/80, bradykinin (BK, and prostaglandin E(PGE in the rat paw oedema model. The paw oedema was induced by the subplantar injection of various inflammagens and oedema volume was recorded using a plethysmometer. The aqueous and methanol extracts of the dried latex (DL and standard antiinflammatory drugs were administered orally 1 hour before inducing inflammation. The inhibitory effect of the extracts was also evaluated against cellular influx induced by carrageenin. The antiinflammatory effect of aqueous and methanolic extracts of DL was more pronounced than phenylbutazone (PBZ against carrageenin while it was comparable to chlorpheniramine and PBZ against histamine and PGE, respectively. Both extracts produced about 80%, 40%, and 30% inhibition of inflammation induced by BK, compound 48/80, and serotonin. The histological analysis revealed that the extracts were more potent than PBZ in inhibiting cellular infiltration and subcutaneous oedema induced by carrageenin. The extracts of DL exert their antiinflammatory effects mainly by inhibiting histamine and BK and partly by inhibiting PGE.

  10. Vasopeptidase inhibition improves insulin sensitivity and endothelial function in the JCR:LA-cp rat.

    Science.gov (United States)

    Russell, James C; Kelly, Sandra E; Schäfer, Stefan

    2004-08-01

    The insulin-resistant, hyperinsulinemic, normoglycemic, and obese JCR:LA-cp rat was used to study the effects of ramipril (an ACE inhibitor) and AVE7688 (a dual inhibitor of ACE and neutral endopeptidases) on insulin sensitivity and vascular function. Both compounds reduced the surge of plasma insulin in a meal tolerance test by approximately 50%. Ramipril had no effect on acetylcholine-induced relaxation but increased the sensitivity to sodium nitroprus-side at low concentrations. AVE7688 significantly reduced the EC50 for acetylcholine to relax phenylephrine-contracted aortic rings. None of the compounds affected the baseline coronary flow and reactive hyperemia. Coronary flow response to bradykinin in AVE7688- and ramipril-treated rat hearts showed a significantly lower EC50 than in control rats. Maximum flow rate was not different between groups. In summary, both ramipril and AVE7688 had significant hypoinsulinemic and insulin-sensitizing effects. Whereas ramipril had limited vascular effects, AVE7688 had more marked beneficial vascular effects, probably of endothelial origin and possibly related to lowered insulin levels.

  11. Airway nerves: in vitro electrophysiology.

    Science.gov (United States)

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  12. Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues.

    Science.gov (United States)

    Podvin, Sonia; Bundey, Richard; Toneff, Thomas; Ziegler, Michael; Hook, Vivian

    2015-09-01

    The goal of this study was to define profiles of secreted neuropeptide and catecholamine neurotransmitters that undergo co-release from sympathoadrenal chromaffin cells upon stimulation by distinct secretagogues. Chromaffin cells of the adrenal medulla participate in the dynamic responses to stress, especially that of 'fight and flight', and, thus, analyses of the co-release of multiple neurotransmitters is necessary to gain knowledge of how the stress response regulates cell-cell communication among physiological systems. Results of this study demonstrated that six different secretagogues stimulated the co-release of the neuropeptides Met-enkephalin, galanin, NPY, and VIP with the catecholamines dopamine, norepinephrine, and epinephrine. Importantly, the quantitative profiles of the secreted neurotransmitters showed similarities and differences upon stimulation by the different secretagogues evaluated, composed of KCl depolarization, nicotine, carbachol, PACAP, bradykinin, and histamine. The rank-orders of the secreted profiles of the neurotransmitters were generally similar among these secretagogues, but differences in the secreted amounts of each neurotransmitter occurred with different secretagogues. Epinephrine among the catecholamines showed the highest level of secretion. (Met)enkephalin showed the largest levels of secretion compared to the other neuropeptides examined. Levels of secreted catecholamines were greater than that of the neuropeptides. These data support the hypothesis that profiles of secreted neuropeptide and catecholamine neurotransmitters show similarities and differences upon stimulation by distinct secretagogues. These results illustrate the co-release of concerted neurotransmitter profiles that participate in the stress response of the sympathoadrenal nervous system.

  13. Induction of prolonged tenderness in patients with tension-type headache by means of a new experimental model of myofascial pain.

    Science.gov (United States)

    Mørk, H; Ashina, M; Bendtsen, L; Olesen, J; Jensen, R

    2003-05-01

    Tenderness is the most prominent abnormal finding in patients with tension-type headache (TTH). Recently we developed a model of myofascial tenderness using intramuscular infusion of a combination of bradykinin, serotonin, histamine and prostaglandin E2. We aimed to examine tenderness after this combination in patients with episodic TTH (ETTH). Fifteen patients and 15 healthy controls completed the study. Participants received the combination into the non-dominant trapezius muscle in a randomized, double-blinded and placebo-controlled design. Local tenderness and stimulus-response functions, mechanical pain thresholds (PPDT) in the temporal region and on the finger, and total tenderness score (TTS) were recorded. A local, prolonged, and mild to moderate tenderness was reported both in patients (P = 0.001) and in controls (P = 0.001) after the combination compared with the placebo. The response to the combination tended to be increased in patients. The stimulus-response function was leftward shifted after the combination, compared with baseline in both groups. No changes in PPDT or TTS were found after the infusions, whereas baseline PPDTs were decreased in ETTH compared with controls (PPDTfinger: P = 0.033; PPDTtemporal: P = 0.015). Intramuscular infusion of a combination of endogenous substances induced prolonged tenderness in both patients with episodic TTH and healthy subjects. The present results suggest an increased excitability of peripheral muscle afferents in TTH.

  14. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    Directory of Open Access Journals (Sweden)

    Andrew V Benest

    Full Text Available Genetic experiments (loss-of-function and gain-of-function have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2 acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived regulator of rapid vascular responses (within minutes caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min, the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/- mice. In comparison to the wild type control mice, the Ang2(-/- mice demonstrated a significantly attenuated response. The Ang-2(-/- phenotype was rescued by systemic administration (paracrine of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/- endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2 alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines.

  15. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    Science.gov (United States)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  16. Effects of enalapril, losartan, and verapamil on blood pressure and glucose metabolism in the Cohen-Rosenthal diabetic hypertensive rat.

    Science.gov (United States)

    Rosenthal, T; Erlich, Y; Rosenmann, E; Cohen, A

    1997-06-01

    We undertook the present study to examine the effect of the angiotensin-converting enzyme inhibitor enalapril, the angiotensin II antagonist losartan, and calcium antagonist verapamil on systolic pressure and spontaneous blood glucose levels in rats from the Cohen-Rosenthal diabetic hypertensive strain. Genetic hypertension and diabetes developed in this strain after crossbreeding of Cohen diabetic and spontaneously hypertensive rats. The new rat strain was fed their usual copper-poor sucrose diet, which is essential for the development of this model, and for 4 weeks received either enalapril, losartan, or verapamil. Systolic pressure was reduced significantly compared with controls in all treated groups. Chronic treatment with enalapril or verapamil, but not with losartan, succeeded in lowering spontaneous blood glucose, indicating improved diabetic control. Data suggest that angiotensin-converting enzyme inhibition by enalapril, but not angiotensin II antagonism by losartan, can improve glucose metabolism in addition to its hypotensive effect in a genetic diabetic hypertensive rat strain. This confirms that the drop in glucose with converting enzyme inhibition is highly dependent on bradykinin accumulation. Data further suggest that calcium channel blockade by verapamil can also improve glucose metabolism. The question remains whether the reduction in glucose by verapamil was a result of inhibition of glucogenesis.

  17. Angiotensin Converting Enzyme Inhibitor-related Angioedema: A Case of an Unexpected Death

    Directory of Open Access Journals (Sweden)

    Eray Atalay

    2015-11-01

    Full Text Available Angioedema is an asymmetric non-pitting oedema on face, lips, tongue and mucous membranes; any delay in diagnosis and treatment can be fatal. Treatment with lisinopril as an angiotensin converting enzyme (ACE inhibitor, can be a reason of angioedema. Here we report a case who developed oral-facial edema four years after using lisinopril/hydrochlorothiazide. Laryngeal oedema is a main cause of death in angioedema. The treatment of choice in angioedema including fresh frozen plasma, C1 inhibitor concentrations and BRK-2 antagonists (bradykinin B2 receptor antagonists were used. In this case; a 77 years old female patient suffering from hypertension was considered. This patient was suffering two days from swelling on her face and neck. Non- allergic angioedema was distinguished in five major forms; acquired (AAO, hereditary (HAE, renin-angiotensin-aldosterone system (RAAS blocker-dependent, pseudoallergic angioedema (PAS and an idiopathic angioedema (IAO. She was admitted to our clinic with the diagnosis of hereditary angioedema. Patient had skin edema and life threatening laryngeal edema. In emergency department treatment was started using intravenous methylprednisolone, diphenydramine as well as inhaled and subcutaneous epinephrine simultaneously. Despite the initial treatment, the patient died due to the insufficient respiration and cardiac arrest. The patient has no history of kidney disease.

  18. Angiotensin Converting Enzyme Inhibitor-related Angioedema: A Case of an Unexpected Death.

    Science.gov (United States)

    Atalay, Eray; Özdemir, Mehmet Tamer; Çiğsar, Gülşen; Omurca, Ferhat; Aslan, Nurullah; Yildiz, Mehmet; Gey, Zehra Bahar

    2015-12-01

    Angioedema is an asymmetric non-pitting oedema on face, lips, tongue and mucous membranes; any delay in diagnosis and treatment can be fatal. Treatment with lisinopril as an angiotensin converting enzyme (ACE) inhibitor, can be a reason of angioedema. Here we report a case who developed oral-facial edema four years after using lisinopril/hydrochlorothiazide. Laryngeal oedema is a main cause of death in angioedema. The treatment of choice in angioedema including fresh frozen plasma, C1 inhibitor concentrations and BRK-2 antagonists (bradykinin B2 receptor antagonists) were used. In this case; a 77 years old female patient suffering from hypertension was considered. This patient was suffering two days from swelling on her face and neck. Non- allergic angioedema was distinguished in five major forms; acquired (AAO), hereditary (HAE), renin-angiotensin-aldosterone system (RAAS) blocker-dependent, pseudoallergic angioedema (PAS) and an idiopathic angioedema (IAO). She was admitted to our clinic with the diagnosis of hereditary angioedema. Patient had skin edema and life threatening laryngeal edema. In emergency department treatment was started using intravenous methylprednisolone, diphenydramine as well as inhaled and subcutaneous epinephrine simultaneously. Despite the initial treatment, the patient died due to the insufficient respiration and cardiac arrest. The patient has no history of kidney disease.

  19. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhengyu [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Yang, Qi; Cui, Mei; Liu, Yanping [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Wang, Tao; Zhao, Hong [Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Dong, Qiang, E-mail: qiang_dong163@163.com [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China)

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  20. The role of the renin-angiotensin-aldosterone system in heart failure

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2004-03-01

    Full Text Available Activity of the renin-angiotensin-aldosterone system (RAAS is increased in patients with heart failure, and its maladaptive mechanisms may lead to adverse effects such as cardiac remodelling and sympathetic activation. Elevated renin activity has been demonstrated in patients with dilated cardiomyopathy. (Third-generation synthetic non-peptide renin inhibitors, with more favourable properties than earlier renin inhibitors, lower ambulatory blood pressure and may have a role to play in other cardiovascular disease. Chymase, a protease inhibitor stored in mast cells that generates angiotensin II (Ang II (in addition to angiotensin-converting enzyme [ACE], has been linked to extracellular matrix remodelling in heart failure. Again, chymase inhibitors have been developed to investigate its functions in vitro and in vivo. Bradykinin is thought to contribute to the cardioprotective effect of ACE inhibition through modification of nitric oxide release, calcium handling and collagen accumulation. Ang II is believed to influence a number of molecular and structural changes in the heart, mostly mediated through the AT1-receptor. The importance of the RAAS in heart failure is shown by the survival benefit conferred by treatment with ACE inhibitors.

  1. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen)

    Science.gov (United States)

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  2. Construction of pB2R-Venus eukaryotic expression vectors and its expression in HEK293T cells%pB2 R-Venus 重组真核载体的构建及在 HEK293T细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    季丙元; 程葆华; 王春梅; 陈京; 白波

    2014-01-01

    Objective To investigate the interaction between B2R and other receptors ,and signal transduction mechanism ,human eukaryotic expression vector that bradykinin receptor 2 fused with Venus was constructed . Methods The primer was designed based on human B2R gene sequence ,and B2R gene was then amplified by PCR using plasmid pcDNA3 .1-B2R as template .The PCR product was digested by enzyme EcoRⅠand BamH ,and cloned into plasmid pV enus-N1 .The construct was identified by DNA sequencing .The recombinant plasmid was transiently transfected into HEK293T cells .Cell location and protein expression was detected by confocal microscopy and Western blot ,respectively .Results The fragment of 1176bp was amplified by PCR ,and its sequence was identical with the gene in Genebank (AY275465) .It is shown that the B2R expressed on the membrane by confocal micros-copy ,and protein band was 44 kd which was identical to target band through Western blot .Conclusion The plas-mid pB2R-Venus was successfully constructed and transfected into HEK 293T cells .The recombinant plasmid can be used to BRET and FRET experiments ,which contribute to investigate the signal transduction mechanism and ex-plore pharmacal targets .%目的:构建带有黄色荧光蛋白突变体 Venus标签的人缓激肽2型受体(bradykinin receptor 2, B2R)真核表达载体,用于B2R与相关受体及蛋白的相互作用、B2R受体介导的信号转导机制的研究等。方法根据人B2R基因序列设计引物,以质粒pcDNA3.1-B2R为模板,PCR扩增目的基因人B2R。EcoRⅠ和BamHⅠ双酶切扩增产物及质粒pVenus-N1,经回收、连接、转化,获取重组质粒。对重组质粒进行酶切、测序鉴定。转染重组质粒至 HEK293T细胞,荧光显微镜观察受体B2R的细胞定位,蛋白印迹法检测目的蛋白人B2R蛋白的表达。结果 PCR扩增出了1条长度为1176 bp的基因片段,测序结果与GenBank (AY275465)相同。荧光显示B2R

  3. Efecto hemodinámico esplácnico de somatostatina y octreótido en cirróticos: Estudio con ultrasonografía Doppler Splanchnic hemodynamic effects of somatostatin and octreotide in cirrhotic patients: A Doppler ultrasonographic study

    Directory of Open Access Journals (Sweden)

    F. J. Fernández Pérez

    2008-09-01

    Full Text Available Objetivo: valoración ultrasonografica Doppler del efecto hemodinámico de la administración intravenosa de somatostatina y octreótido. Material y método: aleatorizamos a 45 cirróticos con varices esofágicas para recibir en una hora una infusión intravenosa de somatostatina (SOM, 250 µg, octreotido (OCT, 50 µg o placebo (PLA. Pretratamiento y a 15, 30, 45 y 60 minutos medimos velocidad media, índice de congestión, volumen de flujo y diámetro de la vena porta además del índice de resistencia en arteria mesentérica superior. Analizamos las concentraciones séricas de bradicinina y péptido intestinal vasoactivo (VIP en situación basal y a 30 y 60 minutos. Resultados: respecto de los valores basales tanto SOM como OCT provocaron un descenso significativo en la velocidad (-19,41 vs. -11.19% y flujo portal (-22,79 vs. -12,33%, con aumento del índice de congestión (+17,5 vs. +7,5% y del índice de resistencia arterial (+7,18 vs. +6,16% respecto de sus valores basales (p Aim: Doppler-ultrasound assessment of the splanchnic hemodynamic effects of intravenous somatostatin and octreotide administration. Material and method: forty-five cirrhotic patients with esophageal varices were randomized to receive 1-hour intravenous somatostatin (SOM, 250 µg, octreotide (OCT, 50 µg, or placebo (PLA. In baseline and at 15, 30, 45 and 60 minutes of infusion, mean velocity, congestion index, flow volume and diameter of the portal vein, as well as the superior mesenteric artery resistivity index, were measured. Plasma bradykinine and vasoactive intestinal peptide (VIP concentrations were also measured at baseline and at 30 and 60 minutes. Results: while placebo caused no changes in any of the venous and arterial parameters, SOM and OCT caused a sustained decrease in portal vein velocity (-19.41 vs. -11.19% and flow (-22.79 vs. -12.33%, and an increase in the congestion index (+17.5 vs. +7.5% and resistivity index of the superior mesenteric artery (+7

  4. Comparison of the anti-inflammatory actions of flunixin and ketoprofen in horses applying PK/PD modelling.

    Science.gov (United States)

    Landoni, M F; Lees, P

    1995-07-01

    A comparative study in horses of the pharmacokinetics (PK) and pharmacodynamics (PD) of 2 extensively used nonsteroidal anti-inflammatory drugs (NSAIDs), flunixin (FXN) and ketoprofen (KTP), was carried out applying PK/PD modelling. To evaluate the anti-inflammatory properties of these drugs a model of acute inflammation, comprising surgically implanted subcutaneous tissue cages stimulated by intracaveal injection of carrageenan, was used. FXN elimination half-life (T1/2 beta) in plasma was 3.37 +/- 1.09 h. However, in exudate a much longer T1/2 beta was obtained (15.99 +/- 3.80 h). Apparent volume of distribution (Vdarea) for FXN was 0.317 +/- 0.126 l/kg and body clearance (ClB) was 0.058 +/- 0.004 l/kg/h. KTP displayed enantioselective pharmacokinetics, the S(+) enantiomer being predominant in plasma, exudate and transudate. T1/2 beta values for R(-) and S(+)KTP were, respectively, 1.09 +/- 0.19 h and 1.51 +/- 0.45 h (plasma) and 19.73 +/- 2.72 h and 22.64 +/- 4.34 h (exudate), respectively. R(-)KTP was cleared more rapidly than the S(+) enantiomer. ClB values were 0.277 +/- 0.035 l/kg/h and 0.202 +/- 0.022 l/kg/h, respectively. FXN and KTP pharmacodynamics was evaluated by determining their inhibitory effects on serum thromboxane (Tx)B2, exudate prostaglandin (PG)E2, leukotriene (LT)B4 and beta-glucuronidase (beta-glu) and intradermal bradykinin-induced swelling. Both drugs produced marked inhibition of serum TxB2 synthesis for up to 24 h, with no significant differences between the drugs. FXN was a more potent inhibitor of exudate PGE2, the EC50 for FXN being lower (P < 0.01) than that for KTP (0.019 +/- 0.010 microgram/ml and 0.057 +/- 0.009 microgram/ml, respectively). Neither drug had any effect on exudate LTB4 concentration. Differences between the 2 drugs were observed for the inhibition of beta-glu, the Emax for KTP being higher (P < 0.01) than for FXN. However, no differences were observed in other PD parameters. Both FXN and KTP inhibited bradykinin

  5. Rat plasma high-molecular-weight kininogen. A simple method for purification and its characterization.

    Science.gov (United States)

    Hayashi, I; Kato, H; Iwanaga, S; Oh-ishi, S

    1985-05-25

    High-molecular-weight kininogen has been isolated from rat plasma in three steps in a relatively high yield. The purified preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence and presence of 2-mercaptoethanol, and the apparent Mr was estimated as 100,000. On incubation with rat plasma kallikrein, rat high Mr kininogen yielded a kinin-free protein consisting of a heavy chain (Mr = 64,000) and a light chain (Mr = 46,000), liberating bradykinin. The kinin-free protein was S-alkylated, and its heavy and light chains were separated by a zinc-chelating Sepharose 6B column. The amino acid compositions of rat high Mr kininogen and its heavy and light chains were very similar to those of bovine high Mr kininogen and its heavy and fragment 1.2-light chains, respectively. A high histidine content in the light chain of rat high Mr kininogen indicated the presence of a histidine-rich region in this protein as in bovine high Mr kininogen, although this region was not cleaved by rat plasma kallikrein. Rat high Mr kininogen corrected to normal values the prolonged activated partial thromboplastin time of Brown-Norway Katholiek rat plasma known to be deficient in high Mr kininogen and of Fitzgerald trait plasma. The kinin-free protein had the same correcting activity as intact high Mr kininogen. Rat high Mr kininogen also accelerated approximately 10-fold the surface-dependent activation of rat factor XII and prekallikrein, which was mediated with kaolin, amylose sulfate, and sulfatide. These results indicate that rat high Mr kininogen is quite similar to human and bovine high Mr kininogens in terms of biochemical and functional properties.

  6. Prognostic factors in outcome of angioedema in the emergency department.

    Science.gov (United States)

    Felder, Sarah; Curtis, R Mason; Ball, Ian; Borici-Mazi, Rozita

    2014-01-01

    Angioedema is a transient, localized swelling caused by two distinct mechanisms, mediated by histamine and bradykinin, respectively, although a proportion of cases remain idiopathic. Studies that characterize undifferentiated angioedema presenting in emergency departments (EDs) are limited. This study investigates the presentation patterns of undifferentiated angioedema in the ED based on the presumed mechanism of swelling. Medical records from all ED visits to two tertiary care hospitals from July 2007 to March 2012 were electronically reviewed. Records with documented visible swelling on general inspection and/or fiberoptic laryngoscopy and a diagnostic code for anaphylactic shock, angioneurotic edema, allergy unspecified, defects in the complement system, or unspecified drug adverse effects were included. Demographic, clinical, and outcome data were collected via a standardized form. Data were analyzed descriptively, including frequencies and percentages for categorical data and means and SDs for continuous data. Predictors for admission were identified using multivariate logistic regression models. ED records from 527 visits for angioedema by 455 patients were included in the study. Annual rate of angioedema was 1 per 1000 ED visits. Urticaria was associated with peripheral (p = 0.008) and lip angioedema (p = 0.001), and the absence of urticaria correlated with tongue angioedema (p = 0.001) and trended toward correlation with pharyngeal angioedema (p = 0.056). Significant predictors of admission included nonsteroidal anti-inflammatory drug-induced angioedema (odds ratio [OR], 15.3), epinephrine treatment (OR, 8.34), hypotension (OR, 15.7), multiple-site angioedema (OR, 4.25), and pharyngeal (OR, 1.23) and tongue angioedema (OR, 4.62). Concomitant urticaria was associated with a significant longer stay in the ED (p urticaria correlated with the location of angioedema, need for airway management, length of ED visit, and recurrence. A detailed drug and family

  7. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    Science.gov (United States)

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.

  8. Leucaena leucocephala serine proteinase inhibitor: primary structure and action on blood coagulation, kinin release and rat paw edema.

    Science.gov (United States)

    Oliva, M L; Souza-Pinto, J C; Batista, I F; Araujo, M S; Silveira, V F; Auerswald, E A; Mentele, R; Eckerskorn, C; Sampaio, M U; Sampaio, C A

    2000-03-07

    A serine proteinase inhibitor isolated from Leucaena leucocephala seeds (LlTI) was purified to homogeneity by acetone fractionation, ion exchange chromatography, gel filtration and reverse phase chromatography (HPLC). SDS-PAGE indicated a protein with M(r) 20000 and two polypeptide chains (alpha-chain, M(r) 15000, and beta-chain, M(r) 5000), the sequence being determined by automatic Edman degradation and by mass spectroscopy. LlTI is a 174 amino acid residue protein which shows high homology to plant Kunitz inhibitors, especially those double chain proteins purified from the Mimosoideae subfamily. LlTI inhibits plasmin (K(i) 3.2 x 10(-10) M), human plasma kallikrein (K(i) 6.3 x 10(-9) M), trypsin (K(i) 2.5 x 10(-8) M) and chymotrypsin (K(i) 1.4 x 10(-8) M). Factor XIIa activity is inhibited but K(i) was not determined, and factor Xa, tissue kallikrein and thrombin are not inhibited by LlTI. The action of LlTI on enzymes that participate in the blood clotting extrinsic pathway is confirmed by the prolongation of activated partial thromboplastin time, used as clotting time assay. The inhibition of the fibrinolytic activity of plasmin was confirmed on the hydrolysis of fibrin plates. LlTI inhibits kinin release from high molecular weight kininogen by human plasma kallikrein in vitro and, administered intravenously, causes a decrease in paw edema induced by carrageenin or heat in male Wistar rats. In addition, lower concentrations of bradykinin were found in limb perfusion fluids of LlTI-treated rats.

  9. Hereditary angioedema: what the gastroenterologist needs to know

    Directory of Open Access Journals (Sweden)

    Ali MA

    2014-11-01

    Full Text Available M Aamir Ali, Marie L Borum Division of Gastroenterology and Liver Diseases, George Washington University, Washington, DC, USA Abstract: Up to 93% of patients with hereditary angioedema (HAE experience recurrent abdominal pain. Many of these patients, who often present to emergency departments, primary care physicians, general surgeons, or gastroenterologists, are misdiagnosed for years and undergo unnecessary testing and surgical procedures. Making the diagnosis of HAE can be challenging because symptoms and attack locations are often inconsistent from one episode to the next. Abdominal attacks are common and can occur without other attack locations. An early, accurate diagnosis is central to managing HAE. Unexplained abdominal pain, particularly when accompanied by swelling of the face and extremities, suggests the diagnosis of HAE. A family history and radiologic imaging demonstrating edematous bowel also support an HAE diagnosis. Once HAE is suspected, C4 and C1 esterase inhibitor (C1-INH laboratory studies are usually diagnostic. Patients with HAE may benefit from recently approved specific treatments, including plasma-derived C1-INH or recombinant C1-INH, a bradykinin B2-receptor antagonist, or a kallikrein inhibitor as first-line therapy and solvent/detergent-treated or fresh frozen plasma as second-line therapy for acute episodes. Short-term or long-term prophylaxis with nanofiltered C1-INH or attenuated androgens will prevent or reduce the frequency and severity of episodes. Gastroenterologists can play a critical role in identifying and treating patients with HAE, and should have a high index of suspicion when encountering patients with recurrent, unexplained bouts of abdominal pain. Given the high rate of abdominal attacks in HAE, it is important for gastroenterologists to appropriately diagnose and promptly recognize and treat HAE, or refer patients with HAE to an allergist. Keywords: hereditary angioedema, abdominal pain, diagnosis

  10. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Hsin-I Tong

    Full Text Available The ability of monocytes and monocyte-derived macrophages (MDM to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB. This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported

  11. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats.

    Directory of Open Access Journals (Sweden)

    Chistiane Oliveira Coura

    Full Text Available The anti-inflammatory mechanisms of the sulfated polysaccharidic fraction obtained from red marine alga Gracilaria cornea (Gc-FI were investigated using a paw edema model induced in rats by different inflammatory agents (carrageenan, dextran, serotonin, bradykinin, compound 48/80 or L-arginine. Gc-FI at the doses of 3, 9 or 27 mg/kg, subcutaneously--s.c., significantly inhibited rat paw edema induced by carrageenan and dextran, as confirmed by myeloperoxidase and Evans' blue assessments, respectively. Gc-FI (9 mg/kg, s.c. inhibited rat paw edema induced by histamine, compound 48/80 and L-arginine. Additionally, Gc-FI (9 mg/kg, s.c. inhibited Cg-induced edema in animals with intact mast cells but did not inhibit that with degranulated mast cells by compound 48/80, revealing a protective role on mast cell membranes. Gc-FI down-regulated the IL-1β, TNF-α and COX-2 mRNA and protein levels compared with those of the carrageenan group, based on qRT-PCR and immunohistochemistry analyses. After inhibition with ZnPP IX, a specific heme oxygenase-1 (HO-1 inhibitor, the anti-inflammatory effect of Gc-FI was not observed in Cg-induced paw edema, suggesting that the anti-inflammatory effect of Gc-FI is, in part, dependent on the integrity of the HO-1 pathway. Gc-FI can target a combination of multiple points involved in inflammatory phenomena.

  12. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats.

    Science.gov (United States)

    Coura, Chistiane Oliveira; Souza, Ricardo Basto; Rodrigues, José Ariévilo Gurgel; Vanderlei, Edfranck de Sousa Oliveira; de Araújo, Ianna Wivianne Fernandes; Ribeiro, Natássia Albuquerque; Frota, Annyta Fernandes; Ribeiro, Kátia Alves; Chaves, Hellíada Vasconcelos; Pereira, Karuza Maria Alves; da Cunha, Rodrigo Maranguape Silva; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2015-01-01

    The anti-inflammatory mechanisms of the sulfated polysaccharidic fraction obtained from red marine alga Gracilaria cornea (Gc-FI) were investigated using a paw edema model induced in rats by different inflammatory agents (carrageenan, dextran, serotonin, bradykinin, compound 48/80 or L-arginine). Gc-FI at the doses of 3, 9 or 27 mg/kg, subcutaneously--s.c., significantly inhibited rat paw edema induced by carrageenan and dextran, as confirmed by myeloperoxidase and Evans' blue assessments, respectively. Gc-FI (9 mg/kg, s.c.) inhibited rat paw edema induced by histamine, compound 48/80 and L-arginine. Additionally, Gc-FI (9 mg/kg, s.c.) inhibited Cg-induced edema in animals with intact mast cells but did not inhibit that with degranulated mast cells by compound 48/80, revealing a protective role on mast cell membranes. Gc-FI down-regulated the IL-1β, TNF-α and COX-2 mRNA and protein levels compared with those of the carrageenan group, based on qRT-PCR and immunohistochemistry analyses. After inhibition with ZnPP IX, a specific heme oxygenase-1 (HO-1) inhibitor, the anti-inflammatory effect of Gc-FI was not observed in Cg-induced paw edema, suggesting that the anti-inflammatory effect of Gc-FI is, in part, dependent on the integrity of the HO-1 pathway. Gc-FI can target a combination of multiple points involved in inflammatory phenomena.

  13. C-reactive protein levels in hereditary angioedema.

    Science.gov (United States)

    Hofman, Z L M; Relan, A; Hack, C E

    2014-07-01

    Hereditary angioedema (HAE) patients experience recurrent episodes of angioedema attacks that can be painful, disfiguring and even life-threatening. The disorder results from a mutation in the gene that controls the synthesis of C1-inhibitor (C1INH). C1INH is a major regulator of activation of the contact system. It is often assumed that attacks results from uncontrolled local activation of the contact system with subsequent formation of bradykinin. To evaluate the involvement of inflammatory reactions in HAE, we analysed C-reactive protein (CRP) levels. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. For the current study we analysed CRP levels when patients were asymptomatic, during a clinical attack and in a follow-up period, and correlated these with the clinical manifestations of the attack. Data from 68 HAE patients were analysed and included CRP levels on 273 occasions. While asymptomatic, 20% of the patients analysed had increased CRP. At the onset of the attack (P = 0·049) and during the next 24 h CRP rose significantly (P = 0·002) in patients with an abdominal location, and post-attack levels were significantly higher in these patients than in patients with attacks at other locations (P = 0·034). In conclusion, CRP levels are elevated in a substantial proportion of asymptomatic HAE patients. Levels of CRP increase significantly during an abdominal attack. These data suggest low-grade systemic inflammatory reactions in HAE patients as well as a triggering event for attacks that starts prior to symptom onset.

  14. Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron.

    Science.gov (United States)

    Oliveira-Fusaro, Maria Cláudia Gonçalves; Zanoni, Cristiane Isabel Silva; Dos Santos, Gilson Gonçalves; Manzo, Luis Paulo; Araldi, Dionéia; Bonet, Ivan José Magayewski; Tambeli, Cláudia Herrera; Dias, Elayne Vieira; Parada, Carlos Amilcar

    2017-03-05

    Cannabinoid system is a potential target for pain control. Cannabinoid receptor 1 (CB1) activation play a role in the analgesic effect of cannabinoids once it is expressed in primary afferent neurons. This study investigates whether the anti-hyperalgesic effect of CB1 receptor activation involves P2X3 receptor in primary afferent neurons. Mechanical hyperalgesia was evaluated by electronic von Frey test. Cannabinoid effect was evaluated using anandamide or ACEA, a non-selective or a selective CB1 receptor agonists, respectively; AM251, a CB1 receptor antagonist, and antisense ODN for CB1 receptor. Calcium imaging assay was performed to evaluated α,β-meATP-responsive cultured DRG neurons pretreated with ACEA. Anandamide or ACEA administered in peripheral tissue reduced the carrageenan-induced mechanical hyperalgesia. The reduction in the carrageenan-induced hyperalgesia induced by ACEA was completely reversed by administration of AM251 as well as by the intrathecal treatment with antisense ODN for CB1 receptor. Also, ACEA reduced the mechanical hyperalgesia induced by bradykinin and by α,β-meATP, a P2X3 receptor non-selective agonist, but not by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and chemokine-induced chemoattractant-1 (CINC-1). Finally, CB1 receptors are co-localized with P2X3 receptors in DRG small-diameter neurons and the treatment with ACEA reduced the number of α,β-meATP-responsive cultured DRG neurons. Our data suggest that the analgesic effect of CB1 receptor activation is mediated by a negative modulation of the P2X3 receptor in the primary afferent neurons.

  15. Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ke Liu; Jiansheng Li

    2006-01-01

    OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism.DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain ischemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English.STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded.DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved.DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca2+and the release of intracellular Ca2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB.CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB

  16. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency.

    Science.gov (United States)

    Varga, Lilian; Farkas, Henriette

    2011-03-01

    Recombinant human C1 esterase inhibitor (rhC1INH) (Ruconest(®), Pharming) is a new drug developed for the relief of symptoms occurring in patients with angioedema due to C1-inhibitor deficiency. Pertinent results have already been published elsewhere; this article summarizes the progress made since then. Similar to the purified C1-inhibitor derived from human plasma, the therapeutic efficacy of rhC1INH results from its ability to block the actions of enzymes belonging to the overactivated bradykinin-forming pathway, at multiple locations. During clinical trials into the management of acute edema, a total of 190 subjects received recombinant C1-inhibitor by intravenous infusion on 714 occasions altogether. Dose-ranging efficacy studies established 50 U/kg as the recommended dose, and demonstrated the effectiveness of this agent in all localizations of hereditary angioedema attacks. Studies into the safety of rhC1INH based on 300 administrations to healthy subjects or hereditary angioedema patients followed-up for 90 days have not detected the formation of autoantibodies against rhC1INH or IgE antibodies directed against rabbit proteins, even after repeated administration on multiple occasions. These findings met favorable appraisal by the EMA, which granted European marketing authorization for rhC1INH. Pharming is expected to file a biological licence with the US FDA by the end of 2010 to obtain marketing approval in the USA. The launch of rhC1INH onto the pharmaceutical market may represent an important progress in the management of hereditary angioedema patients.

  17. Monoacylglycerols activate TRPV1--a link between phospholipase C and TRPV1.

    Directory of Open Access Journals (Sweden)

    Peter M Zygmunt

    Full Text Available Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous "entourage" compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at

  18. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  19. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69 and nondiabetic (n = 46 individuals were used to grow endothelial colony forming cells (ECFC, early endothelial progenitor cells (eEPCs and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM. In CM derived from CD34+ cells of diabetic individuals (diabetic-CM, the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM. Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  20. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    Science.gov (United States)

    Jarajapu, Yagna P R; Hazra, Sugata; Segal, Mark; Li Calzi, Sergio; LiCalzi, Sergio; Jadhao, Chandra; Jhadao, Chandra; Qian, Kevin; Mitter, Sayak K; Raizada, Mohan K; Boulton, Michael E; Grant, Maria B

    2014-01-01

    We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  1. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex.

    Directory of Open Access Journals (Sweden)

    Leijiane F Sousa

    Full Text Available In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB--soro antibotrópico. However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is

  2. The terms 'autacoid', 'hormone' and 'chalone' and how they have shifted with time.

    Science.gov (United States)

    Keppel Hesselink, J M

    2015-12-01

    The increase of knowledge in a particular field (endocrinology) can be understood if one follows how certain key concepts were constructed and transformed over time. To explore such construction and transformation (shifts in meaning), we studied the use of the concepts 'autacoid' and 'chalone' in a period of one century (1916-2016), since the introduction of these concepts by the British professor of physiology Sir Sharpey-Schäfer. We could identify that the use of 'autacoid' shifted from a very broad category encompassing both stimulating and inhibiting hormones, in the period 1916-1960, to a much more specific use of the term for locally produced bioactive molecules, from the 1960s onwards. Histamine was the first compound seen as an 'autacoid', followed by prostaglandins, ATP, ADP and bradykinin, and from 1993 onwards, compounds such as 'palmitoylethanolamide' were also classified as 'autacoids'. For 'chalone', a comparable shift was noticed around the 1960s, when the concept suddenly changed from the category of inhibiting hormones into a substance that is produced within a tissue, inhibiting mitosis of the cells of that tissue. For both concept shifts, we could not find any argument. Around 1980, authors started to relate autacoids to various promising indications in the field of inflammation and immune modulation. The Nobel laureate Rita Levi-Montalcini gave an extra dimension to the concept autacoid in 1993, and introduced a new class of compounds modulating mast cells, the ALIAmides (from Autacoid Local Inflammation Antagonist), of which palmitoylethanolamide was the prototype. Our exploration demonstrates that biomedical concepts can be constructed and defined differently as time goes by, while concept transformations seem to emerge without arguments.

  3. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure. METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold. CONCLUSIONS/SIGNIFICANCE: These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  4. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  5. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    Science.gov (United States)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  6. A peptide released by pepsin from kininogen domain 1 is a potent blocker of ANP-mediated diuresis-natriuresis in the rat.

    Science.gov (United States)

    Croxatto, H R; Silva, R; Figueroa, X; Albertini, R; Roblero, J; Boric, M P

    1997-10-01

    A 20-amino acid peptide, KYEIKEGDCPVQSGKTWQDC (PU-D1), released by pepsin hydrolysis of LMW kininogen domain 1 was tested for its ability to antagonize the diuretic and natriuretic effect of ANP(103-125) in anesthetized rats. A single dose of 10.8 or 21.6 pmol (25 or 50 ng) PU-D1 given intravenously or into the duodenal lumen suppressed the diuresis-natriuresis induced by 209 pmol (500 ng) ANP by 43% to 59% and 69% to 96%, respectively. None of the doses tested (2.16 to 432 pmol, 5 ng to 1 microg) modified systemic blood pressure. Strikingly, a single IV dose of 10.8 pmol PU-D1 blocked the action of ANP for more than 3 hours. ANP blockade by PU-D1 was annulled completely by the bradykinin (BK) B2 receptor inhibitor Hoe 140. On a molar basis, PU-D1 is more effective than BK and kinins of 15, 16, and 18 amino acids for blocking the ANP-mediated diuresis-natriuresis. As with BK and other kinins, the inhibitory effect of Pu-D1 on ANP is obtained only within a small range of picomol doses. A single dose of 2.16 or 4.32 pmol PU-D1 or 47 pmol (50 ng) BK is ineffective against ANP if injected alone. However, when both substances are administered concomitantly at these subthreshold doses, they totally suppress ANP-induced diuresis-natriuresis. These results raise the question of whether PU-D1, released from kininogen domain 1, either alone or associated with BK, may interact with ANP in the regulation of urinary water and electrolyte excretion in physiological and pathological conditions.

  7. Pharmacogenetics of new analgesics.

    Science.gov (United States)

    Lötsch, Jörn; Geisslinger, Gerd

    2011-06-01

    Patient phenotypes in pharmacological pain treatment varies between individuals, which could be partly assigned to their genotypes regarding the targets of classical analgesics (OPRM1, PTGS2) or associated signalling pathways (KCNJ6). Translational and genetic research have identified new targets, for which new analgesics are being developed. This addresses voltage-gated sodium, calcium and potassium channels, for which SCN9A, CACNA1B, KCNQ2 and KCNQ3, respectively, are primary gene candidates because they code for the subunits of the respective channels targeted by analgesics currently in clinical development. Mutations in voltage gated transient receptor potential (TRPV) channels are known from genetic pain research and may modulate the effects of analgesics under development targeting TRPV1 or TRPV3. To this add ligand-gated ion channels including nicotinic acetylcholine receptors, ionotropic glutamate-gated receptors and ATP-gated purinergic P2X receptors with most important subunits coded by CHRNA4, GRIN2B and P2RX7. Among G protein coupled receptors, δ-opioid receptors (coded by OPRD1), cannabinoid receptors (CNR1 and CNR2), metabotropic glutamate receptors (mGluR5 coded by GRM5), bradykinin B(1) (BDKRB1) and 5-HT(1A) (HTR1A) receptors are targeted by new analgesic substances. Finally, nerve growth factor (NGFB), its tyrosine kinase receptor (NTRK1) and the fatty acid amide hydrolase (FAAH) have become targets of interest. For most of these genes, functional variants have been associated with neuro-psychiatric disorders and not yet with analgesia. However, research on the genetic modulation of pain has already identified variants in these genes, relative to pain, which may facilitate the pharmacogenetic assessments of new analgesics. The increased number of candidate pharmacogenetic modulators of analgesic actions may open opportunities for the broader clinical implementation of genotyping information.

  8. Binding of PLCδ1PH-GFP to Ptdlns(4,5)P2 prevents inhibition of phospholipase C-mediated hydrolysis of Ptdlns(4,5)P2 by neomycin

    Institute of Scientific and Technical Information of China (English)

    Chuan WANG; Xiao-na DU; Qing-zhong JIA; Hai-lin ZHANG

    2005-01-01

    Aim: To investigate the effects of the pleckstrin homology (PH) domain of phospholipase Cδ1 (PLCδ1PH) on inhibition of phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by neomycin.Methods: A fusion construct of green fluorescent protein (GFP) and PLCδ1PH (PLCδ1PH-GFP), which is known to bind Ptdlns(4,5)P2 specifically, together with laser-scanning confocal microscopy, was used to trace PtdIns(4,5)P2 translocation.Results: Stimulation of the type 1 muscarinic receptor and the bradykinin 2 receptor induced a reversible PLCδ1PH-GFP translocation from the membrane to the cytosol in COS-7 cells. PLC inhibitor U73122 blocked the translocation.Wortmannin, a known PtdIns kinase inhibitor, did not affect the translocation induced by ACh, but blocked recovery after translocation, indicating that PtdIns(4,5)P2 hydrolysis occurs through receptor-mediated PLC activation.Neomycin, a commonly used phospholipase C blocker, failed to block the receptor-induced PLCδ1PH-GFP translocation, indicating that neomycin is unable to block PLC-mediated PtdIns(4,5)P2 hydrolysis. However, in the absence of PLCδ1PH-GFP expression, neomycin abolished the receptor-induced hydrolysis of PtdIns(4,5)P2 by PLC. Conclusion: Although PLCδ1PH and neomycin bind to PtdIns(4,5)P2 in a similar way, they have distinct effects on receptor-mediated activation of PLC and PtdIns(4,5)P2 hydrolysis.

  9. Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen.

    Science.gov (United States)

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2012-05-01

    The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.

  10. The membrane-bound ectopeptidase CPM as a marker of macrophage maturation in vitro and in vivo.

    Science.gov (United States)

    Rehli, M; Krause, S W; Andreesen, R

    2000-01-01

    During terminal maturation of human blood monocytes into macrophages, a multitude of phenotypic and functional changes occurs: cells increase in size, they enhance their capacity for phagocytosis and tumor cytotoxicity but decrease their ability for T-lymphocyte stimulation. The pattern of secreted cytokines is shifted as is the profile of surface antigens. We recently identified carboxypeptidase M (CPM) as a macrophage maturation-associated antigen detected by mAb MAX. 1/MAX. 11. CPM, a phosphoinositol-linked ectopeptidase, is able to process a multitude of different substrates, among them immunologically important peptides like bradykinin, anaphylatoxins and enkephalins. It was previously shown to be expressed in placenta, lung, and kidney. CPM as detected by MAX. 1/11 shows a strong expression on monocyte-derived macrophages in vitro and on macrophages in vivo accompanying T-lymphocyte activation like during allogeneic transplant rejection or allergic alveolitis. In contrast, its expression is suppressed on macrophages by some types of tumor cells. CPM expression seems to correlate with macrophage cytotoxic functions. However, the biological importance of CPM expression in human macrophages in vivo is difficult to predict. A wide range of biologically active peptides are cleaved by CPM, and the relevance of CPM peptide processing during an immune reaction is only poorly understood. The generation and analysis of CPM-deficient animals might improve our understanding of CPM function. Therefore we cloned a cDNA for the murine homologue of CPM. However, expression of mCPM was undetectable in murine primary macrophages and macrophage cell-lines, suggesting that CPM expression and function is not conserved between human and mouse macrophages.

  11. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  12. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.

    Science.gov (United States)

    Bobade, Vijeta; Bodhankar, Subhash L; Aswar, Urmila; Vishwaraman, Mohan; Thakurdesai, Prasad

    2015-04-01

    The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.

  13. Integrative Metabolic Signatures for Hepatic Radiation Injury.

    Directory of Open Access Journals (Sweden)

    Irwin Jack Kurland

    Full Text Available Radiation-induced liver disease (RILD is a dose-limiting factor in curative radiation therapy (RT for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI and were contrasted to mice, which received 10 Gy whole body irradiation (WBI. Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate, fatty acids (lineolate, n-hexadecanoic acid and DNA damage markers (uridine.We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.

  14. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

    Directory of Open Access Journals (Sweden)

    David eArredondo Zamarripa

    2014-10-01

    Full Text Available Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK production contributes to the increased transport through the blood-retina barrier (BRB in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC, blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19 cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  15. Mapping of the human bradikinin B2 receptor gene and GALC gene at 14q31-32.1, the region of the Machado Joseph disease locus

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V.T.T.; Cox, D.W. [Hospital for Sick Children, Toronto (Canada)]|[Univ. of Toronto (Canada)

    1994-09-01

    Bradykinin is a nine amino acid peptide liberated from the {alpha}2 globulin, kininogen, during inflammatory responses. Substantial evidence shows that bradikinin is involved in human inflammatory disorders. There are two types of kinin receptors: B1 and B2. The human bradikinin B2 receptor (BKRB2) gene was previously localized to chromosome 14 by somatic cell hybrids. Krabbe disease is an autosomal recessive disorder caused by deficiency of galactocerebrosidase (GALC). GALC has been previously localized to chromosome 14 at q31 by in situ hybridization. We have further defined the localization of the BKRB2 and GALC genes by physical and genetic linkage mapping. Primers were designed from the 3{prime} untranslated region of each gene. PCR was performed on human/rodent somatic cell hybrid carrying portions of chromosome 14, and on flow sorted chromosome DNA of patients with a deletion or translocation on chromosome 14. Results place the two genes between D14S48 and Pl, the same region as the Machado Joseph disease (MJD) gene. The genomic chromosome 14-specific cosmid library (DOE, Los Alamos) was screened using PCR products obtained from both sets of primers as probes. Positive clones for each gene were screened for di, tri and tetranucleotide repeats. A polymorphic CA repeat marker was obtained from the BKRB2 clones. CEPH families which show recombinants between D14S48 and Pl were typed with this marker and other published markers, which we have mapped in the region: D14S140, D14S68, D14S73, D14S67, D14S256 and D14S81. This positions BDRB2 more precisely and also provides an important map for further localization of the MJD gene.

  16. Treatment for Hereditary Angioedema%遗传性血管性水肿的治疗

    Institute of Scientific and Technical Information of China (English)

    汤蕊; 张宏誉

    2012-01-01

    Hereditary angioedema is a rare dominant autosomal inherited disease, characterized by episodic subcutaneous and mucous edema. It could be life-threatening when the edema occurred in larynxes. The aim of management of HAE is targeted to either the treatment of acute attacks or short- and long-term prophylaxis. Besides the current treatments such as androgens, anti-fibrinolytics and C1INH concentrate, the recent development of some new therapeutic methods such as recombinant C1INH, kallikrein inhibitor and bradykinin (32 receptor antagonist provide further options for HAE patients. It is very important to grasp the managements of HAE to avoid the damage to the HAE patients due to delayed treatment, and to save their lives.%遗传性血管性水肿(HAE)是一种罕见的常染色体显性遗传病,主要表现为皮肤黏膜水肿,严重者可出现喉水肿,危及生命.HAE的治疗可分为发作期急诊治疗和缓解期的短期及长期预防性治疗.除传统的弱雄性激素、抗纤溶制剂及补体第一成分抑制物(C1INH)浓缩剂外,近年来一些新药的研发,如重组C1INH、激肽释放酶抑制剂和缓激肽受体拮抗剂为HAE患者带来更多选择和希望.了解HAE的治疗方法对避免患者因延误治疗而造成的伤害、挽救患者生命有重要意义.

  17. Genetics of Hereditary Angioedema Revisited.

    Science.gov (United States)

    Germenis, Anastasios E; Speletas, Matthaios

    2016-10-01

    Contemporary genetic research has provided evidences that angioedema represents a diverse family of disorders related to kinin metabolism, with a much greater genetic complexity than was initially considered. Convincing data have also recently been published indicating that the clinical heterogeneity of hereditary angioedema due to C1 inhibitor deficiency (classified as C1-INH-HAE) could be attributed at least in part, either to the type of SERPING1 mutations or to mutations in genes encoding for enzymes involved in the metabolism and function of bradykinin. Alterations detected in at least one more gene (F12) are nowadays considered responsible for 25 % of cases of hereditary angioedema with normal C1-INH (type III hereditary angioedema (HAE), nlC1-INH-HAE). Interesting data derived from genetic approaches of non-hereditary angioedemas indicate that other immune pathways might be implicated in the pathogenesis of HAE. More than 125 years after the recognition of the hereditary nature of HAE by Osler, the heterogeneity of clinical expressions, the genetics of this disorder, and the genotype-phenotype relationships, still presents a challenge that will be discussed in this review. Large scale, in-depth genetic studies are expected not only to answer these emerging questions but also to further elucidate many of the unmet aspects of angioedema pathogenesis. Uncovering genetic biomarkers affecting the severity of the disease and/or the effectiveness of the various treatment modalities might lead to the prevention of attacks and the optimization of C1-INH-HAE management that is expected to provide a valuable benefit to the sufferers of angioedema.

  18. Novel Vasoregulatory Aspects of Hereditary Angioedema: the Role of Arginine Vasopressin, Adrenomedullin and Endothelin-1.

    Science.gov (United States)

    Kajdácsi, Erika; Jani, Péter K; Csuka, Dorottya; Varga, Lilian; Prohászka, Zoltán; Farkas, Henriette; Cervenak, László

    2016-02-01

    The elevation of bradykinin (BK) level during attacks of hereditary angioedema due to C1-Inhibitor deficiency (C1-INH-HAE) is well known. We previously demonstrated that endothelin-1 (ET-1) level also increases during C1-INH-HAE attacks. Although BK and ET-1 are both potent vasoactive peptides, the vasoregulatory aspect of the pathomechanism of C1-INH-HAE has not yet been investigated. Hence we studied the levels of vasoactive peptides in controls and in C1-INH-HAE patients, as well as evaluated their changes during C1-INH-HAE attacks. The levels of arginine vasopressin (AVP), adrenomedullin (ADM) and ET-1 were measured in the plasma of 100 C1-INH-HAE patients in inter-attack periods and of 111 control subjects, using BRAHMS Kryptor technologies. In 18 of the 100 C1-INH-HAE patients, the levels of vasoactive peptides were compared in blood samples obtained during attacks, or in inter-attack periods. AVP, ADM and ET-1 levels were similar in inter-attack samples from C1-INH-HAE patients and in the samples of controls, although cardiovascular risk has an effect on the levels of vasoactive peptides in both groups. The levels of all three vasoactive peptides increased during C1-INH-HAE attacks. Moreover, the levels of ET-1 and ADM as well as their changes during attacks were significantly correlated. This study demonstrated that vascular regulation by vasoactive peptides is affected during C1-INH-HAE attacks. Our results suggest that the cooperation of several vasoactive peptides may be necessary to counterbalance the actions of excess BK, and to terminate the attacks. This may reveal a novel pathophysiological aspect of C1-INH-HAE.

  19. Angioedema attacks in patients with hereditary angioedema: Local manifestations of a systemic activation process.

    Science.gov (United States)

    Hofman, Zonne L M; Relan, Anurag; Zeerleder, Sacha; Drouet, Christian; Zuraw, Bruce; Hack, C Erik

    2016-08-01

    Hereditary angioedema (HAE) caused by a deficiency of functional C1-inhibitor (C1INH) becomes clinically manifest as attacks of angioedema. C1INH is the main inhibitor of the contact system. Poor control of a local activation process of this system at the site of the attack is believed to lead to the formation of bradykinin (BK), which increases local vasopermeability and mediates angioedema on interaction with BK receptor 2 on the endothelium. However, several observations in patients with HAE are difficult to explain from a pathogenic model claiming a local activation process at the site of the angioedema attack. Therefore we postulate an alternative model for angioedema attacks in patients with HAE, which assumes a systemic, fluid-phase activation of the contact system to generate BK and its breakdown products. Interaction of these peptides with endothelial receptors that are locally expressed in the affected tissues rather than with receptors constitutively expressed by the endothelium throughout the whole body explains that such a systemic activation process results in local manifestations of an attack. In particular, BK receptor 1, which is induced on the endothelium by inflammatory stimuli, such as kinins and cytokines, meets the specifications of the involved receptor. The pathogenic model discussed here also provides an explanation for why angioedema can occur at multiple sites during an attack and why HAE attacks respond well to modest increases of circulating C1INH activity levels because inhibition of fluid-phase Factor XIIa and kallikrein requires lower C1INH levels than inhibition of activator-bound factors.

  20. A Case of Type 2 Hereditary Angioedema With SERPING1 Mutation.

    Science.gov (United States)

    Sim, Da Woon; Park, Kyung Hee; Lee, Jae Hyun; Park, Jung Won

    2017-01-01

    Hereditary angioedema is a disease of congenital deficiency or functional defect in the C1 esterase inhibitor (C1-INH) consequent to mutation in the SERPING1 gene, which encodes C1-INH. This disease manifests as recurrent, non-pitting, non-pruritic subcutaneous, or submucosal edema as well as an erythematous rash in some cases. These symptoms result from the uncontrolled localized production of bradykinin. The most commonly affected sites are the extremities, face, gastrointestinal tract, and respiratory system. When the respiratory system is affected by hereditary angioedema, swelling of the airway can restrict breathing and lead to life-threatening obstruction. Herein, we report a case of a 24-year-old woman with type 2 hereditary angioedema who presented with recurrent episodic abdominal pain and swelling of the extremities. She had no family history of angioedema. Although her C4 level was markedly decreased (3.40 mg/dL; normal range: 10-40 mg/dL), she presented with a very high C1-INH level (81.0 mg/dL; normal range: 21.0-39.0 mg/dL) and abnormally low C1-INH activity (less than 25%; normal range: 70%-130%). The SERPING1 gene mutation was confirmed in this patient. She was treated with prophylactic tranexamic acid, as needed, and subsequently reported fewer and less severe episodes. To our knowledge, this is the first reported case of type 2 hereditary angioedema in Korea that was consequent to SERPING1 mutation and involved a significantly elevated level of C1-INH as well as a low level of C1-INH activity.

  1. The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity.

    Science.gov (United States)

    Wu, Maddalena Alessandra; Castelli, Roberto

    2016-02-01

    Several clinical and biological features of lymphoproliferative diseases have been associated with an increased risk of developing autoimmune manifestations. Acquired deficiency of C1-inhibitor (C1-INH) (AAE) is a rare syndrome clinically similar to hereditary angioedema (HAE) characterized by local increase in vascular permeability (angioedema) of the skin and the gastrointestinal and oro-pharyngo-laryngeal mucosa. Bradykinin, a potent vasoactive peptide, released from high molecular weight kininogen when it is cleaved by plasma kallikrein (a serine protease controlled by C1-INH), is the mediator of symptoms. In total 46% of AAE patients carry an underlying hematological disorder including monoclonal gammopathy of uncertain significance (MGUS) or B cell malignancies. However, 74% of AAE patients have anti-C1-INH autoantibodies without hematological, clinical or instrumental evidence of lymphoproliferative disease. Unlike HAE patients, AAE patients usually have late-onset symptoms, do not have a family history of angioedema and present variable response to treatment due to the hypercatabolism of C1-INH. Experiments show that C1-INH and/or the classical complement pathway were consumed by the neoplastic lymphatic tissues and/or anti-C1-INH neutralizing autoantibodies. Therapy of AAE follows two directions: 1) prevention/reversal of the symptoms of angioedema; and 2) treatment of the associated disease. Different forms of B cell disorders coexist and/or evolve into each other in AAE and seem to be dominated by an altered control of B cell proliferation, thus AAE represents an example of the strict link between autoimmunity and lymphoproliferation.

  2. Morphine, but not sodium cromoglycate, modulates the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro.

    Science.gov (United States)

    Ray, N. J.; Jones, A. J.; Keen, P.

    1991-01-01

    1. Opioids have been shown to inhibit substance P (SP) release from primary afferent neurones (PAN). In addition, opioid receptors have been identified on PAN of the vagus nerves. Sodium cromoglycate (SCG) decreases the excitability of C-fibres in the lung of the dog in vivo. We have utilised a multi-superfusion system to investigate the effect of opioids and SCG on the release of SP from the rat trachea in vitro. 2. Pretreatment of newborn rats with capsaicin (50 mg kg-1 s.c. at day 1 and 2 of life) resulted in a 93.2 +/- 6.3% reduction in tracheal substance P-like immunoreactivity (SP-LI) content when determined by radioimmunoassay in the adult. 3. Exposure to isotonically elevated potassium concentrations (37-90 mM), capsaicin (100 nM-10 microM), and bradykinin (BK; 10nm-1 microM) but not des-Arg9-BK (1 microM) stimulated SP-LI release by a calcium-dependent mechanism. 4. SCG (1 microM and 100 microM) did not affect spontaneous, potassium (60 mM)- or BK (1 microM)-stimulated SP-LI release. 5. Morphine (0.1-100 microM) caused dose-related inhibition of potassium (60 mM)-stimulated SP-LI release with the greatest inhibition of 60.4 +/- 13.7% at 100 microM. The effect of morphine was not mimicked by the kappa-opioid receptor agonist, U50,488H (10 microM) or the delta-opioid receptor agonist, Tyr-(D-Pen)-Gly-Phe-(D-Pen) (DPDPE). 6. The effect of morphine was totally abolished by prior and concomitant exposure to naloxone (100 nM) which had no effect on control release values.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1713104

  3. Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein.

    Science.gov (United States)

    North, A J; Brannon, T S; Wells, L B; Campbell, W B; Shaul, P W

    1994-07-01

    In newborn lambs, pulmonary prostacyclin (PGI2) production increases acutely in response to low oxygen. We tested the hypothesis that decreased oxygenation directly stimulates PGI2 synthesis in arterial segments and cultured endothelial cells from newborn lamb intrapulmonary arteries. In segments studied at PO2 of 680 mm Hg, the synthesis of PGI2 exceeded prostaglandin E2 (PGE2) by 73%. Endothelium removal lowered PGI2 by 77% and PGE2 by 66%. At low oxygen tension (PO2, 40 mm Hg), PGI2 and PGE2 synthesis rose by 96% and 102%, respectively. Similarly, in endothelial cells studied at PO2 of 680 mm Hg, the synthesis of PGI2 exceeded PGE2 by 50%, and at low oxygen tension both PGI2 and PGE2 increased (89% and 64%, respectively). Endothelial cell PGI2 synthesis maximally stimulated by bradykinin, A23187, or arachidonic acid was also increased at low PO2 by 50%, 66%, and 48%, respectively. PGE2 synthesis was similarly altered, increasing by 33%, 37%, and 41%, respectively. In contrast, lowering oxygen had minimal effect on PGI2 and PGE2 synthesis with exogenous PGH2, which is the product of cyclooxygenase. Immunoblot analyses revealed that there was a 2.6-fold greater abundance of cyclooxygenase-1 protein at PO2 of 40 versus 680 mm Hg, and the increase at lower oxygen tension was inhibited by cycloheximide. The cyclooxygenase-2 isoform was not detected. Thus, attenuated oxygenation directly stimulates PGI2 and PGE2 synthesis in intrapulmonary arterial segments and endothelial cells from newborn lambs. This process is due to enhanced cyclooxygenase activity related to increased abundance of the cyclooxygenase-1 protein, and this effect may be due to increased synthesis of the enzyme protein.

  4. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Johannes Beltinger; Jo del Buono; Maeve M Skelly; John Thornley; Robin C Spiller; William A Stack; Christopher J Hawkey

    2008-01-01

    AIM:To study the mechanisms by which Campylobacter jejuni (C.jejuni) causes inflammation and diarrhea.In particular,direct interactions with intestinal epithelial cells and effects on barrier function are poorly understood.METHODS:To model the initial pathogenic effects of C.jejuni on intestinal epithelium,polarized human colonic HCA-7 monolayerswere grown on permeabilized filters and infected apically with clinical isolates of C.jejuni.Integrity of the monolayer was monitored by changes in monolayer resistance,release of lactate dehydrogenase,mannitol fluxes and electron microscopy.Invasion of HCA-7 cells was assessed by a modified gentamicin protection assay,translocation by counting colony forming units in the basal chamber,stimulation of mediator release by immunoassays and secretory responses in monolayers stimulated by bradykinin in an Ussing chamber.RESULTS:All strains translocated across monolayers but only a minority invaded HCA-7 cells.Strains that invaded HCA-7 cells destroyed rnonolayer resistance over 6 h,accompanied by increased release of lactate dehydrogenase,a four-fold increase in permeability to [3H] mannitol,and ultrastructural disruption of tight junctions,with rounding and lifting of cells off the filter membrane.Synthesis of interleukin (IL)-8 and prostaglandin E2 was increased with strains that invaded the rnonolayer but not with those that did not.CONCLUSION:These data demonstrate two distinct effects of C.jejuni on colonic epithelial cells and provide an informative model for further investigation of initial host cell responses to C.jejuni.

  5. Assessment of Phenolic Compounds and Anti-Inflammatory Activity of Ethyl Acetate Phase of Anacardium occidentale L. Bark

    Directory of Open Access Journals (Sweden)

    Marina Suênia de Araújo Vilar

    2016-08-01

    Full Text Available The bark of A. occidentale L. is rich in tannins. Studies have described various biological activities of the plant, including antimicrobial, antioxidant, antiulcerogenic and antiinflammatory actions. The objective of this study was to assess the activity of the ethyl acetate phase (EtOAc of A. occidentale on acute inflammation and to identify and quantify its phenolic compounds by HPLC. The method was validated and shown to be linear, precise and accurate for catechin, epicatechin, epigallocatechin and gallic acid. Swiss albino mice (Mus musculus were treated with saline, Carrageenan (2.5%, Indomethacin (10 mg/kg, Bradykinin (6 nmol and Prostaglandine E2 (5 µg at different concentrations of EtOAc - A. occidentale (12.5; 25; 50; and 100 mg/kg/weight p.o. for the paw edema test. Challenge was performed with carrageenan (500 µg/mL i.p. for the doses 50 and 100 mg/kg of EtOAc. Levels of cytokines IL-1, TNF-α, IL-6 and IL-10 were also measured. All EtOAc - A. occidentale concentrations reduced the edema. At 50 and 100 mg/kg, an anti-inflammatory response of the EtOAc was observed. Carrageenan stimulus produced a neutrophil count of 28.6% while 50 and 100 mg/kg of the phase reduced this to 14.5% and 9.1%, respectively. The EtOAc extract reduced levels of IL-1 and TNF-α. These results suggest that the EtOAc plays a modulatory role in the inflammatory response. The chromatographic method can be used for the analysis of the phenolic compounds of the EtOAc phase.

  6. Nociception originating from the crural fascia in rats.

    Science.gov (United States)

    Taguchi, Toru; Yasui, Masaya; Kubo, Asako; Abe, Masahiro; Kiyama, Hiroshi; Yamanaka, Akihiro; Mizumura, Kazue

    2013-07-01

    Little is documented in the literature as to the function of muscle fascia in nociception and pain. The aim of this study was to examine the distribution of presumptive nociceptive nerve fibers, to characterize fascial thin-fiber sensory receptors, and to examine the spinal projection of nociceptive input from the rat crural fascia (CF). Nerve fibers labeled with specific antibodies to calcitonin gene-related peptide (CGRP) and peripherin were found to be densely distributed in the distal third of the CF. Thin-fiber receptors (Aδ- and C-fibers) responding to pinching stimuli to the CF with sharpened watchmaker's forceps, identified in vivo with the teased fiber technique from the common peroneal nerve, exist in the CF. Forty-three percent of the mechano-responsive fascial C-fibers were polymodal receptors (nociceptors) responding to mechanical, chemical (bradykinin), and heat stimuli, whereas almost all Aδ-fibers were responsive only to mechanical stimuli. Repetitive pinching stimulus to the CF induced c-Fos protein expression in the middle to medial part of superficial layers ie, laminae I-II of the spinal dorsal horn at segments L2 to L4, peaking at L3. These results clearly demonstrate the following: 1) peptidergic and non-peptidergic axons of unmyelinated C-fibers with nerve terminals are distributed in the CF; 2) peripheral afferents responding to noxious stimuli exist in the fascia, and 3) nociceptive information from the CF is mainly processed in the spinal dorsal horn at the segments L2 to L4. These results together indicate that the "muscle fascia," a tissue often overlooked in pain research, can be an important source of nociception under normal conditions.

  7. Thimet oligopeptidase specificity: evidence of preferential cleavage near the C-terminus and product inhibition from kinetic analysis of peptide hydrolysis.

    Science.gov (United States)

    Knight, C G; Dando, P M; Barrett, A J

    1995-01-01

    The substrate-size specificity of human thimet oligopeptidase (EC 3.4.24.15) was investigated with oligomers of glycyl-prolyl-leucine (GPL)n where n = 2, 3, 4 and 5. These peptides were cleaved only at Leu-Gly bonds to give GPL as the single final product. Hydrolysis was most rapid with (GPL)3 and slowest with (GPL)5. The more water-soluble oligomers of Gly-Hyp-Leu showed the same trend. (Gly-Hyp-Leu)6 was not hydrolysed, consistent with the previous finding that substrates larger than 17 amino acids are not cleaved by thimet oligopeptidase. The cleavage of (GPL)3 to GPL fitted a sequential first-order model. First-order kinetics were unexpected as the initial substrate concentration was greater than Km. The anomaly was also seen during the cleavage of bradykinin and neurotensin, and in these cases first-order behaviour was due to potent competitive inhibition by the C-terminal product. The sequential mechanism for (GPL)3 breakdown by thimet oligopeptidase does not discriminate between initial cleavages towards the N- or C-terminus. As isoleucine is an unfavourable residue in P1, substrates were made in which selected leucine residues were replaced by isoleucine. GPL--GPI--GPL (where--represents the bond between the tripeptide units) was resistant to hydrolysis and GPI--GPL--GPL was cleaved only at the -Leu-Gly- bond. Experiments with isoleucine-containing analogues of (Gly-Hyp-Leu)4 showed that thimet oligopeptidase preferred to cleave these peptides near the C-terminus. PMID:7755557

  8. Phospholipase C-η1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling.

    Science.gov (United States)

    Kim, Jung Kuk; Choi, Jung Woong; Lim, Seyoung; Kwon, Ohman; Seo, Jeong Kon; Ryu, Sung Ho; Suh, Pann-Ghill

    2011-06-01

    Phospholipase C-η1 (PLC-η1) is the most recently identified PLC isotype and is primarily expressed in nerve tissue. However, its functional role is unclear. In the present study, we report for the first time that PLC-η1 acts as a signal amplifier in G protein-coupled receptor (GPCR)-mediated PLC and Ca(2+) signaling. Short-hairpin RNA (shRNA)-mediated knockdown of endogenous PLC-η1 reduced lysophosphatidic acid (LPA)-, bradykinin (BK)-, and PACAP-induced PLC activity in mouse neuroblastoma Neuro2A (N2A) cells, indicating that PLC-η1 participates in GPCR-mediated PLC activation. Interestingly, ionomycin-induced PLC activity was significantly decreased by PLC-η1, but not PLC-η2, knockdown. In addition, we found that intracellular Ca(2+) source is enough for PLC-η1 activation. Furthermore, the IP(3) receptor inhibitor, 2-APB, inhibited LPA-induced PLC activity in control N2A cells, whereas this effect was not observed in PLC-η1 knockdown N2A cells, suggesting a pivotal role of intracellular Ca(2+) mobilization in PLC-η1 activation. Finally, we found that LPA-induced ERK1/2 phosphorylation and expression of the downstream target gene, krox-24, were significantly decreased by PLC-η1 knockdown, and these knockdown effects were abolished by 2-APB. Taken together, our results strongly suggest that PLC-η1 is activated via intracellular Ca(2+) mobilization from the ER, and therefore amplifies GPCR-mediated signaling.

  9. Thrombostatin FM compounds: direct thrombin inhibitors - mechanism of action in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, M T; Burke, F; Warnock, M; Zhou, Y; Sweigart, J; Chen, A; Ricketts, D; Lucchesi, B R; Chen, Z; Cera, E Di; Hilfinger, J; Kim, J S; Mosberg, H I; Schmaier, A H [Case Western; (Michigan); (TSRL); (WU-MED)

    2008-04-29

    Novel pentapeptides called Thrombostatin FM compounds consisting mostly of D-isomers and unusual amino acids were prepared based upon the stable angiotensin converting enzyme breakdown product of bradykinin - RPPGF. These peptides are direct thrombin inhibitors prolonging the thrombin clotting time, activated partial thromboplastin time, and prothrombin time at ≥0.78, 1.6, and 1.6 μm, respectively. They competitively inhibit α-thrombin-induced cleavage of a chromogenic substrate at 4.4--8.2 μm. They do not significantly inhibit plasma kallikrein, factor (F) XIIa, FXIa, FIXa, FVIIa-TF, FXa, plasmin or cathepsin G. One form, FM19 [rOicPaF(p-Me)], blocks α-thrombin-induced calcium flux in fibroblasts with an IC50 of 6.9 ± 1.2 μm. FM19 achieved 100% inhibition of threshold α- or γ-thrombin-induced platelet aggregation at 8.4 ± 4.7 μm and 16 ± 4 μm, respectively. The crystal structure of thrombin in complex with FM19 shows that the N-terminal D-Arg retrobinds into the S1 pocket, its second residue Oic interacts with His-57, Tyr-60a and Trp-60d, and its C-terminal p-methyl Phe engages thrombin's aryl binding site composed of Ile-174, Trp-215, and Leu-99. When administered intraperitoneal, intraduodenal, or orally to mice, FM19 prolongs thrombin clotting times and delays carotid artery thrombosis. FM19, a low affinity reversible direct thrombin inhibitor, might be useful as an add-on agent to address an unmet need in platelet inhibition in acute coronary syndromes in diabetics and others who with all current antiplatelet therapy still have reactive platelets.

  10. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    Science.gov (United States)

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  11. A chemically defined 2,3-trans procyanidin fraction from willow bark causes redox-sensitive endothelium-dependent relaxation in porcine coronary arteries.

    Science.gov (United States)

    Kaufeld, Aurica M; Pertz, Heinz H; Kolodziej, Herbert

    2014-07-25

    Extracts of the bark of willow species (Salix spp.) are popular herbal remedies to relieve fever and inflammation. The effects are attributed to salicin and structurally related phenolic metabolites, while polyphenols including procyanidins are suggested to contribute to the overall effect of willow bark. This study aimed at investigating the relaxant response to a highly purified and chemically defined 2,3-trans procyanidin fraction in porcine coronary arteries. The procyanidin sample produced a concentration-dependent relaxation in U46619-precontracted tissues. Relaxation was predominantly mediated through the redox-sensitive activation of the endothelial phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway, leading to the subsequent activation of endothelial nitric oxide synthase (eNOS) by phosphorylation, as evidenced by Western blotting using human umbilical vein endothelial cells (HUVECs). That the relaxant response to Salix procyanidins was reactive oxygen species (ROS)-dependent with O2(-) as the key species followed from densitometric analysis using 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA assay) and employment of various ROS inhibitors, respectively. The data also suggested the modification of intracellular Ca(2+) levels and KCa channel functions. In addition, our organ bath studies showed that Salix procyanidins reversed the abrogation of the relaxant response to bradykinin by oxidized low-density lipoproteins (oxLDL) in coronary arteries, suggesting a vasoprotective effect of willow bark against detrimental oxLDL in pathological conditions. Taken together, our findings suggest for the first time that 2,3-trans procyanidins may contribute not only to the beneficial effects of willow bark but also to health-promoting benefits of diverse natural products of plant origin.

  12. Mother's exercise during pregnancy programmes vasomotor function in adult offspring.

    Science.gov (United States)

    Bahls, Martin; Sheldon, Ryan D; Taheripour, Pardis; Clifford, Kerry A; Foust, Kallie B; Breslin, Emily D; Marchant-Forde, Jeremy N; Cabot, Ryan A; Harold Laughlin, M; Bidwell, Christopher A; Newcomer, Sean C

    2014-01-01

    The intrauterine environment is influenced by maternal behaviour and programmes atherosclerotic disease susceptibility in offspring. The aim of this investigation was to test the hypothesis that mothers' exercise during pregnancy improves endothelial function in 3-, 5- and 9-month-old porcine offspring. The pregnant sows in the exercise group ran for an average of 39.35 ± 0.75 min at 4.81 ± 0.35 km h(-1) each day for 5 days per week for all but the last week of gestation. This induced a significant reduction in resting heart rate (exercised group, 89.3 ± 3.5 beats min(-1); sedentary group, 102.1 ± 3.1 beats min(-1); P < 0.05) but no significant differences in gestational weight gain (65.8 ± 2.1 versus 63.3 ± 1.9%). No significant effect on bradykinin-induced vasorelaxation with and without l-NAME was observed. A significant main effect was identified on sodium nitroprusside-induced vasorelaxation (P = 0.01), manifested by a reduced response in femoral arteries of all age groups from exercised-trained swine. Nitric oxide signalling was not affected by maternal exercise. Protein expression of MYPT1 was reduced in femoral arteries from 3-month-old offspring of exercised animals. A significant interaction was observed for PPP1R14A (P < 0.05) transcript abundance and its protein product CPI-17. In conclusion, pregnant swine are able to complete an exercise-training protocol that matches the current recommendations for pregnant women. Gestational exercise is a potent stimulus for programming vascular smooth muscle relaxation in adult offspring. Specifically, exercise training for the finite duration of pregnancy decreases vascular smooth muscle responsiveness in adult offspring to an exogenous nitric oxide donor.

  13. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive.

    Directory of Open Access Journals (Sweden)

    Antoine eHuart

    2015-02-01

    Full Text Available Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney disease. Currently, inhibitors of the renin angiotensin system (RAS remain the sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor (B1R reduced the development of fibrosis in two animal models of renal fibrosis. The usefulness of new drugs also resides in outperforming the gold standards and eventually being additive or complementary to existing therapies. Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra with that of an angiotensin type 1 receptor antagonist (AT1a in the unilateral ureteral obstruction (UUO model of renal fibrosis and determined whether bi-therapy presented higher efficacy than any of the drugs alone. Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However bitherapy did not improve the antifibrotic effects at the protein level. We sought for the reason of the absence of this additive effect by studying the expression of a panel of genes involved in the fibrotic process. Interestingly, at the molecular level the different drugs targeted different players of fibrosis that, however, in this severe model did not result in improved reduction of fibrosis at the protein level. Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially displays low side effects it might be an interesting alternative in cases of poor tolerability to RAS inhibitors.

  14. Neutrophil function and metabolism in individuals with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    T.C. Alba-Loureiro

    2007-08-01

    Full Text Available Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.

  15. Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1 activity and increase airway smooth muscle contraction in asthma.

    Directory of Open Access Journals (Sweden)

    Natasha K Rogers

    Full Text Available Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM deposition. Matrix metalloproteinase-1 (MMP-1 is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.

  16. Detection of Biological Materials Using Ion Mobility Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodacy, P.J.; Sterling, J.P.; Butler, M.A.

    1999-03-01

    Traditionally, Ion Mobility Spectroscopy has been used to examine ions of relatively low molecular weight and high ion mobility. In recent years, however, biomolecules such as bradykinin, cytochrome c, bovine pancreatic trypsin inhibitor (BPTI), apomyoglobin, and lysozyme, have been successfully analyzed, but studies of whole bio-organisms have not been performed. In this study an attempt was made to detect and measure the mobility of two bacteriophages, {lambda}-phage and MS2 using electrospray methods to inject the viruses into the ion mobility spectrometer. Using data from Yeh, et al., which makes a comparison between the diameter of non-biologic particles and the specific particle mobility, the particle mobility for the MS2 virus was estimated to be 10{sup {minus}2} cm{sup 2}/volt-sec. From this mobility the drift time of these particles in our spectrometer was calculated to be approximately 65 msec. The particle mobility for the {lambda}-phage virus was estimated to be 10{sup {minus}3} cm{sup 2}/volt-sec. which would result in a drift time of 0.7 sec. Spectra showing the presence of a viral peak at the expected drift time were not observed. However, changes in the reactant ion peak that could be directly attributed to the presence of the viruses were observed. Virus clustering, excessive collisions, and the electrospray injection method limited the performance of this IMS. However, we believe that an instrument specifically designed to analyze such bioagents and utilizing other injection and ionization methods will succeed in directly detecting viruses and bacteria.

  17. Pharmacological Characterization of the Edema Caused by Vitalius dubius (Theraphosidae, Mygalomorphae) Spider Venom in Rats.

    Science.gov (United States)

    Rocha-E-Silva, Thomaz A A; Linardi, Alessandra; Antunes, Edson; Hyslop, Stephen

    2016-01-01

    Bites by tarantulas (Theraphosidae, Mygalomorphae) in humans can result in mild clinical manifestations such as local pain, erythema, and edema. Vitalius dubius is a medium-sized, nonaggressive theraphosid found in southeastern Brazil. In this work, we investigated the mediators involved in the plasma extravasation caused by V. dubius venom in rats. The venom caused dose-dependent (0.1-100 μg/site) edema in rat dorsal skin. This edema was significantly inhibited by ((S)1-{2-[3(3-4-dichlorophenyl)-1-(3-iso-propoxyphenylacetyl)piperidine-3-yl]ethyl}-4-phenyl-1-azoniabicyclo[2.2.2]octone, chloride) (SR140333, a neurokinin NK1 receptor antagonist), indomethacin [a nonselective cyclooxygenase (COX) inhibitor], cyproheptadine (a serotonin 5-hydroxytryptamine1/2 and histamine H1 receptor antagonist), and N(ω)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor). In contrast, mepyramine (a histamine H1 receptor antagonist), D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)-]-BK (JE 049, a bradykinin B2 receptor antagonist), and ((S)-N-methyl-N-[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-di-chlorophenyl)butyl]benzamide) (SR48968, a neurokinin NK2 receptor antagonist) had no effect on the venom-induced increase in vascular permeability. In rat hind paws, the venom-induced edema was attenuated by ketoprofen (a nonselective COX inhibitor) administered 15 minutes postvenom. Preincubation of venom with commercial antiarachnid antivenom attenuated the venom-induced edema. These results suggest that the enhanced vascular permeability evoked by V. dubius venom involves serotonin, COX products, neurokinin NK1 receptors, and nitric oxide formation. The attenuation of hind paw edema by ketoprofen suggests that COX inhibitors could be useful in treating the local inflammatory response to bites by these spiders.

  18. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  19. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats.

    Science.gov (United States)

    Borgo, M V; Claudio, E R G; Silva, F B; Romero, W G; Gouvea, S A; Moysés, M R; Santos, R L; Almeida, S A; Podratz, P L; Graceli, J B; Abreu, G R

    2016-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  20. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil); Podratz, P.L.; Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil)

    2015-11-17

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  1. Molecular versus particulate deposition markers for blood flow measurement in the musculo-skeletal system. {sup 131}Iodo-DesMethyl-Imipramine

    Energy Technology Data Exchange (ETDEWEB)

    Tromborg, H.B. [Univ. Hospital of Aarhus, Dept. of Orthopaedics E, Inst. of Esperimental Clinical Research (Denmark)

    1998-12-31

    The aims of the experiments were to develop and validate a porcine isolated blood perfused myocutaneous flap and tibia model with preserved venous outflow. The stability of the models was tested and washout of microspheres and IDMI was measured. IDMI and microsphere based tissue blood flow measurements were compared after central intracardiac injection into the intact animal. Three experimental series were necessary to develop and validate the models. The organs were perfused with arterial blood by a pulsatile pump and submerged into a tissue bath. All outflow from the models were collected. One experiment was necessary to validate the rectus abdominis myocutaneous flap. In three experiments an isolated tibia with preserved venous outflow was developed and validated. Normal flow rate/perfusion pressure relations were reproduced after periods of supra-normal and sub-normal perfusion pressure in the two models. A response to endothelially mediated vasodilation with bradykinin was demonstrated after nine hours of artificial perfusion in the tibia model. IDMI did not influence the local hemodynamics during infusion, whereas microspheres elicited a transitory increase in the perfusion pressure after local injection. IDMI and microsphere based blood flow measurements and recirculation were compared in the in-situ musculo-skeletal tissue corresponding to the two models after central injection of the markers. Recirculation of IDMI was greater (8(1)%) than that of microspheres (2(0)%) after 18 minutes. Microspheres tended to measure higher blood flow values than IDMI at high flow rates and vice versa at low flow values. The {sup 131}Iodo-DesMethyl-Imipramine (IDMI) method is not generally applicable as a deposition marker for blood flow measurement in the musculo-skeletal system. (EHS) 80 refs.

  2. Effect of mesenchymal precursor cells on the systemic inflammatory response and endothelial dysfunction in an ovine model of collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Laura M Dooley

    Full Text Available Mesenchymal precursor cells (MPC are reported to possess immunomodulatory properties that may prove beneficial in autoimmune and other inflammatory conditions. However, their mechanism of action is poorly understood. A collagen-induced arthritis model has been previously developed which demonstrates local joint inflammation and systemic inflammatory changes. These include not only increased levels of inflammatory markers, but also vascular endothelial cell dysfunction, characterised by reduced endothelium-dependent vasodilation. This study aimed to characterise the changes in systemic inflammatory markers and endothelial function following the intravenous administration of MPC, in the ovine model.Arthritis was induced in sixteen adult sheep by administration of bovine type II collagen into the hock joint following initial sensitisation. After 24h, sheep were administered either 150 million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-A were measured in plasma to assess systemic inflammation, along with pro-inflammatory and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis induction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire myograph. The relaxant response to endothelium-dependent and endothelium-independent vasodilators was used to assess endothelial dysfunction.Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h following MPC administration. They also showed significantly reduced plasma levels of the inflammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-contracted tone vs. 182.3 ± 27.3% in controls, and digital arteries also demonstrated greater endothelium-dependent vasodilation. This study demonstrated that MPCs

  3. Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium-Dependent and -Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive Rats

    Science.gov (United States)

    Caniffi, Carolina; Cerniello, Flavia M.; Gobetto, María N.; Sueiro, María L.; Arranz, Cristina

    2016-01-01

    Given that the role of C-type natriuretic peptide (CNP) in the regulation of vascular tone in hypertensive states is unclear, we hypothesized that impaired response of the nitric oxide system to CNP in spontaneously hypertensive rats (SHR) could affect vascular relaxation induced by the peptide in this model of hypertension, and that other endothelial systems or potassium channels opening could also be involved. We examined the effect of CNP on isolated SHR aortas, and the hindlimb vascular resistance (HVR) in response to CNP administration compared to normotensive rats. Aortas were mounted in an isometric organ bath and contracted with phenylephrine. CNP relaxed arteries in a concentration-dependent manner but was less potent in inducing relaxation in SHR. The action of CNP was diminished by removal of the endothelium, inhibition of nitric oxide synthase by Nω-nitro-L-arginine methyl ester, and inhibition of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one in both groups. In contrast, blockade of cyclooxygenase or subtype 2 bradykinin receptor increased CNP potency only in SHR. In both Wistar and SHR, CNP relaxation was blunted by tetraethylammonium and partially inhibited by BaCl2 and iberiotoxin, indicating that it was due to opening of the Kir and BKCa channels. However, SHR seem to be more sensitive to Kir channel blockade and less sensitive to BKCa channel blockade than normotensive rats. In addition, CNP decreases HVR in Wistar and SHR, but the effect of CNP increasing blood flow was more marked in SHR. We conclude that CNP induces aorta relaxation by activation of the nitric oxide system and opening of potassium channels, but the response to the peptide is impaired in conductance vessel of hypertensive rats. PMID:27936197

  4. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Directory of Open Access Journals (Sweden)

    Marty Kwok-Shing Wong

    Full Text Available The kallikrein-kinin system (KKS consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW kininogen (KNG, plasma kallikrein (KLKB1, and bradykinin (BK; and "tissue KKS" consisting of low molecular-weight (LMW KNG, tissue kallikreins (KLKs, and [Lys(0]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.

  5. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation.

    Science.gov (United States)

    Ralat, Luis A; Ren, Min; Schilling, Alexander B; Tang, Wei-Jen

    2009-12-01

    Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-beta (Abeta). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the V(max) for Abeta degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Abeta degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function.

  6. Functional analysis of the human somatic angiotensin I-converting enzyme gene promoter.

    Science.gov (United States)

    Testut, P; Soubrier, F; Corvol, P; Hubert, C

    1993-08-01

    Angiotensin I-converting enzyme (ACE) is a key enzyme in the regulation of systemic blood pressure and plays a major role in the renin-angiotensin and bradykinin-kinin systems, at the luminal surface of the vascular endothelia. To identify the promoter region, the transcription regulatory elements and the cell specificity of the ACE gene, five successive DNA deletions of the 5' upstream region (-1214, -754, -472, -343, -132 bp relative to the start site of transcription) were isolated and fused in sense and antisense orientations to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene in the promoterless plasmid pBLCAT3. Promoter activities were measured in transient transfection assays using three different cell lines from rabbit endothelium (RE), human embryocarcinoma (Tera-1) and hepatocarcinoma cells (HepG2). All five fragments of the ACE promoter region directed expression of the CAT gene when transfected into the endothelial and the embryocarcinoma cells, which contain endogenous ACE mRNA and express ACE activity. In contrast only minimal levels of promoter activity were obtained on transfection into hepatocarcinoma cells in which endogenous ACE mRNA and ACE activity were not detected. Transfection of RE and Tera-1 cells demonstrated that promoter activity was defined by the length of the ACE promoter sequence inserted into the construct. The 132 bases located upstream from the transcription start site were sufficient to confer ACE promoter activity, whereas the sequences upstream from -472 bp and between -343 bp and -132 bp were responsible for a decrease of promoter activity. Furthermore, the minimal 132 bp of the ACE promoter contains elements which direct cell-specific CAT expression. In addition, the DNA transfection study in the presence of dexamethasone suggested that the potential glucocorticoid regulatory elements, located in the sequence of the ACE promoter, are not functional.

  7. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C.

    Science.gov (United States)

    Gross, Eric R; Hsu, Anna K; Urban, Travis J; Mochly-Rosen, Daria; Gross, Garrett J

    2013-09-01

    Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C (PKC) isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal-specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning. Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45 ± 1, 44 ± 2 %, respectively, vs. incision: 43 ± 2 %, and control: 63 ± 2 %, P classical PKC isozyme activator (activating α, β, βII, and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45 ± 1 vs. 45 ± 2 and 47 ± 1 %, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection. These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.

  8. Anti-inflammatory activity of Choisya ternata Kunth essential oil, ternanthranin, and its two synthetic analogs (methyl and propyl N-methylanthranilates.

    Directory of Open Access Journals (Sweden)

    Mariana Martins Gomes Pinheiro

    Full Text Available Choisya ternata Kunth (Rutaceae is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN were evaluated. Mice pretreated with the EO (EO obtained from C. ternata leaves (3-100 mg/kg, p.o., ISOAN, MAN or PAN (1-30 mg/kg, p.o. and the reference drugs, morphine (1 mg/kg, p.o. and acetylsalicylic acid (ASA, 100 mg/kg, p.o., were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively. An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β. ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA. None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect.

  9. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, S.; Saito, K.; Moskowitz, M.A.

    1987-12-01

    Utilizing /sup 125/I-BSA administered intravenously, a simple, reliable, and sensitive method was established for the detection of plasma protein extravasation in the dura of rats and guinea pigs following chemical, electrical, or immunological stimulation. Extravasated /sup 125/I-BSA or Evans blue was noted in the dura and conjunctiva but not in the temporalis muscle of saline-perfused rats following intravenous capsaicin, 1 mumol/kg. Capsaicin-induced extravasation was mediated by unmyelinated and small myelinated fibers since leakage did not develop in adult animals in whom these fibers were destroyed by capsaicin pretreatment (50 mg/kg) as neonates. An ipsilateral increase in Evans blue and /sup 125/I-BSA was found in the dura, eyelids, lips and gingival mucosa, and snout following electrical stimulation of the rat trigeminal ganglion. This increase was also C-fiber dependent. Among those peptides contained in perivascular afferent fibers and administered intravenously, substance P (SP) and neurokinin A (NKA), but not calcitonin gene-related peptide, caused a dose-dependent extravasation in the dura and conjunctiva of rats. Neonatal capsaicin pretreatment did not attenuate SP- nor NKA-induced effects in the dura and actually increased extravasation in the conjunctiva. Intravenous administration of 5-HT or bradykinin to normal adult rats or adult rats pretreated as neonates with capsaicin increased levels of /sup 125/I-BSA in both the dura and the conjunctiva. Histamine and prostaglandin E2, on the other hand, caused protein leakage in the conjunctiva but not in the dura of rats; however, histamine did induce extravasation in the dura of guinea pigs.

  10. Evidence for the presence of a kininogen-like species in a case of total deficiency of low and high molecular weight kininogens

    Directory of Open Access Journals (Sweden)

    D. Veloso

    1998-07-01

    Full Text Available Low and high molecular weight kininogens (LK and HK, containing 409 and 626 amino acids with masses of ~65 and 120 kDa after glycosylation, respectively, are coded by a single gene mapped to the human chromosome 3 by alternative splicing of the transcribed mRNA. The NH2-termini Glu1-Thr383 region, identical in LK and HK, contains bradykinin (BK moieties Arg363-Arg371. LK, HK and their kinin products Lys-BK and BK are involved in several biologic processes. They are evolutionarily conserved and only 7 patients, all apparently normal, have been reported to lack them. In one of these patients (Williams' trait, a codon mutation (Arg178 ® stop has been blamed for the absence of LK and HK. However, using Western blots with 2 monoclonal anti-HK antibodies, one that recognizes the region common to LK and HK and the other that recognizes only HK, I detected ~110-kDa bands in the plasma of this LK/HK-deficient patient vs ~120-kDa bands in normal human and ape plasmas. With polyclonal anti-Lys-BK antibody, which strongly detects BK cleaved at its COOH-terminus in purified HK, I detected ~110-kDa bands in the normal and the deficient plasmas. Western blots with a monoclonal anti-prekallikrein (PK antibody showed that surface activation of PK and distribution of PK activation products, both dependent on HK, were similar in these plasmas. These findings suggest that a mutant gene yielded a kininogen-like species possibly involving aberrant mRNA splicing - structurally different from normal HK, but apparently with the capacity to carry out seemingly vital HK functions.

  11. [The antagonistic effect of aspirin on the expression of prostaglandin participation in the antihypertensive activity of ACE inhibitors].

    Science.gov (United States)

    Alimento, M; Campodonico, J; Santambrogio, G; Rossi, M; Trabattoni, D; Celeste, F; Guazzi, M

    1997-06-01

    ACE-inhibitors antagonize both angiotensin production and bradykinin breakdown, resulting in enhancement of vasodilating prostaglandin release. This provides an explanation for the experimental observation that cycloxygenase blockers (such as aspirin or indomethacin) may counteract the antihypertensive efficacy of the ACE-inhibitors; it may be also possible that hypertensive patients taking aspirin as an antiplatelet agent may fail to benefit from ACE-inhibition. This study was aimed at: evaluating the magnitude and incidence of the inhibitory phenomenon; defining the minimal aspirin dosage that produces an antagonistic effect, as well as the possible reasons for a different individual susceptibility. We have studied untreated patients with mild (10 cases, Group 1), moderate (16 cases, Group 2) or severe (26 cases, Group 3) hypertension. The ACE-inhibitor enalapril was used at doses of 10 mg bid (groups 1 and 2) or 20 mg bid (Group 3). Active drug treatment periods had a 5-day duration. A daily dose of aspirin of 100 mg had no effect on the antihypertensive efficacy of enalapril. On the contrary, when a dose of 300 mg was used, 60, 57 and 50% of patients in Group 1, 2 and 3, respectively, showed a > 20% restraint of the mean arterial pressure fall with enalapril (20% was the lower arbitrary limit for defining antagonism). Inhibition was independent of the sequence of drug administration. In these patients counteraction averaged 60, 70 and 90%, respectively. In them, and not in the remaining patients in each group, aspirin substantially attenuated the renin rise elicited by ACE-inhibition. These data suggest that: a dosage of 100 mg aspirin is devoid of any inhibitory effect; more that 50% of ACE inhibited patients are, at least in the short term, susceptible to the action of 300 mg aspirin, regardless of the severity of hypertension; counteraction is seemingly mediated through a prostaglandin inhibition and depends on the individual predominance of prostaglandin

  12. Pharmacological studies of the venom of an Australian bulldog ant (Myrmecia pyriformis).

    Science.gov (United States)

    Matuszek, M A; Hodgson, W C; Sutherland, S K; King, R G

    1994-01-01

    The purpose of this study was to examine some of the pharmacological actions of venom from the Australian bulldog ant Myrmecia pyriformis. M. pyriformis venom was prepared by extraction of venom sacs in distilled water and centrifugation to remove insoluble material. Venom (2 micrograms/ml) produced a biphasic response of isolated guinea-pig ileum, i.e., an initial rapid contraction followed by a slower prolonged contraction. The histamine antagonist mepyramine (0.1 microM) inhibited the first phase of this response by approximately 80%. In the isolated rat stomach fundus strip (histamine-insensitive), venom (2-4 micrograms/ml) produced only a single contraction. Responses to venom of egg-albumin-sensitized guinea-pig ileum, were not significantly different before and after an anaphylactic response induced in vitro by egg albumin (0.5 mg/ml). Fluorometric assay showed that histamine accounted for 3.5 +/- 0.5% of the dry weight of M. pyriformis venom. Both the lipoxygenase/cyclooxygenase inhibitor BW755C and the cyclooxygenase inhibitor indomethacin significantly inhibited the response to venom of guinea-pig ileum (second phase) and rat fundus strip. M. pyriformis venom caused hemolysis of guinea pig blood. The degree of hemolysis was reduced significantly when boiled venom was used. No evidence was found that the venom contains acetylcholine, bradykinin, or 5-hydroxytryptamine or that the venom releases histamine from guinea-pig ileum. However, the results indicate that the venom contains histamine-like activity. In addition the venom was found to cause the release of cyclooxygenase products and to contain a heat-sensitive hemolytic factor.

  13. Vivo-morpholinos induced transient knockdown of physical activity related proteins.

    Directory of Open Access Journals (Sweden)

    David P Ferguson

    Full Text Available Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28. However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001 decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016 increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.

  14. Antinociceptive activity of the ethanolic extract, fractions, and aggregatin D isolated from Sinningia aggregata tubers.

    Directory of Open Access Journals (Sweden)

    Geórgea V Souza

    Full Text Available The present study investigated the effects of the ethanolic extract (ESa, fractions, and compounds isolated from Sinningia aggregata in male Swiss mice on carrageenan-induced paw edema, neutrophil migration, mechanical hyperalgesia, formalin-induced nociception, and lipopolysaccharide-induced fever. The ESa did not alter edema, neutrophil migration, or fever at any of the doses tested. However, the ESa reduced phase II of formalin-induced nociception and carrageenan-induced mechanical hyperalgesia. The petroleum ether (PE and ethyl acetate (EA fractions and aggregatin D (AgD; isolated from the EA fraction reduced formalin-induced nociception. Anthraquinones from the PE fraction were ineffective. AgD also inhibited carrageenan-induced mechanical hyperalgesia. Neither the ESa nor AgD altered thermal nociception or motor performance. Local administration of AgD also reduced hyperalgesia induced by carrageenan, bradykinin, tumor necrosis factor-α, interleukin-1β, cytokine-induced neutrophil chemoattractant, prostaglandin E2, and dopamine but not hyperalgesia induced by forskolin or dibutyryl cyclic adenosine monophosphate. The positive control dipyrone reduced the response induced by all of the stimuli. Additionally, glibenclamide abolished the analgesic effect of dipyrone but not the one induced by AgD. AgD did not change lipopolysaccharide-induced nitric oxide production by macrophages or the nociception induced by capsaicin, cinnamaldehyde, acidified saline, or menthol. These results suggest that the ESa has important antinociceptive activity, and this activity results at least partially from the presence of AgD. AgD reduced mechanical hyperalgesia induced by several inflammatory mediators through mechanisms that are different from classic analgesic drugs.

  15. Antinociceptive activity of the ethanolic extract, fractions, and aggregatin D isolated from Sinningia aggregata tubers.

    Science.gov (United States)

    Souza, Geórgea V; Simas, Alex S; Bastos-Pereira, Amanda L; Frois, Gisele R A; Ribas, João L C; Verdan, Maria H; Kassuya, Cândida A L; Stefanello, Maria E; Zampronio, Aleksander R

    2015-01-01

    The present study investigated the effects of the ethanolic extract (ESa), fractions, and compounds isolated from Sinningia aggregata in male Swiss mice on carrageenan-induced paw edema, neutrophil migration, mechanical hyperalgesia, formalin-induced nociception, and lipopolysaccharide-induced fever. The ESa did not alter edema, neutrophil migration, or fever at any of the doses tested. However, the ESa reduced phase II of formalin-induced nociception and carrageenan-induced mechanical hyperalgesia. The petroleum ether (PE) and ethyl acetate (EA) fractions and aggregatin D (AgD; isolated from the EA fraction) reduced formalin-induced nociception. Anthraquinones from the PE fraction were ineffective. AgD also inhibited carrageenan-induced mechanical hyperalgesia. Neither the ESa nor AgD altered thermal nociception or motor performance. Local administration of AgD also reduced hyperalgesia induced by carrageenan, bradykinin, tumor necrosis factor-α, interleukin-1β, cytokine-induced neutrophil chemoattractant, prostaglandin E2, and dopamine but not hyperalgesia induced by forskolin or dibutyryl cyclic adenosine monophosphate. The positive control dipyrone reduced the response induced by all of the stimuli. Additionally, glibenclamide abolished the analgesic effect of dipyrone but not the one induced by AgD. AgD did not change lipopolysaccharide-induced nitric oxide production by macrophages or the nociception induced by capsaicin, cinnamaldehyde, acidified saline, or menthol. These results suggest that the ESa has important antinociceptive activity, and this activity results at least partially from the presence of AgD. AgD reduced mechanical hyperalgesia induced by several inflammatory mediators through mechanisms that are different from classic analgesic drugs.

  16. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension.

    Science.gov (United States)

    Katori, Makoto; Majima, Masataka

    2014-01-01

    A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.

  17. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors: Attack Severity, Treatment, and Hospital Admission in a Prospective Multicenter Study.

    Science.gov (United States)

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-11-01

    The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack.A prospective, multicenter, observational study (April 2012-December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission.Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5-1.0] versus 3.9 [2.5-7.0] hours; P < 0.0001). Even though icatibant was injected more promptly than plasma-derived C1-INH, there, however, was no significant difference in median time to onset of symptom relief between the 2 drugs (0.5 [0.5-1.3] versus 0.5 [0.4-1.0] hours for C1-INH and icatibant, respectively, P = 0.49). Of the 62 patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3-28.2] and 5.9 [1.3-26.5], respectively). A favorable course

  18. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors

    Science.gov (United States)

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-01-01

    Abstract The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack. A prospective, multicenter, observational study (April 2012–December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission. Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5–1.0] versus 3.9 [2.5–7.0] hours; P < 0.0001). Even though icatibant was injected more promptly than plasma-derived C1-INH, there, however, was no significant difference in median time to onset of symptom relief between the 2 drugs (0.5 [0.5–1.3] versus 0.5 [0.4–1.0] hours for C1-INH and icatibant, respectively, P = 0.49). Of the 62 patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3–28.2] and 5.9 [1.3–26

  19. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies.

    Directory of Open Access Journals (Sweden)

    Graziela S Ceravolo

    Full Text Available The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R contributes to vascular hypertrophy in angiotensin II (ANG II-induced hypertension, through a mechanism involving reactive oxygen species (ROS generation and extracellular signal-regulated kinase (ERK1/2 activation. Male Wistar rats were infused with vehicle (control rats, 400 ng/Kg/min ANG II (ANG II rats or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg(9-Leu(8-bradykinin (ANGII+DAL rats, via osmotic mini-pumps (14 days or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats. After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg 184 ± 5.9 vs 115 ± 2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE: 21.8 ± 2.7 vs 6.0 ± 1.8] and ERK1/2 phosphorylation (% of control: 218.3 ± 29.4 vs 100 ± 0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17 ± 3.1 and ERK1/2 phosphorylation (137 ± 20.7% in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC stimulated with low concentrations (0.1 nM of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM, B1R antagonist (10 µM and Tiron (superoxide anion scavenger, 10 mM. These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth

  20. Therapeutic possibilities of Bothrops jararaca in high dilution

    Directory of Open Access Journals (Sweden)

    Eduardo Costa Gaia Nazareth

    2011-09-01

    Full Text Available Introduction: The knowledge and use of the venom of Bothrops jararaca in high dilutions is still quite limited. One of the important properties is the use of one of its components, bradykinin, for the development of antihypertensive medication known as captopril. Other situations, such as clinical, local and systemic should receive more depth to the composition of Materia Medica related to various medical actions on the man and mammals in general. The systemic action of the bite of this snake, includes hemostasis disorders, culminating as bleeding gums, in addition to sweating, hypertension, and hypothermia. The action includes local pain and swelling with bruising, bleeding and often blistering and tissue necrosis. The action on the immune system, through action on the complement C3 and other complement components may show its possible use in cases of bacterial infections, including mycobacteria, as presented in the study of 1970 Vanessa Birdsey, "Interactions of poisons toxic with the addition, "the journal of Immunology 1971. Today, this poison has a toxicology published by Anibal Melgarejo, "Venomous Animals of Brazil", 2003, which subsidizes the development of study for its use in high dilutions, and a comprehensive study of the biology of the animal itself. Published studies on biomolecular analysis add more details about the relations of the poison and mammals. All these characteristics suggest the use of poison as a homeopathic remedy. Objective: To investigate the therapeutic possibilities in high dilutions of the venom of the snake Bothrops jararaca, expanding its clinical use. Methodology: Methodological description of this poison in contemporary bases including: Origin, physical description chemistry, toxicology, pharmacology and medicine in preparation of high dilution, general action, specific actions on systems or organs, sensations, modalities, concomitants, etiological indications relations main clinics. Results: Defining

  1. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt [Department of Nuclear Medicine, University of Vienna (Austria)

    2002-03-01

    more sensitive than valsartan renography in detecting a clinically significant renal artery stenosis. Furthermore, our data suggest that other effects, such as that on the prostaglandin-bradykinin system, are of at least similar importance to ACE inhibition for the high diagnostic sensitivity of captopril renography regarding renovascular hypertension. (orig.)

  2. Vasopeptidase-activated latent ligands of the histamine receptor-1.

    Science.gov (United States)

    Gera, Lajos; Roy, Caroline; Charest-Morin, Xavier; Marceau, François

    2013-11-01

    Whether peptidases present in vascular cells can activate prodrugs active on vascular cells has been tested with 2 potential latent ligands of the histamine H1 receptor (H1R). First, a peptide consisting of the antihistamine cetirizine (CTZ) condensed at the N-terminus of ε-aminocaproyl-bradykinin (εACA-BK) was evaluated for an antihistamine activity that could be revealed by degradation of the peptide part of the molecule. CTZ-εACA-BK had a submicromolar affinity for the BK B2 receptor (B2R; IC50 of 590 nM, [(3)H]BK binding competition), but a non-negligible affinity for the human H1 receptor (H1R; IC50 of 11 μM for [(3)H]pyrilamine binding). In the human isolated umbilical vein, a system where both endogenous B2R and H1R mediate strong contractions, CTZ-εACA-BK exerted mild antagonist effects on histamine-induced contraction that were not modified by omapatrilat or by a B2R antagonist that prevents endocytosis of the BK conjugate. Cells expressing recombinant ACE or B2R incubated with CTZ-εACA-BK did not release a competitor of [(3)H]pyrilamine binding to H1Rs. Thus, there is no evidence that CTZ-εACA-BK can release free cetirizine in biological environments. The second prodrug was a blocked agonist, L-alanyl-histamine, potentially activated by aminopeptidase N (APN). This compound did not compete for [(3)H]pyrilamine binding to H1Rs. The human umbilical vein contractility assay responded to L-alanyl-histamine (EC50 54.7 μM), but the APN inhibitor amastatin massively (17-fold) reduced its apparent potency. Amastatin did not influence the potency of histamine as a contractile agent. One of the 2 tested latent H1R ligands, L-alanyl-histamine, supported the feasibility of pro-drug activation by vascular ectopeptidases.

  3. BDKRB2 +9/-9 bp polymorphisms influence BDKRB2 expression levels and NO production in knee osteoarthritis.

    Science.gov (United States)

    Chen, Shuo; Zhang, Lei; Xu, Ruonan; Ti, Yunfan; Zhao, Yunlong; Zhou, Liwu; Zhao, Jianning

    2017-02-01

    The bradykinin B2 receptor (BDKRB2) plays a key role in the inflammation process of osteoarthritis. Nitric oxide has also long been considered to be a catabolic factor that contributes to inflammatory response and the osteoarthritis disease pathology. Several studies have reported that the BDKRB2 +9/-9 bp polymorphisms are associated with transcription of the receptor. However, the roles of BDKRB2 polymorphisms in inflammation in osteoarthritis remain unclear. This study enrolled 156 subjects with primary knee osteoarthritis and 58 healthy volunteers. BDKRB2 polymorphisms were genotyped, and the mRNA and protein levels of BDKRB2 in synovial tissues from osteoarthritis patients were measured by quantitative real-time polymerase chain reaction and western blot analysis, respectively. Nitric oxide production in serum from patients with osteoarthritis was measured using a nitric oxide assay kit. We found that the mean BDKRB2 mRNA levels were significantly higher in Kallgren-Lawrence grade-4 osteoarthritis patients than patients with lower grade osteoarthritis. The +9/-9 bp polymorphisms significantly affected the BDKRB2 mRNA and protein expression levels in synovial tissues from osteoarthritis subjects. Osteoarthritis patients with +9/-9 and -9/-9 genotypes had higher BDKRB2 expression levels in synovial tissue and nitric oxide production in serum. Moreover, positive correlation was found between the BDKRB2 levels in synovial tissue and nitric oxide production. Compared with health controls, significant increases of nitric oxide production in osteoarthritis were detected which were associated with increasing severity of osteoarthritis. Multiple linear regression analysis (adjusted for gender and age) showed serum nitric oxide level was positively associated with BDKRB2 polymorphism and Kallgren-Lawrence grade and was inversely associated with obesity. Our findings showed that the BDKRB2 +9/-9 bp polymorphisms affected the gene expression and nitric oxide

  4. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii.

    Science.gov (United States)

    Lomonte, Bruno; Escolano, José; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Gutiérrez, José María; Calvete, Juan J

    2008-06-01

    We report the comparative proteomic characterization of the venoms of two related neotropical arboreal pitvipers from Costa Rica of the genus Bothriechis, B. lateralis (side-striped palm pit viper) and B. schlegelii (eyelash pit viper). The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom proteomes of B. lateralis and B. schlegelii comprise similar number of distinct proteins belonging, respectively, to 8 and 7 protein families. The two Bothriechis venoms contain bradykinin-potentiating peptides (BPPs), and proteins from the phospholipase A 2 (PLA 2), serine proteinase, l-amino acid oxidase (LAO), cysteine-rich secretory protein (CRISP), and Zn (2+)-dependent metalloproteinase (SVMP) families, albeit each species exhibit different relative abundances. Each venom also contains unique components, for example, snake venom vascular endothelial growth factor (svVEGF) and C-type lectin-like molecules in B. lateralis, and Kazal-type serine proteinase inhibitor-like proteins in B. schlegelii. Using a similarity coefficient, we estimate that the similarity of the venom proteins between the two Bothriechis taxa may be venom compositions, in spite of the fact that both species have evolved to adapt to arboreal habits. The major toxin families of B. lateralis and B. schlegelii are SVMP (55% of the total venom proteins) and PLA 2 (44%), respectively. Their different venom toxin compositions provide clues for rationalizing the distinct signs of envenomation caused by B. schlegelii and B. lateralis. An antivenomic study of the immunoreactivity of the Instituto Clodomiro Picado (ICP) polyvalent antivenom toward Bothriechis venoms revealed that l-amino acid oxidase and SVMPs represent the major antigenic protein species in both venoms. Our results provide a ground for

  5. Local gene expression changes after UV-irradiation of human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin Weinkauf

    Full Text Available UV-irradiation is a well-known translational pain model inducing local inflammation and primary hyperalgesia. The mediators and receptor proteins specifically contributing to mechanical or heat hyperalgesia are still unclear. Therefore, we irradiated buttock skin of humans (n = 16 with 5-fold MED of UV-C and assessed the time course of hyperalgesia and axon reflex erythema. In parallel, we took skin biopsies at 3, 6 and 24 h after UVC irradiation and assessed gene expression levels (RT-PCR of neurotrophins (e.g. NGF, BDNF, GDNF, ion channels (e.g. NaV1.7, TRPV1, inflammatory mediators (e.g. CCL-2, CCL-3 and enzymes (e.g. PGES, COX2. Hyperalgesia to mechanical impact (12 m/s and heat (48 °C stimuli was significant at 6 h (p<0.05 and p<0.01 and 24 h (p<0.005 and p<0.01 after irradiation. Axon reflex erythema upon mechanical and thermal stimuli was significantly increased 3 h after irradiation and particularly strong at 6 h. A significant modulation of 9 genes was found post UV-C irradiation, including NGF (3, 6, 24 h, TrkA (6, 24 h, artemin, bradykinin-1 receptor, COX-2, CCL-2 and CCL-3 (3 and 6 h each. A significant down-regulation was observed for TRPV1 and iNOS (6, 24 h. Individual one-to-one correlation analysis of hyperalgesia and gene expression revealed that changes of Nav1.7 (SCN9A mRNA levels at 6 and 24 h correlated to the intensity of mechanical hyperalgesia recorded at 24 h post UV-irradiation (Pearson r: 0.57, p<0.04 and r: 0.82, p<0.001. Expression of COX-2 and mPGES at 6 h correlated to the intensity of heat-induced erythema 24 h post UV (r: 0.57, p<0.05 for COX-2 and r: 0.83, p<0.001 for PGES. The individual correlation analyses of functional readouts (erythema and pain response with local expression changes provided evidence for a potential role of Nav1.7 in mechanical hyperalgesia.

  6. Adverse events reported for hereditary angioedema medications: a retrospective study of spontaneous reports submitted to the EudraVigilance database, 2007-2013

    Directory of Open Access Journals (Sweden)

    Aagaard L

    2016-05-01

    Full Text Available Lise Aagaard,1 Anette Bygum,2 1Section for Clinical Pharmacology, Institute of Public Health, Faculty of Health Sciences, University of Southern Denmark, 2Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark Abstract: Information about long-term safety issues from use of orphan drugs in treatment of hereditary angioedema (HAE is limited and must be studied further. As clinical trials in patients with rare diseases are limited, prescribers and patients have to rely on spontaneous adverse drug reaction (ADR reports for obtaining major information about the serious, rarely occurring, and unknown ADRs. In this study, we aimed to characterize ADRs reported for HAE medications in Europe from 2007 to 2013. ADR reports submitted for C1-inibitors and bradykinin receptor antagonists to the European ADR database, EudraVigilance (EV, were included in this study. The ADR reports were categorized with respect to age and sex of the patients, category of the reporter, type and seriousness of the reported ADRs, and medications. The unit of analysis was one adverse event (AE. Totally, 187 AEs were located in EV, and of these, 138 AEs were reported for Cinryze® (C1-inhibitor (73% of the total and 49 AEs for Firazyr® (icatibant (26% of the total AEs. Approximately 60% of all AEs were serious, including three fatal cases. Less than 5% of AEs were reported in children. In total, 62% of AEs were reported for women and 38% for men. For both Cinryze® and Firazyr®, the majority of reported AEs were of the type “general disorders and administration site conditions”. For Cinryze®, a large number of AEs of the type “HAE” and “drug ineffective” was reported, but only few of these were serious. For Firazyr®, several nonserious reports on injection site reactions were reported. In conclusion, this study showed that in EV, several ADR reports from use of HAE medications were identified, and a large number of these were

  7. Management of acute attacks of hereditary angioedema: role of ecallantide

    Directory of Open Access Journals (Sweden)

    Duffey H

    2015-04-01

    treatment of acute attacks of HAE. Keywords: idiopathic angioedema, ACE-Inhibitor induced angioedema, nonhistaminergic angioedema, bradykinin, acquired angioedema, Kallikrein, 7- C1-Inhibitor 

  8. Diagnosis and screening of patients with hereditary angioedema in primary care

    Directory of Open Access Journals (Sweden)

    Henao MP

    2016-05-01

    Full Text Available Maria Paula Henao,1 Jennifer L Kraschnewski,1 Theodore Kelbel,2 Timothy J Craig3 1Department of Medicine, 2Division of Allergy and Immunology, 3Department of Medicine and Pediatrics, Pennsylvania State University College of Medicine at Hershey Medical Center, Hershey, PA, USA Abstract: Hereditary angioedema (HAE is a rare autosomal dominant disease that commonly manifests with episodes of cutaneous or submucosal angioedema and intense abdominal pain. The condition usually presents due to a deficiency of C1 esterase inhibitor (C1-INH that leads to the overproduction of bradykinin, causing an abrupt increase in vascular permeability. A less-understood and less-common form of the disease presents with normal C1-INH levels. Symptoms of angioedema may be confused initially with mast cell-mediated angioedema, such as allergic reactions, and may perplex physicians when epinephrine, antihistamine, or glucocorticoid therapies do not provide relief. Similarly, abdominal attacks may lead to unnecessary surgeries or opiate dependence. All affected individuals are at risk for a life-threatening episode of laryngeal angioedema, which continues to be a source of fatalities due to asphyxiation. Unfortunately, the diagnosis is delayed on average by almost a decade due to a misunderstanding of symptoms and general lack of awareness of the disease. Once physicians suspect HAE, however, diagnostic methods are reliable and available at most laboratories, and include testing for C4, C1-INH protein, and C1-INH functional levels. In patients with HAE, management consists of acute treatment of an attack as well as possible short- or long-term prophylaxis. Plasma-derived C1-INH, ecallantide, icatibant, and recombinant human C1-INH are new treatments that have been shown to be safe and effective in the treatment of HAE attacks. The current understanding of HAE has greatly improved in recent decades, leading to growing awareness, new treatments, improved management

  9. Inhibiting Plasma Kallikrein for Hereditary Angioedema Prophylaxis.

    Science.gov (United States)

    Banerji, Aleena; Busse, Paula; Shennak, Mustafa; Lumry, William; Davis-Lorton, Mark; Wedner, Henry J; Jacobs, Joshua; Baker, James; Bernstein, Jonathan A; Lockey, Richard; Li, H Henry; Craig, Timothy; Cicardi, Marco; Riedl, Marc; Al-Ghazawi, Ahmad; Soo, Carolyn; Iarrobino, Ryan; Sexton, Daniel J; TenHoor, Christopher; Kenniston, Jon A; Faucette, Ryan; Still, J Gordon; Kushner, Harvey; Mensah, Robert; Stevens, Chris; Biedenkapp, Joseph C; Chyung, Yung; Adelman, Burt

    2017-02-23

    Background Hereditary angioedema with C1 inhibitor deficiency is characterized by recurrent, unpredictable swelling episodes caused by uncontrolled plasma kallikrein generation and excessive bradykinin release resulting from cleavage of high-molecular-weight kininogen. Lanadelumab (DX-2930) is a new kallikrein inhibitor with the potential for prophylactic treatment of hereditary angioedema with C1 inhibitor deficiency. Methods We conducted a phase 1b, multicenter, double-blind, placebo-controlled, multiple-ascending-dose trial. Patients with hereditary angioedema with C1 inhibitor deficiency were randomly assigned in a 2:1 ratio to receive either lanadelumab (24 patients) or placebo (13 patients), in two administrations 14 days apart. Patients assigned to lanadelumab were enrolled in sequential dose groups: total dose of 30 mg (4 patients), 100 mg (4 patients), 300 mg (5 patients), or 400 mg (11 patients). The pharmacodynamic profile of lanadelumab was assessed by measurement of plasma levels of cleaved high-molecular-weight kininogen, and efficacy was assessed by the rate of attacks of angioedema during a prespecified period (day 8 to day 50) in the 300-mg and 400-mg groups as compared with the placebo group. Results No discontinuations occurred because of adverse events, serious adverse events, or deaths in patients who received lanadelumab. The most common adverse events that emerged during treatment were attacks of angioedema, injection-site pain, and headache. Dose-proportional increases in serum concentrations of lanadelumab were observed; the mean elimination half-life was approximately 2 weeks. Lanadelumab at a dose of 300 mg or 400 mg reduced cleavage of high-molecular-weight kininogen in plasma from patients with hereditary angioedema with C1 inhibitor deficiency to levels approaching that from patients without the disorder. From day 8 to day 50, the 300-mg and 400-mg groups had 100% and 88% fewer attacks, respectively, than the placebo group. All

  10. Production of soluble Neprilysin by endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@monash.edu [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Rajapakse, Niwanthi W. [Department of Physiology, Building 13F, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Minond, Dmitriy [Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987 (United States); Smith, A. Ian [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia)

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  11. Enhanced activity of an angiotensin-(1-7) neuropeptidase in glucocorticoid-induced fetal programming.

    Science.gov (United States)

    Marshall, Allyson C; Shaltout, Hossam A; Pirro, Nancy T; Rose, James C; Diz, Debra I; Chappell, Mark C

    2014-02-01

    We previously identified angiotensin converting enzyme (ACE) and an endopeptidase activity that degraded angiotensin-(1-7) [Ang-(1-7)] to Ang-(1-5) and Ang-(1-4), respectively, in the cerebrospinal fluid (CSF) of 6-month old male sheep. The present study undertook a more comprehensive analysis of the CSF peptidase that converts Ang-(1-7) to Ang-(1-4) in control and in utero betamethasone-exposed sheep (BMX). Characterization of the Ang-(1-7) peptidase revealed that the thiol agents 4-aminophenylmercuric acetate (APMA) and p-chloromercuribenzoic acid (PCMB), as well as the metallo-chelators o-phenanthroline and EDTA essentially abolished the enzyme activity. Additional inhibitors for serine, aspartyl, and cysteine proteases, as well as selective inhibitors against the endopeptidases neprilysin, neurolysin, prolyl and thimet oligopeptidases did not attenuate enzymatic activity. Competition studies against the peptidase revealed similar IC50s for Ang-(1-7) (5μM) and Ang II (3μM), but lower values for Ala(1)-Ang-(1-7) and Ang-(2-7) of 1.8 and 2.0μM, respectively. In contrast, bradykinin exhibited a 6-fold higher IC50 (32μM) than Ang-(1-7) while neurotensin was a poor competitor. Mean arterial pressure (78±1 vs. 94±2mmHg, N=4-5, P<0.01) and Ang-(1-7) peptidase activity (14.2±1 vs 32±1.5fmol/min/ml CSF, N=5, P<0.01) were higher in the BMX group, and enzyme activity inversely correlated with Ang-(1-7) content in CSF. Lower Ang-(1-7) expression in brain is linked to baroreflex impairment in hypertension and aging, thus, increased activity of an Ang-(1-7) peptidase may contribute to lower CSF Ang-(1-7) levels, elevated blood pressure and impaired reflex function in this model of fetal programming.

  12. The hypoalgesic effects of low-intensity infrared laser therapy: a study on 555 cases

    Science.gov (United States)

    Tam, Giuseppe

    2004-09-01

    Objective: Low energy lasers are widely used to treat a variety of musculoskeletal conditions. The aim of this clinical study is to determine the action of the IR diode laser 904 nm pulsed on pain reduction therapy. Summary Background Data: With respect to pain, has been shown the Low power density laser increases the endorphin synthesis in the dorsal posterior horn of the spinal cord stopping the production of bradykinin and serotonin. Besides laser causes local vasodilatation of the capillaries and an improved circulation of drainage liquids in interstitial space causing an analgesic effect. Additionally, laser interferes in the cytochines (TNF-α, interleukin-1 and interleukin-6) that drive inflammation in the arthritis and are secreted from CD4 e T cells. Methods: Treatment was carried out on 555 cases and 525 patients (322 women and 203 men) in the period between 1987 and 2002. The patients, whose age ranged from 25 to 70, with a mean age of 45 years, were suffering from rheumatic, degenerative and traumatic pathologies. The majority of the patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scanning, Tac, RM examination. All patients had received drug-based treatment and/or physiotherapy with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs 904 nm, maximum power 60 W, frequency impulse 1300 Hz, pulsed duration 200 nanoseconds; peak power per pulse 27W; maximal energy density: 9J/cm2; total number of Joules per treatment session: 10-75J/cm2, chronic 12-90J/cm2. Average number of applications: 12; maximum number of applications: 20. Results: In the evaluation of the results the following parameters have been considered: disappearance of spontaneous and induced pain (Likert scale, Rolland Morris disability scale, dynamometer). The pathologies treated were osteoarthritis in general, epicondylitis

  13. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy.

    Science.gov (United States)

    McCarty, Mark F

    2004-12-01

    The aberrant behavior of cancer reflects upregulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Theoretically, it should be feasible to decrease the activity of these pathways-or increase the activity of pathways that oppose them-with noncytotoxic agents. Since multiple pathways are dysfunctional in most cancers, and cancers accumulate new oncogenic mutations as they progress, the greatest and most durable therapeutic benefit will likely be achieved with combination regimens that address several targets. Thus, a multifocal signal modulation therapy (MSMT) of cancer is proposed. This concept has already been documented by researchers who have shown that certain combinations of signal modulators-of limited utility when administered individually-can achieve dramatic suppression of tumor growth in rodent xenograft models. The present essay attempts to guide development of MSMTs for prostate cancer. Androgen ablation is a signal-modulating measure already in standard use in the management of delocalized prostate cancer. The additional molecular targets considered here include the type 1 insulin-like growth factor receptor, the epidermal growth factor receptor, mammalian target of rapamycin, NF-kappaB, hypoxia-inducible factor-1alpha, hsp90, cyclooxygenase-2, protein kinase A type I, vascular endothelial growth factor, 5-lipoxygenase, 12-lipoxygenase, angiotensin II receptor type 1, bradykinin receptor type 1, c-Src, interleukin-6, ras, MDM2, bcl-2/bclxL, vitamin D receptor, estrogen receptor-beta, and PPAR-. Various nutrients and phytochemicals suspected to have potential utility in prostate cancer prevention and therapy, but whose key molecular targets are still unknown, might reasonably be incorporated into MSMTs for prostate cancer; these include lycopene, selenium, green tea polyphenols, genistein, and silibinin. MSMTs can be developed systematically by testing

  14. Pomegranate Extract Enhances Endothelium-Dependent Coronary Relaxation in Isolated Perfused Hearts from Spontaneously Hypertensive Ovariectomized Rats

    Science.gov (United States)

    Delgado, Nathalie T. B.; Rouver, Wender do N.; Freitas-Lima, Leandro C.; de Paula, Tiago D.-C.; Duarte, Andressa; Silva, Josiane F.; Lemos, Virgínia S.; Santos, Alexandre M. C.; Mauad, Helder; Santos, Roger L.; Moysés, Margareth R.

    2017-01-01

    Decline in estrogen levels promotes endothelial dysfunction and, consequently, the most prevalent cardiovascular diseases in menopausal women. The use of natural therapies such as pomegranate can change these results. Pomegranate [Punica granatum L. (Punicaceae)] is widely used as a phytotherapeutic agent worldwide, including in Brazil. We hypothesized that treatment with pomegranate hydroalcoholic extract (PHE) would improve coronary vascular reactivity and cardiovascular parameters. At the beginning of treatment, spontaneously hypertensive female rats were divided into Sham and ovariectomized (OVX) groups, which received pomegranate extract (PHE) (250 mg/kg) or filtered water (V) for 30 days by gavage. Systolic blood pressure was measured by tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed by Langendorff retrograde perfusion technique. A dose-response curve for bradykinin was performed, followed by L-NAME inhibition. The protein expression of p-eNOS Ser1177, p-eNOS Thr495, total eNOS, p-AKT Ser473, total AKT, SOD-2, and catalase was quantified by Western blotting. The detection of coronary superoxide was performed using the protocol of dihydroethidium (DHE) staining Plasma nitrite measurement was analyzed by Griess method. Systolic blood pressure increased in both Sham-V and OVX-V groups, whereas it was reduced after treatment in Sham-PHE and OVX-PHE groups. The baseline coronary perfusion pressure was reduced in the Sham-PHE group. The relaxation was significantly higher in the treated group, and L-NAME attenuated the relaxation in all groups. The treatment has not changed p-eNOS (Ser1177), total eNOS, p-AKT (Ser473) and total AKT in any groups. However, in Sham and OVX group the treatment reduced the p-eNOS (Thr495) and SOD-2. The ovariectomy promoted an increasing in the superoxide anion levels and the treatment was able to prevent this elevation and reducing oxidative stress. Moreover, the treatment

  15. Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Graziella Mendonsa

    Full Text Available The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival

  16. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Schreuder, Herman A., E-mail: herman.schreuder@sanofi.com; Liesum, Alexander, E-mail: alexander.liesum@sanofi.com; Kroll, Katja, E-mail: katja.kroll@sanofi.com; Böhnisch, Britta, E-mail: britta.boehnisch@sanofi.com; Buning, Christian, E-mail: christian.buning@sanofi.com; Ruf, Sven, E-mail: sven.ruf@sanofi.com; Sadowski, Thorsten, E-mail: thorsten.sadowski@sanofi.com

    2014-03-07

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side chains

  17. The new kappa-KTx 2.5 from the scorpion Opisthacanthus cayaporum.

    Science.gov (United States)

    Camargos, Thalita Soares; Restano-Cassulini, Rita; Possani, Lourival Domingos; Peigneur, Steve; Tytgat, Jan; Schwartz, Carlos Alberto; Alves, Erica Maria C; de Freitas, Sonia Maria; Schwartz, Elisabeth Ferroni

    2011-07-01

    The kappa-KTx family of peptides, which is the newest K⁺-channel blocker family from scorpion venom, is present in scorpions from the families Scorpionidae and Liochelidae. Differently from the other scorpion KTx families, the three-dimensional structure of the known kappa-KTxs toxins is formed by two parallel α-helices linked by two disulfide bridges. Here, the characterization of a new kappa-KTx peptide, designated kappa-KTx 2.5, derived from the Liochelidae scorpion Opisthacanthus cayaporum, is described. This peptide was purified by HPLC and found to be identical to OcyC8, a predicted mature sequence precursor (UniProtKB C5J89) previously described by our group. The peptide was chemically synthesized and the circular dichroism (CD) spectra of both, native and synthetic, conducted at different temperatures in water and water/trifluoroethanol (TFE), showed a predominance of α-helices. The kappa-KTx 2.5 is heat stable and was shown to be a blocker of K⁺-currents on hKv1.1, and hKv1.4, with higher affinity for Kv1.4 channels (IC₅₀= 71 μM). Similarly to the other kappa-KTxs, the blockade of K⁺-channels occurred at micromolar concentrations, leading to uncertainness about their proper molecular target, and consequently their pharmacologic effect. In order to test other targets, kappa-KTx2.5 was tested on other K⁺-channels, on Na⁺-channels, on bacterial growth and on smooth muscle tissue, a known assay to identify possible bradykinin-potentiating peptides, due to the presence of two contiguous prolines at the C-terminal sequence. It has no effect on the targets used except on hKv1.1, and hKv1.4 expressed in Chinese hamster ovary cells. Since the only plausible function found for kappa-KTx2.5 seems to be the blockade of K⁺-channels, a discussion regarding the analysis of structure-function relationships is included in this communication, based on sequence alignments of members of the kappa-KTx toxin family, and on computational simulation of a

  18. Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds.

    Science.gov (United States)

    Sunagar, Kartik; Undheim, Eivind A B; Chan, Angelo H C; Koludarov, Ivan; Muñoz-Gómez, Sergio A; Antunes, Agostinho; Fry, Bryan G

    2013-12-13

    The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent's worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged

  19. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    Science.gov (United States)

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  20. Kinin B1 receptor antagonists inhibit diabetes-induced hyperalgesia in mice.

    Science.gov (United States)

    Gabra, Bichoy H; Sirois, Pierre

    2003-02-01

    Insulin-dependent diabetes mellitus (type 1 diabetes) is an inflammatory autoimmune disease associated with vascular permeability changes leading to many complications including nephropathy, retinopathy, neuropathy, hypertension and hyperalgesia. The bradykinin B(1) receptors (BKB(1)-R) were recently found to be upregulated alongside the development of type 1 diabetes and to be involved in its complications. Kinins are important mediators of a variety of biological effects including cardiovascular homeostasis, inflammation and nociception. In the present study, we studied the effect of a selective BKB(1)-R agonist desArg(9)-BK (DBK) and two selective receptor antagonists, the R-715 (Ac-Lys-[D-beta Nal(7), Ile(8)] desArg(9)-BK) and the R-954 (Ac-Orn-[Oic(2), alphaMe Phe(5), D-beta Nal(7), Ile(8)] desArg(9)-BK) on diabetic hyperalgesia. Type 1 diabetes was induced in male CD-1 mice via a single injection of streptozotocin (STZ, 200mg/kg, i.p.), one week before the test. Nociception, a measure of hyperalgesia, was assessed using the plantar stimulation (Hargreaves) and the tail-immersion tests. The induction of type 1 diabetes provoked a significant hyperalgesic activity in diabetic mice, causing an 11% decrease in plantar stimulation reaction time and 13% decrease in tail-immersion reaction time, compared to normal mice. Following acute administration of R-715 (100-600 microg/kg, i.p.), or R-954 (50-400 microg/kg, i.p.), the STZ-induced hyperalgesic activity was blocked in a dose-dependent manner and the hot plate and tail-immersion latencies of diabetic mice returned to normal values observed in control healthy mice. In addition, the acute administration of DBK (400 microg/kg, i.p.) significantly potentiated diabetes-induced hyperalgesia, an effect that was totally reversed by R-715 (1.6-2.4 mg/kg, i.p.) and R-954 (0.8-1.2mg/kg, i.p.). These results provide further evidence for the implication of the BKB(1)-R in type 1 diabetic hyperalgesia and suggest a novel

  1. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels.

    Science.gov (United States)

    Vaca, Luis; Sampieri, Alicia

    2002-11-01

    In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.

  2. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts.

    Science.gov (United States)

    Souza, Álvaro P S; Sobrinho, Deny B S; Almeida, Jônathas F Q; Alves, Gisele M M; Macedo, Larissa M; Porto, Juliana E; Vêncio, Eneida F; Colugnati, Diego B; Santos, Robson A S; Ferreira, Anderson J; Mendes, Elizabeth P; Castro, Carlos H

    2013-11-01

    The aim of the present study was to investigate the coronary effects of Ang-(1-7) [angiotensin-(1-7)] in hypertrophic rat hearts. Heart hypertrophy was induced by abdominal aorta CoA (coarctation). Ang-(1-7) and AVE 0991, a non-peptide Mas-receptor agonist, at picomolar concentration, induced a significant vasodilation in hearts from sham-operated rats. These effects were blocked by the Mas receptor antagonist A-779. Pre-treatment with L-NAME (N(G)-nitro-L-arginine methyl ester) or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinozalin-1-one) [NOS (NO synthase) and soluble guanylate cyclase inhibitors respectively] also abolished the effect of Ang-(1-7) in control hearts. The coronary vasodilation produced by Ang-(1-7) and AVE 0991 was completely blunted in hypertrophic hearts. Chronic oral administration of losartan in CoA rats restored the coronary vasodilation effect of Ang-(1-7). This effect was blocked by A-779 and AT2 receptor (angiotensin II type 2 receptor) antagonist PD123319. Acute pre-incubation with losartan also restored the Ang-(1-7)-induced, but not BK (bradykinin)-induced, coronary vasodilation in hypertrophic hearts. This effect was inhibited by A-779, PD123319 and L-NAME. Chronic treatment with losartan did not change the protein expression of Mas and AT2 receptor and ACE (angiotensin-converting enzyme) and ACE2 in coronary arteries from CoA rats, but induced a slight increase in AT2 receptor in aorta of these animals. Ang-(1-7)-induced relaxation in aortas from sham-operated rats was absent in aortas from CoA rats. In vitro pre-treatment with losartan restored the Ang-(1-7)-induced relaxation in aortic rings of CoA rats, which was blocked by the Mas antagonist A-779 and L-NAME. These data demonstrate that Mas is strongly involved in coronary vasodilation and that AT1 receptor (angiotensin II type 1 receptor) blockade potentiates the vasodilatory effects of Ang-(1-7) in the coronary beds of pressure-overloaded rat hearts through NO-related AT2- and Mas

  3. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu

    Directory of Open Access Journals (Sweden)

    Menossi Marcelo

    2010-10-01

    Full Text Available Abstract Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%, bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%, phospholipases A2 (5.6%, serine proteinases (1.9% and C-type lectins (1.5%. Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland

  4. Increased angiotensin-converting enzyme activity in the left ventricle after infarction

    Directory of Open Access Journals (Sweden)

    V.C.W. Busatto

    1997-05-01

    high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarction

  5. The involvement of proteoglycans in the human plasma prekallikrein interaction with the cell surface.

    Directory of Open Access Journals (Sweden)

    Camila Lopes Veronez

    Full Text Available INTRODUCTION: The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen, influence this interaction. METHODS: We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type and CHO-745 (deficient in proteoglycans. Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. RESULTS: At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48-44 kDa and 34-32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. CONCLUSION: The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein

  6. 酮洛芬药理研究进展%Progresses in Pharmacological Study of Ketoprofen

    Institute of Scientific and Technical Information of China (English)

    石开云; 余清宝

    2015-01-01

    Ketoprofen is a good 2-arylpropionic acid non-steroidal anti-inflammatory drug ( NSAID ) . It performs it's significant activi-ties on antipyretic, analgesic and anti-inflammatory by inhibiting the enzyme activities of cyclooxygenases ( COXs ) , proinflammatory pep-tides and/or lipoxygenases ( LOXs ) , further inhibiting the biosynthesis of those inflammatory substances such as prostaglandins ( PGs ) , bradykinins, leukotrienes ( LTs ) and thromboxanes ( TXs ) . The antiplatelet aggregation activity of ketoprofen quantitatively depends on the acidity. Its anti-inflammatory activity, which is strengthened by selectively inhibiting neutrophil chemotaxis induced by the interleukin-8 ( IL-8 ) , may be partly due to the abilities to scavenge reactive oxygen species ( ROS ) and reactive nitrogen species ( RNS ) , as well as the abilities to inhibit the respiratory burst of neutrophils triggered by various activating agents. Because of unselectively inhibiting COX-1 and COX-2, ketoprofen may prevent the biosynthesis of prostaglandin E2 ( PGE2 ) in gastric mucosal and further produce gastro-toxic activity, cause gastric mucosa damage or bleeding. Moreover, by inhibiting the COX-2 activity, ketoprofen reduce the concentration of endogenous PGF2α, and this may increase the potential risk of seizures. Local usage of ketoprofen may produce photosensitive toxic side effects caused by typeⅠfree radical reaction and contact dermatitis caused by the carboxyl group ( -COOH ) separated from the aromatic structure. In general, this paper systematically summarizes the progresses in pharmacological study of Ketoprofen, reveals its molecular mechanism of pharmacology, and illustrates the efficacy and side effects from its chemical structure nature. This paper may be helpful for the design and development of new products of ketoprofen class and the rational clinical use.%酮洛芬是2-芳基丙酸类非甾体抗炎药,主要通过抑制环氧合酶(COXs)、促炎肽和/或脂氧化

  7. Progress on the association between ACE (I/D) gene polymorphism and renin-angiotensin- aldosterone system and cardiovascular disease%ACE基因插入/缺失多态性与肾素-血管紧张素-醛固酮系统及相关心血管疾病的关系研究进展

    Institute of Scientific and Technical Information of China (English)

    于彦彦; 董天葳; 隋小芳; 彭鹏; 杨军

    2015-01-01

    central role in health and disease, but the determining factor of the system activity has not been fully elucidated. Angiotensin converting enzyme (ACE) is an important enzyme in RAAS, it is mainly the angiotensinⅠ (AngⅠ) hydrolysis transformed into a powerful biological activity of angiotensinⅡ (AngⅡ), while making the degradation of bradykinin. Currently, it has aroused widespread attention between Ang converting enzyme gene polymorphism insertion/deletion and coronary heart disease, cardiomyopathy, hypertension and other cardiovascular diseases. Although a lot of studies have reported, the results are not agreed. So we explored the importance of the relationship between Ang converting enzyme gene polymorphism and RAAS and related cardiovascular diseases to bring unprecedented inspired on the basis of the disease and the clinical application of drugs.

  8. Expanding role of pharmacogenomics in the management of cardiovascular disorders.

    Science.gov (United States)

    Yip, Vincent Lai Ming; Pirmohamed, Munir

    2013-06-01

    1B1 (SLCO1B1) gene is associated with increased statin exposure and simvastatin-induced myopathy. Angiotensin-converting enzyme (ACE) inhibitors and β-adrenoceptor antagonists (β-blockers) are medications that are important in the management of hypertension and heart failure. Insertion and deletion polymorphisms in the ACE gene are associated with elevated and reduced serum levels of ACE, respectively. No significant association was reported between the polymorphism and blood pressure reduction in patients treated with perindopril. However, a pharmacogenetic score incorporating single nucleotide polymorphisms (SNPs) in the bradykinin type 1 receptor gene and angiotensin-II type I receptor gene predicted those most likely to benefit and suffer harm from perindopril therapy. Pharmacogenetic studies into β-blocker therapy have focused on variations in the β1-adrenoceptor gene and CYP2D6, but results have been inconsistent. Pharmacogenetic testing for ACE inhibitor and β-blocker therapy is not currently used in clinical practice. Despite extensive research, no pharmacogenetic tests are currently in clinical practice for cardiovascular medicines. Much of the research remains in the discovery phase, with researchers struggling to demonstrate clinical utility and validity. This is a problem seen in many areas of therapeutics and is because of many factors, including poor study design, inadequate sample sizes, lack of replication, and heterogeneity amongst patient populations and phenotypes. In order to progress pharmacogenetics in cardiovascular therapies, researchers need to utilize next-generation sequencing technologies, develop clear phenotype definitions and engage in multi-center collaborations, not only to obtain larger sample sizes but to replicate associations and confirm results across different ethnic groups.

  9. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, Mabel; Smolic, Christian [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Contreras, Ariel [Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Lavandero, Sergio [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX (United States); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  10. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents?

    Science.gov (United States)

    Wang, Pei; Fedoruk, Matthew N; Rupert, Jim L

    2008-01-01

    In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma

  11. 非甾体类抗炎药在牙周病治疗中的作用%Effect of non-steroidal anti-inflammatory drugs in the treatment of periodontal diseases

    Institute of Scientific and Technical Information of China (English)

    孙小娜; 宋爱梅; 杨丕山

    2014-01-01

    地诺前列酮是牙槽骨吸收最有力的刺激因子,既可刺激破骨细胞引起破骨性骨吸收,破坏牙周组织;还可提高缓激肽和组胺水平,引起疼痛的感觉。地诺前列酮与血栓素A2间失衡,会影响血管生成和组织愈合。非甾体类抗炎药(NSAID)可抑制人体内的环加氧酶活性,减少地诺前列酮的生成,从而降低牙周炎症,缓解疼痛;可引起内皮细胞通透性降低,影响急性期多种细胞的迁移;可抑制透明质酸的形成,从而影响细胞增殖。布洛芬缓释凝胶和米诺环素-布洛芬缓释凝胶均能有效地改善慢性牙周炎的临床症状,控制牙周炎症,减少组织破坏。NSAID用于牙周组织再生术治疗,对骨移植后的骨再生有明显的促进作用。NSAID对于牙周炎的治疗既有优势,也有不可忽视的缺点。NSAID会抑制血栓素A2的生成,减少血小板的聚集,从而增加患者血肿和持续出血的风险。牙周手术与此类药物怎样结合应用才能收到最佳效果,NSAID能否在牙周再生手术中起到促进作用仍需进一步探讨。%Dinoprostone is a powerful stimulating factor for alveolar bone resorption. It can destroy periodontal tissues by activating osteoclasts and cause pain by increasing the level of bradykinin and histamine. The imbalance between Dinoprostone and thromboxane A2 may influence angiogenesis and tissue healing. Non-steroidal anti-inflammatory drugs(NSAID) can reduce the production of Dinoprostone by inhibiting the clyco-oxygenase activity, thus decreasing the periodontal inflammation and relieving pain. It can also reduce the permeability of endothelial cells and influence cell migration during the acute inflammation period. It can inhibit the formation of hyaluronic acid and affect cell proliferation. Ibuprofen gel and minocycline-ibuprofen gel can improve the clinical symptoms of chronic periodontitis effectively and reduce tissue destruction

  12. Modulatory effect of neurokinin- 1 and non- N- methyl- D- aspartate receptors on cardiosomatic reflex in rat spinal cord%脊髓NK1受体与非NMDA受体对大鼠心脏-躯体运动反射的调节作用

    Institute of Scientific and Technical Information of China (English)

    韩曼; 刘晓华; 杜剑青

    2014-01-01

    Objective To investigate the role of neurokinin-1 (NK1) receptor and non-N-methyl-D-aspartate (non-NMDA) receptor in modulating the cardiosomatic reflex in the spinal cord of rat. Methods The effects of intrathecal injection of NK1 receptor agonist Sar-SP and antagonist CP-96345 and non-NMDA receptor agonist NMDA and antagonist 6, 7-dinitro-1,4-dihydro-quinoxaline-2,3-dione (DNQX) on the cardiosomatic reflex were observed in rats. The changes of the cardiosomatic reflex were monitored by observing the electromyogram (EMG) responses of the dorsal spinotrapezius muscle to intrapericardial bradykinin (BK) injection. Results Intrathecal injection of Sar-SP significantly facilitated EMG responses to intrapericardial BK injection (P<0.05), which was completely blocked by intrathecal injection of NK1 antagonist CP-96345. Similarly, intrathecal injection of NMDA obviously facilitated the EMG responses (P<0.05), which was partially reversed by intrathecal injection of non-NMDA receptor antagonist DNQX. Intrathecal injection of Sar-SP along with NMDA significantly increased EMG as compared with single administration of Sar-SP or NMDA (P<0.05). Conclusion The spinal cord levels of NK1 receptor and non-NMDA receptor are involved in the modulation of the cardiosomatic reflex in rats.%目的:观察脊髓水平神经激肽-1(NK1)受体和非N-甲基-D-天门冬氨酸(NMDA)受体对大鼠心脏-躯体运动反射的调节作用。方法鞘内注射NK1受体激动剂Sar-SP及拮抗剂CP-96345与非NMDA受体激动剂NMDA及拮抗剂6,7-二硝基喹喔啉-2,3-二酮(DNQX),观察心包内注射缓激肽(BK)诱发大鼠心脏-躯体运动反射的变化,该反射以背斜方肌肌电(EMG)为观测指标。结果鞘内注射NK1受体激动剂Sar-SP后,对心包内BK诱发的背斜方肌EMG有明显的易化作用(P<0.05),这种易化作用被鞘内预先注射NK1拮抗剂CP-96345完全阻断;鞘内注射非NMDA受体激动剂NMDA后,对心包

  13. Interference of human tissue kailikrein on renal interstitial fibrosis in rats with 5/6 nephrectomy%人激肽释放酶基因对5/6肾切除大鼠肾间质纤维化的干预效应

    Institute of Scientific and Technical Information of China (English)

    徐玲; 郑常龙; 徐西振; 万槐斌; 邓娟娟; 赵刚; 谌贻璞; 汪道文

    2009-01-01

    Objective To investigate the interference and associated mechanism of hnman tissue kallikrein (HK) gene on renal interstitial fibrosis in rats with 5/6 nephrectomy. Methods Human kallikrein cDNA was packed in a recombinant adeno-associated virus(rAAV)-based plasmid vector. The rAAV-HK was produced by transfection in 293 cells. Twenty-four male Wistsr rats were divided into sham operation and operation groups. The rats with 5/6 nephrectomy were randomly divided into simple operation, control and experiment groups. The rats in experiment group received single dose rAAV-HK via the tail vein with 1×1011 pfu. Before nephrectomy and every month after surgery until the rats were sacrificed, the caudal arterial pressure was measured using tail cuff blood pressure determinator. Three months after HK gene delivery, the rats were sacrificed. The expression of HK in rats was assessed by RT-PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). The pathological changes of renal interstitium were evaluated by Masson stainning, and the distribution of bradykinin B2 receptor (BKB2R) and angiotensin Ⅱ typel receptor (ATIR) was examined by immunohistochemistry. The expressions of BKB2R, AT1R, p-MAPK protein in renal tissue were detected by Western blot. Results Three months after HK gene delivery, the systolic blood pressure of experiment group was significantly decreased compared with the control group [(163±13) nun Hg vs (217±16) mm Hg, P<0.01](1 mm Hg=0.133 kPa). Compared with sham rats, the rats in simple operation group and control group had much more renal interstitial collagen deposition and more serious fibrosis performance, but renal interstitial collagen deposition and fibrosis were significantly ameliorated in the rats of experiment group. In addition, the tubulointerstitial injury index of HK transgenic rats was significantly lower than that of the rats in control group (1.33±0.73 vs 3.01±0.62, P<0.01). Up-regnlating expression of bradykinn B2 receptor

  14. Immediate hypersensitivity reactions induced by iodinated contrast media%碘造影剂所致速发型过敏反应

    Institute of Scientific and Technical Information of China (English)

    周细平; 李宏

    2011-01-01

    Iodinated contrast media (ICM) are the most commonly used drugs in diagnostic visualisation technique.ICM may be classified as ionic and nonionic according to their chemical structure or high-osmolar, low-osmolar.and iso-osmolar according to their osmoWity.ICM are generally considered to be relatively safe.but serious adverse reactions may occur, such as severe immediate hypersensitivity reactions.Severe immediate hypersensitivity reactions may lead to angioedema, unconsciousness, profound hypotension, arrhythmias, respiratory arrest and cardiac arrest, and so on.The incidence rates of severe immediate hypensensitivity reactions to ionic and nonionic ICM are O.1%- 0.4% and 0.02%- 0.04% , respectively.The most significant risk factor for an immediate hypersensitivity reaction is a history of a hypersensitivity reaction to contrast media.Other risk factors are the history of asthma and allergic history to drug or food, and so on.The mechanism of ICM-induced immediate hypersensitivity reactions may be reWed to histamine release from basophil and mast cells.Histamine release might be due to a direct membrane effect associated with the solution osmolarity or the chemical structure of ICM, an activation of the complement system, as well as the formation of bradykinin and the activation of antigen-antibody reactions mediated by IgE.The preventive and therapeutic measures are as follows: (1) application of Iow-osmolar or iso-osmolar and noruonic ICM as far as possible; (2) the skin test and the premedication such as glucocorticoid and antihistamine to the patients with risk factors should be recommended; (3) the patients with moderate or severe hypersensitivity reactions to ICM should receive the symptomatic and supportive treatments.%碘造影剂是影像学诊断中最常用的药物,根据分子结构可分为离子和非离子型,根据渗透压可分为高渗、低渗和等渗型.碘造影剂通常较为安全,但也可发生严重不良反

  15. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  16. 中风与神经疾病杂志2000年第17卷文题索引 (按汉语拼音字母顺序排列)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    动脉粥样硬化的研究(3):182 急性脑血管病与多脏器衰竭(4):227 心脏黏液瘤致栓塞性脑血管病临床分析(4):236 急性脑血管病时心肌酶谱的变化(4):240 急性脑血管病患者t-PA、β-TG、TM和TSP含量的初步观察(5): 264 血压降低与高血压脑血管病关系探讨(5):311 急性脑血管病并发多器官功能失常综合征临床分析(6):360 脑血管畸形 脑动静脉畸形实验模型及其血流动力学研究(1):34 脑血管痉挛 实验性脑血管痉挛时一氧化氮与超氧化物歧化酶对脑血流的作用研究(5):286 脑血栓 急性脑血栓形成及其高危人群血浆PC、PS、D-Dimer水平的测定 (5):308 脑静脉血栓早期诊断及纤溶抗凝治疗临床研究(6):353 脑肿瘤 WAF1在人脑胶质瘤中的定量检测及肿瘤病理学相关性的研究 (1):39 伽吗刀治疗脑干肿瘤13例临床分析(3):175 细胞因子在淋巴细胞介导胶质瘤细胞凋亡中的作用(4):224 Bradykinin B2受体在大鼠脑胶质瘤模型上的定位(6):335 尿激酶 尿激酶与肝素治疗急性脑血栓的疗效观察(4):242 尿激酶静脉溶栓后应用速避凝治疗急性脑梗死防止再梗死(6): 366 P 帕金森病 帕金森病患者血液抗氧化功能的变化及多巴制剂与VitE对其影响的研究(1):46 脑源性神经营养因子对帕金森病大鼠黑质多巴胺能神经元的影响 (4):209 DNA损伤、修复与帕金森病(4):255 一氧化氮与帕金森病大鼠模型损伤的研究(5):288 疱疹止痛灵 疱疹止痛灵治疗带状疱疹后神经痛的临床与实验研究(5):290 偏头痛 颈性偏头痛85例临床分析(1):53 西比灵防治偏头痛对照观察(5):310 Q 缺氧 缺氧耐受形成中各脑区氨基酸含量的变化(1):14 强直性肌营养不良 强直性肌营养不良与白内障的分子诊断关系(4):218 强直性肌营养不良的临床与肌肉病理研究(5):297 R 人参皂甙 人参皂甙对损