WorldWideScience

Sample records for bradykinin

  1. Bradykinin-induced proinflammatory signaling mechanisms.

    Science.gov (United States)

    Shigematsu, Sakuji; Ishida, Shuji; Gute, Dean C; Korthuis, Ronald J

    2002-12-01

    Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B(2) receptor antagonist, a cell-permeant superoxide dismutase (SOD) mimetic or antioxidant, or inhibitors of cytochrome P-450 epoxygenase (CYPE) or protein kinase C (PKC) but not by concomitant treatment with either SOD, a mast cell stabilizer, or inhibitors of nitric oxide synthase, cyclooxygenase, xanthine oxidase, NADPH oxidase, or platelet-activating factor. Immunoneutralizing P-selectin or intercellular adhesion molecule-1 (ICAM-1) completely prevented bradykinin-induced leukocyte adhesion and emigration but did not affect VPL. On the other hand, stabilization of F-actin with phalloidin prevented bradykinin-induced leukocyte emigration and VPL but did not alter leukocyte adhesion. These data indicate that bradykinin induces LECA in rat mesenteric venules via a B(2)-receptor-initiated, CYPE-, oxidant- and PKC-mediated, P-selectin- and ICAM-1-dependent mechanism. Bradykinin also produced VPL, an effect that was initiated by stimulation of B(2) receptors and involved CYPE and PKC activation, oxidant generation, and cytoskeletal reorganization but was independent of leukocyte adherence and emigration. PMID:12388246

  2. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity.

    Science.gov (United States)

    Taddei, Stefano; Bortolotto, L

    2016-10-01

    Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling. PMID:27260014

  3. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    Science.gov (United States)

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  4. Bradykinin and its role in osteoarthritis

    Directory of Open Access Journals (Sweden)

    L. De Falco

    2013-07-01

    Full Text Available Osteoarthritis (OA, the most common joint disorder, is a disease involving all the articular structures. It presents both degenerative and inflammatory aspects. Recently, the important role of Bradykinin (BK, a phlogistic mediator, has been proposed in the pathophysiology of OA. In our review, we summarized the currently available information on the mechanisms of action of BK in OA by linking its B2 receptors. Then, we analyzed the data about the effects of BK in synoviocytes and chondrocytes cultures. Furthermore, we described the action of B2 receptor antagonists (Icatibant and Fasitibant, presenting them as new promising symptom-anddisease- modifying agents in the treatment of OA. However, more in vitro, animal model and clinical studies, are needed to better understand the mechanisms of action as well as the efficacy and tolerability of the B2 receptor antagonists in OA.

  5. Effect of Montelukast on bradykinin-induced contraction of isolated tracheal smooth muscle of guinea pig

    Directory of Open Access Journals (Sweden)

    A Noor

    2011-01-01

    Conclusion: It is concluded that montelukast significantly inhibits, in a dose-dependent manner, the bradykinin-induced contraction of the guinea pig tracheal smooth muscle, and alludes to an interaction between the bradykinin and leukotriene mediators.

  6. Bradykinin release avoids high molecular weight kininogen endocytosis.

    Directory of Open Access Journals (Sweden)

    Igor Z Damasceno

    Full Text Available Human H-kininogen (120 kDa plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type and CHO-745 (mutant deficient in proteoglycans biosynthesis cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular

  7. Bradykinin antagonists modified with dipeptide mimetic beta-turn inducers.

    Science.gov (United States)

    Alcaro, Maria C; Vinci, Valerio; D'Ursi, Anna M; Scrima, Mario; Chelli, Mario; Giuliani, Sandro; Meini, Stefania; Di Giacomo, Marcello; Colombo, Lino; Papini, Anna Maria

    2006-05-01

    Bradykinin (BK) is involved in a wide variety of pathophysiological processes. Potent BK peptide antagonists can be developed introducing constrained unnatural amino acids, necessary to force the secondary structure of the molecule. In this paper, we report a structure-activity relationship study of two peptide analogues of the potent B2 antagonist HOE 140 by replacing the D-Tic-Oic dipeptide with conformationally constrained dipeptide mimetic beta-turn inducers. PMID:16504505

  8. Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes

    OpenAIRE

    Verresen, Luc; Fink, Edwin; Lemke, Horst-Dieter; Vanrenterghem, Yves

    1994-01-01

    Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes. Anaphylactoid reactions (AR) are the most feared complications of hemodialysis. Recently, a high incidence of AR has been reported during dialysis with AN69 membranes in patients treated with ACE inhibitors. Plasma levels of C3a, histamine and bradykinin were measured in 12 patients at the onset of AR during dialysis with AN69. We also investigated bradykinin generation in 10 symptom-free patients dia...

  9. Acute electrophysiological responses of bradykinin-stimulated human fibroblasts.

    Science.gov (United States)

    Estacion, M

    1991-05-01

    1. Acute responses to bradykinin in human dermal fibroblasts were studied at 20-24 degrees C using both the patch-clamp technique to monitor ion currents and Fura-2 fluorescence to monitor [Ca2+]i. 2. During subconfluent culture, human dermal fibroblasts can express a diversity of ion channels as described in the preceding paper. 3. When GTP (1 mM) was included in the pipette solution, two additional ion channel populations were transiently augmented in response to bradykinin stimulation. 4. The first is a component of outwardly rectifying current which reached maximal induction within 10-15 s after bradykinin addition (1 microM) and then decayed back to near baseline over 60 s. 5. Ion substitution experiments combined with tail current analysis indicate that the outward current is carried predominantly by K+. 6. Video imaging of single-cell Fura-2 fluorescence from both intact cells and patch-clamped cells showed temporal correlation of the K+ current modulation and the Ca2+ transients in response to bradykinin stimulation. 7. The calcium ionophore, ionomycin, caused both an increase in intracellular calcium and the augmentation of the outward K+ current. The amount of additional K+ current was correlated with [Ca2+]i levels and could be elicited even without the presence of GTP in the pipette. 8. Apamin, a blocker of Ca(2+)-activated K+ channels, inhibited (at 1 microM) the ionomycin-induced modulation of K+ current. 9. In addition, an inward current was transiently induced in response to bradykinin. This current was strictly dependent on the presence of GTP in the pipette solution. This current showed little voltage dependence, as evidenced by a linear current vs. voltage relation, and a reversal potential near but measurably more positive than 0 mV. 10. This current could be decoupled from the Ca2+ transient and be irreversibly induced by including GTP gamma S (100 microM) in the pipette solution. 11. Ion substitution experiments show that this is a non

  10. Bradykinin potentiation by angiotensin-(1-7) and ACE inhibitors correlates with ACE C- and N-domain blockade

    NARCIS (Netherlands)

    B. Tom (Beril); R. de Vries (René); P.R. Saxena (Pramod Ranjan); A.H.J. Danser (Jan)

    2001-01-01

    textabstractACE inhibitors block B(2) receptor desensitization, thereby potentiating bradykinin beyond blocking its hydrolysis. Angiotensin (Ang)-(1-7) also acts as an ACE inhibitor and, in addition, may stimulate bradykinin release via angiotensin II type 2 receptors.

  11. New Aspects of Ace Inhibition: Importance of ACE co-localization with angiotensin and bradykinin receptors

    NARCIS (Netherlands)

    B. Tom (Beril)

    2003-01-01

    textabstractThe beneficial effect of angiotensin-converting enzyme (ACE) inhibitors in hypertension and heart failure may relate, at least in part, to their capacity to interfere with bradykinin metabolism. In addition, recent studies have provided evidence for bradykinin-potentiating effects of ACE

  12. Modulation of bradykinin-induced gastric-cardiovascular reflexes by histamine.

    Science.gov (United States)

    Stebbins, C L; Stahl, G L; Theodossy, S J; Longhurst, J C

    1992-01-01

    Both histamine and bradykinin induce gastric-cardiovascular reflexes and are released during several pathophysiological conditions. This study examined the possibility that histamine modulates the magnitude of the reflex response to stimulation by bradykinin. Thus in chloralose anesthetized cats, the cardiovascular response to stimulation of the gastric serosa with 1 microgram/ml bradykinin was monitored before and after topical application of 100 micrograms/ml histamine (n = 6) or 1 mg/ml diphenhydramine (H1-receptor antagonist) and histamine (n = 5). After application of histamine, bradykinin-induced increases in mean arterial pressure and left ventricular pressure were attenuated by 23 and 27%, respectively. Conversely, when the H1-receptors on the serosal surface of the stomach were blocked (n = 5) before application of histamine, the pressor response to bradykinin was augmented by 26%. To determine the afferents that might contribute to the attenuating effect of histamine, we recorded single unit activity in 14 A delta and 21 C visceral afferent fibers in response to bradykinin stimulation before and after histamine stimulation. We observed that the impulse activity of 10 of the A delta and 14 of the C fibers to bradykinin stimulation was reduced after treatment with histamine. These results suggest that histamine induces an inhibitory effect on the nerve endings of visceral A delta and C fibers to the action of bradykinin through an H1-receptor mechanism. This inhibitory effect attenuates the magnitude of the consequent cardiovascular reflex response.

  13. Duration and distribution of experimental muscular hyperalgesia in humans following combined infusions of serotonin and bradykinin

    DEFF Research Database (Denmark)

    Babenko, Victor; Svensson, Peter; Graven-Nielsen, Thomas;

    2000-01-01

    -infusions interval of 3 min. Infusions of isotonic saline (NaCl, 0.9%) were given as control. Pain intensity was continuously scored on a visual analogue scale (VAS), and subjects drew the distribution of the pain areas on an anatomical map. Pressure pain thresholds (PPTs) were assessed with an electronic algometer....... In addition, PPTs were significantly decreased (Peffect of bradykinin in producing experimental muscle pain and muscle hyperalgesia to mechanical stimuli. The combination of serotonin and bradykinin can produce muscle...

  14. Effects of angiotensin-converting enzyme inhibition and bradykinin peptides in rats with myocardial infarction

    OpenAIRE

    Qu, Zhe; Xu, Hongxin; Tian, Yihao

    2015-01-01

    Background and objective: Angiotensin-converting enzyme (ACE) inhibitors have been reported to decrease myocardial remodeling and faciliate cardiac function improvement in the setting myocardial infarction by affecting bradykinin. The purpose of this study was to evaluate the combination effects of perindopril and bradykinin (BK) in rats with myocardial infarction. Methods: Wistar Rats underwent to left anterior descending (LAD) coronary artery ligation were allocated into MI group (n = 6); P...

  15. Noradrenaline release from rat sympathetic neurones triggered by activation of B2 bradykinin receptors

    OpenAIRE

    Boehm, Stefan; Huck, Sigismund

    1997-01-01

    The role of bradykinin receptors in the regulation of sympathetic transmitter release was investigated in primary cultures of neurones dissociated from superior cervical ganglia of neonatal rats. These cultures were loaded with [3H]-noradrenaline and the outflow of radioactivity was determined under continuous superfusion.Bradykinin (100 nmol l−1 applied for 10 min) caused a transient increase in tritium outflow that reached a peak within four minutes after the beginning of the application an...

  16. Formoterol and salbutamol inhibit bradykinin- and histamine-induced airway microvascular leakage in guinea-pig.

    OpenAIRE

    Advenier, C; Qian, Y.; Koune, J. D.; Molimard, M; Candenas, M. L.; Naline, E.

    1992-01-01

    1. The effects of the beta 2-adrenoceptor agonists, salbutamol and formoterol, on the increase of microvascular permeability induced by histamine or bradykinin in guinea-pig airways have been studied in vivo. Extravasation of intravenously injected Evans blue dye was used as an index of permeability. The effects of salbutamol and formoterol on the increase in pulmonary airway resistance induced by histamine or bradykinin have also been studied. 2. The increase in pulmonary airway resistance i...

  17. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction

    Directory of Open Access Journals (Sweden)

    Čokić Vladan P.

    2014-01-01

    Full Text Available Introduction. Hydroxycarbamide, used in therapy of hemoglobinopathies, enhances nitric oxide (NO production both in primary human umbilical vein endothelial cells (HUVECs and human bone marrow endothelial cell line (TrHBMEC. Moreover, NO increases γ-globin and fetal hemoglobin levels in human erythroid progenitors. Objective. In order to find out whether simple physiologic stimulation of NO production by components of hematopoietic microenvironment can increase γ-globin gene expression, the effects of NO-inducer bradykinin were examined in endothelial cells. Methods. The study was performed in co-cultures of human erythroid progenitors, TrHBMEC and HUVECs by ozone-based chemiluminescent determination of NO and real-time quantitative RT-PCR. Results. In accordance with previous reports, the endogenous factor bradykinin increased endothelial cell production of NO in a dose- and time-dependent manner (0.1-0.6 μM up to 30 minutes. This induction of NO in HUVECs and TrHBMEC by bradykinin was blocked by competitive inhibitors of NO synthase (NOS, demonstrating NOS-dependence. It has been shown that bradykinin significantly reduced endothelial NOS (eNOS mRNA level and eNOS/Я-actin ratio in HUVEC (by twofold. In addition, bradykinin failed to increase γ-globin mRNA expression in erythroid progenitors only, as well as in co-culture studies of erythroid progenitors with TrHBMEC and HUVEC after 24 hours of treatment. Furthermore, bradykinin did not induce γ/β globin ratio in erythroid progenitors in co-cultures with HUVEC. Conclusion. Bradykinin mediated eNOS activation leads to short time and low NO production in endothelial cells, insufficient to induce γ-globin gene expression. These results emphasized the significance of elevated and extended NO production in augmentation of γ-globin gene expression. [Projekat Ministarstva nauke Republike Srbije, br. 175053

  18. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potent... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunctional

  19. Up-regulation of bradykinin receptors in rat bronchi via I kappa B kinase-mediated inflammatory signaling pathway

    DEFF Research Database (Denmark)

    Lei, Ying; Zhang, Yaping; Cao, Yongxiao;

    2010-01-01

    IkappaB kinase (IKK)-mediated intracellular signaling mechanisms may be involved in airway hyperresponsiveness through up-regulation of bradykinin receptors. This study was designed to examine if organ culture of rat bronchial segments induces airway hyperresponsiveness to bradykinin and if inhib...

  20. Specific immunotherapy with mugwort pollen allergoid reduce bradykinin release into the nasal fluid

    Science.gov (United States)

    Grzanka, Alicja; Jawor, Barbara; Czecior, Eugeniusz

    2016-01-01

    Introduction A pathomechanism of allergic rhinitis is complex. A neurogenic mechanism seems to play a significant role in this phenomenon. Aim The evaluation of influence of specific immunotherapy of mugwort pollen allergic patients on the bradykinin concentration in the nasal lavage fluid. Material and methods The study included 22 seasonal allergic rhinitis patients. Thirty persons with monovalent allergy to mugwort pollen, confirmed with skin prick tests and allergen-specific immunoglobulin E, underwent a 3-year-long allergen immunotherapy with the mugwort extract (Allergovit, Allergopharma, Germany). The control group was composed of 9 persons with polyvalent sensitivity to pollen, who were treated with pharmacotherapy. Before the allergen-specific immunotherapy (AIT) and in subsequent years before the pollen seasons, a provocation allergen test with the mugwort extract was performed, together with collection of nasal fluids, where bradykinin concentration was determined according to Proud method. Results There were similar levels of bradykinin in both groups at baseline prior to therapy (AIT group: 584.0 ±87.2 vs. controls 606.3 ±106.5 pg/ml) and changes after allergen challenge 1112.4 ±334.8 vs. 1013.3 ±305.9 pg/ml as well. The bradykinin concentration in nasal lavage fluid after mugwort challenge in 1 year was lower in the AIT group (824.1 ±184.2 pg/ml vs. 1000.4 ±411.5 pg/l; p < 005) with a further significant decrease after the 2nd and 3rd year of specific immunotherapy. Significant reduction of symptoms and medications use was observed in hyposensitized patients. Conclusions A decreased level of bradykinin as a result of AIT suggests that some of the symptomatic benefits of AIT may be related to the reduced release of bradykinin into nasal secretions. These values correlate with clinical improvement within the course of treatment. PMID:27605897

  1. A novel assay to diagnose hereditary angioedema utilizing inhibition of bradykinin-forming enzymes

    DEFF Research Database (Denmark)

    Joseph, Kusumam; Bains, Sonia; Tholanikunnel, Baby G;

    2015-01-01

    BACKGROUND: Hereditary angioedema types I and II are caused by a functional deficiency of C1 inhibitor (C1-INH) leading to overproduction of bradykinin. The current functional diagnostic assays employ inhibition of activated C1s, however, an alternative, more physiologic method, is desirable...... samples were considered equivocal (4 controls and 38 patients). CONCLUSIONS: Diagnosis of HAE types I and II can be ascertained by inhibition of enzymes of the bradykinin-forming cascade; namely, factor XIIa and kallikrein. Either method yields functional C1-INH levels in HAE patients (types I & II...

  2. TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries

    Institute of Scientific and Technical Information of China (English)

    Cui-ling LIU; Yu HUANG; Ching-yuen NGAI; Yuk-ki LEUNG; Xiao-qiang YAO

    2006-01-01

    Aim: To test the possible involvement of TRPC3 in agonist-induced relaxation and flow-induced vasodilation in rat small mesenteric arteries. Methods: Male Sprague-Dawley rats were used in the present study. After 72 h-treatment of antisense oligo via tail vein injection, isometric tension and isobaric diameter measurement were carried out with isolated mesenteric artery segments by using either a Pressure Myograph or a Multi Myograph system. Endothelial [Ca2+]i changes were measured with a MetaFluor imaging system in response to flow or to 30 nmol/L bradykinin. Results: Immunohistochemical study showed that the 72 h-treatment of antisense oligo via tail vein injection markedly decreased the TRPC3 expression in mesenteric arteries, indicating the effectiveness of the antisense oligo. Isometric tension and isobaric diameter measurement showed that, although the antisense oligo treatment did not affect histamine-, ATP-, and CPA-induced relaxation, it did reduce the magnitude of flow-induced vasodilation by approximately 13% and decreased bradykinin-induced vascular relaxation with its EC50 value raised by nearly 3-fold. Endothelial [Ca2+]i measurement revealed that treatment of the arteries with antisense oligos significantly attenuated the magnitude of endothelial [Ca2+]i rise in response to flow and to 30 nmol/L bradykinin. Conclusion: The results suggest that TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries probably by mediating the Ca2+ influx into endothelial cells.

  3. ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin

    NARCIS (Netherlands)

    R.M. Wösten-van Asperen; R. Lutter (Rene); J.J. Haitsma; M.P. Merkus; J.B. van Woensel; C.M. van der Loos; S. Florquin (Sandrine); B.F. Lachmann (Burkhard); A.P. Bos (Albert)

    2008-01-01

    textabstractVentilator-induced lung injury is characterised by inflammation and apoptosis, but the underlying mechanisms are poorly understood. The present study proposed a role for angiotensin-converting enzyme (ACE) via angiotensin II (Ang II) and/or bradykinin in acute lung injury. The authors as

  4. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state.

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    Full Text Available BACKGROUND: Cell senescence is central to a large body of age related pathology, and accordingly, cardiomyocytes senescence is involved in many age related cardiovascular diseases. In consideration of that, delaying cardiomyocytes senescence is of great importance to control clinical cardiovascular diseases. Previous study indicated that bradykinin (BK protected endothelial cells from senescence induced by oxidative stress. However, the effects of bradykinin on cardiomyocytes senescence remain to be elucidated. In this study, we investigated the effect of bradykinin on H2O2-induced H9C2 cells senescence. METHODS AND RESULTS: Bradykinin pretreatment decreased the senescence induced by H2O2 in cultured H9C2 cells in a dose dependent manner. Interestingly, 1 nmol/L of BK almost completely inhibited the increase in senescent cell number and p21 expression induced by H2O2. Since H2O2 induces senescence through superoxide-induced DNA damage, we also observed the DNA damage by comet assay, and BK markedly reduced DNA damage induced by H2O2, and moreover, BK treatment significantly prevented reactive oxygen species (ROS production in H9C2 cells treated with H2O2. Importantly, when co-incubated with bradykinin B2 receptor antagonist HOE-140 or eNOS inhibitor N-methyl-L-arginine acetate salt (L-NAME, the protective effects of bradykinin on H9C2 senescence were totally blocked. Furthermore, BK administration significantly prevented the increase in nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity characterized by increased ROS generation and gp91 expression and increased translocation of p47 and p67 to the membrane and the decrease in superoxide dismutase (SOD activity and expression induced by H2O2 in H9C2 cells, which was dependent on BK B2 receptor mediated nitric oxide (NO release. CONCLUSIONS: Bradykinin, acting through BK B2 receptor induced NO release, upregulated antioxidant Cu/Zn-SOD and Mn-SOD activity and expression while

  5. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels;

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...... connected and some of the cardioprotective effects of Losartan are abolished by blocking the bradykinin B2 receptor (B2R) signaling. In this study, we investigated the ability of six clinically available ARBs to specifically bind and activate the B2R. First, we investigated their ability to activate...... phosphoinositide (PI) hydrolysis in COS-7 cells transiently expressing the B2R. We found that only Losartan activated the B2R, working as a partial agonist compared to the endogenous ligand bradykinin. This effect was blocked by the B2R antagonist HOE 140. A competitive binding analysis revealed that Losartan does...

  6. Pathophysiology of a severe case of Puumala hantavirus infection successfully treated with bradykinin receptor antagonist icatibant.

    Science.gov (United States)

    Vaheri, Antti; Strandin, Tomas; Jääskeläinen, Anne J; Vapalahti, Olli; Jarva, Hanna; Lokki, Marja-Liisa; Antonen, Jaakko; Leppänen, Ilona; Mäkelä, Satu; Meri, Seppo; Mustonen, Jukka

    2014-11-01

    We recently described a patient with very severe Puumala hantavirus infection manifested by capillary leakage syndrome and shock. He was successfully treated with the bradykinin receptor antagonist, icatibant (Antonen et al., 2013). Here we report analysis of the pathophysiology which indicated pronounced complement activation, prolonged leukocytosis, extensive fibrinolysis, circulating histones, and defects in liver function. The patient had an uncommon HLA-phenotype, which may have contributed to the severe course of the disease. PMID:25194993

  7. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke;

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK......(Ca)) conductance are involved in regulation of endothelium-dependent vasodilation in retinal arterioles was investigated. METHODS: Porcine retinal arterioles (diameter approximately 112 microm, N = 119) were mounted in microvascular myographs for isometric tension recordings. The arterioles were contracted with...... the thromboxane analogue, U46619, and concentration-response curves were constructed for bradykinin and a novel opener of SK(Ca) and IK(Ca) channels, NS309. RESULTS: In U46619-contracted arterioles, bradykinin and NS309 induced concentration-dependent relaxations. In vessels without endothelium...

  8. Effects of the intra-arterial injection of bradykinin into the limbs, upon the activity of mesencephalic reticular units.

    Science.gov (United States)

    Lombard, M C; Guilbaud, G; Besson, J M

    1975-02-01

    The changes in firing rate of mesencephalic reticular units after intra-arterial injection into the limbs of a potent nociceptive agent, bradykinin, were studied in cats (unanesthetized, immobilized with flaxedil and hyperventilated). 30 per cent of the d35 studied cells were affected, 56 per cent were excited, 23 per cent inhibited and 5 per cent had mixed effects. Among the 75 excited cells, the activation of 16 of them seemed to related to the arousa- processes (group A); for 56 cells the increase seemed dire-tly dependent on the nociceptive stimulation itself (group B). The changes of firing rate were repruducible; their latencies and durations were of the same order as the latencies and duration of the nociceptive reactions and painful sensation s, which have been obtained in animals and men after bradykinin injections. The modifications induced by bradykinin administration were suppressed by Ketamin and Thiopental.

  9. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher;

    2002-01-01

    Bradykinin is known to cause vasodilatation in resistance vessels and may, together with adenosine, be an important regulator of tissue blood flow during exercise. Whether tissue concentrations of bradykinin change with exercise in skeletal muscle and tendon-related connective tissue has not yet...... been established. Microdialysis (molecular mass cut-off 5 kDa) was performed simultaneously in calf muscle and peritendinous Achilles tissue at rest and during 10 min periods of incremental (0.75 W, 2 W, 3.5 W and 4.75 W) dynamic plantar flexion exercise in 10 healthy individuals (mean age 27 years......-50 %. The interstitial concentration of bradykinin rose in response to exercise both in skeletal muscle (from 23.1 +/- 4.9 nmol l(-1) to 110.5 +/- 37.9 nmol l(-1); P tissue (from 27.7 +/- 7.8 nmol l(-1) to 105.0 +/- 37.9 nmol l(-1); P

  10. Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists

    OpenAIRE

    Hayashi, Izumi; Majima, Masataka

    1999-01-01

    Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws.Up to 100 μg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method.Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid.Treatment...

  11. Differential release of eicosanoids by bradykinin, arachidonic acid and calcium ionophore A23187 in guinea-pig isolated perfused lung.

    OpenAIRE

    Bakhle, Y. S.; Moncada, S.; de Nucci, G.; Salmon, J A

    1985-01-01

    The effects of infusions of bradykinin (0.2 microM), calcium ionophore A23187 (0.5 microM) and arachidonic acid (13 microM) on the release of eicosanoids from the guinea-pig isolated perfused lung were investigated using radioimmunoassay for thromboxane B2 (TXB2), 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha), PGE2, leukotriene B4 (LTB4) and LTC4 and bioassay using the superfusion cascade. Bradykinin released more 6-oxo-PGF1 alpha than TXB2, whereas arachidonic acid and ionophore released m...

  12. A liver metalloendopeptidase which degrades the circulating hypotensive peptide hormones bradykinin and atrial natriuretic peptide

    Directory of Open Access Journals (Sweden)

    Carvalho K.M.

    1999-01-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM and for atrial natriuretic peptide (Km = 5 µM suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.

  13. Effect of forskolin on alterations of vascular permeability induced with bradykinin, prostaglandin E1, adenosine, histamine and carrageenin in rats.

    Science.gov (United States)

    Sugio, K; Daly, J W

    1983-07-01

    The effect of the diterpene forskolin on vascular permeability alone and in combination with bradykinin, prostaglandin E1, adenosine or histamine has been investigated in rats. Vascular permeability in rat skin was measured using [125I]-labelled bovine serum albumin ([125I]BSA) as a tracer. In addition, the effect of forskolin on footpad edema induced by the injection of a mixture of 2% carrageenin was determined. Forskolin caused a marked potentiation of the increase in vascular permeability in rat skin elicited by the intradermal injection of histamine or bradykinin. However, forskolin caused a significant suppression of the prostaglandin E1-induced vascular permeability response and at a low concentration suppressed the response to adenosine. Forskolin greatly potentiated the footpad edema induced with carrageenin in rats. Intravenous administration of the enzyme bromelain, which reduces plasma kininogen levels, inhibited the footpad edema induced with carrageenin or with a mixture of carrageenin and forskolin. Parenteral administration of a prostaglandin synthetase inhibitor, indomethacin, suppressed the footpad edema induced with carrageenin, but did not inhibit the footpad edema induced with a mixture of carrageenin and forskolin. An antihistamine, cyproheptadine, had no effect on carrageenin-induced footpad edema either in the presence or absence of forskolin. These results suggest that both bradykinin and prostaglandins are essential for the development of carrageenin-induced footpad edema and that bradykinin plays an important role in the potentiative effect of forskolin on footpad edema induced with carrageenin in rats.

  14. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

    Science.gov (United States)

    Chuang, H H; Prescott, E D; Kong, H; Shields, S; Jordt, S E; Basbaum, A I; Chao, M V; Julius, D

    2001-06-21

    Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family. PMID:11418861

  15. The B2 receptor of bradykinin is not essential for the post-exercise increase in glucose uptake by insulin-stimulated mouse skeletal muscle

    OpenAIRE

    Schweitzer, George G.; Castorena, Carlos M.; Hamada, Taku; Funai, Katsuhiko; Arias, Edward B.; Cartee, Gregory D.

    2011-01-01

    Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin’s relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isola...

  16. Role of non-nitric oxide non-prostaglandin endothelium-derived relaxing factor(s in bradykinin vasodilation

    Directory of Open Access Journals (Sweden)

    A.C. Resende

    1998-09-01

    Full Text Available The most conspicuous effect of bradykinin following its administration into the systemic circulation is a transient hypotension due to vasodilation. In the present study most of the available evidence regarding the mechanisms involved in bradykinin-induced arterial vasodilation is reviewed. It has become firmly established that in most species vasodilation in response to bradykinin is mediated by the release of endothelial relaxing factors following the activation of B2-receptors. Although in some cases the action of bradykinin is entirely mediated by the endothelial release of nitric oxide (NO and/or prostacyclin (PGI2, a large amount of evidence has been accumulated during the last 10 years indicating that a non-NO/PGI2 factor accounts for bradykinin-induced vasodilation in a wide variety of perfused vascular beds and isolated small arteries from several species including humans. Since the effect of the non-NO/PGI2 endothelium-derived relaxing factor is practically abolished by disrupting the K+ electrochemical gradient together with the fact that bradykinin causes endothelium-dependent hyperpolarization of vascular smooth muscle cells, the action of such factor has been attributed to the opening of K+ channels in these cells. The pharmacological characteristics of these channels are not uniform among the different blood vessels in which they have been examined. Although there is some evidence indicating a role for KCa or KV channels, our findings in the mesenteric bed together with other reports indicate that the K+ channels involved do not correspond exactly to any of those already described. In addition, the chemical identity of such hyperpolarizing factor is still a matter of controversy. The postulated main contenders are epoxyeicosatrienoic acids or endocannabinoid agonists for the CB1-receptors. Based on the available reports and on data from our laboratory in the rat mesenteric bed, we conclude that the NO/PGI2-independent endothelium

  17. Peptide IC-20, encoded by skin kininogen-1 of the European yellow-bellied toad, Bombina variegata, antagonizes bradykinin-induced arterial smooth muscle relaxation

    OpenAIRE

    Mu Yang; Mei Zhou; Bing Bai; Chengbang Ma; Le Wei; Lei Wang; Tianbao Chen; Chris Shaw

    2011-01-01

    Objectives: The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail arter...

  18. Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS.

    OpenAIRE

    Dabiré, Hubert; Barthélémy, Inès; Blanchard-Gutton, Nicolas; Sambin, Lucien; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Unterfinger, Yves; Aguilar, Pablo; Thibaud, Jean-Laurent; Ghaleh, Bijan; Bizé, Alain; Pouchelon, Jean-Louis; Blot, Stéphane; Berdeaux, Alain; Hittinger, Luc

    2012-01-01

    Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscula...

  19. CA2+-DEPENDENT AND CA2+-INDEPENDENT MECHANISM OF CYCLIC-AMP REDUCTION - MEDIATION BY BRADYKININ B-2 RECEPTORS

    NARCIS (Netherlands)

    SIPMA, H; DENHERTOG, A; NELEMANS, A

    1995-01-01

    1 Bradykinin caused a transient reduction of about 25% in the cyclic AMP level in forskolin prestimulated DDT1 MF-2 smooth muscle cells (IC50: 36.4 +/- 4.9 nM) and a pronounced, sustained inhibition (40%) of the isoprenaline-stimulated cyclic AMP level (IC50: 37.5 +/- 1.1 nM). 2 The Ca2+ ionophore,

  20. Relaxation to bradykinin in bovine pulmonary supernumerary arteries can be mediated by both a nitric oxide-dependent and -independent mechanism

    Science.gov (United States)

    Tracey, A; Bunton, D; Irvine, J; MacDonald, A; Shaw, A M

    2002-01-01

    The aim of the present study was to determine the relative contribution of prostanoids, nitric oxide and K+ channels in the bradykinin-induced relaxation of bovine pulmonary supernumerary arteries. In endothelium-intact, but not denuded rings, bradykinin produced a concentration-dependent relaxation (pEC50, 9.6±0.1), which was unaffected by the cyclo-oxygenase inhibitor indomethacin. The nitric oxide scavenger hydroxocobalamin (200 μM, pEC50, 8.5±0.2) and the nitric oxide synthase inhibitor L-NAME (100 μM, pEC50, 8.9±0.1) and the combination of L-NAME and hydroxocobalamin (pEC50, 8.1±0.2) produced rightward shifts in the bradykinin concentration response curve. The guanylyl cyclase inhibitor ODQ (10 μM, pEC50, 9.6±0.4) did not affect the response to bradykinin. Elevating the extracellular [K+] to 30 mM did not affect the response to bradykinin but abolished the response when ODQ or L-NAME was present. The K+ channel blocker apamin (100 nM), combined with charybdotoxin (100 nM), produced a small reduction in the maximum response to bradykinin but they abolished the response to bradykinin when ODQ, L-NAME or hydroxocobalamin were present. Apamin (100 nM) combined with iberiotoxin (100 nM) also reduced the response to bradykinin in the presence of hydroxocobalamin or L-NAME. The concentration response curve for sodium nitroprusside-induced relaxation was abolished by ODQ (10 μM) and shifted to the right by apamin and charybdotoxin. These studies suggest that in bovine pulmonary supernumerary arteries bradykinin can stimulate the formation of nitric oxide and activate an EDHF-like mechanism and that either of these pathways alone can mediate the bradykinin-induced relaxation. In addition nitric oxide, acting through guanylyl cyclase, can activate an apamin/charbydotoxin-sensitive K+ channel in this tissue. PMID:12359636

  1. The release and vascular action of bradykinin in the isolated perfused bovine udder.

    Science.gov (United States)

    Zeitlin, I J; Eshraghi, H R

    2002-08-15

    It has been postulated that the mammary kinin system may play a role in modulating mammary blood flow. Until the present study, the local release of bradykinin (BK) or other kinin system constituents into the mammary vasculature had not been reported and there were also conflicting findings on the action of BK on udder vasculature. Udders were removed from healthy lactating cows at slaughter. Pairs of ipsilateral quarters were perfused with Tyrode solution through the external pudendalis artery and drained via the cranial superficial epigastric vein. Mammary secretion was collected through teat cannulae. The perfusion pressure was linearly related to perfusate flux between 60 and 210 ml min(-1) and the flow rate was adjusted (110-150 ml min(-1)) to give a basal pressure of 85 mmHg. PO2, PCO2 and pH in the venous effluent perfusate stabilised at 157 +/- 10 mmHg, 50.1 +/- 2.4 mmHg and 7.1 +/- 0.03, respectively. The venous effluent contained immunoreactive BK and BK precursor, tissue kallikrein activity, and bradykinin-destroying enzyme. The concentration of BK stabilised at 378 +/- 48 pg (ml perfusate)(-1), that of trypsin-activated BK precursor was 679 +/- 59 pg BK equivalents ml(-1) and that of tissue kallikrein, measured as cleavage of D-Val.Leu.Arg-p-nitroanilide (D-Val.Leu.Arg-pNA), was 5.5 +/- 1.7 nmol p-NA h(-1) ml(-1). Arterial infusion of phenylephrine (0.49-490 microM) produced increases in perfusion pressure (vasoconstriction). Acetylcholine (ACh) (0.55-55 microM) and BK (0.1-10 microM) produced only vasodilatation. BK (EC50 = 1.00+/-0.04 microM) was a more potent vasodilator than ACh (EC50 = 9.57+/-0.49 microM). The basal BK concentration was 250 times below the threshold for vasoactivity. The udder produced a milk-like secretion, which was dependent on perfusate flow and contained a concentration of BK which remained unchanged from 60 to 180 min of perfusion (231 +/- 31 pg ml(-1)) unlike that in the venous effluent which doubled between 60 and 120 min

  2. Pharmacologic Targets and Prototype Therapeutics in the Kallikrein-Kinin System: Bradykinin Receptor Agonists or Antagonists

    Directory of Open Access Journals (Sweden)

    J. N. Sharma

    2006-01-01

    Full Text Available The kallikrein-kinin system (KKS is a complex system produced in various organs. This system includes kininogen (precursor for kinin, kallikreins, and pharmacologically active bradykinin (BK, which is considered to be proinflammatory and/or cardioprotective. It is a proinflammatory polypeptide that is involved in many pathological conditions and can cause pain, inflammation, increased vascular permeability, vasodilation, contraction of various smooth muscles, as well as cell proliferation. On the other hand, it has been shown that BK has cardioprotective effects, as all components of KKS are located in the cardiac muscles. Numerous observations have indicated that decreased activity of this system may lead to cardiovascular diseases, such as hypertension, cardiac failure, and myocardial infarction. BK acts on two receptors, B1 and B2, which are linked physiologically through their natural stimuli and their common participation in a variety of inflammatory responses. Recently, numerous BK antagonists have been developed in order to treat several diseases that are due to excessive BK formation. Although BK has many beneficial effects, it has been recognized to have some undesirable effects that can be reversed with BK antagonists. In addition, products of this system have multiple interactions with other important metabolic pathways, such as the renin-angiotensin system.

  3. Outcome of Venom Bradykinin Potentiating Factor on Renin Angiotensin System in Irradiated Rats

    International Nuclear Information System (INIS)

    Scorpion Venom contains a strong bradykinin potentiating factor (BPF) exhibiting angiotensin converting enzyme inhibition (ACEI). Irradiation and stimulation of renin-angiotensin system (RAS) induce oxidative stress. Interruption of the RAS by an ACEI or angiotensin II receptor blocker (ARB) losartan (LOS) and/or gamma-rays (4 Gy) were evaluated. Rats received 6 doses of BPF (1μg/g body wt) or of LOS (5 μg/g body wt). Treatment with BPF induced significant elevation in the level of potassium (K) and significant drop in the level of sodium (Na) and uric acid. Treatment with LOS significantly depressed the level of Na and uric acid compared to control. Irradiation discerned a significant elevation in malondialdehyde (MDA), advanced oxidative protein product (AOPP), aldosterone, Na, urea and creatinine, and a significant drop in the haematological values, glutathione (GSH), calcium (Ca) and uric acid. A significant decrease in MDA, aldosterone, urea, creatinine and uric acid compared to irradiated group was observed in irradiated treated groups. Irradiated animals treated with LOS showed a significant decrease in Na and chloride (Cl) compared to the irradiated group. Considerable amelioration of radiation-induced depression in haematopoiesis, improvement of oxidative stress and kidney function by BPF as ACEI or LOS as ARB are detected. Results add further identification to the properties of BPF

  4. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine-lysine-bradykinin

  5. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  6. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Zulong Sheng

    Full Text Available OBJECTIVES: Stem cell preconditioning (PC is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs with bradykinin (BK enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. METHODS: The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. RESULTS: In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. CONCLUSIONS: The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

  7. Role of Bradykinin on Left Ventricular Remodeling and Cardiac Function after Myocardial Infarction in Rats

    Institute of Scientific and Technical Information of China (English)

    Hai-zhu ZHANG; Li-quan LEI; Chang-cong CUI; Jian LIU

    2009-01-01

    Objectives To investigate the influences of bradykinin (BK) on hemodynamics, left ventricular hypertrophy and interstitial collagen metabolism after myocardial infarction (MI) in rats and the contribution of BK in angiotensin-con-verting enzyme (ACE) inhibition therapy. Methods By means of hemodynamic measurements, morphometric study of myocyte hypertrophy and SDS-PAGE technique ,the effects of enalapril pressure (500μg·kg-1·day-1) ,enalapril(500μg·kg-1·day-1) with BK B2 receptor antagonist Hoe-140 (500μg·kg-1·day-1),angiotensin Ⅱ (AgII) type 1 (AT1) receptor antagonist losartan(3mg·kg-1·day-1)on mean arterial pressure (MAP) ,left ventricular end-dias-tolic pressure (LVEDP), as well as maximum positive left ventricular pressure change (+ dp/dtmax), Ⅴ(m) n, col-lagen content and the ratio of type Ⅰ to type Ⅲ collagen (Ⅰ / Ⅲ) of noninfarcted area were observed in rats after MI. Treatments were started on the 3rd day after MI and continued for another 28 days. Results Enalapril reduced LV-EDP, Ⅴ(m) n and collagen content as well as collagen Ⅰ/Ⅲ compared with the untreated MI group (P < 0. 05), and all of these effects of enalapril were partly blunted by concomitant treatment with hoe-140 (P < 0. 05). Losartan was less effective than enalapril (P < 0. 05). However, three treatment groups had no significant differences in + dp/dtmax and had similar reductions in MAP compared with untreated MI group. Conclusions BK can improve cardiac function and prevent left ventricular hypertrophy with myocardial fibrosis independent of blood pressure. The mechanisms of ACEI are both blockade of Ang Ⅱ formation and inhibition of BK degradation.

  8. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences.

    Science.gov (United States)

    Cerrato, Bruno D; Carretero, Oscar A; Janic, Brana; Grecco, Hernán E; Gironacci, Mariela M

    2016-10-01

    Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties. PMID

  9. Effects of trout bradykinin on the motility of the trout stomach and intestine: evidence for a receptor distinct from mammalian B1 and B2 subtypes

    OpenAIRE

    Jensen, Jorgen; J. Michael Conlon

    1997-01-01

    Trout bradykinin ([Arg0,Trp5,Leu8]-bradykinin; trout BK), recently isolated from kallikrein-treated trout plasma, produced sustained and concentration-dependent contractions of isolated longitudinal muscle from rainbow trout stomach (pD2=7.01±0.03) and proximal small intestine (pD2=7.37±0.07). The maximum responses were 85±2% (stomach) and 101±35% (intestine) of the corresponding responses to 10−5 M acetylcholine. Strips of circular smooth muscle from trout stomach and intestine did not contr...

  10. A comparison of the effects of captopril and enalapril on skin responses to intradermal bradykinin and skin blood flow in the human forearm.

    OpenAIRE

    LI KAM WA, T. C.; Cooke, E D; Turner, P

    1993-01-01

    1. The effects of captopril and enalapril on skin responses to intradermal injections of bradykinin and skin blood flow in the forearm were investigated in this randomised, double-blind, placebo-controlled, cross-over study. 2. Intradermal injections of 0, 1, 2.5 and 5 micrograms of bradykinin in 0.9% sodium chloride were made into the forearm of twelve healthy volunteers before and at 2, 6 and 24 h after single oral doses of 25 mg captopril, 10 mg enalapril or placebo. Forearm skin blood flo...

  11. Bradykinin-induced release of PGI2 from aortic endothelial cell lines: responses mediated selectively by Ca2+ ions or a staurosporine-sensitive kinase.

    OpenAIRE

    Parsaee, H.; McEwan, J R; MacDermot, J

    1993-01-01

    1. Bradykinin (100 nM) triggers release of nitric oxide and prostacyclin from both AG07680A and AG04762 bovine cultured aortic endothelial cells. The exposure of these cells to bradykinin is in each case associated with a striking rise in intracellular calcium ion concentration. 2. Exposure of AG07680A cells to 250 nM ionomycin was followed also by a significant release of prostacyclin, whereas 250 nM ionomycin had no capacity to stimulate release of prostacyclin from AG04762 cells. 3. There ...

  12. The effects of formoterol on plasma exudation produced by a localized acute inflammatory response to bradykinin in the tracheal mucosa of rats in vivo.

    OpenAIRE

    O'Donnell, S. R.; Anderson, G. P.

    1995-01-01

    1. The effects of formoterol, a beta 2-adrenoceptor agonist, on plasma protein exudation and microvascular permeability induced by topical, i.e. applied onto the tracheal mucosal surface, bradykinin (10 nmol; 20 microM, 5 min, 0.1 ml min-1) were studied in a perfused segment of trachea prepared in situ in anaesthetized rats. 2. Bradykinin increased the amount of plasma (fluorimetric assay for protein) in the perfusate (response; 10.98 +/- 0.357 microliters, n = 69; total increase in plasma ov...

  13. Bradykinin antagonist counteracts the acute effect of both angiotensin-converting enzyme inhibition and of angiotensin receptor blockade on the lower limit of autoregulation of cerebral blood flow

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur T; Paulson, Olaf B; Høj Nielsen, Arne;

    2014-01-01

    The lower limit of autoregulation of cerebral blood flow (CBF) can be modulated with both angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB). The influence of bradykinin antagonism on ARB-induced changes was the subject of this study. CBF was measured in Sprague......-Dawley rats with laser Doppler technique. The blood pressure was lowered by controlled bleeding. Six groups of rats were studied: a control group and five groups given drugs intravenously: an ACE inhibitor (enalaprilat), an ARB (candesartan), a bradykinin-2 receptor antagonist (Hoe 140), a combination...

  14. Blood pressure in patients with primary aldosteronism is influenced by bradykinin B(2) receptor and alpha-adducin gene polymorphisms.

    Science.gov (United States)

    Mulatero, Paolo; Williams, Tracy A; Milan, Alberto; Paglieri, Cristina; Rabbia, Franco; Fallo, Francesco; Veglio, Franco

    2002-07-01

    Primary aldosteronism (PA) is the most common cause of endocrine hypertension. PA is most frequently presented as moderate to severe hypertension, but the clinical and biochemical features vary widely. The aim of our study was to identify genetic variants that influence the phenotype of patients with PA. We hypothesized that genetic variants potentially affecting aldosterone production (aldosterone synthase, CYP11B2), renal proximal tubule reabsorption (alpha-adducin), or the mechanisms of counterbalance leading to vasodilatation and sodium excretion (bradykinin B(2)-receptor, B(2)R) could influence the clinical and biochemical characteristics of patients with PA. We studied three polymorphisms of these genes (C-344T of CYP11B2, G460W of alpha-adducin, and C-58T of B(2)R) in 167 primary aldosteronism patients (56 with aldosterone-producing adenoma and 111 with idiopathic hyperaldosteronism). B(2)R and alpha-adducin genotypes were strong independent predictors of both systolic and diastolic blood pressure levels; plasma renin activity and aldosterone also play a marginal role on BP levels. Body mass index, age, sex, and CYP11B2 genotype displayed no significant effect on the clinical parameters of our population. In particular, alpha-adducin and B(2)R polymorphisms accounted for 13.2% and 11.0% of the systolic and diastolic blood pressure variance, respectively. These data suggest that genetic variants of alpha-adducin and the bradykinin B(2)-R influence the blood pressure levels in patients with primary aldosteronism. PMID:12107246

  15. Importance of the terminal α-amino group of bradykinin and some kynins on capillary permeability increase

    International Nuclear Information System (INIS)

    A simple and reliable method is described for the quantitative evaluation of vascular permeability increase induced by vasoactive drugs with Evans blue labelled with iodine-125 or 131. By using this method the importance of α-amino group of bradykinin (Bk), kallidin (Kd) and methionyl-kallidin (Met-Kd) on the biological activity were studied after reacting the kinins with pyridoxal 5'-phosphate followed by reduction with sodium borohydride. Phosphopyridoxyl-kinins were formed leaving free the guanidino groups. Aminoacid analysis of phosphopyridoxyl-kinin showed that the efficiency of the reaction was extremely good in the blockage of α-amino groups [phosphopyridoxyl-bradikinin (PP-Bk) = 98,8%, phosphopyridoxyl-kallidin (PP-Kd) = 95,2%, phosphopyridoxyl-methionyl-kallidin (PP-Met-Kd) = 98,0%. Log dose-response curves were obtained for Bk, Kd, Met-Kd, acetyl-bradykinin (Ac-Bk), PP-Bk, PP-Kd and PP-Met-Kd and the relative potencies calculated through the Lineweaver-Burk plots. The relative potencies were: PP-Bk about 16% the activity of Bk, Ac-Bk about 31% the activity of Bk, PP-Kd about 17% the activity of Kd, PP-Met-Kd about 12% the activity of Met-Kd. The results show that the terminal α-amino group of kinins is important in the mechanisms of biological activity. (Author)

  16. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  17. Expression of HER2 and bradykinin B1 receptors in precursor lesions of gallbladder carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cesar Toledo; Carola E Matus; Ximena Barraza; Pamela Arroyo; Pamela Ehrenfeld; Carlos D Figueroa; Kanti D Bhoola; Maeva del Pozo; Maria T Poblete

    2012-01-01

    AIM:TO determine the expression of HER2 and bradykinin B1 receptors (B1R) in the two pathogenic models of gallbladder cancer:the metaplasia-dysplasia-carcinoma and the adenoma-carcinoma pathways.METHODS:Receptor proteins were visualized by immunohistochemistry on 5-μm sections of paraffin-embedded tissue.Expression of both receptors was studied in biopsy samples from 92 patients (6 males and 86 females; age ranging from 28 to 86 years,mean 56 years).High HER2 expression in specimens was additionally investigated by fluorescence in situ hybridization.Cell proliferation in each sample was assessed by using the Ki-67 proliferation marker.RESULTS:HER2 receptor protein was absent in adenomas and in normal gallbladder epithelium.On the contrary,there was intense staining for HER2 on the basolateral membrane of epithelial cells of intestinal metaplasia (22/24; 91.7%) and carcinoma in situ (9/10;90%),the lesions that displayed a significantly high proliferation index.Protein up-regulation of HER2 in the epithelium with metaplasia or carcinoma in situ was not accompanied by HER2 gene amplification.A similar result was observed in invasive carcinomas (0/12).The B1R distribution pattern mirrored that of HER2 except that B1R was additionally observed in the adenomas.The B1R appeared either as cytoplasmic dots or labelingon the apical cell membrane of the cells composing the epithelia with intestinal metaplasia (24/24; 100%) and carcinoma in situ (10/10; 100%) and in the epithelial cells of adenomas.In contrast,both HER2 (4/12; 33%)and B1R (1/12; 8.3%) showed a low expression in invasive gallbladder carcinomas.CONCLUSION:The up-regulation of HER2 and B1R in precursor lesions of gallbladder carcinoma suggests cross-talk between these two receptors that may be of importance in the modulation of cell proliferation in gallbladder carcinogenesis.

  18. In vivo effects of bradykinin B2 receptor agonists with varying susceptibility to peptidases.

    Directory of Open Access Journals (Sweden)

    Mélissa eJean

    2016-01-01

    Full Text Available We reported evidence of bradykinin (BK regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility towards vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v. injection of increasing doses of BK, B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-BK, BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ~15 fold by the angiotensin converting enzyme (ACE inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist and not influenced by the Arg-carboxypeptidase (CP inhibitor (Plummer's inhibitor. The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal. Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can

  19. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases.

    Science.gov (United States)

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2015-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  20. Activation of ERK, JNK, Akt, and G-protein coupled signaling by hybrid angiotensin II AT1/bradykinin B2 receptors expressed in HEK-293 cells

    DEFF Research Database (Denmark)

    Yu, Jun; Lubinsky, David; Tsomaia, Natia;

    2007-01-01

    Bradykinin (BK) and angiotensin II (AngII) often have opposite roles in cardiovascular diseases. Our aim here was to construct hybrid receptors which bind AngII but signal as BK. Various sequences of the intracellular face of the AngII type I receptor, AT1R, were replaced with corresponding seque...

  1. Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions

    Science.gov (United States)

    Xiang, Jie; Wang, Hui; Ma, Chengbang; Zhou, Mei; Wu, Yuxin; Wang, Lei; Guo, Shaodong; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors. PMID:27690099

  2. Peptide IC-20, encoded by skin kininogen-1 of the European yellow-bellied toad, Bombina variegata, antagonizes bradykinin-induced arterial smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2011-01-01

    Full Text Available Objectives: The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata, in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues. Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.

  3. Bowman-Birk protease inhibitor from Vigna unguiculata seeds enhances the action of bradykinin-related peptides.

    Science.gov (United States)

    da Cunha Morales Álvares, Alice; Schwartz, Elisabeth Ferroni; Amaral, Nathalia Oda; Trindade, Neidiane Rosa; Pedrino, Gustavo Rodrigues; Silva, Luciano Paulino; de Freitas, Sonia Maria

    2014-01-01

    The hydrolysis of bradykinin (Bk) by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI) and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M-1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus) ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ. PMID:25361421

  4. Bowman-Birk Protease Inhibitor from Vigna unguiculata Seeds Enhances the Action of Bradykinin-Related Peptides

    Directory of Open Access Journals (Sweden)

    Alice da Cunha M. Álvares

    2014-10-01

    Full Text Available The hydrolysis of bradykinin (Bk by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M−1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ.

  5. Further Identification of the Effect of Bradykinin Potentiating Factor Isolated From Scorpion Venom on Irradiated White Rat

    International Nuclear Information System (INIS)

    Scorpion venom of Androctonus amoreuxi contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effect through enhancing its release and acts as an angiotensin converting enzyme inhibitor (ACEI). Both irradiation and stimulation of renin-angiotensin system (RAS) induce oxidative stress. Possible interruption of the RAS with an ACEI induced by BPF isolated from the scorpion, Androctonus amoreuxi venom or the presence of angiotensin II receptor blocker (ARB) losartan and/or γ- radiation were evaluated. The examined parameters included blood erythrocytes count (RBC), total leucocytic count (WBC), haemoglobin content (Hb) and hematocrit value (Hct) as well as, glutathione content (GSH), malondialdehyde (MDA) and advanced oxidative protein product (AOPP) of kidney homogenate besides aldosterone, sodium, potassium, chloride, calcium, urea, creatinine and uric acid levels of serum. A group of rats (70 - 80 gm each) were received i.p. injection of BPIF (1μg / g body wt) twice per week for three weeks, while the other group received i.p. injection of losartan (5μg / g body wt) twice per week for three weeks. γ-Irradiation was performed at a dose level of 4Gy. All animals were examined after an investigation period of 21 days from γ- irradiation. Either BPF or losartan was performed together with irradiation. The results pointed out that irradiation discerned a significant elevation in the level of MDA, AOPP, aldosterone, sodium, urea and creatinine, and a significant drop in the haematological values (RBCs, WBCs, Hb and Hct), GSH, calcium and uric acid. Repeated injections of BPF or losartan had a beneficial result against the deleterious effect of γ- irradiation. The present investigation clarifies comparable effects for treatment of radiation damage to the kidney through RAS by BPF as (ACEI) and losartan as (ARB). The present work adds further identification to the properties of BPF in controlling of radiation damage. Therapeutic agents from

  6. Ranakinestatin-PPF from the Skin Secretion of the Fukien Gold-Striped Pond Frog, Pelophylax plancyi fukienensis: A Prototype of a Novel Class of Bradykinin B2 Receptor Antagonist Peptide from Ranid Frogs

    Directory of Open Access Journals (Sweden)

    Jie Ma

    2014-01-01

    Full Text Available The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs. Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV, named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140 and B2-receptor (HOE140 antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  7. Islet-activating protein inhibits leukotriene D4- and leukotriene C4- but not bradykinin- or calcium ionophore-induced prostacyclin synthesis in bovine endothelial cells.

    OpenAIRE

    Clark, M. A.; Conway, T.M.; Bennett, C F; Crooke, S T; Stadel, J M

    1986-01-01

    Incubation of the bovine endothelial cell line, CPAE, with leukotriene D4, leukotriene C4, bradykinin, or the calcium ionophore A23187 results in the release of arachidonic acid metabolites including 6-keto-prostaglandin F1 alpha, the stable metabolite of prostacyclin. Pretreatment of these cells with the pertussis toxin islet-activating protein (IAP) results in a dose-dependent inhibition of the release of arachidonic acid metabolites and prostacyclin in response to leukotriene D4 and leukot...

  8. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  9. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  10. Conformations of Prolyl-Peptide Bonds in the Bradykinin 1-5 Fragment in Solution and in the Gas Phase.

    Science.gov (United States)

    Voronina, Liudmila; Masson, Antoine; Kamrath, Michael; Schubert, Franziska; Clemmer, David; Baldauf, Carsten; Rizzo, Thomas

    2016-07-27

    The dynamic nature of intrinsically disordered peptides makes them a challenge to characterize by solution-phase techniques. In order to gain insight into the relation between the disordered state and the environment, we explore the conformational space of the N-terminal 1-5 fragment of bradykinin (BK[1-5](2+)) in the gas phase by combining drift tube ion mobility, cold-ion spectroscopy, and first-principles simulations. The ion-mobility distribution of BK[1-5](2+) consists of two well-separated peaks. We demonstrate that the conformations within the peak with larger cross-section are kinetically trapped, while the more compact peak contains low-energy structures. This is a result of cis-trans isomerization of the two prolyl-peptide bonds in BK[1-5](2+). Density-functional theory calculations reveal that the compact structures have two very different geometries with cis-trans and trans-cis backbone conformations. Using the experimental CCSs to guide the conformational search, we find that the kinetically trapped species have a trans-trans configuration. This is consistent with NMR measurements performed in a solution, which show that 82% of the molecules adopt a trans-trans configuration and behave as a random coil. PMID:27366919

  11. Effects of Bradykinin B2 Receptor Blockade on Infarct Size and Hemodynamics after Myocardial Infarction in Enalapril-treated Rats

    Institute of Scientific and Technical Information of China (English)

    Haizhu Zhang; Changcong Cui; Kexin Du; Jian Liu

    2008-01-01

    Objectives To study the effects of bradykinin (BK) B2 receptor blockade on infarct size and hemodynamics after myocardial infarction (MI) in rats with angiotensin-converting enzyme (ACE) inhibition therapy.Methods MI was produced by ligating the left coronary artery.The effects of enalapril(500μg/kg·day),enalapril(500μg/kg·day) with BK B2 receptor antagonist Hoe-140(500μg/kg·day),angiotensin Ⅱ(Ang Ⅱ) type 1(AT1) receptor antagonist losartan (3 mg/kg·day) on infarct size,left ventricular systolic pressure(LVSP),cardiac output index (CI) and stroke volume index (SVI) were observed in rats after MI.Treatments were started on the 2nd day after MI and continued for another 6 weeks.Results Enalapril reduced infarct size and improved CI and SVI compared with the untreated MI group (P<0.05 ),and these effects of enalapril were significantly blunted by concomitant treatment with Hoe-140 (P<0.05).Losartan was less effective than enalapril.LVSP were unchanged in the three treatment groups.Conclusions BK can reduce infract size and improve hemodynamics in rats following MI.The cardioprotective effects of ACEI partly result from the action of BK exerted through the B2 receptor.

  12. Utero-placental cellular and nuclear expression of bradykinin B2 receptors in normal and preeclamptic pregnancies.

    Science.gov (United States)

    Valdés, Gloria; Acuña, Stephanie; Munizaga, Alejandro; Soto, Gloria X; Figueroa, Carlos D

    2016-01-01

    The bradykinin type 2 receptor (B2R), main effector of the pleiotropic kallikrein-kinin system (KKS), has been localized in the key sites related to placentation in human, rat and guinea pig utero-placental units. The present study was directed to characterize the content, the cellular and subcellular localization of B2R in the villi and basal plate of placentas from normal and preeclamptic pregnancies by means of western blotting, immunohistochemistry and immunoelectron microscopy. The protein content of B2R was demonstrated in both placental zones. The villous placenta of normal and preeclamptic pregnancies expressed B2R in syncytiotrophoblast and fetal endothelium; the basal plate displayed B2R in extravillous trophoblasts and decidual cells. Lastly, immunogold electron microscopy revealed B2R in fetal endothelium, syncytiotrophoblast, extravillous cytotrophoblasts and decidual cells; in all cell types the receptor was mainly located in the cytosol and nucleus. The protein content of placental homogenates and the immunoreactivity in the different cells types did not differ between both study groups; however the abundance of nuclear immunogold B2R positive beads in extravillous trophoblasts was greater in the normal than in the preeclamptic placentas. The purpose of describing nuclear B2R in the utero-placental unit, and its increment in normal extravillous trophoblasts, is to stimulate the study of the functional pathways that may be relevant to understand the local role of the B2R in normal and preeclamptic gestation. PMID:26955769

  13. Interaction between bradykinin potentiating nonapeptide (BPP9a) and {beta}-cyclodextrin: A structural and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Lula, Ivana; De Sousa, Frederico B. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Denadai, Angelo M.L. [Centro Federal de Educacao Tecnologica de Minas Gerais, CEFET-MG, Campus VII, 35.183-006, Timoteo, MG (Brazil); Ferreira de Lima, Guilherme; Duarte, Helio Anderson [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG (Brazil); Mares Guia, Thiago R. dos [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Faljoni-Alario, Adelaide [Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, 05508-900, Sao Paulo, SP (Brazil); Santoro, Marcelo M. [Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); Camargo, Antonio C.M. de [Center for Applied Toxinology CAT-CEPID, Laboratorio Especial de Toxicologia Aplicada, Instituto Butantan, 05503-900, Sao Paulo, SP (Brazil); Santos, Robson A.S. dos [Departamento de Fisiologia e Biofisica, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG (Brazil); and others

    2012-02-01

    Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between {beta}-cyclodextrin ({beta}CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with {beta}CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the {beta}CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that {beta}CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 Degree-Sign C, pH 7.2) showed higher stability of peptide in presence of {beta}CD. This {beta}CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. Highlights: Black-Right-Pointing-Pointer Cd and NMR showed evidences for the existence of more than one structure in solution. Black-Right-Pointing-Pointer Complexation with {beta}CD reduces the conformational rigidity of the peptide. Black-Right-Pointing-Pointer {beta}CD cavity recognize Trp and/or Pro segments of BPP9a. Black-Right-Pointing-Pointer Interactions involving disaggregation of BPP9a assemblies and binding with {beta}CD.

  14. The bradykinin BK2 receptor mediates angiotensin II receptor type 2 stimulated rat duodenal mucosal alkaline secretion

    Directory of Open Access Journals (Sweden)

    Helander Herbert F

    2003-02-01

    Full Text Available Abstract Background This study investigates bradykinin and nitric oxide as potential mediators of AT2-receptor-stimulated duodenal mucosal alkaline secretion. Duodenal mucosal alkaline secretion was measured in methohexital- and α-chloralose-anaesthetised rats by means of in situ pH-stat titration. Immunohistochemistry and Western blot were used to identify the BK2 receptors. Results The AT2 receptor agonist CGP42112A (0.1 μg kg-1 min-1 administered intravenously increased the duodenal mucosal alkaline secretion by ~50 %. This increase was sensitive to the selective BK2 receptor blocker HOE140 (100 ng/kg iv, but not to luminal administration of the NOS blocker L-NAME (0.3 mM. Mean arterial pressure did not differ between groups during the procedures. Immunohistochemistry showed a distinct staining of the crypt epithelium and a moderate staining of basal cytoplasm in villus enterocytes. Conclusion The results suggest that the AT2-receptor-stimulated alkaline secretion is mediated via BK2 receptors located in the duodenal cryptal mucosal epithelium.

  15. Altered cardiac bradykinin metabolism in experimental diabetes caused by the variations of angiotensin-converting enzyme and other peptidases.

    Science.gov (United States)

    Adam, Albert; Leclair, Patrick; Montpas, Nicolas; Koumbadinga, Gérémy Abdull; Bachelard, Hélène; Marceau, François

    2010-04-01

    The peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP) mediate most of the kinin catabolism in normal cardiac tissue and are the molecular targets of inhibitory drugs that favorably influence diabetic complications. We studied the variations of those kininases in the myocardium of rats in experimental diabetes. ACE and NEP activities were significantly decreased in heart membranes 4-8weeks post-streptozotocin (STZ) injection. However, insulin-dependent diabetes did not modify significantly bradykinin (BK) half-life (t(1/2)) while the effect of both ACE (enalaprilat) and ACE and NEP (omapatrilat) inhibitors on BK degradation progressively decreased, which may be explained by the upregulation of other unidentified metallopeptidase(s). In vivo insulin treatment restored the activities of both ACE and NEP. ACE and NEP activities were significantly higher in hearts of young Zucker rats than in those of Sprague-Dawley rats. BK t(1/2) and the effects of peptidase inhibitors on t(1/2) varied accordingly. It is concluded that kininase activities are subjected to large and opposite variations in rat cardiac tissue in type I and II diabetes models. A number of tissue or molecular factors may determine these variations, such as remodeling of cardiac tissue, ectoenzyme shedding to the extracellular fluid and the pathologic regulation of peptidase gene expression.

  16. The inhibition of kallikrein-bradykinin pathway may be useful in the reduction of allergic reactions during honeybee venom immunotherapy

    Directory of Open Access Journals (Sweden)

    Ervin Ç. Mingomataj

    2009-05-01

    Full Text Available "nVenom immunotherapy (VIT protects patients with hymenoptera venom anaphylaxis from subsequent potentially life-threatening reactions. The most important side effects during VIT are systemic anaphylactic reactions (SAR, which are more prevalent during honeybee VIT. Despite the demonstrated diversity with regard to venom compounds, previous publications did not mention the plausible reason that can justify the difference of SAR frequency between honeybee and wasps. On the other hand, pre-treatment with H1-blocking antihistamines reduces the frequency and intensity of local and mild systemic anaphylactic reactions during VIT, but not appropriately moderate adverse reactions such as abdominal pain or angioedematous reactions, which can occur more prevalently also during honeybee VIT. In contrast to hymenoptera venom (HV anaphylaxis, these symptoms are very common during hereditary angioedema (HAE. In addition, in some patients who repeatedly experienced anaphylactic reactions during hyposensitization with HV are reported significantly lower renin, angiotensinogen I, and angiotensinogen II plasma levels. These facts may indicate that during honeybee VIT could be occurred a defective implication of renin-angiotensin system. This may be possible, because among hymenoptera, only the HV contains the antigen melittin, a potent kallikrein activator. These effects during honeybee VIT are similar to the HAE, because melittin-induced kallikrein activation on the first hand, as well as the implication of complement classical pathway during HAE on the second one, can lead both to increased bradykinin (BK secretion, plasma extravasation, and therefore to the occurrence of angioedema and abdominal symptoms. Consequently, the clinical effectiveness of BK receptor and generator blockers such as icatibant, ecallantide or NPC 18884, shown recently during the treatment of HAE attacks and acetic acid-induced abdominal constrictions in mice, may lead to the hypothesis

  17. Risk of bradykinin B2 receptor -58T/C gene polymorphism on hypertension: A meta-analysis.

    Science.gov (United States)

    Luo, Kaiping; Yang, Pingping; Xu, Gaosi

    2016-08-01

    The risk of bradykinin B2 receptor (BDKRB2)-58T/C gene polymorphism on hypertension remains controversial. The Cochrane Library, Chinese Biomedical Database, EBSCO, Embase, ISI, MEDLINE, and PubMed were retrieved, and relevant articles were selected. The significant association between BDKRB2 -58T/C gene polymorphism and risk of hypertension were found under C-allele comparison (odds ratio (OR): 1.22, 95% confidential intervals (CI): 1.05-1.42), recessive model (OR: 1.32, 95% CI: 1.07-1.64), dominant model (OR: 0.74, 95% CI: 0.58-0.94), homozygote model (OR: 1.66, 95% CI: 1.11-2.47) and heterozygote model (OR: 1.23, 95% CI: 1.06-1.43). The magnitude of the association between the BDKRB2-58T/C gene polymorphism and risk of hypertension was substantiated in Asians under C-allele comparison (OR: 1.24, 95% CI: 1.04-1.49), recessive model (OR: 1.39, 95% CI: 1.04-1.86), dominant model (OR: 0.72, 95% CI: 0.56-0.93), homozygote model (OR: 1.78, 95% CI: 1.09-2.90) and heterozygote model (OR: 1.26, 95% CI: 1.07-1.49). No publication bias was found in the meta-analysis. The meta-analysis suggested -58C allele and -58CC genotype increase the risk of hypertension in Asians and African-Americans. Inversely, -58TT genotype decreases the risk of hypertension in Asians and African-Americans. PMID:27007662

  18. Risk of bradykinin B2 receptor -58T/C gene polymorphism on hypertension: A meta-analysis.

    Science.gov (United States)

    Luo, Kaiping; Yang, Pingping; Xu, Gaosi

    2016-08-01

    The risk of bradykinin B2 receptor (BDKRB2)-58T/C gene polymorphism on hypertension remains controversial. The Cochrane Library, Chinese Biomedical Database, EBSCO, Embase, ISI, MEDLINE, and PubMed were retrieved, and relevant articles were selected. The significant association between BDKRB2 -58T/C gene polymorphism and risk of hypertension were found under C-allele comparison (odds ratio (OR): 1.22, 95% confidential intervals (CI): 1.05-1.42), recessive model (OR: 1.32, 95% CI: 1.07-1.64), dominant model (OR: 0.74, 95% CI: 0.58-0.94), homozygote model (OR: 1.66, 95% CI: 1.11-2.47) and heterozygote model (OR: 1.23, 95% CI: 1.06-1.43). The magnitude of the association between the BDKRB2-58T/C gene polymorphism and risk of hypertension was substantiated in Asians under C-allele comparison (OR: 1.24, 95% CI: 1.04-1.49), recessive model (OR: 1.39, 95% CI: 1.04-1.86), dominant model (OR: 0.72, 95% CI: 0.56-0.93), homozygote model (OR: 1.78, 95% CI: 1.09-2.90) and heterozygote model (OR: 1.26, 95% CI: 1.07-1.49). No publication bias was found in the meta-analysis. The meta-analysis suggested -58C allele and -58CC genotype increase the risk of hypertension in Asians and African-Americans. Inversely, -58TT genotype decreases the risk of hypertension in Asians and African-Americans.

  19. The relationship of Bradykinin B2 receptor gene variation with obesity, hypertension and lipid variables in obese patients

    Directory of Open Access Journals (Sweden)

    Nur Bakir

    2014-11-01

    Full Text Available Objective. This study examined the association of C-58T genotypes with obesity/hypertension related parameters and serum lipids in obese (n=108 and non-obese (n=80 patients. Materials and methods. Bradykinin receptor (B2R C-58T genotypes were determined by PCR–RFLP. Results. B2R gene C-58T frequencies for T/T (homozygous wild type, T/C (heterozygous and C/C (homozygous polymorphic genotypes for obese and non-obese patients were respectively: 36.1%, 37.5%; 45.4%, 52.5% and 18.5%, 10%. Obese patients using diuretic medication had lower C/C genotype frequency compared to T/T and T/C genotypes. Total cholesterol (T-Chol (p=0.035 levels were found to be associated with B2R C-58T polymorphism, where the T/T genotype had higher total cholesterol levels compared to the T/C genotype in obese patients. Non-obese patients using oral antidiabetic medication had higher C/C genotype frequency than that of T/T and T/C genotypes. Waist circumference (p=0.016 and diastolic blood pressure (p=0.01 levels were elevated in the non-obese subjects with the C/C genotype compared to T/C and T/T. Conclusion. Although B2R C-58T gene polymorphism was not found to be effective on obesity with logistic regression analysis in the whole study population in obese subjects, the T-Chol decreasing effect of the B2R gene C allele and the higher waist circumference measurements in the non-obese subjects may indicate there may be a link between B2R gene C-58T polymorphism and obesity in study populations of higher numbers.

  20. Bradykinin inhibits development of myocardial infarction through B2 receptor signalling by increment of regional blood flow around the ischaemic lesions in rats

    OpenAIRE

    Ito, Hiroshi; Hayashi, Izumi; Izumi, Tohru; Majima, Masataka

    2003-01-01

    To identify the roles of endogenous kinins in prevention of myocardial infarction (MI), we performed the permanent ligation of coronary artery in rats.The size of MI 12, 24, and 48 h after coronary ligation in kininogen-deficient Brown Norway Katholiek (BN-Ka) rats was significantly larger (49.7±0.2%, 49.6±2%, and 51.1±1%, respectively) than that of kinin-replete Brown Norway Kitasato (BN-Ki) rats (42±2%, 38.5±4%, and 41.5±1%).Hoe140, a bradykinin (BK) B2 receptor antagonist injected (1.0 mg ...

  1. Pharmacological characterisation of arthritis induced by Bothrops jararaca venom in rabbits: a positive cross talk between bradykinin, nitric oxide and prostaglandin E2.

    OpenAIRE

    Suzana B. V. Mello; Maria Luiza Guzzo; Luiz Filipe Santiago Lisboa; Farsky, Sandra H P

    2002-01-01

    BACKGROUND: Our previous results showed that nitric oxide (NO) and bradykinin (BK) mediate the arthritis induced by Bothrops jararaca venom (BjV) in rabbits. In this study, we investigated the contribution of each receptor of BK as well as the inter-relationship between NO and eicosanoids in BjV-induced arthritis. METHODS: The arthritis was induced in rabbits with 16 microg of BjV injected intra-articularly. Prostaglandin E2 (PGE2), thromboxane B2 (TxB2), leukotriene B4 (LTB4) (radioimmunoass...

  2. Comparative effects of immediate-release and extended-release aspirin on basal and bradykinin-stimulated excretion of thromboxane and prostacyclin metabolites.

    Science.gov (United States)

    Gamboa, Jorge L; Devin, Jessica K; Ramirez, Claudia E; Yu, Chang; Nian, Hui; Lee, Rhonda H; Brown, Nancy J

    2016-04-01

    A goal of aspirin therapy is to inhibit thromboxane production and platelet aggregation without inhibiting endothelial production of the vasodilator and anti-thrombotic prostacyclin. This study tested the hypothesis that extended-release aspirin (NHP-554C) would have increased selectivity for inhibition of basal and simulated thromboxane formation compared to immediate-release aspirin (ASA). Thirty-six healthy subjects were randomized to NHP-554C or ASA groups. Within each group, subjects were randomized to 5-day treatment with 81 mg/d, 162.5 mg/d and placebo in a crossover design in which treatment periods were separated by 2-week washout. On the fifth day of treatment, 81 mg/d and 162.5 mg/d ASA reduced basal urinary excretion of the stable thromboxane metabolite 11-dehydro-thromboxane B2 62.3% and 66.2% and basal excretion of the stable prostacyclin metabolite 2,3-dinor-6-keto-PGF1α 22.8% and 26.5%, respectively, compared to placebo. NHP-554C 81 mg/d and 162.5 mg/d reduced 11-dehydro-thromboxane B2 53% (P = 0.03 vs. ASA 81 mg/d) and 67.9% and 2,3-dinor-6-keto-PGF1α 13.4% and 18.5%, respectively. NHP-554C 81 mg/d did not significantly reduce basal excretion of the prostacyclin metabolite. Both doses of ASA and NHP significantly reduced excretion of both thromboxane and prostacyclin metabolites following intravenous bradykinin. During NHP-554C 162.5 mg/d, but not during ASA, bradykinin significantly increased urinary 2,3-dinor-6-keto-PGF1α. Nevertheless, 11-dehydro-thromboxane B2 and 2,3-dinor-6-keto-PGF1α responses to bradykinin were statistically similar during ASA and NHP-554C. In conclusion, at doses of 81 and 162.5 mg/d immediate- and extended-release aspirin selectively decrease basal thromboxane production. Both forms of aspirin decrease bradykinin-stimulated thromboxane and prostacyclin production, but some stimulated prostacyclin production remains during treatment with NHP-554C. PMID:27069632

  3. ESI-MS/MS Identification of a Bradykinin-Potentiating Peptide from Amazon Bothrops atrox Snake Venom Using a Hybrid Qq-oaTOF Mass Spectrometer

    OpenAIRE

    Calderon, Leonardo A.; Rodrigo G. Stábeli; Juliana P Zuliani; Soares, Andreimar M.; Anderson M. Kayano; Silva, Rodrigo S.; Zaqueo, Kayena D.; Souza, Gustavo H. M. F.; Cleópatra A. S. Caldeira; Antonio Coutinho-Neto

    2013-01-01

    A bradykinin-potentiating peptide (BPP) from Amazon Bothrops atrox venom with m/z 1384.7386 was identified and characterized by collision induced dissociation (CID) using an ESI-MS/MS spectra obtained in positive ion mode on a hybrid Qq-oaTOF mass spectrometer, Xevo G2 QTof MS (Waters, Manchester, UK). D e novo peptide sequence analysis of the CID fragmentation spectra showed the amino acid sequence ZKWPRPGPEIPP, with a pyroglutamic acid and theoretical monoisotopic m/z 1384.7378, which is si...

  4. Effect of treatment with vitamin D3 on the responses of the duodenum of spontaneously hypertensive rats to bradykinin and to potassium.

    OpenAIRE

    Feres, T.; Vianna, L. M.; Paiva, A. C.; Paiva, T B

    1992-01-01

    1. The diet of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) and Wistar (NWR) rats was supplemented with either 2% calcium lactate in the drinking water or 12.5 micrograms vitamin D3 100 g-1 body weight daily by gavage, for 14 days. 2. The blood pressure of the SHR treated with either calcium or vitamin D decreased to the same levels as that of WKY and NWR. 3. The response to bradykinin of the SHR isolated duodenum, which is predominantly contractile, upon treatmen...

  5. Identification of bradykinin: related peptides from Phyllomedusa nordestina skin secretion using electrospray ionization tandem mass spectrometry after a single-step liquid chromatography

    Directory of Open Access Journals (Sweden)

    K Conceição

    2009-01-01

    Full Text Available Amphibian skin secretions are a source of potential new drugs with medical and biotechnological applications. Rich in peptides produced by holocrine-type serous glands in the integument, these secretions play different roles, either in the regulation of physiological skin functions or in the defense against predators or microorganisms. The aim of the present work was to identify novel peptides with bradykinin-like structure and/or activity present in the skin of Phyllomedusa nordestina. In order to achieve this goal, the crude skin secretion of this frog was pre-fractionated by solid phase extraction and separated by reversed-phase chromatography. The fractions were screened for low-molecular-mass peptides and sequenced by mass spectrometry. It was possible to identify three novel bradykinin-related peptides, namely: KPLWRL-NH2 (Pnor 3, RPLSWLPK (Pnor 5 and VPPKGVSM (Pnor 7 presenting vascular activities as assessed by intravital microscopy. Pnor 3 and Pnor 7 were able to induce vasodilation. On the other hand, Pnor 5 was a potent vasoconstrictor. These effects were reproduced by their synthetic analogues.

  6. ESI-MS/MS identification of a bradykinin-potentiating peptide from Amazon Bothrops atrox snake venom using a hybrid Qq-oaTOF mass spectrometer.

    Science.gov (United States)

    Coutinho-Neto, Antonio; Caldeira, Cleópatra A S; Souza, Gustavo H M F; Zaqueo, Kayena D; Kayano, Anderson M; Silva, Rodrigo S; Zuliani, Juliana P; Soares, Andreimar M; Stábeli, Rodrigo G; Calderon, Leonardo A

    2013-02-01

    A bradykinin-potentiating peptide (BPP) from Amazon Bothrops atrox venom with m/z 1384.7386 was identified and characterized by collision induced dissociation (CID) using an ESI-MS/MS spectra obtained in positive ion mode on a hybrid Qq-oaTOF mass spectrometer, Xevo G2 QTof MS (Waters, Manchester, UK). De novo peptide sequence analysis of the CID fragmentation spectra showed the amino acid sequence ZKWPRPGPEIPP, with a pyroglutamic acid and theoretical monoisotopic m/z 1384.7378, which is similar to experimental data, showing a mass accuracy of 0.6 ppm. The peptide is homologous to other BPP from Bothrops moojeni and was named as BPP-BAX12. PMID:23430539

  7. ESI-MS/MS Identification of a Bradykinin-Potentiating Peptide from Amazon Bothrops atrox Snake Venom Using a Hybrid Qq-oaTOF Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Leonardo A. Calderon

    2013-02-01

    Full Text Available A bradykinin-potentiating peptide (BPP from Amazon Bothrops atrox venom with m/z 1384.7386 was identified and characterized by collision induced dissociation (CID using an ESI-MS/MS spectra obtained in positive ion mode on a hybrid Qq-oaTOF mass spectrometer, Xevo G2 QTof MS (Waters, Manchester, UK. De novo peptide sequence analysis of the CID fragmentation spectra showed the amino acid sequence ZKWPRPGPEIPP, with a pyroglutamic acid and theoretical monoisotopic m/z 1384.7378, which is similar to experimental data, showing a mass accuracy of 0.6 ppm. The peptide is homologous to other BPP from Bothrops moojeni and was named as BPP-BAX12.

  8. Synergistic Effect of Bone Marrow Transplantation and Bradykinin Potential Factor Isolated from Venom on Thymus and Spleen of Sublethally Irradiated Guinea Pigs

    International Nuclear Information System (INIS)

    The buthus occitanus, scorpion venom contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effects through enhancing its release. Based on the cytoprotective ability of BPF, the present work investigates it as a radioprotectant. Sublethal whole-body y-irradiation at 1.5 Gy was used. Bone marrow cells suspension (BM cells) alone or in combination with BPF was utilized. Three to four weeks-aged male Guinea pigs were grouped into two major groups. The first was non-irradiated control that was divided into subgroups treated i.p. with BM cells (2.5xl06 cells), one dose of BPF (lug/g b wt), BM cells+ BPF, one week spaced two doses of BPF, BM cells+ 2 doses of BPF, one week spaced three doses of BPF or BM cells+ 3 doses of BPF. Second major group (irradiated group) at 1.5 Gy that, subdivided and treated similarly. 5 animals from each group were killed at 7, 14 and 21 days from the initiation of treatment (3 h after irradiation). The subgroups of non-irradiated animals showed an increase in spleen wt and colony formation, thymus population, and globulins content particularly in those subgroups that stayed for the later time periods (14 and 21 days) and that treated with combined BM cells+ BPF or that groups that were treated with two or three BPF doses. Irradiation caused dramatic destruction in thymus and the spleen reflected on reduction of the lower globulins content. Treatment with BM cells, BM cells+ double doses of BPF or triple doses of BPF caused complete recovery in all measured indices, the best result was observed in those of subgroups treated with BM cells+ double doses of BPF or treated with triple doses of BPF. They completely normalized the investigated parameters after 14 and 21 days respectively

  9. 缓激肽受体基因多态性与高血压关系的研究进展%Relationship between gene polymorphism of the bradykinin receptor and essential hypertension

    Institute of Scientific and Technical Information of China (English)

    顾伟; 刘洁琳

    2011-01-01

    Essential hypertension is a complex multifactorial disease induced by hoth environmental and genetic factors. The kallikein-kinin system plays an important role in blood pressure regulation. In this system, bradykinin is a major kinin peptide material as well as one of the strongest vasodilators in circulation. We reviewed recent researches on the gene polymorphism of the bradykinin receptor and the relationship between gene polymorphism and essential hypertension.%高血压是复杂环境和遗传共同作用的多基因疾病.其中,激肽释放酶-激肽系统(kallikein-kinin system,KKS)是体内血压调控的重要组成部分,而缓激肽(bradykinin,BK)是KKS中一种主要的激肽类物质,同时也是体内最强的血管舒张物质之一.文中就近年来BK受体基因多态性方面的研究及其与高血压关系的研究报道作一综述.

  10. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men

    Directory of Open Access Journals (Sweden)

    Popadic Gacesa Jelena Z

    2012-11-01

    Full Text Available Abstract Background Bradykinin type 2 receptor (B2BRK genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. Methods In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m2 were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets. Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. Results Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm3 pre-training to 977.6 ± 140.9 cm3 after training, p9 allele compared to individuals with one or two +9 alleles (−9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p B2BRK genotype (−9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05. Conclusions We found that muscle morphological response to targeted training – hypertrophy – is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in young healthy non athletes was found. This finding could be relevant, not only in predicting individual muscle adaptation capacity to training or sarcopenia related to aging and inactivity, but also in

  11. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice.

    Science.gov (United States)

    Wu, Min; Ai, Wenting; Chen, Lin; Zhao, Sihai; Liu, Enqi

    2016-03-01

    This study was carried out in order to investigate bone dysfunction and the involvement of bradykinin receptors and the Eph/Ephrin signaling pathway in osteoblasts and in mice with diabetes-related osteoporosis in response to exposure to high glucose. Osteogenic transdifferentiation was inhibited when the osteoblasts were exposed to high glucose, and the expression levels of bone formation-related genes [Runx2 and alkaline phosphatase (ALP)] were decreased, while those of bone resorption-related genes [matrix metalloproteinase (MMP)9 and carbonic anhydrase II (CAII)] were increased. Moreover, the mRNA and protein expression levels of bradykinin receptor B1 (BK1R)/bradykinin receptor B2 (BK2R) and EphB2/EphrinB2 were significantly decreased in the osteoblasts following exposure to high glucose. Intriguingly, the interaction between BK2R and EphB2/EphrinB2 was confirmed, and BK2R loss-of-function significantly decreased the mRNA and protein expression levels of EphB2/EphrinB4. In vivo, hyperglycemia induced the disequilibrium of calcium homeostasis through the inhibition of bone formation and the acceleration of bone resorption, which was manifested by the reduction of trabecular bone mass of the primary and secondary spongiosa, as well as by the increase in the number of mature osteoclasts throughout the proximal tibial metaphysis in mice with diabetes-related osteoporosis. Furthermore, the mRNA and protein expression levels of BK1R/BK2R and EphB2/EphrinB2 in the tibias of the mice with diabetes-related osteoporosis were significantly decreased. These results demonstrate that bradykinin receptors and the EphB4/EphrinB2 pathway mediate the development of complications in mice with diabetes-related osteoporosis and suggest that the inactivation of bradykinin receptors and the EphB4/EphrinB2 pathway enhance the severity of complications in mice with diabetes-related osteoporosis. PMID:26782642

  12. Analysis of human bradykinin receptor gene and endothelial nitric oxide synthase gene polymorphisms in end-stage renal disease among malaysians.

    Science.gov (United States)

    Vasudevan, R; Ismail, P; Jaafar, Ni; Mohamad, Na; Etemad, E; Wan Aliaa, Ws; Eshkor, S

    2014-06-01

    The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR) polymorphism of the endothelial nitric oxide synthase (eNOS) gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R) in Malaysian end-stage renal disease (ESRD) subjects. A total of 150 ESRD patients were recruited from the National Kidney Foundation's (NKF)dialysis centers in Malaysia and compared with 150 normal healthy individuals. Genomic DNA was extracted from buccal cells of all the subjects. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was carried out to amplify the products and the restricted fragments were separated by agarose gel electrophoresis. Statistical analyses were carried out using software where a level of p T, 4b/a) and eNOS gene (c.894G>T) polymorphisms were not statistically significant (p >0.05) when compared to the control subjects. The B2R and eNOS gene polymorphisms may not be considered as genetic susceptibility markers for Malaysian ESRD subjects. PMID:25741213

  13. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton.

    Science.gov (United States)

    Liu, Li-Bo; Xue, Yi-Xue; Liu, Yun-Hui; Wang, Yi-Bao

    2008-04-01

    Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.

  14. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    Science.gov (United States)

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  15. Acetylcholine and bradykinin enhance hypotension and affect the function of remodeled conduit arteries in SHR and SHR treated with nitric oxide donors

    Directory of Open Access Journals (Sweden)

    Gerová M.

    2005-01-01

    Full Text Available Discrepancy was found between enhanced hypotension and attenuated relaxation of conduit arteries in response to acetylcholine (ACh and bradykinin (BK in nitric oxide (NO-deficient hypertension. The question is whether a similar phenomenon occurs in spontaneously hypertensive rats (SHR with a different pathogenesis. Wistar rats, SHR, and SHR treated with NO donors [molsidomine (50 mg/kg or pentaerythritol tetranitrate (100 mg/kg, twice a day, by gavage] were studied. After 6 weeks of treatment systolic blood pressure (BP was increased significantly in experimental groups. Under anesthesia, the carotid artery was cannulated for BP recording and the jugular vein for drug administration. The iliac artery was used for in vitro studies and determination of geometry. Compared to control, SHR showed a significantly enhanced (P < 0.01 hypotensive response to ACh (1 and 10 µg, 87.9 ± 6.9 and 108.1 ± 5.1 vs 35.9 ± 4.7 and 64.0 ± 3.3 mmHg, and BK (100 µg, 106.7 ± 8.3 vs 53.3 ± 5.2 mmHg. SHR receiving NO donors yielded similar results. In contrast, maximum relaxation of the iliac artery in response to ACh was attenuated in SHR (12.1 ± 3.6 vs 74.2 ± 8.6% in controls, P < 0.01. Iliac artery inner diameter also increased (680 ± 46 vs 828 ± 28 µm in controls, P < 0.01. Wall thickness, wall cross-section area, wall thickness/inner diameter ratio increased significantly (P < 0.01. No differences were found in this respect among SHR and SHR treated with NO donors. These findings demonstrated enhanced hypotension and attenuated relaxation of the conduit artery in response to NO activators in SHR and in SHR treated with NO donors, a response similar to that found in NO-deficient hypertension.

  16. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation.

    Directory of Open Access Journals (Sweden)

    Erika Terzuoli

    Full Text Available BACKGROUND: Bradykinin (BK induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects. METHODOLOGY: We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC and circulating pro-angiogenic cells (PACs, in producing cell permeability (paracellular flux, migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay and in vivo in mice (matrigel plug and in rat model of experimental osteoarthritis (OA. We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2, prostaglandin E-2 and vascular endothelial growth factor (VEGF. PRINCIPAL FINDINGS: HUVEC, exposed to BK (1-10 µM, showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor. CONCLUSION: This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.

  17. Injection of bradykinin or/and cyclosporine A to hippocampus induces Alzheimer-like phosphorylation of tau and abnormal behavior in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bradykinin (BK) is a calcium/calmodulin dependent protein kinase Ⅱ (CaMKⅡ) specific activator, and Cyclosporin A (CSA) is reported to suppress protein phosphotase (PP)-2B activity. In vitro studies have shown that CaMKⅡ and PP-2B play an important role in Alzheimer-like phosphorylation of microtube-associated protein tau. To reconstitute an animal model based on the imbalance of protein kinase (s) and protein phosphatase (s) seen in Alzheimer brain, we injected BK and/or CSA into rat hippocampus. The results from behavioral study showed that an obvious disturbance in learning and memory was seen with BK or BK plus CSA injected rats. Moreover, the behavior abnormality appeared earlier in aged rats than young adults of the same kind after the injection. On the other hand, no obvious dysfunction in living and behavior was observed with CSA alone injected rats. The results obtained by immunohistochemical assay indicated that the staining for M4\\, 12E8\\, PHF-1 and CaMKⅡ was stronger, and for Tau-1 was weaker in BK injected rats compared with Control group. It was also found that the binding of M4 and PHF-1 but not 12E8 to tau was significantly increased in CSA injected rats. As the same as BK injection, binding of Tau-1 to tau was decreased after CSA injection. The immunostaining for 12E8\\,PHF-1 and CaMKⅡ was increased, whereas for Tau-1\\, M4\\, and GSK-3 was decreased after combination injection of BK and CSA. In addition, the staining of PP-2B decreased in all the three models. To our knowledge, this is the first data shown in vivo that the activation of CaMKⅡ induces both Alzheimer-like tau phosphorylation and behavioral disturbance.

  18. Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Monteiro

    2007-11-01

    Full Text Available Although the concept that dendritic cells (DCs recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R. Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.] in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i. showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+ T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86 is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired

  19. Compensatory function of bradykinin B1 receptor in the inhibitory effect of captopril on cardiomyocyte hypertrophy and cardiac fibroblast proliferation in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    ZOU Jun; REN Jiang-hua; FENG Dan; WANG Hong; XU Jiang

    2008-01-01

    Background Bradykinin(BK)acts mainly on two receptor subtypes:B1 and B2,and activation of B2 receptor mediates the most well-known cardioprotective effects of angiotensin converting enzyme inhibitors(ACEi),however,the role that B1 receptor plays in ACEi has not been fully defined.We examined the role of B1 receptor in the inhibitory effect of ACE inhibitor captopril on rat cardiomyocyte hypertrophy and cardiac fibroblast proliferation induced by angiotensin Ⅱ(Ang Ⅱ) and explored its possible mechanism.Methods Neonatal cardiomyocytes and cardiac fibroblasts(CFs)were randomly treated with Ang Ⅱ,captopril,B2 receptor antagonist(HOE-140)and B1 receptor antagonist(des-Arg10,Leu9-kallidin)alone or in combination.Flow cytometry was used to evaluate cell cycle,size and protein content.Nitric oxide(NO)and intracellular cyclic guanosine monophosphate(cGMP)level were measured by colorimetry and radioimmunoassay.Results After the CFs and cardiomyocytes were incubated with 0.1 μmol/L Ang Ⅱ for 48 hours.the percentage of CFs in the S stage,cardiomyocytes size and protein content significantly increased(both P<0.01 vs control),and these increases were inhibited by 10 μmol/L captopril.However,NO and cGMP levels were significantly higher than that with Ang Ⅱ alone(both P<0.01).1 μmol/L HOE-140 or 0.1 μmol/L des-Arg10,Leu9-kallidin attenuated the effects of captopril,which was blunted further by blockade of both B1 and B2 receptors.Conclusions Acting via B2 receptor,BK contributes to the antihypertrophic and antiproliferative effects of captopril on cardiomyocytes and CFs.In the absence of B2 receptor,B1 receptor may act a compensatory mechanism for the B2 receptor and contribute to the inhibition of cardiomyocyte hypertrophy and CFs proliferation by captopril.NO and cGMP play an important role in the effect of B1 receptor.

  20. Low molecular weight G-proteins of rho-family mediate relaxations to bradykinin in porcine coronary arteries%rho家族的小分子量G蛋白介导缓激肽引起的猪冠状动脉松弛

    Institute of Scientific and Technical Information of China (English)

    Toshiro SHIBANO; Paul M VANHOUTTE

    2003-01-01

    AIM: To determine whether or not low molecular G-proteins are involved in the endothelium-dependent relaxations to bradykinin. METHODS: The effects of botulinum ADP-ribosyltranferase C3 were studied in porcine coronary arteries and endothelial cells. RESULTS: Incubation of membrane fractions isolated from endothelial cells with the enzyme and 32p-NAD resulted in the ribosylation of the proteins with molecular weight of 24-25 kDa. Radio labelling of these proteins was suppressed in the presence of guanosine 5t-O-(3-thiotriphosphate) (GTP-yS), a hydrolysis-resistant analog of GTP. In the isolated arteries, ADP-ribosyltransferase C3 attenuated the relaxations tobradykinin during contractions with prostaglandin F2α in the presence of tween 80 (non ionic detergent), but not in the absence of tween 80. CONCLUSION: Low molecular weight G-proteins of the Rho family contribute to the mechanism of relaxation induced by bradykinin.

  1. Ecotin-Like ISP of L. major Promastigotes Fine-Tunes Macrophage Phagocytosis by Limiting the Pericellular Release of Bradykinin from Surface-Bound Kininogens: A Survival Strategy Based on the Silencing of Proinflammatory G-Protein Coupled Kinin B2 and B1 Receptors

    Directory of Open Access Journals (Sweden)

    Erik Svensjö

    2014-01-01

    Full Text Available Inhibitors of serine peptidases (ISPs expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE, a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS. Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R. Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.

  2. Ecotin-like ISP of L. major promastigotes fine-tunes macrophage phagocytosis by limiting the pericellular release of bradykinin from surface-bound kininogens: a survival strategy based on the silencing of proinflammatory G-protein coupled kinin B2 and B1 receptors.

    Science.gov (United States)

    Svensjö, Erik; Nogueira de Almeida, Larissa; Vellasco, Lucas; Juliano, Luiz; Scharfstein, Julio

    2014-01-01

    Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R. PMID:25294952

  3. Effect and mechanism of interleukin-1β in process of opening the blood-brain barrier by bradykinin%白介素-1β在缓激肽开放血脑屏障过程中的作用及其机制

    Institute of Scientific and Technical Information of China (English)

    秦丽娟; 薛一雪; 谷艳婷; 张志勇; 张田; 孙娜; 王东春; 宋鸿艳

    2012-01-01

    目的 探讨白介素-1β(IL-1β)在缓激肽(BK)开放血脑屏障(BBB)过程中的作用及其机制.方法 缓激肽处理C6细胞后,动态观察培养液中IL-1β含量(放射免疫法)、C6细胞内热休克因子1(HSF1)蛋白的表达(Western blot法)及IL-1β的mRNA水平(RT-PCR法).利用伊文思蓝检测C6恶性胶质瘤大鼠经颈内动脉给予IL-1β及缓激肽后血脑屏障的通透性.结果 缓激肽作用于C6细胞后,培养液中IL-1β的含量明显增加,于120 min含量最多,其后开始减少.C6细胞内HSF1的表达及IL-1β的mRNA水平也在给予缓激肽后明显增加,并分别于干预后的30 min和60 min达高峰后逐渐减少.缓激肽与IL-1β单独作用于C6动物后均可引起胶质瘤大鼠的血脑屏障通透性增加,且IL-1β对肿瘤模型动物血脑屏障通透性的影响与C6细胞培养液中IL-1β的含量相一致.结论 IL-1β可能介导了缓激肽开放血脑屏障的作用,此作用可能是由于缓激肽诱导C6细胞内HSF1的表达增加,增加的HSF1促进神经胶质瘤细胞释放IL-1β所致.%Aim To investigate the effects of interleu-kin-1 p ( IL-1 p ) in process of opening blood-brain bar-rier( BBB ) by bradykinin( BK ) and its mechanism. Methods Contents of IL-1 p in nutrient fluid ( radio-immunity method ), HSF1 protein expression ( by Western blot) and levels of IL-1 p the mRNA( by RT-PCR method ) for C6 cells were dynamically observed, after BK treatment. Using Evans blue was applied to detect permeability of BBB after intracarotid infusion of IL-1 p for C6 rats. Results For C6 cells, contents of IL-1 p in the nutrient fluid were obviously increased after BK treatment and achieved the peak at 120 min,also BK significantly increased expressions of HSF1 and levels of IL-1 p mRNA in C6 cells and reached the peak at 30 min and 60 min, separately. Permeability of BBB of C6 animals was in conformity with concentrations of IL-ip in nutrient fluid after BK treatment. Conclusion The IL-1 p may

  4. Study on the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse%三氯乙烯致敏小鼠肾脏免疫损伤中缓激肽及其受体B1R和B2R的表达水平

    Institute of Scientific and Technical Information of China (English)

    王慧; 张家祥; 李树龙; 查晚生; 王峰; 朱启星

    2015-01-01

    Objective To study the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse and discuss the pathogenesis of Dermatitis Medicamentosa-like of TCE (ODMLT).Methods On the first days,intradermal injection by 50% TCE and the amount of FCA mixture 100μl for initial sensitization;on 4,7,10 days,painted abdominal skin by 100 μl 50% TCE for three sensitization,on 17,19 days,painted on the back skin by 100 μl 30% TCE for initial excitation and the last challenge;24 h before each challenge,PKSI-527+TCE group received intraperitoneal injection by inhibitor PKSI-527 (50 mg/kg);solvent control group treat without TCE and sensitization and excitation reagent the same proportion of olive oil and acetone mixture,blank control group without any treatment.Before killing the mouse,renal weight and body weight were recorded.The renals and plasma were separated at 24 h,48 h,72 h and 7 d after the last challenge and observed pathological of the renals.Expression of B1R and B2R in renal were examined by immunofluorescence technique.Plasma were examined by ELISA for BK.Results The renal pathological examination revealed the apparent damage of TCE sensitized mice which compared to solvent control group showed obvious cellular infiltration,vacuolar degeneration of renal tubular epithelial cells.The renal damage of PKSI-527+TCE-sensitized groups which compared to the corresponding point of TCE-sensitized groups showed significantly reduced.The expression of BK in 24 h,48 h and 72 h TCE-sensitized groups were significant higher than solvent control group and related TCE non-sensitized groups (P<0.05) and 72 h point compared to the corresponding point of PKSI-527+TCE group was also increased,,the difference was statistically significant (P<0.05).The expression levels of B1R and B2R in the kidney in 24 h,48 h,72 h and 7 d TCE-sensitized groups were obviously higher than solvent control group and related TCE non

  5. 汉族人群中血管紧张素转换酶抑制剂所致咳嗽与血管紧张素转换酶基因及缓激肽β2受体基因多态性的关系%The Association between ACE Inhibitor (ACEI)-Induced Cough and the Polymorphism of Angiotensin Converting Enzyme (ACE) Gene and Bradykinin β2 Receptor(BDKRB2) Gene in Han Nationality

    Institute of Scientific and Technical Information of China (English)

    王刚; 杨军; 唐振旺; 宁国庆; 曹燕; 万娟

    2012-01-01

    Objective: To investigate the association between angiotensin converting enzyme inhibitor (ACEI)-induced cough and the polymorphism of angiotensin converting enzyme (ACE) gene and bradykinin ($2 receptor (BDKRB2) gene in Han nationality. Methods: Polymerase chain reaction (PCR) was used to examine ACE I/D and BDKRB2 CT polymorphism in 151 ACEI-induced cough subjects and 151 no cough subjects in Han population. And UV-method was used to detect the ACE activity. Results:ACE gene distribution in the cough group: type II was 47.0%, ID genotype was 42.4%, DD genotype was 10.6%; Non-cough group were 39.7%, 47.0%, 13.3% respectively, and there was statistically significant difference between the two groups(P 0.05); The level of ACE activity in the Cough group [(28.3 ± 10.1) U / L,] was significantly lower than non-cough group [(40.2 ± 9.4) U / L,(P <0.01).]. Conclusions: For han population, ACEI-induced cough related to ACE gene polymorphism and serum ACE activity, and there was no statistically significant association between BDKRB2 C / T and cough.%目的:探讨汉族人群中血管紧张素转换酶抑制剂(ACEI)所致咳嗽与血管紧张素转换酶(ACE)基因及缓激肽β2受体(BDKRB2)基因多态性的关系.方法:应用聚合酶链反应(PCR)方法,检测汉族人群中151例由于服用ACEI引起的咳嗽患者及151例未发生咳嗽的患者的ACEI/D及BDKRB2C/T的多态性,并采用紫外法检测ACE活性.结果:发现ACE基因分布在咳嗽组中Ⅱ型为47.0%,ID型为42.4%,DD型为10.6%;无咳嗽组分别为39.7%、47.0%、13.3%,两组相比其差异具有统计学意义(P<0.01);BDKRB2基因分布在咳嗽组中CC型为21.3%,CT型为50.0%,TT型为28.7%,无咳嗽组分别为22.5%、47.7%、29.8%,两组相比其差异无统计学意义(P>0.05);咳嗽组ACE活性水平为[(28.3±10.1)U/L]明显低于无咳嗽组[(40.2± 9.4)U/L],两组相比其差异具有统计学意义(P<0.01).结论:汉族人群中ACEI所致咳嗽

  6. Factor XII-independent activation of the bradykinin-forming cascade

    DEFF Research Database (Denmark)

    Joseph, Kusumam; Tholanikunnel, Baby G; Bygum, Anette;

    2013-01-01

    shock protein 90 leads to conversion of prekallikrein to kallikrein in a zinc-dependent reaction. OBJECTIVE: Our goal was to determine whether these reactions are demonstrable in plasma and distinguish them from activation through factor XII. METHODS: Plasma was incubated in polystyrene plates and...... assayed for kallikrein formation. C1-INH was removed from factor XII-deficient plasma by means of immunoadsorption. RESULTS: We demonstrate that prekallikrein-HK will activate to kallikrein in phosphate-containing buffers and that the rate is further accelerated on addition of heat shock protein 90...

  7. Neurophysiological mechanisms of bradykinin-evokedmucosal chloride secretion in guinea pig small intestine

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    AIM To investigate the mechanism for bradykinin(BK) to stimulate intestinal secretomotor neurons andintestinal chloride secretion.METHODS: Muscle-stripped guinea pig ileal preparationswere mounted in Ussing flux chambers for therecording of short-circuit current (Isc ). Basal Isc andIsc stimulated by BK when preincubated with the BKreceptors antagonist and other chemicals were recordedusing the Ussing chamber system. Prostaglandin E2(PGE2) production in the intestine was determined byenzyme immunologic assay (EIA).RESULTS: Application of BK or B2 receptor (B2R) agonistsignificantly increased the baseline Isc compared to thecontrol. B2R antagonist, tetrodotoxin and scopolamine(blockade of muscarinic receptors) significantly suppressedthe increase in Isc evoked by BK. The BK-evokedIsc was suppressed by cyclooxygenase (COX)-1 or COX-2specific inhibitor as well as nonselective COX inhibitors.Preincubation of submucosa/mucosa preparations withBK for 10 min significantly increased PGE2 production andthis was abolished by the COX-1 and COX-2 inhibitors.The BK-evoked Isc was suppressed by nonselective EPreceptors and EP4 receptor antagonists, but selective EP1receptor antagonist did not have a significant effect onthe BK-evoked Isc . Inhibitors of PLC, PKC, calmodulin orCaMKⅡ failed to suppress BK-induced PGE2 production.CONCLUSION: The results suggest that BK stimulatesneurogenic chloride secretion in the guinea pig ileumby activating B2R, through COX increasing PGE2 production.The post-receptor transduction cascade includesactivation of PLC, PKC, CaMK, IP3 and MAPK.

  8. Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice.

    Science.gov (United States)

    Delemasure, S; Blaes, N; Richard, C; Couture, R; Bader, M; Dutartre, P; Girolami, J-P; Connat, J-L; Rochette, L

    2013-01-01

    Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status. Echocardiography-Doppler was performed in B(1)R (B(1)R(-/-)) and B(2)R (B(2)R(-/-)) deficient and wild type (WT) adult male mice. No functional alteration was observed in B(2)R(-/-) hearts. B(1)R(-/-) mice had significantly lowered fractional shortening and increased isovolumetric contraction time. The diastolic E and A waves velocity ratio was similar in all mice groups. Thus B(1)R(-/-) mice provide a model of moderate systolic dysfunction, whereas B(2)R(-/-) mice displayed a normal cardiac phenotype. Plasma antioxidant capacity (ORAC) was significantly decreased in both B(1)R(-/-) and B(2)R(-/-) mice whereas the vitamin C levels were decreased in B(2)R(-/-) mice only. Plasma ascorbyl free radical was significantly higher in B(1)R(-/-) compared to WT and B(2)R(-/-) mice. Therefore, the oxidative stress index, ascorbyl free radical to vitamin C ratio, was increased in both B(1)R(-/-) and B(2)R(-/-) mice. Hence, B(1)R and B(2)R deficiency are associated with increased oxidative stress, but there is a differential imbalance between free radical production and antioxidant defense. The interrelationship between the differential B(1)R and B(2)R roles in oxidative stress and cardiovascular diseases remain to be investigated. PMID:24020815

  9. Clinical similarities among bradykinin-mediated and mast cell-mediated subtypes of non-hereditary angioedema : a retrospective study

    NARCIS (Netherlands)

    Schulkes, Karlijn J G; van den Elzen, Mignon T.; Hack, Erik C.; Otten, Henderikus G; Bruijnzeel-Koomen, Carla A.F.M.; Knulst, André C.

    2015-01-01

    BACKGROUND: Non-hereditary angioedema (non-HAE) is characterized by local swelling due to self-limiting, subcutaneous or submucosal extravasation of fluid, and can be divided into three subtypes. These subtypes are believed to have different pathophysiological backgrounds and are referred to in rece

  10. Bradykinin and vasopressin activate phospholipase D in rat Leydig cells by a protein kinase C-dependent mechanism

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hansen, Harald S.

    1993-01-01

    , LH (10 ng/ml), insulin (500 nmol/l), GH (100 ng/ml), interleukin-1ß (5 U/ml) and platelet-activating factor (200 nmol/l) were found not to activate phospholipase D, whereas the Ca ionophore A23187 (10 µmol/l) stimulated phosphatidylethanol formation, suggesting that Ca might be a regulator...

  11. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment.

    Science.gov (United States)

    Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (PRXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (PRXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (PRXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment. PMID:24036884

  12. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment

    OpenAIRE

    Jelinic, Maria; Leo, Chen-Huei; Uiterweer, Emiel D. Post; Sandow, Shaun L.; Gooi, Jonathan H.; Wlodek, Mary E.; Conrad, Kirk P.; Parkington, Helena; Tare, Marianne; Parry, Laura J.

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular local...

  13. Endothelin-1 shifts the mediator of bradykinin-induced relaxation from NO to H2 O2 in resistance arteries from patients with cardiovascular disease

    DEFF Research Database (Denmark)

    Leurgans, Thomas M; Bloksgaard, Maria; Brewer, Jonathan R;

    2016-01-01

    -activated K(+) -channels, but markedly blunted by catalase during ET-1-induced contraction. This catalase-sensitive relaxation was not modified by inhibitors of NADPH oxidases or allopurinol. Exogenous H2 O2 caused significantly larger relaxation of ET-1- than K(+) - or U46619-induced contraction...... in the presence of inhibitors of other endothelium-derived relaxing factors. Catalase-sensitive staining of cellular reactive oxygen species with CellROX Deep Red was significantly increased in presence of both 1 μM BK and 2 nM ET-1 but not either peptide alone. CONCLUSIONS AND IMPLICATIONS: In patient resistance...

  14. Opposing effects of a ras oncogene on growth factor-stimulated phosphoinositide hydrolysis: desensitization to platelet-derived growth factor and enhanced sensitivity to bradykinin

    International Nuclear Information System (INIS)

    Expression of a transforming Harvey or Kirsten ras gene caused opposing effects in the ability of platelet-derived growth factor (PDGF) and bradyknin to activate phospholipase C-mediated phosphoinositide hydrolysis. In [3H]inositol-labeled rat-1 fibroblasts, PDGF resulted in a 2-fold increase in the level of [3H]inositol trisphosphate (InsP3) after 2 min and, in the presence of LiCl, a 3- to 8-fold increase in the level of [3H]inositol monophosphate (InsP1) after 30 min. However, in EJ-ras-transfected rat-1 cells, which exhibit near normal levels of PDGF receptors, PDGF resulted in little or no accumulation of either [3H]InsP3 or [3H]InsP1. Similarly, marked stimulations by PDGF were observed in NIH 3T3 cells, as well as in v-src-transformed 3T3 cells, but not in 3T3 cells transformed by Kirsten sarcoma virus or by transfection with v-Ha-ras DNA. This diminished phosphoinositide response in ras-transformed cells was associated with a markedly attenuated mitogenic response to PDGF. On the other hand, both phosphoinositide metabolism and DNA synthesis in ras-transformed fibroblasts were stimulated several-fold by serum. In NIH 3T3 cells carrying a glucocorticoid-inducible v-Ha-ras gene, a close correlation was found between the expression of p21/sup ras/ and the loss of PDGF-stimulated [3H]InsP1 accumulation. The authors propose that a ras gene product (p21) can, directly or indirectly, influence growth factor-stimulated phosphoinositide hydrolysis, as well as DNA synthesis, via alterations in the properties of specific growth factor receptors

  15. Genetic variation and gender determine bradykinin type 1 receptor responses in human tissue: Implications for the ACE-inhibitor-induced effects in patients with coronary artery disease

    NARCIS (Netherlands)

    H. Wu (Haiyan); A.J.M. Roks (Anton); F.P.J. Leijten (Frank); I.M. Garrelds (Ingrid); U. Musterd-Bhaggoe (Usha); A. van den Bogaerdt (Antoon); M.P.M. de Maat (Moniek); M.L. Simoons (Maarten); A.H.J. Danser (Jan); H. Oeseburg (Hisko)

    2014-01-01

    textabstractThe efficacy of the ACE (angiotensin-converting enzyme) inhibitor perindopril in coronary artery disease [EUROPA (European trial on reduction of cardiac events with perindopril in stable coronary artery disease) study] is associated with the rs12050217 A/G single nucleotide polymorphism

  16. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment.

    Science.gov (United States)

    Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (Pdifferential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.

  17. Gene : CBRC-HSAP-14-0064 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available iens] emb|CAA60109.1| B2-bradykinin receptor gene [Homo sapiens] gb|AAP...CBRC-HSAP-14-0064 14 A Bradykinin receptors NONE BKRB2_HUMAN 0.0 100% ref|NP_000614....1| bradykinin receptor B2 [Homo sapiens] sp|P30411|BKRB2_HUMAN B2 bradykinin receptor (BK-2 receptor) (B2R)... gb|AAK56376.1|AF378542_1 bradykinin receptor B2 [Homo sapiens] emb|CAA60108.1| B-2 bradykinin receptor gene [Homo sap...32297.1| bradykinin receptor B2 [Homo sapiens] gb|AAH74895.1| Bradykinin receptor B2 [Homo sapiens] gb|AAH74

  18. Gene : CBRC-GGOR-01-1364 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available bradykinin receptor B1 [Homo sapiens] sp|P46663|BKRB1_HUMAN RecName: Full=B1 bradykinin receptor; AltName: ...Full=BK-1 receptor; Short=B1R emb|CAB45650.1| bradykinin B1 receptor [Homo sapiens] dbj|BAC06112.1| seven tr...ansmembrane helix receptor [Homo sapiens] gb|AAH34705.1| Bradykinin receptor B1 [Homo sapi...ens] gb|AAP32296.1| bradykinin receptor B1 [Homo sapiens] gb|EAW81632.1| bradykinin receptor B1 [Homo sapi...1 [synthetic construct] dbj|BAF84659.1| unnamed protein product [Homo sapiens] 1e

  19. Loss of receptor-mediated 86Rb efflux from pig aortic endothelial cells in culture.

    OpenAIRE

    Ager, A.; Martin, W

    1983-01-01

    The responsiveness of freshly-isolated and subcultured pig aortic endothelial cells to adenosine triphosphate (ATP), bradykinin and ionophore A23187 was compared by monitoring agonist-induced 86Rb efflux. ATP, bradykinin and ionophore A23187 stimulated 86Rb efflux from freshly-isolated cells. ATP and bradykinin, which act via specific receptors, were less effective at inducing 86Rb efflux from subcultured cells but ionophore A23187 was as effective on subcultured as on freshly-isolated cells....

  20. Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells

    OpenAIRE

    Rosethorne, Elizabeth M; Nahorski, Stefan R; Challiss, R.A. John

    2008-01-01

    Human SH-SY5Y neuroblastoma cells have been used to investigate mechanisms involved in CREB phosphorylation after activation of two endogenously expressed Gq/11-protein-coupled receptors, the M3 muscarinic acetylcholine (mACh) and B2 bradykinin receptors. Stimulation with either methacholine or bradykinin resulted in maximal increases in CREB phosphorylation within 1 min, with either a rapid subsequent decrease (bradykinin) to basal levels, or a sustained response (methacholine). Inhibitor st...

  1. Taking the sting out of pain

    OpenAIRE

    Nagy, I.; Paule, C; White, J.; Urban, L.

    2007-01-01

    While the role of the brain kallikrein-kinin system in the development of various pathological processes, such as oedema formation following brain injury or induction of central hypertonia has generated major interest, the possible role of this system in nociceptive processing has received little attention. In their present paper, Mortari et al. (2007) show that bradykinin B2 receptor activation in the brain by the bradykinin analogue, Thr6-bradykinin, isolated from the venom of the social wa...

  2. Effects of Simvastatin on the Expression of Bradykinin Receptors mRNA in Penumbra after Focal Cerebral Ischemia-reperfusion in Rats%辛伐他汀对局灶性脑缺血大鼠半暗带区缓激肽受体mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    张健颖; 张颖冬; 高丽; 顾昊; 蒋藤

    2011-01-01

    目的:探讨辛伐他汀预处理对局灶性脑缺血大鼠半暗带缓激肽受体基因表达的影响.方法:72只雄性SD大鼠随机分为3组:辛伐他汀干预组(干预组,给予辛伐他汀10mg·kg-1·d-1和生理盐水1mL的悬浊液灌胃),脑缺血再灌注模型组(模型组,给予等体积生理盐水灌胃),假手术组(给予等体积生理盐水灌胃),3组分别预处理14 d.参照Longa法将干预组和模型组建立大脑中动脉栓塞模型,假手术组仅暴露右侧颈总和颈内动脉主干,不栓塞.并将各组随机分为再灌注3、24和48 h 3个亚组(均n=8).于对应时间点行神经功能评分,用苏木精-伊红染色检测脑组织形态学,荧光定量RT-PCR技术检测脑缺血半暗带缓激肽B1、B2受体(BK-1Rs、BK-2Rs)的基因表达水平.结果:与模型组相比,3,24和48 h干预组大鼠缺血再灌注后神经功能改善、功能评分值降低(分别P<0.05,P<0.05,P<0.01),脑组织病理形态学变化减轻.荧光定量RT-PCR检测发现,3h模型组脑缺血半暗带BK-1Rs、BK-2Rs与假手术组比表达减低,差异有统计学意义(P<0.05,P<0.01);3h干预组BK-1Rs、BK-2Rs与模型组比表达增加,差异有统计学意义(P<0.01,P<0.05),24和48 h模型组脑缺血半暗带BK-1Rs与假手术组比表达减低,差异有统计学意义(P<0.01,P<0.01); 24和48h干预组BK-1Rs与模型组比表达增加,差异有统计学意义(P<0.01,P<0.01).结论:辛伐他汀预处理可改善大鼠局灶性脑缺血再灌注神经功能缺损及组织病理形态学,其机制可能与增加脑缺血半暗带BK-1Rs,BK-2Rs的表达有关.%Todeterminetheeffectsofsimvastatinontheexpressionofbradykininreceptorsinpenumbraafterfocalcerebralischemia/reperfusioninrats.Methods:72maleSDratswererandomlydividedintothreegroups,sham-operationgroup,cerebralischemia-reperfusiongroup(0.9%saline),simvastatinpreconditioninggroup(10mg-kg'M1),whichreceivedpretreatment14daysrespectively.Themodelofmiddlecerebralarteryocclusion(MCAO)wasestablishedaccordingtothemethodreportedbyLongaexceptsham-operationgroup.Eachgroupwasfurtherdividedintothreesubgroupsat3h,24hand48hafterreperfusion,and each subgroup consisted of eight rats. Among there subgroups, at 3 h, 24 h and 48 h after reperfusion, the animals were observed for neurological defici is and the morphology of brain I issue by neurological function score and HE staining, the levers of mRNA of BK~lRs and BK~2Rs were detected by fluorescent quantitative RT-PCR. Results: Compared with the ischemia-reperfusion group, the neurological function of simvastatin preconditioning group was signi ficanily improved and its neurological function scores (KO. 05, K0. 05, K0. 01) decreased at 3 h, 24 h, 48 h, and the changes of pathological damages became smal 1. Compared with the sham-operation group, fluorescent quantitative RT-PCR analysis showed that the mRNA levels of BK~ lRs and BK~2Rs in ischemia penumbra significantly decreased in 3 h ischemia-reperfusion group (K0. 05, K0. 01). Compared with the ischemia-reperfusion group, the mRNA levels of BK-Irs and BK-2Rs in ischemia penumbra significantly increased in 3 h preconditioning group (K0. 01, K0. 05). Compared with the sham-operation group, the mRNA levels of BK~lRs in ischemia penumbra significantly decreased in 24 h and 48h ischemia-reperfusion group (IK0. 01,fK0. 01). Compared with the ischemia-reperfusion group, the mRNA levels of BK-Irs in ischemia penumbra signi ficantly increased in 24 h and 48 h precondi lioning group (fKO. 01,/<0. 01). Conclusion: Pretreatment with simvastatin before cerebral ischemia/'reperfusion injury in rats can reduce the neurological deficits and improve brain tissue pa thomorphology. This beneficial effects of simvastatin may be partly mediated by an increased expression of BK~lRs and BK~2Rs in the ischemia penumbra.

  3. Renal Histological Changes and Down-regulation of Bradykinin B2 Receptor mRNA in Rat Remnant Kidney Model%大鼠残肾模型肾脏组织学和缓激肽B2受体mRNA表达的变化

    Institute of Scientific and Technical Information of China (English)

    凃玲; 邓娟娟; 万槐斌; 汪道文

    2006-01-01

    目的 研究大鼠残肾模型肾脏组织学和缓激肽B2受体(BKB2R)mRNA表达水平的变化.方法 24只雄性Wistar大鼠随机分成模型组和假手术组,每组12只.5/6肾切除术构建大鼠残肾模型.于造模前和造模后15、30、60、120 d分别检测大鼠尾动脉血压和血清肌酐水平.造模后1月和4月分别处死模型组和假手术组大鼠各6只,肾组织石蜡切片、PAS染色观察肾脏组织学改变,RT-real time PCR法检测肾组织BKB2R mRNA的表达水平.结果 模型组大鼠造模后15 d血压和血清肌酐水平即较造模前明显升高(均P<0.01),以后逐渐上升至120 d达高峰;造模后1月残肾已出现肾小球代偿肥大,系膜中度增生,肾组织BKB2R mRNA的表达水平下调,4月时残肾出现明显的肾小球硬化、肾小管坏死和肾间质纤维化,肾组织BKB2R mRNA的表达水平进一步下调(P<0.01).结论 残肾模型大鼠在造模后15d即出现明显的肾功能不全,随后进行性加重,肾组织BKB2R mRNA的表达水平则逐渐下调.

  4. Icatibant er en ny behandlingsmulighed ved livstruende angiotensinkonverterende enzym-inhibitor-udløst angioødem

    DEFF Research Database (Denmark)

    Fast, Søren; Henningsen, Emil; Bygum, Anette

    2011-01-01

    A 78 year-old woman with life-threatening angiotensin-converting enzyme inhibitor (ACE-i) induced angioedema was unresponsive to conventional treatment with corticosteroids, antihistamines and epinephrine. She was successfully treated with icatibant licensed for treatment of hereditary angioedema...... knowing that both conditions involve bradykinin induced activation of bradykinin B2 receptors. Randomised, controlled trials are warranted to document the efficacy of icatibant in ACE-i angioedema....

  5. Chlorpromazine inhibits store-operated calcium entry and subsequent noradrenaline secretion in PC12 cells

    OpenAIRE

    Choi, Se-Young; Kim, Yong-Hyun; Lee, Yong-kyu; Kim, Kyong-Tai

    2001-01-01

    The effect of chlorpromazine on the store-operated Ca2+ entry activated via the phospholipase C signalling pathway was investigated in PC12 cells.Chlorpromazine inhibited the sustained increase after the initial peak in the intracellular Ca2+ concentration produced by bradykinin while having no effect on the initial transient response. The inhibition was lowered by the removal of extracellular free Ca2+. However, chlorpromazine did not inhibit bradykinin-induced inositol 1,4,5-trisphosphate p...

  6. Kinins, airway obstruction, and anaphylaxis.

    Science.gov (United States)

    Kaplan, Allen P

    2010-01-01

    Anaphylaxis is a term that implies symptoms that are present in many organs, some of which are potentially fatal. The pathogenic process can either be IgE-dependent or non-IgE-dependent; the latter circumstance may be referred to as anaphylactoid. Bradykinin is frequently responsible for the manifestations of IgE-independent reactions. Blood levels may increase because of overproduction; diseases such as the various forms of C1 inhibitor deficiency (hereditary or acquired) or hereditary angioedema with normal C1 inhibitor are examples in this category. Blood levels may also increase because of an abnormality in bradykinin metabolism; the angioedema due to ACE inhibitors is a commonly encountered example. Angioedema due to bradykinin has the potential to cause airway obstruction and asphyxia as well as severe gastrointestinal symptoms simulating an acute abdomen. Formation of bradykinin in plasma is a result of a complex interaction among proteins such as factor XII, prekallikrein, and high molecular weight kininogen (HK) resulting in HK cleavage and liberation of bradykinin. These proteins also assemble along the surface of endothelial cells via zinc-dependent interactions with gC1qR, cytokeratin 1, and u-PAR. Endothelial cell expression (or secretion) of heat-shock protein 90 or prolylcarboxypeptidase can activate the prekallikrein-HK complex to generate bradykinin in the absence of factor XII, however factor XII is then secondarily activated by the kallikrein that results. Bradykinin is destroyed by carboxypeptidase N and angiotensin-converting enzyme. The hypotension associated with IgE-dependent anaphylaxis maybe mediated, in part, by massive proteolytic digestion of HK by kallikreins (tissue or plasma-derived) or other cell-derived kininogenases. PMID:20519882

  7. Roles of kinins in the nervous system.

    Science.gov (United States)

    Negraes, Priscilla D; Trujillo, Cleber A; Pillat, Micheli M; Teng, Yang D; Ulrich, Henning

    2015-01-01

    The kallikrein-kinin system (KKS) is an endogenous pathway involved in many biological processes. Although primarily related to blood pressure control and inflammation, its activation goes beyond these effects. Neurogenesis and neuroprotection might be stimulated by bradykinin being of great interest for clinical applications following brain injury. This peptide is also an important player in spinal cord injury pathophysiology and recovery, in which bradykinin receptor blockers represent substantial therapeutic potential. Here, we highlight the participation of kinin receptors and especially bradykinin in mediating ischemia pathophysiology in the central and peripheral nervous systems. Moreover, we explore the recent advances on mechanistic and therapeutic targets for biological, pathological, and neural repair processes involving kinins. PMID:25839228

  8. Severe Puumala virus infection in a patient with a lymphoproliferative disease treated with icatibant.

    Science.gov (United States)

    Laine, Outi; Leppänen, Ilona; Koskela, Sirpa; Antonen, Jaakko; Mäkelä, Satu; Sinisalo, Marjatta; Vaheri, Antti; Mustonen, Jukka

    2015-02-01

    Early identification of patients at risk of a severe course of hantaviral disease and lack of effective medication represent a global challenge in the treatment of this emerging infection. We describe a 67-year-old female patient with a history of chronic lymphoproliferative disease involving the spleen and an extremely severe acute Puumala hantavirus infection. She was treated with the bradykinin receptor antagonist icatibant and recovered. She is the second patient with a spleen abnormality and severe Puumala infection treated with icatibant in our hospital. We suggest that patients with spleen abnormalities may be more susceptible to severe hantavirus disease. The activation of the kinin-kallikrein system and the formation of bradykinin in hantavirus-infected endothelial cells indicate that the role of bradykinin receptor antagonist icatibant in the treatment of hantavirus disease is worth studying. PMID:25496418

  9. Life-threatening ACE inhibitor-induced angio-oedema successfully treated with icatibant

    DEFF Research Database (Denmark)

    Ostenfeld, Sarah; Bygum, Anette; Rasmussen, Eva Rye

    2015-01-01

    We present a case of a 75-year-old woman treated with an ACE inhibitor, who presented with angio-oedema of the tongue and had difficulty speaking. No symptoms of anaphylaxis or urticaria were present. The patient was treated intravenously with antihistamine and glucocorticoid in combination....... Although the angio-oedema was potentially life threatening, the patient avoided intubation and mechanical ventilation. ACE inhibitor-induced angio-oedema is most likely caused by an accumulation of bradykinin and substance P. Consequently, a bradykinin receptor antagonist is the rational treatment...

  10. Measurement of the increase in the capillary permeability in skin with Evans blue labelled with iodine-125 or 131

    International Nuclear Information System (INIS)

    The quantitative evaluation of bradykinin and histamine with Evans blue labelled with iodine -125 or 131 is described. The activity upon vascular permeability was performed in the abdominal wall of rats injecting intravenously solution of labelled Evans blue and 0,1 ml of vasoactive drugs solution intradermally. Skin discs were cut with circular punch for external counting, quantitative results being compared with control discs. By using this method, satisfactory log dose-reponse curves were obtained for bradykinin and histamine that followed the general trend of S - shaped curves

  11. Differential sensitivities of the prostacyclin and nitric oxide biosynthetic pathways to cytosolic calcium in bovine aortic endothelial cells.

    OpenAIRE

    Parsaee, H.; McEwan, J R; Joseph, S.; MacDermot, J

    1992-01-01

    1. Bovine aortic endothelial cells were cultured in vitro, and shown to release both prostacyclin (PGI2; Kact = 24.1 nM) and endothelium-derived relaxing factor (EDRF, NO; Kact = 0.7 nM) in a concentration-dependent manner when exposed to bradykinin. 2. The bradykinin-dependent release of PGI2 (but not EDRF) was inhibited by 1 microM isoprenaline or 5 microM forskolin, and the inhibitory effect of isoprenaline could be reversed by the beta 2-adrenoceptor antagonist, ICI 118551. In contrast, i...

  12. Activities of Venom Proteins and Peptides with Possible Therapeutic Applications from Bees and WASPS.

    Science.gov (United States)

    Ye, Xiujuan; Guan, Suzhen; Liu, Jiwen; Ng, Charlene C W; Chan, Gabriel H H; Sze, Stephen C W; Zhang, Kalin Y; Naude, Ryno; Rolka, Krzysztof; Wong, Jack Ho; Ng, Tzi Bun

    2016-01-01

    The variety of proteins and peptides isolated from honey bee venom and wasp venom includes melittin, adiapin, apamine, bradykinin, cardiopep, mast cell degranulating peptide, mastoparan, phospholipase A2 and secapin. Some of the activities they demonstrate may find therapeutic applications. PMID:27323949

  13. Treatment of HAE Attacks in the Icatibant Outcome Survey

    DEFF Research Database (Denmark)

    Hernández Fernandez de Rojas, Dolores; Ibañez, Ethel; Longhurst, Hilary;

    2015-01-01

    BACKGROUND: Icatibant, a selective bradykinin B2 receptor antagonist for the treatment of acute hereditary angio-oedema (HAE) attacks in adults, can be administered by health care professionals (HCPs) or self-administered. This analysis compared characteristics and outcomes of acute HAE attacks t...

  14. Angioedema: Classification, management and emerging therapies for the perioperative physician

    Directory of Open Access Journals (Sweden)

    Lopa Misra

    2016-01-01

    Full Text Available Angioedema is a rare condition which manifests as sudden localised, non-pitting swelling of certain body parts including skin and mucous membranes. It is vital that anaesthesiologists understand this condition, as it may present suddenly in the perioperative period with airway compromise. To identify literature for this review, the authors searched the PubMed, Medline, Embase, Scopus and Web of Science databases for English language articles covering a 10-year period, 2006 through 2016. Angioedema can be either mast-cell mediated or bradykinin-induced. Older therapies for histaminergic symptoms are well known to anaesthesiologists (e.g., adrenaline, anti-histamines and steroids, whereas older therapies for bradykinin-induced symptoms include plasma and attenuated androgens. New classes of drugs for bradykinin-induced symptoms are now available, including anti-bradykinin, plasma kallikrein inhibitor and C1 esterase inhibitors. These can be used prophylactically or as rescue medications. Anaesthesiologists are in a unique position to coordinate perioperative care for this complex group of patients.

  15. Diacylglycerol kinase counteracts protein kinase C-mediated inactivation of the EGF receptor

    NARCIS (Netherlands)

    Baal, van J.; Widt, de J.; Divecha, N.; Blitterswijk, van W.J.

    2012-01-01

    Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC)signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed b

  16. ACE-inhibitor induced angio-oedema treated with complement C1-inhibitor concentrate

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Bygum, Anette

    2013-01-01

    severe angio-oedema of the tongue and floor of the mouth. He was successfully treated with complement C1-concentrate causing the swelling to regress within 20 min. This treatment option can be an effective alternative to bradykinin antagonists, which might not be available in the emergency room, or more...

  17. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan;

    2011-01-01

    , the rats were anesthetized with pentobarbital, ventilated and paralyzed. A laminectomy enabled extracellular recording of T(3) spinal cord neuronal activity. Intrapericardial administration of a mixture of algogenic chemicals (bradykinin, serotonin, prostaglandin E(2) (all at 10(-5)M), and adenosine (10...

  18. Angioedema: Classification, management and emerging therapies for the perioperative physician.

    Science.gov (United States)

    Misra, Lopa; Khurmi, Narjeet; Trentman, Terrence L

    2016-08-01

    Angioedema is a rare condition which manifests as sudden localised, non-pitting swelling of certain body parts including skin and mucous membranes. It is vital that anaesthesiologists understand this condition, as it may present suddenly in the perioperative period with airway compromise. To identify literature for this review, the authors searched the PubMed, Medline, Embase, Scopus and Web of Science databases for English language articles covering a 10-year period, 2006 through 2016. Angioedema can be either mast-cell mediated or bradykinin-induced. Older therapies for histaminergic symptoms are well known to anaesthesiologists (e.g., adrenaline, anti-histamines and steroids), whereas older therapies for bradykinin-induced symptoms include plasma and attenuated androgens. New classes of drugs for bradykinin-induced symptoms are now available, including anti-bradykinin, plasma kallikrein inhibitor and C1 esterase inhibitors. These can be used prophylactically or as rescue medications. Anaesthesiologists are in a unique position to coordinate perioperative care for this complex group of patients. PMID:27601734

  19. The renin-angiotensin system and its blockers.

    Science.gov (United States)

    Igić, Rajko; Škrbić, Ranko

    2014-01-01

    Research on the renin-angiotensin system (RAS) has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE) metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS) and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well. PMID:25731011

  20. Angiotensin processing activities in the venom of Thalassophryne nattereri.

    Science.gov (United States)

    Tenório, Humberto de Araújo; Marques, Maria Elizabeth da Costa; Machado, Sonia Salgueiro; Pereira, Hugo Juarez Vieira

    2015-05-01

    The venom of marine animals is a rich source of compounds with remarkable functional specificity and diversity. Thalassophryne nattereri is a small venomous fish inhabiting the northern and northeastern coast of Brazil, and represents a relatively frequent cause of injuries. Its venom causes severe inflammatory response followed frequently by the necrosis of the affected area. This venom presents characterized components such as proteases (Natterins 1-4) and a lectin (Nattectin) with complex effects on the human organism. A specific inhibitor of tissue kallikrein (TKI) reduces the nociception and the edema caused by the venom in mice. Our study sought to investigate the proteolytic activities against vasopeptides Angiotensin I, Angiotensin II, Angiotensin 1-9 and Bradykinin. The venom indicated angiotensin conversion against angiotensin I, as well as kininase against bradykinin. Captopril conducted the total inhibition of the converting activity, featuring the first report of ACE activity in fish venoms. PMID:25702959

  1. Acute turpentine inflammation and kinin release in rat-paw thermic oedema.

    Science.gov (United States)

    Limãos, E A; Borges, D R; Souza-Pinto, J C; Gordon, A H; Prado, J L

    1981-12-01

    Livers from rats at 2-3 days after s.c. injection of turpentine, when perfused, synthesized prekallikrein nearly 3 times faster than did livers from normal rats. On the other hand paw oedema, produced by heating to 46 degrees, in rats injured in this way was less marked. Likewise in such rats the amount of bradykinin release by 50 min. of coaxial perfusion of the paw was only 13.6 +/- 4.6 compared with 63.1 +/- 13.4 ng in normal rats. A possible explanation for the observed reduction in production of bradykinin may be inhibition of kallikrein due to an increased concentration of alpha 2-macroglobulin. PMID:6173056

  2. The renin-angiotensin system and its blockers

    Directory of Open Access Journals (Sweden)

    Igić Rajko

    2014-01-01

    Full Text Available Research on the renin-angiotensin system (RAS has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well.

  3. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    Science.gov (United States)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette; Rasmussen, Eva Rye

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE) of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature. PMID:27123347

  4. Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation

    OpenAIRE

    Langhauser, Friederike; Göb, Eva; Kraft, Peter; Geis, Christian; Schmitt, Joachim; Brede, Marc; Göbel, Kerstin; Helluy, Xavier; Pham, Mirko; Bendszus, Martin; Jakob, Peter; Stoll, Guido; Meuth, Sven G.; Nieswandt, Bernhard; McCrae, Keith R.

    2012-01-01

    Thrombosis and inflammation are hallmarks of ischemic stroke still unamenable to therapeutic interventions. High-molecular-weight kininogen (KNG) is a central constituent of the contact-kinin system which represents an interface between thrombotic and inflammatory circuits and is critically involved in stroke development. Kng−/− mice are protected from thrombosis after artificial vessel wall injury and lack the proinflammatory mediator bradykinin. We investigated the consequences of KNG defic...

  5. Perception of bronchial obstruction in asthmatic patients. Relationship with bronchial eosinophilic inflammation and epithelial damage and effect of corticosteroid treatment.

    OpenAIRE

    Roisman, G L; Peiffer, C; Lacronique, J. G.; Le Cae, A; Dusser, D J

    1995-01-01

    We studied the perception of bronchoconstriction in asthmatic subjects who were randomly treated with inhaled beta 2 agonist given either alone (n = 9) or associated with inhaled corticosteroids (n = 9). Methacholine and bradykinin challenges, bronchoalveolar lavage, and bronchial biopsies were performed in all subjects. After each dose of agonist, breathlessness was assessed using a visual analog scale (VAS) and the forced expiratory volume in 1 s (FEV1) was measured. The relationship betwee...

  6. Pengaruh Ekstrak Etanol Daun Bangun-Bangun (Plectranthus Amboinicus, (Lour.) Spreng) Terhadap Penghambatan Degranulasi Mastosit Yang Tersensititasi Aktif Pada Mencit Jantan Secara In Vitro

    OpenAIRE

    Ronal

    2013-01-01

    Mastocyte is important source in immune response is responsible for the occurrence of allergic reaction. Allergic reaction are caused by the bond between the antigen and antibody Immunoglobulin E (IgE) which will cause the degranulation of mastocyte and basophil and thereby releasing chemical mediators such as histamine, prostaglandins, bradykinin, arachidonic acid. Bangun-bangun (Plectranthus amboinicus, (Lour.) Spreng is a plant and its leaf has an activity as antiallergy. The objective of ...

  7. Molecular Bases for the Recognition of Short Peptide Substrates and Cysteine-Directed Modifications of Human Insulin-Degrading Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Malito, Enrico; Ralat, Luis A.; Manolopoulou, Marika; Tsay, Julie L.; Wadlington, Natasha L.; Tang, Wei-Jen (UC)

    2009-12-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid {beta} (A{beta}). Tight interactions with substrates occur at an exosite located 30 {angstrom} away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 {angstrom} crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K{sub m} values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.

  8. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme

    Science.gov (United States)

    Malito, Enrico; Ralat, Luis A.; Manolopoulou, Marika; Tsay, Julie L.; Wadlington, Natasha L.; Tang, Wei-Jen

    2009-01-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ~30Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite, and not to the catalytic site. In agreement with observed high Km values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all thirteen cysteines is insensitive to the inhibition by S-nitroso-glutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing towards an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis. PMID:18986166

  9. Endothelial-cell apoptosis induced by cleaved high-molecular-weight kininogen (HKa) is matrix dependent and requires the generation of reactive oxygen species

    OpenAIRE

    Sun, Danyu; McCrae, Keith R

    2006-01-01

    High–molecular-weight kininogen (HK) is an abundant plasma protein that plays a central role in activation of the kallikrein-kinin system. Cleavage of HK by plasma kallikrein results in release of the nonapeptide bradykinin (BK), leaving behind cleaved high–molecular-weight kininogen (HKa). Previous studies have demonstrated that HKa induces apoptosis of proliferating endothelial cells and inhibits angiogenesis in vivo, activities mediated primarily through its domain 5. However, the mechanis...

  10. On-line Electrogeneration of Copper-Peptide Complexes in Microspray Mass Spectrometry

    OpenAIRE

    Prudent, M.; Girault, H H

    2008-01-01

    The interaction of copper ions with peptides was investigated by electrospray mass spectrometry. Two electrospray micro-emitters were compared, the first one with a platinum electrode using a copper(II) electrolyte solution containing a peptide sample, and the second one with a sacrificial copper anode in a water/methanol solution containing only a peptide (i.e., angiotensin III, bradykinin, or Leu-enkephalin). The former yielded mainly Cu2 complexes either with histidine residues or with th...

  11. Angiotensin-converting enzyme inhibition by lisinopril enhances liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    F.S. Ramalho

    2001-01-01

    Full Text Available Bradykinin has been reported to act as a growth factor for fibroblasts, mesangial cells and keratinocytes. Recently, we reported that bradykinin augments liver regeneration after partial hepatectomy in rats. Angiotensin-converting enzyme (ACE is also a powerful bradykinin-degrading enzyme. We have investigated the effect of ACE inhibition by lisinopril on liver regeneration after partial hepatectomy. Adult male Wistar rats underwent 70% partial hepatectomy (PH. The animals received lisinopril at a dose of 1 mg kg body weight-1 day-1, or saline solution, intraperitoneally, for 5 days before hepatectomy, and daily after surgery. Four to six animals from the lisinopril and saline groups were sacrificed at 12, 24, 36, 48, 72, and 120 h after PH. Liver regeneration was evaluated by immunohistochemical staining for proliferating cell nuclear antigen using the PC-10 monoclonal antibody. The value for the lisinopril-treated group was three-fold above the corresponding control at 12 h after PH (P<0.001, remaining elevated at approximately two-fold above control values at 24, 36, 48 (P<0.001, and at 72 h (P<0.01 after PH, but values did not reach statistical difference at 120 h after PH. Plasma ACE activity measured by radioenzymatic assay was significantly higher in the saline group than in the lisinopril-treated group (P<0.001, with 81% ACE inhibition. The present study shows that plasma ACE inhibition enhances liver regeneration after PH in rats. Since it was reported that bradykinin also augments liver regeneration after PH, this may explain the liver growth stimulating effect of ACE inhibitors.

  12. Endothelial 5-HT receptors mediate relaxation of porcine pulmonary arteries in response to ergotamine and dihydroergotamine.

    OpenAIRE

    Glusa, E; Roos, A. (Anna)

    1996-01-01

    1. The aim of the present study was to investigate whether antimigraine ergot compounds may act at endothelial 5-hydroxytryptamine (5-HT) receptors which trigger the release of endothelium-derived relaxing factor (EDRF). Changes in tone of porcine isolated pulmonary arteries were measured isometrically. The integrity of the endothelium was assessed by the bradykinin-induced relaxation of prostaglandin F2 alpha (PGF2 alpha, 3 microM)-precontracted vessels. 2. The ergot derivatives ergotamine, ...

  13. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens.

    Science.gov (United States)

    Schmelz, M; Schmidt, R; Weidner, C; Hilliges, Marita; Torebjork, H E; Handwerker, H O

    2003-05-01

    Vasoneuroactive substances were applied through intradermal microdialysis membranes and characterized as itch- or pain-inducing in psychophysical experiments. Histamine always provoked itching and rarely pain, capsaicin always pain but never itching. Prostaglandin E(2) (PGE(2)) led preferentially to moderate itching. Serotonin, acetylcholine, and bradykinin induced pain more often than itching. Subsequently the same substances were used in microneurography experiments to characterize the sensitivity profile of human cutaneous C-nociceptors. The responses of 89 mechanoresponsive (CMH, polymodal nociceptors), 52 mechanoinsensitive, histamine-negative (CMi(His-)), and 24 mechanoinsensitive, histamine-positive (CMi(His+)) units were compared. CMi(His+) units were most responsive to histamine and to PGE(2) and less to serotonin, ACh, bradykinin, and capsaicin. CMH units (polymodal nociceptors) and CMi(His-) units showed significantly weaker responses to histamine, PGE(2), and acetylcholine. Capsaicin and bradykinin responses were not significantly different in the two classes of mechano-insensitive units. We conclude that CMi(His+) units are "selective," but not "specific" for pruritogenic substances and that the pruritic potency of a mediator increases with its ability to activate CMi(His+) units but decreases with activation of CMH and CMi(His-) units. PMID:12611975

  14. Hypoxic remodelling of Ca{sup 2+} stores does not alter human cardiac myofibroblast invasion

    Energy Technology Data Exchange (ETDEWEB)

    Riches, K.; Hettiarachchi, N.T.; Porter, K.E. [Leeds Institute for Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT (United Kingdom); Peers, C., E-mail: c.s.peers@leeds.ac.uk [Leeds Institute for Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-12-17

    Research highlights: {yields} Bradykinin promotes migration and proliferation of myofibroblasts. {yields} Such activity is Ca{sup 2+}-dependent and occurs under hypoxic conditions. {yields} Hypoxia increased myofibroblast Ca{sup 2+} stores but not influx evoked by bradykinin. {yields} Myofibroblast migration and proliferation was unaffected by hypoxia. -- Abstract: Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca{sup 2+} dependent processes, and often requires the cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O{sub 2} conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca{sup 2+} from intracellular stores in response to BK whilst capacitative Ca{sup 2+} entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca{sup 2+}-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca{sup 2+} influx rather than mobilisation is of primary importance in CMF migration and proliferation.

  15. Different cross-talk sites between the renin-angiotensin and the kallikrein-kinin systems.

    Science.gov (United States)

    Su, Jin Bo

    2014-12-01

    Targeting the renin-angiotensin system (RAS) constitutes a major advance in the treatment of cardiovascular diseases. Evidence indicates that angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor blockers act on both the RAS and the kallikrein-kinin system (KKS). In addition to the interaction between the RAS and KKS at the level of angiotensin-converting enzyme catalyzing both angiotensin II generation and bradykinin degradation, the RAS and KKS also interact at other levels: 1) prolylcarboxypeptidase, an angiotensin II inactivating enzyme and a prekallikrein activator; 2) kallikrein, a kinin-generating and prorenin-activating enzyme; 3) angiotensin-(1-7) exerts kininlike effects and potentiates the effects of bradykinin; and 4) the angiotensin AT1 receptor forms heterodimers with the bradykinin B2 receptor. Moreover, angiotensin II enhances B1 and B2 receptor expression via transcriptional mechanisms. These cross-talks explain why both the RAS and KKS are up-regulated in some circumstances, whereas in other circumstances both systems change in the opposite manner, expressed as an activated RAS and a depressed KKS. As the cross-talks between the RAS and the KKS play an important role in response to different stimuli, taking these cross-talks between the two systems into account may help in the development of drugs targeting the two systems. PMID:23386283

  16. Management of acute attacks of hereditary angioedema: potential role of icatibant

    Directory of Open Access Journals (Sweden)

    Hilary J Longhurst

    2010-09-01

    Full Text Available Hilary J LonghurstDepartment of Immunology, Barts and The London NHS Trust, London, UKAbstract: Icatibant (Firazyr® is a novel subcutaneous treatment recently licensed in the European Union for acute hereditary angioedema. Hereditary angioedema, resulting from inherited partial C1 inhibitor deficiency, is a disabling condition characterized by intermittent episodes of bradykinin-mediated angioedema. Icatibant blocks bradykinin B2 receptors, attenutating the episode. Randomized double-blind, placebo-controlled trials of icatibant, showed significant superiority over oral tranexamic acid in 74 European patients and a trend to improvement in a similar US trial comparing icatibant with placebo in 55 patients. Outcomes for several endpoints did not reach significance in the US trial, perhaps because of low participant numbers and confounding factors: a further trial is planned. Open label studies have shown benefit in multiple treatments for attacks at all sites. Approximately 10% of patients require a second dose for re-emergent symptoms, usually 10 to 27 hours after the initial treatment. Its subcutaneous route of administration, good tolerability and novel mode of action make icatibant a promising addition to the limited repertoire of treatments for hereditary angioedema.Keywords: hereditary angioedema, bradykinin, icatibant, C1 inhibitor deficiency

  17. Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease

    Science.gov (United States)

    Heaps, Cristine L.; Robles, Juan Carlos; Sarin, Vandana; Mattox, Mildred L.; Parker, Janet L.

    2014-01-01

    Objective Test the hypothesis that exercise training enhances sustained relaxation to persistent endothelium-dependent vasodilator exposure via increased nitric oxide contribution in small coronary arteries of control and ischemic hearts. Methods Yucatan swine were designated to a control group or a group in which an ameroid constrictor was placed around the proximal LCX. Subsequently, pigs from both groups were assigned to exercise (5 days/week; 16 weeks) or sedentary regimens. Coronary arteries (~100–350 μm) were isolated from control pigs and from both nonoccluded and collateral-dependent regions of chronically-occluded hearts. Results In arteries from control pigs, training significantly enhanced relaxation responses to increasing concentrations of bradykinin (10−10 to 10−7 M) and sustained relaxation to a single bradykinin concentration (30 nM), which were abolished by NOS inhibition. Training also significantly prolonged bradykinin-mediated relaxation in collateral-dependent arteries of occluded pigs, which was associated with more persistent increases in endothelial cellular Ca2+ levels, and reversed with NOS inhibition. Protein levels for eNOS and p-eNOS-(Ser1179), but not caveolin-1, Hsp90, or Akt, were significantly increased with occlusion, independent of training state. Conclusions Exercise training enhances sustained relaxation to endothelium-dependent agonist stimulation in small arteries of control and ischemic hearts by enhanced nitric oxide contribution and endothelial Ca2+ responses. PMID:24447072

  18. Angiotensin I-converting enzyme inhibitor peptides derived from the endostatin-containing NC1 fragment of human collagen XVIII.

    Science.gov (United States)

    Farias, Shirley L; Sabatini, Regiane A; Sampaio, Tatiana C; Hirata, Izaura Y; Cezari, Maria Helena S; Juliano, Maria A; Sturrock, Edward D; Carmona, Adriana K; Juliano, Luiz

    2006-05-01

    Extracellular matrix and soluble plasma proteins generate peptides that regulate biological activities such as cell growth, differentiation and migration. Bradykinin, a peptide released from kininogen by kallikreins, stimulates vasodilatation and endothelial cell proliferation. Various classes of substances can potentiate these biological actions of bradykinin. Among them, the best studied are bradykinin potentiating peptides (BPPs) derived from snake venom, which can also strongly inhibit angiotensin I-converting enzyme (ACE) activity. We identified and synthesized sequences resembling BPPs in the vicinity of potential proteolytic cleavage sites in the collagen XVIII molecule, close to endostatin. These peptides were screened as inhibitors of human recombinant wild-type ACE containing two intact functional domains; two full-length ACE mutants containing only a functional C- or N-domain catalytic site; and human testicular ACE, a natural form of the enzyme that only contains the C-domain. The BPP-like peptides inhibited ACE in the micromolar range and interacted preferentially with the C-domain. The proteolytic activity involved in the release of BPP-like peptides was studied in human serum and human umbilical-vein endothelial cells. The presence of enzymes able to release these peptides in blood led us to speculate on a physiological mechanism for the control of ACE activities.

  19. Angiotensin-(1-7): a bioactive fragment of the renin-angiotensin system.

    Science.gov (United States)

    Ferrario, C M; Iyer, S N

    1998-11-30

    Accumulating evidence suggests that angiotensin-(1-7) [Ang-(1-7)] is an important component of the renin-angiotensin system. As the most pleiotropic metabolite of angiotensin I (Ang I) it manifest actions which are most often the opposite of those described for angiotensin II (Ang II). Ang-(1-7) is produced from Ang I bypassing the prerequisite formation of Ang II. The generation of Ang-(1-7) is under the control of at least three enzymes, which include neprilysin, thimet oligopeptidase, and prolyl oligopeptidase depending on the tissue compartment. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. This suggests that there is a complex relationship between the enzymatic pathways forming angiotensin II and other various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. The antihypertensive actions of angiotensin-(1-7) are mediated by an angiotensin receptor that is distinct from the pharmacologically characterized AT1 or AT2 receptor subtypes. Ang-(1-7) mediates it antihypertensive effects by stimulating synthesis and release of vasodilator prostaglandins, and nitric oxide and potentiating the hypotensive effects of bradykinin.

  20. Histamine-induced airway mucosal exudation of bulk plasma and plasma-derived mediators is not inhibited by intravenous bronchodilators.

    Science.gov (United States)

    Svensson, C; Alkner, U; Pipkorn, U; Persson, C G

    1994-01-01

    Experimental data suggest the possibility that common bronchodilators, such as the xanthines and beta 2-adrenoceptor agonists, may produce microvascular anti-permeability effects in the subepithelial microcirculation of the airways. In this study, we have examined the effect of bronchodilators given intravenously on exudation of different-sized plasma proteins (albumin and fibrinogen) and the generation of plasma-derived peptides (bradykinins) in human nasal airways challenged with histamine. In a double-blind, crossover, placebo-controlled and randomised trial, 12 normal volunteers were given i.v.infusions of terbutaline sulphate, theophylline and enprofylline to produce therapeutic drug levels. The effect of topical nasal provocation with histamine was closely followed by frequently nasal lavage with saline. The lavage fluid levels of albumin, fibrinogen and bradykinins increased significantly after each histamine provocation. The ratio of albumin-to-fibrinogen in plasma and the lavage fluid was 24 and 56, respectively, indicating that topical histamine provocation induced a largely non-sieved flux of macromolecules across the endothelial-epithelial barriers. The systemically administered drugs did not affect the nasal symptoms (sneezing, secretion and blockage), nor did they significantly reduce the levels of plasma proteins and plasma-derived mediators in the nasal lavage fluids. The present data suggest that systemic xanthines and beta 2-adrenoceptor agonists, at clinically employed plasma levels, may not affect the microvascular (and epithelial) exudative permeability and the bradykinin forming capacity of human airways. PMID:8005188

  1. Interrelationship between growth factor-induced pH changes and intracellular Ca/sup 2 +/

    Energy Technology Data Exchange (ETDEWEB)

    Ives, H.E.; Daniel, T.O.

    1987-04-01

    Many mitogens cause rapid changes in intracellular pH and Ca/sup 2 +/. The authors studied the patterns of pH and Ca/sup 2 +/ changes after exposure of murine fibroblasts to platelet-derived growth factor (PDGF), bombesin, phorbol 12-myristate 13-acetate (PMA), and the vasoactive peptide bradykinin. Intracellular pH and Ca/sup 2 +/ were measured by using the fluorescent dyes 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2. Three distinct patterns of intracellular pH change were observed. (i) PDGF and bombesin caused a rapid cytoplasmic acidification of 0.03 pH unit followed by a slower alkalinization of approx. = 0.11 pH unit above the resting pH of 6.88. (ii) PMA caused alkalinization without causing the early acidification. (iii) Bradykinin caused rapid acidification without the slower net alkalinization. All acidification responses were amiloride resistant. Patterns of intracellular Ca/sup 2 +/ response were also determined for each agent. In Ca/sup 2 +/-buffered cells, PDGF, bombesin, bradykinin, and ionomycin failed to induce cellular acidification, but alkalinization responses to PDGF, bombesin, and PMA persisted. They propose that the transient acidification seen with PDGF, bombesin, and other agents is the result of increased intracellular Ca/sup 2 +/. However, growth factor-induced alkalinization via the Na/sup +//H/sup +/ exchanger is independent of changes in Ca/sup 2 +/.

  2. Structure of plasma and tissue kallikreins.

    Science.gov (United States)

    Pathak, M; Wong, S S; Dreveny, I; Emsley, J

    2013-09-01

    The kallikrein kinin system (KKS) consists of serine proteases involved in the production of peptides called kinins, principally bradykinin and Lys-bradykinin (kallidin). The KKS contributes to a variety of physiological processes including inflammation, blood pressure control and coagulation. Here we review the protein structural data available for these serine proteases and examine the molecular mechanisms of zymogen activation and substrate recognition focusing on plasma kallikrein (PK) and tissue kallikrein (KLK1) cleavage of kininogens. PK circulates as a zymogen bound to high-molecular-weight kininogen (HK). PK is activated by coagulation factor XIIa and then cleaves HK to generate bradykinin and factor XII to generate further XIIa.A structure has been described for the activated PK protease domain in complex with the inhibitor benzamidine. Kallikrein-related peptidases (KLKs) have a distinct domain structure and exist as a family of 15 genes which are differentially expressed in many tissues and the central nervous system.They cleave a wide variety of substrates including low-molecular-weight kininogen (LK) and matrix proteins. Crystal structures are available for KLK1, 3, 4, 5, 6 and 7 activated protease domains typically in complex with S1 pocket inhibitors. A substrate mimetic complex is described for KLK3 which provides insight into substrate recognition. A zymogen crystal structure determined for KLK6 reveals a closed S1 pocket and a novel mechanism of zymogen activation. Overall these structures have proved highly informative in understanding the molecular mechanisms of the KKS and provide templates to design inhibitors for treatment of a variety of diseases. PMID:23494059

  3. Mechanism of the pro-inflammatory activity of sympathomimetic amines in thermic oedema of the rat paw.

    Science.gov (United States)

    Green, K L

    1974-02-01

    1 Thermic oedema induced by heating rat paws at 46.5 degrees C was potentiated by local injection of adrenaline, noradrenaline or high doses of isoprenaline. The pro-inflammatory effect of sympathomimetic amines was antagonized by phenoxybenzamine or phentolamine but not by propranolol.2 The subcutaneous space of heated rat paws was perfused with Tyrode solution and the perfusate collected and assayed for bradykinin, bradykininogen, kinin-forming activity and kininase activity. When adrenaline (0.5 mug/ml) was included in the perfusion fluid, kininase activity of the perfusate was increased by 76% and free bradykinin reduced by 46%.3 Increased vascular permeability induced by injection of bradykinin or kallikrein was reduced by adrenaline or noradrenaline, but isoprenaline had no significant effect.4 Pretreatment with soya bean trypsin inhibitor (SBTI) or heparin did not antagonize the pro-inflammatory effect of adrenaline or thermic oedema per se.5 Potentiation of thermic oedema similar to that induced by sympathomimetic amines was obtained by injecting paws with vasopressin prior to heating, or by applying a ligature to stop blood flow to the paw for the first 15 min of heating.6 Thermistor probes inserted beneath the paw skin showed that sympathomimetic amines increased the internal temperature of heated paws. This was significant, as small changes in temperature had a marked effect on the development of thermic oedema.7 It is suggested that sympathomimetic amines potentiate thermic oedema of rat paws heated at 46.5 degrees C by reducing blood flow to the paw, thereby causing a greater rise in paw temperature and consequently greater injury. PMID:4371900

  4. TNBS-induced inflammation modulates the function of one class of low-threshold rectal mechanoreceptors in the guinea pig.

    Science.gov (United States)

    Lynn, P A; Chen, B N; Zagorodnyuk, V P; Costa, M; Brookes, S J H

    2008-10-01

    The effects of trinitrobenzene sulfonic acid (TNBS)-induced inflammation on specialized, low-threshold, slowly adapting rectal mechanoreceptors were investigated in the guinea pig. Under isoflurane anesthesia, 300 microl saline or TNBS (15 mg/ml) in 30% ethanol was instilled 7 cm from the anal sphincter. Six or 30 days later, single unit extracellular recordings were made from rectal nerve trunks in flat-sheet in vitro preparations attached to a mechanical tissue stretcher. TNBS treatment caused macroscopic ulceration of the rectal mucosa at 6 days, which fully resolved by 30 days. Muscle contractility was unaffected by TNBS treatment. At 6 days posttreatment, responses of low-threshold rectal mechanoreceptors to circumferential stretch were increased, and the proportion of afferents responding with von Frey hair thresholds mechanoreceptor excitability in response to electrical stimulation were increased in TNBS-treated tissue, suggesting increased sensitivity of the mechanotransducer. Mechanoreceptor function at 30 days posttreatment was in most cases unchanged. The inflammatory mediator prostaglandin E(2) (1 microM) activated mechanoreceptors (6 days) in conjunction with contractile activity, but capsaicin (1 microM) failed to activate mechanoreceptors. Bradykinin (1 microM) activated mechanoreceptors independently of contractile activity and responses to stretch were increased in the presence of bradykinin. Both capsaicin and bradykinin activated unidentified stretch-insensitive afferents independently of contractile activity. Mechanoreceptor function is modulated at 6 days posttreatment but not at 30 days, suggesting a moderate increase in mechanoreceptor sensitivity in inflamed tissue but not after recovery. Other unclassified stretch-insensitive afferents are responsive to inflammatory mediators and capsaicin and may be involved in aspects of visceral sensation.

  5. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization.

    LENUS (Irish Health Repository)

    Walsh, Sarah K

    2012-01-31

    Preeclampsia is associated with widespread maternal vascular dysfunction, which is thought to be mediated by circulating factor(s). The aim of the study was to characterize vascular function in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia and to investigate the role of plasma factors in mediating any observed changes in vascular reactivity. Mean arterial blood pressure and vascular function were measured in RUPP and control rats. Mesenteric vessels from both virgin and pregnant rats were exposed for 1 hour or overnight to plasma from both RUPP and control rats and their vascular function assessed. RUPP rats were characterized by severe hypertension, restricted fetal growth, and reduced placental weight (P<0.001). Vasorelaxation was impaired in resistance vessels from RUPP compared with control rats (acetylcholine: R(max) 70+\\/-3 versus 92+\\/-1 [NP] and 93+\\/-3% [sham], P<0.01; bradykinin: 40+\\/-2 versus 62+\\/-2 [NP] and 59+\\/-4% [sham], P<0.001). Incubation of vessels from pregnant (but not virgin) animals with RUPP plasma overnight resulted in an attenuation of vasorelaxant responses (acetylcholine: 63+\\/-7 versus 86+\\/-2%, P<0.05; bradykinin: 35+\\/-5 versus 55+\\/-6%, P<0.001). The residual relaxant response in RUPP plasma-treated vessels was not further attenuated after treatment with N(omega)-nitro-l-arginine methyl ester (acetylcholine: 57+\\/-7 versus 63+\\/-7%, ns; bradykinin: 37+\\/-5 versus 35+\\/-5%, ns). The RUPP rat model is characterized by an impaired response to vasodilators which may be attributable to one or more circulating factors. This plasma-mediated endothelial dysfunction appears to be a pregnancy-dependent effect. Furthermore, nitric oxide-mediated vasorelaxation appears to be absent in RUPP plasma-treated vessels.

  6. Towards understanding the kallikrein-kinin system: insights from measurement of kinin peptides

    Directory of Open Access Journals (Sweden)

    D.J. Campbell

    2000-06-01

    Full Text Available The kallikrein-kinin system is complex, with several bioactive peptides that are formed in many different compartments. Kinin peptides are implicated in many physiological and pathological processes including the regulation of blood pressure and sodium homeostasis, inflammatory processes, and the cardioprotective effects of preconditioning. We established a methodology for the measurement of individual kinin peptides in order to study the function of the kallikrein-kinin system. The levels of kinin peptides in tissues were higher than in blood, confirming the primary tissue localization of the kallikrein-kinin system. Moreover, the separate measurement of bradykinin and kallidin peptides in man demonstrated the differential regulation of the plasma and tissue kallikrein-kinin systems, respectively. Kinin peptide levels were increased in the heart of rats with myocardial infarction, in tissues of diabetic and spontaneously hypertensive rats, and in urine of patients with interstitial cystitis, suggesting a role for kinin peptides in the pathogenesis of these conditions. By contrast, blood levels of kallidin, but not bradykinin, peptides were suppressed in patients with severe cardiac failure, suggesting that the activity of the tissue kallikrein-kinin system may be suppressed in this condition. Both angiotensin converting enzyme (ACE and neutral endopeptidase (NEP inhibitors increased bradykinin peptide levels. ACE and NEP inhibitors had different effects on kinin peptide levels in blood, urine, and tissues, which may be accounted for by the differential contributions of ACE and NEP to kinin peptide metabolism in the multiple compartments in which kinin peptide generation occurs. Measurement of the levels of individual kinin peptides has given important information about the operation of the kallikrein-kinin system and its role in physiology and disease states.

  7. Study on Alzheimer's disease model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is well known that the main brain lesion in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFT) and senile plaques (SP). The amount of NFT is positively correlated with clinical degree of dementia in AD. It is also well studied that the major component of NFT is abnormally hyperphosphorylated microtubule associated protein tau that is caused by an imbalance of protein kinase and protein phosphatase (PP). To reconstitute a specific AD model based on the above hypothesis, we have injected separately calcium calmodulin dependent protein kinase (CaMKKII) activator, bradykinin and PP-2B inhibitor, cyclosporin A into rat hippocampus in the present study. The results showed that the injection of bradykinin caused learning and memory deficient in rats as well as Alzheimer-like tau phosphorylation, including Ser-262/356, Thr-231/235 and Ser-396/404. On the other hand, the injection of cyclosporin A induced the same phosphorylation sites as above except Ser-262/356, however, it did not mimic rat behavior abnormality as bradykinin injection did. The data suggested that activating of CaMKII and the phosphorylation of Ser-262/356 at tau might responsible for the lesion of learning and memory in our model rats. We also incubated PP-2A and PP-1 inhibitor, okadaic acid with human neuroblastoma cell line (SH-SY5Y), and found that (1) inhibition of above PPs induced Alzheimer-like phosphorylation and accumulation of neurofilaments, and Alzheimer-like microtubule disruption, (2) melatonin showed certain protection of the cell from okadaic acid toxicity. The data obtained from this study is significant in AD specific model study.

  8. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade

    OpenAIRE

    Desposito, D.; Chollet, C.; Taveau, C.; Descamps, V.; Alhenc-Gelas, F.; Roussel, R.; Bouby, Nadine; Waeckel, L.

    2015-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic...

  9. Hereditary angioedema: epidemiology, management, and role of icatibant

    Directory of Open Access Journals (Sweden)

    Ghazi A

    2013-05-01

    Full Text Available Aasia Ghazi, J Andrew GrantUniversity of Texas Medical Branch, Division of Allergy and Clinical Immunology, Galveston, TX, USAAbstract: Hereditary angioedema (HAE is an autosomal dominant, potentially life-threatening condition, manifesting as recurrent and self-limiting episodes of facial, laryngeal, genital, or peripheral swelling with abdominal pain secondary to intra-abdominal edema. The estimated prevalence of HAE in the general population is one individual per 50,000, with reported ranges from 1:10,000 to 1:150,000, without major sex or ethnic differences. Various treatment options for acute attacks and prophylaxis of HAE are authorized and available in the market, including plasma-derived (Berinert®, Cinryze®, and Cetor® and recombinant (Rhucin® and Ruconest™ C1 inhibitors, kallikrein inhibitor-ecallantide (Kalbitor®, and bradykinin B2 receptor antagonist-icatibant (Firazyr®. Some of these drugs are used only to treat HAE attacks, whereas others are only approved for prophylactic therapies and all of them have improved disease outcomes due to their different mechanisms of action. Bradykinin and its binding to B2 receptor have been demonstrated to be responsible for most of the symptoms of HAE. Thus icatibant (Firazyr®, a bradykinin B2 receptor antagonist, has proven to be an effective and more targeted treatment option and has been approved for the treatment of acute attacks of HAE. Rapid and stable relief from symptoms of cutaneous, abdominal, or laryngeal HAE attacks has been demonstrated by 30 mg of icatibant in Phase III clinical trials. Self-resolving mild to moderate local site reactions after subcutaneous injection of icatibant were observed. Icatibant is a new, safe, and effective treatment for acute attacks of HAE. HAE has been reported to result in enormous humanistic burden to patients, affecting both physical and mental health, with a negative impact on education, career, and work productivity, and with substantial

  10. Different in vivo functions of the two catalytic domains of angiotensin converting enzyme (ACE)

    OpenAIRE

    Bernstein, Kenneth E.; Shen, Xiao Z.; Gonzalez-Villalobos, Romer A.; Billet, Sandrine; Okwan-Duodu, Derick; Ong, Frank S.; Fuchs, Sebastien

    2010-01-01

    Angiotensin converting enzyme (ACE) can cleave angiotensin I, bradykinin, neurotensin and many other peptide substrates in vitro. In part, this is due to the structure of ACE, a protein composed of two independent catalytic domains. Until very recently, little was known regarding the specific in vivo role of each ACE domain, and they were commonly regarded as equivalent. This is not true, as shown by mouse models with a genetic inactivation of either the ACE N- or C-domains. In vivo, most ang...

  11. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers.

    Science.gov (United States)

    Kashuba, Elena; Bailey, James; Allsup, David; Cawkwell, Lynn

    2013-06-01

    The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression. PMID:23672534

  12. Role of inositol (1,4,5)trisphosphate in epidermal growth factor-induced Ca2+ signaling in A431 cells

    DEFF Research Database (Denmark)

    Hughes, A R; Bird, G S; Obie, J F;

    1991-01-01

    + as well as the ability to increase Ca2+ entry from the extracellular space. The Ca(2+)-ATPase inhibitor thapsigargin also activated Ca2+ entry, and neither epidermal growth factor nor the guanine nucleotide-dependent protein-linked receptor agonist bradykinin activated additional Ca2+ entry over that due...... activates intracellular Ca2+ release as well as Ca2+ entry, the latter most likely resulting from an indirect effect due to the depletion of intracellular Ca2+ pools, (ii) that the actions of epidermal growth factor on Ca2+ homeostasis can be fully accounted for by inositol 1,4,5-trisphosphate formation...

  13. The Synthetic Strategy toward of ACE-Inhibitors

    Institute of Scientific and Technical Information of China (English)

    CHANG; ChingYao

    2001-01-01

    Angiotensin II is an important octapeptide which is responsible for the increase in blood pressure in three major mechanisms. It acts as a hormone to attack the receptor on the blood vessels, which cause strong vasoconstriction. It is also the major stimulus for release another hormone, aldolsterone, which promote the excretion of potassium ion and retention of sodium and waster. Both of the above effects increase the blood pressure. On the other hand, ACE (Angiotensin Converting Enzyme) catalyzes the hydrolysis of bradykinin that is a potent vasodilator. Therefore, the inhibitor of ACE can act as an efficient anti-hypertensive agent through multiple routes.  ……

  14. The Synthetic Strategy toward of ACE-Inhibitors

    Institute of Scientific and Technical Information of China (English)

    CHANG ChingYao; YANG TengKuei

    2001-01-01

    @@ Angiotensin II is an important octapeptide which is responsible for the increase in blood pressure in three major mechanisms. It acts as a hormone to attack the receptor on the blood vessels, which cause strong vasoconstriction. It is also the major stimulus for release another hormone, aldolsterone, which promote the excretion of potassium ion and retention of sodium and waster. Both of the above effects increase the blood pressure. On the other hand, ACE (Angiotensin Converting Enzyme) catalyzes the hydrolysis of bradykinin that is a potent vasodilator. Therefore, the inhibitor of ACE can act as an efficient anti-hypertensive agent through multiple routes.

  15. Influencing factors of pancreatic microcirculatory impairment in acute panceatitis

    Institute of Scientific and Technical Information of China (English)

    Zong-Guang Zhou; You-Dai Chen

    2002-01-01

    Pancreatic microcirculatory disturbance plays an importantrole in the pathogenesis of acute pancreatitis, and itinvolves a series of changes including vasoconstriction,ischaemia, increased vascular permeability, impairment ofnutritive tissue perfusion, ischaemia/reperfusion, leukocyteadherence, hemorrheological changes and impairedlymphatic drainage. Ischaemia possibly acts as an initiatingfactor of pancreatic microcirculatory injury in acutepancreatitis, or as an aggravating/continuing mechanism.The end-artery feature of the intralobular arterioles suggeststhat the pancreatic microcirculation is highly susceptible toischaemia. Various vasoactive mediators, as bradykinin,platelet activating factor, endothelin and nitric oxideparticipate in the development of microcirculatory failure.

  16. Acute turpentine inflammation and kinin release in rat-paw thermic oedema.

    OpenAIRE

    Limãos, E. A.; Borges, D R; Souza-Pinto, J. C.; Gordon, A. H.; Prado, J. L.

    1981-01-01

    Livers from rats at 2-3 days after s.c. injection of turpentine, when perfused, synthesized prekallikrein nearly 3 times faster than did livers from normal rats. On the other hand paw oedema, produced by heating to 46 degrees, in rats injured in this way was less marked. Likewise in such rats the amount of bradykinin release by 50 min. of coaxial perfusion of the paw was only 13.6 +/- 4.6 compared with 63.1 +/- 13.4 ng in normal rats. A possible explanation for the observed reduction in produ...

  17. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  18. Preinfarction angina: old story initiates new attention

    Institute of Scientific and Technical Information of China (English)

    GE Jun-bo

    2012-01-01

    Since first report by Murry et al1 in 1986,the role of ischemia preconditioning before sustained coronary occlusion in protecting myocardium and reducing infarct size has been identified in animal studies.2-4 The mechanism underlying the endogenous cardioprotective effects of ischemia preconditioning is complex and may involve humoral,neural,or a combination of both,with different signaling pathwaysinvolving adenosine,bradykinin,protein kinases and K(ATP) channels.5,6 In humans,episodes of angina before acute myocardial infarction (AMI) may also confer a preconditioning or protective effect.

  19. Antispasmodic effects of hydroalcoholic extract of Marrubium vulgare on isolated tissues.

    Science.gov (United States)

    Schlemper, V; Ribas, A; Nicolau, M; Cechinel Filho, V

    1996-09-01

    Marrubium vulgare is a medicinal plant used in Brazil and in many countries in folk medicine against several diseases, including gastrointestinal disorders. In this study, we have evaluated the effects of hydroalcoholic extract of the roots and aerial parts of M. vulgare in several smooth muscle preparations in vitro. The results showed that this extract exert a significant antispasmodic activity which inhibits the action of some neurotransmitters, such as acetylcholine, bradykinin, prostaglandin E(2), histamine and oxytocin, with putative selectivity for cholinergic contractions. These findings support the popular use in folk medicine of this plant as an antispasmodic. PMID:23194972

  20. Role of invading leukocytes in enhanced atrial eicosanoid production following rabbit left ventricular myocardial infarction.

    OpenAIRE

    Freed, M S; Needleman, P; Dunkel, C G; Saffitz, J E; Evers, A S

    1989-01-01

    The isolated perfused hearts of rabbits previously subjected to in vivo left ventricular myocardial infarction (LVMI) show a 5-10-fold increase in f-Met-Leu-Phe (FMLP) and bradykinin (BK)-stimulated eicosanoid metabolite production relative to noninfarcted hearts. This exaggerated arachidonate metabolism has been shown to occur primarily in the cardiac atria, a site remote from the zone of injury and to be associated with a 10-15-fold increase in atrial FMLP receptor number in the absence of ...

  1. Comparison of the anti-inflammatory properties of formoterol, salbutamol and salmeterol in guinea-pig skin and lung.

    OpenAIRE

    Whelan, C. J.; Johnson, M.; Vardey, C. J.

    1993-01-01

    1. We have compared some anti-inflammatory properties of formoterol, salbutamol and salmeterol in guinea-pig skin and lung. 2. Intradermal formoterol (1 x 10(-10) to 1 x 10(-8) mol/site), salbutamol (1 x 10(-8) and 1 x 10(-7) mol/site) and salmeterol (1 x 10(-8) and 1 x 10(-7) mol/site) inhibited bradykinin-induced plasma protein extravasation (PPE) in guinea-pig skin. A maximally effective dose of formoterol (1 x 10(-9) mol/site) and salbutamol (1 x 10(-8) mol/site) inhibited PPE in guinea-p...

  2. Antispasmodic effects of hydroalcoholic extract of Marrubium vulgare on isolated tissues.

    Science.gov (United States)

    Schlemper, V; Ribas, A; Nicolau, M; Cechinel Filho, V

    1996-09-01

    Marrubium vulgare is a medicinal plant used in Brazil and in many countries in folk medicine against several diseases, including gastrointestinal disorders. In this study, we have evaluated the effects of hydroalcoholic extract of the roots and aerial parts of M. vulgare in several smooth muscle preparations in vitro. The results showed that this extract exert a significant antispasmodic activity which inhibits the action of some neurotransmitters, such as acetylcholine, bradykinin, prostaglandin E(2), histamine and oxytocin, with putative selectivity for cholinergic contractions. These findings support the popular use in folk medicine of this plant as an antispasmodic.

  3. Upregulation of prolylcarboxypeptidase (PRCP in lipopolysaccharide (LPS treated endothelium promotes inflammation

    Directory of Open Access Journals (Sweden)

    Kolte Dhaval

    2009-01-01

    Full Text Available Abstract Background Prolylcarboxypeptidase (Prcp gene, along with altered PRCP and kallikrein levels, have been implicated in inflammation pathogenesis. PRCP regulates angiotensin 1–7 (Ang 1–7 – and bradykinin (BK – stimulated nitric oxide production in endothelial cells. The mechanism through which kallikrein expression is altered during infection is not fully understood. Investigations were performed to determine the association between PRCP and kallikrein levels as a function of the upregulation of PRCP expression and the link between PRCP and inflammation risk in lipopolysaccharide (LPS-induced endothelium activation. Methods The Prcp transcript expression in LPS-induced human umbilical vein endothelial cells (HUVEC activation was determined by RT-PCR for mRNA. PRCP-dependent kallikrein pathway was determined either by Enzyme Linked ImmunoSorbent Assay (ELISA or by biochemical assay. Results We report that PRCP is critical to the maintenance of the endothelial cells, and its upregulation contributes to the risk of developing inflammation. Significant elevation in kallikrein was seen on LPS-treated HUVECs. The conversion of PK to kallikrein was blocked by the inhibitor of PRCP, suggesting that PRCP might be a risk factor for inflammation. Conclusion The increased PRCP lead to a sustained production of bradykinin in endothelium following LPS treatment. This amplification may be an additional mechanism whereby PRCP promotes a sustained inflammatory response. A better appreciation of the role of PRCP in endothelium may contribute to a better understanding of inflammatory vascular disorders and to the development of a novel treatment.

  4. Hereditary angioedema: classification, pathogenesis, and diagnosis.

    Science.gov (United States)

    Banerji, Aleena

    2011-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant genetic disorder associated with a deficiency in C1 inhibitor. More than 200 mutations in this gene, located on chromosome 11, have been identified. Although HAE is often inherited, 20-25% of cases are from new spontaneous mutations and they have no family history of swelling. Decreased C1 inhibitor activity leads to inappropriate activation of multiple pathways, including the complement and contact systems and the fibrinolysis and coagulation systems. Reduced C1 inhibitor activity results in increased activation of plasma kallikrein-kinin system proteases and increased bradykinin levels. Bradykinin is felt to be the main mediator of symptoms in HAE. Patients with HAE have recurrent episodes of swelling of the extremities, abdomen, face, and upper airway. Angioedema involving the gastrointestinal tract can lead to intestinal wall edema, which results in abdominal pain, nausea, vomiting, and diarrhea. Laryngeal swelling is life-threatening and may lead to asphyxia. Common triggers of an attack include trauma, stress, infection, menstruation, oral contraceptives, hormone replacement therapy, and angiotensin-converting enzyme inhibitors. Laboratory testing including C4, C1 inhibitor level, and function is needed to confirm or rule out the diagnosis of HAE. The treatment of HAE has improved significantly in recent years with the availability of several safe and effective therapies. Several consensus guidelines have been created to further assist in the management of HAE patients. This review will provide an update on the classification, pathophysiology, clinical presentation, and diagnosis of HAE. PMID:22221432

  5. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.; Townsley, C.

    1995-04-01

    DRE Suffield has initiated a research program to develop methods and equipment for field detection and laboratory identification of mid-spectrum agents, molecules of biological origin such as proteins, peptides and toxins. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defence interest: bradykinin, bradykinin fragment 1-5, substance P,ARG8-vasopressin, luteinizing hormone releasing hormone, bombesin, leucine enkephalin, methionine enkephalin, and oxytocin. Using a 50 micrometer x 47 cm capillary column, 22.5 kV separation voltage and a 100 mM pH 2.5 phosphate buffer, all nine peptide could separated in under 10 minutes. Three strategies, which could be used in a fully automated field detection and identification system, were demonstrated for the identification of unknown peptides: comparison of migration times, comparison of electrophoretic mobilities, and co-injection of multiple reference standards. These experiments demonstrate that a separation based analytical method such as capillary electrophoresis could form the basis of a generic detection system for mid-spectrum protein and peptide toxins.

  6. New therapies for hereditary angioedema: disease outlook changes dramatically.

    Science.gov (United States)

    Frank, Michael M; Jiang, Haixiang

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease associated with episodic attacks of nonpitting edema that may affect any external or mucosal body surface. Attacks most often affect the extremities, causing local swelling, the GI tract, leading to severe abdominal pain, and the mouth and throat, at times causing asphyxiation. Most patients with HAE have low levels of the plasma serine protease inhibitor C1 inhibitor. The edema in these patients is caused by unregulated generation of bradykinin. Effective chronic therapy of patients with impeded androgens or plasmin inhibitors has been available for decades, but in the United States, we do not have therapy for acute attacks. Five companies have completed or are in the process of conducting phase 3 clinical trials, double-blind, placebo-controlled studies of products designed to terminate acute attacks or to be used in prophylaxis. Two companies, Lev Pharmaceuticals and CSL Behring, have preparations of C1 inhibitor purified from plasma that have been used in Europe for decades (trade names Cinryze and Berinert P, respectively). One company, Pharming, has developed a recombinant C1 inhibitor preparation. One company, Dyax, is testing a kallikrein inhibitor (ecallantide), and one company, Jerini, is completing testing of a bradykinin type 2 receptor antagonist (Icatibant). Although little has been published thus far, all of these products may prove effective. It is likely that HAE treatment will change dramatically within the next few years. PMID:18206518

  7. Antiinflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction extracted from the marine red algae Gracilaria caudata.

    Science.gov (United States)

    Chaves, Luciano de Sousa; Nicolau, Lucas Antonio Duarte; Silva, Renan Oliveira; Barros, Francisco Clark Nogueira; Freitas, Ana Lúcia Ponte; Aragão, Karoline Sabóia; Ribeiro, Ronaldo de Albuquerque; Souza, Marcellus Henrique Loiola Ponte; Barbosa, André Luiz dos Reis; Medeiros, Jand-Venes Rolim

    2013-02-01

    Many algal species contain relatively high concentrations of polysaccharide substances, a number of which have been shown to have anti-inflammatory and/or immunomodulatory activity. In this study, we evaluated the anti-inflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction (PLS) extracted from the algae Gracilaria caudata. The antiinflammatory activity of PLS was evaluated using several inflammatory agents (carrageenan, dextran, bradykinin, and histamine) to induce paw edema and peritonitis in Swiss mice. Samples of the paw tissue and peritoneal fluid were removed to determine myeloperoxidase (MPO) activity or TNF-α and IL-1β levels, respectively. Mechanical hypernociception was induced by subcutaneous injection of carrageenan into the plantar surface of the paw. Pretreatment of mice by intraperitoneal administration of PLS (2.5, 5, and 10 mg/kg) significantly and dose-dependently reduced carrageenan-induced paw edema (p < 0.05) compared to vehicle-treated mice. Similarly, PLS 10 mg/kg effectively inhibited edema induced by dextran and histamine; however, edema induced by bradykinin was unaffected by PLS. PLS 10 mg/kg inhibited total and differential peritoneal leukocyte counts following carrageenan-induced peritonitis. Furthermore, PLS reduced carrageenan-increased MPO activity in paws and reduced cytokine levels in the peritoneal cavity. Finally PLS pretreatment also reduced hypernociception 3-4 h after carrageenan. We conclude that PLS reduces the inflammatory response and hypernociception in mice by reducing neutrophil migration and cytokines concentration.

  8. Preclinical characterization of recombinant human tissue kallikrein-1 as a novel treatment for type 2 diabetes mellitus.

    Science.gov (United States)

    Kolodka, Tadeusz; Charles, Matthew L; Raghavan, Arvind; Radichev, Ilian A; Amatya, Christina; Ellefson, Jacob; Savinov, Alexei Y; Nag, Abhijeet; Williams, Mark S; Robbins, Mark S

    2014-01-01

    Modulation of the kallikrein-kinin system (KKS) has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D). The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1), as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D. PMID:25100328

  9. Physiologic activities of the contact activation system.

    Science.gov (United States)

    Schmaier, Alvin H

    2014-05-01

    The plasma contact activation (CAS) and kallikrein/kinin (KKS) systems consist of 4 proteins: factor XII, prekallikrein, high molecular weight kininogen, and the bradykinin B2 receptor. Murine genetic deletion of factor XII (F12(-/-)), prekallikrein (Klkb1(-/-)), high molecular weight kininogen (Kgn1(-/-)) and the bradykinin B2 receptor (Bdkrb2(-/-)) yield animals protected from thrombosis. With possible exception of F12(-/-) and Kgn1(-/-) mice, the mechanism(s) for thrombosis protection is not reduced contact activation. Bdkrb2(-/-) mice are best characterized and they are protected from thrombosis through over expression of components of the renin angiotensin system (RAS) leading to elevated prostacyclin with vascular and platelet inhibition. Alternatively, prolylcarboxypeptidase, a PK activator and degrader of angiotensin II, when deficient in the mouse leads to a prothrombotic state. Its mechanism for increased thrombosis also is mediated in part by components of the RAS. These observations suggest that thrombosis in mice of the CAS and KKS are mediated in part through the RAS and independent of reduced contact activation. PMID:24759141

  10. Somaclonal variation: a morphogenetic and biochemical analysis of Mandevilla velutina cultured cells

    Directory of Open Access Journals (Sweden)

    M. Maraschin

    2002-06-01

    Full Text Available Cell cultures of Mandevilla velutina have proved to be an interesting production system for biomass and secondary metabolites able to inhibit the hypotensive activity of bradykinin, a nonapeptide generated in plasma during tissue trauma. The crude ethyl acetate extract of cultured cells contains about 31- to 79-fold more potent anti-bradykinin compounds (e.g., velutinol A than that obtained with equivalent extracts of tubers. Somaclonal variation may be an explanation for the wide range of inhibitor activity found in the cell cultures. The heterogeneity concerning morphology, differentiation, carbon dissimilation, and velutinol A production in M. velutina cell cultures is reported. Cell cultures showed an asynchronous growth and cells in distinct developmental stages. Meristematic cells were found as the major type, with several morphological variations. Cell aggregates consisting only of meristematic cells, differentiated cells containing specialized cell structures such as functional chloroplasts (cytodifferentiation and cells with embryogenetic characteristics were observed. The time course for sucrose metabolism indicated cell populations with significant differences in growth and metabolic rates, with the highest biomass-producing cell line showing a cell cycle 60% shorter and a metabolic rate 33.6% higher than the control (F2 cell population. MALDI-TOF mass spectrometric analysis of velutinol A in selected cell lines demonstrated the existence of velutinol A producing and nonproducing somaclones. These results point to a high genetic heterogeneity in general and also in terms of secondary metabolite content.

  11. Tissue Kallikrein Alleviates Cerebral Ischemia-Reperfusion Injury by Activating the B2R-ERK1/2-CREB-Bcl-2 Signaling Pathway in Diabetic Rats

    Science.gov (United States)

    Yuan, Kunxiong; Hu, Bin; Sang, Hongfei; Xie, Yi; Xu, Lili; Cao, Qinqin; Chen, Xin; Zhao, Lingling; Liu, Xinfeng; Liu, Ling; Zhang, Renliang

    2016-01-01

    Diabetes mellitus (DM) substantially increases the risk of ischemic stroke and reduces the tolerance to ischemic insults. Tissue kallikrein (TK) has been demonstrated to protect neurons from ischemia/reperfusion (I/R) injury in orthoglycemic model by activating the bradykinin B2 receptor (B2R). Considering the differential effects of B2R or bradykinin B1 receptor (B1R) on cardioprotection and neuroprotection in I/R with or without diabetes, this study was designed to investigate the role of TK during cerebral I/R injury in streptozotocin-induced diabetic rats. Intravenous injection of TK inhibited apoptosis in neurons, alleviated edema and inflammatory reactions after focal cerebral I/R, significantly reduced the infarct volume, and improved functional recovery. These beneficial effects were accompanied by activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP response element-binding (CREB), and Bcl-2 signal proteins. Inhibition of the B2R or ERK1/2 pathway abated the effects of TK, whereas an antagonist of B1R enhanced the effects. These findings reveal that the neuroprotective effect of TK against cerebral I/R injury in streptozotocin-induced diabetic rats mainly involves the enhancement of B2R and ERK1/2-CREB-Bcl-2 signaling pathway activity.

  12. Analysis of responses to kallidin, DABK, and DAK in feline hindlimb vascular bed.

    Science.gov (United States)

    Santiago, J A; Garrison, E A; Champion, H C; Smith, R E; Del Rio, O; Kadowitz, P J

    1995-12-01

    Responses to kallidin, des-Arg9-bradykinin (DABK), and des-Arg10-kallidin (DAK) were investigated in the hindlimb vascular bed of the cat under constant-flow conditions. Injections of kallidin, DABK, and DAK into the hindlimb perfusion circuit produced dose-dependent vasodilator responses in the hindlimb vascular bed. Vasodilator responses to kallidin and bradykinin (BK) were similar in magnitude and time course, and both peptides were approximately 100-fold more potent than DABK or DAK. Responses to kallidin were decreased by the kinin B2 antagonist, HOE 140, whereas responses to DABK and DAK were reduced by des-Arg9[Leu8]BK, a kinin B1-receptor antagonist. N omega-nitro-L-arginine methyl ester (L-NAME) reduced vasodilator responses to kallidin, DABK, and DAK, whereas meclofenamate, atropine, and U-37883A, a vascular selective ATP-sensitive K+ (K+ATP) channel-blocking agent, did not alter responses to the three peptides. These data suggest that both kinin B1 and B2 receptors are normally present in the hindlimb vascular bed. These data also suggest that kinin B1 and B2 receptor-mediated vasodilator responses are mediated by the release of nitric oxide and that the activation of K+ATP channels or muscarinic receptors, or the release of vasodilator prostaglandins play little if any role in mediating responses to kallidin, DABK, or DAK in the hindlimb vascular bed of the cat.

  13. Kinins as mediators of intestinal secretion.

    Science.gov (United States)

    Gaginella, T S; Kachur, J F

    1989-01-01

    Kinins are small peptides that have diverse biological actions. Concentrations of kinins in the nanomolar or subnanomolar range induce intestinal smooth muscle contraction and evoke mucosal electrolyte secretion. Hyperkininemia is associated with effects on gastrointestinal motility and intestinal mucosal inflammation. Bradykinin and kallidin are the predominant kinins with effects on the gastrointestinal tract of mammals. Bradykinin stimulates chloride ion secretion by the guinea pig and rabbit ileum, rabbit colon, rat colon and monolayers of human HCA-7 cells. Kinins directly or indirectly stimulate phospholipase A2 and phospholipase C. Cells in the lamina propria of the mucosa (e.g., fibroblasts, mast cells, leukocytes), by liberating cyclooxygenase and lipoxygenase metabolites of arachidonic acid, are involved in the kinin response; direct effects on epithelial cells cannot be ruled out, however. Antagonists now exist for kinin receptors. Based on studies with these antagonists in smooth muscle preparations, two subgroups of kinin receptor have been identified. The B2-type receptor appears to be responsible for both the contraction of ileal muscle and ileal secretion. Kinins are probably more important as pathophysiological rather than as physiological mediators. They may amplify the effect of inflammatory products that induce intestinal secretion. The precise involvement of kinins in clinical mucosal secretory states and diarrhea will require quantitative assessment of their levels during each phase of mucosal inflammation. Additional studies on the mechanism of action of kinins will be essential in designing therapy to mitigate the symptoms associated with mucosal inflammation.

  14. Biological studies of the effect of a venom fraction isolated from the scorpion,androctonus amoreuxi on irradiated rats

    International Nuclear Information System (INIS)

    scorpion venom of androctonus amoreuxi contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effect through enhancing its release . cytoprotective ability of BPF has been documented. the possible carcinogenicity that can be induced by BPF isolated from the scorpion, androctonus amoreuxi venom was evaluated in the presence of isologous bone marrow transplantation (BMT) and/or radiation protection. the examined parameters included serum alpha feto protein, carcino embryonic antigen, B2-microglobulin, total cholesterol, triglycerides, total and direct bilirubin levels besides histopathological examination of the liver, kidney and testis.a group of rats (70 gm) received isologous BMT (75x106 cells ) was performed 3 hours post irradiation , while the other group received i.p. injection of 8 doses of BPF each of 1μg /gm body wt (one dose /week). irradiation was performed at a dose level of 5 Gy. all animals were examined after an investigation period of 60 days. either biological agents or their combination was performed together with irradiation , the results pointed out that irradiation discerned a significant elevation in the level of each of B2-microglobulin (p≤0.05), cholesterol, triglycerides and bilirubin after a period of 60 days. neither BPF repeated injection nor BMT solely or combined induced any carcinogenicity after irradiation application as indicated by the examined tumor markers which was confirmed by histological examination

  15. New therapies for hereditary angioedema: disease outlook changes dramatically.

    Science.gov (United States)

    Frank, Michael M; Jiang, Haixiang

    2008-01-01

    Hereditary angioedema (HAE) is an autosomal dominant disease associated with episodic attacks of nonpitting edema that may affect any external or mucosal body surface. Attacks most often affect the extremities, causing local swelling, the GI tract, leading to severe abdominal pain, and the mouth and throat, at times causing asphyxiation. Most patients with HAE have low levels of the plasma serine protease inhibitor C1 inhibitor. The edema in these patients is caused by unregulated generation of bradykinin. Effective chronic therapy of patients with impeded androgens or plasmin inhibitors has been available for decades, but in the United States, we do not have therapy for acute attacks. Five companies have completed or are in the process of conducting phase 3 clinical trials, double-blind, placebo-controlled studies of products designed to terminate acute attacks or to be used in prophylaxis. Two companies, Lev Pharmaceuticals and CSL Behring, have preparations of C1 inhibitor purified from plasma that have been used in Europe for decades (trade names Cinryze and Berinert P, respectively). One company, Pharming, has developed a recombinant C1 inhibitor preparation. One company, Dyax, is testing a kallikrein inhibitor (ecallantide), and one company, Jerini, is completing testing of a bradykinin type 2 receptor antagonist (Icatibant). Although little has been published thus far, all of these products may prove effective. It is likely that HAE treatment will change dramatically within the next few years.

  16. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    International Nuclear Information System (INIS)

    Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 μM. This stimulation was blocked by the low concentration of the α1-adrenergic antagonist prazosin but not by the α2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables

  17. Permeability-increasing activity in hereditary angioneurotic edema plasma. II. Mechanism of formation and partial characterization.

    Science.gov (United States)

    Donaldson, V H; Ratnoff, O D; Dias Da Silva, W; Rosen, F S

    1969-04-01

    Plasma from persons with hereditary angioneurotic edema readily developed the capacity to increase vascular permeability and to induce the isolated rat uterus to contract. Both activities resided in a small, heat-stable molecule that was apparently a polypeptide. Crude preparations of the polypeptide were inactivated during incubation with trypsin. They also failed to produce pain and erythema, but caused markedly increased vascular permeability in human skin. These characteristics differ from those of bradykinin, from which crude preparations of the polypeptide could also be distinguished by electrophoretic mobility and paper chromatographic behavior. Proof that the polypeptide is truly different from bradykinin must await its further purification. Histamine played no role in the activities observed. Although the enzymes functioning to release the permeability factor and kinin activities in hereditary angioneurotic edema plasma were not clearly defined, one or more plasma enzymes other than C'1 esterase presumably participated either in conjunction with C'1 esterase or in pari passu events to release the polypeptide mediating these activities. PMID:5813121

  18. Inhibitory role of Syzygium cumini on autacoid-induced inflammation in rats.

    Science.gov (United States)

    Muruganandan, S; Pant, S; Srinivasan, K; Chandra, S; Tandan, S K; Lal, J; Prakash, Ravi V

    2002-10-01

    The ethanolic extract of Syzygium cumini bark has been reported to possess anti-inflammatory activity in our previous studies. The present study is an attempt to elucidate the anti-inflammatory activity of S. Cumini bark against inflammation induced by individual autacoid insult. Histamine (1 mg/ml), 5-HT (1 mg/ml), bradykinin (0.02 mg/ml) and PGE2 (0.001 mg/ml) were used as inflammogens. One of these agents (0.1 ml) was injected s.c. into the right hind paw of each rat. The ethanolic extract of S. cumini bark was tested at the doses of 100, 300 and 1000 mg/kg, p.o. The results indicated the anti-inflammatory activity of S. cumini bark in histamine, 5-HT and PGE2-induced rat paw oedema. However, there was no such significant inhibition of oedema volume observed in bradykinin-induced rat paw oedema at any dose level. Thus, it is concluded that S. cumini exhibits inhibitory role on inflammatory response to histamine, 5-HT and PGE2. PMID:12683225

  19. Anti-inflammatory activity of root of Alpinia galanga willd

    Directory of Open Access Journals (Sweden)

    Asim Kumar Ghosh

    2011-01-01

    Full Text Available Objective: The objective of the study is to evaluate the acute and chronic anti-inflammatory activities of root extract of Alpinia galanga in rodents. Materials and Methods: The study was carried out using albino rats of either sex (150-200 g. An extract of the root of A. galanga was prepared using absolute alcohol and distillation in a Soxhlet apparatus. The acute anti-inflammatory effects of this extract were evaluated using carrageenan-, bradykinin-, and 5-HT-induced rat paw edema. The chronic anti-inflammatory effects were evaluated using formaldehyde-induced rat paw edema. Results and Analysis: Inhibition of inflammation was seen to be 32.22% in carrageenan-induced, 37.70% in 5-HT-induced, and 35.21% in bradykinin-induced anti-inflammatory models. In chronic inflammatory model, a progressive inhibition of 34.73% (3 rd day, 37.50% (5 th day, 38.83% (7 th day, 44.66% (9 th day, 49.59% (11 th day, and 55.75% (13 th day was observed with study compound. The efficacy was comparable with the standard drugs. Conclusion: It can be thus concluded that A. galanga has anti-inflammatory properties and probably acts by blocking histaminic and serotonin pathways. It may be an effective alternative to NASAIDs and corticosteroid in inflammatory disorders.

  20. Preclinical characterization of recombinant human tissue kallikrein-1 as a novel treatment for type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Tadeusz Kolodka

    Full Text Available Modulation of the kallikrein-kinin system (KKS has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D. The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1, as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D.

  1. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    Science.gov (United States)

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases. PMID:26234931

  2. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III

    Science.gov (United States)

    Björkqvist, Jenny; de Maat, Steven; Lewandrowski, Urs; Di Gennaro, Antonio; Oschatz, Chris; Schönig, Kai; Nöthen, Markus M.; Drouet, Christian; Braley, Hal; Nolte, Marc W.; Sickmann, Albert; Panousis, Con; Maas, Coen; Renné, Thomas

    2015-01-01

    Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12–/– mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes. PMID:26193639

  3. ALTERATION IN CONTRACTILE RESPONSE TO NORADRENALINE,5-HYDROXYTRYPTAMINE,SARAFOTOXIN 6c,AND ANGIOTENSINⅡIN RAT MESENTERIC ARTERY DURING ORGAN CULTURE

    Institute of Scientific and Technical Information of China (English)

    Cao Yongxiao(曹永孝); He Langchong(贺浪冲); Xu Cangbao(徐仓宝); EDVINSSON Lars

    2004-01-01

    Objective To compare the vasoconstrictive effects of 9 mediators on fresh and incubated mesenteric arteries of rats. Methods The superior mesenteric artery of rat was removed and the endothelium was denuded. The vessels were cut into 1 mm long cylindrical segments and subjected to organ culture for 24 hours. Fresh or incubated segments were immersed into tissue baths and the concentration-response curves were obtained by cumulative administration of the vasoconstrictors. Results In fresh mesenteric artery, endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), noradrenaline (NA), 5-carboxamidotryptamine (5-CT), and angiotensinⅡ (AngⅡ) induced potent and sustained constrictions in a concentration-dependent manner. The contraction induced by sarafotoxin 6c (S6c) was weak, while bradykinin (BK), des-Arg-bradykinin (DA-BK), and human urotensinⅡ (hUT-II) showed no detectable contraction. The concentraion-response curves in order of slopes was ET-1, NA, 5-HT, 5-CT, and AngⅡ. The order of the maximum contractions was ET-1>NA=5-HT=5-CT>AngⅡ>S6c. After organ culture, the concentration-response curves induced by S6c, NA, and 5-HT were significantly increased, while that induced by AngⅡ was decreased as comparing to fresh arteries. BK contracted the artery only weakly. Conclusion Organ culture changed the phenotypes towards an increased efficacy of NA, 5-HT, S6c, and a reduced efficacy of AngⅡ, which is in accordance with the results of pharmacological characterization in some human vascular disease.

  4. Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis

    Directory of Open Access Journals (Sweden)

    Aisha Munawar

    2014-02-01

    Full Text Available Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja, and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis. A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F cytotoxins, bradykinin-potentiating peptides (BPPs and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467 from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.

  5. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  6. Differential phospholipid-labeling suggests two subtypes of phospholipase D in rat Leydig cells

    DEFF Research Database (Denmark)

    Lauritzen, L.; Hansen, Harald S.

    1995-01-01

    The aim of the present study was to compare the transphosphatidylation activity of phospholipase D (PLD) under different substrate labeling conditions, in order to investigate whether PLD in rat Leydig cells exhibited any substrate preferences for the alkyl- or acyl-form of phosphatidylcholine (Ptd......Cho). The [H] phosphatidylethanol formation in response to 4ß-phorbol 12-myristate 13-acetate (PMA), sphingosine, or Ca-ionophore A23187, was lower when Leydig cells were labeled with 1-O-[H]alkyl lysoPtdCho compared with the responses when [H]myristic acid was employed. In contrast, the results...... for the receptor agonists (vasopressin, bradykinin, and lysophosphatidic acid), using the two labels, showed mole consistency. Thus, the PLD-activity induced by PMA, sphingosine, or A23187 has a more selective substrate range (i.e. mainly acyl-linked PtdCho) than the PLD-activity stimulated via a receptor. Our...

  7. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents. Suffield memorandum No. 1463

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.

    1995-12-31

    Mid-spectrum biological warfare agents such as proteins, peptides, and toxins are often difficult to analyze and often require individually developed assay methods for detection and identification. In this regard, capillary electrophoresis is an important, emerging technique for separation and quantitation of peptides and proteins, providing separation efficiencies up to two orders of magnitude greater than high performance liquid chromatography. The technique can also analyze a broad range of compounds, has a simple instrument design which can be automated, and has low sample volume requirements. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defense interest including bradykinin, leucine enkephalin, and oxytocin. The paper demonstrates three strategies which could be used in a fully automated field detection and identification system for unknown peptides.

  8. Electrospray ionization combined with ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, G.J.; Glish, G.L.; McLuckey, S.A. (Oak Ridge National Laboratory, TN (USA))

    1990-07-01

    Ions from a variety of molecules, formed via electrospray, have been injected into and analyzed with a quadrupole ion trap mass spectrometer. Examples are shown in which one or more stages of mass spectrometry (e.g., mass spectrometry/mass spectrometry) have been performed on both multiply charged anions and cations. Compounds for which data are described include the disodium salt of 2-hydroxynapthalene-3,6-disulfonic acid, Direct Red 81, bradykinin, melittin, cytochrome c, myoglobin, and bovine albumin. For some compounds, notable the sulfonates, evidence is presented for the injection of highly solvated ions that desolvate within the ion trap. The cations derived from the peptides, on the other hand, appear to be essentially desolvated prior to injection into the ion trap.

  9. Baltikinin: A New Myotropic Tryptophyllin-3 Peptide Isolated from the Skin Secretion of the Purple-Sided Leaf Frog, Phyllomedusa baltea

    Directory of Open Access Journals (Sweden)

    Daning Shi

    2016-07-01

    Full Text Available Here we report the identification of a novel tryptophyllin-3 peptide with arterial smooth muscle relaxation activity from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea. This new peptide was named baltikinin and had the following primary structure, pGluDKPFGPPPIYPV, as determined by tandem mass spectrometry (MS/MS fragmentation sequencing and from cloned skin precursor-encoding cDNA. A synthetic replicate of baltikinin was found to have a similar potency to bradykinin in relaxing arterial smooth muscle (half maximal effective concentration (EC50 is 7.2 nM. These data illustrate how amphibian skin secretions can continue to provide novel potent peptides that act through functional targets in mammalian tissues.

  10. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells.

    Science.gov (United States)

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W

    2000-08-11

    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  11. Neprilysin and Natriuretic Peptide Regulation in Heart Failure.

    Science.gov (United States)

    Bayes-Genis, Antoni; Morant-Talamante, Nuria; Lupón, Josep

    2016-08-01

    Neprilysin is acknowledged as a key player in neurohormonal regulation, a cornerstone of modern drug therapy in chronic heart failure. In the cardiovascular system, neprilysin cleaves numerous vasoactive peptides, some with mainly vasodilating effects (natriuretic peptides, adrenomedullin, bradykinin) and other with mainly vasoconstrictor effects (angiotensin I and II, endothelin-1). For decades, neprilysin has been an important biotarget. Academia and industry have combined active efforts to search for neprilysin inhibitors (NEPIs) that might be useful in clinical practice. NEPI monotherapy was initially tested with little success due to efficacy issues. Next, combination of NEPI and ACE-inhibiting activity agents were abandoned due to safety concerns. Recently, the combination of NEPI and ARB, also known as ARNI, has shown better than expected results in heart failure with reduced ejection fraction, and multitude of ongoing studies are set to prove its value across the heart failure spectrum. PMID:27260315

  12. [Kallikrein-Kinin System. Long History and Present. (To 90th Anniversary of Discovery of the System)].

    Science.gov (United States)

    Yarovaya, G A; Neshkova, E A

    2015-01-01

    The kallikrein-kinin system (KKS) is the key proteolytic system participating in control of a wide spectrum of physiological functions and the development of many pathological conditions. This explains great interest in structures, functions and molecular biology of separate components of the system, molecular mechanisms of their interaction and relationship with other regulatory systems. The information in this field for the last two decades clarifies the role of KKS in morphogenesis of cells, regulation of smooth muscular contractility of some organs, decrease of blood pressure, increase of vascular permeability, the development of inflammation, transformation of cells and the other functions of both physiological and pathological processes. Essential progress in understanding of functions KKS was made by the discovery and study of bradykinin receptors, cloning of kininogen and kallikrein encoding genes, revealing of domain structure of kininogen, prekallikrein and some kininases and decoding of mechanisms of contact phase of proteolytic system activation in blood plasma. PMID:26502604

  13. [Acquired angioedema with C1-INH deficiency and accompanying chronic spontaneous urticaria in a patient with chronic lymphatic B cell leukemia].

    Science.gov (United States)

    Klossowski, N; Braun, S A; von Gruben, V; Losem, C; Plewe, D; Homey, B; Meller, S

    2015-10-01

    Acquired angioedema due to C1 inhibitor deficiency (C1-INH-AAE) is characterized by recurrent edema of the subcutaneous and/or submucosal tissue without wheals and negative family history of angioedema. Here, we present the case of a patient with a chronic lymphatic B cell leukemia who suffered from both C1-INH-AAE and chronic spontaneous urticaria. Oral corticosteroids, antihistamines, and the anti-IgE antibody omalizumab were applied to treat the chronic urticaria in combination with the plasma-derived C1 esterase inhibitor concentrate Berinert® and the bradykinin B2 receptor antagonist icatibant, but the symptoms did not improved significantly. Thus, polychemotherapy targeting the slow-growing lymphoproliferative disease including rituximab was initiated, which resulted in remission of both the urticaria and the angioedema.

  14. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  15. On the zwitterionic nature of gas-phase peptides and protein ions.

    Directory of Open Access Journals (Sweden)

    Roberto Marchese

    2010-05-01

    Full Text Available Determining the total number of charged residues corresponding to a given value of net charge for peptides and proteins in gas phase is crucial for the interpretation of mass-spectrometry data, yet it is far from being understood. Here we show that a novel computational protocol based on force field and massive density functional calculations is able to reproduce the experimental facets of well investigated systems, such as angiotensin II, bradykinin, and tryptophan-cage. The protocol takes into account all of the possible protomers compatible with a given charge state. Our calculations predict that the low charge states are zwitterions, because the stabilization due to intramolecular hydrogen bonding and salt-bridges can compensate for the thermodynamic penalty deriving from deprotonation of acid residues. In contrast, high charge states may or may not be zwitterions because internal solvation might not compensate for the energy cost of charge separation.

  16. Aloe vera

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.D.; Penneys, N.S.

    1988-04-01

    We review the scientific literature regarding the aloe vera plant and its products. Aloe vera is known to contain several pharmacologically active ingredients, including a carboxypeptidase that inactivates bradykinin in vitro, salicylates, and a substance(s) that inhibits thromboxane formation in vivo. Scientific studies exist that support an antibacterial and antifungal effect for substance(s) in aloe vera. Studies and case reports provide support for the use of aloe vera in the treatment of radiation ulcers and stasis ulcers in man and burn and frostbite injuries in animals. The evidence for a potential beneficial effect associated with the use of aloe vera is sufficient to warrant the design and implementation of well-controlled clinical trials. 27 references.

  17. Further studies on the anti-inflammatory effect of insulin.

    Science.gov (United States)

    Ottlecz, A; Koltai, M; Gecse, A

    1977-10-01

    Experiments performed on rats showed that insulin, when applied i.v. or s.c., inhibited the foot edema induced by carrageenin, thermic effect of 45.7 degrees C, compound 48/80 and 5-HT, but moderately increased the paw swelling evoked by kallikrein, a kinin-forming enzyme. The increased vascular permeability elicited by intradermal injection of histamine, 5-HT, bradykinin, PGE1, carrageenin and compound 48/80 was also suppressed. The anti-inflammatory effect was not significantly altered by propranolol and adrenalectomy on the thermal and carrageenin edema, it was variably inhibited on the skin test, and was completely abolished on the paw swelling induced by 5-HT and compound 48/80. Since insulin had little or no effect on the vascular response when given topically together with the vasoactive agents, its complex effect on the acute inflammation appears to be brought about via indirect mechanisms. PMID:930760

  18. 果糖及血管内皮生长因子引起仓鼠颊囊血浆外渗%Fructose diet and VEGF-induced plasma extravasation in hamster cheek pouch

    Institute of Scientific and Technical Information of China (English)

    Michel FELETOU; Michelle BOULANGER; Joanna STACZEK; Olivier BROUX; Jacques DUHAULT

    2003-01-01

    AIM: To determine in the hamster cheek pouch whether or not the changes in plasma extravasation induced byvascular endothelial growth factor (VEGF) could be affected by fructose diet. METHODS: Hamsters were sub-jected to control drinking water or to water containing fructose (10 %) for 18 weeks. RESULTS: The fructose dietinduced a small but significant increase in glycemia (0.80±0.11 and 1.09±0.15, n= 8 and 9 for control and fructose-treated animals, respectively, P<0.05). Bradykinin-induced plasma extravasation was not affected by the fructosediet while the effects of VEGF were markedly increased (maximal number of leakage sites: 76±20 and 126±55, n =8 and 9 for control and fructose-treated animals, respectively, P<0.01). CONCLUSION: Even moderate changesin glycemic levels can produce profound alteration in the VEGF response.

  19. Direct stimulation of angiotensin II type 2 receptor enhances spatial memory

    DEFF Research Database (Denmark)

    Jing, Fei; Mogi, Masaki; Sakata, Akiko;

    2012-01-01

    evaluated by the Morris water maze test in C57BL6 mice, but this effect was not observed in AT(2) receptor-deficient mice. However, C21-induced cognitive enhancement in C57BL6 mice was attenuated by coadministration of icatibant, a bradykinin B(2) receptor antagonist. Administration of C21 dose dependently...... increased cerebral blood flow assessed by laser speckle flowmetry and hippocampal field-excitatory postsynaptic potential (f-EPSP) determined by electrophysiological techniques in C57BL6 mice. Furthermore, activation of the AT(2) receptor by C21 promoted neurite outgrowth of cultured hippocampal neurons...... prepared from fetal transgenic mice expressing green fluorescent protein. Finally, we investigated the pathologic relevance of C21 for spatial learning using an Alzheimer's disease mouse model with intracerebroventricular injection of amyloid-β (1 to 40). We observed that treatment with C21 prevented...

  20. Baltikinin: A New Myotropic Tryptophyllin-3 Peptide Isolated from the Skin Secretion of the Purple-Sided Leaf Frog, Phyllomedusa baltea.

    Science.gov (United States)

    Shi, Daning; Xi, Xinping; Wang, Lei; Gao, Yitian; Ma, Chengbang; Chen, Hang; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Here we report the identification of a novel tryptophyllin-3 peptide with arterial smooth muscle relaxation activity from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea. This new peptide was named baltikinin and had the following primary structure, pGluDKPFGPPPIYPV, as determined by tandem mass spectrometry (MS/MS) fragmentation sequencing and from cloned skin precursor-encoding cDNA. A synthetic replicate of baltikinin was found to have a similar potency to bradykinin in relaxing arterial smooth muscle (half maximal effective concentration (EC50) is 7.2 nM). These data illustrate how amphibian skin secretions can continue to provide novel potent peptides that act through functional targets in mammalian tissues. PMID:27399779

  1. Ionomycin induces prostaglandin E2 formation in murine osteoblastic MC3T3-E1 cells via mechanisms independent of its ionophoric nature.

    Science.gov (United States)

    Leis, Hans Jörg; Windischhofer, Werner

    2016-06-01

    Ionomycin and A23187 are divalent cation ionophores with a marked preference for calcium. Studies using these ionophores have almost exclusively interpreted their results in the light of calcium elevation. It was the aim of this study to investigate the effects of ionomycin in osteoblatic MC3T3-E1 cells that are not attributable to its ionophoric properties. Thus, we have found that in contrast to A23187, ionomycin shows similar effects on prostaglandin E2 formation as bradykinin and endothelin-1, being potentiated by extracellular nickel and inhibited by cholera toxin and pertussis toxin. Our data strongly suggest that inomycin, at least in part, exerts its effects via specific binding to a G-protein coupled receptor, thereby evoking downstream cellular events like arachidonate release with subsequent prostaglandin formation. PMID:27065246

  2. Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.M.; Goeringer, D.E.; McLuckey, S.A.; Glish, G.L. (Oak Ridge National Laboratory, TN (United States))

    1993-01-01

    Matrix-assisted laser desorption (MALD), which has been proven to be an effective ionization technique for biological molecules, has been implemented on a quadrupole ion trap mass spectrometer (ITMS). In the instrumental configuration used for this work both the sample probe and the laser beam are brought through holes in the ring electrode, thereby enabling MALD-generated ions to expand directly into the ion trap cavity. This approach for directly introducing MALD-generated ions compliments the capabilities of the ITMS to obtain low detection limits and to perform tandem mass spectrometric analysis. For example, detection limits in the single-unit femtomole regime have been achieved for small polypeptides such as leucine enkephalin, bradykinin, and neuromedin U-8. Furthermore, structural information has been acquired via multiple stages of mass spectrometry. One limitation that currently exists is an unanticipated drop in sensitivity and resolution as the mass/charge ratio for ions exceeds 3000. 42 refs., 11 figs., 1 tab.

  3. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... vasodilators are both stimulated by several compounds, eg. adenosine, ATP, acetylcholine, bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other...... that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...

  4. Suprofen: the pharmacology and clinical efficacy of a new non-narcotic peripheral analgesic.

    Science.gov (United States)

    Tolman, E L; Rosenthale, M E; Capetola, R J; McGuire, J L

    1984-08-01

    Suprofen is a potent, peripherally-acting, non-narcotic analgesic agent. The mechanism of action of the compound involves inhibition of prostaglandin biosynthesis and, perhaps, direct antagonism of the peripheral, pain inducing actions of prostaglandins, bradykinin and other pain mediators. Suprofen at a dose of 200 mg appears to be equal or greater in efficacy as an analgesic modality than those of ibuprofen, propoxyphene, naproxen and diflunisal or a combination of 650 mg aspirin plus 60 mg codeine. Its clinical utility has been amply demonstrated in the treatment of a number of types of pain including general and orthopedic surgery, episiotomy, post-partum pain, dysmenorrhea, dental pain and musculoskeletal disorders. Suprofen represents a new class of orally effective nonnarcotic analgesics with potential for effective clinical use in the treatment of pain.

  5. Anaesthetic management of a patient with hereditary angioedema

    Directory of Open Access Journals (Sweden)

    Nergis Ataol

    2015-12-01

    Full Text Available Hereditary angioedema is a rare autosomal dominant disorder caused by reduced activity of the C1 esterase inhibitor. Patients with hereditary angioedema are clinically characterized by recurrent episodes of swelling of the extremities, face, trunk, airways and abdominal organs. Attacks may occur either spontaneously or following trauma, stress, surgery, infections and hormonal fluctuations. The most common cause of death is asphyxia related to laryngeal edema. Giving C1 esterase inhibitor is the most effective method of treatment. Also fresh frozen plasma, androgen steroids, quinine pathway inhibitors, antifibrinolytics and bradykinin receptor antagonists can be used as treatment. In this paper, the anesthetic management of a patient with hereditary angioedema undergoing inguinal hernia repair surgery is reported.

  6. Cigarette smoke extracts promote vascular smooth muscle cell proliferation and enhances contractile responses in the vasculature and airway

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Lei, Ying; Chen, Qingwen;

    2010-01-01

    Cigarette smoke exposure is a strong risk factor for cardiovascular and respiratory diseases. However, the knowledge about how cigarette smoke induces damage to vasculature and airway is limited. The present study was designed to examine the effects of cigarette smoke particles extracted by heptane...... (heptane-soluble smoke particles, HSP), by water (water-soluble smoke particles, WSP) and by DMSO (DMSO-soluble smoke particles, DSP), which represent lipophilic, hydrophilic and ambiphoteric constituents from the cigarette smoke, respectively. Human aortic smooth muscle cell (HASMC) proliferation...... responses to sarafotoxin 6c, U46619 or bradykinin in rat mesenteric artery and/or in bronchi. ERK1/2 is activated by HSP and DSP in HASMCs and inhibition of ERK1/2 abrogated the smoke extracts-induced HASMC proliferation, while blockage of nicotinic receptors had no effects, suggesting that the toxic...

  7. Angioedema: Clinical Presentations and Pharmacological Management.

    Science.gov (United States)

    Collins-Yoder, Angela Smith

    2016-01-01

    Angioedema (AE) is a unique clinical presentation of an unchecked release of bradykinin. The origin of this clinical presentation can be either genetic or acquired. The outcome within the patient is subcutaneous swelling of the lower layers of the epidermis. Symptoms are most often localized to the upper airway or the gastrointestinal tract. A typical course resolves in 5 to 7 days, but in some patients, the clinical manifestations exist up to 6 weeks. Hereditary AE is rare and genetically linked, and typically, the patient has episodes for many years before diagnosis. Episodes of acquired AE may be drug induced, triggered by a specific allergen, or idiopathic. Angioedema can elicit the need for critical care interventions, for advanced airway management, or unnecessary abdominal surgery. The treatment for these patients is evolving as new pharmacological agents are developed. This article addresses subtypes of AE, triggers, pharmacology, and information for interdisciplinary team planning of individualized case management. PMID:27258954

  8. Aerosol matrix-assisted laser desorption ionization. Effects of analyte concentration and matrix-to-analyte ratio

    Energy Technology Data Exchange (ETDEWEB)

    Beeson, M.D.; Murray, K.K.; Russell, D.H. [Texas A& M Univ., College Station, TX (United States)

    1995-07-01

    We have recently developed an aerosol-liquid introduction interface for matrix-assisted laser desorption ionization (MALDI) mass spectrometry. In this study, we examine the effect of matrix-to-analyte ratio and analyte concentration on analyte ion yield. These studies were performed using bradykinin, gramicidin S, bovine insulin, and myoglobin as analytes and {alpha}-cyano-4-hydroxycinnamic acid and 4-nitroaniline as matrices. The optimum matrix-to-analyte molar ratio for aerosol MALDI was determined to be 10-100:1, which is lower than that typically used for conventional surface MALDI (100-10 000:1). The ion yield was found to be a nonlinear function of analyte concentration. Possible explanations for these observations are discussed. 43 refs., 3 figs., 1 tab.

  9. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  10. Inhibitor and substrate binding by angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Wang, Xuemei; Wu, Shanshan; Xu, Dingguo;

    2011-01-01

    . In this work, we propose a model for an ACE Michaelis complex based on two known X-ray structures of inhibitor-enzyme complexes. Specifically, the human testis angiotensin-converting enzyme (tACE) complexed with two clinic drugs were first investigated using a combined quantum mechanical and molecular......Angiotensin-converting enzyme (ACE) is an important zinc-dependent hydrolase responsible for converting the inactive angiotensin I to the vasoconstrictor angiotensin II and for inactivating the vasodilator bradykinin. However, the substrate binding mode of ACE has not been completely understood...... mechanical (QM/MM) approach. The structural parameters obtained from the 550 ps molecular dynamics simulations are in excellent agreement with the X-ray structures, validating the QM/MM approach. Based on these structures, a model for the Michaelis complex was proposed and simulated using the same...

  11. Changes in the molecular ion yield and fragmentation of peptides under various primary ions in ToF-SIMS and matrix-enhanced ToF-SIMS.

    Science.gov (United States)

    Körsgen, Martin; Tyler, Bonnie J; Pelster, Andreas; Lipinsky, Dieter; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-06-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a powerful technique for the nanoanalysis of biological samples, but improvements in sensitivity are needed in order to detect large biomolecules, such as peptides, on the individual cell level at physiological concentrations. Two promising options to improve the sensitivity of SIMS to large peptides are the use of cluster primary ions to increase desorption of intact molecules or the use of matrix-assisted laser desorption/ionization (MALDI) matrices to increase the ionization probability. In this paper, the authors have combined these two approaches in order to improve understanding of the interaction between ionization and fragmentation processes. The peptides bradykinin and melittin were prepared as neat monolayers on silicon, in a Dextran-40 matrix and in two common MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxy cinnamic acid (HCCA). ToF-SIMS spectra of these samples were collected using a range of small Bi cluster primary ions and large Ar cluster primary ions. The trends observed in the molecular ion yield and the [M+H](+)/C4H8N(+) ratio with primary ion cluster size were sample system dependent. The molecular ion yield of the bradykinin was maximized by using 30 keV Bi3 (+) primary ions in a DHB matrix but in the HCCA matrix, the maximum molecular ion yield was obtained by using 30 keV Bi7 (+) primary ions. In contrast, the molecular ion yield for melittin in both matrices was greatest using 20 keV Ar2000 (+) primary ions. Improvements in the molecular ion yield were only loosely correlated with a decrease in small fragment ions. The data indicate a complex interplay between desorption processes and ion formation processes which mean that the optimal analytical conditions depend on both the target analyte and the matrix. PMID:26829968

  12. Participation of kinins in the inhibitory action of captopril on acute hypertension induced by L-NAME in anesthetized rats

    Directory of Open Access Journals (Sweden)

    R. Soares de Moura

    1997-10-01

    Full Text Available The aim of the present study was to investigate the role of bradykinin in the inhibitory action of captopril in hypertension induced by L-NAME in anesthetized rats. Male Wistar rats (260-320 g were anesthetized with chloralose and arterial blood pressure was recorded with a polygraph pressure transducer. The hypertensive effect of L-NAME was studied in rats pretreated with saline, captopril or HOE 140 plus captopril. The effect of captopril was also studied during the sustained pressor effect of L-NAME. The acute pressor effect of L-NAME (10 mg/kg, iv was significantly reduced by iv pretreatment with 2 mg/kg captopril (D increase of 49 ± 4.9 mmHg reduced to 20 ± 5.4 mmHg, P = 0.01. The pressor effect of L-NAME (D increase of 38 ± 4.8 mmHg observed in rats pretreated with captopril and HOE 140 (0.1 mg/kg, iv was not significantly different from that induced by L-NAME in rats pretreated with saline (P = 0.09. During the sustained pressor effect induced by L-NAME (D increase of 49 ± 4.9 mmHg captopril induced a significant (PD decrease of 22 ± 3.0 mmHg. The present results demonstrate that the acute pressor effect of L-NAME is reduced by captopril and this inhibitory effect may be partly dependent on the potentiation of the vasodilator actions of bradykinin

  13. Characterization of the Kallikrein-Kinin System Post Chemical Neuronal Injury: An In Vitro Biochemical and Neuroproteomics Assessment.

    Directory of Open Access Journals (Sweden)

    Amaly Nokkari

    Full Text Available Traumatic Brain Injury (TBI is the result of a mechanical impact on the brain provoking mild, moderate or severe symptoms. It is acknowledged that TBI leads to apoptotic and necrotic cell death; however, the exact mechanism by which brain trauma leads to neural injury is not fully elucidated. Some studies have highlighted the pivotal role of the Kallikrein-Kinin System (KKS in brain trauma but the results are still controversial and inconclusive. In this study, we investigated both the expression and the role of Bradykinin 1 and 2 receptors (B1R and B2R, in mediating neuronal injury under chemical neurotoxicity paradigm in PC12 cell lines. The neuronal cell line PC12 was treated with the apoptotic drug Staurosporine (STS to induce cell death. Intracellular calcium release was evaluated by Fluo 4-AM staining and showed that inhibition of the B2R prevented calcium release following STS treatment. Differential analyses utilizing immunofluorescence, Western blot and Real-time Polymerase Chain Reaction revealed an upregulation of both bradykinin receptors occurring at 3h and 12h post-STS treatment, but with a higher induction of B2R compared to B1R. This implies that STS-mediated apoptosis in PC12 cells is mainly conducted through B2R and partly via B1R. Finally, a neuroproteomics approach was conducted to find relevant proteins associated to STS and KKS in PC12 cells. Neuroproteomics results confirmed the presence of an inflammatory response leading to cell death during apoptosis-mediated STS treatment; however, a "survival" capacity was shown following inhibition of B2R coupled with STS treatment. Our data suggest that B2R is a key player in the inflammatory pathway following STS-mediated apoptosis in PC12 cells and its inhibition may represent a potential therapeutic tool in TBI.

  14. The Kallikrein-Kinin-System in Experimental Chagas Disease: A Paradigm to Investigate the Impact of Inflammatory Edema on GPCR-mediated pathways of Host Cell Invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Julio eScharfstein

    2013-01-01

    Full Text Available Chronic chagasic myocarditis (CCM depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the Kallikrein-Kinin System (KKS. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a TLR2 ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK, in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK, which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R. Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs. Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the shingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NFB-inducible BKR (BK1R may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR and other GPCR partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac

  15. Characterization of the Kallikrein-Kinin System Post Chemical Neuronal Injury: An In Vitro Biochemical and Neuroproteomics Assessment.

    Science.gov (United States)

    Nokkari, Amaly; Mouhieddine, Tarek H; Itani, Muhieddine M; Abou-Kheir, Wassim; Daoud, Georges; Zhu, Rui; Mechref, Yehia; Meshref, Yehia; Soueid, Jihane; Al Hariri, Moustafa; Mondello, Stefania; Jaffa, Ayad A; Kobeissy, Firas

    2015-01-01

    Traumatic Brain Injury (TBI) is the result of a mechanical impact on the brain provoking mild, moderate or severe symptoms. It is acknowledged that TBI leads to apoptotic and necrotic cell death; however, the exact mechanism by which brain trauma leads to neural injury is not fully elucidated. Some studies have highlighted the pivotal role of the Kallikrein-Kinin System (KKS) in brain trauma but the results are still controversial and inconclusive. In this study, we investigated both the expression and the role of Bradykinin 1 and 2 receptors (B1R and B2R), in mediating neuronal injury under chemical neurotoxicity paradigm in PC12 cell lines. The neuronal cell line PC12 was treated with the apoptotic drug Staurosporine (STS) to induce cell death. Intracellular calcium release was evaluated by Fluo 4-AM staining and showed that inhibition of the B2R prevented calcium release following STS treatment. Differential analyses utilizing immunofluorescence, Western blot and Real-time Polymerase Chain Reaction revealed an upregulation of both bradykinin receptors occurring at 3h and 12h post-STS treatment, but with a higher induction of B2R compared to B1R. This implies that STS-mediated apoptosis in PC12 cells is mainly conducted through B2R and partly via B1R. Finally, a neuroproteomics approach was conducted to find relevant proteins associated to STS and KKS in PC12 cells. Neuroproteomics results confirmed the presence of an inflammatory response leading to cell death during apoptosis-mediated STS treatment; however, a "survival" capacity was shown following inhibition of B2R coupled with STS treatment. Our data suggest that B2R is a key player in the inflammatory pathway following STS-mediated apoptosis in PC12 cells and its inhibition may represent a potential therapeutic tool in TBI. PMID:26047500

  16. Vascular Reactivity Profile of Novel KCa 3.1-Selective Positive-Gating Modulators in the Coronary Vascular Bed.

    Science.gov (United States)

    Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M; Murillo, M Divina; Gálvez, José A; Díaz-de-Villegas, María D; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf

    2016-08-01

    Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. PMID:26821335

  17. Safety of Long Term Treatment with Venom Fraction Isolated from the Scorpion Androctonus amoreuxi to Irradiated Rats Receiving Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Scorpion Venom of Androctonus amoreuxi contains a strong bradykinin potentiating factor (BPF) that augments bradykinin effect through enhancing its release. Cytoprotective ability of BPF has been documented, but its stimulation to cellular proliferation and differentiation could induce possible carcinogenicity, so this study aims to assure its safe use. BPF and isologous bone marrow transplantation (BMT) has been investigated in irradiated rats. The examined parameters included serum alpha fetoprotein, carcinoembryonic antigen, β2-microglobulin, total cholesterol, triglycerides and bilirubin beside liver histopathology. A group of rats received isologous BMT (75 x 106 ±5 cells) performed 3 h post irradiation, another group received i.p. injection of 8 doses of BPF each of 1 μg/ g body wt (one dose/ week). Irradiation was performed at the dose level of 5 Gy. All animals were examined after an investigation period of 60 days. Either biological agent was performed solely or together with irradiation, as well as their combination. The results pointed out that irradiation induced a significant elevation in the level of serum β2-microglobulin (P< 0.05), cholesterol, triglycerides and bilirubin after a period of 60 days. Neither BPF repeated injection nor BMT solely or combined with irradiation induced any carcinogenicity as indicated by tumour markers and confirmed by histo-pathological examination. Both treatments with irradiation significantly depressed cholesterol, triglycerides and bilirubin compared to the irradiated group. Regeneration in liver cells is observed 60 days post irradiation and treatment with both agents as well as an increase in hepatic cells, nuclear size and maintained cytoplasm. Results clarify the safe use of BPF as a biological treatment comparable to BMT

  18. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways.

    Directory of Open Access Journals (Sweden)

    Eric J Zaccone

    Full Text Available The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3 and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4 coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1, it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ "cough receptors" such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli.

  19. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Science.gov (United States)

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  20. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine.

    Science.gov (United States)

    Goodwill, Adam G; Fu, Lijuan; Noblet, Jillian N; Casalini, Eli D; Sassoon, Daniel; Berwick, Zachary C; Kassab, Ghassan S; Tune, Johnathan D; Dick, Gregory M

    2016-03-15

    Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli. PMID:26825518

  1. Changes in the molecular ion yield and fragmentation of peptides under various primary ions in ToF-SIMS and matrix-enhanced ToF-SIMS.

    Science.gov (United States)

    Körsgen, Martin; Tyler, Bonnie J; Pelster, Andreas; Lipinsky, Dieter; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-06-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a powerful technique for the nanoanalysis of biological samples, but improvements in sensitivity are needed in order to detect large biomolecules, such as peptides, on the individual cell level at physiological concentrations. Two promising options to improve the sensitivity of SIMS to large peptides are the use of cluster primary ions to increase desorption of intact molecules or the use of matrix-assisted laser desorption/ionization (MALDI) matrices to increase the ionization probability. In this paper, the authors have combined these two approaches in order to improve understanding of the interaction between ionization and fragmentation processes. The peptides bradykinin and melittin were prepared as neat monolayers on silicon, in a Dextran-40 matrix and in two common MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxy cinnamic acid (HCCA). ToF-SIMS spectra of these samples were collected using a range of small Bi cluster primary ions and large Ar cluster primary ions. The trends observed in the molecular ion yield and the [M+H](+)/C4H8N(+) ratio with primary ion cluster size were sample system dependent. The molecular ion yield of the bradykinin was maximized by using 30 keV Bi3 (+) primary ions in a DHB matrix but in the HCCA matrix, the maximum molecular ion yield was obtained by using 30 keV Bi7 (+) primary ions. In contrast, the molecular ion yield for melittin in both matrices was greatest using 20 keV Ar2000 (+) primary ions. Improvements in the molecular ion yield were only loosely correlated with a decrease in small fragment ions. The data indicate a complex interplay between desorption processes and ion formation processes which mean that the optimal analytical conditions depend on both the target analyte and the matrix.

  2. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    Science.gov (United States)

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  3. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways.

    Science.gov (United States)

    Zaccone, Eric J; Lieu, TinaMarie; Muroi, Yukiko; Potenzieri, Carl; Undem, Blair E; Gao, Peisong; Han, Liang; Canning, Brendan J; Undem, Bradley J

    2016-01-01

    The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3) and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4) coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ "cough receptors" such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli. PMID:27213574

  4. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways

    Science.gov (United States)

    Lieu, TinaMarie; Muroi, Yukiko; Potenzieri, Carl; Undem, Blair E.; Gao, Peisong; Han, Liang; Canning, Brendan J.

    2016-01-01

    The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3) and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4) coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ “cough receptors” such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli. PMID:27213574

  5. Simultaneous detection of nonpolar and polar compounds by heat-assisted laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Nazarian, Javad; Kostiainen, Risto; Vertes, Akos; Kauppila, Tiina J

    2013-01-01

    A heat-assisted laser ablation electrospray ionization (HA-LAESI) method for the simultaneous mass spectrometric analysis of nonpolar and polar analytes was developed. The sample was introduced using mid-infrared laser ablation of a water-rich target. The ablated analytes were ionized with an electrospray plume, which was intercepted by a heated nitrogen gas jet that enhanced the ionization of analytes of low polarity. The feasibility of HA-LAESI was tested by analyzing, e.g., naphtho[2,3-a]pyrene, cholesterol, tricaprylin, 1,1',2,2'-tetramyristoyl cardiolipin, bradykinin fragment 1-8, and 1-palmitoyl-2-oleoyl-sn-glycerol. HA-LAESI was found better suited for low polarity compounds than conventional LAESI, whereas polar compounds were observed with both techniques. The sensitivity of HA-LAESI for the polar bradykinin fragment 1-8 was slightly lower than observed for LAESI. HA-LAESI showed a linear response for 500 nM to 1.0 mM solutions (n = 11) of verapamil with R(2) = 0.988. HA-LAESI was applied for the direct analysis of tissue samples, e.g., avocado (Persea americana) mesocarp and mouse brain tissue sections. Spectra of the avocado showed abundant triglyceride ion peaks, and the results for the mouse brain sections showed cholesterol as the main species. Conventional LAESI shows significantly lower ionization efficiency for these neutral lipids. HA-LAESI can be applied to the analysis of nonpolar and polar analytes, and it extends the capabilities of conventional LAESI to nonpolar and neutral compounds. PMID:23199051

  6. Effect of antihypertensive agents on stellate cells during liver regeneration in rats Efeito de agentes anti-hipertensivos sobre as células estreladas durante a regeneração hepática em ratos

    Directory of Open Access Journals (Sweden)

    Leandra N. Z. Ramalho

    2003-03-01

    Full Text Available BACKGROUND: Although most studies have focused on the hepatocytes, all the hepatic cells participate in the regenerative process, among them the stellate cells. The stellate cells are mesenchymal cells involved in local neurotransmission and paracrine regulation of several liver functions. Acute hepatic tissue loss promotes the proliferation and activation of stellate cells from a quiescent state to myofibroblast-like cells. AIM: Investigate the effects of antihypertensive agents on the stellate cell population during the liver regenerative phenomenon in rats. METHODS: Adult male Wistar rats received lisinopril, losartan, bradykinin, or saline solution in a proportional volume, intraperitoneally, before and after 70% partial hepatectomy. Animals from the experimental and saline groups were sacrificed at 36 hours after partial hepatectomy. The alpha-smooth muscle actin labelled stellate cells population was counted in the periportal and pericentral zones of the liver specimen. RESULTS: The labelled stellate cells were more numerous in the control group both in the periportal and pericentral zones at 36 hours after partial hepatectomy than at the other times. The population of stellate cells was significantly lower in the losartan group and higher in the bradykinin and lisinopril groups than in the control group. CONCLUSIONS: These results suggest that losartan can inhibit and bradykinin and lisinopril can stimulate the stellate cell population during liver regeneration in rats. These cells synthesize several substances to stimulate liver regeneration.RACIONAL: Embora a maioria dos estudos focalize os hepatócitos, todas as células hepáticas participam do processo regenerativo, entre elas as células estreladas, que são células mesenquimais envolvidas na regulação de uma série de funções hepáticas. A perda aguda de parênquima hepático induz proliferação e ativação destas células, a partir de estado de quiescência para fen

  7. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus

    Directory of Open Access Journals (Sweden)

    Gruber Helen E

    2012-09-01

    Full Text Available Abstract Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V discs vs. less degenerated discs (grades I-III, on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase. Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in

  8. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1.

    Science.gov (United States)

    Martino, Mary E B; Olsen, John C; Fulcher, Nanette B; Wolfgang, Matthew C; O'Neal, Wanda K; Ribeiro, Carla M P

    2009-05-29

    Inflamed cystic fibrosis (CF) human bronchial epithelia (HBE), or normal HBE exposed to supernatant from mucopurulent material (SMM) from CF airways, exhibit endoplasmic reticulum (ER)/Ca(2+) store expansion and amplified Ca(2+)-mediated inflammation. HBE inflammation triggers an unfolded protein response (UPR) coupled to mRNA splicing of X-box binding protein-1 (XBP-1). Because spliced XBP-1 (XBP-1s) promotes ER expansion in other cellular models, we hypothesized that XBP-1s is responsible for the ER/Ca(2+) store expansion in inflamed HBE. XBP-1s was increased in freshly isolated infected/inflamed CF in comparison with normal HBE. The link between airway epithelial inflammation, XBP-1s, and ER/Ca(2+) store expansion was then addressed in murine airways challenged with phosphate-buffered saline or Pseudomonas aeruginosa. P. aeruginosa-challenged mice exhibited airway epithelial ER/Ca(2+) store expansion, which correlated with airway inflammation. P. aeruginosa-induced airway inflammation triggered XBP-1s in ER stress-activated indicator (ERAI) mice. To evaluate the functional role of XBP-1s in airway inflammation linked to ER/Ca(2+) store expansion, control, XBP-1s, or dominant negative XBP-1 (DN-XBP-1) stably expressing 16HBE14o(-) cell lines were used. Studies with cells transfected with an unfolded protein response element (UPRE) luciferase reporter plasmid confirmed that the UPRE was activated or inhibited by expression of XBP-1s or DN-XBP-1, respectively. Expression of XBP-1s induced ER/Ca(2+) store expansion and potentiated bradykinin-increased interleukin (IL)-8 secretion, whereas expression of DN-XBP-1 inhibited bradykinin-dependent IL-8 secretion. In addition, expression of DN-XBP-1 blunted SMM-induced ER/Ca(2+) store expansion and SMM-induced IL-8 secretion. These findings suggest that, in inflamed HBE, XBP-1s is responsible for the ER/Ca(2+) store expansion that confers amplification of Ca(2+)-dependent inflammatory responses. PMID:19321437

  9. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management.

    Science.gov (United States)

    Calvete, Juan J; Borges, Adolfo; Segura, Alvaro; Flores-Díaz, Marietta; Alape-Girón, Alberto; Gutiérrez, José María; Diez, Nardy; De Sousa, Leonardo; Kiriakos, Demetrio; Sánchez, Eladio; Faks, José G; Escolano, José; Sanz, Libia

    2009-03-01

    The taxonomic status of the medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela, which has been classified as Bothrops colombiensis, remains incertae cedis. To help resolving this question, the venom proteome of B. colombiensis was characterized by reverse-phase HPLC fractionation followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom contained proteins belonging to 8 types of families. PI Zn(2+)-metalloproteinases and K49 PLA(2) molecules comprise over 65% of the venom proteins. Other venom protein families comprised PIII Zn(2+)-metalloproteinases (11.3%), D49 PLA(2)s (10.2%), l-amino acid oxidase (5.7%), the medium-sized disintegrin colombistatin (5.6%), serine proteinases (1%), bradykinin-potentiating peptides (0.8%), a DC-fragment (0.5%), and a CRISP protein (0.1%). A comparison of the venom proteomes of B. colombiensis and B. atrox did not support the suggested synonymy between these two species. The closest homologues to B. colombiensis venom proteins appeared to be toxins from B. asper. A rough estimation of the similarity between the venoms of B. colombiensis and B. asper indicated that these species share approximately 65-70% of their venom proteomes. The close kinship of B. colombiensis and B. asper points at the ancestor of B. colombiensis as the founding Central American B. asper ancestor. This finding may be relevant for reconstructing the natural history and cladogenesis of Bothrops. Further, the virtually indistinguishable immunological crossreactivity of a Venezuelan ABC antiserum (raised against a mixture of B. colombiensis and Crotalus durissus cumanensis venoms) and the Costa Rican ICP polyvalent antivenom (generated against a mixture of B. asper, Crotalus simus, and Lachesis stenophrys venoms) towards the venoms of B. colombiensis and B. asper, supports this

  10. Effects of acrylic resin monomers on porcine coronary artery reactivity.

    Science.gov (United States)

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S

    2016-07-01

    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA. PMID:27132475

  11. Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths.

    Science.gov (United States)

    Jiang, Ting; Chen, Yu; Mao, Lu; Marshall, Alan G; Xu, Wei

    2016-01-14

    It is known that the ion collision cross section (CCS) may be calculated from the linewidth of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the energetic ion-neutral collision model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with ion mobility measurements, and the unfolding of protein ions (ubiquitin) at higher charge states is also observed. PMID:26314765

  12. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  13. DIFFERENT RESPONSES OF CHORIOCAPILLARY ENDOTHELIAL CELLS AND RETINALCAPILLARY ENDOTHELIAL CELLS TO MITOGENIC AND VASOACTIVE FACTORS

    Institute of Scientific and Technical Information of China (English)

    李维业; 刘熙朴; MyronYanoff

    1994-01-01

    The reaponses of choriocapillary endothelial cells(CCE) and retinal capillary ondothelial cells (RCE) in cul-ture,in terms of phosphoinositide (PI) breakdown and cellular mitogenesis,to retinal pigment epithelial cell (RPE)-conditioned medium and vasoactive agents have been compared.RPE-conditioned medium did not induce PI breakdown in either type of cell.However,it stimulated DNA synthesis in CCE but not in RCE.Bradykinin (BDK)acted as both a fast signaling and a slow mitogenic factor on CCE,out BDK did not affect PI turnover or DNA synthesis in RCE.In contrast,thrombin stimulated PI turnover in RCE but not in CCE,though it did not in-duce 3H-thymidine incorporation into either type of cell.These differences in cellular functions between CCE and RCE following stimulation suggest that induction of DNA synthesis and recptor-mediated PI turnover by external factors is determined,at least in part,by the origin of the capillary endothelial cell.Therefore,extrapolation to CCE pathophysiology from experiments using endothelial cells from other capillary origins may not be valid.

  14. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  15. Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrero

    2013-01-01

    Full Text Available The aim of this study was to analyze whether tyrosine phosphorylation in tumoral arteries may modulate their vascular response. To do this, mesenteric arteries supplying blood flow to colorectal tumors or to normal intestine were obtained during surgery and prepared for isometric tension recording in an organ bath. Increasing tyrosine phosphorylation with the phosphatase inhibitor, sodium orthovanadate produced arterial contraction which was lower in tumoral than in control arteries, whereas it reduced the contraction to noradrenaline in tumoral but not in control arteries and reduced the relaxation to bradykinin in control but not in tumoral arteries. Protein expression of VEGF-A and of the VEGF receptor FLT1 was similar in control and tumoral arteries, but expression of the VEGF receptor KDR was increased in tumoral compared with control arteries. This suggests that tyrosine phosphorylation may produce inhibition of the contraction in tumoral mesenteric arteries, which may increase blood flow to the tumor when tyrosine phosphorylation is increased by stimulation of VEGF receptors.

  16. Transcriptome and proteome of the highly neurotoxic venom of Gloydius intermedius.

    Science.gov (United States)

    Yang, Zhang-Min; Yang, Yu-E; Chen, Yu; Cao, Jing; Zhang, Cui; Liu, Ling-Ling; Wang, Zhe-Zhi; Wang, Xu-Min; Wang, Ying-Ming; Tsai, Inn-Ho

    2015-12-01

    The venomics of Gloydius intermedius were investigated using expressed sequence tags (ESTs) analyses, 2D gel-electrophoresis combined with MALDI-TOF/TOF, and LC-MS/MS. A total of 1920 ESTs from the venom gland cDNA library were sequenced; 74% of them belonged to toxin-families. The four most abundant families among the toxin transcripts were: serine protease (SP, 36.2%), bradykinin potentiating peptide (25.3%), l-amino acid oxidase (LAAO, 13.1%), and phospholipase A2 (PLA2, 9.9%). Moreover, the full sequences of four PLA2s, eight SPs, cysteine-rich secretory protein (CRISP), C-type-lectin-like-protein (CTLP), hyaluronidase, metalloproteinase, and nerve growth factor were deduced from the cDNA sequences. Excluding the CRISP and hyaluronidase, most of the G. intermedius venom proteins bear 92-99% sequence identities to those of other pitviper venoms. The most abundant components are PLA2s (37%), SPs (20%) and LAAO (6%), while metalloproteinase, CTLP, and other components each account for intermedius and other hemorrhagic pitvipers. The bimorphism of hemorrhagic and neurotoxic venoms among Gloydius is confirmed; our results shed more lights on the co-evolution of both neurotoxicity and hypotension in some viperid venoms.

  17. Status of Angiotensin-converting Enzyme Inhibitors (ACEI) and Progress of the Research on ACEI from Natural Sources%血管紧张素转化酶抑制剂(ACEI)现状与天然ACEI的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘会敏; 张聪颖; 曹雨; 孔毅; 杜迎翔

    2012-01-01

    血管紧张素转化酶(ACE)在血压调节中起着重要作用,ACE抑制剂(ACEI)可以抑制ACE的活性,从而阻碍血管紧张素Ⅱ的生成和舒缓激肽的失活,使血压下降.文中介绍了ACEI的作用机制、合成ACEI的现状、国内外天然ACEI的研究现状、活性检测方法,以期为ACEI进一步研究提供参考.%Angiotensin I converting enzyme (ACE) plays an important physiological role in the regulation of high blood pressure. Inhibition of ACE activity leads to a decrease in the concentration of angiotensin Ⅱ and inactivates catalytic function of bradykinin with a concomitant reduction of blood pressure. Therefore, inhibition of ACE is considered to be an important therapeutic approach for controlling hypertension . This review details the information on the mechanism of action of ACEI, the present situation of synthesizing ACE inhibitors and the natural ACE inhibitors as well as,activity determination. The aim of this work is to provide some references for further research on ACE inhibitors.

  18. Preoperative angiotensin converting enzyme inhibitor usage in patients with chronic subdural hematoma: Associations with initial presentation and clinical outcome.

    Science.gov (United States)

    Neidert, Marian C; Schmidt, Tobias; Mitova, Tatyana; Fierstra, Jorn; Bellut, David; Regli, Luca; Burkhardt, Jan-Karl; Bozinov, Oliver

    2016-06-01

    The aim of this study is to analyze the association of preoperative usage of angiotensin converting enzyme (ACE) inhibitors with the initial presentation and clinical outcome of patients with chronic subdural hematoma (cSDH). Patients treated for cSDH between 2009 and 2013 at our institution were included in this retrospective case-control study. Medical charts were reviewed retrospectively and data were analyzed using descriptive and inferential statistics. Out of 203 patients (58 females, mean age 73.2years), 53 (26%) patients were on ACE inhibitors before their presentation with cSDH. Median initial hematoma volume in individuals with ACE inhibitors (179.2±standard error of the mean [SEM] 13.0ml) was significantly higher compared to patients without ACE inhibitors (140.4±SEM 6.2ml; p=0.007). There was an increased probability of surgical reintervention in the ACE inhibitor group (12/53, 23% versus 19/153, 12%; p=0.079), especially in patients older than 80years (6/23, 26% versus 3/45, 7%; p=0.026). ACE inhibitors are associated with higher hematoma volume in patients with cSDH and with a higher frequency of recurrences requiring surgery (especially in the very old). We hypothesize that these effects are due to ACE inhibitor induced bradykinin elevation causing increased vascular permeability of the highly vascularized neomembranes in cSDH. PMID:26898577

  19. Plasma kallikrein-kinin system and diabetic retinopathy.

    Science.gov (United States)

    Liu, Jia; Feener, Edward P

    2013-03-01

    Diabetic retinopathy (DR) occurs, to some extent, in most people with at least 20 years' duration of diabetes mellitus. The progression of DR to its sight-threatening stages is usually associated with the worsening of underlying retinal vascular dysfunction and disease. The plasma kallikrein-kinin system (KKS) is activated during vascular injury, where it mediates important functions in innate inflammation, blood flow, and coagulation. Recent findings from human vitreous proteomics and experimental studies on diabetic animal models have implicated the KKS in contributing to DR. Vitreous fluid from people with advanced stages of DR contains increased levels of plasma KKS components, including plasma kallikrein (PK), coagulation factor XII, and high-molecular-weight kininogen. Both bradykinin B1 and B2 receptor isoforms (B1R and B2R, respectively) are expressed in human retina, and retinal B1R levels are increased in diabetic rodents. The activation of the intraocular KKS induces retinal vascular permeability, vasodilation, and retinal thickening, and these responses are exacerbated in diabetic rats. Preclinical studies have shown that the administration of PK inhibitors and B1R antagonists to diabetic rats ameliorates retinal vascular hyperpermeability and inflammation. These findings suggest that components of plasma KKS are potential therapeutic targets for diabetic macular edema. PMID:23362193

  20. The kallikrein-kinin system in diabetic retinopathy.

    Science.gov (United States)

    Bhat, Menakshi; Pouliot, Mylène; Couture, Réjean; Vaucher, Elvire

    2014-01-01

    Diabetic retinopathy (DR) is a major microvascular complication associated with type 1 and type 2 diabetes mellitus, which can lead to visual impairment and blindness. Current treatment strategies for DR are mostly limited to laser therapies, steroids, and anti-VEGF agents, which are often associated with unwanted side effects leading to further complications. Recent evidence suggests that kinins play a primary role in the development of DR through enhanced vascular permeability, leukocytes infiltration, and other inflammatory mechanisms. These deleterious effects are mediated by kinin B1 and B2 receptors, which are expressed in diabetic human and rodent retina. Importantly, kinin B1 receptor is virtually absent in sane tissue, yet it is induced and upregulated in diabetic retina. These peptides belong to the kallikrein-kinin system (KKS), which contains two separate and independent pathways of regulated serine proteases, namely plasma kallikrein (PK) and tissue kallikrein (TK) that are involved in the biosynthesis of bradykinin (BK) and kallidin (Lys-BK), respectively. Hence, ocular inhibition of kallikreins or antagonism of kinin receptors offers new therapeutic avenues in the treatment and management of DR. Herein, we present an overview of the principal features and known inflammatory mechanisms associated with DR along with the current therapeutic approaches and put special emphasis on the KKS as a new and promising therapeutic target due to its link with key pathways directly associated with the development of DR. PMID:25130041

  1. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases.

    Science.gov (United States)

    Girolami, Jean-Pierre; Blaes, Nelly; Bouby, Nadine; Alhenc-Gelas, François

    2014-01-01

    Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter. PMID:25130042

  2. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    Science.gov (United States)

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  3. What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders?

    Science.gov (United States)

    Naffah-Mazzacoratti, Maria da Graça; Gouveia, Telma Luciana Furtado; Simões, Priscila Santos Rodrigues; Perosa, Sandra Regina

    2014-05-26

    The kallikrein-kinin system (KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors (B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system (RAS) is an important blood pressure regulator and controls both sodium and water intake. AngII is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngII acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches. PMID:24921004

  4. Regulation of the kinin receptors after induction of myocardial infarction: a mini-review

    Directory of Open Access Journals (Sweden)

    Tschöpe C.

    2000-01-01

    Full Text Available It is well known that the responses to vasoactive kinin peptides are mediated through the activation of two receptors termed bradykinin receptor B1 (B1R and B2 (B2R. The physiologically prominent B2R subtype has certainly been the subject of more intensive efforts in structure-function studies and physiological investigations. However, the B1R activated by a class of kinin metabolites has emerged as an important subject of investigation within the study of the kallikrein-kinin system (KKS. Its inducible character under stress and tissue injury is therefore a field of major interest. Although the KKS has been associated with cardiovascular regulation since its discovery at the beginning of the last century, less is known about the B1R and B2R regulation in cardiovascular diseases like hypertension, myocardial infarction (MI and their complications. This mini-review will summarize our findings on B1R and B2R regulation after induction of MI using a rat model. We will develop the hypothesis that differences in the expression of these receptors may be associated with a dual pathway of the KKS in the complex mechanisms of myocardial remodeling.

  5. 激肽释放酶激肽系统与糖尿病肾病%The kallikrein-kinin system and diabetic nephropathy

    Institute of Scientific and Technical Information of China (English)

    常宝成; 宋新荣

    2011-01-01

    The kallikrein-kinin system (KKS) includes kallikrein, kininogen, kinin and kininase. All components of the KKS are expressed in the kidney. The KKS has been implicated in the development and progress of diabetic nephropathy by affecting the proliferation of mesangial cells, the synthesis and degradation of extracellular matrix, the ZO-1 rearrangement of podocyte, and so on. The therapeutic strategies targeting the KKS for diabetic nephropathy include kallidinogenase, angiotensin-converting enzyme inhibitors, neutral endopeptidase inhibitors,vasopeptidase inhibitors and bradykinin receptor agonists.%激肽释放酶激肽系统(KKS)包括激肽释放酶、激肽原、激肽和激肽酶.肾脏含有KKS的所有组分.KKS通过影响系膜细胞增生、细胞外基质的合成与降解、足突细胞ZO-1蛋白的重排等而在糖尿病肾病的发生、发展中起重要作用.以KKS为靶向的糖尿病肾病干预策略包括胰激肽原酶、血管紧张素转换酶抑制剂、中性肽链内切酶抑制剂、血管肽酶抑制剂及缓激肽受体激动剂等.

  6. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  7. The role of the kallikrein-kinin system genes in the salt sensitivity of blood pressure: the GenSalt Study.

    Science.gov (United States)

    Gu, Dongfeng; Zhao, Qi; Kelly, Tanika N; Hixson, James E; Rao, Dabeeru C; Cao, Jie; Chen, Jing; Li, Jianxin; Chen, Jichun; Ji, Xu; Hu, Dongsheng; Wang, Xushan; Liu, De-Pei; He, Jiang

    2012-10-01

    The current study comprehensively examined the association between common genetic variants of the kallikrein-kinin system (KKS) and blood pressure salt sensitivity. A 7-day low-sodium followed by a 7-day high-sodium dietary intervention was conducted among 1,906 Han Chinese participants recruited from 2003 to 2005. Blood pressure was measured by using a random-zero sphygmomanometer through the study. A total of 205 single nucleotide polymorphisms (SNPs) covering 11 genes of the KKS were selected for the analyses. Genetic variants of the bradykinin receptor B2 gene (BDKRB2) and the endothelin converting enzyme 1 gene (ECE1) showed significant associations with the salt-sensitivity phenotypes even after adjustment for multiple testing. Compared with the major G allele, the BDKRB2 rs11847625 minor C allele was significantly associated with increased systolic blood pressure responses to low-sodium intervention (P = 0.0001). Furthermore, a haplotype containing allele C was associated with an increased systolic blood pressure response to high-sodium intervention (P = 0.0009). Seven highly correlated ECE1 SNPs were shown to increase the diastolic blood pressure response to low-sodium intervention (P values ranged from 0.0003 to 0.002), with 2 haplotypes containing these 7 SNPs also associated with this same phenotype (P values ranged from 0.0004 to 0.002). In summary, genetic variants of the genes involved in the regulation of KKS may contribute to the salt sensitivity of blood pressure. PMID:23035147

  8. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    Science.gov (United States)

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context. PMID:23324378

  9. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    Science.gov (United States)

    Benest, Andrew V; Kruse, Karoline; Savant, Soniya; Thomas, Markus; Laib, Anna M; Loos, Elias K; Fiedler, Ulrike; Augustin, Hellmut G

    2013-01-01

    Genetic experiments (loss-of-function and gain-of-function) have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2) acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived) regulator of rapid vascular responses (within minutes) caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min), the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/-)) mice. In comparison to the wild type control mice, the Ang2(-/-) mice demonstrated a significantly attenuated response. The Ang-2(-/-) phenotype was rescued by systemic administration (paracrine) of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/-) endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2) alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines. PMID:23940579

  10. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    Science.gov (United States)

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  11. Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo.

    Science.gov (United States)

    Ma, Dongying; Mizurini, Daniella M; Assumpção, Teresa C F; Li, Yuan; Qi, Yanwei; Kotsyfakis, Michail; Ribeiro, José M C; Monteiro, Robson Q; Francischetti, Ivo M B

    2013-12-12

    The identity of vampire bat saliva anticoagulant remained elusive for almost a century. Sequencing the salivary gland genes from the vampire bat Desmodus rotundus identified Desmolaris as a novel 21.5-kDa naturally deleted (Kunitz 1-domainless) form of tissue factor pathway inhibitor. Recombinant Desmolaris was expressed in HEK293 cells and characterized as a slow, tight, and noncompetitive inhibitor of factor (F) XIa by a mechanism modulated by heparin. Desmolaris also inhibits FXa with lower affinity, independently of protein S. In addition, Desmolaris binds kallikrein and reduces bradykinin generation in plasma activated with kaolin. Truncated and mutated forms of Desmolaris determined that Arg32 in the Kunitz-1 domain is critical for protease inhibition. Moreover, Kunitz-2 and the carboxyl-terminus domains mediate interaction of Desmolaris with heparin and are required for optimal inhibition of FXIa and FXa. Notably, Desmolaris (100 μg/kg) inhibited FeCl3-induced carotid artery thrombus without impairing hemostasis. These results imply that FXIa is the primary in vivo target for Desmolaris at antithrombotic concentrations. Desmolaris also reduces the polyphosphate-induced increase in vascular permeability and collagen- and epinephrine-mediated thromboembolism in mice. Desmolaris emerges as a novel anticoagulant targeting FXIa under conditions in which the coagulation activation, particularly the contact pathway, plays a major pathological role. PMID:24159172

  12. First Report of Eurycoma longifolia Jack Root Extract Causing Relaxation of Aortic Rings in Rats

    Science.gov (United States)

    2016-01-01

    Although Eurycoma longifolia has been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluated in vitro. Results showed that DCM-II reduced (p < 0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p < 0.05) while bradykinin- (BK-) induced relaxation enhanced (p < 0.001). In vitro, DCM-II inhibited (p < 0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediated via inhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.

  13. Analgesic and Anti-inflammatory Effects of Ginger Oil

    Institute of Scientific and Technical Information of China (English)

    JIA Yong-liang; XIE Qiang-min; ZHAO Jun-ming; ZHANG Lin-hui; SUN Bao-shan; BAO Meng-jing; LI Fen-fen; SHEN Jian; SHEN Hui-jun; ZHAO Yu-qing

    2011-01-01

    Objective Ginger (Zingiber officinale) is widely used as a spice in cooking and as a medicinal herb in traditional herbal medicine. The present study was to investigate the analgesic and anti-inflammatory activities of ginger oil in experimental animal models. Methods The analgesic effect of the oils was evaluated by the "acetic acid" and "hot-plate" test models of pain in mice. The anti-inflammatory effect of the oil was investigated in rats, using rat paw edema induced by carrageenan, adjuvant arthritis, and vascular permeability induced by bradykinin, arachidonic acid, and histamine. Indomethacin (1 mg/kg), Aspirin (0.5 g/kg) and Dexamethasone (2.5 mg/kg) were used respectively as reference drugs for comparison. Results The ginger oil (0.25-1.0 g/kg) produced significant analgesic effect against chemically- and thermally-induced nociceptive pain stimuli in mice (P < 0.05, 0.01). And the ginger oil (0.25-1.0 g/kg) also significantly inhibited carrageenan-induced paw edema, adjuvant arthritis, and inflammatory mediators-induced vascular permeability in rats (P < 0.05, 0.001). Conclusion These findings confirm that the ginger oil can be used to treat pain and chronic inflammation such as rheumatic arthritis.

  14. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  15. Antagonistic activity of etizolam on platelet-activating factor in vivo experiments.

    Science.gov (United States)

    Terasawa, M; Mikashima, H; Tahara, T; Maruyama, Y

    1987-08-01

    The ability of etizolam, 6-(o-chlorophenyl)-8-ethyl-1-methyl-4H-s-triazolo[3,4-c]thieno[2,3-e] [1,4]diazepine (Y-7131), an anti-anxiety drug, to inhibit platelet-activating factor (PAF)-induced reactions was investigated in experimental animals in vivo. Etizolam (0.01-0.3 mg/kg, i.v.) dose dependently inhibited PAF (0.3 microgram/kg, i.v.)-induced bronchoconstriction (Konzett and Rössler's method) in guinea pigs, but even at doses as large as 3 mg/kg, i.v., it had no effect on bronchoconstriction induced by histamine, serotonin, acetylcholine, arachidonic acid, bradykinin, angiotensin l or leukotriene D4. Etizolam (0.1-1 mg/kg, i.v.) also dose-dependently reversed PAF (1 microgram/kg, i.v.)-induced hypotension in anesthetized rats. Injection of PAF into the tail veins of mice produced lethal shock within 10-30 min. Etizolam (0.1-3 mg/kg, i.v. and 1-10 mg/kg, p.o.) protected against the lethal effect of PAF (75 micrograms/kg, i.v.) in a dose-dependent manner. These results indicate that etizolam specifically inhibits the action of PAF in vivo. PMID:3682404

  16. Effects of acrylic resin monomers on porcine coronary artery reactivity.

    Science.gov (United States)

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S

    2016-07-01

    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA.

  17. D-Arg1,D-Phe5,D-Trp7,9,Leu11 substance P, a neuropeptide antagonist, blocks binding, Ca2(+)-mobilizing, and mitogenic effects of endothelin and vasoactive intestinal contractor in mouse 3T3 cells

    International Nuclear Information System (INIS)

    Endothelin (ET1) and vasoactive intestinal contractor (VIC) stimulate quiescent Swiss 3T3 cells to resume DNA synthesis acting synergistically with epidermal growth factors (EGF) and other mitogens. The peptide [D-Arg1,D-Phe5,D-Trp7,9,Leu11] substance P has been identified as a broad spectrum neuropeptide antagonist which blocks the binding and biological effects of the Ca2(+)-mobilizing neuropeptides bombesin, vasopressin, and bradykinin. In the present study we show that [D-Arg1,D-Phe5,D-Trp7,9,Leu11] substance P also acts as an ET1/VIC antagonist as judged by the following criteria: (a) inhibition of specific 125I-labelled ET1 binding to a ET1/VIC receptor in a competitive and dose-dependent manner; (b) blocking of the rapid increase in the cytosolic Ca2+ concentration promoted by ET1 or VIC; and (c) inhibition of DNA synthesis stimulated by VIC in the presence of EGF. The inhibitory effects of [D-Arg1,D-Phe5,D-Trp7,9,Leu 11] substance P on Ca2+ mobilization and DNA synthesis were reversed by increasing the concentration of VIC. This is the first time that a peptide structurally unrelated to ET1 or VIC is shown to block the binding and mitogenic effects of peptides of the endothelin family

  18. Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel

    Science.gov (United States)

    Sun, Jianxin; Liao, James K.

    2002-01-01

    Endothelium-derived nitric oxide (NO) is an important regulator of vascular function. NO is produced by endothelial NO synthase (eNOS) whose function is modulated, in part, by specific protein interactions. By coimmunoprecipitation experiments followed by MS analyses, we identified a human voltage-dependent anion/cation channel or porin as a binding partner of eNOS. The interaction between porin and eNOS was demonstrated by coimmunoprecipitation studies in nontransfected human endothelial cells and Cos-7 cells transiently transfected with eNOS and porin cDNAs. In vitro binding studies with glutathione S-transferase–porin indicated that porin binds directly to eNOS and that this interaction augmented eNOS activity. The calcium ionophore, A23187, and bradykinin, which are known to activate eNOS, markedly increased porin–eNOS interaction, suggesting a potential role of intracellular Ca2+ in mediating this interaction. Theses results indicate that the interaction between a voltage-dependent membrane channel and eNOS may be important for regulating eNOS activity. PMID:12228731

  19. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses. PMID:26812904

  20. [Quincke and his oedema].

    Science.gov (United States)

    van Gijn, Jan; Gijselhart, Joost P

    2012-01-01

    Heinrich Irenaeus Quincke (1842-1922), the son of a physician, was born in Frankfurt but was educated in Berlin where he also completed his medical studies in 1864. After a 'grand tour' that took him to Paris, Vienna and London, he was trained in Berlin, first in surgery and later in internal medicine, under Von Frerichs (1819-1885). In 1878, he became a professor of internal medicine in Berne; from 1883 he held the chair of medicine in Kiel, which he would hold for the next 30 years. In 1882, he published a synthesis of several observations of 'acute, circumscribed oedema of the skin'. Quincke accurately described the clinical features and distinguished the familial from the sporadic forms. He was correct in attributing the condition to increased vascular permeability, but he surmised the causal factors were neurogenic rather than humoral, according to current insights (excess of bradykinin due to external factors or hereditary deficiency of C1-esterase inhibitor). Quincke not only contributed to several other clinical observations, but also pioneered the lumbar puncture, initially not for diagnostic purposes, but to relieve headache in hydrocephalic children. PMID:23009823

  1. PGI2 synthesis and excretion in dog kidney: evidence for renal PG compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R.M.; Nasjletti, A.; Heerdt, P.M.; Baer, P.G.

    1986-01-01

    To assess the concept of compartmentalization of renal prostaglandins (PG), we compared entry of PGE2 and the PGI2 metabolite 6-keto-PGF1 alpha into the renal vascular and tubular compartments, in sodium pentobarbital-anesthetized dogs. Renal arterial 6-keto-PGF1 alpha infusion increased both renal venous and urinary 6-keto-PGF1 alpha outflow. In contrast, renal arterial infusion of arachidonic acid (AA) or bradykinin (BK) increased renal venous 6-keto-PGF1 alpha outflow but had no effect on its urinary outflow. Both urinary and renal venous PGE2 outflows increased during AA or BK infusion. Ureteral stopped-flow studies revealed no postglomerular 6-keto-PGF1 alpha entry into tubular fluid. During renal arterial infusion of (3H)PGI2 and inulin, first-pass 3H clearance was 40% of inulin clearance; 35% of urinary 3H was 6-keto-PGF1 alpha, and two other urinary metabolites were found. During renal arterial infusion of (3H)6-keto-PGF1 alpha and inulin, first-pass 3H clearance was 150% of inulin clearance; 75% of urinary 3H was 6-keto-PGF1 alpha, and only one other metabolite was found. We conclude that in the dog PGE2 synthesized in the kidney enters directly into both the renal vascular and tubular compartments, but 6-keto-PGF1 alpha of renal origin enters directly into only the renal vascular compartment.

  2. Plasma extravasation mediated by lipopolysaccharide-induction of kinin B1 receptors in rat tissues

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Wille

    2001-01-01

    Full Text Available The present study was performed to: (a evaluate the effects of kinin B1 (Sar{D-Phe8}-des-Arg9-BK; 10 nmol/kg and B2 (bradykinin (BK; 10 nmol/kg receptor agonists on plasma extravasation in selected rat tissues; (b determine the contribution of a lipopolysaccharide (LPS (100 μ g/kg to the effects triggered by B1 and B2 agonists; and (c characterize the selectivity of B1 ({Leu8}desArg9-BK; 10 nmol/kg and B2 (HOE 140; 10 nmol/kg antagonists as inhibitors of this kinin-induced phenomenon. B1 and B2 agonists were shown to increase plasma extravasation in the duodenum, ileum and also in the urinary bladder of the rat. LPS pretreatment enhanced the plasma extravasation mediated only by the B1 agonist in the duodenum, ileum, trachea, main and segmentar bronchi. These effects were prevented by the B1. but not the B2 antagonist. In normal rats, the B2 antagonist inhibited the effect of B2 agonist in all the tissues analyzed. However, in LPS-treated rats, the B2 antagonist was ineffective in the urinary bladder.

  3. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve. PMID:2719524

  4. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  5. Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp.

    Science.gov (United States)

    Vieira, Mônica L.; Naudin, Clément; Mörgelin, Matthias; Romero, Eliete C.; Nascimento, Ana Lucia T. O.; Herwald, Heiko

    2016-01-01

    Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease. PMID:27167223

  6. What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders?

    Institute of Scientific and Technical Information of China (English)

    Maria; da; Graa; Naffah-Mazzacoratti; Telma; Luciana; Furtado; Gouveia; Priscila; Santos; Rodrigues; Simōes; Sandra; Regina; Perosa

    2014-01-01

    The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors(B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system(RAS) is an important blood pressure regulator and controls both sodium and water intake. AngⅡ is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngⅡ acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.

  7. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  8. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  9. A convenient, high-throughput method for enzyme-luminescence detection of dopamine released from PC12 cells.

    Science.gov (United States)

    Shinohara, Hiroaki; Wang, Feifei; Hossain, S M Zakir

    2008-01-01

    This protocol represents a novel enzyme-luminescence method to detect dopamine sensitively and rapidly with high temporal resolution. In principle, dopamine is first oxidized with tyramine oxidase to produce H(2)O(2), and then the produced H(2)O(2) reacts with luminol to generate chemiluminescence in the presence of horseradish peroxidase (POD). We applied this method successfully to perform real-time monitoring of dopamine release from PC12 cells using a luminescence plate reader upon stimulation with several drugs (e.g., acetylcholine, bradykinin). The results indicated that the dopamine release from PC12 cells was modulated by these drugs in a way similar to that found by using several conventional analytical techniques, such as HPLC-electrochemical detector (ECD). Unlike other assays, this assay technique is simple, rapid, highly sensitive and thus useful for assessment of effects of drugs on the nervous system. The dopamine release assay takes only < or =1 h once reagent setup and culture plates' preparation are finished. PMID:18833200

  10. Endothelial contraction induced by histamine-type mediators: an electron microscopic study.

    Science.gov (United States)

    Majno, G; Shea, S M; Leventhal, M

    1969-09-01

    Previous work has shown that endogenous chemical mediators, of which histamine is the prototype, increase the permeability of blood vessels by causing gaps to appear between endothelial cells. In the present paper, morphologic and statistical evidence is presented, to suggest that endothelial cells contract under the influence of mediators, and that this contraction causes the formation of intercellular gaps. Histamine, serotonin, and bradykinin were injected subcutaneously into the scrotum of the rat, and the vessels of the underlying cremaster muscle were examined by electron microscopy. To eliminate the vascular collapse induced by routine fixation, in one series of animals (including controls) the root of the cremaster was constricted for 2-4 min prior to sacrifice, and the tissues were fixed under conditions of mild venous congestion. Electron micrographs were taken of 599 nuclei from the endothelium of small blood vessels representing the various experimental situations. Nuclear deformations were classified into four types of increasing tightness (notches, foldsl closing folds, and pinches. In the latter the apposed surfaces of the nuclear membrane are in contact). It was found that: (1) venous congestion tends to straighten the nuclei in al groups; (2) mediators cause a highly significant increase in the number of pinches (P contraction, and similar to those of contracted smooth muscle; (6) there is no evidence of pericyte contraction under the conditions tested. Occasional pericytes appeared to receive fine nerve endings. Various hypotheses to explain nuclear pinching are discussed; the only satisfactory explanation is that which requires endothelial contraction. PMID:5801425

  11. Vasopeptidase inhibition improves insulin sensitivity and endothelial function in the JCR:LA-cp rat.

    Science.gov (United States)

    Russell, James C; Kelly, Sandra E; Schäfer, Stefan

    2004-08-01

    The insulin-resistant, hyperinsulinemic, normoglycemic, and obese JCR:LA-cp rat was used to study the effects of ramipril (an ACE inhibitor) and AVE7688 (a dual inhibitor of ACE and neutral endopeptidases) on insulin sensitivity and vascular function. Both compounds reduced the surge of plasma insulin in a meal tolerance test by approximately 50%. Ramipril had no effect on acetylcholine-induced relaxation but increased the sensitivity to sodium nitroprus-side at low concentrations. AVE7688 significantly reduced the EC50 for acetylcholine to relax phenylephrine-contracted aortic rings. None of the compounds affected the baseline coronary flow and reactive hyperemia. Coronary flow response to bradykinin in AVE7688- and ramipril-treated rat hearts showed a significantly lower EC50 than in control rats. Maximum flow rate was not different between groups. In summary, both ramipril and AVE7688 had significant hypoinsulinemic and insulin-sensitizing effects. Whereas ramipril had limited vascular effects, AVE7688 had more marked beneficial vascular effects, probably of endothelial origin and possibly related to lowered insulin levels.

  12. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus.

    Science.gov (United States)

    Silva, Valdelânia G; Silva, Renan O; Damasceno, Samara R B; Carvalho, Nathalia S; Prudêncio, Rafael S; Aragão, Karoline S; Guimarães, Maria A; Campos, Stefano A; Véras, Leiz M C; Godejohann, Markus; Leite, José Roberto S A; Barbosa, André L R; Medeiros, Jand-Venes R

    2013-06-28

    The aim of this study was to investigate the antinociceptive and anti-inflammatory activities of epiisopiloturine (1), an imidazole alkaloid found in the leaves of Pilocarpus microphyllus. The anti-inflammatory activity of 1 was evaluated using several agents that induce paw edema and peritonitis in Swiss mice. Paw tissue and peritoneal fluid samples were obtained to determine myeloperoxidase (MPO) activity or tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels. The antinociceptive activity was evaluated by acetic acid-induced writhing, the hot plate test, and pain induction using formalin. Compared to vehicle treatment, pretreatment with 1 (0.1, 0.3, and 1 mg/kg, ip) of mice significantly reduced carrageenan-induced paw edema (p < 0.05). Furthermore, compound 1 at a dose of 1 mg/kg effectively inhibited edema induced by dextran sulfate, serotonin, and bradykinin, but had no effect on histamine-induced edema. The administration of 1 (1 mg/kg) following carrageenan-induced peritonitis reduced total and differential peritoneal leukocyte counts and also carrageenan-induced paw MPO activity and TNF-α and IL-1β levels in the peritoneal cavity. Pretreatment with 1 also reduced acetic acid-induced writhing and inhibited the first and second phases of the formalin test, but did not alter response latency in the hot plate test. Pretreatment with naloxone reversed the antinociceptive effect of 1. PMID:23734744

  13. Dual microelectrodes for distance control and detection of nitric oxide from endothelial cells by means of scanning electrochemical microscope.

    Science.gov (United States)

    Isik, Sonnur; Etienne, Mathieu; Oni, Joshua; Blöchl, Andrea; Reiter, Sabine; Schuhmann, Wolfgang

    2004-11-01

    Dual Pt disk microelectrodes consisting of a 10-microm distance sensor and a 50-microm nitric oxide sensor were prepared. The 50-microm electrode was modified with Ni(4-N-tetramethyl)pyridyl porphyrin enclosed in the polymer network of a negatively charged electrodeposition paint. This paint prevented the dissolution of the otherwise soluble porphyrin in the aqueous test medium due to charge interactions. It also denied negatively charged ions in the analyte solution access to the electrode surface by electrostatic repulsion, thereby preventing interference from anions such as nitrite, nitrate, and ascorbate. With the aid of a scanning electrochemical microscope, it was possible to use the distance sensor by recording the negative feedback effect on the reduction of molecular oxygen to "guide" the nitric oxide sensor to various known distances from a layer of adherently growing human umbilical vein endothelial cells for the detection of nitric oxide released from the cells upon stimulation with bradykinin. The use of the distance sensor made it possible to preserve the integrity of the adherently growing cells concomitantly with the modified electrode by preventing the deterioration of the modifying layer during the distance adjustment step. PMID:15516132

  14. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    Science.gov (United States)

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context.

  15. Peptide Toxins in Solitary Wasp Venoms

    Science.gov (United States)

    Konno, Katsuhiro; Kazuma, Kohei; Nihei, Ken-ichi

    2016-01-01

    Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized. PMID:27096870

  16. Peptide Toxins in Solitary Wasp Venoms

    Directory of Open Access Journals (Sweden)

    Katsuhiro Konno

    2016-04-01

    Full Text Available Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs, in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.

  17. Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp.

    Science.gov (United States)

    Vieira, Mônica L; Naudin, Clément; Mörgelin, Matthias; Romero, Eliete C; Nascimento, Ana Lucia T O; Herwald, Heiko

    2016-05-01

    Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease. PMID:27167223

  18. Factor XII: a novel target for safe prevention of thrombosis and inflammation.

    Science.gov (United States)

    Kenne, E; Nickel, K F; Long, A T; Fuchs, T A; Stavrou, E X; Stahl, F R; Renné, T

    2015-12-01

    Plasma protein factor XII (FXII) activates the procoagulant and proinflammatory contact system that drives both the kallikrein-kinin system and the intrinsic pathway of coagulation. When zymogen FXII comes into contact with negatively charged surfaces, it auto-activates to the serine proteaseactivated FXII (FXIIa). Recently, various in vivo activators of FXII have been identified including heparin, misfolded protein aggregates, polyphosphate and nucleic acids. Murine models have established a central role of FXII in arterial and venous thrombosis. Despite its central function in thrombosis, deficiency in FXII does not impair haemostasis in animals and humans. In a preclinical cardiopulmonary bypass system in large animals, the FXIIa-blocking antibody 3F7 prevented thrombosis; however, in contrast to traditional anticoagulants, bleeding was not increased. In addition to its function in thrombosis, FXIIa initiates formation of the inflammatory mediator bradykinin. This mediator increases vascular leak, causes vasodilation, and induces chemotaxis with implications for septic, anaphylactic and allergic disease states. Therefore, targeting FXIIa appears to be a promising strategy for thromboprotection without associated bleeding risks but with anti-inflammatory properties.

  19. A catalog for transcripts in the venom gland of the Agkistrodon acutus: identification of the toxins potentially involved in coagulopathy.

    Science.gov (United States)

    Qinghua, Liu; Xiaowei, Zhang; Wei, Yin; Chenji, Li; Yijun, Huang; Pengxin, Qiu; Xingwen, Su; Songnian, Hu; Guangmei, Yan

    2006-03-10

    Agkistrodon acutus is a special agkistrodon halys, only distributed in Southern China, with a few exceptions in Vietnam. It is a cherished element used in traditional Chinese medicine. In order to produce a global panorama of gene expression in the Agkistrodon acutus venom gland, a non-normalized cDNA library was constructed, and 8696 high quality 5' end expressed sequenced tags (ESTs) were sequenced and analyzed. The initial sequences were assembled into 2855 clusters. Of these clusters, only 45.60% clusters matched known sequence and 54.40% had no match to any known sequence in GenBank. Except for putative cellular proteins (1184 clusters), the remaining 118 clusters (40.16% of all ESTs) corresponded to sequences associated with diverse toxin function. According to expression abundance, the major toxin components were metalloproteinases (32.08%) and C-type lectin (5.22%), and other components including bradykinin-potentiating peptide (0.90%), serine proteases (0.51%), nucleotidase and nuclease (0.41%), phospholipase A2 (0.30%), disintegrin (0.05%), cytokine-like molecules (0.06%), and other proteins (0.63%). The majority of these components are thought to be responsible for coagulopathy after A. acutus bites. We have therefore generated a comprehensive catalog of the A. acutus venom gland described so far. Gene expression from the very specialized secretory tissue, especially for those involved in coagulopathy, can be surveyed and provide important information in finding novel toxins. PMID:16438937

  20. Peripheral artery disease: potential role of ACE-inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Giuseppe Coppola

    2008-12-01

    Full Text Available Giuseppe Coppola, Giuseppe Romano, Egle Corrado, Rosa Maria Grisanti, Salvatore NovoDepartment of Internal Medicine, Cardiovascular and Nephro-Urological Diseases, Chair of Cardiovascular Disease, University of Palermo, Palermo, ItalyAbstract: Subjects with peripheral arterial disease (PAD of the lower limbs are at high risk for cardiovascular and cerebrovascular events and the prevalence of coronary artery disease in such patients is elevated. Recent studies have shown that regular use of cardiovascular medications, such as therapeutic and preventive agents for PAD patients, seems to be promising in reducing long-term mortality and morbidity. The angiotensin-converting-enzyme (ACE system plays an important role in the pathogenesis and progression of atherosclerosis, and ACE-inhibitors (ACE-I seem to have vasculoprotective and antiproliferative effects as well as a direct antiatherogenic effect. ACE-I also promote the degradation of bradykinin and the release of nitric oxide, a potent vasodilator; further, thay have shown important implications for vascular oxidative stress. Other studies have suggested that ACE-I may also improve endothelial dysfunction. ACE-I are useful for reducing the risk of cardiovascular events in clinical and subclinical PAD. Particularly, one agent of the class (ie, ramipril has shown in many studies to able to significantly reduce cardiovascular morbidity and mortality in patients with PAD.Keywords: atherosclerosis, peripheral arterial disease, endothelial dysfunction, ACE-inhibitors

  1. Effects of fused hirudin on activity of thrombin and function of platelets

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; CHEN Shao-ping; CAI Zai-long; YANG Sheng-sheng; QIN Yong-wen

    2005-01-01

    Objective: To investigate whether fused hirudin peptide has both antithrombin and antiplatelet functions. Methods: The core region of fused hirudin was the C-terminal tail of hirudin(hirudin53-64),which could bind to the anion binding exosite (ABE) of thrombin.Arg-Pro-Pro-Gly-Phe(RPPGF) amino acid sequence,a metabolite of bradykinin,was added to the N-terminus of hirudin53-64.It bound to the active site of thrombin.Additionally,Arg-Gly-Asp(RGD)amino acid sequence,an inibitor of glycoprotein Ⅱb/Ⅲa( GP Ⅱb/Ⅲa) receptor,was linked to C-terminus of hirudin53-64.This 26-animo acid-fused hirudin peptide was artificially synthesized,purified and analysed. Results: Fused hirudin peptide significantly lengthened the activated partial thromboplastin time(APTT),thrombin time(TT)and prothrombin time(PT) and inhibited the amidolytic activity of thrombin.The ADP-induced platelet aggregation was markedly inhibited by fused hirudin peptide. Conclusion: Fused hirudin peptide has activity of antithrombin as well as antiplatelet.Therefore bifunctional anticoagulation peptide has capacity to target various components of haemostatic process and may become more powerful antithrombosis agent.

  2. 337 nm matrix-assisted laser desorption/ionization of single aerosol particles.

    Science.gov (United States)

    He, L; Murray, K K

    1999-09-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single particles injected directly into a time-of-flight mass spectrometer. Aerosol particles were generated at atmospheric pressure using a piezoelectric single-particle generator or a pneumatic nebulizer and introduced into the mass spectrometer through a series of narrow-bore tubes. Particles were detected by light scattering that was used to trigger a 337 nm pulsed nitrogen laser and the ions produced by laser desorption were mass separated in a two-stage reflectron time-of-flight mass spectrometer. MALDI mass spectra of single particles containing bradykinin, angiotensin II, gramicidin S, vitamin B(12) or gramicidin D were obtained at mass resolutions greater than 400 FWHM. For the piezoelectric particle generator, the efficiency of particle delivery was estimated to be approximately 0.02%, and 50 pmol of sample were consumed for each mass spectrum. For the pneumatic nebulizer, mass spectra could be obtained from single particles containing less than 100 amol of analyte, although the sample consumption for a typical mass spectrum was over 400 pmol. PMID:10491586

  3. D-Arg1,D-Phe5,D-Trp7,9,Leu11 substance P, a neuropeptide antagonist, blocks binding, Ca2(+)-mobilizing, and mitogenic effects of endothelin and vasoactive intestinal contractor in mouse 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, I.; Rozengurt, E. (Imperial Cancer Research Fund, London (England))

    1990-10-01

    Endothelin (ET1) and vasoactive intestinal contractor (VIC) stimulate quiescent Swiss 3T3 cells to resume DNA synthesis acting synergistically with epidermal growth factors (EGF) and other mitogens. The peptide (D-Arg1,D-Phe5,D-Trp7,9,Leu11) substance P has been identified as a broad spectrum neuropeptide antagonist which blocks the binding and biological effects of the Ca2(+)-mobilizing neuropeptides bombesin, vasopressin, and bradykinin. In the present study we show that (D-Arg1,D-Phe5,D-Trp7,9,Leu11) substance P also acts as an ET1/VIC antagonist as judged by the following criteria: (a) inhibition of specific 125I-labelled ET1 binding to a ET1/VIC receptor in a competitive and dose-dependent manner; (b) blocking of the rapid increase in the cytosolic Ca2+ concentration promoted by ET1 or VIC; and (c) inhibition of DNA synthesis stimulated by VIC in the presence of EGF. The inhibitory effects of (D-Arg1,D-Phe5,D-Trp7,9,Leu 11) substance P on Ca2+ mobilization and DNA synthesis were reversed by increasing the concentration of VIC. This is the first time that a peptide structurally unrelated to ET1 or VIC is shown to block the binding and mitogenic effects of peptides of the endothelin family.

  4. The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels.

    Science.gov (United States)

    Sampieri, Alicia; Diaz-Muñoz, Mauricio; Antaramian, Anaid; Vaca, Luis

    2005-07-01

    In the present study we have explored structural determinants of the functional interaction between skeletal muscle ryanodine receptor (RyR1) and transient receptor potential channel 1 (TRPC1) channels expressed in Chinese hamster ovary cells. We have illustrated a functional interaction between TRPC1 channels and RyR1 for the regulation of store-operated calcium entry (SOCE) initiated after releasing calcium from a caffeine-sensitive intracellular calcium pool. RNA interference experiments directed to reduce the amount of TRPC1 protein indicate that RyR1 associates to at least two different types of store-operated channels (SOCs), one dependent and one independent of TRPC1. In contrast, bradykinin-induced SOCE is completely dependent on the presence of TRPC1 protein, as we have previously illustrated. Removing the foot structure from RyR1 results in normal caffeine-induced release of calcium from internal stores but abolishes the activation of SOCE, indicating that this structure is require for functional coupling to SOCs. The footless RyR1 protein shows a different cellular localization when compared with wild type RyR1. The later protein shows a higher percentage of colocalization with FM-464, a marker of plasma membrane. The implications of the foot structure for the functional and physical coupling to TRPC and SOCs is discussed.

  5. Wozu AT1-Rezeptorantagonisten?

    Directory of Open Access Journals (Sweden)

    Berent R

    2000-01-01

    Full Text Available ACE-Hemmer sind nun seit fast 20 Jahren im klinischen Einsatz. Ihre Effektivität in der Behandlung der arteriellen Hypertonie, der Herzinsuffizienz und bei nephrologischen Erkrankungen wurde durch eine große Zahl an randomisierten, prospektiven Studien belegt. Zusätzlich ist das Nebenwirkungsprofil (inklusive seltener Nebenwirkungen dieser Substanzklasse durch die langjährige Anwendung gut dokumentiert. Unter einer AT1-Rezeptorantagonistentherapie konnte bislang eindeutig gezeigt werden, daß das Auftreten von Nebenwirkungen, im speziellen des Reizhustens, deutlich seltener ist und im Placebobereich liegt, was die Compliance der Patienten sicherlich erhöht. Klinisch finden sich allerdings kaum Unterschiede in der Hämodynamik bei der Einnahme von ACE-Hemmern oder AT1-Rezeptorantagonisten. AT1-Rezeptorantagonisten blockieren sicherlich effektiver die AT1-rezeptorvermittelte Vasokonstriktion, währenddessen sich die ACE-Hemmerwirkung aus einer partiellen Abnahme der Angiotensin-II-Bildung und der Akkumulation von Bradykinin zusammensetzt. Aufgrund der derzeitigen Datenlage kann der AT1-Rezeptorantagonist nicht als Alternative zum ACE-Hemmer empfohlen werden, außer ein Absetzen des ACE-Hemmers ist wegen Nebenwirkungen notwendig. Auch die Kombinationstherapie, AT1-Rezeptorantagonist plus ACE-Hemmer, stellt zum jetzigen Zeitpunkt noch keine etablierte Therapie dar.

  6. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes

    Science.gov (United States)

    Désormeaux, Anik; Moreau, Marie Eve; Lepage, Yves; Chanard, Jacques; Adam, Albert

    2014-01-01

    The combination of negatively-charged membranes and angiotensin I-converting enzyme inhibitors (ACEi) evokes hypersensitivity reactions (HSR) during hemodialysis and bradykinin (BK)-related peptides have been hypothesized as being responsible for these complications. In this study, we tested the effects of neutralizing the membrane electronegativity (zeta potential) of polyacrylonitrile AN69 membranes by coating a polyethyleneimine layer (AN69-ST membranes) over the generation of kinins induced by blood contact with synthetic membranes. We used minidialyzers with AN69 or AN69-ST membranes in an ex vivo model of plasma and we showed that plasma dialysis with AN69 membranes led to significant BK and des-Arg9-BK release, which was potentiated by ACEi. This kinin formation was dramatically decreased by AN69-ST membranes, even in the presence of an ACEi, and kinin recovery in the dialysates was also significantly lower with these membranes. High molecular weight kininogen and factor XII detection by immunoblotting of the protein layer coating both membranes corroborated the results: binding of these proteins and contact system activation on AN69-ST membranes were reduced. This ex vivo experimental model applied to the plasma, dialysate and dialysis membrane could be used for the characterization of the kinin-forming capacity of any biomaterial potentially used in vivo in combination with drugs which modulate the pharmacological activity of kinins. PMID:18078988

  7. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhengyu [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Yang, Qi; Cui, Mei; Liu, Yanping [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China); Wang, Tao; Zhao, Hong [Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437 (China); Dong, Qiang, E-mail: qiang_dong163@163.com [Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040 (China)

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  8. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases.

    Science.gov (United States)

    Wagstaff, Simon C; Harrison, Robert A

    2006-08-01

    Echis ocellatus is the most medically important snake in West Africa. However, the composition of its venom and the differential contribution of these venom components to the severe haemorrhagic and coagulopathic pathology of envenoming are poorly understood. To address this situation we assembled a toxin transcriptome based upon 1000 expressed sequence tags (EST) from a cDNA library constructed from pooled venom glands of 10 individual E. ocellatus. We used a variety of bioinformatic tools to construct a fully annotated venom-toxin transcriptome that was interrogated with a combination of BLAST annotation, gene ontology cataloguing and disintegrin-motif searching. The results of these analyses revealed an unusually abundant and diverse expression of snake venom metalloproteinases (SVMP) and a broad toxin-expression profile including several distinct isoforms of bradykinin-potentiating peptides, phospholipase A(2), C-type lectins, serine proteinases and l-amino oxidases. Most significantly, we identified for the first time a conserved alpha(9)beta(1) integrin-binding motif in several SVMPs, and a new group of putative venom toxins, renin-like aspartic proteases. PMID:16713134

  9. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    Directory of Open Access Journals (Sweden)

    Andrew V Benest

    Full Text Available Genetic experiments (loss-of-function and gain-of-function have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2 acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived regulator of rapid vascular responses (within minutes caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min, the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/- mice. In comparison to the wild type control mice, the Ang2(-/- mice demonstrated a significantly attenuated response. The Ang-2(-/- phenotype was rescued by systemic administration (paracrine of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/- endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2 alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines.

  10. High precision measurement of electrical resistance across endothelial cell monolayers.

    Science.gov (United States)

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  11. Selective inhibition by antiflamrnin-2 of thromboxane B2 release from isolated and perfused guinea-pig lung

    Directory of Open Access Journals (Sweden)

    Lidia Sautebin

    1992-01-01

    Full Text Available Antiflammin-2 (AF2 is a nonapeptide corresponding to the amino acid residues 246–254 of lipocortin-1 showing anti-inflammatory activity both in vitro and in vivo. The effect of AF2 on the thromboxane B2 (TXB2 and histamine release from isolated and perfused guinea-pig lungs has been studied. AF-2 (10–100 nM inhibited leukotriene C4- (LTC4 (3 ng and antigen-induced (ovalbumin, 1 mg TXB2 release in normal and sensitized lungs, respectively. In contrast AF-2 (100 nM did not modify TXB2 release induced by histamine (5 μg or bradykinin (5 μg in normal lungs. Antigen-induced histamine release was not affected by 100 nM AF-2 infusion. When tested in chopped lung fragments AF-2 (0.1–25 μM did not modify the release of histamine and TXB2 induced by antigen (ovalbumin, 10 μg ml−1 or calcium ionophore A 23187 (1 μM. Our results show that the inhibitory effect of AF-2 on TXB2 release is selective and depends on the stimulus applied. In this respect AF-2 mimics, at least in part, the actions of both glucocorticoids and lipocortin-1.

  12. Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues.

    Science.gov (United States)

    Podvin, Sonia; Bundey, Richard; Toneff, Thomas; Ziegler, Michael; Hook, Vivian

    2015-09-01

    The goal of this study was to define profiles of secreted neuropeptide and catecholamine neurotransmitters that undergo co-release from sympathoadrenal chromaffin cells upon stimulation by distinct secretagogues. Chromaffin cells of the adrenal medulla participate in the dynamic responses to stress, especially that of 'fight and flight', and, thus, analyses of the co-release of multiple neurotransmitters is necessary to gain knowledge of how the stress response regulates cell-cell communication among physiological systems. Results of this study demonstrated that six different secretagogues stimulated the co-release of the neuropeptides Met-enkephalin, galanin, NPY, and VIP with the catecholamines dopamine, norepinephrine, and epinephrine. Importantly, the quantitative profiles of the secreted neurotransmitters showed similarities and differences upon stimulation by the different secretagogues evaluated, composed of KCl depolarization, nicotine, carbachol, PACAP, bradykinin, and histamine. The rank-orders of the secreted profiles of the neurotransmitters were generally similar among these secretagogues, but differences in the secreted amounts of each neurotransmitter occurred with different secretagogues. Epinephrine among the catecholamines showed the highest level of secretion. (Met)enkephalin showed the largest levels of secretion compared to the other neuropeptides examined. Levels of secreted catecholamines were greater than that of the neuropeptides. These data support the hypothesis that profiles of secreted neuropeptide and catecholamine neurotransmitters show similarities and differences upon stimulation by distinct secretagogues. These results illustrate the co-release of concerted neurotransmitter profiles that participate in the stress response of the sympathoadrenal nervous system.

  13. Induction of prolonged tenderness in patients with tension-type headache by means of a new experimental model of myofascial pain.

    Science.gov (United States)

    Mørk, H; Ashina, M; Bendtsen, L; Olesen, J; Jensen, R

    2003-05-01

    Tenderness is the most prominent abnormal finding in patients with tension-type headache (TTH). Recently we developed a model of myofascial tenderness using intramuscular infusion of a combination of bradykinin, serotonin, histamine and prostaglandin E2. We aimed to examine tenderness after this combination in patients with episodic TTH (ETTH). Fifteen patients and 15 healthy controls completed the study. Participants received the combination into the non-dominant trapezius muscle in a randomized, double-blinded and placebo-controlled design. Local tenderness and stimulus-response functions, mechanical pain thresholds (PPDT) in the temporal region and on the finger, and total tenderness score (TTS) were recorded. A local, prolonged, and mild to moderate tenderness was reported both in patients (P = 0.001) and in controls (P = 0.001) after the combination compared with the placebo. The response to the combination tended to be increased in patients. The stimulus-response function was leftward shifted after the combination, compared with baseline in both groups. No changes in PPDT or TTS were found after the infusions, whereas baseline PPDTs were decreased in ETTH compared with controls (PPDTfinger: P = 0.033; PPDTtemporal: P = 0.015). Intramuscular infusion of a combination of endogenous substances induced prolonged tenderness in both patients with episodic TTH and healthy subjects. The present results suggest an increased excitability of peripheral muscle afferents in TTH.

  14. Endothelial-cell apoptosis induced by cleaved high-molecular-weight kininogen (HKa) is matrix dependent and requires the generation of reactive oxygen species

    Science.gov (United States)

    Sun, Danyu; McCrae, Keith R.

    2006-01-01

    High–molecular-weight kininogen (HK) is an abundant plasma protein that plays a central role in activation of the kallikrein-kinin system. Cleavage of HK by plasma kallikrein results in release of the nonapeptide bradykinin (BK), leaving behind cleaved high–molecular-weight kininogen (HKa). Previous studies have demonstrated that HKa induces apoptosis of proliferating endothelial cells and inhibits angiogenesis in vivo, activities mediated primarily through its domain 5. However, the mechanisms by which these effects occur are not well understood. Here, we demonstrate that HKa induces apoptosis of endothelial cells cultured on gelatin, vitronectin, fibronectin, or laminin but not collagen type I or IV. The ability of HKa to induce endothelial-cell apoptosis is dependent on the generation of intracellular reactive oxygen species and associated with depletion of glutathione and peroxidation of endothelial-cell lipids, effects that occur only in cells cultured on matrix proteins permissive for HKa-induced apoptosis. Finally, the ability of HKa to induce endothelial-cell apoptosis is blocked by the addition of reduced glutathione or N-acetylcysteine. These studies demonstrate a unique role for oxidant stress in mediating the activity of an antiangiogenic polypeptide and highlight the importance of the extracellular matrix in regulating endothelial-cell survival. PMID:16418331

  15. Biochemical response and the effects of bariatric surgeries on type 2 diabetes

    Science.gov (United States)

    Allen, Roland; Hughes, Tyler; Lerd Ng, Jia; Ortiz, Roberto; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah

    2013-03-01

    A general method is introduced for calculating the biochemical response to pharmaceuticals, surgeries, or other medical interventions. This method is then applied in a simple model of the response to Roux-en-Y gastric bypass (RYGB) surgery in obese diabetic patients. We specifically address the amazing fact that glycemia correction is usually achieved immediately after RYGB surgery, long before there is any appreciable weight loss. Many studies indicate that this result is not due merely to caloric restriction, and it is usually attributed to an increase in glucagon-like peptide 1 (GLP-1) levels observed after the surgery. However, our model indicates that this mechanism alone is not sufficient to explain either the largest declines in glucose levels or the measured declines in the homeostatic model assessment insulin resistance (HOMA-IR). The most robust additional mechanism would be production of a factor which opens an insulin-independent pathway for glucose transport into cells, perhaps related to the well-established insulin-independent pathway associated with exercise. Potential candidates include bradykinin, a 9 amino acid peptide. If such a substance were found to exist, it would offer hope for medications which mimic the immediate beneficial effect of RYGB surgery. Supported by Qatar Biomedical Research Institute and Science Program at Texas A&M University at Qatar

  16. Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis

    Indian Academy of Sciences (India)

    Jaeok Lee; Syamantak Majumder; Suvro Chatterjee; Kambadur Muralidhar

    2011-06-01

    The peptide fragments obtained by cathepsin digestion of purified buffalo prolactin (buPRL) monomer have been characterized using SDS-PAGE and FPLC with regard to size and pI. Their antiangiogenic activity was tested in chick embryo chorioallantoic membrane (CAM) assay and the human endothelial cells wound healing assay. Antiangiogenic activity was observed in cathepsin-cleaved fragments from buPRL. Further, a peptide sequence 45A-46Q-47G-48K-49G-50F-51I-52T-53M-54A-55L-56N-57S-58C, which matched with human somatostatin (hSST), a known antiangiogenic factor, was located in the second loop between the first and second α-helices in the threedimensional structure of buPRL, obtained by homology modelling. The synthetic peptide matching with SST sequence was found to exhibit antiangiogenic activity in both in vitro and ex vivo assays. It was also observed that all the peptides related to buPRL could antagonize the vascular endothelial growth factor (VEGF) and bradykinin (BK)-dependent production of endothelial nitric oxide (NO), which is a pre-requisite for endothelial tube formation. It is concluded therefore that an internal sequence in buPRL and peptide fragments derived from cathepsin-digested buPRL exhibit antiangiogenic activities.

  17. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    Science.gov (United States)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  18. Inflammatory mediators involved in the paw edema and hyperalgesia induced by Batroxase, a metalloproteinase isolated from Bothrops atrox snake venom.

    Science.gov (United States)

    De Toni, Lanuze G B; Menaldo, Danilo L; Cintra, Adélia C O; Figueiredo, Maria J; de Souza, Anderson R; Maximiano, William M A; Jamur, Maria C; Souza, Glória E P; Sampaio, Suely V

    2015-09-01

    Snake venom metalloproteinases have been described as responsible for several inflammatory effects. In this study, we investigated the edema and hyperalgesia induced in rats by Batroxase, a P-I metalloproteinase from Bothrops atrox venom, along with possible inflammatory mediators involved in these responses. Batroxase or sterile saline was injected into rat paws and the edema and hyperalgesic effects were evaluated for 6h by using a plethysmometer and a Von Frey system, respectively. Batroxase induced significant edematogenic and hyperalgesic peak responses in the first hours after administration. The inflammatory mediators involved in these responses were assayed by pretreatment of animals with synthesis inhibitors or receptor antagonists. Peak responses were significantly reduced by administration of the glucocorticoid dexamethasone, the H1 receptor antagonist diphenhydramine and the FLAP inhibitor MK-886. Rat paws injected with compound 48/80, a mast cell degranulating agent, followed by Batroxase injection resulted in significant reduction of the edema and hyperalgesia. However, Batroxase itself induced minor degranulation of RBL-2H3 mast cells in vitro. Additionally, the inflammatory responses did not seem to be related to prostaglandins, bradykinin or nitric oxide. Our results indicate a major involvement of histamine and leukotrienes in the edema and hyperalgesia induced by Batroxase, which could be related, at least in part, to mast cell degranulation. PMID:26072684

  19. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

    Science.gov (United States)

    Bautista, Diana M; Jordt, Sven-Eric; Nikai, Tetsuro; Tsuruda, Pamela R; Read, Andrew J; Poblete, Jeannie; Yamoah, Ebenezer N; Basbaum, Allan I; Julius, David

    2006-03-24

    TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain. PMID:16564016

  20. Impaired endothelium-dependent and -independent relaxation of aorta from diabetic rats.

    Science.gov (United States)

    Yakubu, M A; Sofola, O A; Igbo, I; Oyekan, A O

    2012-01-01

    Vascular complication in diabetes has been reported to be due to the effects of chronic high blood glucose on the vascular system. Different relaxation mechanisms exist in the vasculature and effect of chronic high glucose on vascular relaxation mechanisms is not clearly understood. We assessed the effect of streptozotocin (STZ, 70 mg/kg, for 12 wks)-induced diabetes on vascular reactivity to isoproterenol (Isop, 10-9-10-5 M), a cAMP-dependent agent, acetylcholine (ACh, 10-9-10-5 M), a stimulant of NO (nitric oxide) synthase, sodium nitroprusside (SNP, 10-10-10-5 M), NO donor, or bradykinin (BK, 10-9-10-5 M) in the rat isolated aortic ring. Isop, ACh, SNP, or BK dose-dependently relaxed phenylephrine (PE, 10-7 M) pre-constricted ring producing a maximum relaxation of 82 % for Isop (10-5 M), 85 % for ACh (10-5 M), 100 % for SNP (10-6 M), and 30 % for BK (10-5 M) respectively. STZ attenuated Isop, ACh, and BK-induced relaxation by 45 % (n=7, pn (Fig. 5, Ref. 24). PMID:22394031

  1. Antiinflammatory Efficacy of Extracts of Latex of Calotropis procera Against Different Mediators of Inflammation

    Directory of Open Access Journals (Sweden)

    Soneera Arya

    2005-01-01

    Full Text Available The latex of the plant Calotropis procera has been reported to exhibit potent antiinflammatory activity against carrageenin and formalin that are known to release various mediators. In the present study, we have evaluated the efficacy of extracts prepared from the latex of C procera against inflammation induced by histamine, serotonin, compound 48/80, bradykinin (BK, and prostaglandin E(PGE in the rat paw oedema model. The paw oedema was induced by the subplantar injection of various inflammagens and oedema volume was recorded using a plethysmometer. The aqueous and methanol extracts of the dried latex (DL and standard antiinflammatory drugs were administered orally 1 hour before inducing inflammation. The inhibitory effect of the extracts was also evaluated against cellular influx induced by carrageenin. The antiinflammatory effect of aqueous and methanolic extracts of DL was more pronounced than phenylbutazone (PBZ against carrageenin while it was comparable to chlorpheniramine and PBZ against histamine and PGE, respectively. Both extracts produced about 80%, 40%, and 30% inhibition of inflammation induced by BK, compound 48/80, and serotonin. The histological analysis revealed that the extracts were more potent than PBZ in inhibiting cellular infiltration and subcutaneous oedema induced by carrageenin. The extracts of DL exert their antiinflammatory effects mainly by inhibiting histamine and BK and partly by inhibiting PGE.

  2. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    International Nuclear Information System (INIS)

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro

  3. Efecto hemodinámico esplácnico de somatostatina y octreótido en cirróticos: Estudio con ultrasonografía Doppler Splanchnic hemodynamic effects of somatostatin and octreotide in cirrhotic patients: A Doppler ultrasonographic study

    Directory of Open Access Journals (Sweden)

    F. J. Fernández Pérez

    2008-09-01

    Full Text Available Objetivo: valoración ultrasonografica Doppler del efecto hemodinámico de la administración intravenosa de somatostatina y octreótido. Material y método: aleatorizamos a 45 cirróticos con varices esofágicas para recibir en una hora una infusión intravenosa de somatostatina (SOM, 250 µg, octreotido (OCT, 50 µg o placebo (PLA. Pretratamiento y a 15, 30, 45 y 60 minutos medimos velocidad media, índice de congestión, volumen de flujo y diámetro de la vena porta además del índice de resistencia en arteria mesentérica superior. Analizamos las concentraciones séricas de bradicinina y péptido intestinal vasoactivo (VIP en situación basal y a 30 y 60 minutos. Resultados: respecto de los valores basales tanto SOM como OCT provocaron un descenso significativo en la velocidad (-19,41 vs. -11.19% y flujo portal (-22,79 vs. -12,33%, con aumento del índice de congestión (+17,5 vs. +7,5% y del índice de resistencia arterial (+7,18 vs. +6,16% respecto de sus valores basales (p Aim: Doppler-ultrasound assessment of the splanchnic hemodynamic effects of intravenous somatostatin and octreotide administration. Material and method: forty-five cirrhotic patients with esophageal varices were randomized to receive 1-hour intravenous somatostatin (SOM, 250 µg, octreotide (OCT, 50 µg, or placebo (PLA. In baseline and at 15, 30, 45 and 60 minutes of infusion, mean velocity, congestion index, flow volume and diameter of the portal vein, as well as the superior mesenteric artery resistivity index, were measured. Plasma bradykinine and vasoactive intestinal peptide (VIP concentrations were also measured at baseline and at 30 and 60 minutes. Results: while placebo caused no changes in any of the venous and arterial parameters, SOM and OCT caused a sustained decrease in portal vein velocity (-19.41 vs. -11.19% and flow (-22.79 vs. -12.33%, and an increase in the congestion index (+17.5 vs. +7.5% and resistivity index of the superior mesenteric artery (+7

  4. Construction of pB2R-Venus eukaryotic expression vectors and its expression in HEK293T cells%pB2 R-Venus 重组真核载体的构建及在 HEK293T细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    季丙元; 程葆华; 王春梅; 陈京; 白波

    2014-01-01

    Objective To investigate the interaction between B2R and other receptors ,and signal transduction mechanism ,human eukaryotic expression vector that bradykinin receptor 2 fused with Venus was constructed . Methods The primer was designed based on human B2R gene sequence ,and B2R gene was then amplified by PCR using plasmid pcDNA3 .1-B2R as template .The PCR product was digested by enzyme EcoRⅠand BamH ,and cloned into plasmid pV enus-N1 .The construct was identified by DNA sequencing .The recombinant plasmid was transiently transfected into HEK293T cells .Cell location and protein expression was detected by confocal microscopy and Western blot ,respectively .Results The fragment of 1176bp was amplified by PCR ,and its sequence was identical with the gene in Genebank (AY275465) .It is shown that the B2R expressed on the membrane by confocal micros-copy ,and protein band was 44 kd which was identical to target band through Western blot .Conclusion The plas-mid pB2R-Venus was successfully constructed and transfected into HEK 293T cells .The recombinant plasmid can be used to BRET and FRET experiments ,which contribute to investigate the signal transduction mechanism and ex-plore pharmacal targets .%目的:构建带有黄色荧光蛋白突变体 Venus标签的人缓激肽2型受体(bradykinin receptor 2, B2R)真核表达载体,用于B2R与相关受体及蛋白的相互作用、B2R受体介导的信号转导机制的研究等。方法根据人B2R基因序列设计引物,以质粒pcDNA3.1-B2R为模板,PCR扩增目的基因人B2R。EcoRⅠ和BamHⅠ双酶切扩增产物及质粒pVenus-N1,经回收、连接、转化,获取重组质粒。对重组质粒进行酶切、测序鉴定。转染重组质粒至 HEK293T细胞,荧光显微镜观察受体B2R的细胞定位,蛋白印迹法检测目的蛋白人B2R蛋白的表达。结果 PCR扩增出了1条长度为1176 bp的基因片段,测序结果与GenBank (AY275465)相同。荧光显示B2R

  5. SNP-by-fitness and SNP-by-BMI interactions from seven candidate genes and incident hypertension after 20 years of follow-up: the CARDIA Fitness Study.

    Science.gov (United States)

    Sarzynski, M A; Rankinen, T; Sternfeld, B; Fornage, M; Sidney, S; Bouchard, C

    2011-08-01

    The association of single nucleotide polymorphisms (SNPs) from seven candidate genes, including genotype-by-baseline fitness and genotype-by-baseline body mass index (BMI) interactions, with incident hypertension over 20 years was investigated in 2663 participants (1301 blacks, 1362 whites) of the Coronary Artery Risk Development in Young Adults Study (CARDIA). Baseline cardiorespiratory fitness was determined from duration of a modified Balke treadmill test. A total of 98 SNPs in blacks and 89 SNPs in whites from seven candidate genes were genotyped. Participants that became hypertensive (295 blacks and 146 whites) had significantly higher blood pressure and BMI (both races), and lower fitness (blacks only) at baseline than those who remained normotensive. Markers at the peroxisome proliferative activated receptor gamma coactivator 1α (PPARGC1A) and bradykinin β2 receptor (BDKRB2) genes were nominally associated with greater risk of hypertension, although one marker each at the BDKRB2 and endothelial nitric oxide synthase-3 (NOS3) genes were nominally associated with lower risk. The association of baseline fitness with risk of hypertension was nominally modified by genotype at markers within the angiotensin converting enzyme, angiotensinogen, BDKRB2 and NOS3 genes in blacks and the BDKRB2, endothelin-1 and PPARGC1A genes in whites. BDKRB2 rs4900318 showed nominal interactions with baseline fitness on the risk of hypertension in both races. The association of baseline BMI with risk of hypertension was nominally modified by GNB3 rs2301339 genotype in whites. None of the above associations were statistically significant after correcting for multiple testing. We found that SNPs in these candidate genes did not modify the association between baseline fitness or BMI and risk of hypertension in CARDIA participants. PMID:20944660

  6. Uterolytic effect of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [;African Potato'] aqueous extract.

    Science.gov (United States)

    Nyinawumuntu, Agatha; Awe, Emmanuel O; Ojewole, John A O

    2008-10-01

    Extracts of Hypoxis hemerocallidea corm (African potato) are commonly used by some traditional health practitioners in KwaZulu-Natal Province of South Africa as natural antenatal remedy to prevent threatening or premature abortion and miscarriage, and to ensure successful confinement. In this study, we investigated the uterolytic activity of H. hemerocallidea corm aqueous extract on spontaneous, rhythmic contractions of uterine horns taken from pregnant rats and guinea-pigs, as well as on spasmogen-provoked contractions of stilboesterol-primed, oestrogen-dominated, non-pregnant rat and guinea-pig isolated uterine horns. Relatively low to high concentrations of H. hemerocallidea corm aqueous extract (APE, 25-400 mg/ml) inhibited the amplitude of the spontaneous, rhythmic contractions of, and relaxed, uterine horns isolated from pregnant rats and guinea-pigs in a concentration-related manner. Furthermore, relatively low to high concentrations of APE (25-400 mg/ml) relaxed basal tones of uterine horns taken from non-pregnant, oestrogen-dominated rats and guinea-pigs in a concentration-dependent manner. The same moderately low to high concentrations of APE (25-400 mg/ml) inhibited acetylcholine-, oxytocin-, bradykinin-, and potassium chloride (K(+))-induced contractions of oestrogen-dominated rat and guinea-pig isolated uterine horns in a concentration-related manner. Although the mechanism of uterolytic action of APE could not be established, the results of the present study lend pharmacological credence to the folkloric, ethnomedical uses of APE as a natural antenatal remedy for threatening or premature abortion, and suggest that the uterolytic action of the corm's extract is unlikely to be mediated via beta(2)-adrenoceptor stimulation, but probably mediated through a non-specific spasmolytic mechanism. PMID:19122381

  7. Novel Vasoregulatory Aspects of Hereditary Angioedema: the Role of Arginine Vasopressin, Adrenomedullin and Endothelin-1.

    Science.gov (United States)

    Kajdácsi, Erika; Jani, Péter K; Csuka, Dorottya; Varga, Lilian; Prohászka, Zoltán; Farkas, Henriette; Cervenak, László

    2016-02-01

    The elevation of bradykinin (BK) level during attacks of hereditary angioedema due to C1-Inhibitor deficiency (C1-INH-HAE) is well known. We previously demonstrated that endothelin-1 (ET-1) level also increases during C1-INH-HAE attacks. Although BK and ET-1 are both potent vasoactive peptides, the vasoregulatory aspect of the pathomechanism of C1-INH-HAE has not yet been investigated. Hence we studied the levels of vasoactive peptides in controls and in C1-INH-HAE patients, as well as evaluated their changes during C1-INH-HAE attacks. The levels of arginine vasopressin (AVP), adrenomedullin (ADM) and ET-1 were measured in the plasma of 100 C1-INH-HAE patients in inter-attack periods and of 111 control subjects, using BRAHMS Kryptor technologies. In 18 of the 100 C1-INH-HAE patients, the levels of vasoactive peptides were compared in blood samples obtained during attacks, or in inter-attack periods. AVP, ADM and ET-1 levels were similar in inter-attack samples from C1-INH-HAE patients and in the samples of controls, although cardiovascular risk has an effect on the levels of vasoactive peptides in both groups. The levels of all three vasoactive peptides increased during C1-INH-HAE attacks. Moreover, the levels of ET-1 and ADM as well as their changes during attacks were significantly correlated. This study demonstrated that vascular regulation by vasoactive peptides is affected during C1-INH-HAE attacks. Our results suggest that the cooperation of several vasoactive peptides may be necessary to counterbalance the actions of excess BK, and to terminate the attacks. This may reveal a novel pathophysiological aspect of C1-INH-HAE.

  8. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.

    Science.gov (United States)

    Bobade, Vijeta; Bodhankar, Subhash L; Aswar, Urmila; Vishwaraman, Mohan; Thakurdesai, Prasad

    2015-04-01

    The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.

  9. Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein.

    Science.gov (United States)

    North, A J; Brannon, T S; Wells, L B; Campbell, W B; Shaul, P W

    1994-07-01

    In newborn lambs, pulmonary prostacyclin (PGI2) production increases acutely in response to low oxygen. We tested the hypothesis that decreased oxygenation directly stimulates PGI2 synthesis in arterial segments and cultured endothelial cells from newborn lamb intrapulmonary arteries. In segments studied at PO2 of 680 mm Hg, the synthesis of PGI2 exceeded prostaglandin E2 (PGE2) by 73%. Endothelium removal lowered PGI2 by 77% and PGE2 by 66%. At low oxygen tension (PO2, 40 mm Hg), PGI2 and PGE2 synthesis rose by 96% and 102%, respectively. Similarly, in endothelial cells studied at PO2 of 680 mm Hg, the synthesis of PGI2 exceeded PGE2 by 50%, and at low oxygen tension both PGI2 and PGE2 increased (89% and 64%, respectively). Endothelial cell PGI2 synthesis maximally stimulated by bradykinin, A23187, or arachidonic acid was also increased at low PO2 by 50%, 66%, and 48%, respectively. PGE2 synthesis was similarly altered, increasing by 33%, 37%, and 41%, respectively. In contrast, lowering oxygen had minimal effect on PGI2 and PGE2 synthesis with exogenous PGH2, which is the product of cyclooxygenase. Immunoblot analyses revealed that there was a 2.6-fold greater abundance of cyclooxygenase-1 protein at PO2 of 40 versus 680 mm Hg, and the increase at lower oxygen tension was inhibited by cycloheximide. The cyclooxygenase-2 isoform was not detected. Thus, attenuated oxygenation directly stimulates PGI2 and PGE2 synthesis in intrapulmonary arterial segments and endothelial cells from newborn lambs. This process is due to enhanced cyclooxygenase activity related to increased abundance of the cyclooxygenase-1 protein, and this effect may be due to increased synthesis of the enzyme protein.

  10. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency.

    Science.gov (United States)

    Varga, Lilian; Farkas, Henriette

    2011-03-01

    Recombinant human C1 esterase inhibitor (rhC1INH) (Ruconest(®), Pharming) is a new drug developed for the relief of symptoms occurring in patients with angioedema due to C1-inhibitor deficiency. Pertinent results have already been published elsewhere; this article summarizes the progress made since then. Similar to the purified C1-inhibitor derived from human plasma, the therapeutic efficacy of rhC1INH results from its ability to block the actions of enzymes belonging to the overactivated bradykinin-forming pathway, at multiple locations. During clinical trials into the management of acute edema, a total of 190 subjects received recombinant C1-inhibitor by intravenous infusion on 714 occasions altogether. Dose-ranging efficacy studies established 50 U/kg as the recommended dose, and demonstrated the effectiveness of this agent in all localizations of hereditary angioedema attacks. Studies into the safety of rhC1INH based on 300 administrations to healthy subjects or hereditary angioedema patients followed-up for 90 days have not detected the formation of autoantibodies against rhC1INH or IgE antibodies directed against rabbit proteins, even after repeated administration on multiple occasions. These findings met favorable appraisal by the EMA, which granted European marketing authorization for rhC1INH. Pharming is expected to file a biological licence with the US FDA by the end of 2010 to obtain marketing approval in the USA. The launch of rhC1INH onto the pharmaceutical market may represent an important progress in the management of hereditary angioedema patients. PMID:21426252

  11. Thimet oligopeptidase specificity: evidence of preferential cleavage near the C-terminus and product inhibition from kinetic analysis of peptide hydrolysis.

    Science.gov (United States)

    Knight, C G; Dando, P M; Barrett, A J

    1995-01-01

    The substrate-size specificity of human thimet oligopeptidase (EC 3.4.24.15) was investigated with oligomers of glycyl-prolyl-leucine (GPL)n where n = 2, 3, 4 and 5. These peptides were cleaved only at Leu-Gly bonds to give GPL as the single final product. Hydrolysis was most rapid with (GPL)3 and slowest with (GPL)5. The more water-soluble oligomers of Gly-Hyp-Leu showed the same trend. (Gly-Hyp-Leu)6 was not hydrolysed, consistent with the previous finding that substrates larger than 17 amino acids are not cleaved by thimet oligopeptidase. The cleavage of (GPL)3 to GPL fitted a sequential first-order model. First-order kinetics were unexpected as the initial substrate concentration was greater than Km. The anomaly was also seen during the cleavage of bradykinin and neurotensin, and in these cases first-order behaviour was due to potent competitive inhibition by the C-terminal product. The sequential mechanism for (GPL)3 breakdown by thimet oligopeptidase does not discriminate between initial cleavages towards the N- or C-terminus. As isoleucine is an unfavourable residue in P1, substrates were made in which selected leucine residues were replaced by isoleucine. GPL--GPI--GPL (where--represents the bond between the tripeptide units) was resistant to hydrolysis and GPI--GPL--GPL was cleaved only at the -Leu-Gly- bond. Experiments with isoleucine-containing analogues of (Gly-Hyp-Leu)4 showed that thimet oligopeptidase preferred to cleave these peptides near the C-terminus. PMID:7755557

  12. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Johannes Beltinger; Jo del Buono; Maeve M Skelly; John Thornley; Robin C Spiller; William A Stack; Christopher J Hawkey

    2008-01-01

    AIM:To study the mechanisms by which Campylobacter jejuni (C.jejuni) causes inflammation and diarrhea.In particular,direct interactions with intestinal epithelial cells and effects on barrier function are poorly understood.METHODS:To model the initial pathogenic effects of C.jejuni on intestinal epithelium,polarized human colonic HCA-7 monolayerswere grown on permeabilized filters and infected apically with clinical isolates of C.jejuni.Integrity of the monolayer was monitored by changes in monolayer resistance,release of lactate dehydrogenase,mannitol fluxes and electron microscopy.Invasion of HCA-7 cells was assessed by a modified gentamicin protection assay,translocation by counting colony forming units in the basal chamber,stimulation of mediator release by immunoassays and secretory responses in monolayers stimulated by bradykinin in an Ussing chamber.RESULTS:All strains translocated across monolayers but only a minority invaded HCA-7 cells.Strains that invaded HCA-7 cells destroyed rnonolayer resistance over 6 h,accompanied by increased release of lactate dehydrogenase,a four-fold increase in permeability to [3H] mannitol,and ultrastructural disruption of tight junctions,with rounding and lifting of cells off the filter membrane.Synthesis of interleukin (IL)-8 and prostaglandin E2 was increased with strains that invaded the rnonolayer but not with those that did not.CONCLUSION:These data demonstrate two distinct effects of C.jejuni on colonic epithelial cells and provide an informative model for further investigation of initial host cell responses to C.jejuni.

  13. Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Heliana B. Fernandes

    2015-06-01

    Full Text Available AbstractSome publications have described the pharmacological properties of latices proteins. Thus, in the present study proteins from Plumeria pudica Jacq., Apocynaceae, latex were evaluated for anti-inflammatory and antinociceptive activities. Obtained data showed that an intraperitoneal administration of different doses of latex was able to reduce the paw edema induced by carrageenan in a dose-dependent manner (better dose 40 mg/kg; 72.7% inhibition at 3rd and 78.7% at 4th hour and the edema induced by dextran (40 mg/kg; 51.5% inhibition at 30 min and 93.0% at 1st hour. Inhibition of edema induced by carrageenan was accompanied by a reduction of myeloperoxidase activity. Pre-treating animals with latex (40 mg/kg also inhibited the paw edema induced by histamine, serotonin, bradykinin, prostaglandin E2, compound 48/80. Additionally, the latex (40 mg/kg reduced the leukocyte peritoneal migration induced by carrageenan and this event was followed by reduction of IL-1β and TNF-α in peritoneal fluid. The latex-treatment (40 mg/kg reduced the animal abdominal constrictions induced by acetic acid and the first phase on paw licking model induced by formalin. When latex was treated with heat (at 100 °C for 30 min, anti-edematogenic and myeloperoxidase activities were significantly reduced, indicating the involvement of heat-sensitive proteins on anti-inflammatory effect. Our results evidence that latex fluids are a source of proteins with pharmacological properties.

  14. QM/MM investigation of the catalytic mechanism of angiotensin-converting enzyme.

    Science.gov (United States)

    Mu, Xia; Zhang, Chunchun; Xu, Dingguo

    2016-06-01

    Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II and degrades bradykinin and other vasoactive peptides. ACE inhibitors are used to treat diseases such as hypertension and heart failure. It is thus highly desirable to understand the catalytic mechanism of ACE, as this should facilitate the design of more powerful and selective ACE inhibitors. ACE exhibits two different active domains, the C-domain and the N-domain. In this work, we systematically investigated the inhibitor- and substrate-binding patterns in the N-domain of human ACE using a combined quantum mechanical and molecular mechanical approach. The hydrolysis of hippuryl-histidyl-leucine (HHL) as catalyzed by the N-domain of human somatic ACE was explored, and the effects of chloride ion on the overall reaction were also investigated. Two models, one with and one without a chloride ion at the first binding position, were then designed to examine the chloride dependence of inhibitor-substrate binding and the catalytic mechanism. Our calculations indicate that the hydrolysis reaction follows a stepwise general base/general acid catalysis path. The estimated mean free energy barrier height in the two models is about 15.6 kcal/mol, which agrees very well with the experimentally estimated value of 15.8 kcal/mol. Our simulations thus suggest that the N-domain is in a mixed form during ACE-catalyzed hydrolysis, with the single-chloride-ion and the double-chloride-ion forms existing simultaneously. Graphical Abstract Superposition of ACE C- and N- domains. PMID:27184002

  15. Thrombostatin FM compounds: direct thrombin inhibitors - mechanism of action in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, M T; Burke, F; Warnock, M; Zhou, Y; Sweigart, J; Chen, A; Ricketts, D; Lucchesi, B R; Chen, Z; Cera, E Di; Hilfinger, J; Kim, J S; Mosberg, H I; Schmaier, A H [Case Western; (Michigan); (TSRL); (WU-MED)

    2008-04-29

    Novel pentapeptides called Thrombostatin FM compounds consisting mostly of D-isomers and unusual amino acids were prepared based upon the stable angiotensin converting enzyme breakdown product of bradykinin - RPPGF. These peptides are direct thrombin inhibitors prolonging the thrombin clotting time, activated partial thromboplastin time, and prothrombin time at ≥0.78, 1.6, and 1.6 μm, respectively. They competitively inhibit α-thrombin-induced cleavage of a chromogenic substrate at 4.4--8.2 μm. They do not significantly inhibit plasma kallikrein, factor (F) XIIa, FXIa, FIXa, FVIIa-TF, FXa, plasmin or cathepsin G. One form, FM19 [rOicPaF(p-Me)], blocks α-thrombin-induced calcium flux in fibroblasts with an IC50 of 6.9 ± 1.2 μm. FM19 achieved 100% inhibition of threshold α- or γ-thrombin-induced platelet aggregation at 8.4 ± 4.7 μm and 16 ± 4 μm, respectively. The crystal structure of thrombin in complex with FM19 shows that the N-terminal D-Arg retrobinds into the S1 pocket, its second residue Oic interacts with His-57, Tyr-60a and Trp-60d, and its C-terminal p-methyl Phe engages thrombin's aryl binding site composed of Ile-174, Trp-215, and Leu-99. When administered intraperitoneal, intraduodenal, or orally to mice, FM19 prolongs thrombin clotting times and delays carotid artery thrombosis. FM19, a low affinity reversible direct thrombin inhibitor, might be useful as an add-on agent to address an unmet need in platelet inhibition in acute coronary syndromes in diabetics and others who with all current antiplatelet therapy still have reactive platelets.

  16. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats.

    Science.gov (United States)

    Coura, Chistiane Oliveira; Souza, Ricardo Basto; Rodrigues, José Ariévilo Gurgel; Vanderlei, Edfranck de Sousa Oliveira; de Araújo, Ianna Wivianne Fernandes; Ribeiro, Natássia Albuquerque; Frota, Annyta Fernandes; Ribeiro, Kátia Alves; Chaves, Hellíada Vasconcelos; Pereira, Karuza Maria Alves; da Cunha, Rodrigo Maranguape Silva; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2015-01-01

    The anti-inflammatory mechanisms of the sulfated polysaccharidic fraction obtained from red marine alga Gracilaria cornea (Gc-FI) were investigated using a paw edema model induced in rats by different inflammatory agents (carrageenan, dextran, serotonin, bradykinin, compound 48/80 or L-arginine). Gc-FI at the doses of 3, 9 or 27 mg/kg, subcutaneously--s.c., significantly inhibited rat paw edema induced by carrageenan and dextran, as confirmed by myeloperoxidase and Evans' blue assessments, respectively. Gc-FI (9 mg/kg, s.c.) inhibited rat paw edema induced by histamine, compound 48/80 and L-arginine. Additionally, Gc-FI (9 mg/kg, s.c.) inhibited Cg-induced edema in animals with intact mast cells but did not inhibit that with degranulated mast cells by compound 48/80, revealing a protective role on mast cell membranes. Gc-FI down-regulated the IL-1β, TNF-α and COX-2 mRNA and protein levels compared with those of the carrageenan group, based on qRT-PCR and immunohistochemistry analyses. After inhibition with ZnPP IX, a specific heme oxygenase-1 (HO-1) inhibitor, the anti-inflammatory effect of Gc-FI was not observed in Cg-induced paw edema, suggesting that the anti-inflammatory effect of Gc-FI is, in part, dependent on the integrity of the HO-1 pathway. Gc-FI can target a combination of multiple points involved in inflammatory phenomena.

  17. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats.

    Directory of Open Access Journals (Sweden)

    Chistiane Oliveira Coura

    Full Text Available The anti-inflammatory mechanisms of the sulfated polysaccharidic fraction obtained from red marine alga Gracilaria cornea (Gc-FI were investigated using a paw edema model induced in rats by different inflammatory agents (carrageenan, dextran, serotonin, bradykinin, compound 48/80 or L-arginine. Gc-FI at the doses of 3, 9 or 27 mg/kg, subcutaneously--s.c., significantly inhibited rat paw edema induced by carrageenan and dextran, as confirmed by myeloperoxidase and Evans' blue assessments, respectively. Gc-FI (9 mg/kg, s.c. inhibited rat paw edema induced by histamine, compound 48/80 and L-arginine. Additionally, Gc-FI (9 mg/kg, s.c. inhibited Cg-induced edema in animals with intact mast cells but did not inhibit that with degranulated mast cells by compound 48/80, revealing a protective role on mast cell membranes. Gc-FI down-regulated the IL-1β, TNF-α and COX-2 mRNA and protein levels compared with those of the carrageenan group, based on qRT-PCR and immunohistochemistry analyses. After inhibition with ZnPP IX, a specific heme oxygenase-1 (HO-1 inhibitor, the anti-inflammatory effect of Gc-FI was not observed in Cg-induced paw edema, suggesting that the anti-inflammatory effect of Gc-FI is, in part, dependent on the integrity of the HO-1 pathway. Gc-FI can target a combination of multiple points involved in inflammatory phenomena.

  18. Photoprotective effects of sulindac against ultraviolet B-induced phototoxicity in the skin of SKH-1 hairless mice

    International Nuclear Information System (INIS)

    Sulindac is a nonsteroidal anti-inflammatory drug with demonstrated potency as a chemopreventive agent in animal models of carcinogenesis and in patients with familial adenomatous polyposis. Because tumor promotion is generally associated with exposure to pro-inflammatory stimuli, it is likely that anti-inflammatory agents may have potent antitumor effects. In human skin, sulindac reduces bradykinin-induced edema. In this study, we tested the hypothesis that the cyclooxygenase inhibitor sulindac can protect against ultraviolet (UVB)-induced injury that is crucial for the induction of cancer. Exposure of SKH-1 hairless mice to two consecutive doses of UVB (230 mJ/cm2) induces various inflammatory responses including erythema, edema, epidermal hyperplasia, infiltration of polymorphonuclear leukocytes, etc. Topical application of sulindac (1.25-5.0 mg/0.2 ml acetone) to the dorsal skin of SKH-1 hairless mice either 1 h before or immediately after UVB exposure substantially inhibited these inflammatory responses in a dose-dependent manner. Oral administration of sulindac in drinking water (160 ppm) for 15 days before and during UVB irradiation similarly reduced these inflammatory responses. These potent anti-inflammatory effects of sulindac suggested the possibility that the drug could inhibit signaling processes that relate to carcinogenic insult by UVB. Accordingly, studies were conducted to assess the efficacy of sulindac in attenuating the expression of UVB-induced early surrogate molecular markers of photodamage and carcinogenesis. UVB exposure enhanced the expression of p53, c-fos, cyclins D1 and A, and PCNA 24 h after irradiation. Treatment of animals with either topical or oral administration of sulindac largely abrogated the expression of these UVB-induced surrogate markers. These results indicate that the cyclooxygenase inhibitor sulindac is effective in reducing UVB-induced events relevant to carcinogenesis and that this category of topically applied or

  19. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension.

    Science.gov (United States)

    Katori, Makoto; Majima, Masataka

    2014-01-01

    A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension. PMID:25130040

  20. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice.

    Science.gov (United States)

    Wang, Hui; Zhang, Jia-Xiang; Ye, Liang-Ping; Li, Shu-Long; Wang, Feng; Zha, Wan-Sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-Xing

    2016-07-01

    Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage. PMID:27027470

  1. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Science.gov (United States)

    Taylor, Shannon L; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B; Schmaljohn, Connie S

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during

  2. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Science.gov (United States)

    Wong, Marty Kwok-Shing; Takei, Yoshio

    2013-01-01

    The kallikrein-kinin system (KKS) consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW) kininogen (KNG), plasma kallikrein (KLKB1), and bradykinin (BK); and "tissue KKS" consisting of low molecular-weight (LMW) KNG, tissue kallikreins (KLKs), and [Lys(0)]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0)]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade. PMID:24278376

  3. Kallikrein-activated peptide system and oxidative stress%激肽释放酶-激肽系统与氧化应激

    Institute of Scientific and Technical Information of China (English)

    郑仁东; 刘超

    2016-01-01

    Kallikrein -kinin system(KKS)is composed of kininogen,kininogenase and plasmakinin.Brady-kinin(BK)is a type of plasmakinin,can be relaxing blood vessels,lower blood pressure,improve microcirculation. Renin -angiotensin inhibitors and angiotensin receptor antagonists can regulate KKS level by bradykinin B2 .The KKS plays a key role in oxidative stress through nitric oxide and prostaglandin pathways.More and more evidence shows that KKS can reduce oxidative stress,delay the progression of diabetes,cardiovascular disease and kidney disease.%激肽原酶-激肽系统(KKS)是由激肽原、激肽原酶及激肽组成。缓激肽(BK)是激肽的一种类型,能够舒张血管,降低血压,改善微循环。肾素血管紧张素抑制剂与血管紧张素受体拮抗剂能够通过缓激肽B2受体调节 KKS 水平。而 KKS 则通过一氧化氮和前列腺素途径发挥抗氧化应激作用。越来越多的证据显示,KKS 能够减轻氧化应激,延缓糖尿病、心血管疾病和肾脏疾病的进展。

  4. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Directory of Open Access Journals (Sweden)

    Marty Kwok-Shing Wong

    Full Text Available The kallikrein-kinin system (KKS consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW kininogen (KNG, plasma kallikrein (KLKB1, and bradykinin (BK; and "tissue KKS" consisting of low molecular-weight (LMW KNG, tissue kallikreins (KLKs, and [Lys(0]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.

  5. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  6. Role of central and peripheral chemoreceptors in vasopressin secretion control.

    Science.gov (United States)

    Iovino, Michele; Guastamacchia, Edoardo; Giagulli, Vito Angelo; Fiore, Giorgio; Licchelli, Brunella; Iovino, Emanuela; Triggiani, Vincenzo

    2013-09-01

    In this review, we analyzed the role played by central and peripheral chemoreceptors (CHRs) in vasopressin (AVP) secretion control. Central neural pathways subserving osmotic and non-osmotic control of AVP secretion are strictly correlated to brain areas participating in chemoreception mechanisms. Among the different brain areas involved in central chemoreception, the most important site has been localized in the retrotrapezoid nucleus of the rostral ventrolateral medulla. These central CHRs are able to detect very small pH/CO2 fluctuations, participating in brain blood flow regulation, acid-base balance and blood pressure control. Decreases in arterial pH and increases in arterial pCO2 stimulate AVP release by the Supraoptic and Paraventricular Nuclei. Carotid CHRs transduce low arterial O2 tension into increased action potential activity, leading to bradycardia and coronary vasodilatation via vagal stimulation, and systemic vasoconstriction via catecholaminergic stimulation. Stimulation of carotid CHRs by hypoxia increases neurohypophyseal blood flow and AVP release, an effect inhibited by CHRs denervation. Two renal CHRs have been identified: Type R1 CHRs do not have a resting discharge but are activated by renal ischemia and hypotension; Type R2 CHRs have a resting discharge and respond to backflow of urine into the renal pelvis. Signals arising from renal CHRs modulate the activity of hypothalamic AVPergic neurons: activation of R1 and R2 CHRs, following increased intrapelvic pressure with solutions of mannitol, NaCl and KCl, produces a significant increase of AVP secretion and the same effect has been obtained by the intrarenal infusion of bradykinin, which excites afferent renal nerves, as well as by the electrical stimulation of these nerves.

  7. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive.

    Directory of Open Access Journals (Sweden)

    Antoine eHuart

    2015-02-01

    Full Text Available Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney disease. Currently, inhibitors of the renin angiotensin system (RAS remain the sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor (B1R reduced the development of fibrosis in two animal models of renal fibrosis. The usefulness of new drugs also resides in outperforming the gold standards and eventually being additive or complementary to existing therapies. Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra with that of an angiotensin type 1 receptor antagonist (AT1a in the unilateral ureteral obstruction (UUO model of renal fibrosis and determined whether bi-therapy presented higher efficacy than any of the drugs alone. Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However bitherapy did not improve the antifibrotic effects at the protein level. We sought for the reason of the absence of this additive effect by studying the expression of a panel of genes involved in the fibrotic process. Interestingly, at the molecular level the different drugs targeted different players of fibrosis that, however, in this severe model did not result in improved reduction of fibrosis at the protein level. Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially displays low side effects it might be an interesting alternative in cases of poor tolerability to RAS inhibitors.

  8. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive

    Science.gov (United States)

    Huart, Antoine; Klein, Julie; Gonzalez, Julien; Buffin-Meyer, Bénédicte; Neau, Eric; Delage, Christine; Calise, Denis; Ribes, David; Schanstra, Joost P.; Bascands, Jean-Loup

    2015-01-01

    Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney disease (CKD). Currently, inhibitors of the renin–angiotensin system (RAS) remain the sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor (B1R) reduced the development of fibrosis in two animal models of renal fibrosis. The usefulness of new drugs also resides in outperforming the gold standards and eventually being additive or complementary to existing therapies. Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra) with that of an angiotensin type 1 receptor antagonist (AT1a) in the unilateral ureteral obstruction (UUO) model of renal fibrosis and determined whether bi-therapy presented higher efficacy than any of the drugs alone. Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However, bitherapy did not improve the antifibrotic effects at the protein level. We sought for the reason of the absence of this additive effect by studying the expression of a panel of genes involved in the fibrotic process. Interestingly, at the molecular level the different drugs targeted different players of fibrosis that, however, in this severe model did not result in improved reduction of fibrosis at the protein level. Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially displays low side effects it might be an interesting alternative in cases of poor tolerability to RAS inhibitors. PMID:25698969

  9. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation.

    Science.gov (United States)

    Ralat, Luis A; Ren, Min; Schilling, Alexander B; Tang, Wei-Jen

    2009-12-01

    Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-beta (Abeta). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the V(max) for Abeta degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Abeta degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function.

  10. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  11. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms.

    Directory of Open Access Journals (Sweden)

    André Zelanis

    Full Text Available BACKGROUND: Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. METHODS/PRINCIPAL FINDINGS: Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some gender-related differences. CONCLUSIONS/SIGNIFICANCE: We demonstrate a substantial shift in toxin transcripts upon snake development and a

  12. Snake venomics of Bothrops punctatus, a semiarboreal pitviper species from Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Maritza Fernández Culma

    2014-01-01

    Full Text Available Bothrops punctatus is an endangered, semi-arboreal pitviper species distributed in Panamá, Colombia, and Ecuador, whose venom is poorly characterized. In the present work, the protein composition of this venom was profiled using the ‘snake venomics’ analytical strategy. Decomplexation of the crude venom by RP-HPLC and SDS-PAGE, followed by tandem mass spectrometry of tryptic digests, showed that it consists of proteins assigned to at least nine snake toxin families. Metalloproteinases are predominant in this secretion (41.5% of the total proteins, followed by C-type lectin/lectin-like proteins (16.7%, bradykinin-potentiating peptides (10.7%, phospholipases A2 (93%, serine proteinases (5.4%, disintegrins (38%, L-amino acid oxidases (3.1%, vascular endothelial growth factors (17%, and cysteine-rich secretory proteins (1.2%. Altogether, 6.6% of the proteins were not identified. In vitro, the venom exhibited proteolytic, phospholipase A2, and L-amino acid oxidase activities, as well as angiotensin-converting enzyme (ACE-inhibitory activity, in agreement with the obtained proteomic profile. Cytotoxic activity on murine C2C12 myoblasts was negative, suggesting that the majority of venom phospholipases A2 likely belong to the acidic type, which often lack major toxic effects. The protein composition of B. punctatus venom shows a good correlation with toxic activities here and previously reported, and adds further data in support of the wide diversity of strategies that have evolved in snake venoms to subdue prey, as increasingly being revealed by proteomic analyses.

  13. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

    Directory of Open Access Journals (Sweden)

    David eArredondo Zamarripa

    2014-10-01

    Full Text Available Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK production contributes to the increased transport through the blood-retina barrier (BRB in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC, blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19 cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  14. Integrative Metabolic Signatures for Hepatic Radiation Injury.

    Directory of Open Access Journals (Sweden)

    Irwin Jack Kurland

    Full Text Available Radiation-induced liver disease (RILD is a dose-limiting factor in curative radiation therapy (RT for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI and were contrasted to mice, which received 10 Gy whole body irradiation (WBI. Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate, fatty acids (lineolate, n-hexadecanoic acid and DNA damage markers (uridine.We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.

  15. CV-6209, a highly potent antagonist of platelet activating factor in vitro and in vivo.

    Science.gov (United States)

    Terashita, Z; Imura, Y; Takatani, M; Tsushima, S; Nishikawa, K

    1987-07-01

    2-[N-acetyl-N-(2-methoxy-3-octadecylcarbamoyloxypropoxycarbonyl) aminomethyl]-1-ethylpyridinium chloride (CV-6209) inhibited aggregation of rabbit and human platelets induced by platelet activating factor (PAF) with the IC50 values of 7.5 X 10(-8) and 1.7 X 10(-7) M, respectively, and had little effects on the aggregation induced by arachidonic acid, ADP and collagen. The inhibitory effect of CV-6209 on the PAF-induced rabbit platelet aggregation was 104, 9, 8 and 3 times more potent than the PAF antagonists CV-3988, ONO-6240, Ginkgolide B and etizolam, respectively. CV-6209 inhibited [3H]serotonin release from rabbit platelets stimulated with PAF (3 X 10(-8) M) with a similar potency as the inhibition on the platelet aggregation. CV-6209 inhibited PAF (0.3 microgram/kg i.v.)-induced hypotension in rats (ED50, 0.009 mg/kg i.v.) with no effect on the hypotension induced by arachidonic acid, histamine, bradykinin and isoproterenol. CV-6209 (1 mg/kg) inhibited slightly the acetylcholine-induced hypotension. In rats, post-treatment with CV-6209 reversed the PAF (1 microgram/kg i.v.)-induced hypotension rapidly (ED50, 0.0046 mg/kg i.v.); CV-6209 was 74, 20, 185 and over 2100 times more potent than CV-3988, ONO-6240, Ginkgolide B and etizolam, respectively. Thus, the relative potency of the anti-PAF action of PAF analog (CV-6209, CV-3988 and ONO-6240) differed little between the inhibition of PAF-induced platelet aggregation and the reversal of PAF-induced hypotension, but that of nonPAF analogs (Ginkgolide B and etizolam) differed greatly with these assay systems, when standardized with CV-6209.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3612533

  16. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    Science.gov (United States)

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.

  17. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency.

    Science.gov (United States)

    Varga, Lilian; Farkas, Henriette

    2011-03-01

    Recombinant human C1 esterase inhibitor (rhC1INH) (Ruconest(®), Pharming) is a new drug developed for the relief of symptoms occurring in patients with angioedema due to C1-inhibitor deficiency. Pertinent results have already been published elsewhere; this article summarizes the progress made since then. Similar to the purified C1-inhibitor derived from human plasma, the therapeutic efficacy of rhC1INH results from its ability to block the actions of enzymes belonging to the overactivated bradykinin-forming pathway, at multiple locations. During clinical trials into the management of acute edema, a total of 190 subjects received recombinant C1-inhibitor by intravenous infusion on 714 occasions altogether. Dose-ranging efficacy studies established 50 U/kg as the recommended dose, and demonstrated the effectiveness of this agent in all localizations of hereditary angioedema attacks. Studies into the safety of rhC1INH based on 300 administrations to healthy subjects or hereditary angioedema patients followed-up for 90 days have not detected the formation of autoantibodies against rhC1INH or IgE antibodies directed against rabbit proteins, even after repeated administration on multiple occasions. These findings met favorable appraisal by the EMA, which granted European marketing authorization for rhC1INH. Pharming is expected to file a biological licence with the US FDA by the end of 2010 to obtain marketing approval in the USA. The launch of rhC1INH onto the pharmaceutical market may represent an important progress in the management of hereditary angioedema patients.

  18. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.

    Science.gov (United States)

    Pagliaro, P; Senzaki, H; Paolocci, N; Isoda, T; Sunagawa, G; Recchia, F A; Kass, D A

    1999-10-01

    1. Coronary flow elevation from enhanced perfusion pulsatility is synergistically amplified by adenosine. This study determined the specificity of this interaction and its potential mechanisms. 2. Mean and phasic coronary flow responses to increasing pulsatile perfusion were assessed in anaesthetized dogs, with the anterior descending coronary artery servoperfused to regulate real-time physiological flow pulsatility at constant mean pressure. Pulsatility was varied between 40 and 100 mmHg. Hearts ejected into the native aorta whilst maintaining stable loading. 3. Increasing pulsatility elevated mean coronary flow +11.5 +/- 1.7 % under basal conditions. Co-infusion of adenosine sufficient to raise baseline flow 66 % markedly amplified this pulsatile perfusion response (+82. 6 +/- 14.3 % increase in mean flow above adenosine baseline), due to a leftward shift of the adenosine-coronary flow response curve at higher pulsatility. Flow augmentation with pulsatility was not linked to higher regional oxygen consumption, supporting direct rather than metabolically driven mechanisms. 4. Neither bradykinin, acetylcholine nor verapamil reproduced the synergistic amplification of mean flow by adenosine and higher pulsatility, despite being administered at doses matching basal flow change with adenosine. 5. ATP-sensitive potassium (KATP) activation (pinacidil) amplified the pulse-flow response 3-fold, although this remained significantly less than with adenosine. Co-administration of the phospholipase A2 inhibitor quinacrine virtually eliminated adenosine-induced vasodilatation, yet synergistic interaction between adenosine and pulse perfusion persisted, albeit at a reduced level. 6. Thus, adenosine and perfusion pulsatility specifically interact to enhance coronary flow. This synergy is partially explained by KATP agonist action and additional non-flow-dependent mechanisms, and may be important for modulating flow reserve during exercise or other high output states where

  19. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure. METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold. CONCLUSIONS/SIGNIFICANCE: These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  20. The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor.

    Science.gov (United States)

    Filippelli-Silva, Rafael; Martin, Renan P; Rodrigues, Eliete S; Nakaie, Clovis R; Oliveira, Laerte; Pesquero, João B; Shimuta, Suma I

    2016-04-01

    Bradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.35(226) and Asp6.58(298), our study aims at clarifying the BK interaction profile with the B2 receptor [receptor residue numbers are normalized according to Ballesteros and Weinstein, Methods Neurosci. 25 (1995), pp. 366-428) followed by receptor sequence numbering in brackets]. N- and C-terminal analogs of BK (-A1, -G1, -K1, -E1 and BK-A9) were tested against wild type B2, Glu5.35(226)Ala and Asp6.58(298)Ala B2 mutant receptors for their affinity and capability to elicit responses by mechanical recordings of isolated mice stomach fundus, measuring intracellular calcium mobilization, and competitive fluorimetric binding assays. BK showed 2- and 15-fold decreased potency for Glu5.35(226) and Asp6.58(298) B2 mutant receptors, respectively. In B2-Glu5.35(226)Ala BK analogs showed milder reduction in evaluated parameters. On the other hand, in the B2-Asp6.58(298)Ala mutant, no N-terminal analog was able to elicit any response. However, the BK-A9 analog presented higher affinity parameters than BK in the latter mutant. These findings provide enough support for defining a novel interaction role of BK-R9 and Asp6.58(298) receptor residues. PMID:26584354

  1. Signal transduction pathways involved in kinin B2 receptor-mediated vasodilation in the rat isolated perfused kidney

    Science.gov (United States)

    Bagaté, Karim; Grima, Michèle; Imbs, Jean-Louis; Jong, Wybren De; Helwig, Jean-Jacques; Barthelmebs, Mariette

    2001-01-01

    The signal transduction pathways involved in kinin B2 receptor-related vasodilation were investigated in rat isolated perfused kidneys. During prostaglandin F2α or KCl-induced constriction, the vasodilator response to a selective B2 receptor agonist, Tyr(Me)8bradykinin (Tyr(Me)8BK), was assessed.Tyr(Me)8BK produced a concentration- and endothelium-dependent relaxation that was decreased by about 30 – 40% after inhibition of nitric oxide (NO) synthase by NG-nitro-L-arginine (L-NOARG) or of cyclo-oxygenase by indomethacin; a greater decrease (about 40 – 50%) was observed after concomitant inhibition of the two pathways.High extracellular K+ diminished Tyr(Me)8BK-induced relaxation by about 75% suggesting a major contribution of endothelium-derived hyperpolarization. The residual response was almost completely suppressed by NO synthase and cyclo-oxygenase inhibition. The K+ channel inhibitors, tetrabutylammonium (non-specific) and charybdotoxin (specific for Ca2+-activated K+ channel), suppressed Tyr(Me)8BK-induced relaxation resistant to L-NOARG and indomethacin.Inhibition of cytochrome P450 (clotrimazole or 7-ethoxyresorufin) decreased the NO/prostanoids-independent relaxation to Tyr(Me)8BK by more than 60%, while inhibition of the cannabinoid CB1 receptor (SR 141716A) had only a moderate effect.Acetylcholine induced a concentration-dependent relaxation with characteristics nearly similar to the response to Tyr(Me)8BK. In contrast, the relaxation elicited by sodium nitroprusside was potentiated in the absence of NO (L-NOARG or removal of endothelium) but remained unchanged otherwise.These results indicate that the activation of kinin B2 receptors in the rat isolated kidney elicits an endothelium-dependent vasorelaxation, mainly dependent on the activation of charybdotoxin-sensitive Ca2+-activated K+ channels. In addition, cytochrome P450 derivatives appear to be involved. PMID:11309245

  2. Regulation of sulfated glycosaminoglycan production by prostaglandin E2 in cultured lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Karlinsky, J.B.; Goldstein, R.H. (Boston Univ. School of Medicine, MA (USA))

    1989-08-01

    Prostaglandin E2 (PGE2) has been shown to increase the synthesis of hyaluronic acid in cultured fibroblasts by increasing the activity of hyaluronate synthetase, a group of plasma membrane-bound synthetic enzymes. We examined whether PGE2 also increased the activity of those enzyme systems involved in the synthesis of sulfated glycosaminoglycan in the human embryonic lung fibroblast. Exposure of cells to PGE2 resulted in dose-dependent increases in glucosamine incorporation into all sulfated glycosaminoglycan subtypes. PGE2 at 10(-7) mol/L increased total glycosaminoglycan per dish to 21.6 +/- 3.1 micrograms versus 12.0 +/- 2.5 micrograms in control untreated cultures. Stimulation of endogenous PGE2 production by bradykinin had a similar effect on glycosaminoglycan synthesis. To examine whether PGE2 affected sulfated glycosaminoglycan protein core production, cells were labeled with tritiated glucosamine in the presence of cycloheximide. Under these conditions, incorporation of radiolabel into all glycosaminoglycan subtypes was reduced. However, when exogenous sulfated glycosaminoglycan chain initiator (p-nitrophenyl beta-D-xyloside) was added, incorporation of tritiated glucosamine into sulfated glycosaminoglycan increased but not to levels found in control cultures. Application of PGE2 to cultures treated with cycloheximide alone, or to cultures treated with cycloheximide plus xyloside, increased tritiated glucosamine incorporation into chondroitin, dermatan sulfate, and to a lesser extent into heparan sulfate. We conclude that PGE2 stimulates synthesis of all sulfated glycosaminoglycan even in the absence of new protein core production, probably by increasing activities of sulfated glycosaminoglycan synthetase enzymes. PGE2 stimulation of heparan sulfate synthesis is partially dependent on the availability of heparan sulfate-specific protein core.

  3. Pharmacological Characterization of the Edema Caused by Vitalius dubius (Theraphosidae, Mygalomorphae) Spider Venom in Rats.

    Science.gov (United States)

    Rocha-E-Silva, Thomaz A A; Linardi, Alessandra; Antunes, Edson; Hyslop, Stephen

    2016-01-01

    Bites by tarantulas (Theraphosidae, Mygalomorphae) in humans can result in mild clinical manifestations such as local pain, erythema, and edema. Vitalius dubius is a medium-sized, nonaggressive theraphosid found in southeastern Brazil. In this work, we investigated the mediators involved in the plasma extravasation caused by V. dubius venom in rats. The venom caused dose-dependent (0.1-100 μg/site) edema in rat dorsal skin. This edema was significantly inhibited by ((S)1-{2-[3(3-4-dichlorophenyl)-1-(3-iso-propoxyphenylacetyl)piperidine-3-yl]ethyl}-4-phenyl-1-azoniabicyclo[2.2.2]octone, chloride) (SR140333, a neurokinin NK1 receptor antagonist), indomethacin [a nonselective cyclooxygenase (COX) inhibitor], cyproheptadine (a serotonin 5-hydroxytryptamine1/2 and histamine H1 receptor antagonist), and N(ω)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor). In contrast, mepyramine (a histamine H1 receptor antagonist), D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)-]-BK (JE 049, a bradykinin B2 receptor antagonist), and ((S)-N-methyl-N-[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-di-chlorophenyl)butyl]benzamide) (SR48968, a neurokinin NK2 receptor antagonist) had no effect on the venom-induced increase in vascular permeability. In rat hind paws, the venom-induced edema was attenuated by ketoprofen (a nonselective COX inhibitor) administered 15 minutes postvenom. Preincubation of venom with commercial antiarachnid antivenom attenuated the venom-induced edema. These results suggest that the enhanced vascular permeability evoked by V. dubius venom involves serotonin, COX products, neurokinin NK1 receptors, and nitric oxide formation. The attenuation of hind paw edema by ketoprofen suggests that COX inhibitors could be useful in treating the local inflammatory response to bites by these spiders.

  4. The therapeutic properties of Carapa guianensis.

    Science.gov (United States)

    Henriques, Maria das Graças; Penido, Carmen

    2014-01-01

    Carapa guianensis Aublet (Meliaceae), also known as andiroba, is used in popular medicine in Brazil and other countries encompassing the Amazon rainforest. Virtually all parts of the andiroba tree are utilized, including the seed's oil, which is employed to treat inflammation and infections. The medicinal properties of C. guianensis have been attributed to the presence of limonoids, which are tetranortriterpenoids. We have previously demonstrated that the oil obtained from C. guianensis seeds contains different tetranortriterpenoids, including 6α-acetoxygedunin, 7-deacetoxy-7-oxogedunin, andirobin, gedunin and methyl-angolensate. The seeds oil and this fraction of tetranortriterpenoids present marked anti-inflammatory and anti-allergic properties, by inhibiting edema formation in different experimental models in rodents, via the impairment of signaling pathways triggered by histamine, bradykinin and platelet-activating factor. Tetranortriterpenoids also impaired the production of inflammatory mediators that trigger leukocyte infiltration into the inflammatory site, including the eosinophilotactic mediators interleukin (IL)-5 and CCL11/eotaxin, as well as the inflammatory cytokines tumor necrosis factor (TNF)-α and IL-1β. This phenomenon seems to depend on the inhibition of nuclear factor κB (NFκB) activation. We have further demonstrated that each one of the five tetranortriterpenoids listed above presented inhibitory effects on the activation of different cell populations, including mast cells, eosinophils and T lymphocytes, through which they impaired allergy and inflammation. This review will discuss the therapeutic effects of C. guianensis oil and its compounds, focusing on the scientific evidences that support its traditional use in inflammatory conditions and its anti-allergic properties. PMID:23701562

  5. Phospholipase C-η1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling.

    Science.gov (United States)

    Kim, Jung Kuk; Choi, Jung Woong; Lim, Seyoung; Kwon, Ohman; Seo, Jeong Kon; Ryu, Sung Ho; Suh, Pann-Ghill

    2011-06-01

    Phospholipase C-η1 (PLC-η1) is the most recently identified PLC isotype and is primarily expressed in nerve tissue. However, its functional role is unclear. In the present study, we report for the first time that PLC-η1 acts as a signal amplifier in G protein-coupled receptor (GPCR)-mediated PLC and Ca(2+) signaling. Short-hairpin RNA (shRNA)-mediated knockdown of endogenous PLC-η1 reduced lysophosphatidic acid (LPA)-, bradykinin (BK)-, and PACAP-induced PLC activity in mouse neuroblastoma Neuro2A (N2A) cells, indicating that PLC-η1 participates in GPCR-mediated PLC activation. Interestingly, ionomycin-induced PLC activity was significantly decreased by PLC-η1, but not PLC-η2, knockdown. In addition, we found that intracellular Ca(2+) source is enough for PLC-η1 activation. Furthermore, the IP(3) receptor inhibitor, 2-APB, inhibited LPA-induced PLC activity in control N2A cells, whereas this effect was not observed in PLC-η1 knockdown N2A cells, suggesting a pivotal role of intracellular Ca(2+) mobilization in PLC-η1 activation. Finally, we found that LPA-induced ERK1/2 phosphorylation and expression of the downstream target gene, krox-24, were significantly decreased by PLC-η1 knockdown, and these knockdown effects were abolished by 2-APB. Taken together, our results strongly suggest that PLC-η1 is activated via intracellular Ca(2+) mobilization from the ER, and therefore amplifies GPCR-mediated signaling.

  6. Vivo-morpholinos induced transient knockdown of physical activity related proteins.

    Directory of Open Access Journals (Sweden)

    David P Ferguson

    Full Text Available Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28. However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001 decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016 increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.

  7. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-06-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of /sup 3/H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena.

  8. Mitogenic response of near-diploid mouse cell line m5S/1M induced by epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Umeda, M.; Nomura, T.; Kobayashi, T.; Nakano, T.; Arita, H.; Utsumi, H.; Sasaki, M.S.; Inoue, K. (Shionogi Co., Ltd., Osaka (Japan))

    1990-01-01

    A nonmalignant near-diploid cell line m5s/1M, established by Sasaki and Kodama, was shown to respond to the epidermal growth factor (EGF). The m5s/1M cells showed high sensitivity to post-confluence inhibition of cell division and formed a uniform monolayer after the cells had become confluent. The addition of EGF resulted in loss of contact-dependent inhibition of growth and caused a massive piling up of a multilayered array of cells after they had become confluent. When EGF was removed from the medium, the cell number decreased rapidly, and the cells formed a uniform monolayer at the density observed in the absence of EGF. m5S/1M cells have high- and low-affinity receptors for EGF (approximately 40,000 receptors per cell), and the apparent dissociation constants of the EGF-binding reactions were 3.3 nM and 0.15 nM, respectively. The effect of EGF on the intracellular mobilization of Ca2+ and the formation of inositol phosphates was studied by using the calcium-sensitive fluorescent indicator fura 2 and (3H)inositol. EGF had no effect either on the mobilization of cytosolic free calcium (( Ca2+)i) or on the formation of inositol phosphates in m5s/1M cells, whereas bradykinin induced a rapid increase in both (Ca2+)i and inositol phosphates. Analysis of the glycosphingolipid (GSL) composition of m5S/1M cells showed that globotriaosylceramide (Gb3Cer), which is known to be a Burkitt lymphoma-associated antigen, is specifically expressed in the EGF-treated cells. The expression of Gb3Cer is dependent on the presence of EGF, with a reversible shift in GSL composition being observed in the presence or absence of EGF.

  9. Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors.

    Directory of Open Access Journals (Sweden)

    Pavla Fajtová

    Full Text Available Blood flukes of the genus Schistosoma cause schistosomiasis, a parasitic disease that infects over 240 million people worldwide, and for which there is a need to identify new targets for chemotherapeutic interventions. Our research is focused on Schistosoma mansoni prolyl oligopeptidase (SmPOP from the serine peptidase family S9, which has not been investigated in detail in trematodes.We demonstrate that SmPOP is expressed in adult worms and schistosomula in an enzymatically active form. By immunofluorescence microscopy, SmPOP is localized in the tegument and parenchyma of both developmental stages. Recombinant SmPOP was produced in Escherichia coli and its active site specificity investigated using synthetic substrate and inhibitor libraries, and by homology modeling. SmPOP is a true oligopeptidase that hydrolyzes peptide (but not protein substrates with a strict specificity for Pro at P1. The inhibition profile is analogous to those for mammalian POPs. Both the recombinant enzyme and live worms cleave host vasoregulatory, proline-containing hormones such as angiotensin I and bradykinin. Finally, we designed nanomolar inhibitors of SmPOP that induce deleterious phenotypes in cultured schistosomes.We provide the first localization and functional analysis of SmPOP together with chemical tools for measuring its activity. We briefly discuss the notion that SmPOP, operating at the host-parasite interface to cleave host bioactive peptides, may contribute to the survival of the parasite. If substantiated, SmPOP could be a new target for the development of anti-schistosomal drugs.

  10. Anti-inflammatory activity of Choisya ternata Kunth essential oil, ternanthranin, and its two synthetic analogs (methyl and propyl N-methylanthranilates.

    Directory of Open Access Journals (Sweden)

    Mariana Martins Gomes Pinheiro

    Full Text Available Choisya ternata Kunth (Rutaceae is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN were evaluated. Mice pretreated with the EO (EO obtained from C. ternata leaves (3-100 mg/kg, p.o., ISOAN, MAN or PAN (1-30 mg/kg, p.o. and the reference drugs, morphine (1 mg/kg, p.o. and acetylsalicylic acid (ASA, 100 mg/kg, p.o., were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively. An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β. ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA. None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect.

  11. Protective Role of Cys-178 against the Inactivation and Oligomerization of Human Insulin-degrading Enzyme by Oxidation and Nitrosylation*

    Science.gov (United States)

    Ralat, Luis A.; Ren, Min; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-β (Aβ). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the Vmax for Aβ degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Aβ degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function. PMID:19808678

  12. C-reactive protein levels in hereditary angioedema.

    Science.gov (United States)

    Hofman, Z L M; Relan, A; Hack, C E

    2014-07-01

    Hereditary angioedema (HAE) patients experience recurrent episodes of angioedema attacks that can be painful, disfiguring and even life-threatening. The disorder results from a mutation in the gene that controls the synthesis of C1-inhibitor (C1INH). C1INH is a major regulator of activation of the contact system. It is often assumed that attacks results from uncontrolled local activation of the contact system with subsequent formation of bradykinin. To evaluate the involvement of inflammatory reactions in HAE, we analysed C-reactive protein (CRP) levels. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. For the current study we analysed CRP levels when patients were asymptomatic, during a clinical attack and in a follow-up period, and correlated these with the clinical manifestations of the attack. Data from 68 HAE patients were analysed and included CRP levels on 273 occasions. While asymptomatic, 20% of the patients analysed had increased CRP. At the onset of the attack (P = 0·049) and during the next 24 h CRP rose significantly (P = 0·002) in patients with an abdominal location, and post-attack levels were significantly higher in these patients than in patients with attacks at other locations (P = 0·034). In conclusion, CRP levels are elevated in a substantial proportion of asymptomatic HAE patients. Levels of CRP increase significantly during an abdominal attack. These data suggest low-grade systemic inflammatory reactions in HAE patients as well as a triggering event for attacks that starts prior to symptom onset.

  13. Angioedema attacks in patients with hereditary angioedema: Local manifestations of a systemic activation process.

    Science.gov (United States)

    Hofman, Zonne L M; Relan, Anurag; Zeerleder, Sacha; Drouet, Christian; Zuraw, Bruce; Hack, C Erik

    2016-08-01

    Hereditary angioedema (HAE) caused by a deficiency of functional C1-inhibitor (C1INH) becomes clinically manifest as attacks of angioedema. C1INH is the main inhibitor of the contact system. Poor control of a local activation process of this system at the site of the attack is believed to lead to the formation of bradykinin (BK), which increases local vasopermeability and mediates angioedema on interaction with BK receptor 2 on the endothelium. However, several observations in patients with HAE are difficult to explain from a pathogenic model claiming a local activation process at the site of the angioedema attack. Therefore we postulate an alternative model for angioedema attacks in patients with HAE, which assumes a systemic, fluid-phase activation of the contact system to generate BK and its breakdown products. Interaction of these peptides with endothelial receptors that are locally expressed in the affected tissues rather than with receptors constitutively expressed by the endothelium throughout the whole body explains that such a systemic activation process results in local manifestations of an attack. In particular, BK receptor 1, which is induced on the endothelium by inflammatory stimuli, such as kinins and cytokines, meets the specifications of the involved receptor. The pathogenic model discussed here also provides an explanation for why angioedema can occur at multiple sites during an attack and why HAE attacks respond well to modest increases of circulating C1INH activity levels because inhibition of fluid-phase Factor XIIa and kallikrein requires lower C1INH levels than inhibition of activator-bound factors.

  14. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  15. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    Directory of Open Access Journals (Sweden)

    Daniel Dias Rufino Arcanjo

    Full Text Available Proline-rich oligopeptides (PROs are a large family which comprises the bradykinin-potentiating peptides (BPPs. They inhibit the activity of the angiotensin I-converting enzyme (ACE and have a typical pyroglutamyl (Pyr/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO. Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  16. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  17. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Luo Guanghong [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Diao Jiajie [Department of Physics, George Washington University, Washington, DC 20052 (United States); Chornoguz, Olesya [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Reeves, Mark [Department of Physics, George Washington University, Washington, DC 20052 (United States); Vertes, Akos [Department of Chemistry, George Washington University, Washington, DC 20052 (United States)

    2007-04-15

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12{+-}1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3x{omega} Nd:YAG laser in air, SF{sub 6} or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to {approx}2 {mu}m in SF{sub 6} gas and to {approx}5 {mu}m in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly ({approx}10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  18. Binding of PLCδ1PH-GFP to Ptdlns(4,5)P2 prevents inhibition of phospholipase C-mediated hydrolysis of Ptdlns(4,5)P2 by neomycin

    Institute of Scientific and Technical Information of China (English)

    Chuan WANG; Xiao-na DU; Qing-zhong JIA; Hai-lin ZHANG

    2005-01-01

    Aim: To investigate the effects of the pleckstrin homology (PH) domain of phospholipase Cδ1 (PLCδ1PH) on inhibition of phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by neomycin.Methods: A fusion construct of green fluorescent protein (GFP) and PLCδ1PH (PLCδ1PH-GFP), which is known to bind Ptdlns(4,5)P2 specifically, together with laser-scanning confocal microscopy, was used to trace PtdIns(4,5)P2 translocation.Results: Stimulation of the type 1 muscarinic receptor and the bradykinin 2 receptor induced a reversible PLCδ1PH-GFP translocation from the membrane to the cytosol in COS-7 cells. PLC inhibitor U73122 blocked the translocation.Wortmannin, a known PtdIns kinase inhibitor, did not affect the translocation induced by ACh, but blocked recovery after translocation, indicating that PtdIns(4,5)P2 hydrolysis occurs through receptor-mediated PLC activation.Neomycin, a commonly used phospholipase C blocker, failed to block the receptor-induced PLCδ1PH-GFP translocation, indicating that neomycin is unable to block PLC-mediated PtdIns(4,5)P2 hydrolysis. However, in the absence of PLCδ1PH-GFP expression, neomycin abolished the receptor-induced hydrolysis of PtdIns(4,5)P2 by PLC. Conclusion: Although PLCδ1PH and neomycin bind to PtdIns(4,5)P2 in a similar way, they have distinct effects on receptor-mediated activation of PLC and PtdIns(4,5)P2 hydrolysis.

  19. Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ke Liu; Jiansheng Li

    2006-01-01

    OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism.DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain ischemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English.STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded.DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved.DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca2+and the release of intracellular Ca2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB.CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB

  20. Neurotensin high affinity binding sites and endopeptidase 24. 11 are present respectively in the meningothelial and in the fibroblastic components of human meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Mailleux, P.; Przedborski, S.; Beaumont, A.; Verslijpe, M.; Depierreux, M.; Levivier, M.; Kitabgi, P.; Roques, B.P.; Vanderhaeghen, J.J. (Brugmann Hospital, Bruxelles (Belgium))

    1990-11-01

    The presence of neurotensin receptors and endopeptidase 24.11 (E-24.11) in 16 human meningioma specimens, obtained at surgery, was assessed by measuring the binding of {sup 125}I-(tyrosyl3)neurotensin(1-13) ({sup 125}I-NT) and the inhibitor {sup 3}H-N(2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-(oxopropyl)glycine ({sup 3}H-HACBO-Gly), for the receptor and enzyme, respectively. E-24.11 activity was also measured. Autoradiography, on the 16 meningiomas, showed that specific {sup 125}I-NT labeling (nonspecific labeling was assessed in the presence of excess NT) was exclusively located in the meningothelial regions. In contrast, specific {sup 3}H-HACBO-Gly labeling (nonspecific labeling was assessed in the presence of an excess of the E-24.11 inhibitor thiorphan) was exclusively found in fibroblastic regions. No specific labeling of either ligand was found on collagen or blood vessels. In vitro binding assays were performed on membranes of 10 of the 16 meningiomas. In the 4 meningiomas rich in meningothelial cells, {sup 125}I-NT specifically bound to one population of sites with Bmax ranging from 57 to 405 fmol/mg protein and Kd around 0.3 nM. These sites share common properties with the brain NT receptor, since the carboxy terminal acetyl NT(8-13) fragment bound to the same sites but with a higher affinity. The carboxy terminal analogue of NT, neuromedin N, also bound to the same sites with a 10-fold lower affinity and the sites were bradykinin and levocabastine insensitive. In the 4 meningiomas rich in fibroblastic cells, {sup 3}H-HACBO-Gly specifically bound to one population of sites with Bmax ranging from 251 to 739 fmol/mg protein and Kd around 2.8 nM.

  1. Lung damage induced by butylated hydroxytoluene in mice. Biochemical, cellular, and morphologic characterization.

    Science.gov (United States)

    Smith, L J

    1984-11-01

    This study was designed to characterize the biochemical, cellular, and morphologic events produced in mice by butylated hydroxytoluene (BHT) and to relate these events to changes in extracellular angiotensin-converting enzyme (ACE) activity. On Day 1 after the administration of BHT, bronchoalveolar lavage (BAL) ACE activity increased 4-fold (p less than 0.001), its specific activity relative to BAL protein increased 3-fold (p less than 0.001), and both type 1 cell damage and endothelial cell damage were detected by electron microscopy. The early increase in BAL ACE activity preceded changes in plasma ACE levels, BAL cell number, protein, lactate, and lactate dehydrogenase (LDH) activity in both plasma and BAL, and the ACE content of alveolar macrophages. On Day 2, BAL ACE activity increased 9-fold, BAL protein increased 4-fold (p less than 0.001), BAL LDH activity increased 34% (p less than 0.05), and the BAL cell count doubled (p less than 0.01). Changes in each animal's appearance, body weight, wet and dry lung weights, and plasma ACE levels occurred between Days 3 and 5. The BAL differential cell count, which consisted of greater than 95% macrophages in uninjured mice, did not change until Day 5 when there was a small increase in polymorphonuclear leukocytes (PMN). On Day 7, the number of PMN peaked, and some of the other measures of lung injury began returning toward normal. These results indicate that BAL ACE activity is a sensitive, early marker of BHT-induced lung injury, which appears to reflect damage to the cells of the alveolar-capillary barrier. In addition, PMN do not appear to play a major role in this model of lung injury. Because of its effects on angiotensin, bradykinin, and prostaglandins, the early release of ACE from damaged cells may modulate the subsequent injury. PMID:6093659

  2. Hereditary angioedema: what the gastroenterologist needs to know

    Directory of Open Access Journals (Sweden)

    Ali MA

    2014-11-01

    Full Text Available M Aamir Ali, Marie L Borum Division of Gastroenterology and Liver Diseases, George Washington University, Washington, DC, USA Abstract: Up to 93% of patients with hereditary angioedema (HAE experience recurrent abdominal pain. Many of these patients, who often present to emergency departments, primary care physicians, general surgeons, or gastroenterologists, are misdiagnosed for years and undergo unnecessary testing and surgical procedures. Making the diagnosis of HAE can be challenging because symptoms and attack locations are often inconsistent from one episode to the next. Abdominal attacks are common and can occur without other attack locations. An early, accurate diagnosis is central to managing HAE. Unexplained abdominal pain, particularly when accompanied by swelling of the face and extremities, suggests the diagnosis of HAE. A family history and radiologic imaging demonstrating edematous bowel also support an HAE diagnosis. Once HAE is suspected, C4 and C1 esterase inhibitor (C1-INH laboratory studies are usually diagnostic. Patients with HAE may benefit from recently approved specific treatments, including plasma-derived C1-INH or recombinant C1-INH, a bradykinin B2-receptor antagonist, or a kallikrein inhibitor as first-line therapy and solvent/detergent-treated or fresh frozen plasma as second-line therapy for acute episodes. Short-term or long-term prophylaxis with nanofiltered C1-INH or attenuated androgens will prevent or reduce the frequency and severity of episodes. Gastroenterologists can play a critical role in identifying and treating patients with HAE, and should have a high index of suspicion when encountering patients with recurrent, unexplained bouts of abdominal pain. Given the high rate of abdominal attacks in HAE, it is important for gastroenterologists to appropriately diagnose and promptly recognize and treat HAE, or refer patients with HAE to an allergist. Keywords: hereditary angioedema, abdominal pain, diagnosis

  3. Intracellular calcium release modulates polycystin-2 trafficking

    Directory of Open Access Journals (Sweden)

    Miyakawa Ayako

    2013-02-01

    Full Text Available Abstract Background Polycystin-2 (PC2, encoded by the gene that is mutated in autosomal dominant polycystic kidney disease (ADPKD, functions as a calcium (Ca2+ permeable ion channel. Considerable controversy remains regarding the subcellular localization and signaling function of PC2 in kidney cells. Methods We investigated the subcellular PC2 localization by immunocytochemistry and confocal microscopy in primary cultures of human and rat proximal tubule cells after stimulating cytosolic Ca2+ signaling. Plasma membrane (PM Ca2+ permeability was evaluated by Fura-2 manganese quenching using time-lapse fluorescence microscopy. Results We demonstrated that PC2 exhibits a dynamic subcellular localization pattern. In unstimulated human or rat proximal tubule cells, PC2 exhibited a cytosolic/reticular distribution. Treatments with agents that in various ways affect the Ca2+ signaling machinery, those being ATP, bradykinin, ionomycin, CPA or thapsigargin, resulted in increased PC2 immunostaining in the PM. Exposing cells to the steroid hormone ouabain, known to trigger Ca2+ oscillations in kidney cells, caused increased PC2 in the PM and increased PM Ca2+ permeability. Intracellular Ca2+ buffering with BAPTA, inositol 1,4,5-trisphosphate receptor (InsP3R inhibition with 2-aminoethoxydiphenyl borate (2-APB or Ca2+/Calmodulin-dependent kinase inhibition with KN-93 completely abolished ouabain-stimulated PC2 translocation to the PM. Conclusions These novel findings demonstrate intracellular Ca2+-dependent PC2 trafficking in human and rat kidney cells, which may provide new insight into cyst formations in ADPKD.

  4. Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1 activity and increase airway smooth muscle contraction in asthma.

    Directory of Open Access Journals (Sweden)

    Natasha K Rogers

    Full Text Available Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM deposition. Matrix metalloproteinase-1 (MMP-1 is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.

  5. TiO2 nanoparticles tested in a novel screening whole human blood model of toxicity trigger adverse activation of the kallikrein system at low concentrations.

    Science.gov (United States)

    Ekstrand-Hammarström, Barbro; Hong, Jaan; Davoodpour, Padideh; Sandholm, Kerstin; Ekdahl, Kristina N; Bucht, Anders; Nilsson, Bo

    2015-05-01

    There is a compelling need to understand and assess the toxicity of industrially produced nanoparticles (NPs). In order to appreciate the long-term effects of NPs, sensitive human-based screening tests that comprehensively map the NP properties are needed to detect possible toxic mechanisms. Animal models can only be used in a limited number of test applications and are subject to ethical concerns, and the interpretation of experiments in animals is also distorted by the species differences. Here, we present a novel easy-to-perform highly sensitive whole-blood model using fresh non-anticoagulated human blood, which most justly reflects complex biological cross talks in a human system. As a demonstrator of the tests versatility, we evaluated the toxicity of TiO2 NPs that are widely used in various applications and otherwise considered to have relatively low toxic properties. We show that TiO2 NPs at very low concentrations (50 ng/mL) induce strong activation of the contact system, which in this model elicits thromboinflammation. These data are in line with the finding of components of the contact system in the protein corona of the TiO2 NPs after exposure to blood. The contact system activation may lead to both thrombotic reactions and generation of bradykinin, thereby representing fuel for chronic inflammation in vivo and potentially long-term risk of autoimmunity, arteriosclerosis and cancer. These results support the notion that this novel whole-blood model represents an important contribution to testing of NP toxicity. PMID:25770998

  6. Angiotensin I-converting enzyme Gln1069Arg mutation impairs trafficking to the cell surface resulting in selective denaturation of the C-domain.

    Directory of Open Access Journals (Sweden)

    Sergei M Danilov

    Full Text Available BACKGROUND: Angiotensin-converting enzyme (ACE; Kininase II; CD143 hydrolyzes small peptides such as angiotensin I, bradykinin, substance P, LH-RH and several others and thus plays a key role in blood pressure regulation and vascular remodeling. Complete absence of ACE in humans leads to renal tubular dysgenesis (RTD, a severe disorder of renal tubule development characterized by persistent fetal anuria and perinatal death. METHODOLOGY/PRINCIPAL FINDINGS: Patient with RTD in Lisbon, Portugal, maintained by peritoneal dialysis since birth, was found to have a homozygous substitution of Arg for Glu at position 1069 in the C-terminal domain of ACE (Q1069R resulting in absence of plasma ACE activity; both parents and a brother who are heterozygous carriers of this mutation had exactly half-normal plasma ACE activity compared to healthy individuals. We hypothesized that the Q1069R substitution impaired ACE trafficking to the cell surface and led to accumulation of catalytically inactive ACE in the cell cytoplasm. CHO cells expressing wild-type (WT vs. Q1069R-ACE demonstrated the mutant accumulates intracellularly and also that it is significantly degraded by intracellular proteases. Q1069R-ACE retained catalytic and immunological characteristics of WT-ACE N domain whereas it had 10-20% of the nativity of the WT-ACE C domain. A combination of chemical (sodium butyrate or pharmacological (ACE inhibitor chaperones with proteasome inhibitors (MG 132 or bortezomib significantly restored trafficking of Q1069R-ACE to the cell surface and increased ACE activity in the cell culture media 4-fold. CONCLUSIONS/SIGNIFICANCE: Homozygous Q1069R substitution results in an ACE trafficking and processing defect which can be rescued, at least in cell culture, by a combination of chaperones and proteasome inhibitors. Further studies are required to determine whether similar treatment of individuals with this ACE mutation would provide therapeutic benefits such as

  7. Detection of Biological Materials Using Ion Mobility Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodacy, P.J.; Sterling, J.P.; Butler, M.A.

    1999-03-01

    Traditionally, Ion Mobility Spectroscopy has been used to examine ions of relatively low molecular weight and high ion mobility. In recent years, however, biomolecules such as bradykinin, cytochrome c, bovine pancreatic trypsin inhibitor (BPTI), apomyoglobin, and lysozyme, have been successfully analyzed, but studies of whole bio-organisms have not been performed. In this study an attempt was made to detect and measure the mobility of two bacteriophages, {lambda}-phage and MS2 using electrospray methods to inject the viruses into the ion mobility spectrometer. Using data from Yeh, et al., which makes a comparison between the diameter of non-biologic particles and the specific particle mobility, the particle mobility for the MS2 virus was estimated to be 10{sup {minus}2} cm{sup 2}/volt-sec. From this mobility the drift time of these particles in our spectrometer was calculated to be approximately 65 msec. The particle mobility for the {lambda}-phage virus was estimated to be 10{sup {minus}3} cm{sup 2}/volt-sec. which would result in a drift time of 0.7 sec. Spectra showing the presence of a viral peak at the expected drift time were not observed. However, changes in the reactant ion peak that could be directly attributed to the presence of the viruses were observed. Virus clustering, excessive collisions, and the electrospray injection method limited the performance of this IMS. However, we believe that an instrument specifically designed to analyze such bioagents and utilizing other injection and ionization methods will succeed in directly detecting viruses and bacteria.

  8. The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity.

    Science.gov (United States)

    Wu, Maddalena Alessandra; Castelli, Roberto

    2016-02-01

    Several clinical and biological features of lymphoproliferative diseases have been associated with an increased risk of developing autoimmune manifestations. Acquired deficiency of C1-inhibitor (C1-INH) (AAE) is a rare syndrome clinically similar to hereditary angioedema (HAE) characterized by local increase in vascular permeability (angioedema) of the skin and the gastrointestinal and oro-pharyngo-laryngeal mucosa. Bradykinin, a potent vasoactive peptide, released from high molecular weight kininogen when it is cleaved by plasma kallikrein (a serine protease controlled by C1-INH), is the mediator of symptoms. In total 46% of AAE patients carry an underlying hematological disorder including monoclonal gammopathy of uncertain significance (MGUS) or B cell malignancies. However, 74% of AAE patients have anti-C1-INH autoantibodies without hematological, clinical or instrumental evidence of lymphoproliferative disease. Unlike HAE patients, AAE patients usually have late-onset symptoms, do not have a family history of angioedema and present variable response to treatment due to the hypercatabolism of C1-INH. Experiments show that C1-INH and/or the classical complement pathway were consumed by the neoplastic lymphatic tissues and/or anti-C1-INH neutralizing autoantibodies. Therapy of AAE follows two directions: 1) prevention/reversal of the symptoms of angioedema; and 2) treatment of the associated disease. Different forms of B cell disorders coexist and/or evolve into each other in AAE and seem to be dominated by an altered control of B cell proliferation, thus AAE represents an example of the strict link between autoimmunity and lymphoproliferation. PMID:26068904

  9. Molecular versus particulate deposition markers for blood flow measurement in the musculo-skeletal system. 131Iodo-DesMethyl-Imipramine

    International Nuclear Information System (INIS)

    The aims of the experiments were to develop and validate a porcine isolated blood perfused myocutaneous flap and tibia model with preserved venous outflow. The stability of the models was tested and washout of microspheres and IDMI was measured. IDMI and microsphere based tissue blood flow measurements were compared after central intracardiac injection into the intact animal. Three experimental series were necessary to develop and validate the models. The organs were perfused with arterial blood by a pulsatile pump and submerged into a tissue bath. All outflow from the models were collected. One experiment was necessary to validate the rectus abdominis myocutaneous flap. In three experiments an isolated tibia with preserved venous outflow was developed and validated. Normal flow rate/perfusion pressure relations were reproduced after periods of supra-normal and sub-normal perfusion pressure in the two models. A response to endothelially mediated vasodilation with bradykinin was demonstrated after nine hours of artificial perfusion in the tibia model. IDMI did not influence the local hemodynamics during infusion, whereas microspheres elicited a transitory increase in the perfusion pressure after local injection. IDMI and microsphere based blood flow measurements and recirculation were compared in the in-situ musculo-skeletal tissue corresponding to the two models after central injection of the markers. Recirculation of IDMI was greater (8(1)%) than that of microspheres (2(0)%) after 18 minutes. Microspheres tended to measure higher blood flow values than IDMI at high flow rates and vice versa at low flow values. The 131Iodo-DesMethyl-Imipramine (IDMI) method is not generally applicable as a deposition marker for blood flow measurement in the musculo-skeletal system. (EHS)

  10. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Directory of Open Access Journals (Sweden)

    Westerholm Roger

    2010-07-01

    Full Text Available Abstract Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3 or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin and endothelial-independent (sodium nitroprusside and verapamil vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel

  11. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex.

    Science.gov (United States)

    Sousa, Leijiane F; Nicolau, Carolina A; Peixoto, Pedro S; Bernardoni, Juliana L; Oliveira, Sâmella S; Portes-Junior, José Antonio; Mourão, Rosa Helena V; Lima-dos-Santos, Isa; Sano-Martins, Ida S; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB--soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  12. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex.

    Directory of Open Access Journals (Sweden)

    Leijiane F Sousa

    Full Text Available In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB--soro antibotrópico. However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is

  13. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C.

    Science.gov (United States)

    Gross, Eric R; Hsu, Anna K; Urban, Travis J; Mochly-Rosen, Daria; Gross, Garrett J

    2013-09-01

    Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C (PKC) isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal-specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning. Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45 ± 1, 44 ± 2 %, respectively, vs. incision: 43 ± 2 %, and control: 63 ± 2 %, P classical PKC isozyme activator (activating α, β, βII, and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45 ± 1 vs. 45 ± 2 and 47 ± 1 %, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection. These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.

  14. The biphasic virulence activities of gingipains: activation and inactivation of host proteins.

    Science.gov (United States)

    Imamura, Takahisa; Travis, James; Potempa, Jan

    2003-12-01

    Gingipains are trypsin-like cysteine proteinases produced by Porphyromonas gingivalis, a major causative bacterium of adult periodontitis. Rgps (HRgpA and RgpB) and Kgp are specific for -Arg-Xaa- and -Lys-Xaa- peptide bonds, respectively. HRgpA and Kgp are non-covalent complexes containing separate catalytic and adhesion/hemagglutinin domains, while RgpB has only a catalytic domain with a primary structure essentially identical to that of the cata-lytic subunit of HRgpA. The multiple virulence activities of gingipains are reviewed in view of the biphasic mechanisms: activation and inactivation of host proteins. Rgps enhanced vascular permeability through prekallikrein activation or direct bradykinin release in combination with Kgp. This Rgp action is potentially associated with gingival edema and crevicular fluid production. Rgps activate the blood coagulation system, leading to progression of inflammation and consequent alveolar bone loss in the periodontitis site. Rgps also activate protease-activated receptors and induce platelet aggregation, which, together with the coagulation-inducing activity, may explain an emerging link between periodontitis and cardiovascular disease. Kgp is the most potent fibrinogen/fibrin degrading enzyme of the three gingipains in human plasma, being involved in the bleeding tendency at the diseased gingiva. Gingipains stimulate expression of matrix metalloproteinases (MMPs) in fibroblasts and activate secreted latent MMPs that can destroy periodontal tissues. Gingipains degrade cytokines, components of the complement system and several receptors, including macrophage CD14, T cell CD4 and CD8, thus perturbing the host-defense systems and thereby facilitating sustained colonization of P. gingivalis. Gingipains are potent virulence factors of P. gingivalis, and in many regards their pathogenic activities constitute new mechanisms of bacterial virulence. PMID:14683429

  15. Pharmacological characterization of the rat paw edema induced by Bothrops lanceolatus (Fer de lance) venom.

    Science.gov (United States)

    de Faria L; Antunes, E; Bon, C; de Araújo, A L

    2001-06-01

    The inflammatory response induced by Bothrops lanceolatus venom (BLV) in the rat hind-paw was studied measuring paw edema. Non-heated BLV (75microg/paw) caused a marked paw edema accompanied by intense haemorrhage whereas heated venom (97 degrees C, 30s; 12.5-100microg/paw) produced a dose- and time-dependent non-haemorrhagic edema. The response with heated BLV was maximal within 15min disappearing over 24h. Heated venom was then routinely used at the dose of 75microg/paw. The prostacyclin analogue iloprost (0.1microg/paw) potentiated by 125% the venom-induced edema. The histamine H(1) receptor antagonist mepyramine (6mg/kg) or the serotonin/histamine receptor antagonist cyproheptadine (6mg/kg) partially inhibited BLV-induced edema whereas the combination of both compounds virtually abolished the edema. The lipoxygenase inhibitor BWA4C (10mg/kg), but not the cyclooxygenase inhibitor indomethacin (10mg/kg), significantly inhibited the edema (35% reduction; P<0.05). Dexamethasone (1mg/kg) also markedly (P<0.001) reduced venom-induced edema. The bradykinin B(2) receptor antagonist Hoe 140 (0.6mg/kg) reduced by 30% (P<0.05) the venom induced edema, whereas the angiotensin-converting enzyme inhibitor captopril (300microg/paw) potentiated by 42% (P<0.05) the edema. Bothrops lanceolatus antivenon (anti-BLV) reduced by 28% (P<0.05) the venom-induced edema while intravenous administration of antivenom failed to affect the edema. In conclusion, BLV-induced rat paw edema involves mast cell degranulation causing local release of histamine and serotonin, a phenomenon mediated mainly by kinins and lipoxygenase metabolites. Additionally, the use of a specific Bothrops lanceolatus antivenom, given subplantarily or intravenously, revealed to be little effective to prevent BLV-induced edema. PMID:11137542

  16. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  17. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Schreuder, Herman A., E-mail: herman.schreuder@sanofi.com; Liesum, Alexander, E-mail: alexander.liesum@sanofi.com; Kroll, Katja, E-mail: katja.kroll@sanofi.com; Böhnisch, Britta, E-mail: britta.boehnisch@sanofi.com; Buning, Christian, E-mail: christian.buning@sanofi.com; Ruf, Sven, E-mail: sven.ruf@sanofi.com; Sadowski, Thorsten, E-mail: thorsten.sadowski@sanofi.com

    2014-03-07

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side chains

  18. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu

    Directory of Open Access Journals (Sweden)

    Menossi Marcelo

    2010-10-01

    Full Text Available Abstract Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%, bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%, phospholipases A2 (5.6%, serine proteinases (1.9% and C-type lectins (1.5%. Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland

  19. Mechanisms underlying neuroprotective roles of kallikrein in ischemic stroke%激肽释放酶神经保护作用的机制探索

    Institute of Scientific and Technical Information of China (English)

    唐宇平; 崔梅; 董强

    2011-01-01

    脑血管病发病率高,严重危害人类健康.探索缺血性脑损害的机制与阻断相应分子与细胞损害的环节是目前全世界神经科学工作者研究的焦点和热点.激肽释放酶-激肽系统(kallikrein-kinin system,KKS)是体内重要的炎性调节系统.综合探索KKS系统在脑缺血不同时期的作用,对缺血再灌注脑组织中激肽释放酶的动态变化进行系统的研究,从细胞内信号转导水平来探索B1和B2受体作用的深层机制,并进一步研究组织型激肽释放酶作用通路上新的相关蛋白分子及发现新的信号通路,这一系列的工作将对脑缺血的试验性治疗提供崭新的思路.%Ischemic stroke is one of the most common diseases that cause unnatural death and disability.It is a hot spot to study the mechanisms and the molecular and cellar key link in cerebral ischemic damage.Kallikrein-kinin system (KKS) is a well known inflammation regulatory system that plays an important role in the pathophysiologic process after cerebral ischemia.However, current researches implies that this system may produce completely different effects during various stages of cerebral ischemia.Therefore, it is important to study the roles of kallikrein-kinin system as well as bradykinin B1 and B2 receptors in cellar signal transduction after ischemic stroke, and to explore new target proteins in the kallikrein pathway.In this review, we reviewed the roles of KKS in various stages of cerebral ischemia, looking forward to provide promising targets for the treatment of ischemic stroke.

  20. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors in rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side chains

  1. Production of soluble Neprilysin by endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@monash.edu [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Rajapakse, Niwanthi W. [Department of Physiology, Building 13F, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Minond, Dmitriy [Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987 (United States); Smith, A. Ian [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia)

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  2. Therapeutic possibilities of Bothrops jararaca in high dilution

    Directory of Open Access Journals (Sweden)

    Eduardo Costa Gaia Nazareth

    2011-09-01

    Full Text Available Introduction: The knowledge and use of the venom of Bothrops jararaca in high dilutions is still quite limited. One of the important properties is the use of one of its components, bradykinin, for the development of antihypertensive medication known as captopril. Other situations, such as clinical, local and systemic should receive more depth to the composition of Materia Medica related to various medical actions on the man and mammals in general. The systemic action of the bite of this snake, includes hemostasis disorders, culminating as bleeding gums, in addition to sweating, hypertension, and hypothermia. The action includes local pain and swelling with bruising, bleeding and often blistering and tissue necrosis. The action on the immune system, through action on the complement C3 and other complement components may show its possible use in cases of bacterial infections, including mycobacteria, as presented in the study of 1970 Vanessa Birdsey, "Interactions of poisons toxic with the addition, "the journal of Immunology 1971. Today, this poison has a toxicology published by Anibal Melgarejo, "Venomous Animals of Brazil", 2003, which subsidizes the development of study for its use in high dilutions, and a comprehensive study of the biology of the animal itself. Published studies on biomolecular analysis add more details about the relations of the poison and mammals. All these characteristics suggest the use of poison as a homeopathic remedy. Objective: To investigate the therapeutic possibilities in high dilutions of the venom of the snake Bothrops jararaca, expanding its clinical use. Methodology: Methodological description of this poison in contemporary bases including: Origin, physical description chemistry, toxicology, pharmacology and medicine in preparation of high dilution, general action, specific actions on systems or organs, sensations, modalities, concomitants, etiological indications relations main clinics. Results: Defining

  3. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis.

    Science.gov (United States)

    Sanz, Libia; Escolano, José; Ferretti, Massimo; Biscoglio, Mirtha J; Rivera, Elena; Crescenti, Ernesto J; Angulo, Yamileth; Lomonte, Bruno; Gutiérrez, José María; Calvete, Juan J

    2008-04-30

    We report the proteomic characterization of the venoms of two closely related pit vipers of the genus Lachesis, L. muta (South American Bushmaster) and L. stenophrys (Central American Bushmaster), and compare the toxin repertoire of the former revealed through a proteomic versus a transcriptomic approach. The protein composition of the venoms of Lachesis muta and L. stenophrys were analyzed by RP-HPLC, N-terminal sequencing, MALDI-TOF peptide mass fingerprinting and CID-MS/MS. Around 30-40 proteins of molecular masses in the range of 13-110 kDa and belonging, respectively, to only 8 and 7 toxin families were identified in L. muta and L. stenophrys venoms. In addition, both venoms contained a large number of bradykinin-potentiating peptides (BPP) and a C-type natriuretic peptide (C-NP). BPPs and C-NP comprised around 15% of the total venom proteins. In both species, the most abundant proteins were Zn(2+)-metalloproteinases (32-38%) and serine proteinases (25-31%), followed by PLA(2)s (9-12%), galactose-specific C-type lectin (4-8%), l-amino acid oxidase (LAO, 3-5%), CRISP (1.8%; found in L. muta but not in L. stenophrys), and NGF (0.6%). On the other hand, only six L. muta venom-secreted proteins matched any of the previously reported 11 partial or full-length venom gland transcripts, and venom proteome and transcriptome depart in their relative abundances of different toxin families. As expected from their close phylogenetic relationship, the venoms of L. muta and L. stenophrys share (or contain highly similar) proteins, in particular BPPs, serine proteinases, a galactose-specific C-type lectin, and LAO. However, they dramatically depart in their respective PLA(2) complement. Intraspecific quantitative and qualitative differences in the expression of PLA(2) molecules were found when the venoms of five L. muta specimens (3 from Bolivia and 2 from Peru) and the venom of the same species purchased from Sigma were compared. These observations indicate that these class

  4. Contributions of renin-angiotensin system-related gene interactions to obesity in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Zhou

    Full Text Available BACKGROUND: Gene-gene interactions may be partly responsible for complex traits such as obesity. Increasing evidence suggests that the renin-angiotensin system (RAS contributes to the etiology of obesity. How the epistasis of genes in the RAS contributes to obesity is still under research. We aim to evaluate the contribution of RAS-related gene interactions to a predisposition of obesity in a Chinese population. METHODOLOGY AND PRINCIPAL FINDINGS: We selected six single nucleotide polymorphisms (SNPs located in angiotensin (AGT, angiotensin converting enzyme (ACE, angiotensin type 1 receptor (AGTR1, MAS1, nitric oxide synthase 3 (NOS3 and the bradykinin B2 receptor gene (BDKRB2, and genotyped them in 324 unrelated individuals with obesity (BMI ≥ 28 kg/m(2 and 373 non-obese controls (BMI 18.5 to <24 kg/m(2 from a large scale population-based cohort. We analyzed gene-gene interactions among 6 polymorphic loci using the Generalized Multifactor Dimensionality Reduction (GMDR method, which has been shown to be effective for detecting gene-gene interactions in case-control studies with relatively small samples. Then we used logistic regression models to confirm the best combination of loci identified in the GMDR. It showed a significant gene-gene interaction between the rs220721 polymorphism in the MAS1 gene and the rs1799722 polymorphism in the gene BDKB2R. The best two-locus combination scored 9 for cross-validation consistency and 9 for sign test (p = 0.0107. This interaction showed the maximum consistency and minimum prediction error among all gene-gene interaction models evaluated. Moreover, the combination of the MAS1 rs220721 and the BDKRB2 rs1799722 was associated with a significantly increased risk of obesity (OR 1.82, CI 95%: 1.15-2.88, p = 0.0103. CONCLUSIONS AND SIGNIFICANCE: These results suggest that the SNPs from the RAS-related genes may contribute to the risk of obesity in an interactive manner in a Chinese population. The gene

  5. Vascular kinin B1 and B2 receptor-mediated effects in the rat isolated perfused kidney–differential regulations

    Science.gov (United States)

    Bagaté, Karim; Develioglu, Leyla; Imbs, Jean-Louis; Michel, Bruno; Helwig, Jean-Jacques; Barthelmebs, Mariette

    1999-01-01

    Bradykinin (BK) and analogs acting preferentially at kinin B1 or B2 receptors were tested on the rat isolated perfused kidney. Kidneys were perfused in an open circuit with Tyrode's solution. Kidneys preconstricted with prostaglandin F2α were used for the analysis of vasodilator responses.BK induced a concentration-dependent renal relaxation (pD2=8.9±0.4); this vasodilator response was reproduced by a selective B2 receptor agonist, Tyr(Me)8-BK (pD2=9.0±0.1) with a higher maximum effect (Emax=78.9±6.6 and 55.8±4.3% of ACh-induced relaxation respectively, n=6 and 19, P<0.02). Icatibant (10 nM), a selective B2 receptor antagonist, abolished BK-elicited relaxation. Tachyphylaxis of kinin B2 receptors appeared when repeatedly stimulated at 10 min intervals.Des-Arg9-BK, a selective B1 receptor agonist, induced concentration-dependent vasoconstriction at micromolar concentration. Maximum response was enhanced in the presence of lisinopril (1 μM) and inhibited by R 715 (8 μM), a selective B1 receptor antagonist. Des-Arg9-[Leu8]-BK behaved as an agonist.A contractile response to des-Arg9-BK occurred after 1 h of perfusion and increased with time by a factor of about three over a 3 h perfusion. This post-isolation sensitization to des-Arg9-BK was abolished by dexamethasone (DEX, 30 mg kg−1 i.p., 3 h before the start of the experiment and 10 μM in perfusate) and actinomycin D (2 μM). Acute exposure to DEX (10 μM) had no effect on sensitized des-Arg9-BK response, in contrast to indomethacin (30 μM) that abolished it. DEX pretreatment however had no effect on BK-induced renal vasodilation.Present results indicate that the main renal vascular response to BK consists of relaxation linked to the activation of kinin B2 receptors which rapidly desensitize. Renal B1 receptors are also present and are time-dependently sensitized during the in vitro perfusion of the rat kidneys. PMID:10588918

  6. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies.

    Directory of Open Access Journals (Sweden)

    Graziela S Ceravolo

    Full Text Available The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R contributes to vascular hypertrophy in angiotensin II (ANG II-induced hypertension, through a mechanism involving reactive oxygen species (ROS generation and extracellular signal-regulated kinase (ERK1/2 activation. Male Wistar rats were infused with vehicle (control rats, 400 ng/Kg/min ANG II (ANG II rats or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg(9-Leu(8-bradykinin (ANGII+DAL rats, via osmotic mini-pumps (14 days or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats. After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg 184 ± 5.9 vs 115 ± 2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE: 21.8 ± 2.7 vs 6.0 ± 1.8] and ERK1/2 phosphorylation (% of control: 218.3 ± 29.4 vs 100 ± 0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17 ± 3.1 and ERK1/2 phosphorylation (137 ± 20.7% in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC stimulated with low concentrations (0.1 nM of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM, B1R antagonist (10 µM and Tiron (superoxide anion scavenger, 10 mM. These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth

  7. In silico prediction of harmful effects triggered by drugs and chemicals

    International Nuclear Information System (INIS)

    While the computer-assisted discovery and optimization of drug candidates based on the known three-dimensional structure of the macromolecular target (structure-based design) or a binding-site surrogate (receptor modeling) is doubtless one of the more potent approaches in rational drug design, the simulation and quantification of side effects triggered by drugs and chemicals are still in their infancy. Major obstacles include the often not available 3D structure of the molecular target, the low specificity of the involved bioregulators and the identification of the controlling metabolic pathways. In the recent past, our laboratory has explored concepts allowing to simulate receptor-mediated toxic phenomena by developing algorithms, allowing to construct realistic 3D binding-site surrogates of receptors known or assumed triggering adverse effects and validating them against large batches of molecular data. The underlying technology (software Quasar and Raptor, respectively) specifically allows for induced fit, solvation phenomena and entropic effects. It has been applied to various systems both of pharmacological and toxicological interest including the neurokinin-1, chemokine-3, bradykinin B2, steroid, 5 HT2A, aryl hydrocarbon, estrogen and androgen receptor, respectively. In this account, we describe the design of a virtual laboratory allowing for a reliable estimation of harmful effects triggered by drugs, chemicals and their metabolites in silico. In the recent past, the Biographics Laboratory 3R has compiled a 3D database including the surrogates of three major receptor systems known to mediate adverse effects (the aryl hydrocarbon, the estrogen and the androgen receptor, respectively) and validated them against a total of 345 compounds (drugs, chemicals, toxins) using multidimensional QSAR technologies. Within this pilot project, we could demonstrate that our virtual laboratory is able to both recognize toxic compounds substantially different from those used

  8. Association of single nucleotide polymorphisms in the 3'UTR of ERAP1 gene with essential hypertension in the Northeastern Han Chinese.

    Science.gov (United States)

    Yang, Sibao; Liu, Xueyan; Gao, Yongjian; Ding, Mei; Li, Bing; Sun, Huan; He, Yuquan; Yang, Ping

    2015-04-15

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) may be involved in blood pressure regulation by inactivation of angiotensin II and generation of bradykinin. Our previous study with cDNA microarray indicated that the expression of ERAP1 is down-regulated in essential hypertension (EH) patients. Since the 3'untranslated region (3'UTR) is known to play an important role in the post-transcriptional regulation by influencing the stability and translation process of mRNA, the present study aims to identify single nucleotide polymorphisms (SNPs) in the 3'UTR of ERAP1 gene in a case-control study among the Northeastern Han Chinese through PCR-sequencing, and analyze the association with EH. Our results further verified the lower expression level of ERAP1 in the peripheral blood cells in patients with EH (917.12±517.57 vs. 1506.59±1214.09pg/mL, P=0.011). Four SNPs, 3'UTR-761G>A, 3'UTR-787C>T, 3'UTR-1008A>C and 3'UTR-1055A>G, were identified in the 3'UTR of ERAP1. 3'UTR-1008A>C and 3'UTR-1055A>G were in almost complete linkage disequilibrium. Association analysis showed that the genotypic and allelic frequencies of 3'UTR-1008A>C and 3'UTR-1055A>G were significantly different between EH and the control groups. Logistic regression and haplotypic analysis indicated that alleles of E20-1037C and E20-1084G as well as haplotype of C-G were the risk factors of EH (PC and 3'UTR-1055A>G as well as the haplotypes C-G and A-A were significantly different between EH and the control in the younger group (C and 3'UTR-1055A>G polymorphisms of ERAP1 gene were associated with EH, especially in the younger population, and the haplotype C-G could be the independent marker of EH. PMID:25665737

  9. Effect of chronic treatment with the vasopeptidase inhibitor AVE 7688 and ramipril on endothelial function in atherogenic diet rabbits.

    Science.gov (United States)

    Weckler, Nadine; Leitzbach, Daniela; Kalinowski, Leszek; Malinski, Tadeusz; Busch, Andreas E; Linz, Wolfgang; Kalinowski, Ludmila

    2003-09-01

    Cardiovascular disease is the major cause of death in Western nations, although improved possibilities regarding diagnosis and therapy now exist. Endothelial dysfunction is triggered by cardiovascular risk factors such as hypercholesterolaemia, hypertension, adiposity and smoking, contributing to the common endpoint of atherosclerosis. This study examined the pharmacological effects of angiotensin-converting enzyme (ACE) and combined ACE-neutral endopeptidase (NEP) (vasopeptidase) inhibitors on endothelial dysfunction in the model of hyperlipidaemic rabbits. The focus of the study was to assess endothelial function after treatment with the ACE-NEP inhibitor AVE 7688 (30 mg/kg/day) in comparison to the ACE inhibitor (ACE-I) ramipril (1 mg/kg/day). Different parameters, such as endothelial function, blood pressure (BP), expansion of plaques, endothelial nitric oxide (NO) and superoxide (O2-) release and plasma levels of various lipidaemic parameters were analysed. Control groups consisted of one group fed only with normal diet, one group fed only with atherogenic diet and the direct control group fed with varied diets (six weeks atherogenic diet followed by 12 weeks normal diet). Since for the treatment of atherosclerosis, a change in feeding is absolutely necessary, in the present study, at the start of the treatments with AVE 7688 and ramipril, the rabbits food was changed to a normal diet. At the end of the study, mean arterial blood pressure (MAP) was measured in the anaesthetised animals. The values in standard, atherogenic and varied diet-fed rabbits were around 73 2 mmHg. Angiotensin I (Ang I) given intravenous (i.v.) induced a strong increase in MAP of about 20%. In both the treated groups Ang I-induced BP increase was inhibited. In contrast, i.v. bradykinin led to a strong reduction in MAP in both the treated groups of around 50%. Six weeks feeding with an atherogenic diet in the rabbits induced an enduring endothelial dysfunction despite the food

  10. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  11. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    Science.gov (United States)

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  12. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels.

    Science.gov (United States)

    Vaca, Luis; Sampieri, Alicia

    2002-11-01

    In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.

  13. The hypoalgesic effects of low-intensity infrared laser therapy: a study on 555 cases

    Science.gov (United States)

    Tam, Giuseppe

    2004-09-01

    Objective: Low energy lasers are widely used to treat a variety of musculoskeletal conditions. The aim of this clinical study is to determine the action of the IR diode laser 904 nm pulsed on pain reduction therapy. Summary Background Data: With respect to pain, has been shown the Low power density laser increases the endorphin synthesis in the dorsal posterior horn of the spinal cord stopping the production of bradykinin and serotonin. Besides laser causes local vasodilatation of the capillaries and an improved circulation of drainage liquids in interstitial space causing an analgesic effect. Additionally, laser interferes in the cytochines (TNF-α, interleukin-1 and interleukin-6) that drive inflammation in the arthritis and are secreted from CD4 e T cells. Methods: Treatment was carried out on 555 cases and 525 patients (322 women and 203 men) in the period between 1987 and 2002. The patients, whose age ranged from 25 to 70, with a mean age of 45 years, were suffering from rheumatic, degenerative and traumatic pathologies. The majority of the patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scanning, Tac, RM examination. All patients had received drug-based treatment and/or physiotherapy with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs 904 nm, maximum power 60 W, frequency impulse 1300 Hz, pulsed duration 200 nanoseconds; peak power per pulse 27W; maximal energy density: 9J/cm2; total number of Joules per treatment session: 10-75J/cm2, chronic 12-90J/cm2. Average number of applications: 12; maximum number of applications: 20. Results: In the evaluation of the results the following parameters have been considered: disappearance of spontaneous and induced pain (Likert scale, Rolland Morris disability scale, dynamometer). The pathologies treated were osteoarthritis in general, epicondylitis

  14. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.

    Science.gov (United States)

    Calvete, Juan J; Fasoli, Elisa; Sanz, Libia; Boschetti, Egisto; Righetti, Pier Giorgio

    2009-06-01

    -terminal pyrrolidone carboxylic acid formation required in the maturation of bioactive peptides such as bradykinin-potentiating peptides and endogenous inhibitors of metalloproteases. Our findings underscore the usefulness of combinatorial peptide libraries as powerful tools for mining below the tip of the iceberg, complementing thereby the data gained using the snake venomics protocol toward a complete visualization of the venom proteome. PMID:19371136

  15. Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Graziella Mendonsa

    Full Text Available The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival

  16. Angioedema Related to Angiotensin-Converting Enzyme Inhibitors: Attack Severity, Treatment, and Hospital Admission in a Prospective Multicenter Study.

    Science.gov (United States)

    Javaud, Nicolas; Achamlal, Jallal; Reuter, Paul-George; Lapostolle, Frédéric; Lekouara, Akim; Youssef, Mustapha; Hamza, Lilia; Karami, Ahmed; Adnet, Frédéric; Fain, Olivier

    2015-11-01

    The number of cases of acquired angioedema related to angiotensin converting enzyme inhibitors induced (ACEI-AAE) is on the increase, with a potential concomitant increase in life-threatening attacks of laryngeal edema. Our objective was to determine the main characteristics of ACEI-AAE attacks and, in doing so, the factors associated with likelihood of hospital admission from the emergency department (ED) after a visit for an attack.A prospective, multicenter, observational study (April 2012-December 2014) was conducted in EDs of 4 French hospitals in collaboration with emergency services (SAMU 93) and a reference center for bradykinin-mediated angioedema. For each patient presenting with an attack, emergency physicians collected demographic and clinical presentation data, treatments, and clinical course. They recorded time intervals from symptom onset to ED arrival and to treatment decision, from ED arrival to specific treatment with plasma-derived C1-inhibitor (C1-INH) or icatibant, and from specific treatment to onset of symptom relief. Attacks requiring hospital admission were compared with those not requiring admission.Sixty-two eligible patients with ACEI-AAE (56% men, median age 63 years) were included. Symptom relief occurred significantly earlier in patients receiving specific treatment than in untreated patients (0.5 [0.5-1.0] versus 3.9 [2.5-7.0] hours; P patients, 27 (44%) were admitted to hospital from the ED. In multivariate analysis, laryngeal involvement and progressive swelling at ED arrival were independently associated with admission (Odds ratio [95% confidence interval] = 6.2 [1.3-28.2] and 5.9 [1.3-26.5], respectively). A favorable course was observed in all patients. Three patients (5%) experienced a recurrence after angiotensin-converting enzyme inhibitor discontinuation after a median follow-up of 18 (11-30) months.Two severity criteria-laryngeal edema and the progression of the edema-were independent factors associated with

  17. Increased angiotensin-converting enzyme activity in the left ventricle after infarction

    Directory of Open Access Journals (Sweden)

    V.C.W. Busatto

    1997-05-01

    high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarction

  18. Local gene expression changes after UV-irradiation of human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin Weinkauf

    Full Text Available UV-irradiation is a well-known translational pain model inducing local inflammation and primary hyperalgesia. The mediators and receptor proteins specifically contributing to mechanical or heat hyperalgesia are still unclear. Therefore, we irradiated buttock skin of humans (n = 16 with 5-fold MED of UV-C and assessed the time course of hyperalgesia and axon reflex erythema. In parallel, we took skin biopsies at 3, 6 and 24 h after UVC irradiation and assessed gene expression levels (RT-PCR of neurotrophins (e.g. NGF, BDNF, GDNF, ion channels (e.g. NaV1.7, TRPV1, inflammatory mediators (e.g. CCL-2, CCL-3 and enzymes (e.g. PGES, COX2. Hyperalgesia to mechanical impact (12 m/s and heat (48 °C stimuli was significant at 6 h (p<0.05 and p<0.01 and 24 h (p<0.005 and p<0.01 after irradiation. Axon reflex erythema upon mechanical and thermal stimuli was significantly increased 3 h after irradiation and particularly strong at 6 h. A significant modulation of 9 genes was found post UV-C irradiation, including NGF (3, 6, 24 h, TrkA (6, 24 h, artemin, bradykinin-1 receptor, COX-2, CCL-2 and CCL-3 (3 and 6 h each. A significant down-regulation was observed for TRPV1 and iNOS (6, 24 h. Individual one-to-one correlation analysis of hyperalgesia and gene expression revealed that changes of Nav1.7 (SCN9A mRNA levels at 6 and 24 h correlated to the intensity of mechanical hyperalgesia recorded at 24 h post UV-irradiation (Pearson r: 0.57, p<0.04 and r: 0.82, p<0.001. Expression of COX-2 and mPGES at 6 h correlated to the intensity of heat-induced erythema 24 h post UV (r: 0.57, p<0.05 for COX-2 and r: 0.83, p<0.001 for PGES. The individual correlation analyses of functional readouts (erythema and pain response with local expression changes provided evidence for a potential role of Nav1.7 in mechanical hyperalgesia.

  19. 非甾体类抗炎药在牙周病治疗中的作用%Effect of non-steroidal anti-inflammatory drugs in the treatment of periodontal diseases

    Institute of Scientific and Technical Information of China (English)

    孙小娜; 宋爱梅; 杨丕山

    2014-01-01

    地诺前列酮是牙槽骨吸收最有力的刺激因子,既可刺激破骨细胞引起破骨性骨吸收,破坏牙周组织;还可提高缓激肽和组胺水平,引起疼痛的感觉。地诺前列酮与血栓素A2间失衡,会影响血管生成和组织愈合。非甾体类抗炎药(NSAID)可抑制人体内的环加氧酶活性,减少地诺前列酮的生成,从而降低牙周炎症,缓解疼痛;可引起内皮细胞通透性降低,影响急性期多种细胞的迁移;可抑制透明质酸的形成,从而影响细胞增殖。布洛芬缓释凝胶和米诺环素-布洛芬缓释凝胶均能有效地改善慢性牙周炎的临床症状,控制牙周炎症,减少组织破坏。NSAID用于牙周组织再生术治疗,对骨移植后的骨再生有明显的促进作用。NSAID对于牙周炎的治疗既有优势,也有不可忽视的缺点。NSAID会抑制血栓素A2的生成,减少血小板的聚集,从而增加患者血肿和持续出血的风险。牙周手术与此类药物怎样结合应用才能收到最佳效果,NSAID能否在牙周再生手术中起到促进作用仍需进一步探讨。%Dinoprostone is a powerful stimulating factor for alveolar bone resorption. It can destroy periodontal tissues by activating osteoclasts and cause pain by increasing the level of bradykinin and histamine. The imbalance between Dinoprostone and thromboxane A2 may influence angiogenesis and tissue healing. Non-steroidal anti-inflammatory drugs(NSAID) can reduce the production of Dinoprostone by inhibiting the clyco-oxygenase activity, thus decreasing the periodontal inflammation and relieving pain. It can also reduce the permeability of endothelial cells and influence cell migration during the acute inflammation period. It can inhibit the formation of hyaluronic acid and affect cell proliferation. Ibuprofen gel and minocycline-ibuprofen gel can improve the clinical symptoms of chronic periodontitis effectively and reduce tissue destruction

  20. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  1. Molecular mechanism of limbs' postischemic revascularization improved by perindopril in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    GAO Lu; YU De-min

    2008-01-01

    Background Currently,there are still divergent opinions about the mechanisms of the impaired neovascularization in diabetic subjects.Due to the remarkable therapeutic effect of angiotensin-converting enzyme inhibititors (ACEIs) on the reduction of blood pressure and the protection of target organs,the clinical application of this kind of drugs is very widespread.However,it is still not clear about the role and related molecular pathway of this kind of drugs in the limbs'postischemic revascularization.It is of major therapeutic importance to resolve these questions.This study aimed to investigate the reasons of the impaired angiogenesis in the hind limbs of rats with diabetic ischemia,the role and related molecular mechanisms of ACEI in postischemic revascularization.Methods Hind limbs ischemia was induced in diabetic rats by right femoral artery excision.Diabetic rats were randomly allocated to one of the following treatments for 4 weeks:ACEI by perindopril;perindopril in combination with a nitric oxide synthase (NOS) inhibitor;perindopril in combination with bradykinin (BK)-B1 receptor (B1R) antagonist or saline.The differences of angiogenesis,the mRNA and protein expression of endothelial nitric oxide synthase (eNOS),vascular endothelial growth factor (VEGF) and basic fibroblast (bFGF),constitutive nitric oxide synthase (cNOS) activity and nitric oxide (NO) content were observed after treatment.Results In non-ischemic hind limbs,no significant changes in capillary density,or the mRNA and protein expression of eNOS,VEGF and bFGF,or the NO content and the cNOS activity were observed among all groups.On the contrary,in ischemic hind limbs,the capillary density in diabetic rats decreased by 27% when compared with the control rats,so did the mRNA and protein expression of eNOS,VEGF and bFGF,or the NO content and the cNOS activity (P<0.05).The capillary density was increased by 1.65-fold in the perindopril treatment group in reference to untreared diabetic rats

  2. Progress on the association between ACE (I/D) gene polymorphism and renin-angiotensin- aldosterone system and cardiovascular disease%ACE基因插入/缺失多态性与肾素-血管紧张素-醛固酮系统及相关心血管疾病的关系研究进展

    Institute of Scientific and Technical Information of China (English)

    于彦彦; 董天葳; 隋小芳; 彭鹏; 杨军

    2015-01-01

    central role in health and disease, but the determining factor of the system activity has not been fully elucidated. Angiotensin converting enzyme (ACE) is an important enzyme in RAAS, it is mainly the angiotensinⅠ (AngⅠ) hydrolysis transformed into a powerful biological activity of angiotensinⅡ (AngⅡ), while making the degradation of bradykinin. Currently, it has aroused widespread attention between Ang converting enzyme gene polymorphism insertion/deletion and coronary heart disease, cardiomyopathy, hypertension and other cardiovascular diseases. Although a lot of studies have reported, the results are not agreed. So we explored the importance of the relationship between Ang converting enzyme gene polymorphism and RAAS and related cardiovascular diseases to bring unprecedented inspired on the basis of the disease and the clinical application of drugs.

  3. Cystic fibrosis airway epithelial Ca2+ i signaling: the mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia.

    Science.gov (United States)

    Ribeiro, Carla M Pedrosa; Paradiso, Anthony M; Carew, Mark A; Shears, Stephen B; Boucher, Richard C

    2005-03-18

    In cystic fibrosis (CF) airways, abnormal epithelial ion transport likely initiates mucus stasis, resulting in persistent airway infections and chronic inflammation. Mucus clearance is regulated, in part, by activation of apical membrane receptors coupled to intracellular calcium (Ca(2+)(i)) mobilization. We have shown that Ca(2+)(i) signals resulting from apical purinoceptor (P2Y(2)-R) activation are increased in CF compared with normal human airway epithelia. The present study addressed the mechanism for the larger apical P2Y(2)-R-dependent Ca(2+)(i) signals in CF human airway epithelia. We show that the increased Ca(2+)(i) mobilization in CF was not specific to P2Y(2)-Rs because it was mimicked by apical bradykinin receptor activation, and it did not result from a greater number of P2Y(2)-R or a more efficient coupling between P2Y(2)-Rs and phospholipase C-generated inositol 1,4,5-trisphosphate. Rather, the larger apical P2Y(2)-R activation-promoted Ca(2+)(i) signals in CF epithelia resulted from an increased density and Ca(2+) storage capacity of apically confined endoplasmic reticulum (ER) Ca(2+) stores. To address whether the ER up-regulation resulted from ER retention of misfolded DeltaF508 CFTR or was an acquired response to chronic luminal airway infection/inflammation, three approaches were used. First, ER density was studied in normal and CF sweat duct human epithelia expressing high levels of DeltaF508 CFTR, and it was found to be the same in normal and CF epithelia. Second, apical ER density was morphometrically analyzed in airway epithelia from normal subjects, DeltaF508 homozygous CF patients, and a disease control, primary ciliary dyskinesia; it was found to be greater in both CF and primary ciliary dyskinesia. Third, apical ER density and P2Y(2)-R activation-mobilized Ca(2+)(i), which were investigated in airway epithelia in a long term culture in the absence of luminal infection, were similar in normal and CF epithelia. To directly test whether

  4. Characterisation of Ca(2+)-dependent inwardly rectifying K+ currents in HeLa cells.

    Science.gov (United States)

    Díaz, M; Sepúlveda, F V

    1995-06-01

    + currents of HeLa cells. The toxins apamin and scyllatoxin had no detectable effect whilst charybdotoxin, a component of LQV, blocked in a voltage-dependent manner with half-maximal concentrations of 40 nmol/l at -120 mV and 189 nmol/l at 60 mV; blockade by charybdotoxin accounts for the effect of LQV. Application of ionomycin (5-10 mumol/l), histamine (1 mmol/l) or bradykinin (1-10 mumol/l) to cells dialysed with low-buffered intracellular solutions induced K+ currents showing inward rectification and a lack of voltage dependence. PMID:7545810

  5. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, Mabel; Smolic, Christian [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Contreras, Ariel [Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Lavandero, Sergio [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX (United States); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  6. 血浆激肽释放酶-激肽系统活化在大鼠佐剂性关节炎中的作用%Plasmic kallikrein-kinin system activation in adjuvant arthritis rats

    Institute of Scientific and Technical Information of China (English)

    朱洁; 王迪; 陈镜宇; 吴华勋; 魏伟

    2015-01-01

    Objective To detect activation of plasmic kallikrein-kinin system ( KKS ) in adjuvant arthritis ( AA ) rats and observe the effects on paw edema as well as systemic inflammation of kallikrein inhibitor PKSI-527 . Meth-ods SD rats were injected with Freund 's complete adjuvant to establish AA rats model, semiquantitative scores were used to estimate the paws and systemic inflammation. Levels of plasimic prekallikrein ( PK) , high molecular weight kininogen (HK) and bradykinin (BK) were detected by ELISA, expressions of BK receptor BIR B2R mR-NA in blood were detected by real-time quantitative PCR. The activation of KKS and inflammatory scores were also evaluated in AA rat treated with PKSI-527. Results After injection with Freund′s complete adjuvant, SD rats de-veloped secondary inflammation in multi-sites, including non-injected paws. Levels of BK and HK in AA rats were elevated compared with normal rats ( P0. 05 ) . After injection with PKSI-527 in AA rats, there was obvious decrease of BK, HK as well as PK in AA rats ( compared to vehicle group, P0. 05 ) . Systemic inflammatory scores were decreased in AA rats after treated with PKSI-527 (compared to vehlcie group, P<0. 05). Conclusion Plasmic kallikrein kinin system (KKS) is activated in AA rats, and kallikrein inhibitor PKSI-527 can obviously relieve the inflammation of AA rats.%目的:观察佐剂性关节炎( AA)大鼠血浆激肽释放酶-激肽系统( KKS)的活化情况,并探讨PKSI-527对大鼠关节炎及全身炎症的影响。方法采用弗氏完全佐剂建立AA大鼠模型,并通过测量足爪肿胀以及炎症反应评分的方法进行半定量评价。 ELISA法检测血浆中KKS相关指标血浆前激肽释放酶(PK)、高分子量激肽原(HK)及缓激肽(BK)的水平,实时荧光定量 PCR 检测外周血 BK 受体 B1R、B2R mRNA的表达情况。使用 PKSI-527腹腔内注射,观察抑制剂对AA大鼠KKS活化以及关节肿胀和全身炎症的改变情况。结果 AA大鼠表现继

  7. Immediate hypersensitivity reactions induced by iodinated contrast media%碘造影剂所致速发型过敏反应

    Institute of Scientific and Technical Information of China (English)

    周细平; 李宏

    2011-01-01

    Iodinated contrast media (ICM) are the most commonly used drugs in diagnostic visualisation technique.ICM may be classified as ionic and nonionic according to their chemical structure or high-osmolar, low-osmolar.and iso-osmolar according to their osmoWity.ICM are generally considered to be relatively safe.but serious adverse reactions may occur, such as severe immediate hypersensitivity reactions.Severe immediate hypersensitivity reactions may lead to angioedema, unconsciousness, profound hypotension, arrhythmias, respiratory arrest and cardiac arrest, and so on.The incidence rates of severe immediate hypensensitivity reactions to ionic and nonionic ICM are O.1%- 0.4% and 0.02%- 0.04% , respectively.The most significant risk factor for an immediate hypersensitivity reaction is a history of a hypersensitivity reaction to contrast media.Other risk factors are the history of asthma and allergic history to drug or food, and so on.The mechanism of ICM-induced immediate hypersensitivity reactions may be reWed to histamine release from basophil and mast cells.Histamine release might be due to a direct membrane effect associated with the solution osmolarity or the chemical structure of ICM, an activation of the complement system, as well as the formation of bradykinin and the activation of antigen-antibody reactions mediated by IgE.The preventive and therapeutic measures are as follows: (1) application of Iow-osmolar or iso-osmolar and noruonic ICM as far as possible; (2) the skin test and the premedication such as glucocorticoid and antihistamine to the patients with risk factors should be recommended; (3) the patients with moderate or severe hypersensitivity reactions to ICM should receive the symptomatic and supportive treatments.%碘造影剂是影像学诊断中最常用的药物,根据分子结构可分为离子和非离子型,根据渗透压可分为高渗、低渗和等渗型.碘造影剂通常较为安全,但也可发生严重不良反

  8. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  9. SP 04-1 THE ROLE OF NATRIURETIC PEPTIDES IN THE PATHOGENESIS OF CARDIOVASCULAR DISEASES.

    Science.gov (United States)

    Kobalava, Zhanna

    2016-09-01

    NEPi yields broader effects than anticipated and explains why NEPi is best combined with the inhibition of other vasoactive compounds. Angiotensin receptor blockers (ARB) do not disrupt bradykinin metabolism as much as ACE-inhibitors, and some patients with ACE-inhibitor-associated angioedema can be switched over to an ARB without the occurrence of angioedema. A novel class of drugs that combines the actions of NEP inhibitors and ARB, known as angiotensin receptor blockade with neutral endopeptidase inhibition (ARNi) was developed. LCZ696 is the first compound of this category. Novel ARNi-based therapeutic strategies are expected contribute to optimize control of CVD and of their outcomes. PMID:27643143

  10. Effect of nitric oxide on rostral ventrolateral medulla modulating cardiac sympathetic afferent reflex in rats with chronic heart failure%延髓头端腹外侧区一氧化氮对慢性心力衰竭大鼠心交感传入反射的影响

    Institute of Scientific and Technical Information of China (English)

    高兴亚; 郭瑞; 王玮; 张枫; 朱国庆

    2005-01-01

    anesthetized with α-chloralose and urethane and baroreceptor denervated and vagotomized. The CSAR was evoked by epicardial application of bradykinin (BK, 0.04 μg and 0.4 μg in 2.0 μL) to mimic the effect of chemical stimulation on the heart in the CHF state. The renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded at baseline and during elicitation of the CSAR. Cannulae were inserted into the RVLM for microinjections.croinjection of MeTC, a nitric oxide synthase inhibitor, into the RVLM on Effects of epicardial pretreatment with lidocaine on the CSAR in CHF rats.infarction of (30.6±2.0) % of the left ventricular (LV) surface. The systolic arterial pressure, pulse pressure, left ventricle peak systolic pressure and maximum of the first differentiation of left ventricular pressure were decreased and the left ventricular end-diastolic pressure was significantly ininto the RVLM had no significant effects on the CSAR in rats with CHF,of SNAP (50 nmol) into the RVLM inhibited the CSAR in both sham rats ventricle abolished the CSAR evoked by epicardial application ofBK on the same area.CONCLUSION: Nitric oxide in the RVLM inhibits the CSAR evoked by epicardial application of BK in normal rats and CHF rats, and the reduction of nitric oxide in the RVLM led to the augmentation of the CSAR in CHF rats.